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Abstract: In recent years a lot of efforts was put into the field of Semantic Web
research to specify knowledge as precisely as possible. However, optimizing for pre-
cision alone is not sufficient. The handling of uncertain or incomplete information is
getting more and more important and it promises to significantly improve the quality
of query answering in Semantic Web applications. My plan is to develop a framework
that extends the rich semantics offered by ontologies with probabilistic information,
stores this in a probabilistic database and provides query answering with the help of
query rewriting. In this proposal I describe how these three aspects can be combined.
Especially, I am focusing on how uncertainty is incorporated into the ABox and how
it is handled by the database and the rewriter during query answering.

1 Introduction

In recent years several standards for knowledge representation, e.g. RDF1 or OWL2, were
recommended by the W3C, and methodologies, like OntoClean [GW09], for putting these
recommendations to work evolved. Those formalisms and methods focus on specifying
knowledge as precisely as possible. OntoClean, for example, categorizes expressions in an
ontology into rigid and non-rigid ones and discourages the usage of non-rigid knowledge
to avoid false reasoning results.

However, as Paulheim and Pan already stated, optimizing the Semantic Web for precision
alone is not sufficient [PP12]. It is trivial to design a system that always achieves very high
precision, but subsequently it will suffer from very low recall. The impact for linked data
or ontologies is so severe that IBM decided not to use structured knowledge bases in this
way for their famous Jeopardy-winning Watson system, as it would only have been able
to answer about two percent of the posed questions [KBP+12]. Instead, they developed a
system that allows for imprecise or uncertain knowledge to improve recall and achieve a
better overall performance.

The handling of uncertain or incomplete information is getting more and more important,

1http://www.w3.org/standards/techs/rdf
2http://www.w3.org/standards/techs/owl



not only in the domain of expert systems or query-answering systems like Watson, but also
in other real world applications:

• Data integration is the mapping of two or more heterogeneous data sources, e.g.
ontologies without a common upper ontology or database with a different schema,
into one combined knowledge base. In many cases it is not possible to find perfect
matches between all concepts and properties of the different sources. However,
quite often there are concepts that almost correspond to each other or have similar
meanings. Mapping those with some specific confidence value yields an increased
benefit for the resulting integrated knowledge base.

• Information extraction is another field where uncertain information plays an impor-
tant role. Information extraction tries to generate meaningful, structured knowledge
from merely unstructured data in the form of natural text. Although natural language
processing provides good tools to derive information from unstructured text, natural
language has many ambiguities that require context or background knowledge to
discern the correct meaning of a term or statement (cf. [TDD+13]).

For all these cases query answering can be improved by supporting uncertain information
properly. I suggest a framework that combines the rich semantic knowledge available
within ontologies and linked data with the benefit of an increased recall provided by the
incorporation of imprecise knowledge when answering queries. This framework shall also
scale well for large amounts of information as for example in Linked Open Data. My
contribution will thus be the combination of the probabilistic results from the database
with the information from a Semantic Web reasoner.

There are already various implementations for formalisms that incorporate uncertain or
probabilistic knowledge, e.g. probabilistic relational databases [HAKO09], bayesian net-
works [WMGH08], or markov logic networks [JS12]. The former are focused on querying
large relational data, however, without rich semantics, whereas the latter belong to the field
of probabilistic programming and are more concerned with statistical relational learning.

Storing and querying large amounts of semantic data is already possible in various imple-
mentations, e.g. Virtuoso3, Stardog4, OWLIM5 or Oracle6, but these applications do not
support any notion of uncertainty.

Probabilistic databases are around for about a decade and are in a very mature state
[TDD+13]. With their focus on large databases and their foundation in relational database
management systems, they are a natural choice for the combination of probabilistic knowl-
edge bases and querying those with SPARQL.

The OWL 2 recommendation defines a special profile, OWL 2 QL7, that is designed to en-
able query answering in relational databases with large amounts of instance data in mind.

3http://virtuoso.openlinksw.com/
4http://stardog.com/
5https://www.ontotext.com/owlim
6http://www.oracle.com/technetwork/database/options/spatialandgraph/

overview/rdfsemantic-graph-1902016.html
7http://www.w3.org/TR/owl2-profiles/#OWL_2_QL



∃sisterOf vWoman [1] (1)
∃motherOf vWoman [1] (2)

∃marriedTo uWoman vWife [1] (3)

marriedTo v marriedTo−1 [1] (4)
∃motherOf v ∃marriedTo [0.65] (5)

marriedTo(Alice,Bob) [0.30] (6)
sisterOf(Alice, Carol) [0.80] (7)

motherOf(Alice,Dave) [0.95] (8)

Figure 1: Example used to illustrate my approach in the proposed framework. Numbers in square
brackets represent probabilities.

This is achieved by limiting the expressivity of the ontology, leading to a reduced com-
plexity of the reasoning task for the knowledge base. Due to this, answers to a query can be
computed through a technique called query rewriting. The main benefit of query rewriting
is the fact that it needs no information about the instance data (ABox) of a knowledge base,
but only of its schema (TBox). This enables reasoning during query time and changing the
data without the need for a separate reasoning step afterwards which results in answers to
a query directly reflecting changes in the knowledge base.

The recommended language to query semantic data is SPARQL. It looks similar to SQL
but it is designed to query graphs (the underlying structure of RDF or OWL) instead of
relational data.

The example shown in Figure 1 will be used throughout Section 3 to illustrate my approach
in the framework. The ontology consists of 5 axioms in the TBox and 3 assertions in the
ABox stating the following:

1. Every sister of someone is a woman
2. Every mother of someone is a woman
3. Someone who is married and a woman is a wife
4. The married property is symmetric
5. Alice is married to Bob with a probability of 0.3
6. The probability of Alice being Carol’s sister is 0.8
7. The probability of Alice being Dave’s mother is 0.95

I will show in detail how a query is rewritten using the certain TBox axioms 1 – 4. How
the uncertain Axiom 5 can be incorporated during rewriting is briefly discussed at the
end of Section 3 and is part of future work. I describe which of the assertions 6 – 8 are
relevant answers and how to compute the probabilities of the final result from their given
probabilities.

The rest of this paper is structured as follows: In Section 2 I am discussing related work,



Section 3 details the approach of my framework, the current status and short term goals of
my work are stated in Section 4, and Section 5 outlines future work.

2 Related Work

Related work can be divided roughly into two fields: probabilistic querying, and Semantic
Web reasoning. Probabilistic deductive databases, e.g. as proposed by Lakshmanan et
al. [LS94], are also closely related to my approach. However, they employ technologies
different from query rewriting and do not focus on large scale data.

2.1 Probabilistic Querying

The two main areas of research in probabilistic querying are probabilistic programming
and probabilistic databases [TDD+13]. Both have developed rather independently during
the last decade but they share a common goal in making probabilistic inference scalable.

Probabilistic programming mainly focuses on learning statistical models from existing
data. Its main concern is determining whether there exists a solution to a query rather
than finding all solutions as probabilistic databases do. There are several formalisms, e.g.
markov logic networks [RD06], bayesian networks [Jen96], or languages and tools like
ProbLog [KTD07], to describe probabilistic models. These formalisms and the tools us-
ing them, for example MarkoViews [JS12] and BayesStore [WMGH08], can handle large
amounts of uncertain data, however, none of them incorporates Semantic Web reasoning.

Similarly, probabilistic databases like Trio [Wid04] or MayBMS [HAKO09] are designed
for querying large probabilistic knowledge bases, but they are only handling relational
data without rich semantic information. Probabilistic databases usually employ a pos-
sible world semantics: all possible values for uncertain values are represented at once.
To enable efficient inferencing, they exploit independence assumptions, most commonly
tuple-independence (all database tuples or rows are independent from each other) or block-
independent (groups of tuples are independent from each other). The research on proba-
bilistic databases draws from many years of experience with relational databases. From
those, they adopt relational algebra – and thus SQL – or Datalog.

Theobald et al. [TDD+13] give a more thorough overview of these two research areas,
their methodologies, differences, and commonalities.

2.2 Semantic Web Reasoning in the Context of Query Answering

In the context of query answering, there are two commonly used approaches for Semantic
Web reasoning with large scale instance data: materialization and query rewriting.



For materialization all knowledge that can be inferred from known facts is explicitly stored
when the data is loaded. Thus, no reasoning is needed later on, as long as the data is not
modified. If the data is modified the materialization has to be computed anew which can
be quite expensive. For example OWLIM uses this approach.

Query rewriting, on the other side, does not change or add data but rather transforms a
query over a knowledge base in such a way that it produces sound and complete answers
without the need for any reasoning inside the database. In the case of OWL 2 QL and
similar description logics this means that the query is expanded with information from
the TBox such that implicit knowledge can be extracted from the ABox without the need
for any consideration of the ABox. This is achieved by limiting the expressiveness of
the description logic which is used to describe the data. Calvanese et al. [CDL05] give
a thorough overview in the their paper about the DL-Lite family of description logics.
The OWL 2 QL profile is based on DL-LiteR. PerfectRef, one of the first rewriting
algorithms for semantic web reasoning, is also introduced in their paper. Applications
that use query rewriting for reasoning are for example Stardog or the Maestro system
[CDL+11]. None of the applications for large scale semantic web reasoning incorporates
uncertain information.

In my framework I want to adopt a query rewriting algorithm. There are already some
implementations that combine those algorithms with traditional relational databases, e.g.
Owlgres [SS08], Oracle RDF Semantic Graph, or YARR [SO13]. However they are out-
dated (Owlgres), or not readily available (Oracle, YARR).

3 Approach

As outlined in the introduction I suggest to use a mature probabilistic relational database
system and combine it with an existing query rewriting algorithm for reasoning. I use
SPARQL as query language, which is recommend by the W3C for Semantic Web applica-
tions. Figure 2 shows an illustration of my approach. The two main parts of the implemen-
tation will be the query rewriter and the probabilistic database system. The query rewriter
will use the knowledge from the TBox of one or more ontologies to extend the queries.
The information of the ABox will be stored in the database, where the computation of the
results takes place. Ontologies have to be provided in OWL format, queries will be posed
in SPARQL. The communication between the rewriter and the database uses SQL (with
probabilistic extensions). The results will be presented to the user as tables, as is common
for databases or triple stores.

As query rewriter I am going to use the implementation of IQAROS8 described by Venetis
et al. [VSS12]. IQAROS loads the TBox of an ontology in OWL format and rewrites
queries formulated in Datalog. To be able to pose queries in SPARQL and compute an-
swers through the probabilistic database, I will implement two additional translation steps:
one from SPARQL to Datalog before the rewriting takes place, and another from Datalog

8IQAROS is one of the few openly available implementations. It can be downloaded under this link:
https://code.google.com/p/iqaros/
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Figure 2: Illustration of the different steps of my approach and the technologies involved.

to SQL with probabilistic extensions for the probabilistic database.

Given the example from the introduction (Fig. 1), a SPARQL query asking for all wifes
looks like the following:

SELECT ? p e r s o n WHERE { ? p e r s o n a Wife . }

Translating SPARQL queries with simple triple patterns like that to Datalog is straightfor-
ward. Other features like optional joins or aggregates, e.g. COUNT or MAX, are more
complex. These constructs are not part of Datalog, however, they are supported by SQL
and probabilistic databases and thus can be used with some special handling in the trans-
lation and rewriting steps. This is the query translated to Datalog:

q(?person) :- Wife(?person)

The relevant axioms of the TBox that will be used by the rewriter to extend the query are
then the following: a) a wife is married and a woman (Axiom 3), b) a person who is the
mother of someone is a woman (Axiom 2), c) a person who is the sister of someone is a
woman (Axiom 1), d) the relation marriedTo is symmetric (Axiom 4). The extended query
looks like this:

q(?person) : –Wife(?person) (9)
q(?person) : –marriedTo(?person, ?x),Woman(?person) (10)
q(?person) : –marriedTo(?x, ?person),Woman(?person) (11)
q(?person) : –marriedTo(?person, ?x), sisterOf(?person, ?y) (12)
q(?person) : –marriedTo(?x, ?person), sisterOf(?person, ?y) (13)
q(?person) : –marriedTo(?person, ?x),motherOf(?person, ?y) (14)
q(?person) : –marriedTo(?x, ?person),motherOf(?person, ?y) (15)



The initial query remains unchanged (9). The next two queries (10 and 11) use the defi-
nition of wife (Axiom 3) and the symmetry of marriedTo (Axiom 4). The following two
queries (14 and 15) use the same two axioms and additionally the definition that every
mother is a woman (Axiom 2). The last two queries (12 and 13) are similar to the two
before, but use the axiom about sisterOf (Axiom 1).

Because of the restricted expressivity of OWL 2 QL, all rewriting algorithms only produce
unions of conjunctive queries or non-recursive Datalog programs. The expressive power of
those queries is equal to that of relational algebra, i.e. essentially SQL. Thus the rewritten
Datalog query can also be fully translated to SQL. The translation of Query 9 looks as
follows:

SELECT abox . i n s t a n c e AS wife , abox . con f ( )
FROM abox
WHERE abox . c l a s s = ’ Wife ’

The function conf() is provided by the probabilistic database and returns the probability
for a single row of the result.

Query 10 is translated the following way:

SELECT abox . i n s t a n c e AS wife ,
( abox . con f ( ) ∗ m a r r i e d . con f ) AS con f

FROM abox
LEFT JOIN (SELECT r e l a t i o n . s u b j e c t AS person , con f ( )

FROM r e l a t i o n
WHERE r e l a t i o n . s u b j e c t = abox . i n s t a n c e AND

p r o p e r t y = ’ mar r i edTo ’
GROUP BY r e l a t i o n . s u b j e c t ) m a r r i e d

ON m a r r i e d . p e r s o n = abox . i n s t a n c e
WHERE abox . c l a s s = ’Woman ’

For the sake of brevity I omit the rest of the queries. They are constructed in a way similar
to Query 10.

The last query also shows how the probabilities in a single query are aggregated. I as-
sume that all atoms of a query are mutually independent and thus their probabilities for
the individual answers can simply be multiplied to compute that of the final result. For
the given example, this assumptions is valid. However, it is easy to formulate a query
that contains atoms with dependencies, for example q(?child) : –motherOf(?x, ?child),
Woman(?x). Clearly, motherOf(?x, ?child) depends on Woman(?x), as every mother
has to be a woman, and thus their probabilities may not simply be multiplied to compute
the result. How to handle dependencies in detail is part of my current work (cf. Section 4).

After translating all queries, I concatenate them using UNION ALL and send the result-
ing single query to the probabilistic database. For this small example it will return the
following result:



wife | conf
======================
Alice | 0.240
Alice | 0.285

For each row of a result, there exists an explanation (cf. [KPHS07]) why it is part thereof.
A single explanation contains all axioms and assertions involved in the computation of one
result row. The explanations for the results above are the following:

∃marriedTo uWoman ≡Wife

∃sisterOf vWoman

marriedTo(Alice,Bob), [0.30]

sisterOf(Alice, Carol), [0.80]

(16)

Wife ≡ ∃marriedTo uWoman

∃motherOf vWoman

marriedTo(Alice,Bob), [0.30]

motherOf(Alice,Dave), [0.95]

(17)

In the case of Alice, there are two different explanations for her being a wife, each with
its own probability. When aggregating those rows, it is again important to consider if
they are independent or not. For independent rows, I can simply multiply the comple-
mentary probability of each row and use the complementary probability of this product
as the resulting probability of the aggregation. In this case, however, the two results are
dependent because their explanations both contain the assertion marriedTo(Alice,Bob),
[0.30]. In every world marriedTo(Alice,Bob), [0.30] has to be true, however there are
three possible combinations for sisterOf(Alice, Carol), [0.80] and motherOf(Alice,
Dave), [0.95] for which Alice is a wife:

P (marriedTo(Alice,Bob)) = 0.30

P (sisterOf(Alice, Carol)) = 0.80

P (motherOf(Alice,Dave)) = 0.95

(18)

P (marriedTo(Alice,Bob)) = 0.30

P (sisterOf(Alice, Carol)) = 0.80

P (¬motherOf(Alice,Dave)) = 0.05

(19)

P (marriedTo(Alice,Bob)) = 0.30

P (¬sisterOf(Alice, Carol)) = 0.20

P (motherOf(Alice,Dave)) = 0.95

(20)

Calculating the probability for each of this worlds by multiplying the individual atoms and
summing them up gives the following final result:



wife | conf
======================
Alice | 0.297

I plan to use the probabilistic database system MayBMS [HAKO09]. MayBMS is a mature
and stable implementation that extends PostgreSQL. It defines its own query language
which is an extension of SQL with uncertainty-aware constructs. MayBMS offers a solid
and scalable foundation for my approach.

To store an ABox inside MayBMS, there is either the possibility to specifically create a
schema for a given ontology, i.e. tables for every property, class, etc., or the develop a
generic schema that can store any ontology. If the schema is tailored specifically for an
ontology, this could provide performance benefits However, for the framework to be as
flexible as possible I will create a schema that is able to store arbitrary ontologies and
probabilistic information.

It is an open question how to describe uncertain information in an ontology. To my knowl-
edge there is no standard or proposal that describes how this should be done. RDF and
OWL offer the possibility for reification (statements about another statement), but this con-
struct is cumbersome, hard to read and understand, and badly supported in editors. There
was an incubator group, URW3-XG9, at W3C but no working group was established to
follow up on their work and propose a recommendation.

Furthermore, there are several possibilities which constructs of the ontology are allowed
to be probabilistic. Technically, probabilistic information can be attached to either ABox
elements only, TBox elements only, or both. Supporting uncertainty in the ABox is the
easiest part, as the probabilistic database already supports this and does most of its han-
dling. The rest of the computation can be done inside the query as shown in the example.
Uncertainty in the TBox, however, needs to be incorporated into the query rewriting step,
which will be more complicated. An example for uncertainty in the TBox is Axiom 5. It
adds another possibility for Alice to be married. Probabilistic TBox axioms need special
handling during the rewriting as every query derived using that axiom is directly influ-
enced by its probability. In the beginning of my work, I will solely focus on probabilistic
information in the ABox.

4 Current Status

So far, I implemented the translation step from SPARQL to Datalog for simple queries,
e.g. without aggregates, optional graph patterns, sorting, etc. This enables me to pose
simple SPARQL queries to IQAROS and get a rewritten query in Datalog.

Currently, I am detailing the theoretical work on how to aggregate the probabilities after
the results are returned from the database. It is only valid to multiply the probabilities,
or respectively the complementary probabilities, if all the explanations for a result are
mutually independent. The assumptions used during Section 3 need further considerations,

9http://www.w3.org/2005/Incubator/urw3/



especially when extending uncertainty to the TBox.

My next steps are the following:

1. Defining a mechanism to include uncertainty into an ontology. As a first prototype,
I will use annotations which are already available and can be used on almost all
constructs.

2. Creating a database schema to store the ontology. In its first version, as a proof
of concept, this schema will contain class assertions and object property assertions
only. However, it can be easily extended later on. I plan to keep the TBox as a
separate file and not to store it in the database. This way it will be easier to make
changes with an editor of choice, e.g. Protégé10.

3. Implementing the translation from Datalog to SQL.

4. The last step towards a working prototype is the aggregation of the results returned
from the database. Here, the final probabilities are computed and can then be dis-
played to the user.

I plan to finish these goals within the next few months, my long term goals for the p.h.d.
are stated in the section future work.

5 Future Work

There are 4 directions in which I plan to continue to work after reaching my midterm goals:
Extending the framework, benchmarking its performance, and using it during a case study.

• On the one side I will extend the notion of uncertainty to the TBox and allow the
incorporation of imprecise information. For this, I will have to adapt the query
rewriting algorithm within IQAROS to account for probabilities on axioms. On the
other side, I want to implement support for additional constructs of SPARQL, e.g.
unions, optional graph patterns, or aggregates.

• Together with the theoretical work on the handling of uncertainty in the reasoning
step, it is also interesting to investigate the influence of the closed or open world
assumption on the query results.

• Furthermore, I want to test my framework for performance and scalability. One pos-
sibility for this is to use one of the established benchmark frameworks for Semantic
Web reasoning, e.g. LUBM11, SP2Bench12, or BSBM13. Those benchmarks all use
generators to synthetically generate knowledge bases. These generators could be
adapted to also create imprecise information.

10http://protege.stanford.edu/
11http://swat.cse.lehigh.edu/projects/lubm/
12http://dbis.informatik.uni-freiburg.de/forschung/projekte/SP2B/
13http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/



• Additionally to synthetic benchmarks, I want to apply my framework to riskmanage-
ment as an alternative approach to markov logic networks, which we are currently
using in a project concerned with this topic [vSOS14].

• I will further distinguish my work from the approaches used in probabilistic deduc-
tive databases. A deeper analysis of the work of Hernich et al. [HKLG13] about the
relation of Datalog and description logics is also needed.
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