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Abstract

A new approach is developed in the present thesis, to tune PI-Controllers in a
Multi-loop Control System, regarding to certain control loop properties, constraints
and requirements.
Several control loops in a Multi-loop Control System interact to a greater or lesser
extend, depending on the control loop structure. This behavior could yield to a
degradation of one loop requirement due to an optimization of a second control
loop in tuning it’s controllers according to another requirement. This is a conflict
situation, which could not be avoided, but improved. A consideration of one or
more requirements in a Multi-loop Control System is known as a multi-objective
optimization problem. To solve such a kind of Multi-objective problem, a new
approach is developed that supports finding a fair trade-off from the point of
view of all requirements, criteria and each control loop of a Multi-loop Control
System. The developed approach uses tools from game theory, which could be
applied meaningfully, to describe and solve conflict situations as described within
several control loop requirements and criteria. Assistant steps of the approach are
that the conflict situation, respectively the Multi-objective optimization problem
is structured and described as a game, first. The belonging requirements as well as
constraints are formalized mathematically in the next step. Finally, game theory
provides several solution concepts to calculate a fair trade-off, which is the solution
to the game.
In the wide research field of game theory, the structure of information plays a
decisive role. This fact leads to a second application in the control theory of the
developed approach. Using different information structures of a game, respectively
a Multi-loop Control System, leads to a change of the players’ strategy sets. This
has a bearing on the final solution of the game. Through this game-theoretic point
of view, multiple Multi-loop Control System structures could be analyzed and
compared for one and the same control theoretic problem.
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Kurzbeschreibung

In der vorliegenden Arbeit wird ein neuer Ansatz zur Einstellung der Parameter
eines PI Reglers in einem mehrschleifigen Regelsystem entwickelt. Dieser Ansatz
berücksichtigt sowohl bestimmte Eigenschaften der Regelschleifen, wie auch Ein-
schränkungen und Anforderungen der Regelschleifen. In einem mehrschleifigen Re-
gelsystem interagieren die Regelschleifen, je nach Struktur der Regelschleifen, mehr
oder weniger stark miteinander. Dieses Verhalten kann zu einer Herabstufung einer
Regelschleifenanforderung führen, wenn bei der Parametereinstellung die Optimie-
rung einer zweiten Regelschleifenanforderung im Vordergrund steht. Die daraus
entstehende Konfliktsituation kann nur selten verhindert werden. Das Regelver-
halten kann jedoch in Bezug auf mehrere Anforderungen oder Beschränkungen der
Regelschleifen deutlich verbessert werden. Die Betrachtung von ein oder mehreren
Anforderungen in einem Mehrschleifenregelsystem wird auch als multikriterielles
Optimierungsproblem bezeichnet.
Das Ziel des hier entwickelten Ansatzes ist es, eine faire Kompromisslösung aus
Sicht aller Regelanforderungen und Beschränkungen zu bekommen. Hierbei wer-
den auch die einzelnen Regelschleifen des Systems miteinbezogen. Der hier ent-
wickelte Ansatz stützt sich auf Werkzeuge der Spieltheorie, welche angewendet
werden können, um die bestehende Konfliktsituation aus unterschiedlichen Regel-
kreisanforderungen und deren Beschränkungen zu beschreiben und zu lösen. Ein
hilfreicher erster Schritt des Ansatzes ist es, die Konfliktsituation, beziehungs-
weise das multikriterielle Optimierungsproblem zu strukturieren und als Spiel zu
beschreiben. In einem weiteren Schritt werden die zugehörigen Anforderungen,
sowie die Einschränkungen mathematisch beschrieben. Mittels unterschiedlicher
Lösungskonzepte aus der Spieltheorie, ergibt sich die Lösung des Spiels aus der
Berechnung eines fairen Kompromisses. Das Ergebnis ist ein Parametersatz für die
Regler, welche alle Anforderungen gleichberechigt erfüllt.
Auf dem weiten Forschungsgebiet der Spieltheorie spielt die vorliegende Informa-
tionsstruktur eine entscheidende Rolle. Diese Tatsache führt zu einer weiteren
Anwendung des in dieser Arbeit entwickelten Ansatzes: die Nutzung von ver-
schiedenen möglichen Informationsstrukturen eines Spiels, beziehungsweise eines
Merhschleifenregelsystems, führt zu unterschiedlichen Strategiemengen der Spieler.
Diese Strategiemengen haben wiederum einen Einfluß auf die Lösung des Spiels.
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Durch diese spieltheoretische Betrachtung können unterschiedliche Strukturen von
Mehrschleifenregelsystemen für ein und dasselbe regelungstechnische Problem ana-
lysiert und verglichen werden.

v



Contents

List of Figures xi

List of Tables xiv

List of Abbreviations xvi

List of Symbols xviii

Chapter 1
Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Main Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 2
Preliminaries 13
2.1 Control of Multi-variable Processes . . . . . . . . . . . . . . . . . . 13

2.1.1 Multi-variable control . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Decentralized (Multi-loop) control . . . . . . . . . . . . . . . 14
2.1.3 PI(D)-Control in Multi-loop Control systems . . . . . . . . . 15

2.2 Introduction to game theory . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 History and spheres of influence . . . . . . . . . . . . . . . . 18
2.2.2 Common definitions, rules and properties of a game . . . . . 20

2.2.2.1 Number of players N . . . . . . . . . . . . . . . . . 20
2.2.2.2 Strategies u . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2.3 Payoffs, Costs and Outcomes . . . . . . . . . . . . 20
2.2.2.4 Dynamic vs. static game . . . . . . . . . . . . . . . 21
2.2.2.5 Cooperative vs. non-cooperative games . . . . . . . 22
2.2.2.6 Pure bargaining games vs. transferable utility games 22
2.2.2.7 Differential vs. difference games . . . . . . . . . . . 23
2.2.2.8 Normal form games vs. extensive form games . . . 23

vi

richtea
Rectangle



2.2.2.9 Zero-Sum vs. Nonzero-Sum Game . . . . . . . . . 24
2.2.2.10 Information . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2.11 Game of Kind vs. Game of degree . . . . . . . . . 25

2.2.3 Solution Concepts in Game Theory: An Overview . . . . . . 25
2.2.3.1 Solution concepts for non-cooperative games . . . . 25
2.2.3.2 Solution concepts for cooperative games . . . . . . 27

2.3 Multi-objective optimization (MOO) . . . . . . . . . . . . . . . . . 32
2.3.1 Multi-objective optimization providing a

Pareto-optimal solution set . . . . . . . . . . . . . . . . . . . 32
2.3.1.1 Multi-objective mathematical optimization problem 33

2.3.2 Solving Multi-objective optimization problems . . . . . . . . 34
2.3.2.1 Genetic algorithms for the solution of MOO problems 37

2.3.3 The Genetic Evolutionary Algorithm Toolbox . . . . . . . . 38

Chapter 3
Game-theoretic control system design 39
3.1 Description of the game . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 The Continuous Game . . . . . . . . . . . . . . . . . . . . . 40
3.1.2 Multi-loop control system design of a differential game . . . 41
3.1.3 The difference game . . . . . . . . . . . . . . . . . . . . . . 44
3.1.4 Multi-loop control system design as a difference game . . . . 45

3.2 Cost functions and constraints set up . . . . . . . . . . . . . . . . . 47
3.2.1 Reference tracking . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 Control effort . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2.1 Control effort as add on to existing cost functions . 48
3.2.2.2 Control effort as cost function implementation . . . 50
3.2.2.3 Explicit control constraints implementation . . . . 50
3.2.2.4 Explicit control constraints as cost function imple-

mentation . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.3 Robust Stability . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Course of the game . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Solution of the game . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Motivation for a game-theoretic DM . . . . . . . . . . . . . 54
3.5 Essential modifications in the source code of the genetic algorithm . 56

Chapter 4
Game-theoretical Topological Analysis of a Two-input/Two-

output System 57
4.1 Game description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 The cooperative differential game . . . . . . . . . . . . . . . 58
4.1.2 Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Games with different information . . . . . . . . . . . . . . . . . . . 60
4.2.1 Game I - the basic game . . . . . . . . . . . . . . . . . . . . 60

vii



4.2.2 Game II - a game with forward information flow . . . . . . . 61
4.2.3 Game III - a game with a decoupler . . . . . . . . . . . . . . 62
4.2.4 Game IV - a game with complete information . . . . . . . . 63
4.2.5 Game V - a Stackelberg game . . . . . . . . . . . . . . . . . 64

Chapter 5
Case Study 1: A Two-input/Two-output Differential Game 65
5.1 Multi-loop control system design for MIMO systems: The Reverse

Osmosis Desalination Plant . . . . . . . . . . . . . . . . . . . . . . 66
5.1.1 Example Description . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Multi-loop control system design for the continuous reverse osmosis
desalination system . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.0.1 Game description . . . . . . . . . . . . . . . . . . . 68
5.2.1 Multi-loop control system design subject to a fast reference

tracking with low deviation and low control effort . . . . . . 70
5.2.1.1 Cost function and constraint set up . . . . . . . . . 70
5.2.1.2 A) Control effort added to existing cost functions . 72
5.2.1.3 B) Control effort as cost function implementation . 80
5.2.1.4 C) Explicit control constraints implementation . . 83
5.2.1.5 D) Explicit control constraints as cost function im-

plementation . . . . . . . . . . . . . . . . . . . . . 87
5.2.2 Multi-loop control system design including a robust stability

requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.2.1 Cost function and constraint set up . . . . . . . . . 91
5.2.2.2 Obtaining the Pareto-optimal set and the final so-

lution . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.2.3 Simulation Results . . . . . . . . . . . . . . . . . . 93
5.2.2.4 Robust stability verification of the results . . . . . 96

Chapter 6
Case Study 2: A Two-input/Two-output Difference Game 100
6.1 Multi-loop control system design for the discrete model of the re-

verse osmosis desalination system . . . . . . . . . . . . . . . . . . . 100
6.1.1 Multi-loop control system design for a discrete plant model . 100

6.1.1.1 Game description . . . . . . . . . . . . . . . . . . . 101
6.1.1.2 Cost function and constraint set up . . . . . . . . . 101

6.1.2 Application implementation . . . . . . . . . . . . . . . . . . 102
6.1.2.1 Obtaining the Pareto-optimal set and the final so-

lution . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1.2.2 Simulation Results . . . . . . . . . . . . . . . . . . 104

viii



Chapter 7
Case Study 3: A Topological Analysis of different control sys-

tem structures 106
7.1 Application and simulation results . . . . . . . . . . . . . . . . . . . 106

7.1.1 Obtaining the Pareto-optimal set and simulation results . . . 107
7.1.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 Additional constraints on the strategy space . . . . . . . . . . . . . 111
7.2.1 Comparison of structures with constrained strategy sets . . . 112

Chapter 8
Evaluation of the results 115
8.1 Evaluation of different control effort implementations . . . . . . . . 115

8.1.1 Evaluation of control effort added to existing cost functions
(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.1.2 Evaluation of considering the control effort as cost function
implementation (B) . . . . . . . . . . . . . . . . . . . . . . . 117

8.1.3 Evaluation of applying explicit control constraints (C) . . . . 117
8.1.4 Evaluation of explicit control constraints as cost functions (D) 118
8.1.5 Partial evaluation result concerning a fast reference tracking

with low deviation and low control effort . . . . . . . . . . . 119
8.2 Evaluation of the robust stability criterion . . . . . . . . . . . . . . 120

8.2.1 Partial evaluation result concerning the reference
tracking, a low control effort and robust stability . . . . . . 121

8.3 Evaluation of the reference tracking for the discrete game . . . . . . 121
8.3.1 Partial evaluation result concerning the error minimization

and stochastic disturbance compensation . . . . . . . . . . . 122
8.4 Evaluation of different game structures . . . . . . . . . . . . . . . . 122

8.4.1 Partial evaluation result concerning different game structures 123

Chapter 9
Conclusions and Final Remarks 124

Appendix A
Further control structures 129
A.1 The cross coupled TITO control structure . . . . . . . . . . . . . . 129

A.1.1 Application Implementation . . . . . . . . . . . . . . . . . . 130
A.1.2 Multi-loop control system design . . . . . . . . . . . . . . . 131

A.1.2.1 Game description . . . . . . . . . . . . . . . . . . . 131
A.1.2.2 Cost function and Constraint set up . . . . . . . . 132
A.1.2.3 Obtaining the Pareto-optimal set and the final so-

lution . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.1.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 134
A.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

ix



A.2 The cascade control structure as differential game . . . . . . . . . . 136
A.2.1 Application Implementation . . . . . . . . . . . . . . . . . . 137
A.2.2 Multi-loop control system design . . . . . . . . . . . . . . . 138

A.2.2.1 Game description . . . . . . . . . . . . . . . . . . . 138
A.2.2.2 Cost function and Constraint set up . . . . . . . . 139
A.2.2.3 Obtaining the Pareto-optimal set and the final so-

lution . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 141

Appendix B
Solution Concepts for bargaining games 143
B.1 The decision maker (DM) . . . . . . . . . . . . . . . . . . . . . . . 143

B.1.0.1 The Nash bargaining solution (NB) . . . . . . . . . 144
B.1.0.2 Kalai-Smorodinsky solution (KS) . . . . . . . . . . 144

B.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
B.2.1 Course and Solution of the game . . . . . . . . . . . . . . . 147

B.2.1.1 Obtaining a Pareto-optimal set and the final solution 147
B.2.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . 149
B.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Appendix C
Equation derivation for the different topologies 153
C.1 Derivation of error equation (4.6) . . . . . . . . . . . . . . . . . . . 153
C.2 Derivation of Error equation (4.7) . . . . . . . . . . . . . . . . . . . 154
C.3 Derivation of error equation (4.9) . . . . . . . . . . . . . . . . . . . 154
C.4 Derivation of error equations for (4.13) and (4.14) . . . . . . . . . . 156

x



List of Figures

1.1 Requirements on control system. . . . . . . . . . . . . . . . . . . . . 2
1.2 Example of a MIMO system with three inputs u1, u2, u3 and two

outputs y1 and y2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Example of a MIMO system with three inputs u1, u2, u3 and three

outputs y1, y2 and y3. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Interactive process of a MIMO system with two inputs u1, u2, two
outputs y1, y2 and two possible control loops. . . . . . . . . . . . . 16

2.2 Solution concepts for bargaining games. Black: proportional solu-
tion, red: Egalitarian solution, blue: Kalai-Smorodinsky solution,
green: Nash bargaining solution. . . . . . . . . . . . . . . . . . . . . 30

2.3 Pareto-optimal front in the case of two cost functions. Comparison
of the weighted sum solution with weights β1 = β2 = 0.5 and the
Nash bargaining solution. . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Graphical representation of the main definitions in MOO. Disagree-
ment point d, utopia point UP and Pareto-optimal front as dashed
line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Inputs and outputs of a game . . . . . . . . . . . . . . . . . . . . . 42

4.1 Triangular control structure of a TITO system. . . . . . . . . . . . 58
4.2 Control structure of game II and game III. . . . . . . . . . . . . . . 62
4.3 Control structure of game IV. . . . . . . . . . . . . . . . . . . . . . 63

5.1 Control structure of the RO desalination process. . . . . . . . . . . 66
5.2 A) Output responses to a change in the set point of the permeate

flux according to low control effort, which is added to cost functions
concerning the reference tracking. . . . . . . . . . . . . . . . . . . . 75

5.3 A) Output responses to a change in the set point of the conductivity
according to low control effort. This is added to cost functions
concerning the reference tracking. . . . . . . . . . . . . . . . . . . . 77

5.4 A) Error signals for the ISE implementation with varying λi ac-
cording to a set point change in the permeate flux (subplots a) and
b)) and a set point change in the permeate conductivity (subplots
c) and d)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xi



5.5 A) Control signals for the ISE implementation with varying λi ac-
cording to a set point change in the permeate flux (subplots a) and
b)) and a set point change in the permeate conductivity (subplots
c) and d)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 B) Responses to a change of 0.4 gpm in the permeate flux according
to the reference tracking and low control effort, formalized as cost
functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7 B) Response to a change of 10µS in the conductivity according
to the reference tracking and low control effort, formalized as cost
functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.8 C) Output responses to a set point change of 0.4 gpm in the per-
meate flux according to explicit control constraints. . . . . . . . . . 84

5.9 C) Output response to a set point change of 10µS in the conduc-
tivity according to explicit control constraints. . . . . . . . . . . . . 85

5.10 C) Responses of the error signals and control signals to a change in
the flux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.11 D) Response to a change in the flux according to explicit control
constraints, formulated as cost functions. . . . . . . . . . . . . . . . 88

5.12 D) Response to a change in the conductivity according to explicit
control constraints, formulated as cost functions. . . . . . . . . . . . 89

5.13 D) Response of the error signals and control signals to a change in
the flux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.14 Control structure of the RO process, where the uncertain blocks
∆11, ∆21 and ∆22 are pulled out and placed inside a matrix block. . 92

5.15 Responses to simultaneous step changes in the permeate flux y1 and
the conductivity y2 for games (A) − (D) of the nominal model. . . . 94

5.16 Responses to simultaneous step changes in the permeate flux y1 and
the conductivity y2 for games (A) − (D) and a perturbation of ∆1. . 97

5.17 Responses to simultaneous step changes in the permeate flux y1 and
the conductivity y2 for games (A),(C) and (D) and a perturbation
of ∆2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.18 Responses to simultaneous step changes in the permeate flux y1 and
the conductivity y2 for games (C) and (D) and a perturbation of ∆3. 99

5.19 Responses to simultaneous step changes in the permeate flux y1 and
the conductivity y2 for game (C) and a perturbation of ∆4. . . . . . 99

6.1 Responses of the permeate flux y1(k), the conductivity y2(k) and the
errors e1(k) and e2(k) for the game-theoretic designed PI-controller
according to a 0.4 gpm step in the set point of the permeate flux. . 104

6.2 Responses of the permeate flux y1(k), the conductivity y2(k) and the
errors e1(k) and e2(k) for the game-theoretic designed PI-controller
according to a 10 µS/cm step in the set point of the permeate con-
ductivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xii



7.1 Step responses of the systems’ outputs y1, and y2 for all games -
using the ISE cost function implementation to a) and b) a step
change in the set point of the permeate flux as well as c) and d) a
step change in the set point of the permeate conductivity. . . . . . . 110

7.2 Pareto-optimal sets of game I for ISE cost function implementation
with black - indexing a 10% deviation acceptance, red - indexing
a 5% deviation acceptance, and blue - indexing a 1% deviation
acceptance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3 Pareto-optimal sets of game II for ISE cost function implementation
with black - indexing a 10% deviation acceptance, red - indexing
a 5% deviation acceptance, and blue - indexing a 1% deviation
acceptance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.4 Pareto-optimal sets of game IV for ISE cost function implementa-
tion with black - indexing a 10% deviation acceptance, red - index-
ing a 5% deviation acceptance, and blue - indexing a 1% deviation
acceptance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.1 Control structure of a 2x2 cross coupled process. . . . . . . . . . . . 129
A.2 Step responses of the outputs y1 and y2 and the errors e1 and e2

according to a step change in the set point of y1. . . . . . . . . . . . 135
A.3 Step responses of the outputs y1 and y2 and the errors e1 and e2

according to a step change in the set point of y1. . . . . . . . . . . . 136
A.4 Cascade structure for the heat exchanger control system. . . . . . . 137
A.5 Step responses of the output y for the reference case as well as for

different values of λi. . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.1 Solution concepts for bargaining games. Blue: Kalai-Smorodinsky
solution, green: Nash bargaining solution. . . . . . . . . . . . . . . 145

B.2 Multi-loop control structure of the reverse osmosis desalination plant. 146
B.3 Solution space for the ISE cost function implementation. Blue stars:

Pareto-optimal points. . . . . . . . . . . . . . . . . . . . . . . . . . 148
B.4 Solution space for the ITSE cost function implementation. Blue

stars: Pareto-optimal points. . . . . . . . . . . . . . . . . . . . . . . 149
B.5 Solution space for the ISTSE cost function implementation. Blue

stars: Pareto-optimal points. . . . . . . . . . . . . . . . . . . . . . . 150
B.6 Step responses to a change in the set point of the permeate flux

for the two outputs flux and conductivity of the reverse osmosis
system, depending on the applied solution concepts. . . . . . . . . . 151

B.7 Step responses to a change in the set point of the conductivity
for the two outputs flux and conductivity of the reverse osmosis
system depending on the applied solution concepts. . . . . . . . . . 152

xiii



List of Tables

1.1 Classification of different game types, related to the corresponding
mathematical concept. . . . . . . . . . . . . . . . . . . . . . . . . . 3

5.1 Operating point of the RO desalination process. . . . . . . . . . . . 67
5.2 Algorithms and parameters for the MOO. . . . . . . . . . . . . . . 73
5.3 PI controller parameters using the modified Ziegler-Nichols tuning

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 A) Controller parameters KP1, KI1, KP2 andKI2 for the continuous

reverse osmosis system according to low control effort, which is
added to cost functions concerning the reference tracking. . . . . . . 74

5.5 B) Controller parameters KP1, KI1, KP2 andKI2 for the continuous
reverse osmosis system according to the reference tracking and low
control effort, formalized as cost functions. . . . . . . . . . . . . . . 80

5.6 C) Controller parameters KP1, KI1, KP2 andKI2 for the continuous
reverse osmosis system according to explicit control constraints. . . 83

5.7 D) Controller parameters KP1, KI1, KP2 and KI2 for the continu-
ous reverse osmosis system according to explicit control constraints,
formulated as cost functions. . . . . . . . . . . . . . . . . . . . . . . 87

5.8 Controller and optimization parameters. . . . . . . . . . . . . . . . 93
5.9 Payoff function values obtained through the GA. . . . . . . . . . . . 95

6.1 Controller parameters q11, q01, q12 and q02 for the discrete reverse
osmosis system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1 Algorithms and parameters for the GA. . . . . . . . . . . . . . . . . 107
7.2 Controller and optimization parameters for the ISE cost function

implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.3 Non dominated cost function pairs of the genetic algorithm. . . . . 113

8.1 Refinement factors for additional weighted control effort. . . . . . . 116
8.2 Refinement factors for explicit error and control effort cost functions. 117
8.3 Refinement factors for explicit control effort constraints. . . . . . . 118
8.4 Refinement factors for explicit control effort constraints as cost

functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.5 Refinement factors for an additional robust stability requirement. . 121

xiv



8.6 Refinement factors for the discrete game subject to the reference
tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.7 Refinement factors for different game structures. . . . . . . . . . . . 122

A.1 Controller parameters KP1, KI1, KP2 and KI2 for the distillation
column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.2 Controller parameters KP1, KI1, KP2 and KI2 for the continuous
heat exchanger system. . . . . . . . . . . . . . . . . . . . . . . . . . 141

B.1 Controller parameters for the reverse osmosis system. . . . . . . . . 148

xv



List of Abbreviations

C Permeate conductivity, p. 66

CL Characteristic-Locus, p. 14

DM Decision maker, p. 54

DNA Direct Nyquist Array, p. 14

E Egalitarian solution, p. 28

F Permeate flux, p. 66

GA Genetic algorithm, p. 8

GEATbx Genetic evolutionary algorithm toolbox, p. 38

INA Inverse Nyquist Array, p. 14

ISE Integral square error, p. 8

ISTSE Integral of square time weighted square error, p. 48

ITSE Integral of time weighted square error, p. 48

KS Kalai-Smorodinsky solution, p. 28

MIMO Multi-input/multi-output system, p. 1

MOGA Multi-objective genetic algorithm, p. 36

MOO Multi-objective optimization, p. 2

MPC Model predictive control, p. 13

NB Nach bargaining solution, p. 27

NBI Normal boundary intersection, p. 36

xvi



NSGA-II Non-dominated sorting genetic algorithm II, p. 36

P Transmembrane pressure, p. 66

pH Feed pH, p. 66

PI Proportional-integral, p. 7

PID Proportional-integral-derivative, p. 7

PRG Partial Relative Gain, p. 7

PRGA Performance Relative Gain Array, p. 7

PR Proportional solution, p. 28

RGA Relative Gain Array, p. 7

RO Reverse osmosis, p. 65

SISO Single-input/single-output system, p. 5

TITO Two-input/two-output system, p. 66

U Utopia point, p. 20

xvii



List of Symbols

(·)∗ Optimal solution, p. 26

(·)v Stochastic disturbance, p. 54

α Decision variable, p. 30

β Weighting factor, p. 32

γ, δ Parameters, p. 15

χχχ Parameter vector for the genetic algorithm, p. 73

∆ Uncertainty block, p. 92

∆u Measure of change in control signal, discrete difference, p. 49

λ Lagrange multiplier, p. 74

L Laplace-transformed, p. 43

Z Z-transformed, p. 46

R
+ Field of non-negative real numbers, p. 21

R
n n-dimensional field of real numbers, p. 34

µ Structured singular value, p. 52

fp Feasible point, p. 34

σ Singular value analysis, p. 52

τ Time constant, p. 43

ααα Vector of decision variables, p. 32

T Transposed of a vector, p. 33

xviii



A Denumerator polynomial of a process transfer function, p. 41

A Set of decision vectors, p. 30

a Coefficients of the differential or difference equation of the transfer
function’s denumerator, p. 41

B Numerator polynomial of a process transfer function, p. 41

b Coefficients of the differential or difference equation of the transfer
function’s numerator, p. 41

c Control signal function of time, p. 43

C Controller, controller transfer function p. 6

C∗ Denumerator polynomial of a filter transfer function, p. 100

(·)cf Indexing which kind of cost function is used, p. 48

d Disagreement point, p. 22

e Error signal function of time, p. 43

E Euclidian space, p. 33

E Error signal polynomial, p. 42

φ, ǫ, fnb Functions, describing a bargaining game, p. 28

f function, describing error evolution, p. 43

g function, describing the cost, p. 43

η Inequality constraint functions, p. 33

h Equality constraint functions, p. 33

G Process transfer function, p. 5

H∞ Norm for Optimization , p. 8

H2 Norm for Optimization, p. 8

i, j Index i, j, indexing the players, p. 6

I Information set, information structure, p. 45

I Unit matrix, p. 52

ι, l Indexing (in)equality constraint functions, p. 33

xix



J Cost function, p. 21

Jp Perfomance index, p. 115

k Discrete time, p. 40

k0 Starting time, p. 44

k1, k2 amplification factors, p. 16

K End time, p. 44

KP Proportional parameter, p. 42

KI Integral parameter, p. 42

KT Reset time, p. 42

L Limit, p. 50

M Transfer function matrix of a linear system, p. 52

m,w Arbitrary real numbers, p. 28

max Maximization, p. 30

min Minimization, p. 30

n, nA, nB Order of the system, order of polynomial A, order of polynomial B,
p. 45

N Number of players, number of control signals, p. 13

N(S) Nash bargaining solution value of a feasible set S, p. 27

P Denumerator polynomial of a controller transfer function, p. 42

P,Q,R,S Feasible sets, p. 22

Q Numerator polynomial of a controller transfer function, p. 42

r Set point input signal, p. 6

R Refinement factor, p. 116

S Coalition, p. 22

s Complex frequence, p. 15

t Continuous time, p. 40

xx



t0 Starting time, p. 40

T End time, p. 40

tf Simulation end time, p. 115

T0 Sample time, p. 102

U Control signal polynomial, input polynomial, p. 41

U Action space, strategy space p. 20

u Control variable, game strategy, p. 5

Y Output polynomial, p. 41

y Output variable, p. 5

z Complex variable used in z-transform, p. 45

ψ Number of decision variables α , p. 33

υ Number of inequality constraint functions, p. 33

ξ Number of equality constraint functions, p. 33

˙(·), (̈·), (·)(n) First, second, n−th derivative, p. 49

xa, xb Arbitrary real numbers, p. 30

xxi



Chapter 1

Introduction

1.1 Motivation

Today, the use of complex large scale systems in industry is well-established. Due

to their complexity, such systems normally operate with multiple inputs and multi-

ple outputs. For this reason they are also called multi-input/multi-output (MIMO)

systems. The handling of MIMO systems, including their high complexity, often

requires the implementation of sophisticated control structures. A suitable method

is a multi-loop control. According to (Johnson u. Moradi, 2005), the use of multi-

loop controls is widespread in the industry, due to the simplicity of implementation

as well as the possibility of manual tuning. However, just in the simplicity of im-

plementation and the possibility of manual tuning, the consideration of multi-loop

interactions are neglected. Opening or closing one loop could result in a change of

the dynamics in the other control loops. Concerning this matter, they demonstrate

the main disadvantage in the use of multi-loop controls.

Though, not only the interactions of the several loops play a decisive role during

the control system design of MIMO systems, but also the different demands that

are made on the system have to be involved. (Compare (Bernard u. a.), which are

displayed in Fig. 1.1)

The requirements on the control system design listed in Fig. 1.1 are several, but

partial conflicting criteria. For example, a low control effort is often achieved

at the expense of robustness and a fast reference tracking with minimal devia-

tion which are conflicting criteria. The problem in achieving all requirements just
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disturbance reaction

reference tracking

control system

control effort

robust stability

stability

Figure 1.1. Requirements on control system.

for a single-loop control system is well treated in the literature, see (Andersson,

2000), (Bernard, 2005), (Elia u. Dahleh, 1997), (Herreros u. a., 1999), (Hutauruk

u. Brown, 2005), (Kawabe u. Tagami, 1999), (Kookos u. a., 1999) and (Tagami

u. a., 2004). The main contribution of the aforementioned references is to find a

satisfying trade off within the requirements in treating it as a multi-objective op-

timization problem (MOO).

If the control system is a multi-loop, the requirements of Fig. 1.1 has to be achieved

for every control loop as well as for the total system. For multi-loop control sys-

tems, it is difficult to set up a unique performance index that satisfies the specifi-

cations for all the control loops.

Hence, a performance index for each control loop has to be defined. If the system

dynamic allows for it, each control loop can be tuned separately according to the

performance indices. This is the standard method developed in the past, where

much research effort was dedicated to obtain decoupling methods. If the system

dynamics do not allow decoupling and a separated tuning of each controller, then

a joint optimization has to be applied.

According to (Johnson u. Moradi, 2005), achieving a satisfactory loop performance

for multi-loop systems represents a great challenge in the area of control system

design. This results in the existence of only a few powerful tools, applicable to

such systems.

The focus of this work is to develop an efficient approach to perform a joint opti-

mization of all requirements with respect to loop interactions in MIMO systems.
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This approach requires some kind of strategic decision making for systems with

interacting and conflicting objectives.

One research field with it’s origin in the early 1920s, dealing with strategic decision

making is game theory. Game theory is an instrument to analyse the conflicting

situations of decision making, where more than one decision maker, also called

player, try to follow their individual and often conflicting objectives.

A classification of different types of games that are related to mathematical con-

cepts and are already known in the literature is given in Tab.1.1.

Table 1.1. Classification of different game types, related to the corresponding mathe-
matical concept.

One player Many players

Static
Mathematical pro-
gramming

Static game theory

Dynamic Optimal control Dynamic game theory

According to Tab.1.1, game-theoretic concepts are addressed if many players par-

ticipate, in contrast to the mathematical programming and the optimal control,

used as tools for one player games.

The approach, that is developed in this work, has it’s origin in game theory. The

game-theoretic consideration of a problem represents the situation of decision mak-

ing explicitly and supports it’s formalisation in assisting the development of op-

timal solutions. A game-theoretic problem is solved first in sorting the available

information, like:

• Who are the participants?

• Which participant has which information?

• Which strategies are used?

• What is the outcome for each participant according to their behavior (strat-

egy selection)?

• According to which rules is the behavior of the participants?
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Alternative strategy selections are simulated and optimized with the goal of sat-

isfying the outcome of each participant. Actually, game theory detects negative

incentives, that could exist in the system. Game theory models the mathematical

relations around the strategic behavior in situations of competition and conflict.

According to the aforementioned essential subject of game theory - the analysis of

a strategic decision process - it is predestinated in this work as a modeling tool.

With the aid of concepts and formalisations that have been defined in game the-

ory, a game-theoretic approach is developed. Here, the control system design is

described as a game and the solution of the game provides a set of solutions. This

satisfies specified demands and include the handling with sometimes unavoidable

interactions.

Considering the control system design as a game, the controllers are viewed as

players, while the different objectives of the different players are incorporated as

well as their interactions, caused by the strategy choice of each player.

In the core of the game-theoretic approach, the control system design remains a

multi-objective optimization, where multiple defined cost functions, describing the

objectives or requirements on the control loops of the system, are optimized si-

multaneously. In it’s development, based on game theory, more possibilities for

manipulation and variances in the implementation of the control system design

problem should be provided. For instance, an essential component of game theory

is the information structure with a major influence on the description, course and

solution of the game. Players could be part of a cooperative or a non-cooperative

game, they could form coalitions, or act alone, which all leads to different game

descriptions, rules and certainly different solutions.

The perspective on the information structure provides a second application of the

developed approach: from game-theoretic view, a change in the information struc-

ture could cause a change in the strategy spaces, available for the players, resulting

in another solution of the game. Thus, in the face of different information distribu-

tion in a game, diverse resulting control structures could be analysed and compared

with each other.
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1.2 Problem statement

The focus of this work is to develop a new approach for the control system design of

multi-loop control structures using a game-theoretic background. An example of a

MIMO system with three inputs, three outputs and five sub-processes is displayed

in Fig. 1.2. The three inputs u1, u2 and u3 are the control signals for the five

processes together. For example process G5 is controlled by the sum of the inputs

u2 and u3. The same applies for the outputs y1, y2 and y3. They are composed of

the sum of G1, G2 and G3 and the sum of G4 and G5, respectively.

A corresponding possibility of a multi-loop control structure for the control of the

MIMO system in Fig. 1.2 is shown in Fig. 1.3.

Σ

Σ

Σ

Σ

Σ

G1

G2

G3

G4

G5

u1

u2

u3

y2

y1

y3

Figure 1.2. Example of a MIMO system with three inputs u1, u2, u3 and two outputs
y1 and y2.

The control structure of Fig. 1.3 consists of more than one control loop as well

as more than one single-input/single-output (SISO) controller.

The special characteristic of such structures is the interaction of the different con-

trol loops. Assuming, a controller is located in each control loop, as it is shown

in Fig. 1.3, and the controller parameters have to be tuned. One method, which

is widespread in the literature, is to consider each control loop separately and to

tune the controller parameters, see (Qiang Xiong u. He). For example, with the

classical method of Ziegler-Nichols, developed in 1942. Thereby, all interactions

are neglected.
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Figure 1.3. Example of a MIMO system with three inputs u1, u2, u3 and three outputs
y1, y2 and y3.

A further method is to pretreat the MIMO system using decoupling techniques,

which is described in detail in (Lunze, 2004). The intention of a decoupler is to

eliminate the effect of interaction mathematically by transforming the process ma-

trix into a diagonal matrix.

However, in using multi-loop controls, often neglected is the strength of coupling

different variables (typical control methods to measure loop interactions are the

Relative Gain Array (RGA), see (Bristol, 1966) or Gramian based methods, see

(Conley u. Salgado, 2000)). In addition, the decoupling approach is limited

through basics of control theory, since the method could translate zeros to poles

and unstable decoupling elements may result. In the case of using a decoupling

approximation algorithm, two questions remain:

1. How large is the additional effort of using an approximation algorithm?

2. How exact or precise is the approximation?

Of course, the question if other adverse effects that arise could also be posed.

Thus, a qualified method is demanded, that considers these interactions during

control system design and achieve requirements of Fig. 1.1 at the same time.

In considering the problem of the control system design for MIMO systems as

a game, where the controllers are viewed as players, the different objectives of
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the different players are incorporated as well as their interactions caused by the

strategy choice of each player.

1.3 State of the art

A detailed literature research, for example in (Brosilow u. Joseph, 1999), pointed

out that there is no satisfying method for simultaneous tuning of several controllers

that significantly improved performance compared to a single loop controller.

According to (Johnson u. Moradi, 2005), the disadvantages of using multi-loop

proportional-integral (PI) and proportional-integral-derivative (PID) controllers

are the lack of loop interaction consideration and the existence of few powerful

tools for its design.

A typical control method to measure process interactions is the Relative Gain Array

(RGA), developed by (Bristol, 1966). The RGA provides a measurement method

of best pairing for controlled and manipulated variables. Variations, based on RGA

are the Partial Relative Gain Array (PRG), see (Häggblom, 1997), or the Perfor-

mance Relative Gain Array (PRGA), see (Hovd u. Skogestad, 1992). Another way

of loop interaction measurement is based on Gramians, which was presented first

in (Conley u. Salgado, 2000) and (Salgado u. Conlea, 2004) using Participation

Matrices (PM). In such measurements, the whole frequency range is taken into

account with one single measurement. In (Rosenbrock, 1974), Gershgorin circles

are used to analyze the loop interactions in multivariable systems.

Standard techniques for controller tuning of multi-loop control systems assume

that the control loops can be adjusted individually by loop decoupling, thereby

neglecting the interactions of the different control loops.

As mentioned in Section 1.1, multi-objective optimization is a principle component

of the game-theoretic approach, developed in this work. The idea of multi-objective

optimization was first introduced in the field of automatic control in (Lin, 1976) as

a method to deal with many incommensurable as well as incompatible objectives.

The design of controllers often entails conflict situations of many criteria, such as

control energy, tracking performance or robustness. This situation is described

in (Hutauruk u. Brown, 2005) as a MOO problem whereas the solution of this

problem is presented for the design of PI and PID controllers. A further controller
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design approach considering multiple objectives is proposed in (Elia u. Dahleh,

1997). A multi-objective optimization approach to design robust controllers using

genetic algorithms (GA) is described in (Herreros u. a., 1999). The design problem

of a robust PID controller with two degrees of freedom based on the partial model

matching approach is treated in (Kawabe u. Tagami, 1999). Herein, the design

problem is formulated as a two objective minimax optimization problem and a

new genetic algorithm using a Pareto partitioning method for the controller design

problem is shown. In order for solving the multi-objective optimization problem

for PI and PID controller tuning, a simplified goal-attainment formulation is used

in (Kookos u. a., 1999). A design procedure for tuning PID controller parame-

ters to achieve a mixed H2/H∞ optimal performance using genetic algorithms is

described in (Calistru, 1999). The H∞-optimal control problem minimizes the

maximum of the H∞-norm of a transfer function matrix, which is the maximum

of it’s largest singular value over all frequencies. A two objective optimization

problem of a robust I-PD controller design is solved in (Kawabe u. Tagami, 1999)

using a genetic algorithm. The proposed controller design method is based on the

generalized Integral Square Error (ISE) criterion while the genetic algorithm is

applied to optimize the problem with multiple search property as an advantage,

compared to other MOO solution tools.

The combination of multi-objective optimization and control system design is out-

lined in (Liu u. a., 2002), where one PI controller for a MIMO system was designed

using multi-objective optimization. During the design of the controller, constraints

on outputs and inputs are considered. These are formulated as a performance func-

tion criteria. However, more specific requirements on the closed loop system are

not defined.

Surveys of MOO in engineering design are proposed in (Andersson, 2000), (Marler

u. Arora, 2004) and (Osyczka, 1985). An updated survey of MOO applications for

control systems is presented in (Gambier, 2007).

In contrast, using game theory as tool for control system design is known in the

literature, indeed, but not in the dimension compared to multi-objective optimiza-

tion. The application of game theory as tool for control system design is already

presented in the literature.

First steps to use a dynamic (differential) game-theoretic framework for a worst-
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case controller design for linear plants were made by George Zames in the early

1980’s (Zames, 1981). However, earlier works on worst-case controller designs ex-

ists starting in the 1950’s. During this period, the research field of dynamic game

theory was actually at the beginning stages and not yet applicable.

The worst-case controller design for linear plants subject to unknown additive dis-

turbances and plant uncertainties is originally known as a H∞-optimal control

problem.

The H∞-optimal control problem is in fact a minimax optimization problem, it can

be viewed as a zero-sum game with the controller as the minimizing player and the

disturbance as the maximizing player. The developed design of (Zames, 1981), that

minimizes a given performance index under worst possible disturbances or param-

eter variations is summarized and prepared in (Basar u. P.Bernhard, 1995). The

relationship between a game-theoretic controller and a H∞-controller is demon-

strated in (Rhee u. Speyer, 1989).

Finally, a well known approach for hybrid controller design in a game-theoretic

framework is published in the years between 1995 and 2000 by Lygeros, Tomlin,

Godbole and Sastry, see (Tomlin u. a., 2000), (Lygeros u. a., 1995), (Lygeros u. a.,

1996) and (Lygeros u. a., 1997). In their work, the control problem is given as

a hybrid, large scale, multi agent system with the objective to develop a hybrid,

hierarchical controller design.

1.4 Main Contribution

The main contribution of this thesis is allocated on two main aspects. First, a

game-theoretic approach is developed for the control system design of multi-loop

control systems. Second, a topological analysis of a multi-loop control structure is

proposed on the basis of the developed game-theoretic approach.

Concerning the first aspect, game theory is used to model and solve the problem of

control system design in multi-loop systems. The developed approach is organized

as follows:

(I) A game description of a multi-loop control system

(II) Cost function and constraint set up, considering loop interactions and differ-
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ent system requirements

(III) A Pareto-optimal set as solution set of the game, obtained through MOO,

which is solved using a GA

(IV) A solution concept for the final solution, chosen from the Pareto-optimal set

The game-theoretic description of the control system design for a multi-loop sys-

tem mainly contains players, strategy sets and cost functions, compare item (I) and

(II). The simultaneous optimization of the players’ cost functions provides a set of

solutions, called the Pareto-optimal set, while each single solution of the solution

set states for an efficient compromise within the different cost functions, see item

(III). The new approach is developed and successfully applied for the continuous

case as well as for the discrete case ((Wellenreuther u. a., 2006b), (Wellenreuther

u. a., 2006a)).

A simultaneous consideration of specified system requirements, like a fast reference

tracking with low deviation, low control effort, robustness and a fast disturbance

reaction is implemented using corresponding cost functions in ((Wellenreuther u. a.,

2007), (Wellenreuther u. a., 2008b), (Wellenreuther u. a., 2008a)). The final solu-

tion of the control system design is based on a game-theoretic solution concept

concerning item IV). Three main solution concepts, according to a special control

system design game are implemented and compared, where the game solution pro-

vides the controller parameters for the particular controllers.

The second main aspect corresponds to a topological analysis, based on the game-

theoretical approach. The proposed topological analysis profits from an essential

component in a game, the information. The information concerning which player

knows what and when is given in the information structure of the game. Differ-

ent information structures from the game-theoretic view could lead to different

control system topologies for one single MIMO system from the control-theoretic

view. This fact is used, to analyse different possible control structures and com-

pare them, according to their information structure ((Wellenreuther u. a., 2008c),

(Wellenreuther u. a., 2008b)).
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1.5 Outline of the thesis

Chapter 2: The present work is based on control-theoretic concepts as well as

game-theoretic concepts. To be able to follow the developed approach, based on

both research areas, basics concerning MIMO systems, their control and required

fundamentals in game theory are presented.

Chapter 3: Adapted from the preliminaries in Chapter 2, the developed ap-

proach for the control system design of multi-loop systems, using game theory is

proposed in Chapter 3, for the continuous case as differential game as well as for

the discrete case as difference game. Additionally, several cost functions and con-

straints, corresponding to different system requirements, are formalized.

Chapter 4: A topological analysis of the control structure is proposed in con-

sidering different possible information structures in the game description of the

control system design. This leads to different possible control structures for one

original MIMO system.

Chapter 5: The proposed game-theoretical approach for the control system

design is described in detail and applied to an example of a continuous MIMO sys-

tem, considering the system requirements on reference tracking, low control effort

and the robust stability. Concerning the requirement on low control effort, four

different possibilities are implemented and compared.

Chapter 6: The discrete representation of a MIMO example provides the

basis for the control system design subject to a fast reference tracking with low

deviation. The control system design is formulated using the implementation of

three different cost functions and comparing their resulting system behaviors.

Chapter 7: The topological analysis of a control structure is applied on an

example, while the differences as well as the advantages and disadvantages of the

different structures are identified. In a second step, constraints on the strategy

sets are added and their effects on the Pareto-optimal sets are studied.
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Chapter 8: In order to refine the comparison of the different game implemen-

tations, cost indices are calculated during the simulations. On the basis of the cost

indices, a refinement factor is computed for each game to evaluate its performance.

Chapter 9: The work is concluded with a summary and an outlook. These

contain a condensed version of the proposed approach, a critical consideration of

the approach as well as still open questions and further resulting work.
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Chapter 2

Preliminaries

2.1 Control of Multi-variable Processes

Multi-variable processes are complex systems with many mutual interacting in-

put and output variables. Usually, the control variables as well as the controlled

process variables are coupled directly. Furthermore, one control signal ui with

i = 1, .., N with N representing the number of control signals, affects multiple

controlled process variables.

In the literature, two ways for the control of multi-variable processes are distin-

guished:

• Multi-variable control

• Decentralized or multi-loop control

Below, the multi-variable control concept is briefly summarized, while the decen-

tralized control concept is described in more details. Their distinguishing features

are pointed out according to (Ghavipanjeh, 2006) and (Skogestad, 2003).

2.1.1 Multi-variable control

In multi-variable controlled systems, MIMO systems are controlled with one MIMO

controller in the size of the multi-variable application. If explicit constraint han-

dling is applied, as it is usually the case, the control method is known as model

predictive control (MPC) with a smooth movement between the changing active
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constraints. Other multivariable control design techniques are known as Nyquist-

array methods, like the Direct Nyquist Arrays (DNA) and the Inverse Nyquist-

Array (INA), where the transfer function matrix shall be made diagonal dominant

by the use of a compensator matrix. The Characteristic-Locus (CL) method is

based on the extension of the eigenvalues and the eigenvectors of a square matrix

of constants for multivariable control system design.

2.1.2 Decentralized (Multi-loop) control

In decentralized or multi-loop control, MIMO systems are controlled using multiple

Single Input Single Output (SISO) controllers or MIMO controllers. Decentralized

control is usually applied, if the process is composed of different time domains,

which makes it possible to use several control loops without a need of a multi-

variable controller. Moreover, decentralized control is preferred for cases where

active constraints remain constant, in contrast to cases with changing active con-

straints, where a multi-variable controller is applied. The difficulties, arising from

the use of decentralized control are the interactions of a single input to multiple

outputs. The more interactions between the multiple loops arise, the harder is it

to control the system.

In the present work, only the concept of decentralized control is considered. In

fact, in the further progress of the work the decentralized control is referred as

multi-loop control, to underline the interactions, caused by the multi-loop control

structure. Moreover, the focus is set on SISO controllers. In the further control

system design only PI controllers are considered. Usually, PI controllers are pre-

ferred to PID controllers in certain types of processes for simplicity, when dealing

with non-intensive variables, or in systems with a significant noise. In practice, the

derivative term of the PID controller could amplify disturbanced inputs or noise in

the case that the PID is not well tuned. If ramps or other kinds of time functions

are used as references, extensions to the use of PID controllers could be made.

The use of PI and PID controllers, in the following abbreviated with PI(D), in

multi-loop control systems is known in the literature and preferred in the indus-

try due to a simple implementation and the possibility of manual tuning. In the

following section, the PI(D) control in multi-loop control systems is introduced
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and the arising problem as a result of loop interactions is demonstrated with an

example.

2.1.3 PI(D)-Control in Multi-loop Control systems

The mutual interactions of control loops in multi-loop control systems produce a

considerable problem in control system design, compared to SISO systems. The

interactions are able to destabilize a system. Opening or closing one loop could

result in a change of the dynamics in the other control loops. The following exam-

ple will demonstrate the problem ((Johnson u. Moradi, 2005)).

Consider a system with two inputs u1 and u2 and two outputs y1 and y2. The

corresponding dynamics is given by

y1 =
1

s+ 1
u1 +

γ

s+ 1
u2 (2.1)

y2 =
δ

s+ 1
u1 +

1

s+ 1
u2 (2.2)

The control structure of the process is displayed in Fig. 2.1, with interaction terms,

linked to the parameters γ and δ.

The process set points are denoted as r1 and r2 for the outputs y1 and y2,

respectively. Assumed, input u1 controls output y1 using a PI-controller with

parameter k1 given by

u1 = k1(1 +
1

s
)(r1 − y1) (2.3)

and input u2 is set to zero. Then the closed-loop transfer function is

y1

r1
=

k1

s+ k1

. (2.4)

Equation (2.4) is a stable transfer function for any k1 > 0. In the same way, if the

system is controlled such that input u2 controls output y2 using a PI-controller,

where it’s parameter k2 is given by

u2 = k2(1 +
1

s
)(r2 − y2) (2.5)
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Figure 2.1. Interactive process of a MIMO system with two inputs u1, u2, two outputs
y1, y2 and two possible control loops.

and the first input u1 is set to zero. Then the closed-loop transfer function is

y2

r2
=

k2

s+ k2
. (2.6)

Similarly, equation (2.6) is stable whenever k2 > 0. But, when both loops are

closed and both PI-controllers operate together, the transfer function from r1 to

y1 is
y1

r1
=

s+ 1 − γδ

s2 + 2s+ 1 − γδ
(2.7)

with k1 = 1 and k2 = 1. Notice, equation (2.7) is unstable if γδ > 1. This example

shows, that the interaction can destabilize a system of individually stabilized single-

loops in a multi-loop structure. This motivates the research in this area.

As pointed out in Chapter 1, only few methods for control system design in multi-

loop systems are known in the literature. The methods can be classified into

three subgroups, dependent on how the loop interactions are considered during

the control system design:

(I) The control loop interactions are completely neglected ((Johnson u. Moradi,

2005), (Qiang Xiong u. He)).
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Method: The controller parameters of each control loop are tuned apart.

Afterward, all parameters are retuned with a common factor to stabilize the

total system and to obtain an adequate load disturbance rejection.

(IIa) The control loop interactions are partly considered (Lunze, 2004).

Method: In decoupling the loop interactions are considered insofar as a math-

ematical decoupling of the different control loops is done first and then tune

the controller parameters of the each loop. With the decoupling, the inter-

actions are compensated mathematically. Using this method, other control

theoretic problems may occur.

(IIb) The control loop interactions are partly considered (only dominant loop in-

teractions) ((Bristol, 1966), (Rosenbrock, 1974)).

Other multivariable control system design techniques, like the RGA or the

Gershgorin circles measure the control loop interactions and find the best

pairing of controlled and manipulated variables. Nyquist techniques try to

make the transfer function diagonal dominant using a compensator matrix.

The focus of these methods is set on dominant control loop interactions, if

they exist.

(III) The control loop interactions are completely considered during the parame-

ter tuning.

A method where the control loop interaction are completely considered in-

cluding the consideration of several system requirements is missing. Inde-

pendent design methods exists, that tune the controller parameters on paired

transfer functions and considering some constraints due to process interac-

tions (Qiang Xiong u. He).

Thus, the request for a control system design method for multi-loop systems,

considering loop interactions, exists.

Game theory contributes an essential part to the new approach as it is used as a

modelling tool, which is specified in more detail in the following.
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2.2 Introduction to game theory

2.2.1 History and spheres of influence

The domain of game theory is not new in research. It’s roots lie in works of von

Neumann in the years of 1928−1937 and Borel in the years of around 1920 (Luce u.

Raiffa, 1989). At the beginning, there was not much interest. Due to the fact, that

the original writings were written by and for mathematicians. Researchers with less

mathematical background loose their motivation to deal with the reasoning and

conclusions of game theory. For this reason, the published works of this time rest

for around two decades. Only the last world war refreshed the interest on game

theory due to growing demand for military strategies, which was an important

factor for it’s further rapid development.

Since game theory is not new in the field of research, the literature delivers several

different definitions of a game. Summarizing the statements of a few authors, the

core area of game theory could be stated as:

• Game theory analyses situations in which (Holler u. Illing, 2000)

(i) The final outcome depends on the decisions of several players.

(ii) Every player knows about this strategic interdependence.

(iii) Ever player assumes that all the other players equally know about this

strategic interdependence.

(iv) Every player considers (i), (ii) and (iii) in his or her’s 1 decisions.

• A situation of decision-making, where multiple players track their individual

goals and make decisions to reach their goals (Riecks, 2006).

• Instrument to analyse strategic situations of decision-making (Turocy u.

v. Stengel, 2001).

• Game theory is a collection of mathematical models to study situations of

conflict and/or cooperation (Lemaire, 1991).

1The player is said to be male in all further considerations although player could also be
female
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• Game theory is a mathematical theory of rational strategy selection used to

analyse optimal choices of two or more actors or players. Each player has

preferences for all possible outcomes (Brams, 1990).

Summarizing, game theory can be described as a tool, modelling situations, where

more than one player makes decisions which mutually interact and whose objectives

are in conflict.

A general and important assumption in game theory is the property of the players

rationality. A rational player will play according to the rules and each player will

act optimally depending on their goals. Beyond that it is essential that every

player knows that the other players are rational and that every player knows that

the other players know that they are rational as well and so on. The field of

Game theory can be divided in several ways and several layers, depending on the

properties of a game. For example, there are distinctions in strategic (static) games

and dynamic games, in cooperative and non-cooperative games, and in games of

complete or incomplete information, to name only a few.

To get more insight, the most common rules, dominated in the literature and

defined by famous game theorists, are summarized and specified in the following.

The majority of introductions to game theory start with a definition of one of these

games: (Basar u. Olsder, 1999), (Holler u. Illing, 2000), (Luce u. Raiffa, 1989),

(Riecks, 2006) or (Osborne u. Rubinstein, 2001). But a more general description

of a game is given in (J. Neumann, 2004):

”A game is a totality of rules which describes it.”

Hence, according to (Vincent u. Leitmann, 1970), the rules instruct the players

how to play the game. That means, the rules prescribe each player’s cost func-

tion, they prescribe the system manipulated by the players and set the limitations

on the player’s control strategies. The rules also contain information about the

properties of the game. All details that are important in the further work will be

specified in the following subsection.
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2.2.2 Common definitions, rules and properties of a game

2.2.2.1 Number of players N

The number of players N varies from game to game, but must already be defined

before the game is played. Basic two-player games are addressed in detail in the

literature. If possible, an extension to n-player games can be performed, too.

2.2.2.2 Strategies u

Concerning the strategies ui with i = 1, ..., N there is a big disagreement in the

literature. For instance, (Ferguson) act on the assumption that in cooperative

games the strategies should be neglected. Since the main features in cooperative

or coalition games are those of a coalition (that means: who joined the coalition),

and the value of the coalition. Others, like (McCain) ask the question:

What strategy choice will lead to the best outcome for all players in

the game?

A further question may be:

How large a bribe may each player reasonably expect for choosing it.

However, the definition of a strategy independent of a cooperative or a non-

cooperative game, that should be valid in this work, can be formulated as:

A nonempty set Ui is called the action space of player i. Each ui ∈ Ui

is referred to as a strategy (LaValle, 2006).

A further distinction concerning the strategies can be drawn in deterministic (pure)

and stochastic (mixed or randomized) strategies. With pure strategies, a player

chooses a strategy with probability 1. While with mixed strategies, the decision

of the player is given through a probability distribution of the available strategies.

2.2.2.3 Payoffs, Costs and Outcomes

The payoffs in a game are often called outcomes or costs. In this work, the payoffs

as well as the corresponding payoff functions are called costs and cost functions,

respectively, because of their implication of minimization required in the later work.
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In a many player game, each player i has a cost function Jcfi
, which he seeks to

minimize (Vincent u. Leitmann, 1970). The index cf specifies the type of cost

function. The cost functions Jcfi
are defined on U1 × . . .×Ui → R

+ ∪∞ . The set

of possible cost pairs the players can obtain is called the utility set. Remark, it is

not naturally that pairs specifies a pair only of two. Setting up the cost functions is

one of the main and often one of the most difficult parts in describing a game. The

fashion in which the players employ their control choices toward that end depends

on the mood of play.

2.2.2.4 Dynamic vs. static game

According to (Basar u. Olsder, 1999), a dynamic game is defined to be a game

in a dynamic decision process, that evolves a (discrete or continuous) time period

with more than one decision maker. Each decision maker possess his own cost

function with different access to different information. In contrast to dynamic

games, (Basar u. Olsder, 1999) defines a static game as a game, where the players

act only once and independent from each other. There is only one round of decision

making, thus it is called a one shot game.

The author of (Isaacs, 1999), who is also a pioneer in the field of game theory,

defines a static and dynamic game as follows:

In conventional game theory (static games) a strategy of a player con-

sist of a decision set, that tells him, which move he should play for

every possible game position, appearing during the game. If the player

chooses their strategies, the outcomes of the game are completely de-

termined.

In contrast, a game with a variable decision process is called a dynamic game. The

choice of the control variable is a function of the state variables. For every possible

game position that can occur, there exist a set of values for the state variables.

Each player chooses a set of values during the decision making. These represent

their control variables.

Remark, a dynamic game can be distinguished again between a differential and

a difference game. Usually, in the literature, a dynamic game and a differential
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game are set equal, but this is not regular. The differences of a differential and a

difference game will be specified in this section as well.

2.2.2.5 Cooperative vs. non-cooperative games

The literature delivers several different definitions between cooperative and non-

cooperative games ((Vincent u. Leitmann, 1970),(Basar u. Olsder, 1999)). Ac-

cording to (Vincent u. Leitmann, 1970), two or more players cooperate while

playing a game if they help each other to minimize their respective cost functions,

and as long as they do not degrade them.

In (Basar u. Olsder, 1999), the cooperative game theory is not addressed. The

reasons are, that cooperative games can, in general, be reduced to optimal control

problems by determining a single cost function to be optimized by all the players.

This property would suppress the game aspects of the problem.

This statement is not wrong, but dealing with one single cost function involves some

disadvantages for the players. Using a single cost function, usually the weighted

sum method is applied. The weighted sum method requires a weighting of the

different aspects, depending on their importance. The assignment of the weights

is still a problem as well as the disadvantage that the weighted sum method is

not able to take care of all conflicting design objectives individually (Bernard,

2005). The weighted sum method belongs to scalarization methods which do not

always give satisfying solutions, because of interest conflicts of design objectives

and possible compensations within the cost functions.

2.2.2.6 Pure bargaining games vs. transferable utility games

According to (Hart u. Mas-Colell, 1997), usually two special classes of games

are distinguished in the field of cooperative games: pure bargaining games and

transferable utility games.

In pure bargaining games, only the grand coalition matters with the value for the

coalition S : S =
{

fp ∈ RS such that fpi ≤ 0 ∀ i ∈ S
}

∀ S 6= N . S is the set of

feasible outcomes for the coalition S. A bargaining game is described through a

number of players N and a pair (P, d), where P represents the feasible set and d

gives the disagreement point of the game and consists of the costs, if the players
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do not negotiate (Holler u. Illing, 2000). Thus, if cooperation fails, the players

end up at the disagreement point d. The characteristics of a bargaining game are,

that at least one cost vector J = (Jcf1, ..., JcfN
) lies in P, providing smaller costs

than d. A solution problem arises only if more than one cost vector J is smaller

than d. The problem of selecting a particular point in the utility set P is called

the bargaining problem, usually axiomatic bargaining, as well.

In contrast, in transferable utility games, also known as games with side payments,

only one single number represents what a coalition can get, and this amount is

arbitrarily divided among the members of the coalition.

2.2.2.7 Differential vs. difference games

Both type of games belong to the dynamic games, whose dynamic decision process

evolve over time. The difference is given through the time domain which is either

discrete or continuous, respectively it is about a difference game or a differential

game.

2.2.2.8 Normal form games vs. extensive form games

In a normal form representation of a game, every player i chooses a strategy ui,

without knowledge of the decisions of the other players. A normal form game,

which is also known as matrix game or strategic game, has no dynamic and is

strictly non-cooperative, since no coalitions are considered. Using the extensive

form game, the sequential course of a game is represented. It specifies at which

point of time which player is acting, which strategies are available for the acting

player and the knowledge the acting player possesses. If all players choose their

strategies for the complete game progress at the beginning, the normal form is

an appropriate description for the decision making process. The advantage of the

normal form game representation is the comparatively simple way for the deter-

mination of Nash solutions through the method of static optimization (Osborne u.

Rubinstein, 2001). When transferring from the extensive form to the normal form

a loss of information is obtained.
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2.2.2.9 Zero-Sum vs. Nonzero-Sum Game

A game is called a zero-sum game, if players have opposite objectives. This means

what one player wins (J), the other player will loose (−J). Therefore the sum of

the different cost functions is always zero
N
∑

i=1

Jcfi
= 0. In contrast, nonzero-sum

games always have a value which is different from 0 with
N
∑

i=1

Jcfi
6= 0.

2.2.2.10 Information

The information that underlies in a game is an essential part in game theory.

Basically, the literature distinguishes between the following different information:

(I) Perfect vs. imperfect information

In a game with perfect information, every preliminary actions of the other

players are known (also known as perfect recall). Each player knows at each

time in which information set he (or she) is. The information set contains

only one information node, which gives information about all possible moves

(chosen strategies) that have taken place in the game. In contrast, in a game

with imperfect information, several information nodes in the information

sets exist and the players often do not know in which information node they

are. Thich means, they do not know which strategies the other players have

choosen.

(II) Complete vs. incomplete information

In a game with complete information, every player knows the strategy sets

Ui and the costs Jcfi
of all players at each time and there are no private

information. Such a game is easy to analyze and is often called boring.

Only a game with incomplete information is said to be interesting, since, for

example, the cards the players hold in their hands are not visible for each

player. Thus, they have private information.

Note, a game with complete information could also be a game with imperfect in-

formation. For example, all strategy sets Ui and costs Jcfi
of all players are given,

in spite of the existence of several elements of information sets in the game.
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Which information type is valid for a game is given through the information struc-

ture of a game. It specifies perfect or imperfect information as well as complete or

incomplete information.

2.2.2.11 Game of Kind vs. Game of degree

According to (Isaacs, 1999) the quantity in a game of degree is the payoff (cost

value), whereas the criteria in a game of kind are discrete. Typical examples of

games of kind are pursuit evasion games, possessing only two outcomes: either the

evader is caught or not.

The definitions, rules and properties specified in the current subsection are

limited on the essential and used as the general basis for the further development

of the game-theoretic approach. Only the concepts needed for the development

of the approach are given. This is required, since game theory is a wide research

field and not only limited to control theory. For instance, game theory is also a

research field in finance, economics, assertion, law and others. According to this

wide area of application, many academic literature is published, defining many

different games, rules, solution concepts and their applications with sometimes

opposed definitions.

2.2.3 Solution Concepts in Game Theory: An Overview

A solution concept in game theory associates a set of feasible costs for each game.

Ideas to design solution concepts for non-cooperative games are based on the equi-

librium concept, while the solution concepts for cooperative games are based on

keywords like justice, equity, fairness and stability.

2.2.3.1 Solution concepts for non-cooperative games

Non-cooperative games are commonly described as matrices or trees in the two

or three player case. Especially for a two-player game, the subsequent solution

concepts are directly applicable to matrix games, where also a graphical imple-

mentation of the solution concepts is possible. However, all presented solution

concepts are applicable for n-player games as well.
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(I) Normal (strategic) form game solutions (according to (J. Neumann, 2004))

(a) Dominant strategy:

A control strategy u∗ = (u∗1, . . . , u
∗
m) with property Jcfi

(u∗i , u−i) ≤

Jcfi
(ui, u−i) ∀ u = (ui, u−i) ∈ Jcfi

for all u∗i is called an equilibrium

in dominant strategies. A distinction is made between strictly domi-

nant strategies with Jcfi
(ui∗, u−i) < Jcfi

(ui, u−i) and weakly dominant

strategies with Jcfi
(ui∗, u−i) ≤ Jcfi

(ui, u−i). Every player i chooses his

strategy ui, independent of the other players’ behavior.

(b) Maximin solution:

A control strategy u∗ = (u∗1, . . . , u
∗
m) is called a minimax solution, if

Jcf1(u
∗
1, u

∗
2) ≤ Jcf1(u1, u

∗
2) and Jcf2(u

∗
1, u

∗
2) ≥ Jcf2(u

∗
1, u2). The minimax

solution is a saddle point and it is often used in non-cooperative games

with more than one Nash equilibrium, but it is not always applicable,

since there is no guarantee for the existence of a saddle point solution.

(c) Nash equilibrium:

A control strategy u∗ = (u∗1, . . . , u
∗
m) is called a Nash equilibrium, if

Jcfi
(u∗i , u

∗
−i) ≤ Jcfi

(ui, u
∗
−i). No coalition is assumed, so each player is

acting independently. The equilibrium solution is secure against any

attempt by one player unilaterally to alter his strategy. Also, it is

assumed that every player is using his Nash control, if a given player

plays non-Nash-optimally, he will do no better, and similar for every

other player. Summarized, there is no incentive for any player to deviate

from his strategy.

(d) Correlated strategies (Osborne u. Rubinstein, 2001):

Every mixed strategy Nash equilibrium corresponds to a correlated equi-

librium. Using mixed strategies, probabilities are assigned to each strat-

egy, a pure strategy for example is assigned with probability 1.

(e) Rationalizable strategies (Osborne u. Rubinstein, 2001):

Every strategy used with positive probability in a correlated equilibrium

is rationalizable. A strategy is a never-best response if and only if it

is strictly dominated. Strategies that survive iterated eliminations of

strictly dominated strategies are rationalizable.
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(II) Extensive form game solutions

(a) Nash equilibrium (Osborne u. Rubinstein, 2001):

In determining the Nash equilibrium for an extensive game, the sequen-

tial structure of the game is ignored. The strategies are treated as

choices that are made once and for all before play begins, compare item

Id).

b) Sub game perfection:

A strategy set is sub game perfect, if the solution is an equilibrium for

all possible sub games.

Remark, all solution concepts for normal form games, specified in item (I)

could be applied to extensive form games and the other way around. Since both

representations are mutually transformable.

2.2.3.2 Solution concepts for cooperative games

The solution concepts for cooperative games needs partially more mathematical

effort compared to the concepts for non-cooperative games. However, the possi-

bility for a graphical solution representation is provided for two-player games as

well.

(III) Pure bargaining games (or individualist games)

(a) Nash bargaining solution (NB) ((Ehtamo u. Hämäläinen), (Luce u.

Raiffa, 1989)):

The players find the Nash bargaining solution N(S) simply by maxi-

mizing Nash’s product

N(S) = max(u1 − d1) · (u2 − d2) (2.8)

in S with d as disagreement point. According to the notion of John

Nash, the Nash bargaining solution includes a fair negotiation reso-

lution, accepted from the rational players. The function φ, defined

through (2.8), assigns to each bargaining game (P, d), exactly one strat-
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egy vector u =
{

u1j
, . . . , uNj

}

, the Nash solution, and satisfies the fol-

lowing four axioms:

(1) Scale invariance:

For every bargaining game (P, d) and for arbitrary real numbers

mi > 0 and wi, with i = 1, 2, φi(P
′d′) = miφi(P, d)+wi, if (P ′, d′) is

a bargaining game, resulting from a linear transformation, keeping

the order of all elements u and d in P, so that yi = mixi + wi and

d′ = midi + wi and y and d′ elements of P ′.

In words, N(S) is independent of the units, so the solution does not

vary if the utility is multiplied by a positive constant.

(2) Symmetry:

If P, d is a symmetric bargaining game, then φ1(P, d) = φ2(P, d).

(3) Independence of irrelevant alternatives:

f(P, d) = ǫ(Q, d) if (P, d) and (Q, d) are bargaining games with

equal disagreement point d, P is a subset of Q and f(Q, d) is an

element of P.

(4) Pareto optimality:

(P, d) is a bargaining game; if x1 ≤ φ1(P, d) and x2 ≤ φ2(P, d),

then x 6= f(P, d) in P.

(b) Egalitarian solution (E) (Holler u. Illing, 2000):

The egalitarian solution is a special case of the proportional solution

(PR). The basic idea of the PR solution is as follows: at a crossover

from one bargaining game (P, d) with P for the feasible set and d for

the disagreement point, to another bargaining game (R, d) with equal

disagreement point d and an arbitrary size of utility set, and P is a

subset of R, all players should get equal payoff increases, being pro-

portionally related. The egalitarian solution provides an exact uniform

distribution of the gains resulting from the cooperation.

(c) Kalai-Smorodinsky solution (KS):

The best known variation of the Nash bargaining solution is the Kalai-

Smorodinski solution. Kalai and Smorodinsky replaced the third Nash

axiom for the Nash bargaining solution by the monotonicity axiom:
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(3’) Monotonicity.

If the negotiation set (feasible set) P is enlarged such that the

minimum utilities of the players remain unchanged, then neither of

the players must not suffer from it.

According to (3′), the Kalai-Smorodinsky solution is situated at the

intersection of the Pareto-optimal curve and the straight line linking the

disagreement point and the utopia point UP (Holler u. Illing, 2000).

(IV) Transferable utility games (or coalitional games):

(a) Core ((Holler u. Illing, 2000), (Osborne u. Rubinstein, 2001)):

The idea of the core is to look at those payoff vectors which no coalition

can improve upon. The core collects costs Jcfi
(also called imputations)

that are not dominated. All possible payoff pairs are imputations where

none of the players gets less than he would get if he plays alone. In

general the core is a selection from the set of imputations. For two

player games the set of imputations coincides with the core.

(b) Banzhaf index (Dubey u. Shapley, 1979):

Using the Banzhaf index as solution method, the number of coalition

when an agent is pivotal out of all winning coalitions containing that

agent is counted. It is used for measuring real power in weighted vot-

ing systems, whereas power is defined as: which agent has the most

influence on the outcome.

(c) Shapley value:

The Shapley value is a solution concept, that assigns the average of

marginal contributions to coalitions. A single payoff for each player

is described, which is the average of all marginal contributions of that

player to each coalition he is a member of.

A graphical interpretation of the solution concepts for bargaining games is given

in Fig. 2.2 with the Nash bargaining solution (NS), the Egalitarian solution (E),

the Kalai-Smorodinski solution (KS) and the Proportional solution (PR) for a free

chosen example.
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45◦

Figure 2.2. Solution concepts for bargaining games. Black: proportional solution, red:
Egalitarian solution, blue: Kalai-Smorodinsky solution, green: Nash bargaining solution.

The Pareto-optimal set acts as a part in obtaining a solution in cooperative

bargaining games. Pareto-optimality is a measure of efficiency. The outcome of

a game is Pareto-optimal if it cannot be improved upon without hurting at least

one player. Pareto-optimality offers a set of efficient solutions that are more or

less preferable from a players viewpoint. A Pareto-optimal strategy describes a

socially optimal joint strategy for cooperative games. A Pareto-optimal point is

defined in (Marler u. Arora, 2004) as follows:

A point, α∗ ∈ A, is Pareto-optimal iff there does not exists another

point, α ∈ A, such that J(α) ≤ J(α∗), and Jcfi
(α) < Jcfi

(α∗) for at

least one function.
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Remark, an equilibrium in dominant strategies (compare Ia)) is not Pareto-optimal

since individual rationality is faced with collective rationality.

A few disadvantages considering Pareto-optimality are scheduled in (Farina u.

Amato). The fact that the number of improved or equal objectives is not taken

into account belongs to it, as well as the (normalized) size of improvements is not

taken into account. Another aspect is the not considered preference among the

objectives, but this is a property of the a-priori methods solving multi-objective

optimization problems.

The comparison of the weighted sum solution and the Nash bargaining solution

on an example in the two dimensional space is given in Fig. 2.3, where the weights

of the weighted sum method are chosen as 0.5 each. According to Fig. 2.3, the
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Figure 2.3. Pareto-optimal front in the case of two cost functions. Comparison of the
weighted sum solution with weights β1 = β2 = 0.5 and the Nash bargaining solution.

weighted sum shows the minimum cost function value in J1 (objective value 1)

with respect to the cost function distribution for the range of J2 (objective value
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2).In contrast, the Nash bargaining solution provides a solution which is fair and

equal distributed, considering both cost function ranges for both cost functions.

The final solution of the bargaining game is mostly obtained through a specified

operation with the Pareto-optimal set, see 2.2.3.2. The final solution could not be

obtained until the Pareto-optimal set is available. Thus, it is illustrated how the

Pareto-optimal set is derived using multi-objective optimization.

2.3 Multi-objective optimization (MOO)

2.3.1 Multi-objective optimization providing a

Pareto-optimal solution set

The goal of multi-objective optimization is to find a vector ααα of decision variables

or parameters, which satisfies constraints and optimize more than one cost func-

tion Jcfi
. In the present work, cost functions Jcfi

mathematically describe the

cost criteria, which are usually in conflict with each other. In (de Weck, 2004),

methods for multi-objective optimization are distinguished in scalarization meth-

ods and Pareto methods. Scalarization methods merge different cost functions Jcfi

in one general cost function J , Pareto methods in contrast, keep the different cost

functions Jcfi
and optimize them in common.

The usual way in scalarization methods is to accumulate the different objectives

Jcfi
to one J by using the weighted sum method with the weights, βi (Andersson,

2000; Bernard, 2005).

Jsum =

N
∑

i=1

βiJcfi
(2.9)

As mentioned in Subsection 2.2.2, the scalarization methods not always give satis-

fying solutions because of interest conflicts of design objectives. Multi-objective op-

timization using Pareto methods is, on the contrary, able to take care of all conflict-

ing design objectives individually but compromising them concurrently (Bernard,

2005). The key concept of multi-objective optimization is the Pareto-optimality.

However, the set of Pareto-optimal solutions is usually combined with high compu-

tational effort. This computational effort is based on the set of all possible solutions

that has to be calculated, all representing the Pareto-optimal set. According to
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(Saksala, 2004), a cooperative game is formalized as a multi-objective optimization

problem. Due to the fact that one is dealing here with several individual players,

which should be treated equally, the characteristics of Pareto methods is the most

appropriated approach for cooperative dynamic games. Next, the mathematical

problem of multi-objective optimization is formalized.

2.3.1.1 Multi-objective mathematical optimization problem

A multi-criteria optimization problem for the mathematical programming is for-

mulated in (Osyczka, 1985) as follows:

Find a vector ααα∗ such that

J(ααα∗) = optJ(ααα) (2.10)

and such that it will satisfy υ inequality constraints

ηι(ααα) > 0 for ι = 1, 2, ..., υ (2.11)

and ξ equality constraints

hl(ααα) = 0 for l = 1, 2, ..., ξ < ψ (2.12)

where

1. ααα = [α1, α2, ..., αψ]
T is a vector of decision variables defined in ψ-dimensional

Euclidean space of variables Eψ,

2. J(ααα) = [Jcf1(ααα), ..., Jcfi
(ααα), ..., JcfN

(ααα)] is a vector function defined in N-

dimensional Euclidean space of objectives EN ,

3. ηj(ααα), hl(ααα) and Jcfi
(ααα) are linear and/or nonlinear functions of decision vari-

ables ααα1, ...,αααψ.

The constraints given by ηi(ααα) and hl(ααα) represent the restrictions imposed to the

optimization problem.

In multi-criteria optimization problems the task is either to:

1. minimize all the cost functions
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2. maximize all the cost functions

3. minimize some and maximize others

However, a cost function that has to be maximized is converted to a cost function

that has to be minimized as follows:

max
i

Jcfi
(ααα) = min

i
(−Jcfi

(ααα)). (2.13)

The solution of multi-objective problems is a set of points known as the Pareto-

optimal set. The optimum in the sense of Pareto gives a set of also called non

inferior solutions. Non inferior solutions are solutions for which there is no way of

improving any cost of objective without leading to a degradation of at least one

other. The set of feasible points fp such that there exists ααα ∈ RN where fp = J(ααα)

is called the attainable set or feasible set, denoted by P:

P =
{

fp| ∃ ααα ∈ RN : fp = J(ααα)
}

(2.14)

Existence conditions for the attainable set were developed by (Clarke u. Gawthrop,

1997) and (Dutta u. Vetrivel, 2001) for convex multi-objective optimization prob-

lems.

The utopia point (UP) is defined as the point in the utility space with coordinates

given by the solutions of the scalar optimization problems:

min Jcfi
, i ∈ {1, . . . , N} (2.15)

A graphical representation of the main definitions in multi-objective optimization

problems is presented in Fig. 2.4 for two cost functions Jcf1 and Jcf2, which have to

be minimized. J∗
cf1

and J∗
cf2

represent the minima of the respective cost function.

2.3.2 Solving Multi-objective optimization problems

In the field of multi-objective optimization, generally three methods are distin-

guished:

• No-preference method:
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Figure 2.4. Graphical representation of the main definitions in MOO. Disagreement
point d, utopia point UP and Pareto-optimal front as dashed line.

In using a no-preference method, one final solution is obtained. The algo-

rithm results in one final solution and not a complete Pareto-optimal front

without previous specification of preferences. No decision maker is required.

An example of a no-preference method is the method of the global crite-

rion, where the solution point is chosen, according to a special metric, next

to the utopia point, but concurrently is part of the reachable solution set.

Disadvantages of the no-preference method lie in the final single solution.

For example, if a satisfying solution is not reached, there is no possibility

to engage the optimization. Also, there is no choice among several possible

solution points, which would give some kind of robustness to the solution.

• A-priori method:

The decision maker of an a-priori method specifies the preferences and ob-

jectives in advance. For instance, the function is arranged according to the

importance, to affect the final solution prior to the starting of the algorithm.
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Again, the final solution is a single point and no Pareto set, with the ad-

vantage of less time consumption for the calculation. The time expensive

computation of many Pareto-optimal points is left out. An example for an

a-priori method is the weighted sum method, where the multiple objectives

are weighted according to their importance and summed up for the opti-

mization process. Among the disadvantages from one final solution of the

no-preference method, the a-priori method has the difficulty that the result

depends only on the choice of the preferences. According to (Makowski,

1994), there is typically no general way to aggregate all criteria into one

objective that can adequately represent a preference structure of a decision

maker.

• A-posteriori method:

The decision maker of an a-posteriori method specifies no preference or

valuation of the objective function in advance. The task of the decision

maker is the selection of one final solution out of the Pareto-optimal set,

so it is applied after the method provides a set of Pareto-optimal solutions.

Known examples for a-posteriori methods, providing Pareto-optimal sets,

are the normal boundary intersection algorithm (NBI), the multi-objective

genetic algorithm (MOGA) or the non-dominated sorting genetic algorithm

II (NSGA-II). The calculation effort increases with the number of solutions.

The choice, which method to use, strongly depends on the type of the problem.

Since the final solution of the bargaining game is basically determined through the

Pareto-optimal set, in being part an a-posteriori method is chosen for the future

work.

A common method, resulting in a Pareto-optimal set, is to use genetic algorithms.

The advantages of using a genetic algorithm to solve a MOO problem compared

to other solution methods are: 1) GA’s are Pareto methods, which are able to

take care of all conflicting design objectives individually but compromising them

concurrently (Bernard, 2005), 2) GA’s have a multiple search property (Kawabe

u. Tagami, 1999) and 3) convex as well as nonconvex Pareto-optimal fronts could

be obtained (Konak u. a., 2006).

Disadvantages of using GA’s are given through a large amount of settings that
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influence it’s computation time and the resolution of the Pareto-optimal set. The

computation time states how many computation steps are needed to get a satisfying

Pareto-optimal solution set. The resolution of the Pareto-optimal set is important

later on, when selecting a final solution.

Next, a short introduction to genetic algorithms will be given.

2.3.2.1 Genetic algorithms for the solution of MOO problems

Genetic algorithms are adaptive methods regarding search and optimization prob-

lems. First steps and works with genetic algorithms are made by (Holland, 1992)

in the years of around 1990.

Genetic algorithms follow the process of natural behavior. Starting point is a pop-

ulation of individuals, whereas each of them represents a possible solution to the

given problem. The fitness values of each individual are mutually compared, while

each fitness value is calculated using a performance function,. The fitness value

gives an index, how close it is to the target value. Those individuals, relating to

satisfying fitness values are especially appropriate to reproduce themselves in the

next generation. Those who produce a nonsatisfying fitness value do not reproduce

themselves and die out. Resultant in a new and better population of possible solu-

tions and extending several generations, the good properties are passed on. If the

genetic algorithm has been designed well, the population converges to an optimal

solution (Beasley u. a., 1993) if only one cost function is considered.

The efficiency of a genetic algorithm, i.e. how good is a solution, evaluated ac-

cording to computation time and resolution, mainly depends on the choice of the

representation of the variable format, the calculation of the fitness value, the selec-

tion method, the recombination method, the mutation method and the reinsertion

method. The genetic algorithm, applied to obtain a Pareto-optimal set is available

as toolbox for Matlab. For the present work, the used variable format represen-

tation is chosen as real valued, the calculation of the fitness value is described

in detail in (Pohlheim, 2001). As selection method, stochastic universal sampling

is used, where the individuals are mapped to contiguous segments of a line such

that each individual’s segment is equal in size to its fitness. Then, equally spaced

pointers are placed over the line as many as there are individuals to be selected.

Discrete recombination is applied as recombination method which is more specified
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in (Pohlheim, 2001). The mutation of the variables is also real valued, whereas

randomly created values are added to the variables with a low probability. The

reinsertion occurs locally, that means the individuals are selected in their bounded

neighborhood. It is possible, that other setting combinations of the genetic algo-

rithm yield better results but is not yet improved in this work.

One advantage feature of genetic algorithms is the robust and parallel search tech-

nique, which is applied in many areas. Although it is not guaranteed that the

global optimal solution set could be found if it even exists, satisfactory solutions

can be found in a relative short amount of time. Thus, genetic algorithms are a

qualified method that enables parallel computing for a relative fast formation of

the Pareto-optimal set.

2.3.3 The Genetic Evolutionary Algorithm Toolbox

The first version of the Genetic Evolutionary Algorithm Toolbox (GEATbx) for

Matlab was developed in 1995 by Hartmut Pohlheim. Since 1995, the toolbox

was enhanced continuously. Of course, there are other toolboxes for solving MOO

problems, like NSGA-II or NBI, but just this toolbox was chosen, since it is a tool-

box for use with Matlab. The documentation is clear and satisfactory, a related

book is released, it was directly applicable even for multi-objective optimization,

it provides a Pareto-optimal set in the multi-objective case and Mr. Pohlheim was

available anytime for questions, concerning the toolbox. A comparison of other

available software, solving multi-objective optimization problems, is proposed in

(Natto, 2007).
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Chapter 3

Game-theoretic control system

design

The presented theoretic preliminaries of Chapter 2 provide the basis for the game-

theoretic approach of the multi-loop control system design, elaborated in this chap-

ter. The approach is composed of:

(I) A game description of a multi-loop control system.

(II) Cost functions and constraints set up, considering different system require-

ments.

(III) A Pareto-optimal set as solution set of the game, obtained through MOO,

which is solved using a GA.

(IV) A solution concept for the final solution, chosen from the Pareto-optimal set.

In the main part of the present thesis, the developed approach is limited to transfer

function models that do not include any delays. Additionally, the control system

design is kept very simple and does not consider elements for anti-windup or output

range. The ambition for the solution of the game is to obtain a trade-off within

all, often conflicting, cost functions. The details of the approach are given in this

chapter.
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3.1 Description of the game

The multi-loop control system design is specified as a dynamic game, which is

described either in continuous time or in discrete time, resulting in a differential

game or a discrete game, respectively. The different controllers in the multi-loop

control structure represent the players of the game. Each player has to satisfy

at least one cost function Jcfi
using the available strategies uij of each players’

strategy set. With cf indexing the kind of cost function, i ∈ {1, . . . , N} indexing

the player and j ∈ {t, k} indexing the different strategies of player i at time

t or k in the continuous and differential case, respectively. The cost functions

are a formalization of the posed requirements on the system as well as on the

single control loops, as for example a low control effort, or robust stability, or a

good disturbance reaction, see Section 1.1. The cost functions often depend on

each other because of the multi-loop control structure, and thus are in conflict in

meeting the requirements.

3.1.1 The Continuous Game

A dynamic game, passing in the continuous time domain is called a differential

game. In general, a dynamic differential game is a system with the following

properties according to (Lygeros u. a., 1997) with appropriate upgrading:

(a) The game is described on the time period [t0, T ].

(b) The game consists of N players (persons, controllers, ...) with N > 1.

(c) Each player i with i = 1, . . . , N dispose of the control variable uij with uij ∈

Ui, the input space or strategy space; the elements of Ui are denoted as
{

uij=̂ui(t), t0 ≤ t ≤ T
}

and are allowed controls of player i.

(d) The differential game is described through differential equations x
(n)
i (t):

x
(n)
i (t) = fi(x

(n−1)
i (t), . . . , ẋi(t), w1(t), . . . , wm(t)) (3.1)

where the general solution contains n arbitrary variables which correspond

to n constants of integration, with wj, where j = 1, . . . ,M , representing
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the inputs (what is given) and xi representing the outputs of the game (not

comparable to the outcome of the game).

(e) Each player i possesses his own cost function Jcfi
defined on

Jcfi
: Xi ×W1 × . . .×WM → R

+, (3.2)

which he tries to optimize. Additionally, it is possible, that a player possesses

more than one cost function, which the player tries to optimize.

(f) Each player i disposes his own game strategy (game concept, control law)

uij ∈ Ii, which determines the control (strategy) uij from the information

set Ii.

(g) Each player i possesses an information set Ii, which is mainly composed of

(a) Differential equation of the system ẋi(t).

(b) General solution for xi.

(c) Own cost function Jcfi
.

(d) Own game strategy uij ∈ Ui.

(e) Game strategy of other players u¬ij .

The information structure of the game is either perfect or imperfect with the

difference being complete or incomplete.

3.1.2 Multi-loop control system design of a differential game

For the description of the differential game, it is assumed, that the plant is modelled

by the coprime rational expression

Y#p(s)

U#p(s)
= G#p(s) =

B#p(s)

A#p(s)
(3.3)

with #p = 1, . . . ,#P as number of processes and

B#p(s)

A#p(s)
=
bnB

snB + bnB−1s
nB−1 + . . .+ b1s+ b0

snA + anA−1sn−1 + . . .+ a1s+ a0
(3.4)
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The control law is given by

Ui(s) = Ci(s)Ei(s) =
Qi(s)

Pi(s)
Ei(s) (3.5)

with i indexing the multiple control loops of the system, which is equivalent to the

number of players.

The polynomial description of the PI controllers Ci with proportional parameters

KPi
and integral parameters KTi

is

Ci =
Qi

Pi
=
KPi

s+KPi
/KTi

s
. (3.6)

To realize the differential game description of Subsection 3.1.1, the inputs and

outputs of the game in subchapter 3.1.1 (d) have to be specified, see Fig. 3.1. In

the multi-loop control system design the input of the corresponding game (wj in

subchapter 3.1.1 (d)) consists of the plant model polynomials A#p(s) and B#p(s),

the controller polynomials Qi and Pi, as well as the reference variables ri(s) ∈

Ri(s).

These polynomials enable the derivation of one particular solution from the general

solution of 3.1.1 (d) by setting these constants to particular values. The output of

the game are the control signals Ui (xi from 3.1.1 (d)).

Ri

Qi, Pi

B#p, A#p

Game Ui

Figure 3.1. Inputs and outputs of a game
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This results in an equation of the form

x
(n)
i + . . .+ l1ẋi + l0xi = omw

(m)
j + . . .+ o1wj + o0 (3.7)

The transfer function relating the outputs xi to the inputs wj represent the error

that exist in the multi-loop control system. The number of error equations ei(t)

depends on the number of control loops, from the game-theoretic view. It is the

number of players, N .

The game can now be described as a differential game between N players with

i = 1, . . . , N on the time period [t0, T ]. The strategies of the players are defined as

ui(t) =

T
∫

t0

ci(t)ei(t− τ)dτ (3.8)

with

L{ci(t)} = Ci(s) = Qi(s)/Pi(s). (3.9)

Qi and Pi are the controller parameters of player (controller) Ci. The strategies of

the players belong to the strategy sets Ui =
{

uij |uij is given by (3.8)
}

.

The differential game can now be described as the evolution of the errors ei with

e
(n)
i (t) = f(e

(n−1)
i (t), . . . , ėi(t), u1(t), . . . , uN(t)) (3.10)

and initial condition

ei(t0) = ei0 (3.11)

as well as cost functions Jcfi
with

Jcfi
= gi0(eiT ). (3.12)

The errors ei belong to the set Ei = {ei|ei as solution of(3.10)}. Function fi

is defined on fi : R1 × . . . × RI × U1 × . . . × UN → R
+ and function gi0 on

gi0 : R1 × . . .×RI ×U1 × . . .×UN → R
+. with RI indexing the reference value(s).

The terminal state eiT as well as the cost functions Jcfi
depend on the choice
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of u1j
, . . . , uNj

. Important for the proposed controller tuning method is the depen-

dence of the players strategies u1j
, . . . , uNj

on the controller parameters Qi and Pi,

as well as the control laws of the system and the reference signals r0i.

3.1.3 The difference game

It is advantageous, because controllers are normally implemented in digital com-

puter systems, to describe the game in the time-discrete case, as well.

The dynamic differential game of Subsection 3.1.1 is transferred to a dynamic

difference game with the following properties:

(a) The game is described on the discrete time period [k0, K].

(b) The game consists of N players (persons, controllers, ...) with N > 1.

(c) Each player i with i = 1, . . . , N dispose of the control variable uij with

uij ∈ input space or strategy space Ui; the elements of Ui are denoted as
{

uij=̂ui(k), k0 ≤ k ≤ K
}

and are allowed controls of player i.

(d) The difference game is described through difference equations xi(k + n):

xi(k + n) = fi(xi(k + n− 1), . . . , xi(k + 1), w1(k), . . . , wM(k)) (3.13)

where the general solution contains n arbitrary variables which correspond

to n constants of integration. With wj, j = 1, . . . ,M , representing the inputs

(what is given) and xi representing the outputs of the game (not comparable

to the outcome of the game).

(f) Each player i possesses his cost function Jcfi

Jcfi
: Xi ×W1 × . . .×WM → R

+, (3.14)

which he tries to optimize. Again, it is possible, that a player possesses more

than one cost function Jcfi
.
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(g) Each player i dispose an own game strategy (game concept, control law)

uij ∈ Ii, which determines the control strategy uij from the information set

Ii.

(h) Each player i possesses an information set Ii, which is mainly composed of

(a) Differential equation of the system xi(k + n).

(b) General solution for xi(k).

(c) Own cost functions Jcfi
.

(d) Own game strategy ui ∈ Ui.

(e) Game strategy of other players u¬ij .

Again, the information structure of the game is either perfect or imperfect,

as well as complete or incomplete.

3.1.4 Multi-loop control system design as a difference game

For the description of the difference game, it is assumed, that the plant is modelled

by the coprime rational expression

Y#p(z)

U#p(z)
= G#p(z) =

B#p(z)

A#p(z)
(3.15)

with #p = 1, . . . ,#P as number of processes and

B#p(z)

A#p(z)
=
bnB

znB + bnB−1z
nB−1 + . . .+ b0

znA + anA−1znA−1 + . . .+ a0

. (3.16)

The control law is given by

Ui(z) = Ci(z)Ei(z) =
Qi(z)

Pi(z)
Ei(z) (3.17)

with i indexing the multiple control loops of the system, respectively the players

of the game.

The polynomial description of the PI controllers Ci with proportional parameters
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KPi
and integral parameters KTi

is

Ci =
Qi

Pi
=
KPi

z +KPi
/KTi

z − 1
. (3.18)

To realize the difference game description of Subsection 3.1.3, the inputs and

outputs of the game in subchapter 3.1.3 (d) have to be specified, see Fig. 3.1. In

the multi-loop control system design the input of the corresponding game (wj in

subchapter 3.1.3 (d)) consists of the plant model polynomials A#p(z) and B#p(z),

the controller polynomials Qi and Pi, as well as the reference variables ri(z) ∈

Ri(z).

These polynomials enable the derivation of one particular solution from the general

solution of 3.1.3 (d) by setting these constants to particular values. The output of

the game are the control signals Ui (xi from 3.1.3 (d)).

This results in an equation of the form

xi(k+n)+ . . .+ l1xi(k+1)+ l0xi(k) = omwj(k+m−1)+ . . .+o1wj(k)+o0 (3.19)

The transfer function relating the outputs xi to the inputs wj represent the error

that exist in the multi-loop control system. The number of error equations ei(k)

depends on the number of control loops, in the game-theoretic view it is the number

of players, N .

The game can now be described as a difference game between N players with

i = 1, . . . , N on the time period [k0, K]. The strategies of the players are defined

as

ui(k) = ci(k) ∗ ei(k) (3.20)

with i = 1, ..., N and Z {ci(k)} = Ci(z) = Qi(z)/Pi(z).

The controller parameters of Ci are contained in Qi and Pi. The strategies of the

players are part of the strategy sets Ui = {ui|ui is given by (3.20)}.

The difference game is described as the evolution of the errors ei with

ei(k + n) = fi(ei(k + n− 1), . . . , ei(k), u1(k), ..., uN(k)) (3.21)
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and initial condition ei(k0) = ei0 as well as a cost function Jcfi
with

Jcfi
= gi0(eiK). (3.22)

The errors ei are part of the set Ei = {ei|ei as solution of (3.21)}. The function fi

is defined on fi : R1 × . . .× RI × U1 × . . .× UN → R
+ and function gi0 is defined

on gi0 : R1 × . . .×RI ×U1 × . . .×UN → R
+ witn I indexing the reference value(s).

The final state eiT , as well as the cost functions Jiec
, depend on the choice of

ui(k). Again, the strategies ui(k) of the players depend on the controller parameter

Qi and Pi, as well as on the control structure and the reference signals r0i.

3.2 Cost functions and constraints set up

3.2.1 Reference tracking

The basic requirement on the control loops of the multi-loop system should be set

on a good reference tracking. The stability is transferred to a constraint while the

requirements on a good reference tracking for each control loop are converted to

cost functions.

A typical performance index, applied to control problems, achieving a good refer-

ence tracking, is the Integral Square Error (ISE) with

JISEi
=

∞
∫

t=0

e2i (t)dt. (3.23)

for the continuous case, and

JISEi
=

∞
∑

k=0

e2i (k). (3.24)

for the discrete case.

A second common performance index, applied to control problems for a fast ref-

erence tracking with low deviation, is the Integral of Time weighted Square Error
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(ITSE). Including the consideration of the elapsed time k with

JITSEi
=

∞
∑

k=0

ke2i (k). (3.25)

for the discrete case.

The third performance index, considered in this work, is the Integral of Square

Time weighted Square Error (ISTSE)

JISTSEi
=

∞
∑

k=0

k2e2i (k). (3.26)

for the discrete case.

All three performance indices Jcfi
with cf ∈ {ISE, ITSE, ISTSE} are applied

for the discrete case and compared, as their use will lead to different Pareto-optimal

sets. Equations (3.23) and (3.24) are solved according to (Aström, 1970) during

the course of the game. Equations (3.25) and (3.26) are solved according to (Gam-

bier, 2007).

Satisfying a fast reference tracking with low deviation of a system is a basic re-

quirement of the initial game description. To conform to more requirements, the

game is extended in the following to requirements considering the control effort,

control constraints, robustness and stochastic disturbances. Those requirements

are mathematically formalized as additional cost functions and/or constraints.

3.2.2 Control effort

According to the fact that, in practice, every control signal cannot be followed by

the physical system. The proposed method should provide the opportunity either

to minimize the control effort or even to limit the control effort of the plant. All

possibilities are established.

3.2.2.1 Control effort as add on to existing cost functions

A first approach is proposed in (Wellenreuther u. a., 2006b) with the cost functions

Jcfi
use the ISE (Integral Square Error). Some authors (Isermann, 1989) include
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a constraint for the control signal to the performance signal. As control signals do

not necessarily converge to zero which is important for Ji to be ≤ ∞, the square

of the control signals derivative of ui(t), or difference of ui(k) is used instead. In

(Wellenreuther u. a., 2006a), the square of the control signal’s difference ∆ui(k)

is integrated, added using a weighting factor to the discrete version of the ISE

and successfully applied on an example. Some authors, like (Isermann, 1989)

or (Kawabe u. Tagami, 1999), already included in the performance index as a

constraint for the control signal. The derivative square of the control signal is

multiplied with a weighting factor λi and added to the squared error signal ei(t),

namely

Jeui
=

∞
∫

t=0

e2i (t)dt+ λi

∞
∫

t=0

u̇i
2(t)dt (3.27)

for the continuous case, and

Jeui
=

∞
∑

k=0

e2i (k) + λi

∞
∑

k=0

∆ui
2(k), (3.28)

Jeui
=

∞
∑

k=0

ke2i (k) + λi

∞
∑

k=0

k∆ui
2(k), (3.29)

Jeui
=

∞
∑

k=0

k2e2i (k) + λi

∞
∑

k=0

k2∆ui
2(k) (3.30)

for the discrete case.

The cost functions Jeui
in (3.27) - (3.30) are actually some sort of a weighted sum

involving two main disadvantages during the optimization process. The first one

is the possible compensation of the squared error signal ei(t) and the squared

derivative of the control signal u̇i(t), while optimizing their sum. The second

disadvantage is the choice of the weights λi. If λi is set to 1, i.e. the derivative of

the control signal is completely incorporated during the optimization process, the

constraints on the control signals may be violated.
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3.2.2.2 Control effort as cost function implementation

The second implementation, concerning the requirement on a low control effort,

is to consider the square of the control signals derivative separately, using a cost

function:

Jui
=

∞
∫

t=0

u̇i
2(t)dt (3.31)

for the ISE implementation continuous case, and

Jui
=

∞
∑

k=0

∆ui
2(k) (3.32)

for the ISE implementation of the discrete case. The advantage is that the cost

function for the control effort is treated equally during the optimization process

in the control system design. The disadvantage is constraints on the control effort

can not be set explicitly. The ITSE and ISTSE implementations could be easily

extracted from the last part of (3.29) and (3.30), respectively.

3.2.2.3 Explicit control constraints implementation

To be able to keep limits for control signals according to predefined step changes

of the systems’ set points, explicit constraints are added to the game in (Wellen-

reuther u. a., 2007). The constraints are maintained during the offline optimization

of the cost functions. From the game-theoretic view, constraints on the control sig-

nal uij equals constraints on the strategy sets Ui of the players.

If the control signals uij of the plant, where uij represents the continuous case

ui(t) as well as the discrete case ui(k), are limited, constraints are set around an

operating point in a predefined range of ±Li:

|ui| ≤ Li. (3.33)

These constraints are added to the dynamic game with the present challenge to

optimize the cost functions (3.23)-(3.26), concerning the error convergence subject

to (3.33).

Note, these constraints are set for the offline optimization of the cost functions and
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there is no guarantee that these limits are kept online.

3.2.2.4 Explicit control constraints as cost function implementation

Additionally, the idea is to keep the deviation of the control signals to the lin-

earization point as small as possible. To obtain the smallest possible control signal

deviation, the distance between the control signal ui(t) and the limits ±Li should

be as large as possible. Additionally, these constraints can be reformulated as

max(Li − |ui|). (3.34)

Constraints in MOO problems are treated in the literature in several ways. A

very popular way is to add penalty functions to the cost functions. In (Pohlheim,

2000), the penalty function is modelled as a weighted sum. By assigning the

values of the weights, the importance of the compliance with the constraints is

defined. Again, the well known handicap in the use of the weighted sum persists:

the determination of the weights. Another way to handle constraints is to check

them during the calculation of the cost functions. If constraints are violated, the

corresponding cost function values are ignored in the optimization process. A

survey of constraint handling techniques in evolutionary computation methods is

given in (Michalewicz, 1995).

Further, it is possible to formulate the constraints as cost functions. Since every

cost function is minimized in the game, (3.34) can be rewritten as cost function

for the control signals Jcui
with explicit constraints as

Jcui
= −(Li − |ui(t)|). (3.35)

3.2.3 Robust Stability

The difficulty of describing a physical process as a mathematical model is specified

in (Skogestad u. Postlethwaite, 1996), and (Manoso u. a., 1997) as the robustness

problem. The robustness problem is solved first by characterizing the uncertainty

and incorporating it into the mathematical model. In the literature, uncertainty is

distinguished between two main classes: parametric uncertainty and uncertainty

caused by unmodelled dynamics, (Balas u. a.), (Skogestad u. Postlethwaite, 1996).
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In the case of parametric uncertainty, the structure of the model, including the

order, is known, but some parameters are uncertain. This type of uncertainty can

be modelled as inverse additive uncertainty, (Becerra). In contrast, unmodelled

dynamics occur due to the high frequency plant behavior, which is often uncertain

since only the low order nominal model describing the low-mid frequency range

behavior of the plant is available. One common approach to model this type of

uncertainty is to use a multiplicative uncertainty model, (Skogestad u. Postleth-

waite, 1996).

The singular value analysis σ, which is a generalization of the Nyquist criterion,

is becoming popular as a general way to analyse the robust stability of MIMO

systems.

The structured singular value µ of a transfer function matrix M , where M repre-

sents a known linear system, is defined as µ(M) = 1/σ(M) subject to the singular

value. It was developed to analyse the effects of parametric uncertainties and

unmodelled dynamics to the stability and the performance of multi-loop control

systems. The structured singular value µ is defined on finding the smallest struc-

tured perturbation ∆, measured in terms of σ(∆), which makes det(I−M∆) = 0,

with I as unity matrix, then µ(M) = 1/σ(∆).

The peak of the frequency response of the general structured singular value µ

delivers, depending on the structure of the perturbation, the size for the pertur-

bation where the closed loop system remains stable. A value of µ = 1 represents a

perturbation with σ(∆) = 1. If smaller perturbations makes the system unstable,

the value of µ is larger than 1 and if the value of µ is smaller than 1, larger per-

turbations are permitted.

A robust stability theorem for block-diagonal perturbations is given in (Skogestad

u. Postlethwaite, 1996):

Assume that the nominal system M and the perturbations ∆ are sta-

ble. Then the M∆-system is stable for all allowed perturbations with

σ̄(∆) ≤ 1, ∀ω, if and only if µ(M(jω)) < 1, ∀ω.

Considering the requirement on robust stability during the control system design,

a cost function Jµ for the total system is defined as

Jµ = µ(M). (3.36)
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Concerning the robust stability requirement, only the cost function (3.36) is opti-

mized by all participant players. The value of the robust stability cost Jµ that has

to be optimized, depends on the players’ control strategies. Considering the cost Jµ

of (3.36) with regard to the solution of the game, an additional trade-off between

the robust stability and the performance of the system subject to constraints on

the control strategies has to be met.

Finally, for all cost functions, it is imperative that a threshold on the cost

functions could be set, to distinguish from unacceptable performance to acceptable

performance, where the control wins the game against the environment or not.

3.3 Course of the game

The game passes during the simultaneous optimization of the cost functions Jcfi
.

The cost functions are calculated, depending on different strategy combinations

{u1(t), . . . , uN(t)} or {u1(k), . . . , uN(k)}, and compared in incorporating their

evaluation over the total time intervals [t0, . . . , T ], and [k0, . . . , K], respectively.

Using a genetic algorithm for the calculation of the Pareto-optimal set, the calcu-

lations of the cost functions are done in parallel to a certain degree. The number

of parallel calculations is specified through the number of subpopulations as well

as the population size. Based on a starting population given through a set of ran-

domly chosen parameters for the polynomials Qi and Pi within a specified range,

those strategies (parameters of the polynomials, leading to the control signals ui

(strategies)) survive, leading to a minimization of the cost functions while keeping

the system requirements. The surviving strategies are given through points on the

Pareto-optimal set.

If the cost functions are in conflict, as is usually the case, trade-offs are made

within the cost functions. Using the survivals as the result of one generation, al-

gorithms for selection, recombination, mutation and reinsertion, provided by the

genetic algorithm, are applied on the survivals. Obtained parameter sets for Qi are

used to calculate the cost functions for the new generation and the new survivals

are saved. After a predefined number of generations, the algorithm stops and

the obtained generation provides the Pareto-optimal set with the largest number

of non dominated points, that is the Pareto-optimal set with the highest resolution.
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3.4 Solution of the game

According to (J. Neumann, 2004), the solution of a cooperative game is a set of

solutions. All non dominated solutions, also called Pareto-optimal solutions, are

part of this Pareto-optimal set.

In the further progress of this work, the Pareto-optimal set is identified first for

the application examples. For the determination of a final solution, out of the

Pareto-optimal set, a decision maker (DM) is required.

3.4.1 Motivation for a game-theoretic DM

All points on the Pareto-optimal set deliver non-dominated solutions in the utility

set, representing trade-offs within the predefined control-theoretic requirements of

the control system, converted into cost functions, constraints and including the

consideration of the control loop interactions. That is, in the utility set of two

cost functions: if the worth of the first cost function is improved (for example, the

integrated squared error of the belonging control loop is decreased), the worth of

the second is degraded (for example, the integrated squared error of the belonging

control loop is increased).

Obtaining a Pareto-optimal set, from which the final solution is chosen, implies

that no priorities are set in this work a-priori. If so, the weighted sum approach

as a-priori method could be used using only one cost function and resulting after

the optimization in only one final solution. Also, the priorities could be set using a

lexicographic ordering and optimization method, providing only one final solution.

Both methods make no use of a DM.

In contrast, one possible implementation of a DM is to define a further crucial

control-theoretic requirement. The final solution is then obtained in checking

all Pareto-optimal points on the additional requirement and choosing the point,

satisfying the specified requirement the most, which is known as an a-posteriori

method. For example the Pareto-optimal set, obtained through the minimization

of the errors of two control loops, implemented with two cost functions, is now
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checked on robust stability, or the final solution should give the Pareto-optimal

point with the smallest overshoot for the control signal of the second loop. Many

other decision makers, motivated from control theory, are applicable. The pro-

posed game-theoretic approach could be modified, by changing part (IV ) of the

presented method: the final solution concept. In doing so, it depends on a par-

ticular system and specific requirements, which is not in the sense of the present

work.

In contrast, when using the game-theoretic approach, it is assumed, that all control

theoretic requirements of the system are formulated at the beginning and treated

equally. This equitable usage of the requirements leads to the demand on the DM

to be fair to all requirements, as well. In the research field of game theory, the

problem of choosing one single point of the Pareto-optimal set is known as the

bargaining problem or bargaining game.

According to (Hart u. Mas-Colell, 1997), usually two special classes of games

are distinguished in the field of cooperative games: pure bargaining games and

transferable utility games. In pure bargaining games, only the grand coalition

matters. The grand coalition is the coalition where all game participants (players)

unite. A two person bargaining game without transferable payoffs (utilities) is

often called a two person bargaining game ((Lemaire, 1991)). In any bargaining

game, a solution should satisfy Pareto-optimality, because it guarantees that there

exists no other outcome, preferred by each player in agreement. Two common

solution concepts for Nash bargaining games, compare (Holler u. Illing, 2000),

(Ehtamo u. Hämäläinen), and (Luce u. Raiffa, 1989), could be applied as decision

maker to choose a final solution from the Pareto-optimal set for control theoretic

applications. The two solution concepts are the Nash bargaining solution and the

Kalai-Smorodinski solution, which are described in detail in Subsection 2.2.3.2. All

solution concepts are presented for comprehension in the two dimensional case in

Appendix B, where the Nash bargaining solution emerge as final solution concept,

applied in this approach.
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3.5 Essential modifications in the source code of

the genetic algorithm

To obtain the Pareto-optimal set with the highest resolution, changes in the avail-

able GA had to be performed. In the original version of the GA of (Pohlheim,

2001), there is no specified method in selecting the final solution out of the Pareto-

optimal set. One abort criterion of the algorithm is the maximum number of

generations, which is used in this work. The original version collects all Pareto-

optimal points of each generation with the ordering top fitness value first. Then,

a comparison of the top cost functions of each generation is implemented, while

only the values of the first cost function are compared. This is only a temporary

solution of the genetic algorithm and therefore modifications in the code of the

genetic algorithms are necessary.

Hence, the genetic algorithm is modified in collecting all Pareto-optimal points of

each generation. The generation with the highest number of Pareto-optimal points

is chosen as final Pareto-optimal set as it is the set with the highest resolution.

After obtaining the Pareto-optimal set a final solution concept could be applied.
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Chapter 4

Game-theoretical Topological

Analysis of a

Two-input/Two-output System

In the field of game theory, information is an essential component. Hence, the

game-theoretic view of controller design in multi-loop control systems allows for the

question, how unequally distributed or incomplete information affects the selection

of the players’ strategies. Different information sets lead to different strategy

selections provided by the controllers and the belonging control laws. To study

and discuss the effects of different information sets to the solution of each game,

an asymmetric triangular multi-loop control structure is chosen as basis. The

derivation of the error equations for the different topologies, developed in this

chapter, is given in Appendix C.

4.1 Game description

The basic control structure for the multi-loop system is shown in Fig. 4.1. The

two-input/two-output system consists of two controllers C11 = Q11/P11, and C22 =

Q22/P22, and three transfer functions G11 = B11/A11, G21 = B21/A21, and G22 =

B22/A22 describing the process through polynomial equations.

The given control structure is triangular (asymmetric) in such a way that the upper

control loop act as a disturbance on the lower control loop. Thus, the control
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loops of the multi-loop system interact only in one-way. The control system design

with optimal performance concerning a reference tracking with minimum error

convergence is now implemented as a cooperative differential game.

Σ

Σ Σ

C11

C22

G11

G21

G22

r01

r02

e1 u1

y1-

y21

e2- u2 y22 y2

Figure 4.1. Triangular control structure of a TITO system.

4.1.1 The cooperative differential game

The control system design of the two-input/two-output system in Fig. 4.1 is con-

sidered as a differential game between two players i with i = 1, 2 on the time period

[t0, T ]. The strategies of the players are defined as

ui(t) =

T
∫

t0

cij(t)ei(t− τ)dτ (4.1)

with

L{cij(t)} = Cij(s) = Qij(s)/Pij(s). (4.2)

Qij and Pij with j = 1, 2 are the controller parameters of Cij in Fig. 4.1. The

strategies of the players belong to the strategy sets Ui = {ui|ui is given by (4.1)}.

The differential game can now be described as the evolution of the errors ei with

e
(n)
i = f(e

(n−1)
i , . . . , ėi, u1, u2) (4.3)

and initial condition

ei(t0) = ei0 (4.4)

as well as a cost Jcfi
with

Jcfi
= gi0(eiT ). (4.5)
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The errors ei belong to the set Ei = {ei|ei as solution of(4.3)}. Function f1 is

defined on f : R1 × U1 → R, function f2 is defined on f : R1 ×R2 × U1 × U2 → R

and function gi0 on gi0 : Ri × U1 × U2 → R.

4.1.2 Information

An essential component in the field of game theory is the information. According

to (J. Neumann, 2004), a player can make decisions (choose strategies) only de-

pendent on his available information at that time. In this chapter, the available

information is given through the control system structure.

To be able to classify the present information structure in a game, game theory

distinguishes - among others - between complete and incomplete information, see

Chapter 2. Summarizing the main facts of Subchapter 2.2.2, in a game with com-

plete information, all players know the strategy sets Ui and the costs Jcfi
at any

time. There are no private information like unknown strategies ui for player ¬i

or even unknown payoffs Jcfi
. In contrast, in a game with incomplete informa-

tion, certain properties as for example the controller parameters of a player i are

unknown to the team mates. A further distinction is done with symmetric and

asymmetric incomplete information, where all players do not know a parameter,

and asymmetric incomplete information, where only some of the team mates do

not know this parameter.

Many games are characterized through unequally distributed or incomplete infor-

mation. This is exactly the case which is given in the triangular control structure

of Fig. 4.1. In this structure, player 1, that is the controller of the upper control

loop C11 which operates with his own information, is the control law of the upper

control loop and the parameters of controller C11. In contrast, player 2, that is

the controller of the lower control loop C22 has information about his own control

law and the parameters of controller C22 as well as information about player 1, in-

dicated by the information flow from player 1’s control signal u1 over the transfer

function of G21 to the output signal y22 of player 2.

In the following, different possible information structures and thus different control

system design games with different control structures are implemented to be able
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to study their effects on the control system behavior.

4.2 Games with different information

Five reasonable and different games are described in this section, where the basic

control structure of Fig. 4.1 is used as basis structure for comparison. The second,

third and fourth controller structures are modified in such a way that the control

system contains different control laws, leading to different information sets of the

players.

A further differential game is considered here, which is not mentioned previously

in this work, where the order of decision making or strategy selection is consid-

ered. The strategies of the players are, among others, dependent on the controller

parameters Qij and Pij. In this game, the controller parameters Qij and Pij are

not tuned, according to a multiple parameter optimization at the same time. In

contrast, the controller parameters Qij and Pij of the leader (player i) are opti-

mized first. Dependent on the parameter set Qij and Pij, the parameters Q¬ij and

P¬ij of the other player ¬i are optimized. In the previous approach of the control

system design, the author considered the parameter optimization at the same time.

In contrast, the basic control structure studied in this part allows the additional

consideration of a leader-follower game, which is also known in the literature as

Stackelberg game.

The forthcoming descriptions of the varying games are restricted through those

components which distinguish the games from each other. These components are

the information sets of both players containing the error signals Ei(s), with steps

(1/s) as references Ri, needed for the calculation of the cost functions Jcfi
.

For shortage of space, the polynomials Aij(s), Bij(s), Pij(s), Qij(s), Ei(s) and

Ri(s) are abbreviated in the following as Aij, Bij , Pij , Qij , Ei, and Ri.

4.2.1 Game I - the basic game

The first game (GI) is played based on the given control structure in Fig. 4.1.

The information set of player 1 consists of the error signal E1, dependent on the

controller parameter set Q11 and P11, and the control law of the upper control loop.
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In contrast, the information set of player 2 includes his own control law, and his

controller parameter sets Q22 and P22 as well as the control law, and the controller

parameters Q11 and P11 of player 1. According to the expressions of Section 4.1.2,

the information structure of game I is incomplete and asymmetric.

To obtain a fast reference tracking with low deviation, the required error functions

E1 and E2 of game I are formulated as:

E1 =
A11P11R1

A11P11 +B11Q11
(4.6)

for the first player, and

E2 =
A21A22P22(A11P11 +B11Q11)R2 − B21Q11A11A22P22R1

A21(A11P11 +B11Q11)(A22P22 +B22Q22)
(4.7)

for the second player.

As a result, the cost function Jcf1 for player I contains only elements of the upper

control loop while the cost function Jcf2 of the second player consists of elements

of the lower control loop as well as elements of the upper control loop of player I.

4.2.2 Game II - a game with forward information flow

In the game with a forward information flow, no modifications on the information

sets of both players are made. Only an additional controller is inserted to be able to

add the error signal E1 of the first player to the control signal U2 of the second one

as displayed in Fig. 4.2. Hence, player 2 gets information about player 1′s input

earlier. This makes it possible for him to react earlier on potential disturbances.

The additional controller C21, together with controller C22, represents the second

player, choosing the strategy u2. The error functions E1, and E2 of game II (GII)

are

E1 =
A11P11R1

A11P11 +B11Q11

(4.8)
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Figure 4.2. Control structure of game II and game III.

for the first player, and

E2 =
(A11P11 +B11Q11)A21A22P21P22R2

A21P21(A22P22 +B22Q22)(A11P11 +B11Q11)

−
(B21Q11A22P21 +B22Q21A21P11)A11P22R1

A21P21(A22P22 +B22Q22)(A11P11 +B11Q11)
(4.9)

for the second player.

Like in the game before, the cost function Jcf1 for player 1 contains only elements of

the upper control loop while the cost function Jcf2 of the second player consists of

elements included in the lower control loop as well as elements of the upper control

loop of player 1. There is no modification on the information sets for player 1 or

player 2.

4.2.3 Game III - a game with a decoupler

Game III (GIII) plays with the same control structure as game II, displayed in

Fig. 4.2 with the distinction that controller C21 now acts as a decoupler with

C21 = −
G21

G11

= −
B21A11

A21B11

(4.10)

to reformulate

G =

[

G11 0

G21 G22

]

(4.11)
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as

G∗ =

[

1 0

C21 1

]

·

[

G11 0

G21 G22

]

=

[

G1 0

0 G2

]

. (4.12)

The intention of a decoupler is to mathematically eliminate the effect of interactions

in transforming the process matrix into a diagonal matrix using a transfer matrix.

Hence, no parameters has to be tuned for this controller C21 and the error signals

E1 and E2 are formulated like (4.8) and (4.9), except that Q21 = −B21A11 and

P21 = A21B11.

However, this approach is limited through basics of control theory. The decoupling

method could translate zeros to poles and unstable decoupling elements may result.

4.2.4 Game IV - a game with complete information

The most interesting game in the perspective of game theory is the game (GIV)

where a modification of one information set is made. Thus, an additional controller

C12 is added to the structure, see Fig. 4.3, adding the error signal E2 of the second

player to the control signal U1 of player 1.

Σ

Σ Σ

ΣC11

C12

C22

G11

G21

G22

r01

r02

e1

u2

y1-

y21

e2-

u11 u1

y22 y2

u12

Figure 4.3. Control structure of game IV.

Player 1 extends its information set with the control law and the controller

parameters Q22 and P22 of player 2, while the information set for the second player

remains unchanged. The information structure is changed resulting in a game

with complete information. All three controllers C11, C12, and C22 are tuned while

minimizing the cost functions Jcfi
of both players. The corresponding error signals
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E1 and E2 needed to calculate the costs for a satisfying reference tracking are

E1 =
(A21P12A22P22 +B21Q12A22P22 +B22Q22A21P12)A11P11R1

T

−
B11Q12P11A21A22P22R2

T

(4.13)

and

E2 =
(A11P11 +B11Q11)A21P12A22P22R2

T

−
B21Q11A11P12A22P22R1

T

(4.14)

with T = (A11P11 + B11Q11)(A21P12A22P22 + B21Q12A22P22 + B22Q22A21P12) −

B11Q12B21Q11A22P22.

Considering the elements of the error functions E1 and E2 in (4.13) and (4.14),

one can conclude that there exist an analogy to the information sets of the players.

Equations (4.13), and (4.14) both contain elements, or information, of the other

players.

4.2.5 Game V - a Stackelberg game

According to (Basar u. Olsder, 1999), games, in which one player, called the leader,

declares his strategy first and enforces it on the other player, called the follower,

is called a Stackelberg game.

As in the given basic triangular control structure of Fig. 4.1 there is only one

connection from player 1 to player 2, while player 2 has no effect on the control

loop of player 1 at all. This leads to the idea that player 1 can be treated as a

leader and player 2 as a follower in a Stackelberg game. The main advantage of

this approach is that no trade off has to be met.

Player 1 minimizes his cost Jcf1 while choosing an optimal parameter set Q11

and P11. Under consideration of the resulting strategy u1, player 2 chooses his

parameter set Q22 and P22 depending on the minimization of his cost and the use

of the leader’s strategy u1, including the parameter set Q11 and P11. Concerning

game V (GV), the corresponding error functions E1 and E2 are evaluated as in

(4.6) and (4.7) but with the attention of the order in decision making.
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Chapter 5

Case Study 1: A

Two-input/Two-output

Differential Game

The application of a reverse osmosis (RO) desalination plant is used as an example

of a MIMO system, with a 2× 2 control structure. This application is chosen due

to the only one-way interaction existing in the system. Using such a triangular

control system structure, one control loop is unaffected, while the second is dis-

turbed through the first mentioned. Applying the proposed method to a one-way

interacting control system is advantageous for the study of the control behavior

improvement, compared to conventional tuning methods. The advantage is, that

the second control loop is only disturbed by the first one and not through itself as

it is the case in a cross coupling system. The application of the developed approach

on a 2 × 2 cross coupled system as well as a cascade control system structure is

shown in App. A.

For the continuous implementation of the reverse osmosis system, the requirements

are set on a fast reference tracking with low deviation and low control effort in both

control loops. Additionally, in a second release, the robustness of the system is

studied.
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5.1 Multi-loop control system design for MIMO

systems: The Reverse Osmosis Desalination

Plant

5.1.1 Example Description

The ultimate ambition of a RO desalination process is producing a constant quan-

tity of water with an acceptable purity. In this context, several papers were pub-

lished, for example (Assef u. a., 1995), (Riverol u. Pilipovik, 2005), (Gambier

u. a., 2006) and (Robertson u. a., 1996), where RO system identification is con-

sidered as a two-input/two-output (TITO) system. The two input variables are

the transmembrane pressure (P ) and the feed pH (pH), whereas the controlled

output variables are the permeate flux (F ) and the permeate conductivity (C).

The system interaction can be written as

[

F

C

]

=

[

Gp11 Gp12

Gp21 Gp22

][

P

pH

]

, (5.1)

belonging to the control structure of Fig. 5.1.

The control structure of Fig. 5.1 consists of two controllers C1 and C2 and four

Σ

Σ Σ

ΣC1

C2

G11

G21

G22

G12

r01

r02

e1 u1 y11

y1 Permeate

flux

-

y21

y12

e2- u2 y22 y2

Permeate

conductivity

Figure 5.1. Control structure of the RO desalination process.

process transfer functions G11, G12, G21 and G22. The sum of the process transfer

functions G11 and G12 provides the permeate flux, while the sum of the process
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transfer functions G21 and G22 forms the permeate conductivity.

The process transfer functions, used in this work are chosen from (Robertson u. a.,

1996), relating the inputs to the outputs as follows:

F

P
= Gp11 =

B11

A11
=

0.002(0.056s+ 1)

(0.003s2 + 0.1s+ 1)
(5.2)

F

pH
= Gp12 =

B12

A12
= 0 (5.3)

C

P
= Gp21 =

B21

A21
=

−0.51(0.35s+ 1)

(0.213s2 + 0.7s+ 1)
(5.4)

C

pH
= Gp22 =

B22

A22

=
−57(0.32s+ 1)

(0.6s2 + 1.8s+ 1)
(5.5)

In words, a change in the transmembrane pressure (P ) effects the permeate flux as

well as causing a negative effect on the permeate conductivity (C). Changing the

pH has no effect on the permeate flux (F ), due to (5.3), but it causes a negative

effect in the permeate conductivity (C).

The control structure reflects the triangular (asymmetric) dependency in such a

way that the upper control loop acts as a disturbance on the lower control loop.

Thus, the control loops of the multi-loop system interact only one-way, compare

section 4, Fig. 4.1.

The operating point of the desalination plant is given in Table 5.1.

The control system design with optimal performance concerning the reference

Table 5.1. Operating point of the RO desalination process.

Variable Linear range
Flux [gpm] 0.85-1.25

Pressure [psi] 800-1000
Conductivity [µS/cm] 400-450

pH 6-7

tracking and the control effort is now implemented using the proposed game-

theoretic approach.
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5.2 Multi-loop control system design for the con-

tinuous reverse osmosis desalination system

For the continuous implementation of a MIMO reverse osmosis process, the game-

theoretic approach is applied. It is composed of a game description, a cost function

set up, description of the course of the game and the final solution selection.

5.2.0.1 Game description

The differential game description of the reverse osmosis plant is modelled by the

coprime rational expressions

Y11(s)

U1(s)
= G11(s) =

B11(s)

A11(s)
(5.6)

Y12(s)

U2(s)
= G12(s) =

B12(s)

A12(s)
, (5.7)

Y21(s)

U1(s)
= G21(s) =

B21(s)

A21(s)
, (5.8)

and
Y22(s)

U2(s)
= G22(s) =

B22(s)

A22(s)
. (5.9)

The control laws of both control loops are given by

U1(s) = C1(s)E1(s) =
Q1(s)

P1(s)
E1(s) (5.10)

and

U2(s) = C2(s)E2(s) =
Q2(s)

P2(s)
E2(s). (5.11)

The polynomial descriptions of the PI controllers C1 and C2 with proportional

parameters KP1
, KP2

and integral parameters KT1
, KT2

are

C1 =
Q1

P1

=
KP1

s+KP1
/KT1

s
(5.12)

and

C2 =
Q2

P2
=
KP2

s+KP2
/KT2

s
. (5.13)
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The control system design of the TITO system in Fig. 5.1 is considered as a

differential game between two players on the time period [0,∞].

The strategies of the players are defined as

u1(t) =

∞
∫

0

c1(t)e1(t− τ)dτ (5.14)

and

u2(t) =

∞
∫

0

c2(t)e2(t− τ)dτ (5.15)

with

L{c1(t)} = C1(s) =
Q1

P1
=
KP1

s+KP1
/KTI1

s
(5.16)

and

L{c2(t)} = C2(s) =
Q2

P2
=
KP2

s+KP2
/KTI2

s
. (5.17)

Q1 and Q2 are polynomials and contain the proportional and integral controller

parameters of C1 and C2. The strategies ui of the players belong to the strategy

sets Ui = {ui|ui is given by (5.14) and (5.15)}.

The differential game is now described as the evolution of the errors ei with

e
(6)
1 (t) = f(e

(5)
1 (t), e

(4)
1 (t), e

(3)
1 (t), ë1(t), ė1(t), u1, u2), (5.18)

and

e
(6)
2 (t) = f(e

(5)
2 (t), e

(4)
2 (t), e

(3)
2 (t), ë2(t), ė2(t), u1, u2) (5.19)

and the initial conditions e1(0) = e10 and e2(0) = e20. The errors e1 and e2 belong

to the setsE1 = {e1|e1 as solution of (5.18)} and E2 = {e2|e2 as solution of (5.19)},

respectively.

Function f1 is defined on f1 : R1 × U1 → R
+ and f2 : R1 ×R2 × U1 × U2 → R

+.

In the first release of the control system design for the reverse osmosis system,

the specifications are set on a fast reference tracking with low deviation and low

control effort, described, in detail, in the upcoming subsection.
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5.2.1 Multi-loop control system design subject to a fast

reference tracking with low deviation and low control

effort

5.2.1.1 Cost function and constraint set up

The requirements on a satisfying reference tracking is implemented using the ap-

propriate cost functions, proposed in Section 3.2.1 for the Integral Square Error

(ISE) in (3.23).

According to Section 3.2.2, the requirement on a low control effort is realized - for

comparison - in four different ways:

(A) Add on to existing cost functions (3.23) using a Lagrangian multiplier λ.

The addition of the control constraints to the cost function implementations,

concerning the reference reaction using a Lagrangian multiplier provides cost

functions as formulated in (3.27).

(B) Control effort as cost function implementation. The requirement on low con-

trol effort is implemented in considering the square of the control signals

derivative separately. This formulates the requirement as single cost func-

tions.

(C) Explicit control constraints implementation. Since every control signal can-

not be followed by the physical system, the control signals ui(t) of the plant

are limited around the operating point in a predefined range of ±Li:

|u1(t)| ≤ L1 and |u2(t)| ≤ L2. (5.20)

These constraints are kept during the course of the game with the present

challenge to optimize (3.23) subject to (5.20).

(D) Explicit control constraints as cost function implementation. Additionally,

the idea is to keep the deviation of the control signals to the linearization

point as small as possible. To obtain the smallest possible control signal

deviation, the distance between the control signals u1(t), u2(t) and the limits
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±L1, ±L2 should be as large as possible. Also, these constraints can be

reformulated as

max(L1 − |u1(t)|) (5.21)

and

max(L2 − |u2(t)|). (5.22)

Since every objective function is minimized in this work, (5.21) and (5.22)

are rewritten as objective functions Ju1, Ju2 for the control signals as

Ju1 = −(L1 − |u1(t)|), (5.23)

and

Ju2 = −(L2 − |u2(t)|). (5.24)

In this case each player has to satisfy two objective functions, and the chal-

lenge is now, to optimize (3.23) as well as (5.23) and (5.24) simultaneously.

Derived from the control structure of Fig. 5.1, the plant model of (5.2)-(5.5) and

the control law given by (5.14) and (5.15), the transfer function for the control

signal E1(s) of the first loop is given as

E1(s) =
A11P1

A11P1 +B11Q1
R1. (5.25)

The corresponding control signal U1(s) is formulated as

U1(s) =
Q1A11

A11P1 +B11Q1
R1(s). (5.26)

For the second control loop, the error signal E2(s) and the control signal U2(s) is

E2(s) =
A22P22

A22P2 +B22Q2
R2

−
B21Q1A11A22P2

A21(A11P1 +B11Q1)(A22P2 +B22Q2)
R1

(5.27)
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and

U2(s) =
Q1A22

A22P2 +B22Q2

R2

−
Q2B21Q1A11A22

(A11P1 +B11Q1)(A22P2 +B22Q2)
R1,

(5.28)

respectively.

Concerning a satisfying reference tracking, equations (5.25) and (5.27) are used to

calculate the objective functions for the control error signals Je1 and Je2 of (3.23).

Considering the requirement on low control effort, the four different implementa-

tions are studied. For the cost functions derivative the relation u̇(t) d tsU(s) is

applied.

5.2.1.2 A) Control effort added to existing cost functions

In the first implementation of a low control error demand, equation (3.27) is applied

as cost function for each player.

Obtaining the Pareto-optimal set and the final solution

An abstract of the chosen GA parameter settings is listed in Table 5.2. The

genetic algorithm operates with 100 generations and 4 chromosomes, representing

the controller parameters, two for each controller. Two subpopulations with 100

individuals each are chosen and the number of cost functions is 2.
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Table 5.2. Algorithms and parameters for the MOO.

Evolutionary algorithm Values

Number of generations 100
Number of chromosomes 4
Subpopulations 2
Individuals (at start per subpopulation) 100 100
Number of objective functions 2
Selection Stochastic universal sampling

pressure 2.1
gen. gap 0.9

Reinsertion Local reinsertion
rate 1

Recombination Discrete recombination
rate 1

Mutation Real valued mutation
rate 1
range 0.1

Using the proposed approach, controllers are designed, where the parameter

vector χχχA for the players is of the form

χχχA = [KP1, KI1, KP2, KI2] , (5.29)

with KIi = KPi/KT i, providing the four chromosomes for the GA.

The controller parameters for a reference case are tuned according to a modified

Ziegler-Nichols method given in (Robertson u. a., 1996) and are listed in Table 5.3.

Table 5.3. PI controller parameters using the modified Ziegler-Nichols tuning method.
Controller i KPi KT i

C1 536 0.23
C2 -0.05 1.81

The range for the tuning parameters is kept around the parameters of the
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reference case, see Table 5.4, and is set to

1 ≤ KP1 ≤ 1000

1 ≤ KI1 ≤ 10000

−10 ≤ KP2 ≤ −0.001

−10 ≤ KI2 ≤ −0.001.

(5.30)

The negative parameters of the second controller are justified through the negative

transfer function G22, which is applied on the lower control loop. As both param-

eters KP2 and KI2 are negative, the resulting reset time KT2 is positive.

To study the influence of the Lagrangian multiplier λi, three different settings for

λi are implemented. First, λi = 1 with complete control effort consideration, sec-

ond, λi = 0.25 with only few control effort consideration and third, λi = 0 with no

control effort consideration during the control system design. The ISE cost func-

tion implementations is applied and the controller parameters are obtained using

the Nash bargaining solution concept. The corresponding controller parameters

are listed in Tab.5.4.

Concerning the number of non dominated solutions, their quantity increases as

Table 5.4. A) Controller parameters KP1, KI1, KP2 and KI2 for the continuous re-
verse osmosis system according to low control effort, which is added to cost functions
concerning the reference tracking.

case KP1 KI1 KP2 KI2 # nondom
RefCase 536 2330.435 −0.05 −0.028 −

λi = 1 1.3902 137.7051 −2.8243 −8.8546 13
λi = 0.25 1 1416.4 −1.783 −10 12
λi = 0 189.1545 9875 −10 −9.9941 88

λi gets closer to or equal to zero.

The obtained parameters for the different games vary within the predefined range

of (5.30).
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Simulation results

The operating point of the plant is given by a permeate flux of 0.85 gpm (0.2m3/h)

and a conductivity of 400 µS/cm. Fig. 5.2 shows the response of a 0.4 gpm step

change to 1.25 gpm (0.3m2/h) in the set point of the permeate flux.

Considering the step responses of the permeate flux the step responses for λi = 0
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Figure 5.2. A) Output responses to a change in the set point of the permeate flux
according to low control effort, which is added to cost functions concerning the reference
tracking.

shows faster set point convergence compared to the reference case but with over-

shoot. Concerning the corresponding step responses for λi = 1 and λi = 0.25, the

set point convergences are slower and respectively equal in their behavior, com-
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pared to the reference case. The faster reference tracking for λi = 1 compared to

λi = 0.25 is explainable with their size of the solution sets. As given in Tab.5.4,

the number of Pareto-optimal points for λi = 1 is 13 and for λi = 0.25 it is 12. So

both solution sets does not have such a high resolution than λi = 0 with 88 non

dominated solutions. Applying the final solution concept on such small solution

sets could result in a better performance for games that should show a slower set

point convergence and larger control signals.

The step responses of the conductivity according to a change in the set point of

the flux are shown in the subplot b) in Fig. 5.2. The caused disturbance in the

conductivity of the reference case is immense. It is about 10% of the set point

and around 9minutes are required for it’s compensation. These disturbances are

incommensurated to those of the reference case. The step responses of the game-

theoretic controller tuning method show only small disturbances, compared to the

reference case and independent of the value for λi.

Fig. 5.3 shows, that a change in the conductivity set point, from 400 µS/cm to

410 µS/cm, has no influence on the flux due to the triangular structure. Concern-

ing the conductivity, all cases, except the reference case of (Robertson u. a., 1996)

shows a fast set point convergence response with fast rise time and only small

overshoot.

For all values of λi, the corresponding error signals and control signals are dis-

played in Fig. 5.4 and Fig. 5.5, respectively.

The subplots a) and b) of Fig. 5.4 show the error signals e1 and e2 as a result of a

step in the permeate flux. Comparable with the plots in Fig. 5.3, the reference case

shows the largest error in subplot b). While the error size of e1 is about 0.4 gpm

(which is equal to the step size and the largest error for λi = 0).

The subplots c) and d) of Fig. 5.4 show the error signals due to a step in the con-

ductivity with no effect in e1 as a result of the triangular structure. Concerning e2,

the reference case needs about 9 minutes for the error convergence, and the others

converge within the first minute.

Concerning the control signals in Fig. 5.5, subplots a) and b) show the corre-

sponding control signals to a step in the permeate flux, and subplots c) and d)

show the corresponding control signals to a step in the conductivity. Considering

u1 in subplot a), the amplitudes are of comparable size, as the control signal moves
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Figure 5.3. A) Output responses to a change in the set point of the conductivity
according to low control effort. This is added to cost functions concerning the reference
tracking.

from 800 psi to 1000 psi and all displayed control signals moves within this range.

Except for λi = 0 a small overshoot is given in u1. In contrast, in subplots b) and

d), the influence of the value of λi is visible: for λi = 0, the corresponding ampli-

tudes are larger (up to five times) than for λi 6= 0, while the reference case shows

the smallest amplitudes. In fact, for a step of 10 µS/cm in the conductivity, the

control signal u2 moves from 6pH to 5.83 pH. A step of 0.4 gpm in the flux causes

a change in the control signal u2 from 6pH to 4.21 pH. This is to compensate for

the caused error in conductivity.
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Figure 5.4. A) Error signals for the ISE implementation with varying λi according to
a set point change in the permeate flux (subplots a) and b)) and a set point change in
the permeate conductivity (subplots c) and d)).
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Figure 5.5. A) Control signals for the ISE implementation with varying λi according
to a set point change in the permeate flux (subplots a) and b)) and a set point change
in the permeate conductivity (subplots c) and d)).
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5.2.1.3 B) Control effort as cost function implementation

For the implementation of two additional cost functions, the genetic algorithm

operates with 100 generations and 4 chromosomes, two for each controller. Two

subpopulations with 100 individuals each are chosen, and the number of cost func-

tions is changed to 4.

Obtaining the Pareto-optimal set and the final solution

Using the proposed approach, controllers are designed. The parameter vector χχχB

for the players is of the form

χχχB = [KP1, KI1, KP2, KI2] , (5.31)

with KIi = KPi/KT i, providing the four chromosomes for the GA. The corre-

sponding ranges are set according to (5.30). Again, three different cost function

implementations are studied.

The Nash bargaining solutions, providing the respective controller parameter sets,

are listed in Table 5.5.

Table 5.5. B) Controller parameters KP1, KI1, KP2 and KI2 for the continuous reverse
osmosis system according to the reference tracking and low control effort, formalized as
cost functions.

case KP1 KI1 KP2 KI2 # nondom
RefCase 536 2330.435 −0.05 −0.028 −
ISE 110.7332 9865.2 −2.4053 −9.8672 180

Simulation results

The step sizes are chosen comparable to section 5.2.1.2. The appropriate simula-

tion results to a step in the flux are shown in Fig. 5.6. The step responses for the

ISE converge faster to the set point in comparison to the reference case. Again,

the introduced error in the control loop for the conductivity is of larger size for the

reference case, compared to the game-theoretic solution. Concerning the subplots

displaying the control signals, the ISE implementation shows overshoots in u1 and

the reference case shows overshoot in u2.
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Figure 5.6. B) Responses to a change of 0.4 gpm in the permeate flux according to the
reference tracking and low control effort, formalized as cost functions.

In Fig. 5.7, the simulation results are shown as result of a step in the conductiv-

ity. Once again, with no effects in the components of the upper control loop. The

error convergence of the second control loop (compare the subplots for the conduc-

tivity and e2) behave faster than the reference case. Meanwhile, the corresponding

control signal u2 shows more overshoot than the reference case.
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Figure 5.7. B) Response to a change of 10 µS in the conductivity according to the
reference tracking and low control effort, formalized as cost functions.
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5.2.1.4 C) Explicit control constraints implementation

In the third implementation, explicit constraints L1 and L2 for the RO desalination

process are required. Different constraints L1 and L2 on the controls u1(t) and

u2(t) of the RO process are assigned in the subsequent section. The settings of the

genetic algorithm remains, except the number of cost functions is changed to 2.

Obtaining the Pareto-optimal set and the final solution

Using the proposed approach, controllers are designed. The parameter vector χχχC

for the players is of the form

χχχC = [KP1, KI1, KP2, KI2] , (5.32)

with KIi = KPi/KT i, providing the four chromosomes for the GA. Once more,

the corresponding ranges are set according to (5.30), and the ISE cost function

implementations are applied. The implemented constraints on the control signals

accept an overshoot on the control signals of 10%, 5% and 1%, according to a

step change in the set points.

The corresponding Nash bargaining solutions, providing the respective controller

parameter sets, are listed in Table 5.6.

Table 5.6. C) Controller parameters KP1, KI1, KP2 and KI2 for the continuous reverse
osmosis system according to explicit control constraints.

case overshoot KP1 KI1 KP2 KI2 # nondom
RefCase 536 2330.435 −0.05 −0.028 −
ISE

10 % 114.1680 10000 −10 −10 80
5 % 226.3851 3626.7 −10 −9.8779 39
1 % 288.8275 1166.4 −9.9922 −9.7285 28

Studying Table 5.6, it is noticeable that, the constraints on the control signals

has effects on the number of non dominated points. The number of non dominated

points decrease the smaller, and the permitted amplitudes of the control efforts

are chosen.

83



Simulation results

Again, the step sizes are chosen as in section 5.2.1.2. The step responses of the

permeate flux and the permeate conductivity to a step in the flux are displayed

in Fig. 5.8. The response of the flux, accepting only 1% overshoot in the control

signals show slowlier set point convergence compared to the reference case. The

others are faster. Accepting a 10% overshoot in the control signals even generates

an overshoot in the flux response before set point convergence.

The step responses of the flux and the conductivity to a change in the set point
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Figure 5.8. C) Output responses to a set point change of 0.4 gpm in the permeate flux
according to explicit control constraints.

of the permeate conductivity are displayed in Fig. 5.9. This figure shows that
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all cases reach the set point within the first few seconds and independent of the

accepted overshoots in the control signals.

The corresponding error signals and control signals for the ISE implementation
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Figure 5.9. C) Output response to a set point change of 10 µS in the conductivity
according to explicit control constraints.

to a step of 0.4 gpm in the permeate flux are shown in Fig. 5.10, respectively.

Concerning the error signal e1 in subplot a) of Fig. 5.10, the error convergence

depends on the control constraints: the smaller the limits, the slowlier the error

convergence. The control signals u1 and u2 in subplots c) and d) show similar

behavior in relation to the explicit constraints. If less control effort is required

through the constraints, the control signals need more time to reach the set point,
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Figure 5.10. C) Responses of the error signals and control signals to a change in the
flux.

but the requirement on lower control effort is met.

The presentation of the error and control signals, according to a step in the con-

ductivity is left out in this context, due to no real new results, compared to the

control effort implementations in cases A) and B).
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5.2.1.5 D) Explicit control constraints as cost function implementation

For the set up of cost functions considering explicit constraints, the genetic algo-

rithm settings are changed only in the number of cost functions to 4.

Obtaining the Pareto-optimal set and the final solution

Using the proposed approach, controllers are designed. The parameter vector χχχD

for the players is of the form

χχχD = [KP1, KI1, KP2, KI2] , (5.33)

with KIi = KPi/KT i, providing the four chromosomes for the GA. Even for case

D), the corresponding ranges are set according to (5.30) and the ISE cost function

implementations are applied. The implemented constraints of subsection C) are

reformulated as cost functions, see (3.35).

The corresponding Nash bargaining solutions, providing the respective controller

parameter sets, are listed in Table 5.7.

The statement about the dependence of the number of non dominated points and

Table 5.7. D) Controller parameters KP1, KI1, KP2 and KI2 for the continuous reverse
osmosis system according to explicit control constraints, formulated as cost functions.

cf case KP1 KI1 KP2 KI2 # nondom
(Ref.case) 536 2330.435 −0.05 −0.028 −

ISE
10 % 411.8714 1467.5 −10 −10 170
5 % 385.8663 1386.1 −9.666 −9.875 154
1 % 409.7757 1088.3 −9.2405 −7.9119 71

the explicit constraints on the control signals is met in this case also: the lower the

control effort is required, the lower number of non dominated points is obtained in

the Pareto-optimal set.

Simulation results

Again, the step sizes are chosen as in section 5.2.1.2. According to a step of

0.4 gpm in the set point of the flux, the corresponding output responses are dis-

played in Fig. 5.11. Concerning the responses of the permeate flux, the responses
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of the reference case shows the fastest rise time as well as the fastest set point

convergence, compared to all other cases. Once again, due to the triangular con-

trol system structure and the not suitable tuning method of the reference case,

the corresponding responses concerning the conductivity shows the worst behavior

with largest amplitude.

A step in the set point of 10 µS/cm in the conductivity is shown in Fig. 5.12. In-
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Figure 5.11. D) Response to a change in the flux according to explicit control con-
straints, formulated as cost functions.

dependent of the constraints, the set point in the conductivity is met very fast,

compared to the reference case.

The appropriate error signals and control signals for the ISE cost function im-
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Figure 5.12. D) Response to a change in the conductivity according to explicit control
constraints, formulated as cost functions.

plementation, according to a step in the permeate flux, are shown in Fig. 5.13.

Equivalent to the statements concerning the outputs in Fig. 5.11, the reference

case shows the fastest error convergence in e1 and the largest error amplitude in

e2. The constraints on the control signals are kept, while several amplitudes do not

differ that much as in Fig. 5.10, due to the respective cost function minimization.

The presentation of the error and control signals, according to a step in the con-

ductivity is left out in this context, due to no real new results, compared to the

control effort implementations in cases A) and B).
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Figure 5.13. D) Response of the error signals and control signals to a change in the
flux.

A performance evaluation of the different implementations on a low control

effort and a conclusion related to a performance index is given in Chapter 8.
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5.2.2 Multi-loop control system design including a robust

stability requirement

In the second release, the specifications on the reverse osmosis system are set on a

fast reference tracking with low deviation, low control effort, and robust stability

of the whole system.

5.2.2.1 Cost function and constraint set up

The requirements on low control effort are realized through constraints, and main-

tained during the course of the game. In this part, only the ISE is transformed as

a cost function for a satisfying reference tracking, with

Jec1 =

∞
∫

0

e21(t)dt =
1

2πj

j∞
∫

−j∞

E1(s)E1(−s)ds (5.34)

and

Jec2 =

∞
∫

0

e22(t)dt =
1

2πj

j∞
∫

−j∞

E2(s)Ei(−s)ds. (5.35)

According to Subsection 5.2.1, the error signal E1(s) of the first player remain to

E1(s) =
A11P1

A11P1 +B11Q1
R1. (5.36)

For the second player, the error signal E2(s) is

E2 =
A22P2

A22P2 +B22Q2

R2

−
B21Q1A11A22P2

A21(A11P1 +B11Q1)(A22P2 +B22Q2)
R1

(5.37)

Considering the robust stability analysis during the course of the game, model-

ing the control system design, with only one cost function Jµ, for the robustness

requirement of the whole system is defined as

Jµ = µ(M). (5.38)
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The value of the robust stability cost Jµ, that has to be optimized, depends on the

players’ control strategies u1 and u2. Considering the cost Jµ in (5.38), with regard

to the solution of the game, an additional trade-off between the robust stability

and the performance of the system subject to constraints on the control effort has

to be met.

The cost function Jµ, concerning the robust stability needs a computation of Gro,

see Fig. 5.14. The structure of Gro depends on the class of uncertainty and how

the uncertainties are introduced to the control structure. In this part, only para-

metric uncertainties are considered. For multi-loop systems, particularly MIMO

systems, the consideration of parametric uncertainty is very important, since it

emerges the coupling between the uncertain transfer function elements ((Skoges-

tad u. Postlethwaite, 1996)). Thus, the parametric uncertainties are modelled as

inverse additive uncertainties, compare Fig. 5.14. To distinguish between what is

known and what is uncertain, the uncertainties ∆11,∆21, and ∆22 are pulled out

and placed inside a matrix block.

The computation of Gro, needed for the computation of the cost function Jµ is

Σ

Σ ΣΣ

Σ

ΣC11

C22

G11

G21

G22

∆11 0 0

0 ∆21 0

0 0 ∆22

r01

r02

e1

u1 Permeate

flux

-

y21

e2- u2 y22

Permeate

conductivity

Figure 5.14. Control structure of the RO process, where the uncertain blocks ∆11, ∆21

and ∆22 are pulled out and placed inside a matrix block.

done with the Matlab program sysic. This is a simple linear system interconnec-

tion program, writing the loop equations of the interconnections.
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5.2.2.2 Obtaining the Pareto-optimal set and the final solution

The genetic algorithm operates with 200 generations and 4 chromosomes, two for

each controller. Four subpopulations with 50 individuals each are chosen, and the

number of cost functions is 2.

Controllers were obtained, using the GA, where the parameter vector χχχµ for the

controllers are of the form

χχχµ = [KP1, KI1, KP2, KI2] , (5.39)

with proportional KP1, KP2 and integral KI1 = KP1/KT1, KI2 = KP2/KT2 pa-

rameters.

Obtained controller parameters are listed in Table 5.8. The parameters of games

Table 5.8. Controller and optimization parameters.
KP1 KI1 KP2 KI2

Game(A) 425 10643.626 −0.48898 −0.988
Game(B) 501.78 11661.167 −0.071875 −0.017
Game(C) 450.74 3075.661 −9.156 −354.43
Game(D) 450.77 2905.494 −1.1444 −368.33

(A) and (B) are results of (Wellenreuther u. a., 2007), where only Je1, and Je2 of

(5.34) and (5.35) were optimized subject to predefined constraints on the control

effort. In contrast, during the course of games (C) and (D), the predefined con-

straints on the control effort are adopted from games (A) and (B) and the cost Jµ

is considered, additionally.

To be able to determine a possible relationship between constraint settings on the

control effort and how robustly stable the final system is, the constraints for games

(A) and (C) were chosen to be larger (Li = 2 · uiset
) than those for games (B) and

(D) with Li = 0.1 ·uiset
subject to the uiset

, corresponding control signals ui to the

set points of yi.

5.2.2.3 Simulation Results

The operating point of the plant is given by a permeate flux of 0.85 gpm (0.2m3/h)

and a conductivity of 400 µ S/cm.
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Fig. 5.15 shows the responses for the outputs (flux and conductivity) and the

control signals (pressure and pH) of the nominal system for the different games

(A) − (D) to a change in the set point of the flux, from 0.85 gpm to 1.25 gpm, as

well as a change in the set point of the conductivity from 400 µS/cm to 430 µS/cm.

Concerning the responses of the flux (y1), games (A) and (B) already reach the set
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Figure 5.15. Responses to simultaneous step changes in the permeate flux y1 and the
conductivity y2 for games (A) − (D) of the nominal model.

point after 0.2 minutes, in contrast to games (C) and (D), reaching the set point

not until the first minute has elapsed. All responses for the conductivity (y2),

except for game (B), reach the set point within 0.4 minutes. The control signal

amplitudes for games (A) and (B) show a very similar behavior. In Fig. 5.15,

concerning the control signal amplitudes of u2 (pH), the difference between the

larger constraint settings of game (C), accepting a large negative overshoot, and

the narrower constraint setting of game (D) is related.

An incorporation of the robust stability consideration leads to a cost function Jµ,
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which is in conflict with the cost functions Jec1 and Jec2. A trade-off between all

three conflicting cost functions has to be found with respect to the solution of the

game.

Games (A) and (B) are not robustly stable at all, compared to Jµ in Table 5.9,

since this property was not considered during their optimization process. However,

games (C) and (D), whose parameters are obtained with the presented approach,

are robustly stable, but for different families of models, depending on the size of

the structured singular value µ. For larger constraint settings (game (C)), the

resulting control system is more robustly stable compared to smaller constraint

settings (game (D)). The worth of the cost, concerning Jec2 for game (C), degrades

about 40 percent compared to game (D), while it is more robustly stable. However,

the worth of the cost Jec1 for game (C) improves only 5 percent compared to game

(D).

According to (Skogestad u. Postlethwaite, 1996), stability is guaranteed for all

Table 5.9. Payoff function values obtained through the GA.

J1 J2 Jµ
Game(A) 0.0180 0.5701 2.0407
Game(B) 0.0155 15.3980 11.3822
Game(C) 0.048526 0.00057632 0.51452
Game(D) 0.051118 0.00041084 0.82884

perturbations with appropriate structure, and max σ [∆(jω)] ≤ 1/µgame. For the

single games this yields to

1

µA
≈ 0.49,

1

µB
≈ 0.088

and
1

µC
≈ 1.2065,

1

µD
≈ 1.943559.

If the admissible size of perturbation is exceeded, the stability of the system cannot

be guaranteed.
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5.2.2.4 Robust stability verification of the results

The RO model is changed in the domain of the different perturbation (uncertainty)

sizes. This is to see which parameter sets perform better for the whole family of

models, under the assumption that the perturbations are with appropriate struc-

ture. The four different perturbations are of the following size and form, where ∆

is a block-diagonal structure:

|∆1| = 0.1, |∆2| = 0.5

and

|∆3| = 1.5, |∆4| = 2.0.

The perturbed systems are simulated according to a change in the set point of the

permeate flux, and a change in the set point of the permeate conductivity, with

the same sizes as the nominal system. The effects of the perturbations are shown

for all games, but only for the second output y2, the conductivity. Due to the

triangular control structure, the system becomes unstable first in the lower control

loop concerning the conductivity if the perturbations are too large.

Fig. 5.16 shows the step responses for all games (A)-(D). Game (B), the one with

the highest cost function value concerning the robust stability, leads to an unsta-

ble closed loop system for the family of models around the nominal system and

a perturbation of ∆1. The step response of game (A) shows a larger and longer

overshoot than for the nominal system, but it is still stable.

In Fig. 5.17, the representation of game (B) was neglected, since |∆1| > |∆2|,

and therefore unstable in any case. Game (A) is getting unstable for a maximum

perturbation of size ∆2. The step responses of game (C) and (D) remain com-

paratively unchanged due to the extension of the perturbation size from ∆1 to ∆2

(compare Fig. 5.16 with Fig. 5.17).

An enlargement of the perturbation from ∆2 to ∆3 results in instability in the

step responses of game (D), as shown in Fig. 5.18. Finally, Fig. 5.19 shows, that

for a perturbation with structure and size of ∆4, larger than 1
µC

, this system is

becoming unstable as well.
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Figure 5.16. Responses to simultaneous step changes in the permeate flux y1 and the
conductivity y2 for games (A) − (D) and a perturbation of ∆1.

Comparing all games with respect to robust performance, the robust stability in-

dicator Jµ is smaller for all games with larger constraints than for games with

smaller constraints. The system with the parameters of game (C) and the larger

constraint range accepts a larger perturbation ∆ before becoming more unstable

than the system with the parameters of game (D).
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Figure 5.17. Responses to simultaneous step changes in the permeate flux y1 and the
conductivity y2 for games (A),(C) and (D) and a perturbation of ∆2.
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Figure 5.18. Responses to simultaneous step changes in the permeate flux y1 and the
conductivity y2 for games (C) and (D) and a perturbation of ∆3.
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Figure 5.19. Responses to simultaneous step changes in the permeate flux y1 and the
conductivity y2 for game (C) and a perturbation of ∆4.

99



Chapter 6

Case Study 2: A

Two-input/Two-output Difference

Game

6.1 Multi-loop control system design for the dis-

crete model of the reverse osmosis desalina-

tion system

The proposed game-theoretic framework is applied to the discrete representation

of the reverse osmosis desalination plant. The demand on a fast reference tracking

with low deviation is considered during the control system design. For the discrete

game formulation, three different cost function implementations are applied and

their results are compared.

6.1.1 Multi-loop control system design for a discrete plant

model

The triangular control structure of a multi-loop system is shown in Fig. 5.1 in

chapter 5. The controllers and the processes are described polynomial with C1 =

Q1/P1, C2 = Q2/P2, G11 = B11/A11, G21 = B21/A21 and G22 = B22/A22. It is

assumed that, the controllers C1 and C2 are PI-controllers.
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6.1.1.1 Game description

The control system design with two inputs r01(k), r02(k) and two outputs y1(k) and

y2(k) is considered as a dynamic difference game including two players, minimizing

its own cost functions. The two controllers C1 and C2 are the players, each with

the objective to satisfy the cost function. The strategies of the controllers are

defined on

u1(k) = c1(k) ∗ e1(k) (6.1)

and

u2(k) = c2(k) ∗ e2(k) (6.2)

with Z {c1(k)} = C1(z) = Q1(z)/P1(z) and Z {c2(k)} = C2(z) = Q2(z)/P2(z).

The controller parameter of C1, in Fig. 5.1, consist of Q1 with Q1 = q1iz + q0i.

The strategies of the players are part of the strategy sets U1 = {u1|u1 is given by

(6.1)} and U2 = {u2|u2 is given by (6.2)}.

The difference game is described on the time period [0,∞] as the evolution of the

errors e1, with

e1(k + 6) = f1(e1(k + 5), . . . , e1(k), u1(k)), (6.3)

and e2, with

e2(k + 6) = f2(e2(k + 5), . . . , e2(k), u1(k), u2(k)), (6.4)

initial conditions e1(0) = e10 and e2(0) = e20, as well as the costs J1, J2 with

J1 = g10(e1∞) and J2 = g20(e2∞). Function g10 is defined on g10 : R1 × U1 → R
+,

function g20 is defined on g20 : R1 × R2 × U1 × U2 → R
+.

The errors e1, e2 are defined on Ei = {e1|e1 as solution of (6.3)} and E2 =

{e2|e2 as solution of (6.4)}. The function f1 is defined on f1 : R1 × U1 → R
+ and

f2 is defined on f2 : R1 × R2 × U1 × U2 → R
+.

6.1.1.2 Cost function and constraint set up

The stability requirement is realized through constraints, which are again kept

within the course of the game. The requirements on the reference tracking is

101



implemented using cost functions. A satisfying reference tracking is achieved using

either the ISE, the ITSE or the ISTSE cost function implementation.

For example, the cost function of the controllers Je1 and Je2, concerning the error

convergence, using the ISE implementation, are formulated as

Je1 =
∞

∑

k=0

e21(k) (6.5)

and

Je2 =
∞

∑

k=0

e22(k) (6.6)

with e1(k) = r1(k) − y1(k) and e2(k) = r2(k) − y2(k). The cost functions for the

ITSE and ISTSE are given in 3.25 and 3.26.

For the controller design of the multi-loop system, the calculation of the error

signals e1 and e2 for the costs Je1 in (6.5) and Je2 in (6.6) can be derived from

Fig. 5.1, with the step reference signals r01 = z/z − 1 and r02 = z/z − 1 yielding

E1 =
A11z

A11P1 +B11Q1
(6.7)

and

E2 =
(A21A22(A11P1 +B11Q1) −B21Q11A11A22)z

A21(A11P1 +B11Q1)(A22P2 +B22Q2)
. (6.8)

6.1.2 Application implementation

The proposed method is now applied on a reverse osmosis desalination plant as a

discrete cooperative game, with two players and the triangular structure of Fig. 5.1.

The system interaction of (5.2)-(5.5) can be rewritten for the discrete case with a

sample time of T0 = 0.2 as

G11(z) =
0.002013z − 2.225 · 10−5

z2 − 0.005708z + 0.001273
, (6.9)

G21(z) =
−0.1574z + 0.08829

z2 − 1.383z + 0.5183
(6.10)

and

G22(z) =
−6.084z + 3.242

z2 − 1.499z + 0.5488
. (6.11)
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6.1.2.1 Obtaining the Pareto-optimal set and the final solution

The two-player game between the controllers is played with the objective functions

Jei
. For this example, the genetic algorithm operates with 200 generations and 4

chromosomes, two for each controller. Two subpopulations with 50 individuals

each are chosen, and the number of objective functions is 2. Using the proposed

approach, controllers are designed, where the parameter vector χχχdisc for the players

is of the form

χχχdisc = [q11, q01, q12, q02] , (6.12)

with Qi = q1iz + q0i, providing the four chromosomes for the GA.

The range for the parameters is set to

400 ≤ q11 ≤ 600

−100 ≤ q01 ≤ −1

−0.5 ≤ q12 ≤ −0.01

0.01 ≤ q02 ≤ 1

(6.13)

Moreover, the controller parameters have to satisfy the constraints

[

−1 0

−1 1

] [

q1i

q0i

]

< 0 (6.14)

for the PI controller, in order to show PI behaviour. This is implicitly given

through the specified parameter ranges.

Obtained controllers are given in Tab. 6.1. The number of non dominated values

decrease from ISE to ITSE to the ISTSE implementation. Whereas, the values for

the controller parameters are in equal ranges for all three implementations.

Table 6.1. Controller parameters q11, q01, q12 and q02 for the discrete reverse osmosis
system.

case q11 q01 q12 q02 # nondom
ISE 463.32 −3.1495 −0.31495 0.1741 42
ITSE 453.34 −2.5082 −0.33016 0.16581 37
ISTSE 478.42 −3.1656 −0.35518 0.15895 25
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6.1.2.2 Simulation Results

For comparison within the three parameter sets of the proposed controller tuning

method, a set point change of 0.4 gpm in the permeate flux is performed on the

system, first. The corresponding step responses are shown in Fig. 6.1. The step
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Figure 6.1. Responses of the permeate flux y1(k), the conductivity y2(k) and the errors
e1(k) and e2(k) for the game-theoretic designed PI-controller according to a 0.4 gpm step
in the set point of the permeate flux.

responses in subplot a) and c) for the permeate flux and it’s error show very simi-

lar behaviour for all three cost function implementations. The setpoint is reached

within the first minute. The resulting disturbance injection, in the set point of

the conductivity due to the triangular structure, shows different step responses

for the three cost function implementations in subplots b) and d). The ISTSTE

cost function implementation has the largest overshoot compared to the ones for

ISE and ITSE which themselves are very similar. The error signals in subplot d)
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converge to zero after approximately 2 minutes.

The responses of a 10 µS/cm step in the set point of the conductivity is shown in

Fig. 6.2. Since the interaction of the control structure is only one-way, no distur-
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Figure 6.2. Responses of the permeate flux y1(k), the conductivity y2(k) and the errors
e1(k) and e2(k) for the game-theoretic designed PI-controller according to a 10 µS/cm step
in the set point of the permeate conductivity.

bance of the set point change in the conductivity is affected in the flux. Regarding

the step responses in subplots b) and d) for the conductivity and its error, the

ISTSE cost function implementation shows the largest overshoot, and the step

responses for the ISE and ITSE are quite similar, again. Summarizing, indepen-

dent of the cost function implementation, the proposed controller tuning method

provides controller parameters that show acceptable controller performance of the

multi-loop control system, regarding the set point convergence. In contrast, a

preference of one of the three cost function implementations could not clearly be

given.
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Chapter 7

Case Study 3: A Topological

Analysis of different control

system structures

The theory of using the developed game-theoretic framework for a topological

analysis of a MIMO system is proposed in Chapter 4. In the present chapter,

the topological analysis should be applied on the example of the reverse osmosis

system, already used as application in Chapter 5 and Chapter 6.

7.1 Application and simulation results

To be able to compare the five different games of Section 4.2, the process transfer

functions of a reverse osmosis desalination plant are used in this work with the

appropriate basic control structure of Fig. 4.1 and the transfer functions of (5.2)-

(5.5) from (Robertson u. a., 1996).

Five different games are implemented using the genetic algorithm (GA) of (Pohlheim,

2000). To be able to concentrate the comparisons on the different games (which is

equivalent to the system structure), the requirement on the systems is focused only

on a good reference tracking in the first release. The demand on a good reference

tracking is implemented using the presented performance function ISE in (3.23).

An abstract of the chosen GA parameter settings are listed in Table 7.1. For games

I and III, the genetic algorithm operates with 100 generations and 4 chromosomes,
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Table 7.1. Algorithms and parameters for the GA.

Evolutionary algorithm Values
Number of generations 100
Number of chromosomes 4 (2)
Subpopulations 2
Individuals (at start per subpopulation) 100,100
Number of cost functions 2 (stackelberg:1)
Selection Stochastic universal sampling

pressure 2.1
gen. gap 0.9

Reinsertion Local reinsertion
rate 1

Recombination Discrete recombination
rate 1

Mutation Real valued mutation
rate 1
range 0.1

two for each controller. For games II and IV, 6 chromosomes are required, due to

three controllers. Two subpopulations with 100 individuals each are chosen and

the number of cost functions is 2. For the stackelberg game, only 2 chromosomes

are required and only one cost function is optimized in each of the two runs, one

run for the leader and one run for the follower.

7.1.1 Obtaining the Pareto-optimal set and simulation re-

sults

Pareto-optimal sets as solutions of the different games are obtained, where the

parameter vector χχχstruct of the controllers is of the form

χχχstruct = [KP11, KI11, KP12, KI12, KP21, KI21, KP22, KI22] , (7.1)

depending on the game and providing the chromosomes for the GA.

The range of the parameters are set equally for all games. For the controller
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parameters of C11 and C22 the range is set around the controller parameters of

(Robertson u. a., 1996):

1 ≤ KP11 ≤ 1000

1 ≤ KI11 ≤ 10000

−100 ≤ KP12 ≤ 100

−100 ≤ KI12 ≤ 100

−100 ≤ KP21 ≤ 100

−100 ≤ KI21 ≤ 100

−10 ≤ KP22 ≤ −0.001

−10 ≤ KI22 ≤ −0.001

(7.2)

As the controllers C12 and C21 are tuned additionally, a range for the appropriate

parameters is specified where the parameters could be positive or negative with no

additional constraints.

The final selection of a parameter set from the Pareto-optimal set is made using

the Nash-bargaining solution concept. Obtained controller parameters, using the

ISE cost function implementation, are listed in Table 7.2.

It is noticeable, that the parameter set of the stackelberg game (game V) achieves

Table 7.2. Controller and optimization parameters for the ISE cost function implemen-
tation.

GI GII GIII GIV GV
KP11 260.16 993.76 392.28 348.53 1000
KI11 9888.7 9908.2 9996.1 9854 10000
KP12 − − − 84.648 −
KI12 − − − −89.678 −
KP21 − −33.92 − − −
KI21 − −76.208 − − −
KP22 −10 −9.8755 −9.9961 −10 −10
KI22 −10 −3.6179 −9.9961 −10 −10

#nondom 83 23 76 88 −

the predefined limits in every single parameter value. Of course, the parameter set

would be different, if the limits are extended. However, the limits are chosen in

the range around the controller parameters of (Robertson u. a., 1996) and should
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be equal for every single game and additionally comparable to the previous case

studies.

The number of non dominated points, providing the Pareto-optimal front, is com-

parably equal for games I, III and IV. Due to the structure, it seems to be more

difficult for game II to obtain non dominated cost function pairs. This results in

parameter sets keeping the system stable and satisfying the requirement on a good

reference tracking.

To be able to display the dependency of the systems’ outputs and the control

structure derived from different information access from the game-theoretic view,

the step responses of the outputs are shown and discussed in the following.

In Fig. 7.1, the step responses for the outputs y1 and y2 according to a change in the

set point of the permeate flux from 0.85 gpm to 1.25 gpm (in SI units: from 232m3/h

to 341m3/h), are shown in subplot a) and b). Considering the step responses of

the flux in subplot a), all game implementations converge to the set point within

0.5minutes, except game V (after 1minute) and game IV (after 2.5minutes). Game

III shows the fastest set point convergence with no overshoot while the stackelberg

game reaches the set point with no overshoot, as well.

The caused disturbance responses in the conductivity are shown in subplot b),

where game III (with the best performance in the flux response), needs 0.5minutes

more to compensate the disturbance than the other games (which all compensate

the disturbance after 3.5minutes). The largest disturbances are caused in games

I, IV and V with a size of 0.6 µS/cm.

The corresponding responses for the outputs to a change in the set point of the

conductivity from 400 µS/cm to 410 µS/cm is shown in subplots c) and d). The set

point step in the conductivity results only in a disturbance of +0.1 gpm and -

0.03 gpm, in the flux of game IV. This is due to the control system structure, and

is compensated after 0.45minutes. In subplot d), the responses of all games show

similar and fast behavior in reaching the set point of the conductivity.
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Figure 7.1. Step responses of the systems’ outputs y1, and y2 for all games - using
the ISE cost function implementation to a) and b) a step change in the set point of
the permeate flux as well as c) and d) a step change in the set point of the permeate
conductivity.

7.1.2 Discussion

Game I and game V are working with the same cost functions only the order of the

parameter optimization is different. The amplitude responses of the figures in the

previous subsection verify this difference. Game V first satisfies the cost function

of the leader. Dependent on the result of this optimization the cost function of

the follower is then optimized. Corresponding to this order of optimization, the

step response of the flux for game V shows a faster set point convergence after a

step than the one for game I. In contrast, the step response for the conductivity

of game V converges more slowly to the set point compared to game I. Game I

tries to find a trade-off between both cost functions while game V first satisfies
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the leader’s cost function, concerning the flux, and then the one for the follower,

concerning the conductivity.

Game II and game III consist of the same control structure with an additional

controller from e1 to u22 leading to an earlier information flow. Comparing their

step responses both show similar behavior. The redundant but earlier information

flow from e1 to u22 affects the rise time of the conductivity positively, but the step

responses of the flux show a considerable overshoot of about 10% of the operating

point.

Game IV, the game with the additional information of the first player, needs only

a few time steps concerning the set point convergence with marginal overshoot in

the step responses of the flux as well as in the step responses of the conductivity.

7.2 Additional constraints on the strategy space

In a physical system with constrained controls, the control signals are limited

through a predefined size Li:

|ui| ≤ Li. (7.3)

These constraints are maintained during the game-theoretic control system design,

resulting in an optimization of (3.27).

Transferring the constraints on the control signals to game theory, they equal con-

straints on the strategy sets of the players.

The studied games in this section are games I, game II and game IV of Section 4.2.

Game III is neglected in this consideration, because of arising problems in con-

strained decoupled systems (Myerson, 1991). The present study is done without

game V, as well. Since, in this game, the order of optimization is more important

than the structure of the system itself.

The belonging game descriptions of game I, game II and game IV are adopted from

Section 4.2, additionally maintaining (7.3).
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7.2.1 Comparison of structures with constrained strategy

sets

The constrained strategy sets have different influence on the size and position of

the Pareto-optimal sets. For a detailed study, three different limits for the control

signals are set:

L1|i = 0.01 · useti (7.4)

L2|i = 0.05 · useti (7.5)

L3|i = 0.1 · useti (7.6)

The first limit L1|i for the control signals ui tolerate a deviation on a step response of

1%, L2|i a deviation of 5% and L3|i a deviation of 10% based on useti, corresponding

to the control signals ui in the operating points of yi.

The Pareto-optimal sets as solutions of the proposed games, dependent on the

constraints, are displayed in Fig. 7.2 for game I, in Fig. 7.3 for game II and in

Fig. 7.4 for game IV.

A comparison of the Pareto-optimal sets for the players with same limit Li

show, the value of the cost function is smaller, the more deviation and the larger

control signals are tolerated.

Comparing the value ranges of the cost functions, game IV has the smallest value

range for both cost functions J1 and J2. In contrast, the value ranges for the cost

functions of game I and game II take similar values for J2, but larger values, a

factor of 3, for J1.

The Pareto-optimal front is more balanced distributed, the more Pareto-optimal

points were identified, in this case: the more deviation was allowed during the

optimization. In contrast, another way to obtain more Pareto-optimal points for

only 5% or 1% deviation would be to increase the number of generations.

The Pareto-optimal sets for all games are obtained, using the genetic algorithm

parameters of Table 5.2 with 400 cost function pairs in each iteration. The param-

eters of the genetic algorithm remain unchanged for every game. The number of

non dominated cost function pairs, belonging to the Pareto-optimal set, varies with

the size of the constraints, see Table 7.3. The narrower the limits that are chosen,
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Figure 7.2. Pareto-optimal sets of game I for ISE cost function implementation with
black - indexing a 10% deviation acceptance, red - indexing a 5% deviation acceptance,
and blue - indexing a 1% deviation acceptance.

Table 7.3. Non dominated cost function pairs of the genetic algorithm.

1% deviation 5% deviation 10% deviation
Game I 28 39 80
Game II 18 17 21
Game IV 7 49 68

the smaller the number of Pareto-optimal cost function pairs, obtained with the

genetic algorithm, and the smaller the values of the single cost functions Ji. The

number of Pareto-optimal cost function pairs also varies within the different games,

influencing the distribution of the cost function pairs on the Pareto-frontier. For

example, game IV, with the largest number of non dominated points, shows the

Pareto-optimal set the most uniformly distributed.
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Figure 7.3. Pareto-optimal sets of game II for ISE cost function implementation with
black - indexing a 10% deviation acceptance, red - indexing a 5% deviation acceptance,
and blue - indexing a 1% deviation acceptance.
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Figure 7.4. Pareto-optimal sets of game IV for ISE cost function implementation with
black - indexing a 10% deviation acceptance, red - indexing a 5% deviation acceptance,
and blue - indexing a 1% deviation acceptance.
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Chapter 8

Evaluation of the results

In order to refine the visual comparison, based on figures of the previous chapters,

performance indices are calculated during the simulation to improve the study of

different cost function implementations during the control system design. Using

the performance indices, refinement factors were computed relative to a reference

ref . Which refinement factor and which reference is chosen for the comparison

depends on which system requirements were implemented as cost functions. A

refinement factor Ri < 1 means that the case (i) is better than the reference, ref .

Ri > 1 means the opposite.

8.1 Evaluation of different control effort imple-

mentations

For the performance evaluation of the results of Chapter 5.2.1, performance indices

of the form

Jpe1
=

tf
∫

0

e21(t)dt, Jpe2
=

tf
∫

0

e22(t)dt, (8.1)

and

Jpu1
=

tf
∫

0

u2
1(t)dt, Jpu2

=

tf
∫

0

u2
2(t)dt. (8.2)
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are calculated during the simulation.

The corresponding refinement factors Re1, Re2, Ru1 and Ru2 are defined as

Re1 =
Jpe1

Je1ref

, Re2 =
Jpe2

Je2ref

, (8.3)

and

Ru1 =
Jpu1

Ju1ref

, Ru2 =
Jpu2

Ju2ref

. (8.4)

Upcoming, the refinement factors of the different releases are listed in Tables.

The reference case in this subchapter is given through the tuned controller param-

eters in (Robertson u. a., 1996).

8.1.1 Evaluation of control effort added to existing cost

functions (A)

In Section 5.2.1, the weighting factor λ assumes values of 0, 0.25 and 1. The perfor-

mance indices are calculated during the simulation. The corresponding refinement

factors are listed in Table 8.1.

Table 8.1. Refinement factors for additional weighted control effort.

Ref. factor λi RefCase ISE
Re1 0 1 0.57660

0.25 1 42.79284
1 1 29.05244

Re2 0 1 0.00012
0.25 1 0.00056
1 1 0.00029

Ru1 0 1 0.19397
0.25 1 80.91593
1 1 54.50546

Ru2 0 1 22.99118
0.25 1 7.98111
1 1 7.45018

If only the error is minimized (=̂λ = 0) during the optimization process (game),

the ISE implementation provides a smaller refinement factor than the reference
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case. In contrast, if the control effort is considered during the optimization, that

means λ = 0.25 or λ = 1, additionally, this is worse than the reference case as the

value is >> 1.

The described distribution could be recognized in the sub refinement factors Re1

and Re2 as well as Ru1 and Ru2.

8.1.2 Evaluation of considering the control effort as cost

function implementation (B)

If the control effort is treated as an exclusive cost function, the cost functions,

concerning the error minimization as well as the cost function, minimizing the

control effort are treated equally. The performance indices are calculated during

the simulation, and the corresponding refinement factors are listed in Table 8.2.

Table 8.2. Refinement factors for explicit error and control effort cost functions.
Ref. factor RefCase ISE

Re1 1 0.65346
Re2 1 0.00058
Ru1 1 0.35237
Ru2 1 9.66501

Treating the control effort as cost functions, the refinement factors of the ISE

implementation are always smaller than that of those for the reference case. The

sub refinement factors reflect this fact, except for the factor of Ru2, where the

reference case shows the minimum value, but with not enough strength to influence

the final ranking.

8.1.3 Evaluation of applying explicit control constraints

(C)

The third method of optimizing the error convergence and the control effort is to

treat the control effort requirement as a constraint. Accepted deviations in the

control signals are set to 1%, 5% and 10%. The appropriate refinement factors,

depending on the different cost function implementations are listed in Table 8.3.
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Table 8.3. Refinement factors for explicit control effort constraints.
Ref. factor % deviation RefCase ISE

Re1 1 1 2.38291
5 1 1.00780
10 1 0.64561

Re2 1 1 0.00010
5 1 0.00011
10 1 0.00012

Ru1 1 1 3.40033
5 1 0.78229
10 1 0.34347

Ru2 1 1 19.14522
5 1 21.41921
10 1 22.88954

Starting the comparison with a 10% deviation acceptance in the control signals

due to a step change, the ISE cost function implementation behave much better

than the reference case, except for Ru2. The same applies for a 5% deviation ac-

ceptance.

However, the comparison of the refinement factors for an acceptance of 1% devia-

tion in the control signals shows an inverted ranking. The reference case is located

at the top as it does not meet any constraints. The ISE cost function implemen-

tation for 1% deviation performs worse compared to the reference case.

8.1.4 Evaluation of explicit control constraints as cost func-

tions (D)

In the fourth release, the constraint on the control effort is extracted and treated

as cost function. Again, accepted deviations in the control signals are set to 1%,

5% and 10%, and the appropriate refinement factors are listed in Table 8.4.

Compared to the approach in Subsection 8.1.3, the values for the refinements

factors of the ISE cost function implementation are better now for the 1% deviation

acceptance category. The refinement factors of the ISE cost function implemen-

tations are comparable for a 10% and respectively a 5% deviation acceptance in

comparison with 8.1.3 but even better than the reference case.
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Table 8.4. Refinement factors for explicit control effort constraints as cost functions.
Ref. factor % deviation RefCase ISE

Re1 1 1 2.20164
5 1 1.81974
10 1 1.68134

Re2 1 1 0.00012
5 1 0.00007
10 1 0.00011

Ru1 1 1 3.15580
5 1 2.40565
10 1 2.16582

Ru2 1 1 18.25814
5 1 10.57054
10 1 20.12482

However, for a 1% deviation acceptance, the reference case provides the smallest

factor, again.

The comparatively good results of the reference case in cases C) and D) are, be-

cause no constraints are kept in the reference case. Concerning the cost function

implementations, there is no explicit favorite, independent of the constraint ranges.

8.1.5 Partial evaluation result concerning a fast reference

tracking with low deviation and low control effort

Summarized, an explicit optimization of the cost functions for the control effort

yields to better refinement factors than that of the reference case. If the control

effort is optimized via a weighted sum, the refinement factors are of larger sizes

compared to the cases B) to D). An equal treatment within all given system

requirements, each formulated as an own cost function, leads to more balanced

system responses. In case of the triangular control structure, the injected distur-

bance in the second control loop is not in that extent of the reference case, while

keeping the control signals in specified ranges additionally.
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8.2 Evaluation of the robust stability criterion

For the performance evaluation of the results of Chapter 5.2.2, performance indices

of the form

Jpe1
=

tf
∫

0

e21(t)dt, Jpe2
=

tf
∫

0

e22(t)dt, (8.5)

and

Jpu1
=

tf
∫

0

u2
1(t)dt, Jpu2

=

tf
∫

0

u2
2(t)dt, (8.6)

are calculated during the simulation. The performance index Jµ, concerning robust

stability is calculated during the game. The corresponding refinement factors Re1,

Re2, Ru1, Ru2 and Rµ are defined as

Re1 =
Jpe1

Je1ref

, Re2 =
Jpe2

Je2ref

, (8.7)

Ru1 =
Jpu1

Ju1ref

, Ru2 =
Jpu2

Ju2ref

, (8.8)

and

Rµ =
Jµ
Jµref

, (8.9)

respectively. The appropriate refinement factors for the robust stability criterion,

depending on the different cost function implementations are listed in Table 8.5.

The parameter set of (Robertson u. a., 1996) serves here as reverence case. Cases A)

and B) are results without the consideration of robust stability but with different

control effort constraints. Cases C) and D) are results, where the robust stability

requirement is included in the control system design. The ranges for the control

effort constraints of cases A) and C) are larger than those for cases B) and D).

A distinction inside the cost function implementation is not necessary as only the

ISE cost function is implemented in this release.

The refinement factors for cases A) and B), considering robust stability show

maximum values, due to the disregard of the robust stability during the optimiza-

tion process. However, including the robust stability criterion in the control system

design, leads to low refinement values if the range for the control effort is set to a
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Table 8.5. Refinement factors for an additional robust stability requirement.
Ref. factor Case A) Case B) Case C) Case D) RefCase

Re1 0.41288 0.36580 0.87223 0.92370 1
Re2 0.013427 1.05118 0.00009 0.00077 1
Ru1 0.00703 0.00694 0.68477 0.75839 1
Ru2 6.87599 1.560824 22.6586 25.75321 1
Rµ 0.133281 0.743386 0.03360 0.05414 1

larger value, due to the minimum values in Rµ and Re2.

The conflict between the robust stability and the size of accepted control effort is

already known in the literature. This study approves of this fact. As a relationship

is reproduced between the range size of the control effort and the robust stability,

case A) as well as case C) provide smaller refinement factors as compared to case

B) and case D), respectively.

8.2.1 Partial evaluation result concerning the reference

tracking, a low control effort and robust stability

Incorporating the robust stability requirement in the control system design leads

to an additional conflict between the robust stability of the system, the error mini-

mization and the control effort constraints. Larger control effort acceptance results

in a larger robust stability. This leads to a degradation of the error minimization

requirement.

8.3 Evaluation of the reference tracking for the

discrete game

To arrange the comparison of different cost function implementations for the re-

quirement on a reference tracking, the performance indices and the related re-

finement factors are calculated as in subsection 8.1. The reference case is now

given through those controller parameters, obtained through the ISE cost function

implementation.

The refinement factors for the different cost function implementations, consid-

ering the control system design and according to the reference tracking, vary only
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Table 8.6. Refinement factors for the discrete game subject to the reference tracking.
Ref. factor ISE ITSE ISTSE

Re1 1 1.0031 0.9983
Re2 1 0.99 1.1715

in a small range. This is reflected by the step responses either due to a step in the

flux or due to a step in the conductivity of chapter 6.

8.3.1 Partial evaluation result concerning the error mini-

mization and stochastic disturbance compensation

As the refinement factors of the different cost function implementations vary only

in a small range, an absolute implementation favorite could not be determined for

this application.

8.4 Evaluation of different game structures

The influence of game theory in the topological control structure of the system

is studied in Chapter 7. The corresponding performance indices and the related

refinement factors are calculated as in 8.1. The references case is now given through

the base triangular controller structure of Game I.

Table 8.7. Refinement factors for different game structures.

Ref. factor Game I Game II Game III Game IV Game V
Re1 1 0.50829 0.84561 0.53651 0.50393
Re2 1 0.773209 0.81957 1.19825 1.10258
Ru1 1 2.80912 0.1604 9.1815 2.86115
Ru2 1 1.30322 1.16006 1.22756 1.11687

Considering the ISE cost function implementations for all games, game III is

definitely on the top of the ranking, followed by game I. Game II and game V are

close to each other, while the refinement factor of game IV is far away from the

others due to the additional disturbing structure.
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8.4.1 Partial evaluation result concerning different game

structures

From control theoretic view, an additional cross connection in the control system

structure as in game IV, motivated by a change in the information sets from game-

theoretic view, would never be added. This could be concluded if the refinement

factors for the games, using the ISE cost function implementation, are compared.
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Chapter 9

Conclusions and Final Remarks

The presented approach for tuning controller parameter in multi-loop control sys-

tems is based on game theory.

The tuning of controller parameters for multiple SISO controllers in multi-loop

systems results in conflicts and situations of competition due to loop interactions

as well as different system requirements. The system requirements, that are con-

sidered in this work are set on stability, robust stability, reference tracking and low

control effort.

The game-theoretic approach consists of a game description, including the set up

of cost functions and constraints, as part of the game description. The game is

described for the continuous model of a multi-loop system as a differential game.

For the discrete model of a multi-loop system, the game is described as a difference

game. The Pareto-optimal set represents the solution of the game. A final solution

concept, applied to the Pareto-optimal solution set, provides the ultimate single

solution selection.

Let’s start with a game description of the multi-loop control system design. Avail-

able information of the problem is sorted and the main characteristics are identified.

This includes the numbers of the players, their strategies, their outcomes or cost

function values and the available information structure in the game, which is part

of the rules that are established for the game. Describing the game as dynamic,

with a Pareto-optimal solution set as a solution of multi-objective optimization,

belongs to the rules, as well.

The set up of the cost functions, according to the corresponding system require-
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ments for each player, is treated as a separate point as their development is essen-

tial. In this work, the system requirement that is set on the stability is implemented

as a constraint that is kept during the optimization. The stability constraint is

maintained for every application in this work, without explicitly specifying it. The

demand on robust stability and a fast reference tracking with low deviation are

implemented as cost functions for the continuous as well as partly for the discrete

case. For the cost functions, concerning the robust stability of the system, the

structured singular value is used. The cost functions considering the reference

tracking of the discrete plant model, are implemented using the ISE, ITSE and

ISTSE, which are well known performance functions in the literature. The system

requirement with the objective of a low control effort is implemented as a con-

straint as well as a cost function.

After the formalization of the system requirements for the several players, all cost

functions have to be optimized simultaneously. Due to the conflicts, the objective

is to find a trade-off, that is accepted by each player. The problem of optimiz-

ing more than one cost function simultaneously is considered as a multi-objective

optimization problem, which is solved using a genetic algorithm. The advantages

of solving the Multi-objective optimization problem, using a genetic algorithm, is

given through it’s multiple search property and because GA’s are Pareto methods,

which are able to take care of all conflicting design objectives individually but

compromising them concurrently. According to this, the solution of the Genetic

Algorithm, that is the solution of the game, is a Pareto-optimal solution set that

provides the parameter sets for the controllers. Note, that all points on the Pareto-

optimal set satisfy the specified system requirements, due to the loop interactions

and that a Pareto-optimal point could only increase in one cost function value, if

it decreases at least one other.

As for the multi-loop control system, only one controller parameter set is needed.

It is necessary to select one point of the Pareto-optimal set as final and unique

solution. The final solution selection is also known as decision making and de-

mands a solution concept, that is also derived in this work from game theory. The

game-theoretic solution concept that is applied is the Nash bargaining solution

concept, which has no reference to control theory. The Nash bargaining solution

concept provides a solution that is fair for all players and each player is treated
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equally. If a solution concept is applied, that is motivated by control theory, the

Pareto-optimal solution set and the subsequent final control-theoretic solution se-

lection can be compared to a priority based one.

In the second part of the work, the proposed approach is used for analysing the

topology of a control system. This procedure results from the use of game theory,

where information, or more precisely the information distribution, plays a decisive

component. Dependent upon the available information distribution, that is, if it

is a game with complete or incomplete information, symmetric or asymmetric, re-

spectively, different control system topologies could arise and could be compared

against each other. The advantage in using the proposed approach is given through

the resulting control system topologies. These are applied not that often in com-

mon control theory.

In the last chapters of this work, the proposed approach is applied on an example

of a reverse osmosis desalination plant. The reverse osmosis desalination plant is a

two-input/two-output system with a triangular control structure. First, the con-

trol system of the reverse osmosis desalination plant is described as a differential

game, where the requirements are set on the reference tracking and a low con-

trol effort. The implementation of the demand on low control effort is performed

in four different ways, using the ISE cost function implementation and compared

against each other. Formalizing a required low control effort as constraint has the

advantage that, explicit ranges for the control signals could be specified. Note, it

is possible that these explicit constraint ranges could be violated, as the controller

parameter tuning subject to these explicit constraints is applied only to predefined

step changes.

In a second release, the reverse osmosis desalination plant is described as differen-

tial game. This is subject to system requirements on the reference tracking, a low

control effort and robust stability. The requirements on the reference tracking and

the robust stability are expressed as cost functions, while the demand on a low

control effort is formalized with explicit constraints. The simulation results as well

as the performance indices indicate the conflicts of low control efforts and robust

stabilities.

In the third release, the example process is described as a difference game. The

requirements are set on a fast reference tracking. The developed approach is ap-
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plied successfully for the given system and the belonging requirements, as well.

The application of the proposed approach as method for the setting up and eval-

uation of different control systems, according to one basic process, is also applied

on the example of the reverse osmosis desalination system. In a first approach, five

different games are set up and compared, subject to a good reference tracking. In

a second approach, only three games are set up and compared, where the system

requirements are set on a good reference tracking and on a low control effort, using

explicit constraints.

The gain of applying game theory for the control system design problem is given

through the possibility to model the mathematical relations around the strategic

behavior in such situations of competition and conflict. Game theory enables a

formalization that assists in the development of optimal solutions as it represents

the situation of decision making explicitly.

The benefits of the proposed approach, compared to conventional methods, are

given primarily in the involvement of, more or less, strong loop interactions. In

addition, the proposed approach keeps the structure in such a way as no extra de-

coupler is necessary. In contrast, the decentral control system structure is retained

as the requirements on the single control loops are treated equally and there is

no composition or removal of the results. Furthermore, in obtaining the Pareto-

optimal front as partial result, a relatively robust result is received as all points on

the front satisfy the given system requirements.

Another benefit of the approach is given through the possibility of extending the

method to other, even more complex, control system structures, as well as other

possible control structures, as it’s structure is not only restricted to PI or PID

controllers. Finally, the game-theoretic tuned controller parameters provides an

improved system behavior compared to the system behavior, achieved with con-

ventional tuned controller parameters. Indeed, they are significantly improved,

considering the simulation results and the comparison of the corresponding per-

formance indices.

However, some critical comments remain, either through weak points in the devel-

oped approach or through still open questions.

One weak feature of the proposed algorithm is the set up of the error and control

signals for the ISE, ITSE and ISTSE cost functions, which is relatively complex,
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as this is still done by hand. This could be automated in that way, that an al-

gorithm is developed which provides the relevant functions in using the control

system structure. A second weakness of the developed approach is that the algo-

rithm is computationally expensive. The reason for this is that the computations

of the cost functions is performed for every individual of the population in each

generation, using the evaluation algorithm of Astrom. For the present work, both

of these properties are not really disadvantageous, as the approach is still an offline

tuning method and there is enough time to calculate both. However, for an online

application of the developed approach, these things have to be modified.

Another weakness is the use of the genetic algorithm. Due to a specified initialisa-

tion of the starting population, the obtained results differ, and often, the obtained

results could not be achieved again and checked in a second optimization. Con-

sequently, the number of generations must be large enough to produce a large

Pareto-optimal set, which is uniformly distributed. Then the final solution con-

cept selects points, that are close together if the optimization is repeated several

times.

Open questions, that could be interesting for a future development are, the zero-

crossing that are not considered in this work. Closing a loop around one subsystem

could cause a moving of transmission zeros across the imaginary axis of other sub-

systems. This results in performance limitations from non minimum phase trans-

mission zeros and is more a disadvantage of decentralized control in general, but

it applies here as well. A second question that could be posed is what has to be

modified if the approach should be applied to the controller tuning to a minimum

phase system, which was neglected in this work, as well. Finally, the approach

could be modified for the state space description of a MIMO system, and even

more cost functions could be set up.
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Appendix A

Further control structures

To show the usability of the developed approach to other control structures, it

is now implemented first, on a cross-coupled TITO control system structure, and

second, on a cascade control system structure.

A.1 The cross coupled TITO control structure

As the example structure of the thesis is only triangular, the developed approach

is now applied on a TITO system with a control structure that is cross coupled,

including two PI controllers, see Fig. A.1. The upper control loop interacts with

Σ

Σ Σ

ΣC1

C2

G11

G21

G22

G12

r01

r02

e1 u1 y11

y1-

y21

y12

e2- u2 y22 y2

Figure A.1. Control structure of a 2x2 cross coupled process.
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the lower control loop through process G21, while the lower control loop interacts

with the upper control loop through process G12.

To tune the controller parameters of the coupled control loops of the control struc-

ture, the proposed game-theoretic approach is used for the control system design

in the continuous case.

A.1.1 Application Implementation

For the game description, the process model of the distillation column is needed.

According to (Skogestad u. Postlethwaite, 1996), the very crude model of a real

distillation column is given as:

G(s) =
1

75s+ 1

[

87.8 −86.4

108.2 −109.6

]

.

The model of the plant is simple, but displays the important features of the dis-

tillation column behavior: it is strongly coupled.

To identify how strong the interaction of the j-th input to the i-th output is, the

relative gain array (RGA) could be used (Allgöwer).

The RGA of the plant model is calculated as

RGA(G) =

[

35.1 −34.1

−34.1 35.1

]

The large elements in this matrix indicate that this process is fundamentally dif-

ficult to control.

Note, if the reader is interested on more, considering the RGA, he is referred to

(Skogestad u. Postlethwaite, 1996). The RGA is not treated in this work before,

as for a triangular control system structure because it is not significant to identify

loop interactions. However, considering other, more complex, control systems, it

could definitely be part of the approach. It helps in pairing the inputs and the

output, if this is unknown before.
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A.1.2 Multi-loop control system design

The developed game-theoretic framework, including a game description, cost func-

tion and constraint set up as well as the placement of Pareto-optimal solution

set and the final solution, is applied on the idealised, simple dynamic model of a

distillation column. System requirements are set only on a good reference track-

ing. Additionally, the application implementation and corresponding results are

illustrated.

A.1.2.1 Game description

For the differential game description of the distillation column, it is assumed, that

the plant is modeled by the coprime rational expressions

Y11(s)

U1(s)
= G11(s) =

B11(s)

A11(s)
,
Y12(s)

U1(s)
= G12(s) =

B12(s)

A12(s)

and
Y21(s)

U2(s)
= G21(s) =

B21(s)

A21(s)
,
Y22(s)

U2(s)
= G22(s) =

B22(s)

A22(s)
.

The control laws of both control loops are given by

U1(s) = C1(s)E1(s) =
Q1(s)

P1(s)
E1(s) and U2(s) = C2(s)E2(s) =

Q2(s)

P2(s)
E2(s).

The polynomial descriptions of the PI controllers C1 and C2 with proportional

parameters KP1
, KP2

and integral parameters KT1
, KT2

are

C1 =
Q1

P1
=
KP1

s+KP1
/KT1

s
and C2 =

Q2

P2
=
KP2

s+KP2
/KT2

s
.

Transferring the dynamic differential game of Section 3.1.1 to the multi-loop control

system design, it is described as a differential game between two players on the

time period [0,∞]. The strategies of the players are defined as

u1(t) =

∫ ∞

0

c1(t)e1(t− τ)dτ (A.1)
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and

u2(t) =

∫ ∞

0

c2(t)e2(t− τ)dτ (A.2)

with

L{c1(t)} = C1(s) = Q1(s)/P1(s) and L{c2(t)} = C2(s) = Q2(s)/P2(s).

Note, that only Q1 and Q2 are the controller parameters of the players C1 and C2,

as P1 = P2 = 1/s, because of the structure of the PI-controllers. The strategies

of the players belong to the strategy sets U1 = {u1|u1 is given by (A.7)} and

U2 = {u2|u2 is given by (A.8)}.

The differential game can now be described as the evolution of the errors e1, with

e
(7)
1 (t) = f1(e

(6)
1 (t), e

(5)
1 (t), e

(4)
1 (t), e

(3)
1 (t), ë1(t), ė1(t), u1(t), u2(t)), (A.3)

e2, with

e
(7)
2 (t) = f2(e

(6)
2 (t), e

(5)
2 (t), e

(4)
2 (t), e

(3)
2 (t), ë2(t), ė2(t), u1(t), u2(t)), (A.4)

and initial conditions

e1(0) = e10 and e2(0) = e20

as well as a cost function for each player with

J1 = g10(e1∞) and J2 = g20(e2∞).

The errors e1 and e2 belong to the sets E1 = {e1|e1 as solution of(A.3)} and

E2 = {e2|e2 as solution of(A.4)}, respectively. Function f1 is defined on f1 :

R1 ×R2 ×U1 ×U2 → R
+ and f2 on f2 : R1 ×R2 ×U1 ×U2 → R

+ and function g10

on g10 : R1 ×R2 ×U1 ×U2 → R
+ as well as g20 on g20 : R1 ×R2 ×U1 ×U2 → R

+.

A.1.2.2 Cost function and Constraint set up

The requirements on both control loops are set on a good reference tracking. The

stability is transferred to a constraint, while the requirements on the reference

tracking are implemented using the ISE.
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For the set up of the cost functions J1 and J2, according to Fig.A.1, the error

signals Ei(s) and the control signals Ui(s), with i = 1, 2 of the external loop as

well as the internal control are:

E1 =
A11 · P11 · A12 · A21 ·H2

N
· R1 −

B12 ·Q22 · A11 · P11 · A22 ·A21

N
· R2,

E2 =
A22 · P22 · A21 · A12 ·H1

N
· R2 −

B21 ·Q11 · A22 · P22 · A11 · A12

N
· R1

and

U1 =
A11 ·A12 · A21 ·H2 ·Q11

N
· R1 −

B12 ·Q22 · A11 · A22 · A21 ·Q11

N
· R2,

U2 =
A22 · A21 · A12 ·H1 ·Q22

N
· R2 −

B21 ·Q11 · A22 · A11 ·A12 ·Q22
· R1

with

H1 = A11 · P11 +B11 ·Q11,

H2 = A22 · P22 +B22 ·Q22,

and

N = (H1 ·H2 ·A12 · A21) − (B12 ·B21 ·Q11 ·Q22 · A11 · A22).

A.1.2.3 Obtaining the Pareto-optimal set and the final solution

For the idealized model of a distillation column, the genetic algorithm operates with

100 generations and 4 chromosomes, two for each controller. Two subpopulations,

with 100 individuals each, are chosen and the number of cost functions is 2.

Several controllers are designed using the proposed approach, where the parameter

vector is defined as

χχχDistCol = [KP1 KI1 KP2 KI2]
T

with KI1 = KP1/KT1 and KI2 = KP2/KT2.

The cost functions J1 and J2 are computed for different values of parameters λ1

and λ2.

As no controller parameters are provided in a reference case, a wide and general
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range for eligible parameters of χχχDistCol is chosen as:

1 ≤ KP1 ≤ 1000,

1 ≤ KI1 ≤ 1000,

−1000 ≤ KP2 ≤ −1, and

−1000 ≤ KI2 ≤ −1.

Controllers are designed for the ISE cost function implementation. A Pareto-

optimal set is provided using the GA, where the Nash bargaining solution is chosen

as the final solution. Obtained controller parameters for all cases are summarized in

Table A.1. The amplification of the second controller is negative, as the belonging

Table A.1. Controller parameters KP1, KI1, KP2 and KI2 for the distillation column.
KP1 KI1 KP2 KI2

839.23 771.67 −652.28 −771.25

process model is negative, as well.

A.1.3 Simulation Results

The model of the distillation column is implemented in Matlab/Simulink and sim-

ulations are carried out for the obtained parameter set. First, the output and

error responses, according to a change in the set point of the first input, are shown

in Fig. A.2. Considering the step responses of y1 in subplot a), the set point is

reached within 1.5minutes, with only a small overshoot.

The caused disturbance in the second output y2 is compensated within 3minutes.

The corresponding errors are given in the lower subplots.

Figure A.3 shows the output and error responses, according to a step in y2.

Considering the left subplot, the set point is reached within 2minutes, inde-

pendent of the implemented cost function. The set point change in y2 causes a

disturbance in output y1, which is compensated in 3minutes, compare subplots

showing output y2 and it’s error in Fig. A.3.
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Figure A.2. Step responses of the outputs y1 and y2 and the errors e1 and e2 according
to a step change in the set point of y1.

A.1.4 Conclusion

Due to the strong interactions in the cross coupled control structure, the appli-

cation of the developed game-theoretic approach shows satisfactory results in the

system behavior and the mutual caused disturbances are compensated contempo-

rary.
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Figure A.3. Step responses of the outputs y1 and y2 and the errors e1 and e2 according
to a step change in the set point of y1.

A.2 The cascade control structure as differential

game

One typical example of multi-loop control for SISO systems is the cascade structure

of Fig.A.4, including two PI controllers for control intention.

A common method to tune controllers, in a cascaded control structure, is to tune

them separately, starting with the most inner. In doing so, it is assumed, that

the loop dynamics increases from the most inner to the last. However, this is not

always the case. There are also processes with only one input but two outputs. The

proposed approach in the present thesis is applied on a cascaded control structure.

This is to compare the results and the application of the approach with the general
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Figure A.4. Cascade structure for the heat exchanger control system.

tuning method.

To tune the controller parameters of the coupled control loops of the cascade

control structure, the proposed game theoretic framework is used for the control

system design in the continuous case.

A.2.1 Application Implementation

For the game description, the process model of the heat exchanger example is

needed. According to (Erickson u. Hedrick, 1999), the transfer function for the

steam flow process of the internal loop is a first order plus time delay model:

G2(s) =
1.0

0.10s+ 1
e−0.02s. (A.5)

The transfer function for the temperature process of the external loop is also a

first order plus deadtime model:

G1(s) =
0.73

0.65s+ 1
e−0.19s. (A.6)

The second order Pade Approximations of the deadtime models, in equations (A.5)

and (A.6), yield to the corresponding transfer functions:

B1(s)

A1(s)
= G1(s) =

0.73s2 − 23.0526s+ 242.6593

0.65s3 + 21.5263s2 + 247.6454s+ 332.41

and
B2(s)

A2(s)
= G2(s) =

s2 − 300s+ 30000

0.1s3 − 31s2 + 3300s+ 30000
.
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A.2.2 Multi-loop control system design

The developed game-theoretic framework, including a game description, cost func-

tion and constraint set up as well as the placement of Pareto-optimal solution set

and the final solution, is applied on the continuous heat exchanger system in detail.

System requirements are set on a good reference tracking as well as a low control

effort. Additionally, the application implementation and corresponding results are

illustrated.

A.2.2.1 Game description

For the differential game description of the heat exchanger, it is assumed that, the

plant is modeled by the coprime rational expressions

Y1(s)

U1(s)
= G1(s) =

B1(s)

A1(s)
and

Y2(s)

U2(s)
= G2(s) =

B2(s)

A2(s)
.

The control laws of both control loops are given by

U1(s) = C1(s)E1(s) =
Q1(s)

P1(s)
E1(s) and U2(s) = C2(s)E2(s) =

Q2(s)

P2(s)
E2(s).

The polynomial descriptions of the PI controllers C1 and C2 with proportional

parameters KP1
, KP2

and integral parameters KT1
, KT2

are

C1 =
Q1

P1

=
KP1

s+KP1
/KT1

s
and C2 =

Q2

P2

=
KP2

s+KP2
/KT2

s
.

Transferring the dynamic, differential game of Section 3.1.1 to the multi-loop con-

trol system design, it is described as a differential game between two players on

the time period [0,∞]. The strategies of the players are defined as

u1(t) =

∫ ∞

0

c1(t)e1(t− τ)dτ (A.7)

and

u2(t) =

∫ ∞

0

c2(t)e2(t− τ)dτ (A.8)
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with

L{c1(t)} = C1(s) = Q1(s)/P1(s) and L{c2(t)} = C2(s) = Q2(s)/P2(s).

Note, only Q1 and Q2 are the controller parameters of the players C1 and C2,

as P1 = P2 = 1/s, due to structure of the PI-controllers. The strategies of

the players belong to the strategy sets U1 = {u1|u1 is given by (A.7)} and U2 =

{u2|u2 is given by (A.8)}.

The differential game can now be described as the evolution of the errors e1, with

e
(6)
1 (t) = f1(e

(5)
1 (t), e

(4)
1 (t), e

(3)
1 (t), ë1(t), ė1(t), u1(t), u2(t)), (A.9)

e2, with

e
(6)
2 (t) = f2(e

(5)
2 (t), e

(4)
2 (t), e

(3)
2 (t), ë2(t), ė2(t), u1(t), u2(t)), (A.10)

and initial conditions

e1(0) = e10 and e2(0) = e20

as well as a cost function for each player with

J1 = g10(e1∞) and J2 = g20(e2∞).

The errors e1 and e2 belong to the sets E1 = {e1|e1 as solution of(A.9)} and

E2 = {e2|e2 as solution of(A.10)}, respectively. Function f1 is defined on f1 :

R1 × U1 × U2 → R
+ and f2 on f2 : R2 × U1 × U2 → R

+ and function g10 on

g10 : R1 × U1 × U2 → R
+ as well as g20 on g20 : R2 × U1 × U2 → R

+.

A.2.2.2 Cost function and Constraint set up

The requirements on both control loops are set on a good reference tracking and

low control effort. The stability is transferred to a constraint. While, the require-

ments on a good reference reaction and low control effort are combined in a cost

function with a weighting factor λ, and implemented using the ISE cost function

implementation.

For the set up of the cost functions J1 and J2, according to Fig.A.4, the error sig-
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nals Ei(s) and the control signals Ui(s) of the external loop as well as the internal

control loop are:

E1 =
(P2A2 +Q2B2)A1P1

(P2A2 +Q2B2)A1P1 +Q2B2B1Q1

R,

E2 =
A1A2Q1P2

(P2A2 +Q2B2)A1P1 +Q2B2B1Q1
R.

as well as

U1 =
(P2A2 +Q2B2)A1Q1

(P2A2 +Q2B2)A1P1 +Q2B2B1Q1
R,

U2 =
A1A2Q1Q2

(P2A2 +Q2B2)A1P1 +Q2B2B1Q1
R,

A.2.2.3 Obtaining the Pareto-optimal set and the final solution

For the continuous heat exchanger application, the genetic algorithm operates with

100 generations and 4 chromosomes, two for each controller. Two subpopulations,

with 100 individuals each, are chosen, and the number of cost functions is 2.

For the example of the heat exchanger, several controllers are designed using the

proposed approach, where the parameter vector is defined as

χχχHeEx = [KP1 KI1 KP2 KI2]
T ,

with KI1 = KP1/KT1 and KI2 = KP2/KT2.

The cost functions Jcf1 and Jcf2 are computed for different values of the weighting

factors λ1 and λ2.

First, a range for eligible parameters of χχχHeEx is chosen around the tuned param-

eters in (Erickson u. Hedrick, 1999):

0.1 ≤ KP1 ≤ 5,

0.1 ≤ KI1 ≤ 5,

0.1 ≤ KP2 ≤ 5,

0.1 ≤ KI2 ≤ 50.
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Controllers are designed for three different values of λ, λ1 = λ2 = 1, λ1 = λ2 = 0.25,

and λ1 = λ2 = 0, using the cost function implementation of the ISE. The controllers

are referenced as case λi = 1, case λi = 0.25 and case λi = 0, respectively. A

Pareto-optimal set is provided using the GA, where the Nash bargaining solution

is chosen as the final solution. Obtained controller parameters for all cases are

summarized in Table A.2.

Table A.2. Controller parameters KP1, KI1, KP2 and KI2 for the continuous heat
exchanger system.

case KP1 KI1 KP2 KI2

λi = 1 0.1 1.7478 5 0.97418
λi = 0.25 0.63833 1.9983 5 1.9983
λi = 0 0.97179 1.9998 4.9995 1.9998

A.2.3 Simulation Results

The model of the heat exchanger example is implemented in Matlab/Simulink and

simulations are carried out for all controllers. Step responses of the outlet temper-

ature y, according to a change of 1K in the set point of the outlet temperature, are

shown in Fig.A.5, for each case. The comparison of the step responses, in Fig.A.5,

leads to the result that, for λi = 0, the overshoots are the smallest. They are

followed by λi = 0.25 and λi = 1. The reference case shows the slowliest set point

convergence.
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Figure A.5. Step responses of the output y for the reference case as well as for different
values of λi.
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Appendix B

Solution Concepts for bargaining

games

When selecting the final solution from the Pareto-optimal set, a decision maker is

demanded. The problem of extracting one particular point in a Pareto-optimal set

is considered as a bargaining problem. Here, solution concepts for Nash bargaining

games are applied as the decision maker and are motivated from their use in control

system design.

B.1 The decision maker (DM)

Starting with a given control system, the belonging control-theoretic requirements

and constraints, a final solution should be obtained. This is achieved by using

the game-theoretic approach. The final solution of the game is selected from the

Pareto-optimal set, using a DM that provides a set of controller parameters.

The motivation for a game-theoretic DM has been given in Section 3.4.1.

The solution concepts of the Nash bargaining solution, and the Kalai- Smorodinsky

solution are presented for comprehension in the two dimensional case.

The Egalitarian solution is omitted in this case, as the RO example application

shows too large differences between the value ranges of J1 and J2.
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B.1.0.1 The Nash bargaining solution (NB)

The Nash bargaining solution, NB(PS), is obtained by the players simply by

maximizing Nash’s product. In the two dimensional case, the Nash-bargaining

solution is calculated as

NB(PS) = max(Jcf1 − (maxJcf1)) · (Jcf2 − (maxJcf2)) (B.1)

in PS , with d as the disagreement point. According to the notion of John Nash,

the Nash bargaining solution includes a fair negotiation resolution, accepted by

the rational players. The function fnb, defined through (B.1), assigns to each bar-

gaining game (PS, d), exactly one cost vector Jcf , the Nash solution, and satisfies

the following four axioms:

(1) Scale invariance.

The Nash bargaining solution NB(PS) is independent of the units. So, the

solution does not vary if the utility is multiplied by a positive constant.

(2) Symmetry.

If (PS, d) is a symmetric bargaining game, then fnb1(PS, d) = fnb2(PS , d).

(3) Independence of irrelevant alternatives.

fnb(PS , d) = dnb(QS, d) if (PS, d) and (QS, d) are bargaining games with

an equal disagreement point d, PS as a subset of QS and fnb(QS , d) as an

element of PS .

(4) Pareto optimality.

Is (PS, d) a bargaining game, if x1 ≥ fnb1(PS, d) and x2 ≥ fnb2(PS , d),

then x 6= fnb(PS, d) in PS.

According to the intention of John Nash, the Nash bargaining solution provides

an equitable final solution.

B.1.0.2 Kalai-Smorodinsky solution (KS)

The best known variation of the Nash bargaining solution is the Kalai-Smorodinski

solution. Here the third Nash axiom for the Nash bargaining solution is replaced
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J2

min J2

min J1 max J1=̂d1

max J2
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×+U

×+D

×+KS ×+NB

Figure B.1. Solution concepts for bargaining games. Blue: Kalai-Smorodinsky solution,
green: Nash bargaining solution.

by the monotonicity axiom:

3’) Monotonicity.

If the negotiation set PS is enlarged, such that the minimum utilities of the

players remain unchanged, then neither of the players must not suffer from

it.

According to 3′), the Kalai-Smorodinsky solution is situated at the intersection of

the Pareto-optimal curve and the straight line linking the disagreement point and

the utopia point (Holler u. Illing, 2000). The utopia point is defined as theoretical

best point, given through the point (min Jcf1,min Jcf2 , . . . ,min JcfN
) in the utility

space.

A graphical interpretation of the three presented solution concepts for bargaining

games is given in Fig.B.1.
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B.2 Example

The proposed game-theoretic approach, including the solution concepts are now

applied on a reverse osmosis desalination plant as a discrete, cooperative game

with two players and the triangular control structure of Fig.B.2.

Σ

Σ Σ

C1

C2

G11

G21

G22

r01

r02

e1 u1

y1-

e2- u2 y22 y2

y21

Figure B.2. Multi-loop control structure of the reverse osmosis desalination plant.

Several papers were published, for example (Assef u. a., 1995), (Riverol u.

Pilipovik, 2005) and (Robertson u. a., 1996), where RO system identification were

considered. The system interaction can be rewritten, compare section 6 for the

discrete case with a sample time of T0 = 0.2 as

G11(z) =
0.002013z − 2.225 · 10−5

z2 − 0.005708z + 0.001273
,

G21(z) =
−0.1574z + 0.08829

z2 − 1.383z + 0.5183

and

G22(z) =
−6.084z + 3.242

z2 − 1.499z + 0.5488
.

According to Subsection 2.2.2, the control system design of the reverse osmosis

system can now be described as a difference game between two players.

The requirements on the reverse osmosis system are set only on stability and a

reference tracking, with minimum deviation as described in Subsection 3.2.

For the control system design of the multi-loop system, the calculation of the error

signals E1 and E2 for the costs Jcfi
in (3.23) can be derived from Fig.B.2 with the

step reference signals r01 = z/z − 1 and r02 = z/z − 1 as

E1ec
=

A11z

A11P1 +B11Q1

,
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and

E2ec
=

(A21A22(A11P1 +B11Q1) − B21Q11A11A22)z

A21(A11P1 +B11Q1)(A22P2 +B22Q2)
.

B.2.1 Course and Solution of the game

For the discrete reverse osmosis system, the genetic algorithm operates with 100

generations and 4 chromosomes, two for each controller. Two subpopulations with

500 individuals each are chosen and the number of cost functions is 2.

B.2.1.1 Obtaining a Pareto-optimal set and the final solution

For the example of the reverse osmosis system, several PI-controllers are designed

using the proposed approach, where the parameter vector χχχsc, with sc, indexing

the solution concept, is defined as

χχχsc = [q01 q11 q02 q12]
T . (B.2)

Obtained Pareto-optimal sets, depending on the different cost functions (3.24),(3.25)

and (3.26) are shown in Fig.B.3, Fig.B.4 and Fig.B.5. Here the corresponding Nash

bargaining (NB) solutions, the Kalai-Smorodinski (KS) solutions, the disagreement

points D, the utopia points U as well as the Pareto-optimal points are highlighted.

The Pareto-optimal fronts vary in their value range due to the incorporation

of the elapsed time, represented through the additional factor k and k2 in the cost

function implementations. In contrast, what all three Pareto-optimal fronts have

in common is that, the value ranges for the first cost function Jcf1 are considerably

smaller than the value ranges for the cost functions of Jcf2. This fact is justified

through the triangular control structure. Here only the second control loop is

disturbed by the first control loop. A change in the set point of r01 has effects on

the costs Jcf1 and Jcf2 , while a change in the set point of r02 has effects only on

the cost Jcf2. According to this, the value range for Jcf2 is increased, compared to

the value range of Jcf1.

Regarding the final solutions for all cost functions, the KS and the NB solution are

placed close to each other, while the E solution increases are small, considering cost
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Figure B.3. Solution space for the ISE cost function implementation. Blue stars:
Pareto-optimal points.

function Jcf1, but decreases are larger, considering cost function Jcf2, depending

on the cost function implementations.

The corresponding controller parameters for each cost function in combination with

the three presented solution concepts of (3.24), (3.25), and (3.26) are summarized

in Table B.1.

Table B.1. Controller parameters for the reverse osmosis system.
Cost index Sol. Conc. q01 q11 q02 q12

ISE NB 463.3207 −3.7457 −0.3149 0.1741
ISE KS 443.0338 −1 −0.3336 0.1536
ITSE NB 453.3434 −2.5082 −0.3302 0.1658
ITSE KS 442.8412 −2.2423 −0.3258 0.1584
ISTSE NB 478.4155 −3.1656 −0.3552 0.1590
ISTSE KS 457.7723 −1.0048 −0.3548 0.1581
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Figure B.4. Solution space for the ITSE cost function implementation. Blue stars:
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B.2.2 Simulation results

To be able to compare the different game solutions of Table B.1, depending on the

solution concepts as well as on the formulation of the cost functions, simulation

studies are carried out using Matlab/Simulink and corresponding step responses

of the reverse osmosis system are analyzed.

A set point change of 0.4 gpm in the permeate flux is performed for all case studies

on the system. The corresponding step responses are shown in Fig. B.6.

A set point change of 10µS/cm in the conductivity is performed for all case

studies on the system. The corresponding step responses are shown in Fig. B.7.

Regarding the step responses of Fig.B.6 and Fig.B.7, there is no considerable

difference, depending on the solution concept.

However, considering the final solution of KS, the solutions are obtained through

the intersection of a determined straight line and the Pareto-optimal set. Also,

in the present work, the Pareto-optimal set is defined through a finite number of

points with the result that it is possible, that no intersection exist. The alternative
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is, to choose the Pareto-optimal point with the shortest distance to the straight

line. In addition, the difference of the step responses for the different cost function

implementations is small for this example, as well.

Concluding, the authors propose the NB solution as solution concept, due to the

computability advantage of the NB solution. Dependent on the Pareto-optimal

points, delivered from the genetic algorithm, the NB solution is obtained in mini-

mizing the Nash product.

B.2.3 Conclusion

Using the Nash bargaining solution concept as preliminary decision maker is sug-

gested by the authors. The Nash bargaining solution concept will be used in the

further application of the approach, due to the computability property. The Nash

bargaining game could be easily extended to the more dimensional case, as well.

Regarding the cost indices ISE, ITSE and ISTSE, no preference can be given.

Similar simulation results are obtained using the three presented cost function im-

plementations.
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Figure B.6. Step responses to a change in the set point of the permeate flux for the two
outputs flux and conductivity of the reverse osmosis system, depending on the applied
solution concepts.
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Figure B.7. Step responses to a change in the set point of the conductivity for the two
outputs flux and conductivity of the reverse osmosis system depending on the applied
solution concepts.
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Appendix C

Equation derivation for the

different topologies

The derivation of the error functions E1 and E2 for the different game topologies

of chapter 4 is given in this chapter.

C.1 Derivation of error equation (4.6)

From Figure 4.1 the following equation for E1 and Y1 are derived:

E1 = R1 − Y1 (C.1)

and

Y1 = G11C11E1. (C.2)

Inserting equation (C.2) in equation (C.1) results in the equation for E1:

E1 = R1 −G11C11E1. (C.3)

Solving equation (C.3) to E1 results in

E1 =
R1

(1 +G11C11)
.
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A substitution of G11 with B11

A11

as well as C11 with Q11

P11

results after further simpli-

fication in the final equation for E1:

E1 =
A11P11R1

A11P11 +B11Q11
. (C.4)

C.2 Derivation of Error equation (4.7)

From Figure 4.1 the following equations for E2 and Y2 are derived:

E2 = R2 − Y2 (C.5)

and

Y2 = Y21 + Y22 = G21C11E1 +G22C22E2. (C.6)

Inserting equation (C.6) in equation (C.5) results in the equation for E2:

E2 = R2 −G21C11E1 −G22C22E2. (C.7)

Solving equation (C.7) to E2 results in

E2 =
R2

1 +G22C22

−
G21C11E1

1 +G22C22

. (C.8)

A substitution of G22 with B22

A22

, C22 with Q22

P22

, C11 with Q11

P11

and inserting equation

(C.4) in equation (C.8) results after further simplifications in the resolved equation

for E2:

E2 =
A21A22P22(A11P11 +B11Q11)R2 − B21Q11A11A22P22R1

A21(A11P11 +B11Q11)(A22P22 +B22Q22)
. (C.9)

C.3 Derivation of error equation (4.9)

From Figure 4.2 the following equations for E2 and Y2 are derived:

E2 = R2 − Y2 (C.10)
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and

Y2 = Y21 + Y22. (C.11)

The equation for Y21 of equation (C.11) is given with

Y21 = G21U1 = G21C11E1,

resulting after a substitution of G21 with B21

A21

and C11 with Q11

P11

in the resolved

equation

Y21 =
B21Q11A11

A21(A11P11 +B11Q11)
R1. (C.12)

The equation for Y22 of equation (C.11) is given with

Y22 = G22U2 (C.13)

with

U2 = U21 + U22.

The resolved equation for U21, substituting C21 with Q21

P21

and inserting E1 from

equation (C.4) results in

U21 = C21E1 =
Q21A11P11

P21(A11P11 −B11Q11)
R1. (C.14)

The resolved equation for U22 is given as

U22 = C22E2. (C.15)

Inserting equations (C.14) and (C.15) with additional substitution of C22 with Q22

P22

in equation (C.13), results after further simplifications in

Y22 =
B22Q21A11P11

A22P21(A11P11 − B11Q11)
R1 +

B22Q22

A22P22
E2. (C.16)
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Inserting equations (C.16) and (C.12) with (C.11) in equation (C.10), yields to

E2 =R2

−
B21Q11A11

A21(A11P11 +B11Q11)
R1 −

B22Q21A11P11

A22P21(A11P11 −B11Q11)
R1

−
B22Q22

A22P22

E2

and after further simplifications to

E2 =
(A11P11 +B11Q11)A21A22P21P22R2

A21P21(A22P22 +B22Q22)(A11P11 +B11Q11)

−
(B21Q11A22P21 +B22Q21A21P11)A11R1

A21P21(A22P22 +B22Q22)(A11P11 +B11Q11)
. (C.17)

C.4 Derivation of error equations for (4.13) and

(4.14)

From Figure 4.3 the following equations for E1 and Y1 are derived:

E1 = R1 − Y1 (C.18)

and

Y1 = G11(C11E1 + C12E2). (C.19)

Inserting equation (C.19) in (C.18) results in

E1 =
(R1 −G11C12E2)

(1 +G11C11)
. (C.20)

Regarding E2, the following equations for E2 and Y2 are derived:

E2 = R2 − Y2 (C.21)

and

Y2 = G21(C11E1 + C12E2) +G22C22E2. (C.22)
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Inserting equation (C.22) in equation(C.21) results in

E2 =
R2 −G21C11E1

(1 +G21C12 +G22C22)
. (C.23)

Inserting equation (C.23) in equation (C.20) results after further simplifications in

the equation for E1:

E1 =
(1 +G21C12 +G22C22)

(1 +G11C11)(1 +G21C12 +G22C22) −G11C12G21C11

R1

−
G11C12

(1 +G11C11)(1 +G21C12 +G22C22) −G11C12G21C11

R2.

(C.24)

Regarding E2, inserting equation (C.20) in equation (C.23) results after fruther

simplifications in the equation for E2:

E2 =
1

(1 +G21C12 +G22C22)

(1 +G21C12 +G22C22)(1 +G11C11) −G11C12G21C11

[(1 +G21C12 +G22C22)(1 +G11C11) −G11C12G21C11]
R2

− (
G21C11(1 +G21C12 +G22C22)(1 +G11C11)

(1 +G21C12 +G22C22)(1 +G11C11)
·

1

[(1 +G21C12 +G22C22)(1 +G11C11) −G11C12G21C11]
)R1.

(C.25)

Due to manageability, a part of the denominator is substituted with T in the

following equation:

T = (1 +G21C12 +G22C22) −G11C12G21C11.

Further simplifications of equation (C.24) and a reordering according to R1 and

R2 results in:

E1 =
1 +G21C12 +G22C22

T
R1 −

G11C12

T
R2. (C.26)

Further simplifications of equation (C.25) and a reordering according to R1 and

R2 results in:

E2 =
1 +G11C11

T
R2 −

G21C11

T
R1. (C.27)
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After substitution of G21 with B21

A21

, G22 with B22

A22

, G11 with B11

A11

, C12 with Q12

P12

, C22

with Q22

P22

, C11 with Q11

P11

and further simplifying the resulting resolved equations for

(C.26) and (C.27), the final equations for E1 and E2 are given with:

E1 =
(A21P12A22P22 +B21Q12A22P22 +B22Q22A21P12)A11P11R1

T

−
B11Q12P11A21A22P22R2

T

(C.28)

and

E2 =
(A11P11 +B11Q11)A21P12A22P22R2

T

−
B21Q11A11P12A22P22R1

T
.

(C.29)
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4th ed., Springer-Verlag, Berlin, Heidelberg, New York, 2000

[Hovd u. Skogestad 1992] Hovd, M. ; Skogestad, S.: Simple frequency-dependent

tools for con- trol system analysis, structure selection and design. Automatica,

Vol 28, Issue: 5, 1992

[Hutauruk u. Brown 2005] Hutauruk, N. B. C. ; Brown, M.: Directed Multi-

Objective Optimization for Controller Design. International Conference on In-

strumentation, Communication and Information Technology (ICICI), Bandung,

Indonesia, 2005

[Isaacs 1999] Isaacs, R.: Differential Games - A mathematical theory with appli-

cations to warefare and pursuit, control and optimization. Dover Publications,

Inc., Mineola, New York, 1999

[Isermann 1989] Isermann, R.: Digital Control Systems. Springer Verlag, 2nd

Ed., 1989

[J. Neumann 2004] J. Neumann, O. M.: Theory of Games and Economic Behav-

ior. Princeton University Press. 60. anniversary ed., 2004

[Johnson u. Moradi 2005] Johnson, M. A. ; Moradi, M.H.: PID Control: New

Identification and Design Methods. Springer Verlag London Limited, 2005

[Kawabe u. Tagami 1999] Kawabe, T. ; Tagami, T.: A New Genetic Algo-

rithm using Pareto Partitioning Method for Robust Partial Model Matching PID

162



Design with Two Degrees of Freedom. Proceedings of the Third International

ICSC (International Computer Science Conventions) Symposia on Intelligent In-

dustrial Automation (IIA’99) and Soft Computing (SOCO’99), pages 562-567,

Genova, 1999

[Konak u. a. 2006] Konak, A. ; Coit, D. W. ; Smith, A. E.: Multi-objective

optimization using genetic algorithms: A tutorial. Reliability Engineering and

System Safety 91, pages 992-1007, 2006

[Kookos u. a. 1999] Kookos, I.K. ; Arvanitis, K.G. ; Kalogeropoulos, G.:

PI Controller Tuning via Multiobjective Optimization. Proceedings of the 7th

Mediterranean Conference on Control and Automation, Haifa, Israel, 1999

[LaValle 2006] LaValle, S. M.: Planning Algorithms. Part 3, Decision-Theoretic

Planning, available at: http://planning.cs.uiuc.edu/, 2006

[Lemaire 1991] Lemaire, J.: Cooperative Game Theory and its Insurance Appli-

cations. Invited Paper, Astin Bulletin, Vol.21, No.1, pp. 17-40, 1991

[Lin 1976] Lin, J.G.: MultiObjective Problems: Pareto-Optimal Solutions by

Method of Proper Equality Constraints. IEEE Transactions on Automatic Con-

trol, Vol. AC-21, No.5, 1976

[Liu u. a. 2002] Liu, G. P. ; Yang, J. B. ; Whidborne, J. F.: Multiobjective

Optimization and Control. Research Studies Press LTD., 2002

[Luce u. Raiffa 1989] Luce, R. D. ; Raiffa, H.: Games and Decisions: Introduc-

tion and Critical Survey. Dover Publications, 1989

[Lunze 2004] Lunze, J.: Regelungstechnik 2. Springer, Berlin, 2004

[Lygeros u. a. 1995] Lygeros, J. ; Godbole, D. N. ; Sastry, S.: A Game

Theoretic Approach to Hybrid System Design. Technical Report UCB/ERL-

M95/77, available at: http://citeseer.ist.psu.edu/lygeros95game.html, 1995

[Lygeros u. a. 1996] Lygeros, J. ; Godbole, D. N. ; Sastry, S.: Multiagent

Hybrid System Design using Game Theory and Optimal Control. Proceedings

163



of the IEEE Conference on Decision and Control, pp. 1190–1195, Kobe, Japan,

1996

[Lygeros u. a. 1997] Lygeros, J. ; Godbole, D. N. ; Sastry, S.: A Design

Framework for Hierarchical, Hybrid Control. California Partners for Advanced

Transit and Highways (PATH). Research Reports: Paper UCB-ITS-PRR-97-24,

available at: http://repositories.cdlib.org/its/path/reports/UCB-ITS-PRR-97-

24, 1997

[Makowski 1994] Makowski, M.: Methodology and a modular tool for multiple cri-

teria analysis of lp models. Technical Report WP-94-102, International Institute

for Applied Systems Analysis, 1994

[Manoso u. a. 1997] Manoso, C. ; Hernandez, R. ; Madrid, A. P. ; Dormito,

S.: Robust Stability Analysis of GPC: An application to dead-beat and mean-level

predictive controllers. 5th Mediterranean Conference on Control and Systems,

Paphos, Cyprus, 1997

[Marler u. Arora 2004] Marler, R. T. ; Arora, J.S.: Survey of Multi-objective

Optimization Methods for Engineering. Structural and Multidisciplinary Opti-

mization, 26, 6, 369-395, 2004

[McCain ] McCain, R. A.: Cooperative Games. available at: http://william-

king.www.drexel.edu

[Michalewicz 1995] Michalewicz, Z.: A Survey of Constraint Handling Tech-

niques in Evolutionary Computation Methods. Proceedings of the 4th Annual

Conference on Evolutionary Programming, MIT Press, Cambridge, MA, pp.

135-155, 1995

[Myerson 1991] Myerson, R. B.: Game Theory - Analysis of conflict. Harvard

University Pr., Cambridge, Massachusetts, 1991

[Natto 2007] Natto, S.: Entwurf von Regelsystemen auf Basis multikriterieller

Optimierung für eine verfahrenstechnische Anlage. Diplomarbeit, LS Automa-

tion, Central Institute of Technical Informatics, University of Heidelberg, Ger-

many, 2007

164



[Osborne u. Rubinstein 2001] Osborne, M. J. ; Rubinstein, A.: A course in

game theory. seventh printing, MIT Press, Cambridge MA, 2001

[Osyczka 1985] Osyczka, A.: Multicriteria optimization for engineering design.

in Design Optimization, J. S. Gero, Ed. New York: Academic, pp. 193–227, 1985

[Pohlheim 2000] Pohlheim, H.: Evolutionäre Algorithmen - Verfahren, Opera-
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