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Abstract

This thesis is concerned with two macroscopic models that are based on hyper-
bolic partial differential equations (PDE) with discontinuous flux functions.
The first model describes the material flow of an entire production line with finite
buffers. We consider different solutions of the model, present the novel DFG-
method (Discontinuous Flux Godunov), and compare the results with other es-
tablished numerical methods. Additionally, we investigate a restricted optimiza-
tion problem with respect to partial differential equations with discontinuous flux
functions and consider two different solution approaches that are based on the
adjoint method and the mixed integer problem (MIP). Further, we extend the
model and its optimization problem to network structures.

The second model describe the material flow on conveyor belts with obstacle
interactions. We introduce a novel two dimensional model with a discontinuous
and a non-local flux function. We consider a finite volume method and the discon-
tinuous Galerkin method for solving this model. Finally, we validate the model
with real data and present a numerical study with respect to the introduced
solution methods.

Zusammenfassung

Die vorliegende Dissertation untersucht im wesentlichen zwei makroskopische
Modelle welche auf hyperbolische partielle Differentialgleichungen (engl. PDE)
mit unstetigen Flussfunktionen basieren.
Das erste Modell beschreibt vereinfacht den Materialfluss in einer Produktion-
slinie mit finiten Puffern. Wir untersuchen mögliche Lösungen des Modells,
präsentieren das neuartige DFG - Verfahren (engl. Discontinuous Flux Go-
dunov) und vergleichen die Resultate mit anderen gängigen numerischen Meth-
oden. Zusätzlich untersuchen wir restringierte Optimierungsprobleme bezüglich
der partiellen Differentialgleichung mit unstetigem Fluss und betrachten zwei
Lösungsansätze basierend auf den Adjungiertenverfahren und der gemischt ganz-
zahligen Optimierung (engl. MIP). Außerdem erweitern wir das Modell und deren
Optimierungsproblem auf Netzwerkstrukturen.

Das zweite Modell beschreibt den Materialfluss auf Fließbändern mit Hindernis-
Interaktionen. Wir führen ein neues zweidimensionales Modell mit unstetiger
und nicht lokaler Flussfunktion ein. Es werden ein Finites Volumen Verfahren
und das Discontinuous Galerkin Verfahren zur Lösung betrachtet. Abschließend
zeigen wir eine Validierung des Modells mit Realdaten und präsentieren eine
weitere numerische Studie bezüglich der vorgestellten Lösungsmethoden.
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Introduction

In order to manufacture products with certain standards, for example, quality,
delivered quantity, requests of customers, the entire production process needs to
be planned and controlled in detail. However, the planning of a manufacturing
system is a wide field of complex tasks that contains, e.g., constructions and ver-
ifications of single modules of production units, controlling of the entire product
or material flow, and more. Therefore, applications of simulation tools based
on mathematical models are helpful in planning, evaluating, and controlling of
manufacturing plants and production processes.

In this work, mainly two approaches are introduced for the modeling of produc-
tion processes using the fact that a high number of products (goods) can be
considered as a continuous material flow: firstly, an entire production network
including finite buffers and deterministic machine failures; and secondly, a mate-
rial flow model on conveyor belts with obstacles including congestion formations.

Mathematical models based on continuous equations, in general partial differen-
tial equations (PDEs), or in some cases conservation laws, have a broad range
of applications, for example, traffic flow [5, 6, 19, 61, 64, 68], pedestrian flow
[20, 21], or gas and fluid dynamics [8, 10].
Indeed, simulations of manufacturing systems are a mighty tool to organize in-
dustrial processes. Many mathematical models are discrete and based on consid-
eration of individual parts, for example, discrete event simulators [3] and mixed
integer models [52, 94, 101]. The drawback of these approaches however is the
enormous computational effort for a high amount of parts. Continuous mod-
els use an averaged quantity as density (parts per length), and the dynamic is
prescribed by a material flux (parts per time). Various continuous models pre-
scribing production processes are investigated in the last decades, for example,
[3, 4, 25, 26, 44, 46]. These models describe production lines or networks as a
coupling of several individual production units consisting of one processor with a
buffer in front. However, many of these models use the assumption of an unlim-
ited buffers which are not realistic in various applications. Whereas, few models
[4, 59] are able to prescribe production processes with limited buffers by using
discontinuous conservation laws. Utilization of discontinuities seems to be justi-
fied for different applications in production processes. We illustrate this with an
example of a buffer in a production line. In general, a buffer can be prescribed
by two different states, namely the buffer capacity is reached or not reached.
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2 Introduction

Therefore, unprocessed goods can be stacked in the buffer if the maximal buffer
capacity is not reached. In that case, the production process works straightfor-
ward. However, if the buffer is full, then we observe a tailback in the production
process similar to traffic flow problems.

In this work, we study a model based on a discontinuous conservation laws and in-
vestigate an extension to a novel network model. In the latter case, the transport
of quantities are prescribed by a conservation law on each edge of the network.
Thereby, the considered quantities flow together at the intersection vertices by
certain rules and move further to other edges of the network. Generally, this
process is representable by certain coupling conditions on the network vertices
that fulfills mass conservation. Already various models including conservation
laws on network topologies are investigated, e.g., traffic flow [19, 61, 62, 64, 68],
gas and water pipe lines [8, 22], telecommunication networks [27]. Furthermore,
these network models use conservation laws with continuous flux functions. So
far, however, there has been discussion about network coupling conditions for
discontinuous conservation laws.

In general, a numerical computation and solving of discontinuous flux PDEs is
a challenging task, since the most numerical solvers require a continuous flux
function. A common way of solving such equations is the usage a regularized
equation with a continuous flux and solve it by a suitable numerical method.
Depending on the refinement of the regularization, a common numerical method
needs a high number of iterations that yields a enormous computational effort.
Obviously, there is a need for an alternative solution scheme that computes the
discontinuous conservation law in an efficient way without any regularization.

Another important application in manufacturing products is decision making
with aid of optimization problems, for example, minimizing the buffers, fulfilling
a demand, finding an optimal time interval for a maintenance, and much more.
In general, the optimization of production processes tries to find an optimal state
in a system with respect to an objective function. There are different approaches
that try to provide optimization problems with PDE constraints. On the one
hand, an adjoint equation system of the discretized model can be derived, i.e., we
derive a first order optimality system of the discretized version of the continuous
model. Optimization issues for continuous PDEs based on adjoint approaches
are investigated, for instance [99, 100]. On the other hand, the discretized model
can be transformed into a linear mixed integer problem (or short MIP). Refor-
mulation of continuous conservation laws to MIP can be found, for example, in
[25, 37, 51]. However, far too little attention has been paid to optimization ap-
proaches with respect to discontinuous conservation laws.

Another application in due of production processes is the simulation of the ma-
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terial flow in a more accurate way, i.e., a detailed modeling of certain sectors of a
manufacturing system, e.g., the conveyor belt, machine processes of production
units, and many more. Within this work, we are interested in finding a novel
continuous model that describes material flow on conveyor belts. Many models
in order to simulate production processes are discrete and based on ordinary dif-
ferential equation systems, e.g., [90, 91, 103]. However, discrete models would
be too time consuming for a large amount of parts. Therefore, a derivation of a
continuous model represent a good compromise.

Parts of this work will be or have been published in the following journals and
proceedings:

• S. Hoher, P. Schindler, S. Göttlich, V. Schleper, and S. Röck, System Dy-
namic Models and Real-time Simulation of Complex Material Flow Systems,
In H. A. ElMaraghy, editor, Enabling Manufacturing competitiveness and
economic sustainability, Part 3, pages 316-321. Springer, 2012.

• S. Göttlich, A. Klar, and P. Schindler, Discontinuous conservation laws for
production networks with finite buffers, Discontinuous conservation laws for
production networks with finite buffers, SIAM J. Appl. Math., 73(3):1117-
1138, 2013.

• S. Göttlich, S. Hoher, P. Schindler, V. Schleper, and A. Verl, Modeling,
simulation and validation of material flow on conveyor belts - accepted to
applied mathematical modeling, 2013.

• S. Göttlich, and P. Schindler, Optimal inflow control of production systems
with finite buffers - submitted, 2013.





Chapter 1

Mathematical Modeling in 1D

Manufacturing systems can be prescribed by a large number of mathematical
models. These approaches help us to study and analyze the dynamic of produc-
tion systems. However, they can help us to plan and optimize production pro-
cesses. Therefore, we are interested in finding simulation and optimization tools.
The focus of this chapter is on models, which prescribe deterministic machine
failures and maintenance procedures in a production line. As a rule, these mod-
els are time-dynamic. There are various approaches to prescribe such a behavior.
On the one hand, there exist models based on the computation of individual
parts. These approaches are classified as microscopic models. The drawback of
this approach however is an enormous computation time for a large number of
parts. On the other hand, alternative approaches are fluid models based on par-
tial differential equations (PDE). These models are characterized by aggregate
quantities such as product density and material flow, see [4, 26, 28, 44, 46] and
many more. The computation time of fluid models is invariant of the number of
parts. Hence, this is a clear advantage in comparison to microscopic models. The
use of such models is widely found in traffic flow applications [19, 61, 64, 68]. In
the last years, traffic flow models based on PDEs are extended to applications in
production and manufacturing systems. We refer to [3, 4, 25, 26, 44, 46, 58] for
an overview.
In this chapter, we present a phenomenological model for production lines with
break-downs and limited buffers. As long as the maximum buffer limit is not
reached, the production in process is straightforward. If the buffer is full, how-
ever, then we observe a bottleneck situation causing congestions similar to the
traffic flow problems. In the beginning of this chapter, a basic microscopic model
in one dimensional is introduced to prescribe the dynamic of production processes
with break-downs. The underlying fluid model of this microscopic approach is a
conservation law with a discontinuous flux function. In general, problems with
discontinuous flux functions are divided in two classes: discontinuities in the
quantity or density, e.g. [16, 29–32, 41, 59, 81, 82, 102] or discontinuities in the
space variable [1, 7, 42, 76, 96, 97] and references therein. In our case, the flux
contains one discontinuity in the quantity.
The computation of approximate solutions of the discontinuous flux conservation
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6 Chapter 1. Mathematical Modeling in 1D

law requires special numerical methods. Generally, finite volume approaches yield
good approximations for conservation laws. However, these approaches work only
for continuous flux functions. One option is to regularize the discontinuous flux
to a continuous function and use a finite volume method to solve them, for ex-
ample, the regularized flux Godunov method (RFG). Nevertheless, this approach
requires a high number of iterations for an accurate approximation to the original
problem. Indeed, this results in high computational effort. Another option to
solve efficiently discontinuous conservation laws is a wave front tracking method
based on the exact solutions of Riemann problems. If we connect the ideas of the
finite volume and the wave front tracking, we derive a new method for computing
discontinuous flux conservation laws. This method is called discontinuous Go-
dunov method (DFG) and it is a fast and accurate method to solve discontinuous
flux conservation laws.
Another important task is an optimal control of production lines. There are sev-
eral optimization approaches with PDE restrictions. In this thesis, we deal with
two approaches for an optimization with restriction to a conservation law in dis-
continuous flux. Both approaches are based on the first discretize then optimize
procedure. The first approach uses an adjoint system to compute efficiently a
steepest descent direction for an iterative method. Adjoint equation approaches
are often used for continuous optimization, see [63, 75, 99]. The other approach
is a reformulation of the DFG method to a mixed integer program (MIP). The
nonlinearity of this problem is transformed into linear constraints that include
binary variables. Furthermore, a connection of the adjoint system within the
MIP model is shown.
This chapter is structured as follows: In Section 1.1 we introduce a one dimen-
sional microscopic model based on an ordinary differential equation system. The
following section provides the concept of continuous modeling with conservation
laws. Therefore, the microscopic model of Section 1.1 is used to derive a con-
servation law with discontinuous flux. Additionally, several cases of Riemann
solutions and the appearance of zero waves are discussed. In Section 1.3, the
numerical methods for discontinuous flux conservation laws, RFG, DFG, and the
front tracking method, are presented. An application in optimization with an
adjoint equation and MIP model approach is investigated in Section 1.4. Finally,
we show the numerical results in Section 1.5.

1.1 Microscopic Model

We introduce a phenomenological model to prescribe the material flow in a man-
ufacturing system with break-downs. Such a manufacturing system is organized
as a production line consisting of machines wherein each machine is responsible
for certain production steps and products are moved between machines. If such
a machine is occupied or stopped, incoming goods cannot be processed and must
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be stored in a buffer. As a rule, such buffers have a limited capacity. In case
of a machine break-down, it could happen that a buffer reaches its maximal ca-
pacity. As a consequence, the preceding machine must be stopped sequentially.
In such a situation, we observe a tailback of goods, which is similar to traffic flow.

We present a microscopic model to prescribe such a behavior. The meaning of
microscopic is the individual characterization of each object in the system. The
approach is based on the following assumptions:

• The dynamic of each good in a manufacturing system are prescribed indi-
vidually.

• The machine break-downs are deterministic.

• The states of goods are reduced to the degree of completion (DOC) and the
time.

• The processing sequence is directed by the FIFO principle (first in, first
out).

Each good is assigned to an index i ∈ Z. The state of degree of completion (DOC)
of a good i at a time t is a function xi(t). Also we assume that the goods are
ordered by the DOC state, i.e., xi(t) < xi+1(t). The production process of each
good i is characterized by a production velocity vi(t). Additionally, we assume
that the velocity vi(t) also depends on the state of the good xi+1. The dynamic
of xi(t) is given by an ordinary differential equation system (ODE)

d

dt
xi(t) = vi(t) for all i, (1.1)

where vi(t) is the actual processing velocity for a good i at the time t.

vi(t) =

{
a if xi+1 − xi > H0,

0 if xi+1 − xi = H0.
(1.2)

The velocity depends on the distance xi+1 − xi and a positive constant a > 0. If
the distance is larger than the minimal distance H0, the goods will be processed
by a production velocity a. Otherwise, if the distance xi+1 − xi is equal to H0,
the goods will be stopped immediately.
In case of a break-down situation, a certain good i at a DOC state xi(t) cannot
be processed anymore. To obtain a break-down in the model, the production
velocity is set to zero, i.e., vi(t) = 0. The incoming goods i − 1 with velocity
vi−1 > 0 reduces its distance to i if the minimal distance is reached. Then the
velocity vi−1 becomes immediately zero. Hence, the free flow state turns into a
blocking state. An illustration is given in Figure 1.1.
If a machine is repaired, the velocity vi is set to the original production velocity
a. Then the blocking state turns into the free flow state.
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degree of completion

vi

xi

H0
Break-Down!

Figure 1.1: Illustration of the microscopic model. Each good i moves with a
velocity vi. The distance of both goods never deceeds H0.

1.2 Continuous Modeling

In the following, we consider a large number of goods in a manufacturing system.
Generally, the microscopic model yields a large ODE system and the computa-
tion time becomes very high. This problem can be avoided if we homogenize
the quantity (goods) to a density. The result is a macroscopic or continuous
approach.
Continuous models based on differential equations are nowadays widely used to
describe production systems, see [3, 4, 25, 26, 44, 46, 58] for an overview.

1.2.1 The Conservation Law

There are two different approaches to describing the movement of several particles
moving in a certain direction x. It can be done either by describing the movement
of each part or by considering the evolution of a part density. The density of goods
on space x and time t is given by ρ(x, t) ∈ R+. The amount of goods in a spatial
interval [x1, x2] is given by

∫ x2

x1

ρ(x, t)dx.

The material flux f(x, t) prescribes the amount of goods crossing each point x
in one time unit. The amount of goods passing through the point x during the
time interval [t1, t2] is given by

∫ t1

t2

f(x, t)dt.

In general, the particles in the system cannot be lost. This means, that the
amount of goods in a arbitrary interval [x1, x2] at a certain time t2 minus the
amount of goods in the same interval at an earlier time t1 is equal to the difference
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of inflowing goods at location x1 minus outgoing goods at location x2 during the
time interval [t1, t2], i.e.,

∫ x2

x1

ρ(x, t2)dx−
∫ x2

x1

ρ(x, t1)dx =

∫ t1

t2

f(x1, t)dt−
∫ t1

t2

f(x2, t)dt. (1.3)

If ρ and f is smooth enough, (1.3) yields

∫ t1

t2

∫ x2

x1

∂tρ(x, t) + ∂xf(x, t)dxdt = 0. (1.4)

Because (1.4) holds for all t1, t2 > 0 and all intervals [x1, x2], we obtain a conser-
vation law, a hyperbolic partial differential equation (PDE):

∂tρ(x, t) + ∂xf(x, t) = 0. (1.5)

However, (1.5) requires continuous differentiable functions ρ and f . This might
be a strong restriction. The integral form of (1.3) holds, even when ρ and f are
discontinuous.
Multiplying (1.5) by test functions Φ(x, t) and integrating with respect to the
whole space and time domain yields

∫ ∞

0

∫ ∞

−∞

[∂tρ(x, t) + ∂xf(x, t)]Φ(x, t)dxdt = 0. (1.6)

In particular, Φ has a compact support, meaning it is identically zero outside of
some bounded region of the x-t-plane. If we assume that Φ is a smooth function,
then we can integrate by parts in (1.6) to obtain the following weak solution
formulation. For more details, we refer to [14, 79].

Definition 1.2.1 (Weak Solution). A function ρ(x, t) is called a weak solution
of (1.5) if it holds

∫ ∞

0

∫ ∞

−∞

[ρ∂tΦ+ f∂xΦ]dxdt = −
∫ ∞

∞

ρ(x, 0)Φ(x, 0)dx (1.7)

for all smooth functions Φ with compact support.

The equation (1.5) requires the unknown functions ρ and f . Hence, the degree
of freedom can be reduced to one if f depends explicitly on ρ.

1.2.2 Connection of the Microscopic Model and the
Conservation Law

In the following, we find the relation between the flux f and the density ρ in
consideration of the microscopic model. Derivations of continuous models from
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certain microscopic models are already investigated, e.g., [3, 5]. The following
computation orientates to [3].
We assume that a function z(x, t) exists such that ρ(x, t) = −∂xz(x, t). Set
ρ(x, t) = −∂xz(x, t) and integrate (1.5) once with respect to x. This yields

∂tz(x, t)− f(x, t) = 0. (1.8)

We construct an approximation of ρ, z, and f based on the microscopic model
in Section 1.1 which fulfills (1.8) arbitrary for large number of goods. This is a
motivation to get a PDE model for the microscopic model in Section 1.1.
In the following, we consider the microscopic model and introduce the total vol-
ume Y of all goods in the system. Also, Y is bounded and do not become infinity.
Furthermore, N denotes the number of all goods. Additionally, we define the ratio
of the total volume between the total amount of goods, i.e.,

∆y :=
Y

N

We define a function Z(x, t) based on the solution of the ODE system (1.1).
Moreover, Z is called N-curve, see [84]. The N-curve Z(x, t) at a DOC state x is
given by the number of goods which have passed the DOC state x at time t, i.e.,

Z(x, t) =
N∑

i=1

∆y ·H(xi(t)− x),

where H denotes the usual Heaviside function

H(x) =

{
1 if x > 0,

0 if x ≤ 0.

Note that z of equation (1.8) is a N-curve as well.
The flux at a DOC state x is given by the time derivative of Z(x, t), i.e.,

F (x, t) =
d

dt
Z(x, t) = ∆y

N∑

i=1

δ(xi(t)− x) · vi(t),

where δ terms the dirac-distribution. The density at a state x is computed by
the negative spatial derivative of Z(x, t), i.e.,

R(x, t) = − d

dx
Z(x, t) = ∆y

N∑

i=1

δ(xi(t)− x).

Multiplying R with arbitrary test function Φ and integration with respect to x
over R yields

∫ ∞

−∞

Φ(x)R(x, t)dx =
N∑

i=1

Φ(xi(t))∆y.
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We rewrite this into a Riemann sum for an integral as

∫ ∞

−∞

Φ(x)R(x, t)dx =
N∑

i=1

Φ(xi(t))(∆xi(t) · ρ(xi(t), t)),

where ∆xi(t) denotes the distance of xi+1(t) and xi(t) and the function ρ(x, t) is
given at x = xi(t), i.e.,

∆xi(t) = xi+1(t)− xi(t), ρ(xi(t), t) =
∆y

xi+1(t)− xi(t)
.

Therefore, R approximate the function ρ arbitrary in a weak sense for a high
number of goods, i.e.,

∫ ∞

−∞

Φ(x)R(x, t)dx ≈
∫ ∞

−∞

Φ(x)ρ(x, t)dx.

By the same way, we find a function f which approximates F in a weak sense for
large N , i.e.,

∫ ∞

−∞

Φ(x)F (x, t)dx =
N∑

i=1

Φ(xi(t))∆y · vi(t) =
N∑

i=1

Φ(xi(t))(∆xi(t) · f(xi(t), t))

≈
∫ ∞

−∞

Φ(x)f(x, t)dx,

where f(x, t) is given in x = xi(t) by

f(xi(t), t) = vi(t) ·
∆y

xi+1(t)− xi(t)

= vi(t) · ρ(xi(t), t).

The velocity vi(t) which is defined in (1.2) has an alternative form

vi(t) = a ·H(xi+1 − xi −H0) = a ·H(
∆y

H0
− ∆y

xi+1 − xi

)

= a ·H(ρmax − ρ(xi(t), t)),

where ρmax = ∆y
H0

. Then the flux f(x, t) for x = xi(t) is

f(xi(t), t) = aρ(xi(t), t) ·H(ρmax − ρ(xi(t), t)). (1.9)

At this point, the functions ρ(x, t) and f(x, t) is given only for x = xi(t). The
next step is to define ρ, f for all x ∈ R by a suitable interpolation. Especially, f is
representable as a ρ-dependent function. Furthermore, it is possible to construct
an N-curve z(x, t) from ρ. Finally, we show that z(x, t) fulfills (1.8) arbitrary for
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large N .
The density ρ is given for single points xi(t). We extend the function ρ(x, t) for
all x by an interpolation approach, i.e.,

ρ(x, t) = ρ(xi(t), t) if xi(t) ≤ x < xi+1(t), for all i.

Also the interpolation of the density ρ preserves the total mass, i.e., the spatial
integral of ρ,

∫ ∞

−∞

ρ(x, t)dx =
N∑

i=1

∆xi(t)ρ(xi(t), t) = ∆yN = Y,

yields the total volume Y . Thus, an interpolation of the flux f(x, t) is given by

f(x, t) = aρ(x, t) ·H(ρmax − ρ(x, t)).

By definition, the N-curve z(x, t) is the negative antiderivative of ρ(x, t), i.e.,

z(x, t) = −
∫ x

x0

ρ(s, t)ds, or ρ(x, t) = −∂xz(x, t),

for an x0 < x1(0). Especially, z(x, t) is a continuous function. Now we evaluate
the time derivative of z(x, t) for an x with xi(t) ≤ x < xi+1(t), i.e.,

∂tz(x, t) =
d

dt

∫ x

x0

−ρ(s, t)ds = d

dt

( i−1∑

k=1

−∆xk(t)ρ(xk(t), t)− ρ(xi(t), t)(x− xi(t))

)

= − d

dt
ρ(xi(t), t)(x− xi(t)) =

∆y

∆xi(t)2
(vi+1(t)− vi(t))(x− xi(t)) +

∆y

∆xi(t)
vi(t).

Finally, this results

∂tz(x, t) =
∆y

∆xi(t)2
(vi+1(t)− vi(t))(x− xi(t)) +

∆y

∆xi(t)
vi(t). (1.10)

• Case 1: The distance of two neighboring goods is xi+1 − xi > H0. This
yields that the goods i and i+ 1 moves with velocity a, i.e., vi = vi+1 = a.
Insert vi(t) and vi+1(t) in equation (1.10). In that case, ∂tz(x, t) simplifies
to

∂tz(x, t) = a
∆y

∆xi(t)
= aρ(x, t), for xi(t) ≤ x < xi+1(t).

• Case 2: The distance of the goods i and i + 1 is xi+1 − xi = H0. If the
velocity of the succeeding good i+1 becomes zero, i.e., vi+1(t) = 0, then the
good i stops as well, i.e., vi(t) = 0. By applying vi(t), vi+1(t) in equation
(1.10) yields

∂tz(x, t) = 0, for xi(t) ≤ x < xi+1(t).
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• Case 3: The distance of the goods i and i + 1 is larger than H0 and the
succeeding good i + 1 stops, i.e., xi+1 − xi > H0 and vi+1 = 0. Thus,
vi(t) = a until xi(t) reaches the minimal distance H0. Moreover, (1.10)
yields

∂tz(x, t) = aρ(xi(t), t)−
x− xi(t)

xi+1 − xi(t)
· aρ(xi(t), t), for xi(t) ≤ x < xi+1(t).

In all cases ∂tz coincides with f in x = xi(t) for all i, i.e.,

∂tz(xi(t), t) = f(xi(t), t), ∀i.

Especially in case 1 and 2 holds ∂tz(x, t) = f(x, t) for all x. In case 3, ∂tz(x, t) is
a piecewise linear interpolation of f(xi, t) with sampling points xi. Furthermore,
∂tz(x, t) is an approximation of f(x, t) for large N . Integration over the difference
|∂tz(x, t)− f(x, t)| with respect to x yields

∫ ∞

−∞

|∂tz(x, t)− f(x, t)|dx Case 1,2
=

∑

vi=a,vi+1=0

∫ xi+1(t)

xi(t)

|∂tz(x, t)− f(x, t)|dx

=
∑

vi=a,vi+1=0

ρ(xi(t), t)∆xi(t)
2 ≤ N · ρ(xi(t), t)

1

N2
= O(

1

N
)

Moreover, (1.8) is arbitrary fulfilled in a weak sense for N → ∞, i.e.,

∂tz(x, t)− f(x, t) = 0.

Also f(x, t) is a function which depends on the density ρ(x, t) and is representable
as

f(ρ) = aρH(ρmax − ρ).

1.2.3 The Flow Model

The models of interest rely on conservation laws with discontinuous flux func-
tions representing production units with finite buffers. The evolution of the part
density ρ(x, t) ∈ [0, ρmax] satisfies for all x ∈ [0, 1] the equation

∂tρ+ ∂xf(ρ) = 0, ρ(x, 0) = ρ0(x), (1.11)

where the relation between flux and density is given by

f(ρ) = H(ρmax − ρ)f̃(ρ). (1.12)

Since H(·) denotes the Heaviside function and f̃(ρ) is a smooth concave function.
In the following the solution of (1.11) with discontinuous flux (1.12) is defined as
a limit process of weak solutions of a regularized model. A regularized model is
a modification of (1.11) with a continuous flux, which approximates the discon-
tinuous flux (1.12).
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ρmax

ρ

f(ρ)

ρmax

ρ

f(ρ)

Figure 1.2: An example for the flux function in (1.12) (left picture) and the lin-
earized flux function (1.13) (right picture).

Definition 1.2.2 (Regularized Flux). A flux fδ is a regularized flux of f if it
holds

• fδ(ρ) is continuous for all ρ ∈ [0, ρmax].

• fδ(ρmax) = 0.

• fδ is concave, i.e., fδ(λρ1 + (1 − λ)ρ2) ≥ λfδ(ρ1) + (1 − λ)fδ(ρ2) for all
λ ∈ [0, 1], ρ1, ρ2 ∈ [0, ρmax].

• fδ is an arbitrary approximation of f , i.e.,
∫ ρmax

0

|fδ(ρ)− f(ρ)|dρ = O(δ), δ → 0.

Definition 1.2.3 (Weak Solution). A function ρ(x, t) is a weak solution of (1.11)
with discontinuous flux (1.12) if it holds

lim
δ→0

∫ ∞

0

∫ ∞

−∞

|ρδ(x, t)− ρ(x, t)|dxdt = 0,

where ρδ is a weak solution of the continuity equation with a regularized flux fδ,
i.e.,

∫ ∞

0

∫ ∞

−∞

[ρδ∂tΦ+ fδ∂xΦ]dxdt = −
∫ ∞

∞

ρ0(x)Φ(x, 0)dx

for all smooth functions Φ with compact support.

For simplicity, we restrict this model to a linear ramp-up situation and describe
the procedure for

f(ρ) = aρH(ρmax − ρ) (1.13)
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with a constant velocity a > 0, see Figure 1.2 (right picture).
In our setting, we can use a simpler approach. The solutions of (1.13) are defined
as the limit solutions of a regularized problem, which is defined as follows. The
flux f(ρ) = aρH(ρmax − ρ) is approximated by the continuous function fδ for
δ > 0 with

fδ(ρ) = min{aρ, 1
δ
(ρmax − ρ)} for δ > 0. (1.14)

The flux function (1.14) is shown in Figure 1.3.

ρmaxσ
ρ

f(ρ)

Figure 1.3: Regularized flux function (1.14).

In the limit δ → 0, we get the convergence towards the desired flux func-
tion (1.13). In accordance with the traffic flow literature, we remark that

σ := argmax
ρ∈[0,ρmax]

fδ(ρ) =
ρmax

1 + aδ
. (1.15)

Note that, the above mentioned model with the flux function (1.14) is well in-
vestigated and intensively discussed in [27]. This knowledge will be used in
Chapter 2.1 used to extend the model (1.13) to general networks. But we before
we do so, let us discuss more details of equation (1.12) and (1.13) .

1.2.4 Riemann Problems

The Riemann problem for equation (1.13) is given by the initial data

ρ(x, 0) =

{
ρl if x < 0,

ρr if x > 0.
(1.16)

We note that the Riemann problem has been solved in more generality and ex-
plained in detail in [102], where the case of a general nonlinear flux function with
discontinuity lies at any point in the domain not just at the right boundary. As
in [4, 102] the following cases are distinguished.
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(A.) 0 ≤ ρl, ρr < ρmax: The solution to the Riemann problem is a shock wave
with speed s = a. This case is classical.

(B.) 0 ≤ ρl < ρr = ρmax: Looking at the regularized problem as δ → 0, the
solution to the Riemann problem is a shock wave traveling with speed
s = f(ρl)

ρl−ρmax
.

(C.) 0 ≤ ρr < ρl = ρmax: By applying the Rankine Hugoniot condition s =
f(ρr)−f(ρl)

ρr−ρl
with f(ρmax) = 0 directly to the discontinuous conservation law,

one would get negative valued velocities for s. Considering the regulariza-
tion fδ of aρ ·H(ρmax − ρ) one obtains a solution consisting of two dispers-
ing shock waves with intermediate state σ. The speed of the two waves is
s = −1

δ
and s = a. For small δ the solution of the conservation law with

fδ approximates the classical shock wave solution to the Riemann problem
with speed s = a.

Zero Waves

We note that, in particular in case (B.) and (C.), these Riemann problems do not
describe the dynamical picture in all situations. In certain situations solutions
of Riemann problems cannot be considered separately. One has to investigate so
called double Riemann problems, see [41, 102]. Consider, for example, a situation
with initially 2 discontinuities; as in case (B.) and in (C.), compare [102].

ρ(x, 0) =

⎧
⎪⎨

⎪⎩

ρl if x < 0,

ρmax if 0 < x < 1,

ρr if x > 1,

with ρl, ρr < ρmax. In this case the propagation of the discontinuities is not de-
scribed by a separate analysis of the Riemann problems. Considering the above
Riemann problems separately one obtains, that the left discontinuity is travel-
ing as a shock wave with negative speed s = f(ρl)

ρl−ρmax
(case (B.)) and the right

discontinuity is traveling with speed s = a (case (C.)) in the final state.
However, this is not the limit solution of the regularized problem with initial
values (1.16) as δ → 0. For fixed δ, this solution is a backward going shock
wave for the left discontinuity and a combination of two shock waves for the
right discontinuity, where one of them is propagating with speed s = a to the
right, the other one with speed s = −1/δ to the left. However, this picture is
correct, only as long as the two waves do not interact. Once they interact, (as in
once the shock wave with speed s = −1/δ arrives at the left discontinuity), we
are in a situation like in case (A.), since the density there is reduced below ρmax.
This means, from now on the regularized solution moves to the right with speed a.



1.2. Continuous Modeling 17

Since for δ → 0 the speed of propagation of the backwards going wave starting
at the right discontinuity is infinity, the solution at the left discontinuity behaves
immediately as in case (A.) and propagates with speed s = a. That means,
the limit solution of the regularized problem as δ → 0 is propagating without
changing its shape with speed s = a. See Figure 1.4 for the time evolution and
compare the corresponding figure in [102].

0 1
0

ρmax

σ

ρl

ρr

af(ρl)
ρl−ρmax

−1/δ

x

ρ

0 1
0

ρmax

σ

ρl

ρr

af(ρl)
ρl−ρmax

−1/δ

x

ρ

0 1
0

ρmax

σ

ρl

ρr

af(ρl)
ρl−ρmax

−1/δ

x

ρ

0 1
0

ρmax

σ

ρl

ρr

aa

x

ρ

Figure 1.4: Double Riemann problem and zero shock waves.

Boundary Conditions

Boundary conditions have also to be discussed carefully. Considering a boundary
value problem with a situation as in case (B.) with a boundary at xB > 0. One
can prescribe the outgoing flux at this boundary. If such a predefined outflow
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fout ranges from 0 to aρmax, by mass conservation, the shock wave in case (B.) is
moving with the speed s = f(ρl)−fout

ρl−ρmax
ranging from s = f(ρl)

ρl−ρmax
to s = a.

1.3 Numerical Methods

In this section we introduce three numerical methods for solving (1.11) with
discontinuous flux (1.12). At first, we present the regularized Flux Godunov
method. The main components of this method are the regularization of the
discontinuous flux and a numerical solver based on the Godunov method. For
the second method, we briefly review the weak solutions of (1.13) and discuss the
corresponding wave-front tracking algorithm. The latter will be used to set up the
numerical framework for the discontinuous flux Godunov (DFG) method recently
introduced in [48]. The DFG method is a finite volume approach supplemented
with a problem-adapted numerical flux allowing for a sharp tracking of shocks.
Therefore this formulation will be essential for the numerical consideration of our
optimal control problem introduced in 1.4 and 1.4.3.

1.3.1 Regularized Flux Godunov

A conventional way for solving (1.11) is the regularization of the discontinuous
flux (1.12) and the use of classical schemes for hyperbolic conservation laws,
see [4]. Therein, the flux discontinuity is connected with a linear ramp-down of
slope −1/δ, cf. Figure 1.3. The regularized flux of (1.12) is defined as

fδ(ρ) = min{aρ, 1
δ
(ρmax − ρ)} for δ > 0.

Obviously, fδ fulfills the assumptions of Definition 1.2.2, however, fδ approxi-
mates f arbitrary for small δ. Now it is possible to solve the regularized con-
servation law with conventional methods, e.g. Lax-Friedrichs, Godunov. In this
thesis, the regularized flux conservation law is solved by the Godunov method.
A detailed description of the Godunov method can be found in [79].

The spatial domain is discretized to a equidistant grid

0 = x0 < x1 < x2 < xN−1 < xN = 1.

Moreover, the spatial step size is defined as ∆x := xi − xi−1. Analogously,
discretize the time to a grid

0 = t0 < t1 < t2 < t3 < ...

with step size ∆t := tn − tn−1. An approximation of the density ρ(x, t) is given
as a set of discrete cells, i.e., ρ(x, tn) = ρni for x ∈ [xi−1, xi].
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One option to apply boundary conditions is to extend the computational domain
with additional cells, called ghost cells. We define additional cells on the left
and right boundary, i.e., [x−1, x0], [xN , xN+1] are ghost cells with values ρn0 , ρ

n
N .

Let fin be the inflow profile. Then the left ghost cell [x1, x0] is set to the value
ρn0 = fin/a.
The right boundary condition is defined as follows. We set the right ghost cell to
value ρnN+1 = ρnN for a free flow boundary. Alternatively or additionally, the right
ghost cell can set to value ρN+1 = ρmax for simulation of a zero flux condition.

FG(ρn2 , ρ
n
3 )

n

ρn0 ρn1 ρn2 ρn3 ρnN ρnN+1

x−1 x0 x1 x2 x3 xN−1 xN xN+1

Figure 1.5: Illustration of the finite volume method.

For numerical computations, we consider the explicit Godunov scheme in conser-
vative form,

ρn+1
i = ρni −

∆t

∆x
(FG(ρ

n
i , ρ

n
i+1)− FG(ρ

n
i−1, ρ

n
i )), i = 1, ..., N, (1.17)

FG(ρ
n
i , ρ

n
i+1) =

{
minw∈[ρni ,ρ

n
i+1)

fδ(w) if ρni ≤ ρni+1,

maxw∈[ρni+1,ρ
n
i )
fδ(w) if ρni ≥ ρni+1.

(1.18)

Additionally it is sufficient to hold the CFL condition which depends explicitly
of δ. In more detail, it yields:

∆t ≤ δ∆x for sufficient small δ (1.19)

As already discussed in Section 1.2.4, this regularization also implies fast back
traveling shock waves in the solution. In fact, there are two types of fast traveling
waves for the regularized version. The zero waves described in Subsection 1.2.4
and the backward traveling waves in the description of the Riemann problem
(Case (B.)), if ρl is near to ρmax. Due to the CFL condition, which is ∆t ≤ |δ|∆x
in the case of zero waves, explicit solvers are forced to use very small time-steps
for a reasonable resolution and are thus computationally expensive.
Obviously, there is a need for an alternative solution scheme that computes the
discontinuous flux function in an efficient way without any regularization.
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x0 x1 x2 x3 x4 ... xN−1 xN

fout

ρ0
ρ1

ρ2
ρ3

ρ4 ...
ρN−1 ρN

ρmax

ρ

x

Figure 1.6: Choice of the initial data for a multiple Riemann problem.

1.3.2 Wave Front Tracking Algorithm

We compute approximate solutions of (1.11) with discontinuous flux function
(1.12) by the wave front tracking approach; see [14, 41, 42, 69, 76]. The primary
idea is to approximate the initial data by step functions, i.e., piecewise constant
functions. This yields a multiple Riemann problem. Single Riemann problems
are considered and solved in 1.2.4. The result is one ore more traveling wave
fronts, which can collide. All wave interactions leads to new Riemann problems.
At first, we construct a multiple Riemann problem. Discretize the spatial domain
in a grid 0 = x0 < x1 < x2 < xN−1 < xN = 1 and define the step size ∆x :=
xi − xi−1. The problem can be formulated as a multiple Riemann problem:

ρ0(x) =
N∑

i=1

ρiχi(x), χi(x) =

{
1 if x ∈ (xi−1, xi),

0 otherwise.
(1.20)

The initial data at the boundaries is set as follows (see also Figure 1.6):

x < x0 : ρ0(x) = ρ0, f(ρ0) = aρ0,
x > xN : ρ0(x) = ρmax, f(ρmax) = fout.

Then, the wave front-tracking algorithm works as follows. We choose a starting
time defined as [tN ] = 0, i.e., no interaction between two waves has happened so
far. Since the initial data is piecewise constant given by the multiple Riemann
problem (1.20), different wave fronts will evolve over time. The key idea of
the wave front-tracking algorithm is to track each wave propagation individually.
Next, we describe the tracking procedure and present in Figures 1.7 and 1.8 some
useful illustrations.
According to the cases (A.), (C.), the shock front at position xi moves with
positive velocity, if there is no interaction between any backward traveling shock
waves. Generally, the positive shock velocity is computed via

s+i+1 :=
f(ρi)− f(ρi+1)

ρi − ρi+1
,
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cf. case (A.) in Section 1.3.2. Additionally, if fout > f(ρN), the shock moves
in positive direction. Thus, there it exists no backward traveling shock wave. If
fout < f(ρN), a shock with negative speed appears in the solution. This shock
starts at location xN and moves with velocity s−N :

s−N :=
fout − f(ρN )

ρmax − ρN
.

If the negative shock wave interacts with the shock wave of velocity s+N , we get
a new single Riemann problem with states ρl = ρN−1, ρr = ρmax, f(ρr) = fout.
Therefore a new shock wave appears. Generally, the shock velocity is determined
by

s−i :=
fout − f(ρi)

ρmax − ρi
, i = 1, . . . , N.

Note that the shock with velocity s−i moves slower than s+i , i.e., s
−
i ≤ s+i .

We define the time [ti−1] for the interaction of wave s−i with wave s+i . The slower
traveling shock changes its velocity to s−i−1. For an illustration, see Figure 1.7.

Remark 1.3.1. In the case of a zero wave, i.e., ρi = ρmax, the shock speed is
s = −∞. This yields that [ti−1] = [ti].

For evaluating the time of wave interaction [ti−1] it is necessary to have knowledge
about the previous waves. Therefore we assume that [ti] is known. Then, the
intersection of characteristic curves is

s+i ([ti−1]− [ti]) = ∆x+ s−i ([ti−1]− [ti])

which in turn recursively leads to

[ti−1] =
∆x

a− s−i
+ [ti] =

∆x(ρmax − ρi)

aρmax − fout
+ [ti] =

N∑

k=i

∆x(ρmax − ρk)

aρmax − fout
. (1.21)

In the next section we explain how the information induced by the wave front-
tracking algorithm can be used to derive a suitable and efficient numerical scheme.

1.3.3 Discontinuous Flux Godunov

Numerical schemes which are able to deal with discontinuous flux functions have
been developed for example in [81, 102] and [82]. In [82] an implicit method
based on the analysis in [16] has been developed.
The scheme described in [102] is more closely related to the presented approach.
This scheme is able to treat the general case with discontinuities located any-
where, not only on the right boundary of the density domain. It is able to deal
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ρmax

xixi−1

ρi+1

ρi

ρi−1

s+i
s+i+1

s+i−1

s−i+1

(a) Time [ti+1]

ρmax

xixi−1

ρi−2

ρi

ρi−1

s+i

s+i−1

s−i

(b) Time [ti]

ρmax

xixi−1

ρi−2

ρi−1

s+i−1

s−i−1

(c) Time [ti−1]

ρmax

xixi−1

ρi−2

s−i−2

(d) Time [ti−2]

Figure 1.7: Solution of a multiple Riemann problem for several times. Note that
the location of the interacting shock wave at time [ti−1] is computed
by s+i [ti−1] + xi−1.

with the zero waves by including the solution of the above mentioned double
Riemann problems. Thus, this algorithm avoids the stability problems due to
the zero waves. However, the waves in Case (B.) might still require a strong
restriction on the time step. In the present case, a related, but much simpler
algorithm can be set up due to the much simpler situation compared to [102];
and, in particular, due to the fact that the discontinuity is at the right end point.
The algorithm is based on the fact that for the present situation, except for Rie-
mann problems as in Case (B.), the propagation is always given by the linear flux
function. In Case (B.), the evolution of the density is given by mass conservation
and the propagation of the discontinuity is determined recursively.
Based on our theoretical considerations, we introduce a finite volume scheme to
solve (1.13) This scheme was presented for the first time in [48]. Applying the
idea of front-tracking combined with the finite volume approach will lead to a
scheme called discontinuous flux Godunov (DFG).
As before, the spatial domain is divided into N cells [xi−1, xi] with constant width
∆x. The solution is assumed to be piecewise constant on each grid cell. The cell-
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ρmax

ρi+1ρiρi−1

s−i+1

s−i

s−i−1

s+i+1s+i
s+i+1

ρi−2

[ti+1]

[ti]

[ti−1]

[ti−2]

Figure 1.8: Time evolution of multiple Riemann solutions in the (x, t)-plane, cf.
the detailed description in Figure 1.7.

averaged solution is given by ρni where n denotes the time index. The update
ρn+1
i is the cell average of the solution of the multiple Riemann problem evaluated

at interfaces between adjacent cells.
The following three-stage-algorithm, referred to as the Reconstruct-Evolve-Average
or REA algorithm as in [79], is used to compute the time evolution for ρn+1

i :

• Reconstruct a piecewise constant function ρ(x, tn) = ρni for all x ∈ [xi−1, xi]
from the cell average ρni at time tn.

• Evolve the conservation law exactly using initial data ρ(x, tn), thereby ob-
taining ρ(x, tn+1) at time tn+1 = tn +∆t.

• Average the solution ρ(x, tn+1) to determine new cell average values

ρn+1
i =

1

∆x

∫ xi

xi−1

ρ(x, tn+1)dx.

Here, the evolution step can be performed by solving local Riemann problems at
each cell interface setting ρl = ρni−1 and ρl = ρni . We solve Riemann solutions
of regularized flux functions according to (1.3) and consider the limit case δ →
0. Similar approaches are also used for conservation laws with discontinuous
flux in [41, 81, 102]. Especially the work of [102] uses REA algorithms for the
construction of finite volume methods. The main advantage of this approach is
that zero waves with infinite speed can be reproduced without any hard restriction
of the CFL condition, i.e., ∆t ≤ a∆x instead of ∆t|δ|∆x. Since three different
cases (A.)-(C.) may arise as Riemann solutions, the front-tracking approach can
be used to perform the evolution step:

(1.) Solve each local Riemann-Problem and determine the shock velocity s.
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(2.) Detect shock interactions with different velocities. Once an interaction
occurs, a new Riemann Problem emerges. Repeat step (1.) until the final
time horizon has been reached. Note that shocks can appear with infinite
velocity. The interaction of an infinite speed shock happens immediately.

After the evolution step, the front-tracking solution is averaged to obtain the cell
average values ρn+1

i .
Let F (x, t) be the numerical flux f(ρ(x, t)) at position x and time t. Then,
integration of (1.11) over the domain [tn, tn +∆t]× [xi−1, xi] yields

ρn+1
i = ρni − λF n

i + λF n
i−1, F n

i :=
1

∆t

∫ tn+∆t

tn

F (xi, t)dt

where λ = ∆t
∆x

. Let us explain the choice of F n
i . At first we consider the flux

at point xN . If aρnN < fout, then the shock moves in positive direction, i.e.,
F (xN , t) = aρnN . Otherwise, the shock moves with the negative speed s−N .
Thus the flux becomes F (xN , t) = fout. In particular, it holds F (xN , t) =
min{aρnN , fout}.
Next, we consider the flux F (xi, t) at point xi. The front-tracking approach
provides different opportunities. In fact, two configurations are possible:

• The backward traveling shock wave s−i never reaches the point xi at time
t ∈ (tn, tn +∆t). Then, the solution is just a shock wave between ρni , ρ

n
i+1

with positive speed s+i+1 = a > 0 and the flux at xi is F (xi, t) = aρi:

F n
i :=

1

∆t

∫ tn+∆t

tn

F (xi, t)dt = aρni .

• The backward traveling shock wave passes the location xi at time [t̂i] ∈
(tn, tn + ∆t). Analogous to the previous situation, the flux at xi for time
t ∈ (tn, [t̂i]) becomes F (xi, t) = aρi. For t > t̂i, the density is ρ(xi, t) = ρmax

with flux F (xi, t) = fout:

F (xi, t) =

{
aρi if t < [t̂i],

fout if t > [t̂i],

where the time [t̂i] can be computed as:

[t̂i] = [ti]−
a[ti]

s−i
+ tn.
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This leads to the following numerical flux:

F n
i =

1

∆t

∫ tn+∆t

tn

F (xi, t)dt =
1

∆t

[
aρni ([t̂i]− tn) + fout(tn +∆t− [t̂i])

]

=
1

∆t

[
(aρni − fout)[ti] + (ρmax − ρni )a[ti]

]
+fout

=
1

∆t
(aρmax − fout)[ti] + fout

(1.21)
=

N∑

k=i+1

∆x

∆t
(ρmax − ρnk) + f out

=
ρmax − ρni+1

λ
+

N∑

k=i+2

1

λ
(ρmax − ρnk) + f out =

ρmax − ρni+1

λ
+ F n

i+1.

The backward traveling shock wave passes xi if and if only the wave velocity s−i
is negative. This is valid for aρni > fout. Hence,

∫ tn+∆t

tn

aρni dt >

∫ [t̂i]

tn

aρni dt+

∫ tn+∆t

[t̂i]

fout dt with aρni >
ρmax − ρni+1

λ
+ F n

i+1.

Summarizing, the discontinuous flux Godunov method (DFG) is defined as:

(PDE): ρn+1
i = ρni − λ[F n

i − F n
i−1], i = 1, . . . , N

supplemented with the numerical flux:

(FLUX): F n
i−1 = min{aρni−1,

ρmax − ρni
λ

+ F n
i }, i = 2, . . . , N.

The solution is also given by the initial data and the boundary values. For the
inflow, we choose the left boundary value of the density ρ(0, t).

(INFLOW): F n
0 = aρn0 ∀n = 1, . . . , NT − 1.

It is also necessary to prescribe outflow boundary conditions. We introduce a
variable fn

out that limits the outflow in a following way:

(OUTFLOW): F n
N = min{aρnN , fn

out} ∀n = 1, . . . , NT − 1.

The DFG-method satisfies the following numerical properties:

Lemma 1.3.2 (Monotonicity). Let the CFL condition hold, i.e., (1 − aλ) ≥ 0.
Then, the discontinuous flux Godunov (DFG) method is a monotone numerical
scheme with respect to ρni for all i, i.e., increasing the value of any ρni leads to
non-decreasing values ρn+1

i .
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Proof. We consider the following case distinction for the numerical flux F n
i−1 :

Case 1: Assume that the flux satisfies F n
i−1 = ρmax−ρni

λ
+ F n

i . Then, the DFG-
scheme simplifies to

ρn+1
i = ρni − λF n

i + λ
ρmax − ρni

λ
+ λF n

i = ρmax

and ρn+1
i is constant for all ρni .

Case 2: Assume that the flux satisfies F n
i−1 = aρni−1. We also assume that there

exits a constant K ≥ 0 such that

F n
k =

ρmax − ρnk+1

λ
+ F n

i+1, k < i+K, (1.22)

F n
k = aρnk , k = i+K. (1.23)

Note if K = 0, then F n
i−1 = aρni−1, F

n
i = aρni . We obtain the recursion

ρn+1
i = ρni − λ

(
aρni+K +

K∑

k=1

ρmax − ρni+k

λ

)
+λaρni−1

=
K−1∑

k=0

ρni+k −Kρmax + (1− aλ)ρni+K + aλρni−1.

Due to the CFL condition and (1.22)+ (1.23), ρn+1
i is non-decreasing for all ρni .

Thus, the DFG-method is monotone.

We have shown that the DFG-method belongs to the class of monotone methods.
These methods also imply the following properties:

1. The scheme is monotonicity preserving, i.e., ρni ≤ ρ̄ni for all i implies ρn+1
i ≤

ρ̄n+1
i for all i,n.

2. L1-contraction:

∥ρn+1 − ρ̄n+1∥L1
≤ ∥ρn − ρ̄n∥L1

.

3. Total Variation Diminishing (TVD):

∥ρn+1∥BV ≤ ∥ρn∥BV .

We refer to [79] for more details.
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1.4 Optimization

Mathematical models with optimization issues play an important role for many
applications. In consideration of manufacturing systems, it is useful to minimize
incurred costs, reduce machine capacity utilization, or fulfill demands. In Subsec-
tion 1.4.1, we consider an optimal distribution of material flow for known dates
of maintenance. Therefore, two approaches are presented. The first approach is
based an adjoint equations. The other approach is an reformulation of the DFG
method to a Mixed Integer Program (MIP). Furthermore, we show a connection
between both approaches. In Subsection 1.4.6, we extend the MIP model to find
the optimal date of a maintenance.

1.4.1 The Inflow Control Problem

The Inflow control problem consists of a minimization of inflow such that the
constraints given by the discontinuous conservation law is ensured. In other
words: We assume that for a predefined outflow the optimal inflow into the
production system is determined such that congestions are avoided. It is up to
optimization to find the optimal time-dependent inflow u⃗n = F⃗0

n regarding the
fact that a certain supply S, i.e.,

(SUPPLY): ∆t
NT∑

n=1

F n
0 = S,

with box constraints

(BOX): F n
0 ≤ W ∀n,

must be fulfilled. Mathematically, we solve this problem using a first discretize-
then optimize approach, i.e., we directly apply the numerical discretization to
the optimal control problem. We prefer the discrete optimization approach due
to the almost linear nature of the problem. Similar to [51], one can show that
there exits a direct connection between adjoint variables and dual variables in
this setting.

min
u⃗n

J(ρni ) =
NT∑

n=1

N∑

i=1

Cn
i ρ

n
i (1.24)

subject to

(PDE), (FLUX), (OUTFLOW), (SUPPLY), (BOX),

where Cn
i are positive weights and u⃗n = F⃗0

n the controls. In the following sec-
tions, we formally derive discrete adjoint equations and a mixed-integer program
as well to solve (1.24). We also focus on the equivalence of both approaches.
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1.4.2 Optimality system

We formally derive the first order optimality system of the discrete problem.
Therefore, we transform the pde-restricted problem (1.24) into an unrestricted
one. We denote by φn

i the Lagrange multiplier for the discretized partial differ-
ential equation and ψ for the inflow condition. Then, the discrete Lagrangian
function reads:

L(ρ⃗i
n, u⃗n, φ⃗n

i ,ψ) =
NT∑

n=1

N∑

i=1

Cn
i ρ

n
i +

NT−1∑

n=1

N∑

i=1

φn
i

(ρn+1
i − ρni
∆t

+
F n
i − F n

i−1

∆x

)

+ ψ(
NT−1∑

n=1

F n
0 − S∆t−1).

We formally deduce the first order optimality system from (1.25) by assuming
sufficient regularity conditions.

• The state equations (forward) equations result from the derivatives with
respect to the Lagrange multipliers φn

i and ψ, i.e., they are immediately
given by the constraints (PDE), (FLUX), (OUTFLOW) and (SUPPLY).

• The adjoint (or backward) equations are

φn−1
i = Cn

i + φn
i − λ

N∑

j=1

(∂ρni F
n
j − ∂ρni F

n
j−1)φ

n
j , (1.25)

for i = 1, . . . , N and n = 2, . . . , NT − 1 where the initial values obey

φNT−1
i = CNT

i , i = 1, . . . , N. (1.26)

Obviously, we need the derivatives ∂ρni F
n
j of the non-smooth numerical flux

function in (1.25). Therefore, it is necessary to smooth the min−expression
by a smooth approximation minϵ ≈ min. We choose

minϵ(α, β) :=

{
α if α ≤ β,
−ϵ2

α−β+ϵ
+ β + ϵ if α > β.

(1.27)

with α = aρni−1 and β =
ρmax−ρni

λ
+F n

i . Then, the derivatives of the numerical
flux can be represented as

∂ρni F
n
j = ∂1minϵ{aρnj ,

ρmax − ρnj+1

λ
+ F n

j+1} · aδi,j (1.28)

+ ∂2minϵ{aρnj ,
ρmax − ρnj+1

λ
+ F n

j+1} · (−δi,j+1
1

λ
+ ∂ρni F

n
j+1)
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for i = 1, . . . , N where δi,j denotes the Kronecker delta, i.e., δi,j = 1, i = j
or δi,j = 0, i ̸= j. Note that the flux F n

j does not depend on the density ρni
for j > i. The derivatives are then

∂ρni F
n
j = 0, j > i.

The outflow F n
N only depends on the density values ρnN . Hence,

∂ρni F
n
N = ∂1minϵ{aρnN , fn

out} · aδi,N .

• Considering the gradient equation, we end up with:

λφn
1 + ψ = 0. (1.29)

An optimal solution of the first order optimality system can be found by pro-
jected gradient methods where the solution of the gradient equation (1.29) is
computed by a serial realization of the state and adjoint equations. The idea
is to start with a feasible solution of (1.24) and seek a control un

(k) = F n
0

that minimizes L(ρ⃗in, u⃗n, φ⃗n
i ,ψ) iteratively for each level k. To ensure that∑NT−1

n=1 un
(k+1) = S∆t−1, the steepest descent direction d(k) must fulfill the condi-

tion

0 =
NT−1∑

n=1

(un
(k) + σ(k)d

n
(k))− S∆t−1 = σ(k)

NT−1∑

n=1

dn(k),

where σ(k) > 0 is the step size of the corresponding gradient descent method.
For instance, the step size σ(k) can be computed by the Armijo rule; see [93].
Furthermore, we select the steepest descent direction as

dn(k) = −λφn
1 − ψ, (1.30)

where n = 1, ..., NT−1 and
∑NT−1

n=1 dn(k) = 0. Thus, the adjoint ψ can be computed
as follows

ψ =
1

NT − 1

NT−1∑

n=1

λφn
1 . (1.31)

Now we summarize the previous computational steps to a solution algorithm.

Solution Algorithm

Initial values: ρ1i , u(0) with
∑NT−1

n=1 un
(0) = S, fout

1. Solve ρni for n = 2, ..., NT by the forward simulation.
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2. Solve the adjoint system φn
i for i = 1, ..., N and n = 1, ..., NT − 1.

3. Compute the adjoint ψ.

4. Compute the descent direction d(k),

d(k) = −λφn
1 − ψ,

5. Update the control u(k+1) = u(k) + σ(k)d(k).

6. If ∥d(k)∥ ≥ ε Go to 1, otherwise STOP.

Instead of considering the second-order optimality system to check that there
really exists a local minimum, we follow another way. The idea is to consider
an alternative optimization approach which can be solved to global optimality.
Having such a tool at hand, we show the connection between the proposed opti-
mization models.

1.4.3 Mixed Integer Programming Model

Mixed-integer programming (MIP) models can be used to solve a special class of
pde-constrained optimization problems. Since the optimal inflow problem (1.24)
has a nearly linear structure, it is closely related to the problems mentioned
in [25, 37, 51]. Usually a MIP model consists of a linear cost functional combined
with linear constraints and floating and integer variables. Generally, a mixed
integer model (MIP) has the following form

Z(X) = min{cTx : x ∈ X},

where X describes the set of feasible solutions

X = {x ∈ R
n−p
+ × {0, 1}p : Ax ≥ b}.

The only nonlinearity appearing in (1.24) is the flux function. Here, we apply a
standard linearization (see [37]) by introducing binary variables ξni ∈ {0, 1}.

(FLUX1): aρni−1 − ξni−1M ≤ F n
i−1,

(FLUX2): F n
i−1 ≤ aρni−1,

(FLUX3):
ρmax − ρni

λ
+ F n

i − (1− ξni−1)M ≤ F n
i−1,

(FLUX4): F n
i−1 ≤

ρmax − ρni
λ

+ F n
i .

where i = 2, . . . , N , n = 1, . . . , NT − 1. Additionally M is a large number, i.e.,
M ≫ aρmax. All other equations in (1.24) are already discretized in space and
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time and can therefore be directly interpreted as constraints of a MIP. Summa-
rizing, this leads to

min J(ρni ) =
NT∑

n=1

N∑

i=1

Cn
i ρ

n
i (1.32)

subject to

(PDE), (FLUX1) - (FLUX4), (OUTFLOW), (SUPPLY), (BOX).

MIP problems are solved using common software packages, e.g. CPLEX [71].
Note that increasing the number of binary variables, the computation time of the
MIP may blow up. One possibility to reduce the computational effort provides
the following lemma. We introduce an extension of the MIP model by including
new constraints such that the original problem is solved faster.

Lemma 1.4.1. Let the MIP model given by (1.32). Then, the additional con-
straint for all n = 1, . . . , NT

ξni−1 ≤ ξni , i = 2, ..., N, (1.33)

ensures an eligible restriction on the binary variables.

Proof. Consider the binary variable ξni = 0. Then, the inequalities (FLUX1) -
(FLUX3) yield

F n
i = aρni .

and the numerical flux will be

F n
i−1 = min{aρni−1,

ρmax − ρni
λ

+ aρni }. (1.34)

We assume that 0 ≤ ρni ≤ ρmax for all indices i, n. It holds that

0 ≤ min{ρmax − ρni−1, ρmax − ρni }
= ρmax −max{ρni−1, ρ

n
i }

≤ ρmax + (aλ− 1)ρni − aλρni−1.

finally resulting in

aρni−1 ≤
ρmax − ρni

λ
+ aρni . (1.35)

Combining the results (1.34) and (1.35), the flux F n
i−1 simplifies to

F n
i−1 = min{aρni−1,

ρmax − ρni
λ

+ aρni } = aρni−1.

The inequalities (FLUX1) - (FLUX3) lead to ξni−1 = 0. The choice of ξni = 1 as
a starting point works analogously.

The interpretation of Lemma 1.4.1 can be also done looking at the discussion
of the Riemann problems in Subsection 1.2.4. The only combination of binaries
that is not allowed is ξni−1 = 1 and ξni = 0. This corresponds to a sequence of
congestion followed by a free flow regime, i.e., this is impossible.
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1.4.4 Comparison of Optimization Approaches

So far, we have presented two solution approaches for (1.24) which may at first
sight seem different. In this section, we connect both optimization approaches.
We formally compare the adjoint variables (1.25) with the dual variables of the
relaxed MIP (1.32). We transform the relaxed MIP into its dual problem and
explain in a second step the relevant similarities to (1.25).

Definition 1.4.2 (Linear Program). A linear problem (LP) has the following
form: Find the vector x ∈ Rn

+ that solves

min cTx
s.t. Ax ≥ b

x ≥ 0
(1.36)

with given vectors c ∈ Rn, b ∈ Rm and a given matrix A ∈ Rm×n

Definition 1.4.3 (Dual Program). A dual problem of (1.36) has the following
form: Find the vector ϕ ∈ Rm

+ that solves

max bTϕ
s.t. ATϕ ≤ c

ϕ ≥ 0
(1.37)

with given vectors c ∈ Rn, b ∈ Rm and a given matrix A ∈ Rm×n

Let the binary variables are treated as real-valued. Then, the relaxed MIP with
ρni , F

n
i ∈ R reads for all indices n, i:

min
NT∑

n=1

N∑

i=1

Cn
i ρ

n
i

s.t. (PDE) constraints:
Φn

i : ρn+1
i − ρni + λF n

i − λF n
i−1 = 0

Φ0
i : ρ1i = 1

∆x

∫ xi

xi−1
ρ0(x)dx

(FLUX) constraints:
ϕn
1,i : aρni − F n

i ≥ 0
ϕn
2,i : F n

i+1 − F n
i − λ−1ρni+1 ≥ −ρmaxλ−1

ϕn
2,N : −F n

N ≥ −fn
out

(SUPPLY) constraints:
Ψ :

∑NT−1
n=1 F n

0 = S∆t−1

Ψn : −F n
0 ≥ −W

(1.38)
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where the corresponding dual variables are introduced in an extra column. This
leads to the dual program of the form:

max
N∑

i=1

1

∆x

∫ xi

xi−1

ρ0(x)dxΦ
0
i

−
NT−1∑

n=1

N−1∑

i=1

(ρmaxλ
−1)ϕn

2,i − fn
outϕ

n
2,N −WΨn + S∆t−1Ψ

s.t.
ρni : Φn−1

i − Φn
i + aϕn

1,i − λ−1ϕn
2,i−1 = Cn

i

ρ1i : Φ0
i − Φ1

i = C1
i

ρNT
i : ΦNT−1

i = CNT
i

F n
i : λΦn

i − λΦn
i+1 − ϕn

1,i + ϕn
2,i−1 − ϕn

2,i = 0
F n
N : λΦn

N − ϕn
1,N − ϕn

2,N + ϕn
2,N−1 = 0

F n
0 : −λΦn

1 +Ψ−Ψn = 0

(1.39)

with Φn
i ,Ψ ∈ R,Ψn,ϕn

k,i ∈ R+, k = 1, 2 and where again the dual variables are
denoted in a separate column. We set ϕn

2,0 := 0 as well.
The aim is now to compare the dual variables of the dual MIP (1.39) with the
adjoint variables (1.25).
Let us assume that ρni , F

n
i are a feasible solution of the primal problem (1.38).

We are interested in finding a feasible (not necessarily optimal) solution of the
dual relaxed problem (1.39). By applying the complementary slackness theorem
it is possible to obtain an (optimal) solution to the dual when only an (optimal)
solution to the primal is known. In other words: If a MIP solution ρni , F

n
i is

optimal for the primal problem, then the dual slack variables ϕn
1,i,ϕ

n
2,i fulfill the

complementary slackness conditions (1.40). In case of no optimality, we have
no restriction for the dual states ϕn

1,i,ϕ
n
2,i with respect to the primal state, i.e.,

the dual variables can be chosen freely. We intend to pick those dual variables
ϕn
1,i,ϕ

n
2,i such that the complementary slackness condition is satisfied:

ϕn
1,k(F

n
k − aρnk) = 0

ϕn
2,k(F

n
k − F n

k+1 + λ−1ρnk+1 − ρmaxλ
−1) = 0 (1.40)

for k = i− 1, i. In fact, due to the theoretical investigations, we have to analyze
three different scenarios: freeflow, blocking and release of congestions.

Case 1: Freeflow
Let F n

k = aρnk and F n
k <

ρmax−ρnk+1

λ
+ F n

k+1 for k = i − 1, i. Thus, due to (1.40),
the dual variables must be

ϕn
1,k ≥ 0, ϕn

2,k = 0, k = i− 1, i,
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ρni∗ ρni

ρmaxρ

xi∗ i

Freeflow Blocking

Figure 1.9: Blocked and freeflow regions

and the constraints of the dual problem turn into

Φn−1
i − Φn

i + aϕn
1,i = Cn

i

λΦn
i − λΦn

i+1 − ϕn
1,i = 0.

Rearranging the last two equations, we end up with

Φn−1
i = Cn

i + Φn
i − aλ(Φn

i − Φn
i+1).

The equation for Φn−1
i is similar to φn−1

i in (1.25) since ∂ρni F
n
j = a.

Case 2: Blocking

Let F n
k < aρnk and F n

k =
ρmax−ρnk+1

λ
+ F n

k+1 for k = i∗, . . . , i with i∗ ≤ i and

additionally F n
i∗−1 = aρnk and F n

i∗−1 <
ρmax−ρn

i∗

λ
+ F n

i∗ , see Figure 1.9. Then, the
complementary slackness condition (1.40) reveals

ϕn
1,k = 0, ϕn

2,k ≥ 0, ϕn
2,i∗−1 = 0, ∀k = i∗, . . . , i,

λΦn
i − λΦn

i+1 + ϕn
2,i−1 − ϕn

2,i = 0.

This yields

ϕn
2,i−1 = ϕn

2,i + λΦn
i−1 − λΦn

i

=
i−1∑

k=i∗

(λΦn
k − λΦn

k+1) = −λΦn
i + λΦn

i∗ .

This result can be plugged into the constraint

Φn−1
i − Φn

i − λ−1ϕn
2,i−1 = Cn

i ,

leading to

Φn−1
i = Cn

i + Φn
i∗ . (1.41)
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Again, we compare the dual variables Φn−1
i with the adjoints φn−1

i in (1.25), but
with the crucial difference that the partial derivatives of ∂ρni F

n
j are more involved,

cf. (1.27) and (1.28). If α ≤ β, the derivative of the smoothed minimum function
minϵ is

∂1minϵ(α, β) = 1, ∂2minϵ(α, β) = 0

or otherwise, for α > β,

∂1minϵ(α, β) =
ϵ2

(α− y + ϵ)2
, ∂2minϵ(α, β) =

−ϵ2

(α− β + ϵ)2
+ 1.

Using the Taylor expansion to simplify the expressions ∂1minϵ(α, β), ∂2minϵ(α, β)
for α > β yields

∂1minϵ(α, β) =
ϵ2

α− β
+O(ϵ4) = O(ϵ2)

∂2minϵ(α, β) = 1− ϵ2

α− β
+O(ϵ4) = 1 +O(ϵ2)

Then, the partial derivatives of the numerical flux ∂ρni F
n
j can be expressed as

∂ρni F
n
j = ∂1minϵ{aρnj ,

ρmax − ρnj+1

λ
+ F n

j+1} · aδi,j = O(ϵ2)

for i = j and

∂ρni F
n
j = ∂2minϵ{aρnj ,

ρmax − ρnj+1

λ
+ F n

j+1} · (−δi,j+1
1

λ
+ ∂ρni F

n
j+1) = −1

λ
+O(ϵ2)

for i∗ ≤ j < i. If j < i∗, the derivatives are ∂ρn
i∗
F n
j = 0. A small computa-

tion shows that the dual variables Φn−1
i in (1.41) and the adjoint variables φn−1

i

from (1.25) only differ O(ϵ2):

φn−1
i = Cn

i + φn
i − λ

N∑

j=1

(∂ρni F
n
j − ∂ρni F

n
j−1)φ

n
j

= Cn
i + φn

i − (1 +O(ϵ2))φn
i∗ − λ

i−1∑

j=i∗+1

(
−1

λ
− −1

λ
+O(ϵ2)

)
φn
j − (1 +O(ϵ2))φn

i

= Cn
i + φn

i∗ +O(ϵ2).

Case 3: Release
Let F n

k = aρnk and F n
k =

ρmax−ρni+1

λ
+ F n

k+1 for k = i− 1, i. Then, the complemen-
tary slackness conditions (1.40) does not contain any information about the dual
variables, i.e.,

ϕn
1,k ≥ 0, ϕn

2,k ≥ 0, k = i− 1, i.
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Note that the choice of ϕn
2,k is not unique. Looking at the objective function

of (1.39), we see that the maximization problem forces small values of ϕn
2,k. In

the ideal case, ϕn
2,k = 0 and Case 3 (Release) immediately reduces to Case 1

(Freeflow).

1.4.5 Connection between the MIP and the relaxed LP

In general, solution routines of MIP models are very expensive and time consum-
ing. Typical methods are Branch and Bound and Branch and Cut approaches,
see [85]. In contrast to MIP models, Linear Programs (LP) are easier to solve. In
consideration of the optimal inflow problem, the relaxed LP and the MIP model
have similar structures. The crucial difference of both problems is the usage of
binary variables in the flux constraints. Under certain assumptions, it is sufficient
to solve only the relaxed LP for solving the inflow problem.

Theorem 1.4.4. Let ρni , F
n
i be an optimal solution of the relaxed mixed integer

model (1.38) with the objective function

J(ρni ) =
NT∑

n=1

N∑

i=1

ρni .

Then F n
0 is an optimal inflow of the MIP model (1.32) for all n = 1, ..., NT − 1.

Proof. Let F n
0 be components of the optimal solution of the relaxed mixed integer

model (1.38). At first, we construct a feasible solution ρ̄ni , F̄
n
i of the MIP model

(1.32) by the forward simulation with input parameter F n
0 and ρ1i , i.e.,

ρ̄1i := ρ1i , i = 1, ..., N,

F̄ n
0 := F n

0 , n = 1, ..., NT − 1,

(PDE): ρ̄n+1
i := ρ̄ni − λ[F̄ n

i − F̄ n
i−1],

(FLUX): F̄ n
i := min{aρ̄ni ,

ρmax − ρ̄ni+1

λ
+ F̄ n

i+1},

(OUTFLOW): F̄ n
N := min{aρ̄nN , fn

out},

for i = 1, ..., N and n = 1, ..., NT − 1.
Obviously, F̄ n

0 fulfills the linear constraints (SUPPLY) and (BOX). Hence, ρ̄ni ,
F̄ n
i is a feasible solution of the mixed integer model (1.32).

The next step is to show, that the objective values of the relaxed model and the
MIP model coincide, i.e.,

J(ρni ) =
NT−1∑

n=1

N∑

i=1

ρni =
NT−1∑

n=1

N∑

i=1

ρ̄ni = J(ρ̄ni ).
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Then ρ̄ni , F̄
n
i is a feasible optimal solution of the mixed integer model.

We prove inductively the following relation

m∑

n=1

F n
i ≤

m∑

n=1

F̄ n
i , i = 1, ..., N. (1.42)

In due of the inequality constraint of the relaxed MIP, the solution variable F n
i

have the following estimations

F n
i ≤ aρni , (1.43)

F n
i ≤

ρmax − ρni+1

λ
+ F n

i+1, i < N, (1.44)

F n
N ≤ fn

out. (1.45)

Induction start: Let m = 1, it is necessary to show F 1
i ≤ F̄ 1

i for all i = 1, ..., N .
By using the inequalities (1.43) and (1.45), we can estimate

F 1
N

(1.43)

≤
(1.45)

min{aρ1N , f 1
out} = min{aρ̄1N , f 1

out}
(OUTFLOW)

= F̄ 1
N .

By induction with respect of i and the inequalities (1.43) and (1.44), we get

F 1
i

(1.43),(1.44)

≤ min{aρ1i ,
ρmax − ρ1i+1

λ
+ F 1

i+1}

≤ min{aρ̄1i ,
ρmax − ρ̄1i+1

λ
+ F̄ 1

i+1}
(FLUX)
= F̄ 1

i .

Induction hypothesis: The statement

m∑

n=1

F n
i ≤

m∑

n=1

F̄ n
i , i = 1, ..., N (1.46)

has been proven. We show that

m+1∑

n=1

F n
i ≤

m+1∑

n=1

F̄ n
i , i = 1, ..., N.

Induction step: m → m+ 1
The densities are representable by (PDE):

ρm+1
i

(PDE)
= ρ1i − λ

m∑

n=1

F n
i + λ

m∑

n=1

F n
i−1, (1.47)

ρ̄m+1
i

(PDE)
= ρ̄1i − λ

m∑

n=1

F̄ n
i + λ

m∑

n=1

F̄ n
i−1. (1.48)



38 Chapter 1. Mathematical Modeling in 1D

One evaluates F̄m+1
i in three cases.

Case 1: Let F̄m+1
N = fm+1

out . Inequality (1.45) yields Fm+1
N ≤ fm+1

out = F̄m+1
N .

By induction hypothesis (1.46) we get

m+1∑

n=1

F n
N ≤

m+1∑

n=1

F̄ n
N

Case 2: Now let i = 1, ..., N and F̄m+1
i = aρ̄m+1

i

Inequality (1.43) yields the following statement

m+1∑

n=1

F n
i =

m∑

n=1

F n
i + Fm+1

i

(1.43)

≤
m∑

n=1

F n
i + aρm+1

i

(1.47)
=

m∑

n=1

F n
i + aρ1i − aλ

m∑

n=1

F n
i + aλ

m∑

n=1

F n
i−1

= aρ1i + (1− aλ)
m∑

n=1

F n
i + aλ

m∑

n=1

F n
i−1

The CFL condition yields (1 − aλ) ≥ 0. By Induction hypothesis (1.46) and
(1.48), one obtains

m+1∑

n=1

F n
i

(1.46)

≤ aρ̄1i + (1− aλ)
m∑

n=1

F̄ n
i + aλ

m∑

n=1

F̄ n
i−1

(1.48)
=

m∑

n=1

F̄ n
i + aρ̄m+1

i =
m+1∑

n=1

F̄ n
i .

Case 3: Now let i = 1, ..., N − 1 and F̄m+1
i =

ρmax−ρ̄m+1
i+1

λ
+ F̄m+1

i+1 .

For the proof of the statement
∑m+1

n=1 F n
i ≤

∑m+1
n=1 F̄ n

i , it is necessary that the
inequality

∑m+1
n=1 F n

i+1 ≤
∑m+1

n=1 F̄ n
i+1 holds. This statement is already proved for

i = N by the cases 1 and 2. By an additional induction, we can prove this for
i = N − 1, N − 2, ..., 2, 1 by the cases 2 and 3.
Thus, (1.44) and (1.47) yields the following estimation

m+1∑

n=1

F n
i =

m∑

n=1

F n
i + Fm+1

i

(1.44)

≤
m∑

n=1

F n
i +

1

λ
(ρmax − ρm+1

i+1 ) + Fm+1
i+1

(1.47)

≤
m∑

n=1

F n
i +

1

λ
(ρmax − ρ1i+1)−

m∑

n=1

F n
i +

m∑

n=1

F n
i+1 + Fm+1

i+1

=
1

λ
(ρmax − ρ1i+1) +

m+1∑

n=1

F n
i+1 ≤

1

λ
(ρmax − ρ̄1i+1) +

m+1∑

n=1

F̄ n
i+1.
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Now we expand the previous inequality by 0 =
∑m

n=1 F̄
n
i −

∑m
n=1 F̄

n
i and use

(1.48). This yields

m+1∑

n=1

F n
i ≤ 1

λ
(ρmax − ρ̄1i+1 + λ

m∑

n=1

F̄ n
i+1 − λ

m∑

n=1

F̄ n
i ) + F̄m+1

i+1 +
m∑

n=1

F̄ n
i

=
1

λ
(ρmax − ρ̄m+1

i+1 ) + F̄m+1
i+1 +

m∑

n=1

F̄ n
i

(1.48)
= F̄m+1

i +
m∑

n=1

F̄ n
i .

Finally, we get

m+1∑

n=1

F n
i ≤

m+1∑

n=1

F̄ n
i , i = 0, ..., N,

and we finish the proof of (1.42). Now we consider the sum of the density for the
time-step m

N∑

i=1

ρmi
(1.47)
=

N∑

i=1

ρ1i + λ
m−1∑

n=1

F n
0 − λ

m−1∑

n=1

F n
N

(1.42)

≥
N∑

i=1

ρ̄1i + λ
m−1∑

n=1

F̄ n
0 − λ

m−1∑

n=1

F̄ n
N

(1.48)
=

N∑

i=1

ρ̄mi .

(1.49)

The next step is the evaluation of the objective function J for the constructed
solution ρ̄ni . Moreover, the objective value of the optimal relaxed MIP solution
can be estimated by (1.49), i.e.,

J(ρni ) =
NT−1∑

n=1

N∑

i=1

ρni
(1.49)

≥
NT−1∑

n=1

N∑

i=1

ρ̄ni = J(ρ̄ni ). (1.50)

However, ρ̄ni , F̄
n
i is a feasible solution of the MIP model and also of the relaxed

MIP model. Furthermore, the solution of the relaxed MIP model ρni , F
n
i is opti-

mal by assumption. Hence, the objective value of ρni cannot be larger than the
objective value of ρ̄ni . In consideration of (1.50), the objective values of ρni and
ρ̄ni must be equal, i.e.,

J(ρni ) =
NT−1∑

n=1

N∑

i=1

ρni =
NT−1∑

n=1

N∑

i=1

ρ̄ni = J(ρ̄ni ).

Finally, ρ̄ni , F̄
n
i is a feasible optimal solution of the mixed integer model.
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Remark 1.4.5. The proof of Theorem 1.4.4 works only for the presented linear
objective function

J(ρni ) =
NT∑

n=1

N∑

i=1

ρni .

If we consider an arbitrary objective function, e.g., J(ρni ) =
∑NT

n=1

∑N
i=1C

n
i ρ

n
i ,

the inequality (1.49) cannot estimate (1.50) and the proof does not work.

1.4.6 The Maintenance Problem

In case of a maintenance, it is necessary to shut down a machine in progress
for a certain time interval. Thus, the stopped machine can be repaired or be
checked for the maintenance. The task is to find an optimal time interval for a
machine shutdown, where the duration of a maintenance is known. Therefore,
we look for an time interval to stop a machine efficiently such the capacity of all
machines in a production line is reduced. After the maintenance the production
is continued. The optimization problem is based on the discrete formulation in
1.3.3. The maintenance optimization approach is an extension of the MIP model
in 1.4.3. The maintenance problem for supply-chains in due of MIP modeling is
already investigated in [37].
In the following, we consider a maintenance only for the last machine in a pro-
duction line. In our model, a shutdown process can be simulated if the flux is set
to zero at the local point xN for a time interval. The problem is defined as

min
j

J(ρni ) =
NT∑

n=1

N∑

i=1

Cn
i ρ

n
i (1.51)

subject to

(PDE), (FLUX) ,(INFLOW)

F n
N =

{
0 for all n ∈ [j, j +Noff ],

aρnN for all n̸∈[j, j +Noff ],

where j is the discrete start time of the maintenance. The length of the time
interval is given by Noff ∈ N. Moreover, Noff is the number of discrete time-
steps for a machine shutdown. As an extension of the MIP formulation of 1.4.3,
we introduce additional binary variables θj . If θj is one, the maintenance interval
starts at the discrete time j. We assume, that the time interval is unique and
has only one starting point j. Thus, if a j exists such that θj = 1 then θn = 0
for all j ̸= n. This yields the constraint

(SHUTDOWN 1):

NT−Noff∑

j=1

θj = 1.
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For a j the flux F n
N = 0 if n ∈ [j, j + Noff ]. Otherwise, F n

N = aρnN . This yields
the following constraints of the MIP:

(SHUTDOWN 2): F l
N ≤ (1− θj)M l ∈ {j, ..., j +Noff − 1},

(SHUTDOWN 3): aρlN − (1− θj)M ≤ F l
N l ̸∈{j, ..., j +Noff − 1},

for all j = 1, ..., NT −Noff .

(SHUTDOWN 4): F n
N ≤ aρnN n = 1, ..., NT − 1.

Finally, this leads to

min J(ρni ) =
NT∑

n=1

N∑

i=1

Cn
i ρ

n
i

subject to

(PDE), (INFLOW),

(FLUX 1) - (FLUX 4), (SHUTDOWN 1) - (SHUTDOWN 4).

1.5 Numerical Results

Finally, we present computational results of the 1D model and their optimization
issues. In particular, we cover the following aspects:

• In Subsection 1.5.1 we compare the DFG methods against the Wave Front
tracking method.

• In Subsection 1.5.2 we give a validation of the DFG method by comparison
with the Godunov Method for the regularized problem (RFG). Additionally,
we highlight the computational efficiency of the DFG method and the RFG
method.

• In Subsection 1.5.3 we compare the numerical results of the microscopic
model against the continuous model.

• In Subsection 1.5.4 we investigate the results of adjoint approach and the
MIP model for the inflow problem.

• In Subsection 1.5.5 we consider an computational example for the optimal
date for a maintenance.

All computations are performed on the same platform, namely a 3.0 GHz Dual-
core computer with 8 GB RAM. The algorithms are implemented in MATLAB
[83]. The MIP and the LP models are solved using the commercial solver ILOG
CPLEX [71].
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1.5.1 Wave Front Tracking Algorithm vs. DFG method

At first, we test the DFG method against the classical front-tracking algorithm.
The latter is a grid-independent method, i.e., there is no CFL condition, that
tracks all propagating waves and their interactions, see Subsection 1.2.4.
We consider the initial boundary value problem for solving (1.11) with (1.13):

ρ0(x) = 0.4 sin(πx) + 0.4

f(ρ(0, t)) = aρ(0, t) = 0.2.

To compare the approximate solutions of both methods we choose a time horizon
of T = 1 as well as a = 1 and ρmax = 1. In the time interval 0.5 ≤ t < 0.8, the
outflow fout(t) is as large as possible, i.e., freeflow regime. Otherwise the outflow
is blocked.

fout(t) =

{
1 if t ∈ [0.5, 0.8),

0 otherwise.

For the wave front tracking algorithm, we divide the spatial domain into N = 20
cells. The initial data for the multiple Riemann problem is given by the cell
integrals over ρ0(x), i.e.,

ρi =
1

∆x

∫ xi

xi−1

ρ0(x) dx for all i = 1, . . . , N.

The inflow f(ρ(0, t)) can be translated into a Riemann problem of the form
ρr = ρ1 and ρl = ρ0 = 0.2. The multiple Riemann problem is shown in Figure
1.10.
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Figure 1.10: Initial data for the multiple Riemann problem (black), continuous
initial data ρ0(x) (red).
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In Figure 1.11, we observe that the density is transported in a forward direction
with velocity a. Since the outflow is zero for 0 ≤ t < 0.5, a congestion occurs
resulting in a backward traveling shock wave with maximal density ρmax. The
shape of the latter shock wave is according to the nonlinear initial condition ρ0(x).
For the time 0.5 ≤ t < 0.8, the congestion is released, i.e., the outflow is not zero
anymore. All density ρ moves with velocity a in a positive direction. After time
t ≥ 0.8, the outflow is blocked again and a new jam arises.
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(a) Wave Front Tracking
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(c) DFG, ∆x = 1/100

Figure 1.11: Shock motion of a multiple Riemann problem: Wave Front Tracking
(above), DFG method with colored density values (bottom).

1.5.2 DFG method vs. RFG method

In the following, we present numerical results to validate and compare the Discon-
tinuous Flux Godunov Method to a classical Godunov method for the regularized
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problem. I.e., on the one hand, we apply the DFG Method directly to the dis-
continuous conservation law (1.11), (1.13) and on the other hand, we present
solutions of the standard Godunov scheme for the regularized problem (1.14)
calling it the Regularized-Flux-Godunov method (RFG). As already mentioned,
the RFG scheme will need very small time steps in the limit δ → 0 to produce
qualitatively good solutions. We compare the solution of both numerical methods
for different scenarios. In particular, we are interested in the accuracy, efficiency
and performance of the numerical approaches.
For an example, we present a comparison of computing times between the DFG
Method for the discontinuous problem and the RFG scheme for the regularized
one. We stick to the unit interval and fix ∆x and a = 1. Then, the CFL condition
leads to time step sizes of range ∆t = ∆x for the DFG method and accordingly
∆t = |δ|∆x for the RFG scheme, if possible Case (B.) waves are not too fast.
We assume an inflow at the left boundary of f(ρ(0, t)) = 0.4 for all times t > 0,
an outflow at the right boundary of f(ρ(1, t)) = 0 for t ≤ 2 (blocking) and
f(ρ(1, t)) = a ·ρ(1, t) afterwards (release). The system is empty at the beginning,
i.e., ρ(x, 0) = 0. The total time-horizon is T = 3. Additionally to the CPU times,
we compute the L1-error as the difference between the density either computed
by the DFG method ρDFG(x, t) or the RFG scheme ρRFG(x, t):

∫ T

0

∫ 1

0

|ρDFG(x, t)− ρRFG(x, t)| dx dt.

The computation times are listed in Table 1.1.

Level
Grid size

DFG
RFG RFG L1-error L1-error

∆x δ = 0.1 δ = 0.01 δ = 0.1 δ = 0.01
1 0.1 0.0004 0.0602 0.5847 0.1893 0.2033
2 0.05 0.0014 0.2384 2.3054 0.1280 0.1254
3 0.01 0.0376 5.7347 56.9094 0.0800 0.0443
4 0.001 2.8894 573.5482 5710.9 0.0668 0.0156

Table 1.1: CPU times in seconds and error comparison of the DFG and the RFG
method with different regularization parameters and space grid sizes.

Let us switch to an analysis of our numerical approaches, see Figure 1.12. We
compare our numerical solutions with Riemann problems discussed in Section 1.2.4
for the discontinuous problem (1.13) and analytical solutions presented in [27] and
[4] for the regularized model (1.14). The computational setting above indicates
different regimes (δ = 0.1 and ∆x = 10−2):

1. The simulation starts and a forward traveling shock with speed s = a is
running through the system, cf. Figure 1.12 at time t = 0.5. The DFG
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method yields an exact representation of the shock while the RFG scheme
smears the initial discontinuity.

2. The system is blocked, cf. Figure 1.12 at time t = 1.25. The resulting
solution is a shock wave traveling with s = f(ρl)

ρl−ρmax
, i.e., s = 2

3 . Here, both
numerical schemes yield the same numerical solution due to the choice of
the parameters λ and δ. This is usually not valid for all configurations of
parameters and different cases of Riemann problems.

3. The system is released, cf. Figure 1.12 at time t = 2.05, but the numerical
solutions differ widely: the DFG method treats the influence of the zero
wave correctly, whereas the RFG method makes a mistake induced by the
regularization fδ = min{ρ, 1

δ
(1 − ρ)}. For the RFG method we observe

the wave which is traveling with speed s = −1
δ
to the left, compare the

discussion in Subsection 1.2.4. We note that, the difference between the
dashed and the blue line will vanish for δ → 0.

4. The congestion starts to clear, cf. Figure 1.12 at time t = 2.1. The two
waves computed by the Godunov scheme with regularization interact. Now,
both numerical methods lead to forward traveling shocks with s = a. How-
ever, the shock locations are different due to the different history of the two
solutions.

1.5.3 Microscopic Model vs. Continuous Model

We compare the results of the microscopic model in Section 1.1 against the con-
tinuous model in Section 1.2. In this scenario, the parts move with velocity a = 1.
The spatial domain is restricted to the unit interval [0, 1]. At starting time t = 0,
no part is located in the system. Therefore, the parts spawn at the left boundary
x = 0 to each time t = 0, 0.25, 0.5, ... a.s.o. Also, the minimal distance is set to
H0 = 0.1. The right boundary is blocked for t ≤ 2, i.e., parts cannot pass x = 1.
Furthermore, they change immediately their velocity to zero. After t > 2, the
parts can pass the right boundary, i.e., the velocity of parts at x = 1 changes
their velocity to a = 1.

Now we transfer this setting to the continuous model. However, we select the
ratio of the total volume and the total amount of parts ∆Y = 0.1, see Section 1.1.
Thus, one obtains a maximal density ρmax = 1 and a inflow density ρ(0, t) = 0.4.
Additionally, the outflow is f(ρ(1, t)) = 0.
The microscopic model is based on an ODE-system, which is computed by the
explicit Euler method for a step size 10−3. The continuous model is computed
by the DFG method with step sizes ∆t = ∆x = 0.01. The results are shown in
Figure 1.13. The parts move with constant velocity into the domain. The first
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Figure 1.12: Comparison of solutions at times t = 0.5 and t = 1.25 (first row),
t = 2.05 and t = 2.1 (second row).

part stops immediately if it reaches the point x = 1 for t ≤ 2. The succeeding
parts changes their velocity to zero if the distance to the predecessor becomes
H0. Thus, we recognize a tailback situation. Afterwards t > 2, all parts move
with velocity a = 1.

1.5.4 Optimal Inflow

Our main objective, however, is to find the optimal inflow f(ρ(0, t)) such that
congestions are avoided. To do so, we try to keep the buffers as small as possible,
i.e., we minimize the sum over the density

∑
i,n ρ

n
i , cf. Section 1.4.1. We investi-

gate the following scenario. Let us assume a total supply of S = 4, a production
velocity of a = 1 and a final time T = 15. The production system is mapped
onto the unit interval [0, 1] and the last machine is stopped for maintenance in
time t ∈ [4, 8) ∪ [11, 15).

fout(t) =

{
0 if t ∈ [4, 8) ∪ [11, 15),

1 otherwise.
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Figure 1.13: Trajectories of the microscopic model (left), part density computed
by the DFG method (right)

We restrict the inflow to the upper bound W = 0.5. For the space-time grid
we take N = 10 cells and NT = 150 time points. The adjoint approach is
implemented with a smoothness parameter ϵ = 10−2. The termination criterion
is selected for a tolerance TOL = 10−6 with

∆t
NT∑

n=1

(∆tdn(k))
2 < TOL,

where dn(k) is the steepest descent direction to the k-th iteration. All optimization
results are plotted in Figure 1.14, 1.15 and 1.16.
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Figure 1.14: Optimal inflow profile of the adjoint approach and the MIP model
(left). Absolute error of both models (right).

Figure 1.14 indicates that both methods yield the same result. More precisely,
the results are independent of the underlying solution technique. The projected
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gradient method used for the adjoint approach as well as the Branch-and-Bound
solver [71] behaves in the same way. Only small differences can be identified, i.e.,
there is a delay of 10 discrete time steps in the second interval of maintenance.
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Figure 1.15: Density profile: Adjoint calculus (left), MIP model (right).

The corresponding optimal densities are shown in Figure 1.15. Since the optimal
inflow tries to prevent congestions 1.14 by reducing the inflow to zero before the
maintenance intervals are scheduled we naturally observe a similar behavior in
the evolution of the density. Looking at Figure 1.16, we see that there is no
outflow during the maintenance intervals. Hence the whole system is blocked.
Due to the relation F n

N ≤ fout(t), the outflow is adjusted as soon as the system is
released again. As already shown, the density variables of the adjoint approach
differ slightly from the density variables of the MIP model due to the smooth
approximation of the min-function for the adjoint approach. This effect is par-
ticularly apparent in the the optimal cost functional values, i.e., J∗(ρni ) = 393.21
for the adjoint approach and J∗(ρni ) = 396 for the MIP model.

Computation times

We repeat the previous example with a different number of discrete cell points N
and measure the computation times. The goal is to compare the efficiency of the
different optimization approaches from a practical point of view. Table 1.2 and
Table 1.3 stress the usability of the adjoint approach. Finer resolutions lead to a
moderate increase of the computation times. In contrast, the MIP model without
any acceleration takes approximately one hour to solve the N = 20 instance. By
additionally including constraint (1.33), the solution of the MIP model can be
speed up significantly. There is a certain threshold where the adjoint approach
dominates the improved MIP.
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Figure 1.16: Outflow profile F n

N of the adjoint approach and the MIP model (left).
Absolute error of both models (right).

N Adjoint MIP (CPLEX) improved MIP (CPLEX)

10 4.11s 0.45s 0.53s
15 16.95s 36.71s 1.99s
16 22.07s 188.17s 2.52s
20 44.26s 3612.53s 96.01s

Table 1.2: Computation times in seconds for the MIP, improved MIP and adjoint
approach.

Number of N = 10 N = 15 N = 16 N = 20

Variables (MIP) 3160 6990 7936 12320
Binaries (MIP) 1500 3375 3840 6000
Constraints (MIP) 9011 20266 23057 36021
Constraints (improved MIP) 10361 23416 26657 41721

Table 1.3: Number of Variables and Constraints of the MIP model.

Accuracy of the gradient

The adjoint approach is useful to compute gradient informations efficiently. In
this test case, we compare the gradients of the adjoint approach (1.29) with finite
differences. The start control vector is feasible and constant, i.e., un = F n

0 =
4 1
∆t·NT

for all n = 1, . . . , NT . We formally denote the solution operator of the
forward problem for a fixed u by G(u) = (ρ, F ). Thus, the gradient can be
approximated by central finite differences

∂unJ(G(u), u) ≈ 1

2δ
(J(G(u+ δ), u+ δ)− J(G(u− δ), u− δ)),
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for δ → 0. A numerical comparison of the gradients for δ = 10−4 is given in
Figure 1.17. The error of magnitude is 10−8 and therefore satisfactory.
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Figure 1.17: Gradients computed by numerical differentiation and adjoint ap-
proach (left). Error of both gradients (right).

1.5.5 Machine shut-down for maintenance

The last machine of a production line needs a maintenance over 3 time-units.
The total simulation time is T = 15. The production inflow is set to

f(ρ(0, t)) = 0.5 sin(0.2πt) + 0.5.

The initial state of the density is ρ(x, 0) = 0.5.
Also, the spatial interval [0,1] is discretized into N = 10 cells. The time inter-
val is divided into NT = 150 points. The duration of the maintenance is set to
Noff = 30. The optimization task is to minimize the density on the whole time
and space, i.e.,

∑
i,n ρ

n
i .

The results are shown in Figure 1.18. The maintenance starts in time t = 7.5
and ends in time t = 10.5, consider Figure 1.18 (right). During the maintenance,
the outflow becomes zero and the result is a tailback in form of a back traveling
shockwave. However, the choice of that date keeps the buffers as small as possible.
The objective value is minimized to J∗ = 940.13. Especially, the propagation of
the tailback is plotted in Figure 1.19. During the times t = 7.5 to t = 10.5, the
outflow F n

N is zero. This situation causes a back traveling shockwave, cf. Figure
1.19 (left). After time t = 10.5, the congestion is released, cf. Figure 1.19 (right).
In contrast to an unoptimized solution, we select the maintenance date to t = 5.5.
The corresponding objective value leads to J = 1113.58 and the resulting outflow
is plotted in Figure 1.20. The corresponding tailback is quite larger than in the
optimized solution.
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Figure 1.18: Inflow profile is given (left), Outflow profile computed by the MIP
model (right)
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Figure 1.19: Propagation of the tailback by maintenace (left), release of the tail-
back (right)
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Figure 1.20: Outflow profile; maintenance starts at t = 5.5.





Chapter 2

Network Extension

A manufacturing system is organized as a production line consisting of machines
where each machine is responsible for certain production stages. Often enough,
the material flow is distributed to several production units. In particular, this
is useful if certain production stages take a long time, and thus the production
stage is accomplished simultaneously by several machines for reducing production
time. This scenario leads to the concept of production and supply-chain networks.

In this chapter, the model that is already introduced in Chapter 1 is extended to
network topologies. In a mathematical sense, conservation laws are considered
on a network structure, and therefore it is necessary to find suitable coupling
conditions on the network junctions. In the last decade, similar models in different
applications are investigated and extended to network structures; for example,
continuous traffic flow models, gas and water networks. We refer to [8, 19, 27,
35, 38, 39, 60, 62, 64, 68, 98] for an overview. Network models for supply and
manufacturing systems which are based on conservation laws are found in [26,
28, 37, 44, 45, 58, 75].

In applications, optimization issues for production networks play an important
role. Therefore, we introduce an optimization model for the network extension
which is based on a mixed integer program model (MIP). Continuous network
models and their reformulation to discrete optimization problems are also investi-
gated, for example, [33, 37, 43, 106]. The main drawback of MIPs is the enormous
computation time for a huge system with a high number of variables. One option
for reducing the computation time and its complexity is preprocessing or presolv-
ing approach. Thereby, the preprocessing routine is called before the MIP solving
process (e.g. branch and bound) starts. Preprocessing routines for general MIPs
can be found in [2, 13, 23, 73, 92, 95]. In particular, known PDE structures and
informations is useful to obtain efficient preprocessing routines for MIP models
with PDE constraints, e.g. [33]. In this work, we present preprocessing routines
for the underlying network model for discontinuous conservation laws.

In Section 2.1, we introduce a network coupling for the model of Section 1.2. The
coupling approach for the regularized model based on the approach of Coclite-
Garavello-Piccoli (CGP) [19]. This approach is briefly introduced in Subsection

53
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2.1.1. In Subsection 2.1.2, we derive a network model for a transport equation
with a discontinuous flux function. Then, a solution algorithm for the network
extension is presented in Section 2.2. Afterwards, in Section 2.3, we derive an
optimization approach based on the mixed integer programming model. For de-
creasing computation times of the MIP model, we introduce presolving techniques
in Section 2.4. Finally, in Section 2.5, numerical results are presented.

2.1 Network Model Approach

In this section, we establish coupling conditions for a network model for the
discontinuous conservation law of Section 1.2

∂tρ+ ∂xf(ρ) = 0, ρ(x, 0) = ρ0(x), (2.1)

with flux function

f(ρ) = aρH(ρmax − ρ). (2.2)

At first, we give a definition of a network and introduce the basic notations used
throughout of this chapter.

Definition 2.1.1 (Network defintion). A network is given as a directed graph
G = (V,E).

• V denotes the set of all vertices or junctions in a network. E is the set of
edges.

• The function α : E → V maps each edge to its starting point, and the
function ω : E → V maps each edge to its endpoint.

• The set of all incoming edges of v ∈ V is denoted by δinv := {e ∈ E : ω(e) =
v}, and δoutv := {e ∈ E : α(e) = v} is referred to as the set of all out coming
edges of v for all junctions in V , cf. Figure 2.1.

• Let Ẽ ⊂ E be an arbitrary subset of E. The set of all incoming edges in
Ẽ is defined as δin(Ẽ) := {e ∈ E \ Ẽ : ∃ẽ ∈ Ẽ with α(ẽ) = ω(e)}. The
set of all outgoing edges of Ẽ is defined as δout(Ẽ) := {e ∈ E \ Ẽ : ∃ẽ ∈
Ẽ with ω(ẽ) = α(e)}, cf. Figure 2.2.

• The set of all incoming edges of the network is given by Ein := {e ∈ E :
δin({e}) = ∅}. Each element of Ein ⊂ E is called inflow edge.

• The set of all outgoing edges of the network is given by Eout := {e ∈ E :
δout({e}) = ∅}. Each element of Eout ⊂ E is called outflow edge.

• Each edge is modeled by an interval [ae, be] with a length Le := |be − ae|.
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Figure 2.1: Junction v with incoming
edges e ∈ δinv = {1, 2, 3}
and outgoing edges e ∈
δoutv = {4, 5}.
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Figure 2.2: Given is a set of edges
Ẽ = {5, 6, 7}. The incom-
ing edges of Ẽ is δin(Ẽ) =
{3, 4}. The outgoing edges
of Ẽ is δout(Ẽ) = {8}

To simplify the notation, we choose ρmax = 1 and a = 1. We review the coupling
conditions for the regularized type of the conservation law, see [19, 27]. We
approximate the flux f as before by the continuous function fδ for δ > 0 with

fδ(ρ) = min{ρ, 1
δ
(1− ρ)} for δ > 0. (2.3)

Here, the density value for the maximal flow is given by

σ := argmax
ρ∈[0,1]

fδ(ρ) =
ρmax

1 + aδ
. (2.4)

We consider the network problem

∂tρe(x, t) + ∂xfδ(ρe(x, t)) = 0 ∀e ∈ E, x ∈ (ae, be), t ≥ 0, (2.5)

ρe(x, 0) = ρe,0(x) ∀x ∈ (ae, be).

For a definition of weak network solutions and Riemann problems at junctions
fulfilling the equality of fluxes, we refer to [68]. We denote the Riemann initial
data with ρe,0 = ρe,0(be) for incoming edges and ρe,0 = ρe,0(ae) for outgoing edges
for a single junction. Assuming a unique solution for the problem at the junction,
we denote the solution at the junction, i.e., at x = be for incoming and at x = ae
for outgoing edges, by

(ρ̄1, ..., ρ̄n+m).

2.1.1 The Approach of Coclite-Garavello-Piccoli (CGP)

We consider a junction with n incoming edges and m outgoing edges labeled by
e = 1, . . . , n and e = n+ 1, . . . , m+ n, respectively (cf. Figure 2.3).
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Figure 2.3: A junction with n incoming and m outgoing edges.

Given the constant initial values ρe,0, we need to determine a unique solution ρ̄e
satisfying the coupling condition. In particular for the piecewise differentiable
flux function (1.14) we refer to [27]. The values of ρ̄e are restricted as follows:

ρ̄e ∈ [σ, 1], ρe,0 ≥ σ, e = 1, ..., n, (2.6)

ρ̄e ∈ {ρe,0} ∪ (τ(ρe,0), 1], ρe,0 ≤ σ, e = 1, ..., n,

ρ̄e ∈ [0, σ], ρe,0 ≤ σ, e = n+ 1, ..., n+m,

ρ̄e ∈ [0, τ(ρe,0)) ∪ {ρe,0}, ρe,0 ≥ σ, e = n+ 1, ..., n+m,

where for each ρ ̸= σ, ρ ∈ [0, 1] the value τ(ρ) is the unique number τ(ρ) ̸= ρ such
that f(ρ) = f(τ(ρ)). Thus ρ < σ ⇒ τ(ρ) > σ and vice versa. Here

τ(ρ) =

{
1
δ
(1− ρ) ρ > σ

1− δρ ρ ≤ σ
(2.7)

Next, we look for suitable coupling conditions for (2.1) with linear flux (2.2). We
proceed as for the Riemann problems in Section 1.2. The coupling conditions for
the discontinuous problem are obtained by using the CGP-approach for the reg-
ularized problem (2.3) and considering the limit solutions for small δ. We review
the approach in the regularized case considering only two types of junctions, the
first one having two incoming and one outgoing edge and the second one having
one incoming and two outgoing edges, see Figure 2.4.

Coupling conditions for two incoming edges and one outgoing edge

We consider a junction with two incoming edges n = 2 and one outgoing edge
m = 1. The initial densities on edges e = 1, 2, 3 are given by ρ1,0, ρ2,0, ρ3,0. The
corresponding fluxes are denoted as γe,0 = fδ(ρe,0). Denote the maximum of the
flux by fδ(σ). We denote the sets of valid resulting fluxes γe by Ωe. For the
incoming edges e = 1, 2 this is

ρe,0 ≤ σ ⇒ Ωe = [0, γe,0], (2.8)

ρe,0 ≥ σ ⇒ Ωe = [0, fδ(σ)].
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Figure 2.4: A junction with two connected edges (left), a junction with two incom-
ing and one outgoing edge (middle) and a junction with one incoming
and two outgoing edges (right).

For the outgoing edge e = 3,

ρe,0 ≤ σ ⇒ Ωe = [0, fδ(σ)], (2.9)

ρe,0 ≥ σ ⇒ Ωe = [0, γe,0].

Moreover we can define ce such that

Ωe = [0, ce]. (2.10)

The fluxes at the junction are found in the following way, see e.g. [54]:

max wγ1 + γ2 w.r.t.

0 ≤ γ1 ≤ c1, 0 ≤ γ2 ≤ c2, γ1 + γ2 ≤ c3,
(2.11)

where w > 1 is a weight for the maximization problem. The unique solution is
γ1 = min{c1, c3}, γ2 = min{c2, c3 − γ1}, γ3 = γ1 + γ2.

Remark 2.1.2. In the work of Göttlich et al. [48], an alternative maximization
problem is used in this situation, i.e.:

(1) c1 + c2 ≤ c3: Then we have to look for γ1, γ2 such that

max γ1 + γ2 w.r.t.

0 ≤ γ1 ≤ c1, 0 ≤ γ2 ≤ c2, γ1 + γ2 ≤ c3.

(2) c1 + c2 > c3 : Then we have to look for γ1, γ2 such that

max γ1 + γ2 w.r.t.

γ1 = γ2
0 ≤ γ1 ≤ c1, 0 ≤ γ2 ≤ c2, γ1 + γ2 ≤ c3.

For reducing the complexity of the presented network problem and the optimization
problem in Section 2.3, we select the simpler maximization problem (2.11).
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Coupling conditions for one incoming edge and two outgoing edges

We consider a junction with one incoming edge n = 1 and two outgoing edges
m = 2. We use the same notation as before, i.e., we define γe,0 and the sets
Ωe depending on whether incoming or outgoing edges are considered. Using
distribution rates d2,1, d3,1 ∈ (0, 1) with d2,1 + d3,1 = 1 the CGP-conditions are

(1) γ1 ∈ Ω1, de,1γ1 ∈ Ωe for e = 2, 3.

(2) Maximize γ1 w.r.t. (1).

(3) γj = de,1γ1, e = 2, 3.

Using Ωe = [0, ce], e = 1, 2, 3, we obtain

γ1 = min{c1, c2/d2,1, c3/d3,1}. (2.12)

This is exactly, what is known as the FIFO (first in, first out) rule of a dispersing
junction.

Remark 2.1.3. The situation of one incoming and one outgoing edge only (linear
network) can be directly deduced from the dispersing case. In fact, in the limit
for one distribution parameter, e.g. d3,1 → 0, the solution of the max−problem
reduces to

γ1 = min{c1, c2}.

In the following, we determine the coupling conditions for the discontinuous con-
servation law (2.1) with linear flux (2.2) using the above approach for the regu-
larized problem (2.3) and considering the limit δ → 0.

2.1.2 Network Coupling for the discontinuous Flux
Function

At first, according to (2.6), we define admissible solutions at junctions for the
regularized problem (2.3) for two types of junctions, cf. Figure 2.4. This is a
straightforward transfer from the CGP-approach explained in Subsection 2.1.1.
Second, we consider the limit δ → 0 and describe the resulting Riemann solutions
at junctions.

Two incoming edges and one outgoing edge

We consider a junction with two incoming edges n = 2 and one outgoing edge
m = 1. The initial densities on edges e = 1, 2, 3 are given by ρ1,0, ρ2,0, ρ3,0. We
note that if 0 ≤ ρe,0 < 1 for e = 1, 2, 3, then there exists a small δ > 0 such that
ρe,0 ≤ σ, e = 1, 2, 3. Thus, in case ρe,0 < 1 one obtains for δ small enough:

ρ̄e ∈ {ρe,0} ∪ ((1− δρe,0), 1], e = 1, 2, (2.13)

ρ̄3 ∈ [0, σ]
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and c1 = fδ(ρ1,0), c2 = fδ(ρ2,0), c3 = fδ(σ). In the limit δ → 0 this yields for
ρe,0 < 1:

ρ̄e ∈ {ρe,0} ∪ {1}, if ρe,0 > 0, e = 1, 2, (2.14)

ρ̄e ∈ {ρe,0}, if ρe,0 = 0, e = 1, 2,

ρ̄3 ∈ [0, 1]

and c1 = ρ1,0, c2 = ρ2,0, c3 = 1. Both situations are depicted in Figure 2.5 and 2.6.

1σρe,0
ρ

fδ(ρ)

1σ
ρ

fδ(ρ)

Figure 2.5: Feasible coupling densities for incoming edges e = 1, 2 (left) and out-
going edge e = 3 (right) in case of the regularized flux function (1.14)
and ρe,0 < 1.

1ρe,0
ρ

f(ρ)

1
ρ

f(ρ)

Figure 2.6: Feasible coupling densities for incoming edges e = 1, 2 (left) and
outgoing edge e = 3 (right) in case of the discontinuous flux func-
tion (1.13) and ρe,0 < 1.

Correspondingly, in the special case ρe,0 = 1, one obtains

ρ̄e ∈ [σ, 1], e = 1, 2, (2.15)

ρ̄3 ∈ {ρ3,0} = {1}

and c1 = fδ(σ), c2 = fδ(σ), c3 = fδ(ρ3,0). In the limit δ → 0, we end up with

ρ̄e ∈ {1}, e = 1, 2, 3 (2.16)
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fδ(ρ)

1
ρ

fδ(ρ)

Figure 2.7: Feasible coupling densities for incoming edges e = 1, 2 (left) and out-
going edge e = 3 (right) in case of the regularized flux function (1.14)
and ρe,0 = 1.
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Figure 2.8: Feasible coupling densities for incoming edges e = 1, 2 (left) and
outgoing edge e = 3 (right) in case of the discontinuous flux func-
tion (1.13) and ρe,0 = 1.

and c1 = 1, c2 = 1, c3 = 0, as illustrated in Figure 2.7 and 2.8.

Based on these results, we discuss three different cases that could occur when
solving the flux maximization problem at nodes (cf. Subsection 1.2.4 and the
model):

• Case A1: 0 ≤ ρe,0 < 1

The limit (2.14) yields c1 = ρ1,0, c2 = ρ2,0, c3 = 1. We have to distinguish the
two cases ρ1,0 + ρ2,0 ≤ 1 and ρ1,0 + ρ2,0 > 1. In case ρ1,0 + ρ2,0 ≤ 1 we get
γ1 = min{ρ1,0, 1} = ρ1,0, γ2 = min{ρ2,0, 1 − ρ1,0} = ρ2,0 and γ3 = ρ1,0 + ρ2,0.
Moreover, the densities are ρ̄1 = ρ1,0, ρ̄2 = ρ2,0 and ρ̄3 = ρ1,0+ρ2,0. The resulting
solutions are constants on edge 1 and 2 and a shock wave with speed s3 = 1 on
edge 3.
In case ρ1,0+ρ2,0 > 1, the limit yields γ1 = min{ρ1,0, 1} = ρ1,0, γ2 = min{ρ2,0, 1−
ρ1,0} = 1−ρ1,0 and γ3 = γ1+γ2. The resulting densities are ρ̄1 = ρ1,0, ρ̄2 = ρ̄3 = 1.
The resulting solutions is a constant on edge 1 and shock wave solutions on edge
2 and 3 with speed s2 =

ρ2,0−1+ρ1,0
ρ2,0−1 and s3 = 1 .
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• Case A2: ρ1,0 = 1, 0 ≤ ρ2,0 ≤ 1, 0 ≤ ρ3,0 < 1

The limit yields in this case c1 = 1, c2 = ρ2,0, c3 = 1. We obtain γ1 = min{1, 1} =
1, γ2 = min{ρ2,0, 1 − γ1} = 0 and γ3 = γ1 + γ2 = 1. The resulting densities are
ρ̄1 = 1, ρ̄2 = 1, ρ̄3 = 1. For ρ2,0 < 1, the solutions are shock waves with speed
s1 = −∞, s2 =

ρ2,0
ρ2,0−1 and s3 = 1. In case of ρ2,0 = 1, the shock wave velocity on

edge 2 changes to s2 = −∞.

• Case A3: ρ1,0 < 1, ρ2,0 = 1, 0 ≤ ρ3,0 < 1

The limit yields in this case c1 = ρ1,0, c2 = 1, c3 = 1. Here we obtain γ1 = ρ1,0,
γ2 = 1− ρ1,0 and γ3 = 1. The resulting densities are ρ̄1 = ρ1,0, ρ̄2 = ρ̄3 = 1. The
solution of edge 1 is a constant. Solutions on edge 2 and 3 are shock solutions
with velocity s2 = −∞ and s3 = 1.

Remark 2.1.4. All other cases have an outgoing edge with ρ3,0 = 1. They lead
to zero fluxes γe and if ρe,0 > 0, e = 1, 2

ρ̄1 = 1, ρ̄2 = 1, ρ̄3 = 1.

One incoming edge and two outgoing edges

Now we consider a junction with one ingoing edge e = 1 and two outgoing edges
e = 2, 3. We consider again different cases for the initial data of the Riemann
problems at the junctions. In case 0 ≤ ρe,0 < 1 one obtains for δ small enough:

ρ̄1 ∈ {ρ1,0} ∪ ((1− δρ1,0), 1], (2.17)

ρ̄e ∈ [0, σ] e = 2, 3,

and c1 = fδ(ρ1,0), c2 = fδ(σ), c3 = fδ(σ). In the limit δ → 0 this gives for ρe,0 < 1:

ρ̄1 ∈ {ρ1,0} ∪ {1}, if ρ1,0 > 0, (2.18)

ρ̄1 ∈ {ρ1,0}, if ρ1,0 = 0

ρ̄e ∈ [0, 1] e = 2, 3,

and c1 = ρ1,0, c2 = 1, c3 = 1. Correspondingly, in the special case ρe,0 = 1 for all
e = 1, 2, 3, one obtains

ρ̄1 ∈ [σ, 1], (2.19)

ρ̄e ∈ {ρe,0} = {1}, e = 2, 3,

and c1 = fδ(σ), c2 = fδ(ρ2,0), c3 = fδ(ρ3,0). In the limit δ → 0, we end up with

ρ̄e ∈ {1}, e = 1, 2, 3 (2.20)
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and c1 = 1, c2 = 0, c3 = 0. All situations described above are similar to the case
two incoming edges and one outgoing edge. To get an impression how the feasible
densities look like we refer to Figures 2.5, 2.6, 2.7 and 2.8.

For a detailed discussion of the maximization problem at nodes, we consider two
different cases:

• Case B1: 0 ≤ ρe,0 < 1

We use the limit equation (2.18). Then γ1 = min{ρ1,0, 1
d2,1

, 1
d3,1

} = ρ1,0 and
γ2 = d2,1ρ1,0 and γ3 = d3,1ρ1,0. The resulting densities are ρ̄1 = ρ1,0, ρ̄2 = d2,1ρ1,0
and ρ̄3 = d3,1ρ1,0. The solution is constant on edge 1 and shock waves with speed
1 on edge 2 and 3.

• Case B2: ρ1,0 = 1, 0 ≤ ρ2,0 < 1, 0 ≤ ρ3,0 < 1

Then γ1 = min{1, 1
d2,1

, 1
d3,1

} = 1 and γ2 = d2,1 and γ3 = d3,1. The resulting
densities are ρ̄1 = 1, ρ̄2 = d2,1 and ρ̄3 = d3,1. The solution is a shock wave with
infinite negative speed on edge 1 and speed 1 on edge 2 and 3.

Remark 2.1.5. All other cases have an outgoing edge with ρ2,0 = 1 or ρ3,0 = 1.
These cases lead to zero fluxes γe and if ρ1,0 > 0

ρ̄1 = 1, ρ̄2 = 1, ρ̄3 = 1.

Note that for the limiting case, the solution of edges at a junction may depend
immediately on other edges/junctions due to the infinite speed of propagation.

2.2 Solution Algorithm

Having a complete network formulation for the problem (2.1), (2.2) at hand, we
are now concerned with suitable numerical solution procedures. A conventional
way for solving this problem is the regularization of the discontinuous flux and
the use of classical schemes for hyperbolic conservation laws, see [4]. In the
following, we introduce a network extension of the discontinuous flux Godunov
method, which is introduced in Subsection 1.3.3.
The following network notation corresponds to Definition 2.1.1. We note that
the algorithm is based on a finite volume method, i.e., the domain of an edge is
divided equidistantly into N cells. Each cell is labeled by i, possesses a width of
∆x = Le/N and contains the interval [xi−1, xi] with xi = i∆x. For a given time
horizon T we introduce an equidistant time-grid with ∆t as the time step-size,
NT the total number of time steps and discrete time points tn = n∆t. Then, the
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discretized density ρn,ei complies the averaged numerical solution in the cell i on
edge e at time tn. The CFL condition reduces to ∆t ≤ a∆x and the computation
of ρn+1,e

i at the next time-level n+ 1 obeys the recursive formula:

(PDE): ρn+1,e
i = ρn,ei − λ[F n,e

i − F n,e
i−1], (2.21)

where λ = ∆t
∆x

defines the grid constant. The numerical flux is given by

(FLUX): F n,e
i−1 = min{aρn,ei−1,

ρmax − ρn,ei

λ
+ F n,e

i }. (2.22)

F n,e
1 F n,e

2 F n,e
3 F n,e

4 F n,e
5

ρn,e1 ρn,e2 ρn,e3 ρn,e4 ρn,e5

x0 x1 x2 x3 x4 x5

Figure 2.9: Illustration of the finite volume method.

This means, each cell ρn,ei has an inflow F n,e
i−1 and an outflow F n,e

i . As stated
in (2.22), the flux F n,e

i−1 is determined by the minimum of the straightforward
Upwind flux aρn,ei and the maximal possible flow. Hence, F n,e

i−1 is based on a
bounded Upwind flux such that ρn+1,e

i never exceeds ρmax.

Remark 2.2.1. Since the maximal density ρmax on each edge implies an upper
bound for ρn,ei , i.e., 0 ≤ ρn,ei ≤ ρmax, we also get an upper bound for the numerical
flux F n,e

i :

0 ≤ F n,e
i ≤ aρmax. (2.23)

Furthermore, we assume that no quantities are lost or generated at junctions.
Thus, in the sense of mass conservation, the sum of all ingoing fluxes is equal to
the outgoing ones.

(CPL):
∑

e∈δinv

F n,e
N =

∑

e∈δoutv

F n,e
0 (2.24)

Considering different types of junctions and following the discussion in Sec-
tion 2.1, we show how to set the numerical flux F n,e

N explicitly, cf. Figure 2.9.
This is an important issue since the correct solution for the maximization problem
at junctions must be ensured. According to Figure 2.4, we review all potential
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scenarios and add a further situation (Junction Type IV) to tackle network sinks.

Junction Type I. We consider a junction with one incoming and one outgoing
edge. We denote the incoming edge by e = 1 and the outgoing edge by e = 2,
respectively. Additionally, we define

cn1 = aρn,1N ,

cn2 =
ρmax − ρn,21

λ
+ F n,2

1 .
(2.25)

Generally, the values cne denote the maximal possible flow at intersections for
e = 1, 2. Thus, the actual outflow of edge 1 is the minimum of cn1 and cn2 , i.e.,
F n,1
N = γn1 = min{cn1 , cn2} or more precisely:

(CPL A): F n,1
N = min{aρn,1N ,

ρmax − ρn,21

λ
+ F n,2

1 }. (2.26)

Junction Type II. We consider a junction with two incoming edges and one
outgoing edge. We denote the incoming edges by e = 1, 2 and the outgoing edge
by e = 3. Additionally, we define

cne = aρn,eN , e = 1, 2

cn3 =
ρmax − ρn,31

λ
+ F n,3

1 .
(2.27)

By definition of the coupling conditions, F n,e
N , e = 1, 2 can be computed in fol-

lowing way:

(CPL B): F n,e
N =

{
min{cn1 , cn3}, e = 1,

min{cn2 , cn3 − F n,1
N }, e = 2.

(2.28)

Junction Type III. Now we consider a junction with one incoming edge e = 1
and two outgoing edges e = 2, 3. Again we define

cn1 = aρn,1N ,

cne =
ρmax − ρn,e1

λ
+ F n,e

1 e = 2, 3.
(2.29)

The values cne denote the maximal possible flow at the intersection for all edges
e = 1, 2, 3.

(CPL C): F n,1
N = min{cn1 ,

cn2
d2,1

,
cn3

1− d2,1
}. (2.30)
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Here, the parameter d2,1 ∈ (0, 1) denotes the distribution rate of the incoming
flux among the outgoing edges:

F n,2
0 = d2,1F

n,1
N ,

F n,3
0 = (1− d2,1)F

n,1
N .

(2.31)

Junction Type IV. The last junction type considers only one incoming edge
and no outgoing edges, i.e., it is a sink. The set of all sinks is denoted by Eout. It
is necessary to prescribe outflow boundary conditions for all sinks. We introduce
a variable f e

out that limits the outflow of a sink e ∈ Eout in following way.

(CPL D): F n,e
N = min{aρn,eN , f e

out} ∀e ∈ Eout. (2.32)

Remark 2.2.2. From a computational point of view, we assume a cycle-free
network and a topological ordering of the edges. Then, the numerical flux F n,e

i

for all e, i can be computed efficiently: The process starts with the computation of
F n,e
i for all edges e linked with a sink, i.e, e ∈ Eout. Further, due to the coupling

condition (CPL D), the outflow of edge e is known and F n,e
i for all i and e ∈ Eout

can be solved. This yields the possible inflow for all edges e ∈ Eout. Applying
all coupling conditions (CPL A)-(CPL C), the flux F n,e

N for all predecessors e ∈
E \ Eout can be calculated. Remove all edges with a sink from the network and
repeat this procedure until the set of edges is empty.

For simulation purposes, the discretized model is summarized as an algorithm
called Discontinuous Flux Godunov Method (DFG):

forwardsolutionPDE()

(1) For n = 1 to NT − 1
(2) updateFLUX(n)
(3) updatePDE(n)
(4) End

updateFLUX(n)

(1) For j = 1 to |J |
(2) Solve F n,e

N ∀e ∈ δinv via coupling conditions CPL
(3) Solve F n,e

0 ∀e ∈ δoutv via coupling conditions CPL
(4) For all e ∈ δinj
(5) For i = N to 2 Step −1

(6) F n,e
i−1 = min{aρn,ei−1,

ρmax−ρn,e
i

λ
+ F n,e

i }
(7) End
(8) End
(9) End
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updatePDE(n)

(1) For all e ∈ E
(2) For i = 1 to N
(3) ρn+1,e

i = ρn,ei − λ[F n,e
i − F n,e

i−1]
(4) End
(5) End

Remark 2.2.3. In the linear case discussed here the solution of the advection
problem with λ = 1 is exact.

Buffer Allocation

At this point, we try to find a connection between our model including discontin-
uous flux and a buffer allocation model that is introduced in the work of Stolletz
and Weiss in [94, 101].
In consideration of the buffer allocation model, we consider a queuing network
with individual production units m, consisting of a processor and a buffer with
size Cm, see Figure 2.10. This model characterize a part (good) n individually
by its arrival time τm,n. The processing time of a part n in machine m is defined
by Tm,n.

m− 1

τm−1,n

Cm−1 ... 2 1

Buffer Processor

τm−1,n

m

τm,n

Cm
... 2 1

Buffer Processor

τm,n

Figure 2.10: A serial production line.

The arrival times τm,n are defined by a recursion, so-called (τ -recursion), i.e.,

τm,n = max{max{τm,n−1, τm−1,n}+ Tm−1,n, τm+1,n−(Cm+1)}.
In the work of Göttlich and Kolb in [50], an ODE system is derived from the
discrete τ - recursion model that has the following structure:
The inflow of the buffer m is characterized by

γm(t,∆t) = min

{
µm−1,max(t,∆t), (2.33)

wm−1(t)

∆t
+ γm−1(t,∆t),

Cm + 1− wm(t)

∆t
+ γm+1(t,∆t)

}
,
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where µm−1,max(t,∆t) is the maximum processing rate at the preceding processor.
The buffer amount is given by the formula:

wm(t+∆t) = wm(t) +∆t(γm(t,∆t)− γm+1(t,∆t)). (2.34)

The following approach motivates a PDE model based on a discontinuous flux
that considering a large number of finite buffers. We assume that the parts cannot
pass the buffers with infinite velocity. Thus, the equation (2.33) reduces to

γm(t,∆t) = min

{
µm−1,max(t,∆t), (2.35)

wm−1(t)

∆t
,
Cm + 1− wm(t)

∆t
+ γm+1(t,∆t)

}
.

We define a spatial component, in which the distance between two buffers is
introduced as ∆x. Additionally, we consider the parts as an averaged quantity
(density), i.e., we define ρm(t) := wm(t)/∆x, ρmax := (Cm + 1)/∆x, λ = ∆t

∆x
, and

a := 1
λ
. Hence, the inflow (2.35) of the buffer m is representable as

γm(t,∆t) = min

{
min{aρm−1(t), µm−1,max(t,∆t)}
︸ ︷︷ ︸

=:f̃(ρm−1(t))

,
ρmax − ρm(t)

λ
+ γm+1(t,∆t)

}
.

(2.36)

Equation (2.34) yields the evolution of the density

ρm(t +∆t) = ρm(t) + λ(γm(t,∆t)− γm+1(t,∆t)). (2.37)

Obviously, (2.36) and (2.37) are similar to the equations (2.21) and (2.22). Thus,
this leads to the supposition that (2.36) and (2.37) is the DFG method solving
the following partial differential equation:

∂tρ+ ∂xf̃(ρ) ·H(ρmax − ρ) = 0,

f̃(ρ) = min{aρ, µ}.
(2.38)

The constant a prescribe the velocity of a good, which it needs in order to move
to the next buffer. The processing rate is given by the function µ(x). Note that
the flux function f̃ is similar to the model of Armbruster et al. in [3]. The buffer
sizes could be prescribed by a space depended function ρmax(x).
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ρmax

ρ

µ

a

f(ρ)

Figure 2.11: Discontinuous flux function of (2.38)

2.3 Mixed Integer Programming Model

For many applications, mixed integer programming models (MIP) play an im-
portant role. Even in application of PDE-constraint optimization problems, MIP
models establish new possibilities to solve some of this problems in an accurate
way, for instance, [25, 37, 51].
The following approach is based on discretization of a PDE model which can be
optimized subsequently as a finite dimensional problem. We extend the previous
MIP model that is already introduced in Chapter 1 to network topologies.
We use the DFG method for networks to create linear constraints with utilization
of floating and binary variables. At first, we transform the discretized PDE (2.21)
on a single edge into the MIP system.

(PDE): ρn+1
i = ρn,ei − λ[F n,e

i − F n,e
i−1]. (2.39)

The numerical flux are defined as F n,e
i−1 = min{aρn,ei−1,

ρmax−ρi
λ

+ F n,e
i }. By intro-

ducing binary variables ξn,ei ∈ {0, 1} the numerical flux can be written as linear
inequalities:

(FLUX1): aρn,ei−1 − ξn,ei−1M ≤ F n,e
i−1,

(FLUX2): F n,e
i−1 ≤ aρn,ei−1,

(FLUX3):
ρmax − ρn,ei

λ
+ F n,e

i − (1− ξn,ei−1)M ≤ F n,e
i−1,

(FLUX4): F n,e
i−1 ≤

ρmax − ρn,ei

λ
+ F n,e

i .

(2.40)

where i = 2, ..., N , n = 1, ..., NT , e ∈ E. Additionally M is a large constant, i.e.,
M > aρmax

Junction Type I. We consider a junction with one incoming edges and one
outgoing edge. Without loss of generality we denote the both incoming edges by
integer numbers e = 1 and the outgoing one by e = 2. Generally, it is necessary
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to reformulate the statement (CPL A) into linear inequalities.

(CPL A1): aρn,1N −Mξn,1N ≤ F n,1
N ,

(CPL A2): F n,1
N ≤ aρn,1N ,

(CPL A3):
ρmax − ρn,21

λ
+ F n,2

1 −M(1− ξn,1N ) ≤ F n,1
N ,

(CPL A4): F n,1
N ≤ ρmax − ρn,21

λ
+ F n,2

1 .

(2.41)

Junction Type II. We consider a junction with two incoming edges and one
outgoing edge. Without loss of generality we denote the both incoming edges by
integer numbers i = 1, 2 and the outgoing one by e = 3. Additionally, we define

cne = aρn,eN , e = 1, 2,

cn3 =
ρmax − ρn,31

λ
+ F n,3

1 .
(2.42)

We reformulate the statement F n,1
N := min{cn1 , cn3} into a bundle of linear inequal-

ities with binary variables ξn,eN , e = 1, 2.

(CPL B1): aρn,1N −Mξn,1N ≤ F n,1
N ,

(CPL B2): F n,1
N ≤ aρn,1N ,

(CPL B3):
ρmax − ρn,31

λ
+ F n,3

1 −M(1− ξn,1N ) ≤ F n,1
N ,

(CPL B4): F n,1
N ≤ ρmax − ρn,31

λ
+ F n,3

1 .

(2.43)

The outflow F n,2
N := min{cn2 , cn3 − F n,1

N } can be transform into the following in-
equalities.

(CPL B5): aρn,2N −Mξn,2N ≤ F n,2
N ,

(CPL B6): F n,2
N ≤ aρn,2N ,

(CPL B7):
ρmax − ρn,31

λ
+ F n,3

1 − F n,1
N −M(1− ξn,1N ) ≤ F n,2

N ,

(CPL B8): F n,1
N ≤ ρmax − ρn,31

λ
+ F n,3

1 − F n,1
N .

(2.44)

Junction Type III. Now we consider a junction with one incoming edge and
two outgoing edges. In due to the previous cases, we sign the ingoing edges by
e = 1 and the both outgoing edges by e = 2, 3.

cn1 = aρn,1N ,

cne =
ρmax − ρn,e1

λ
+ F n,e

1 , e = 2, 3.
(2.45)
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Generally the values cne denotes the maximal possible flow at the junction point
for all edges e = 1, 2, 3. Thus, the actual outflow of the edge 1 is minimum of cn1
and cn2 + cn3 , i.e., γ

n
1 = min{cn1 , cn2 + cn3}. This expression can be formulated as

linear inequalities with binary variables.

(CPL C1): aρn,1N −Mξn,1N ≤ F n,1
N ,

(CPL C2): F n,1
N ≤ aρn,1N ,

(CPL C3):
ρmax − ρn,21

λ
+ F n,2

1 +
ρmax − ρn,31

λ
+ F n,3

1 −M(1− ξn,1N ) ≤ F n,1
N ,

(CPL C4): F n,1
N ≤ ρmax − ρn,21

λ
+ F n,2

1 +
ρmax − ρn,31

λ
+ F n,3

1 .

(2.46)

The actual inflow F n,e
0 is limited by the maximal possible inflow cne for all outgoing

edges e = 2, 3.

(CPL C5): 0 ≤ F n,2
0 ≤ ρmax − ρn,21

λ
+ F n,2

1 ,

(CPL C6): 0 ≤ F n,3
0 ≤ ρmax − ρn,31

λ
+ F n,3

1 .

(2.47)

Summarizing, the mixed integer model derived by the DFG method for networks
is given by

min
∑

e∈E

NT−1∑

n=1

N∑

i=1

Cn,e
i ρn,ei +Dn,e

i F n,e
i

subject to

(PDE), (CPL)

(FLUX1) - (FLUX4)

(CPL A1) - (CPL A4)

(CPL B1) - (CPL B8)

(CPL C1) - (CPL C6) ,

(2.48)

where Cn,e
i , Dn,e

i are real weights for the linear objective function.

2.4 Presolve Techniques for the MIP Model

A disadvantage of the mixed integer model is the huge computational effort for
large problems. As a consequence, the mixed integer problem cannot be solved
efficiently without the use of additional structural information. Therefore, we are
interested in efficient presolve techniques that can be applied to the MIP model
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to reduce the size of the mixed integer problem and its computational solution
time.
In this section we introduce a description of bounds strengthening for the pre-
sented MIP model. The task is to find and remove redundant parts of the problem
formulation, and thus output a somehow strengthened version of the model.
Bound strengthening techniques for general LP and MIP models are well-known
investigated, e.g., [2, 92]. In particular, bound strengthening techniques for MIP
formulations of PDE models are considered in [33].
At first, we present the basic concepts of bound strengthening for general MIP
models. Afterwards, we apply the presolve level 1 approach of [33] to our MIP
network model. Finally, we introduce an improvement of the previous presolving
strategy, namely the presolve level 2 that is especially based on the knowledge of
the PDE structure.
The notations, the general bound strengthening techniques, and concepts of the
presolve level 1 technique in this chapter orientate to [33].

2.4.1 Boundstrengthening in general

Note that each variable of the constraint system has lower and upper bounds. The
aim is to improve the bounds for the variables or if possible solve some variables
directly for reducing the size of the constraint system. In principle, best possible
bounds can be obtained by taking each variable as objective function and solve a
minimization (for the lower bound) and a maximization problem (for the upper
bound). However, such a procedure would be too time consuming in practice.
Bound strengthening is a simpler technique to obtain such improvements by using
informations only from the constraint system and the given bounds.
An arbitrary MIP Model is given by

min cTx

subject to

Ax ≥ b

x ∈ R
n−p
+ × {0, 1}p,

where c ∈ Rn, b ∈ Rm, and A ∈ Rm×n. We consider the i-th constraint inequality
of the system Ax ≥ b, which has the following form

(IEQ):
n∑

j=1

aijxj ≥ bj . (2.49)

Each variable xj has a lower and upper bound lj , uj with lj ≤ xj ≤ uj with
lj ∈ R+ ∪ {−∞},uj ∈ R+ ∪ {+∞}. If a better bound for an xj exists, i.e., lj ≤ l∗j
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or uj ≥ u∗
j , then the set of feasible solutions does not change, i.e.,

X = {x ∈ R
n−p
+ × {0, 1}p : Ax ≥ b, lj ≤ xj ≤ uj}

= {x ∈ R
n−p
+ × {0, 1}p : Ax ≥ b, l∗j ≤ xj ≤ u∗

j}.

Bound strengthening is a technique to obtain better bounds by using informations
soley from the constraint system Ax ≥ b and given bounds l ≤ x ≤ u.
In the following, we extract a variable xj of the i-th constraint inequality (2.49).
This is equivalent to

aijxj ≥ bj −
n∑

k=1,k ̸=j

aikxk. (2.50)

Now we define the positive and negative parts of the coefficient aij :

a+ij := max{aij , 0}, a−ij := min{aij , 0}.

We consider two cases. The first case holds if aij > 0. Thus, we can expand the
inequality (2.50) to

xj ≥
1

aij

(
bj −

n∑

k=1,k ̸=j

a+ikuk −
n∑

k=1,k ̸=j

a−iklk

)
=: l∗j . (2.51)

Let xj be a real variable. if l∗j > lj is valid, we have found an improved lower
bound. Then we set lj := max{l∗j , lj}. If xj is an integer variable, the improved
lower bound l∗ can be rounded up to the next integer, i.e., lj := max{l∗j , ⌈lj⌉}. We
denote by lowerboundStrengthening(xj ,(IEQ)) the process that tries to update
the lower bound on variable xj using the MIP constraint (IEQ).
The other case ai,j < 0 works analogously and results the following upper bound
equation

xj ≤
1

aij

(
bj −

n∑

k=1,k ̸=j

a+ikuk −
n∑

k=1,k ̸=j

a−iklk

)
=: u∗

j . (2.52)

Thus, if xj is a real variable, the improved upper bound is computed by uj :=
min{u∗

j , uj}. If xj is an integer, the improved upper bound can be rounded to
the next integer, i.e., uj := max{u∗

j , ⌊uj⌋}. Analogously to the lower bound
procedure, we define the process by upperboundStrengthening(xj ,(IEQ)).
In case of an equation constraint, i.e.,

(EQ):
n∑

j=1

aijxj = bj , (2.53)
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we can split (2.53) into two inequalities

n∑

j=1

aijxj ≥ bj , −
n∑

j=1

aijxj ≥ −bj . (2.54)

Both inequalities of (2.54) yield an upper and a lower bound for the variable
xj by the previous process. We denote by boundStrengthening(xj ,(EQ)) the
process that tries to update the lower and upper bound on variable xj using the
MIP equality constraint (EQ).
In general MIP preprocessing, the previous steps are performed for all constraints
i = 1, ..., m and all variables j = 1, ..., n. This procedure is carried out until either
no better bounds are found anymore or an infeasible problem is detected. In the
latter case, the constraints contradicts each other if the preprocessing procedure
finds bounds such that lj > uj. Hence, the preprocessing classifies the MIP as
an infeasible problem. In the case of lj = uj, the variable xj is solved and can be
removed out of the MIP for reducing the complexity of the model.

2.4.2 Presolve Level 1

The previous subsection describes the basics of a bound strengthening method
for general MIP problems. At this point, it is therefore unclear what sequence
of bound strengthening routines is performed to obtain an efficient presolving
technique. Under certain circumstances, the presolving procedure could take a
long computation time, or the desired results are not fulfilled.
In this subsection, we introduce the presolve level 1 routine that is based on the
presented bounds strengthening procedures and a careful reordering of the con-
straints.

At first, a notation of the bounds is defined in consideration of the presolve level
1 routine.

Definition 2.4.1. As abbreviations we write ρn,e
i
, ρn,ei , F n,e

i , F
n,e

i , ξn,e
i
, ξ

n,e

i for the
lower and upper bounds of the variables ρn,ei , F n,e

i , ξn,ei respectively.

Remark 2.4.2. A variable is solved by preprocessing or known if and only if the
lower and upper bound coincides. Thus, solved variables can be reduces from the
constrained system.

Next, we determine explicitly the bound strengthening routines for each con-
straints of the MIP model.
In consideration of the procedure in Subsection 2.4.1, the bounds of the density
are computed by the routine
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boundStrengthening(ρn,ei ,(PDE)), i.e.,

ρn,e
i

= ρn−1,e
i

+ λF n−1,e
i − λF

n−1,e
i−1 ,

ρn,ei = ρn−1,e
i + λF

n−1,e
i − λF n−1,e

i−1 .

For the bound strengthening of the flux variables, we do not need to use the linear
formulations (FLUX1) - (FLUX4). We can directly apply the nonlinear constraint
(FLUX) instead. For the flux constraint, we introduce the following procedure
nonlinearboundStrengthening(F n,e

i−1 ,(FLUX)), which yields the corresponding
bounds

F n,e
i−1 = min{aρn,e

i−1
,
ρmax − ρn,ei

λ
+ F n,e

i },

F
n,e

i−1 = min{aρn,ei−1,
ρmax − ρn,e

i

λ
+ F

n,e

i }.

A simple calculation shows that F n,e
i−1, (F

n,e

i−1) is a upper (lower) bound of F n,e
i−1.

The lower bound of the binary variable ξn,ei is computed as follows. The constraint
(FLUX1) obtains the inequality

aρn,ei − F n,e
i

M
≤ ξn,ei . (2.55)

Obviously, the left hand side of the term (2.55) is a lower bound of ξn,ei . However,
ξn,ei is a binary variable, and thus the lower bound is rounded up to the next
integer. This reveals the routine lowerboundStrengthening(ξn,ei ,(FLUX1)) with
the following computation

ξn,e
i

= max

{
ξn,e
i
,

⌈
aρn,e

i
− F

n,e

i

M

⌉}
.

We find an upper bound of ξn,ei by using the constraint (FLUX3). Consequently,
we obtain for ξn,ei an upper bound, i.e.,

ξn,ei ≤ 1− 1

M

(
F n,e
i+1 − F n,e

i +
ρmax − ρn,ei+1

λ

)

≤ 1− 1

M

(
F

n,e

i+1 − F n,e
i +

ρmax − ρn,ei+1

λ

)
.

Hence, this yields the routine upperboundStrengthening(ξn,ei ,(FLUX3)) with
the following computation

ξ
n,e

i = min

{
ξ
n,e

i ,

⌊
1− 1

M
(F

n,e

i − F n,e
i+1 +

ρmax − ρn,ei+1

λ
)

⌋}
.
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Finally, we calculate the lower and upper bounds for the flux at the junctions,
i.e., F n,e

0 , F n,e
N . However, we use each constraints of the coupling conditions on

each junctions.
At first, we consider a junction with one incoming edge e = 1 and one outgoing
edge e = 2. The bound strengthening routine of the flux F n,1

N in due of the
junction type I is defined as follows.
nonlinearboundStrengthening(F n,e

N,1 ,(CPL A))

F n,1
N = min

{
aρn,1

N
,
ρmax − ρn,21

λ
+ F1

n,2

}
,

F
n,1
N = min

{
aρn,1N ,

ρmax − ρn,2
1

λ
+ F1

n,2
}
.

Now we consider the boundstrengthening routine for the junction type II, i.e.,
nonlinearboundStrengthening(F n,e

N,e ,(CPL B)):

c1 := aρn,1
N

, c2 := aρn,1
N

, c3 :=
ρmax − ρn,31

λ
+ F n,3

1 ,

c1 := aρn,1N , c2 := aρn,1N , c3 :=
ρmax − ρn,3

1

λ
+ F

n,3
1 .

F n,1
N = min{c1, c3}, F

n,1
N = min{c1, c3},

F n,2
N = min{c2, c3 − F

n,1
N }, F

n,2
N = min{c2, c3 − F n,1

N }.

F n,3
1 = F n,1

N + F n,2
N , F

n,3
1 = F

n,1
N + F

n,2
N .

Finally, we use the junction type III for bound strengthening of the flux at the
junction, i.e., nonlinearboundStrengthening(F n,e

N,e ,(CPL C)):

F n,1
N = min

{
aρn,1

N
,
ρmax − ρn,21

λ
+ F1

n,2 +
ρmax − ρn,31

λ
+ F1

j,3

}
, (2.56)

F
n,1
N = min

{
aρn,1N ,

ρmax − ρn,2
1

λ
+ F1

n,2
+
ρmax − ρn,3

1

λ
+ F1

n,3
}
. (2.57)

After defining the bound strengthening routines for each model constraint, we
sort the constraints and apply bound strengthening in order of the network so-
lution algorithm forwardsolutionPDE(). Hence, the presolve level 1 routine is
summarized to the following algorithm:
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presolveLevel1()

(1) For n = 1 to NT − 1
(2) For v = 1 to |V |
(3) nonlinearboundStrengthening(F n,e

N ,(CPL)) ∀e ∈ δinv
(4) nonlinearboundStrengthening(F n,e

0 ,(CPL)) ∀e ∈ δoutv

(5) lowerboundStrengthening(ξn,eN ,(CPL)) ∀e ∈ δinv
(6) upperboundStrengthening(ξn,eN ,(CPL)) ∀e ∈ δinv
(7) For all e ∈ δinv
(8) For i = N to 2 Step −1
(9) nonlinearboundStrengthening(F n,e

i−1 ,(FLUX))
(10) End
(11) End
(12) End
(13) For all e ∈ E
(14) For i = 1 to N
(15) boundStrengthening(ρn,ei ,(PDE))
(16) upperboundStrengthening(ξn,ei ,(FLUX1))
(17) lowerboundStrengthening(ξn,ei ,(FLUX3))
(18) End
(19) End
(20) End

Remark 2.4.3. We expect that the presolve algorithm solves completely the net-
work problem, if the network problem has only one unique feasible solution. Such
network problems exists if only the junction types I, II, and IV are used, and also
the inflow and the initial values are known. In that case, each bound strengthen-
ing step is equivalent to the computation steps of the forward solver. Thus, the
presolve algorithm reveals the unique feasible solution of the network problem.

2.4.3 Presolve Level 2

In practice, the presolving level 1 strategy does not calculate the best bounds
for the mixed integer problem of Section 2.3. Therefore, we introduce another
method for an efficient presolving. For our motivation, we consider a conservation
law with two different initial data ρ(x, 0) and ρ(x, 0) that fulfills ρ(x, 0) ≤ ρ(x, 0).
The monotonicity statement of the Kruskow theorem for conservation laws leads
to the following result. The density ρ(x, t) is larger than the density ρ(x, t) for
all x ∈ R and t > 0, i.e., ρ(x, t) ≤ ρ(x, t). Indeed, the DFG method yields the
same results for discretized version of our model, cf. Lemma 1.3.2. Hence, an
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additional solving of the conservation law yields an upper bound. The procedure
is the same to obtain lower bounds. However, this is valid for the PDE in one
dimension. The question raises whether this procedure is applicable to our net-
work problem?
Nevertheless, it is possible to obtain lower and upper bounds for our problem if
we modify the forward network simulation of Section 2.2. In detail, the presented
presolving level 2 routine is based directly on the forward network simulation with
modified coupling conditions that are specified in this subsection.

We assume that the inflow and the initial data at starting time t = 0 is known.
Additionally, the following procedure is restricted to the optimal routing prob-
lem, i.e., we are interested in finding optimal distribution rates in junctions with
respect to an objective function.
Next, we introduce the modified coupling conditions for the presented presolving
level 2 routine.

Definition 2.4.4 (Modified coupling conditions). The set (CPL UP) consists
of the coupling conditions CPL A,B,D introduced in Section 2.2 and CPL C UP .
Analogously, the set (CPL LOW) contains of the coupling conditions CPL A,B,D
and CPL C LOW .
The coupling condition CPL C UP is defined as follows:
We consider a junction with one incoming edge e = 1 and two outgoing edges
e = 2, 3. The fluxes at the junction is given by

F n,1
N = min{cn1 , cn2 + cn3},

(CPL C UP ): F n,2
0 = min{cn1 , cn2},

F n,3
0 = min{cn1 , cn3},

where

cn1 = aρn,1N ,

cne =
ρmax − ρn,e1

λ
+ F n,e

1 , e = 2, 3.

Note that the values cne denote the maximal possible flow at the intersection for
all edges e = 1, 2, 3. Respectively, the coupling condition CPL C LOW is defined
in a similar way

F n,1
N = min{cn1 , cn2 + cn3},

(CPL C LOW ): F n,2
0 = 0,

F n,3
0 = 0.

Remark 2.4.5. The coupling conditions C UP and C LOW of Definition 2.4.4 do
not fulfill any mass conservation. In general, it does not hold F n,1

N = F n,2
0 +F n,3

0 .
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However, the modified coupling conditions can be plugged in the DFG method
for networks. The result is a novel bound strengthening routine:

densityBoundStrengthening()

(1) Initial: ρ1,ei := ρ1,e
i

:= ρ1,ei , ∀i = 1, ..., N

(2) Initial: F̃ n,e
0 := F

˜
n,e
0 := F n,e

0 , ∀n = 1, ..., NT − 1, ∀e ∈ Ein

(3) For n = 1 to NT − 1
(4) For v = 1 to |V |
(5) Solve F̃ n,e

N , (F
˜
n,e
N ) ∀e ∈ δinv via CPL UP, (CPL LOW)

(6) Solve F̃ n,e
0 , (F

˜
n,e
0 ) ∀e ∈ δoutv via CPL UP, (CPL LOW)

(7) For all e ∈ δinv
(8) For i = N to 2 Step −1

(9) F̃ n,e
i−1 = min{aρn,ei−1,

ρmax−ρn,e
i

λ
+ F̃ n,e

i }
(10) F

˜
n,e
i−1 = min{aρn,e

i−1
,
ρmax−ρn,e

i

λ
+ F

˜
n,e
i }

(11) End
(12) End
(13) End
(14) For all e ∈ E
(15) For i = 1 to N

(16) ρn+1,e
i = ρn,ei − λ[F̃ n,e

i − F̃ n,e
i−1]

(17) ρn+1,e
i

= ρn,e
i

− λ[F
˜
n,e
i − F

˜
n,e
i−1]

(18) End
(19) End
(20) End

Nevertheless, the routine densityBoundStrengthening() is equivalent to the for-
ward network solver including the modified coupling conditions.
The computational steps (5) and (6) of the presented routine evaluate the nu-
merical inflow and outflow with respect to the coupling conditions (CPL UP)
and (CPL LOW). The resulting quantities ρn,ei and ρn,e

i
are the upper and lower

bounds of ρn,ei . In due of the algorithm densityBoundStrengthening(), F̃ n,e
i and

F
˜
n,e
i denotes the numerical fluxes of ρn,ei and ρn,e

i
respectively.

Finally, all upper and lower bounds of the network problem can be solved by the
presolving level 2 algorithm that is structured as follows.
At first, the routine densityBoundStrengthening() is called to compute the
lower und upper bounds of all density variables ρn,ei .
Afterwards, presolveLevel1() is performed to evaluate upper and lower bounds
of the remaining variables F n,e

i , ξn,ei .
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presolveLevel2()

(1) densityBoundStrengthening()
(2) presolveLevel1()

Finally, we prove that the presented presolve routine works correctly:

The routine densityBoundStrengthening() yields always upper and lower bounds
of the density values ρn,ei .

Here is a short outline of the proof. In consideration of a single edge of the net-
work, the routines densityBoundStrengthening() and forwardsolutionPDE()
are equivalent, i.e, both routines are the DFG method. Firstly, we derive a mono-
tonicity criteria for the DFG method on a single edge in due of inflow and outflow
conditions, i.e.,

ρn,ei ≤ ρn,ei ⇒ ρn+1,e
i ≤ ρn+1,e

i . (2.58)

Afterwards, we show that the routines densityBoundStrengthening() and
forwardsolutionPDE() fulfills the assumptions of the monotonicity criteria for
all edges of the network. Finally, we obtain (2.58) for all edges e ∈ E and the
statement is proven.

Especially for the proof, we reduce the notation of the inflow and outflow condi-
tions. According to the discrete network model, the numerical inflow (outflow)
of an edge e is given by F n,e

0 (F n,e
N ). We observe that these terms are always rep-

resentable by a minimum function, i.e., F n,e
0 = F n,e

N = min{·, ·}. In the following,
we generalize the notation for the numerical inflow and outflow as

F n,e
0 = min{cepre, cein}, F n,e

N = min{aρn,eN , ceout},

where e is an arbitraty edge of the network. Also, we assume that e is connected
to preceeding edges ẽ ∈ δin({e}), see e.g. Figure 2.12. The maximal inflow of
edge e is prescribed by cepre. Also, c

e
pre is representable as the sum of the maximal

possible outflow of the incoming edges ẽ ∈ δin({e}), i.e.,

cepre :=
∑

ẽ∈δin({e})

de,ẽ · aρn,ẽN ,

where 0 ≤ de,ẽ ≤ 1 is the actual distribution rate of the coupling. Note that the
inflow F n,e

0 is also bounded by the maximal allowed inflow

cein :=
ρmax − ρn,e1

λ
+ F n,e

1 . (2.59)
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Additionally, the outflow of an edge e is representable as F n,e
N = min{aρn,eN , ceout},

where ceout is the maximal possible outflow and it depends on the actual coupling
condition.

v
ẽ

e

δin({e}) cepre

cein ceout

Figure 2.12: An edge e with predecessor edges ẽ ∈ δin({e}). The inflow is
bounded by cepre, c

e
in and the outflow is bounded by ceout.

Thus, cepre, c
e
in, c

e
out, and the density ρn,ei characterizes the inflow and outflow of

the edge e.

Remark 2.4.6. In the following, F̃ n,e
i denotes the corresponding flux for the

density ρn,ei . Additionally, the fluxes F̃ n,e
0 , F̃ n,e

N are characterized by cepre, cein,
ceout.

The following lemma is a monotonicity criteria for a single edge depending on
the inflow and outflow coefficients cepre, c

e
in, c

e
out.

Lemma 2.4.7 (Single edge monotonicity). The condition ρn,ei ≤ ρn,ei holds for
an arbitrary n, for all i = 1, ..., N , and for a fixed edge e. Additionally, the
statements ceout ≥ ceout and cepre ≤ cepre are valid.

Then the DFG method that is introduced in Section (2.2) yields ρn+1,e
i ≤ ρn+1,e

i

for all i = 1, ..., N . Additionally, the statement cein ≥ cein holds.

Proof. The numerical flux of the DFG method is defined as

F n,e
i := min{aρn,ei ,

ρmax − ρn,ei+1

λ
+ F n,e

i+1},

F̃ n,e
i := min{aρn,ei ,

ρmax − ρn,ei+1

λ
+ F̃ n,e

i+1}.

Let F n,e
i < aρn,ei be the numerical flux in the blocking state. Thus, the flux is

given by F n,e
i =

ρmax−ρn,e
i+1

λ
+ F n,e

i+1 and we obtain the recursion

F n,e
i =

N∑

k=i

ρmax − ρn,ek

λ
+ ceout.
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By the assumptions ceout ≥ cout and ρ
n,e
i ≤ ρn,ei , the following estimation holds

N∑

k=i

ρmax − ρn,ek

λ
+ ceout ≤

N∑

k=i

ρmax − ρn,ek

λ
+ ceout = F n,e

i < aρn,ei ≤ aρn,ei .

As a consequence, the numerical flux

F̃ n,e
i =

ρmax − ρn,ei+1

λ
+ F̃ n,e

i+1 =
N∑

k=i

ρmax − ρn,ek

λ
+ ceout < aρn,ei

is also in the blocking state and we obtain

F n,e
i =

ρmax − ρn,ei+1

λ
+ F n,e

i+1 ⇒ F̃ n,e
i =

ρmax − ρn,ei+1

λ
+ F̃ n,e

i+1

with F̃ n,e
i ≤ F n,e

i .
(2.60)

The negation of (2.60) implies

F̃ n,e
i = aρn,ei ⇒ F n,e

i = aρn,ei with F n,e
i ≤ F̃ n,e

i . (2.61)

The next step is to prove that ρn+1,e
i ≤ ρn+1,e

i . Therefore, we distinguish three
different cases.

• Case 1: Let F̃ n,e
i−1 =

ρmax−ρn,e
i

λ
+ F̃ n,e

i . The (PDE) constraint yields

ρn+1,e
i

(PDE)
= ρn,ei − λF̃ n,e

i + λF̃ n,e
i−1 = ρmax ≥ ρn+1,e

i .

• Case 2: Let F̃ n,e
i−1 = aρn,ei−1 and F n,e

i =
ρmax−ρn,e

i+1

λ
+ F n,e

i+1.

Then (2.60) and (2.61) result F̃ n,e
i ≤

(2.60)
F n,e
i and F n,e

i−1 =
(2.61)

aρn,ei−1. Hence,

this yields

ρn+1,e
i

(PDE)
= ρn,ei − λF̃ n,e

i + aλρn,ei−1 ≥ ρn,ei − λF n,e
i + aλρn,ei−1

(PDE)
= ρn+1,e

i ,

where i > 1. At the left boundary cell i = 1, we receive the estimation

ρn+1,e
1 = ρn,e1 − λF̃ n,e

i + λcepre ≥ ρn,e1 − λF n,e
i + λcepre = ρn+1,e

1 .

• Case 3: Let F̃ n,e
i−1 = aρn,ei−1 and F n,e

i = aρn,ei . Note that the CFL condition
yields (1− aλ) ≥ 0. Thus, we get

ρn+1,e
i

(PDE)
= (1− aλ)ρn,ei + aλρn,ei−1 ≥ (1− aλ)ρn,ei + aλρn,ei−1

(PDE)
= ρn+1,e

i ,

where i > 1. At the left boundary cell i = 1, we obtain

ρn+1,e
1 = (1− aλ)ρn,e1 + λcepre ≥ (1− aλ)ρn,e1 + λcepre = ρn+1,e

1 .
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Finally, we obtain ρn+1,e
i ≤ ρn+1,e

i .
Now we prove cein ≤ cein. Therefore, we consider two different cases:

• Case 1: Let F n,e
1 = ρmax−ρn,e

2

λ
+ F n,e

2 . Then (2.60) yields

cein
(2.59)
=

ρmax − ρn,e1

λ
+ F̃ n,e

1 ≤ ρmax − ρn,e1

λ
+ F n,e

1
(2.59)
= cein

• Case 2: Now we consider the case F n,e
1 = aρn,e1 . This results

cein =
ρmax − ρn,e1

λ
+ F̃ n,e

1 ≤ ρmax − ρn,e1

λ
+ aρn,e1

=
1

λ
(ρmax − (1− aλ)︸ ︷︷ ︸

≥0

ρn,e1 ) ≤ 1

λ
(ρmax − (1− aλ)ρn,e1 )

=
ρmax − ρn,e1

λ
+ aρn,e1 =

ρmax − ρn,e1

λ
+ F n,e

1 = cein.

Theorem 2.4.8. The routine densityBoundStrengthening() computes upper
and lower bounds of the density values ρn,ei .

Proof. We restrict the proof only for upper bounds ρn,ei . However, the proof for
the lower bounds works analogously.

The density ρn,ei is computed by the algorithm forwardsolutionPDE(). The up-
per bounds ρn,ei are computed by the densityBoundStrengthening(). However,
the routine densityBoundStrengthening() is equivalent to the
forwardsolutionPDE() algorithm that differs only from the coupling condition
in junction type III.

We assume that ρn,ei ≤ ρn,ei holds for a discrete time n. Then, the main goal of
the proof is to show that

ρn+1,e
i ≤ ρn+1,e

i for all i = 1, ..., N, e ∈ E. (2.62)

First, we show that the assumptions of Lemma 2.4.7 are fulfilled for all edges of
the entire network, i.e., ceout ≥ ceout, c

e
pre ≤ cepre for all e ∈ E. Consequently, the

statement (2.62) follows directly from the Lemma 2.4.7.

The outflow of an edge e depends obviously on the density values of the outgoing
edges ẽ ∈ δout({e}). That means that ceout depends also on cẽpre and cẽin. Therefore,
it is only possible to find informations about ceout if we find informations about
cẽpre and cẽin. This leads to an induction with respect to a topological ordering of
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all edges e ∈ E.

The set of all edges E can be divided in disjoint subsets Ek if the network is free
of cycles, i.e.,

E =
⋃̇

k≥0

Ek, Ek := δin(Ek−1), E0 := Eout.

Note that the sequence E0, E1, ..., Ek, ... corresponds to a topological ordering of
the edges. Next, we proof that ceout ≥ ceout, c

e
in ≥ cein, c

e
pre ≤ cepre for all e ∈ Ek by

induction with respect to k.
Induction Start: (k = 0); We choose all outgoing edges e ∈ E0 := Eout. The
coupling (CPL D) yields

F n,e
N = min{aρn,eN , fn

out}, F̃ n,e
N = min{aρn,eN , fn

out},

Obviously, the outflow is limited by f e
out, i.e.,

ceout = ceout = f e
out.

Additionally, Lemma 2.4.7 yields cein ≤ cein.

Induction hypothesis (IH): For all edges e ∈ Ek, it holds the following condition:
cein ≤ cein.

Induction step: (k → k + 1); Ek+1 := δin(Ek). Let e ∈ Ek+1.
The aim is to show that ceout ≥ ceout for e ∈ Ek+1 and cẽpre ≤ cẽpre for ẽ ∈ Ek.

Junction I: We consider a junction with one incoming edge e = 1 and one
outgoing edge e = 2. The fluxes at the junction reveals

F n,2
0 = F n,1

N = min{

c2pre︷︸︸︷
aρn,1N ,

c2in,c
1
out︷ ︸︸ ︷

ρmax − ρn,21

λ
+ F n,2

2 },

F̃ n,2
0 = F̃ n,1

N = min{aρn,1N︸︷︷︸
c2pre

,
ρmax − ρn,21

λ
+ F̃ n,2

2
︸ ︷︷ ︸

c2in,c
1
out

}.

After identifying and comparison of the coefficients c1out, c
1
in, c

1
pre, ..., we obtain

the following estimations

c2pre = aρn,1N ≤ aρn,1N = c2pre,

c1out = c2in
IH

≥ c2in = c1out.
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Lemma 2.4.7 yields c1in ≤ c1in.
Junction II: We consider a junction with two incoming edges e = 1, 2 and one
outgoing edge e = 3.

F n,1
N = min{aρn,1N ,

c1out︷ ︸︸ ︷
ρmax − ρn,31

λ
+ F n,3

2 },

F n,2
N = min{aρn,2N ,

c2out︷ ︸︸ ︷
ρmax − ρn,31

λ
+ F n,3

2 − F n,1
N },

F n,3
0 = min{

c3pre︷ ︸︸ ︷
aρn,1N + aρn,2N ,

c3in︷ ︸︸ ︷
ρmax − ρn,31

λ
+ F n,3

2 }.

The fluxes F̃ n,1
N ,F̃ n,2

N ,F̃ n,3
0 are computed analogously. A simple comparison of the

coefficients yields

c1out = c3in
IH

≥ c3in = c1out.

By assumption ρn,eN ≤ ρn,eN for e = 1, 2 and by the induction hypothesis (IH), we
obtain

c2out = c3in − F n,1
N = c3in −min{aρn,1N ,

c3in︷︸︸︷
c1out } = max{c3in − aρn,1N , 0}

IH

≥ max{c3in − aρn,1N , 0} = c3in −min{aρn,1N ,

c3in︷︸︸︷
c1out } = c2out,

c3pre = aρn,1N + aρn,2N ≤ aρn,1N + aρn,2N = c3pre.

Junction III: We consider a junction with one incoming edges e = 1 and two
outgoing edges e = 2, 3. The coupling conditions of the MIP model with respect
to ρn,ei has the following form

F n,1
N = min{cn1 , cn2 + cn3},

F n,2
0 ≤ cn2 ,

F n,3
0 ≤ cn3 ,

(2.63)

where cn1 ,c
n
2 ,c

n
3 is defined as

cn1 = aρn,1N , cn2 =
ρmax − ρn,21

λ
+ F n,2

1 , cn3 =
ρmax − ρn,31

λ
+ F n,3

1 .
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By introduction of an unknown d ∈ [0, 1], we can generalize the conditions of
(2.63) into

F n,1
N = min{cn1 ,

c1out︷ ︸︸ ︷
cn2 + cn3},

F n,2
0 = min{

c2pre︷︸︸︷
dcn1 ,

c2in︷︸︸︷
cn2 },

F n,3
0 = min{

c3pre︷ ︸︸ ︷
(1− d)cn1 ,

c3in︷︸︸︷
cn3 }.

(2.64)

Obviously, (2.64) fulfills (2.63) for any d ∈ [0, 1]. The coupling condition (CPL
CUP ) is given by

F̃ n,1
N = min{cn1 ,

c1out︷ ︸︸ ︷
cn2 + cn3}, F̃ n,2

0 = min{
c2pre︷︸︸︷
cn1 ,

c2in︷︸︸︷
cn2 }, F̃ n,3

0 = min{
c3pre︷︸︸︷
cn1 ,

c3in︷︸︸︷
cn3 },

where cn1 ,c
n
2 ,c

n
3 are defined analogously to cne for e = 1, 2, 3 by using ρn,ei instead of

ρn,ei . We compare all maximal possible fluxes again and we obtain the following
estimations:

c1out = c2in + c3in
IH

≥ c2in + c3in = c1out,

c2pre = dcn1 ≤ cn1 = c2pre,

c3pre = (1− d)cn1 ≤ cn1 = c3pre.

Hence, the statements ceout ≥ ceout, cein ≥ cein, cepre ≤ cepre are fulfilled for all
e ∈ Ek+1. Consequently, the induction step is proven and thus the assumputions
of Lemma 2.4.7 are fulfilled for all edges e ∈ E and i = 1, ..., N . Finally, we
obtain ρn+1,e

i ≤ ρn+1,e
i for all e ∈ E and i = 1, ..., N .

The proof for the lower bounds works analogously.

Remark 2.4.9. The presolve level 2 routine does not work for each network
coupling condition. For instance, the routine fails for the network model that
is introduced in [48]. In detail, the monotonicity property is not fulfilled for
the merging junction case introduced in Remark 2.1.2. Consider the following
counter-example:
Let ρ1(x, 0) = 0.3, ρ1(x, 0) = 0.4, ρ2(x, 0) = ρ2(x, 0) = 0.8, and ρ3(x, 0) =
ρ3(x, 0) = 0 be the initial data of the edges e = 1, 2, 3 . Additionally, the maximal
density is ρmax = 1. The coupling condition of Remark 2.1.2 leads to the following
outflow: γ1 = γ2 = 0.3, γ1 = γ2 = 0.4.
Thus, the solution on edge e = 2 is a back traveling shock wave. However,
the shock wave of solution ρ2(x, t) moves slower than the shock wave of solution
ρ2(x, t). Finally, we reveal ρ2(x, t) ≥ ρ2(x, t). This is a contradiction to the
monotonicity property ρ2(x, t) ≤ ρ2(x, t).
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2.5 Numerical Results

In Subsection 2.5.1 we present the results of the forward simulation for the net-
work problem. In particular, we investigate the properties of single junctions
as well as complete networks. Additionally, we give a validation of the DFG
method by comparison with the Godunov Method for the regularized problem
(RFG). In Subsection 2.5.2 we compare the MIP model to a black box MATLAB
optimization. Also, in Subsection 2.5.3 we highlight the computational efficiency
of the presolving routines for the MIP model. All computations are performed on
the same platform, namely a 3.0 GHz Dualcore computer with 8 GB RAM. The
forward PDE solver and all presolve algorithms are implemented in MATLAB
[83]. The MIP model is solved using the commercial solver ILOG CPLEX [71].

2.5.1 Network simulations

In the following, we present numerical results to validate and compare the DFG
method to a classical Godunov method (RFG) for the regularized problem on
networks. As already discussed in Chapter 1, the RFG scheme need very small
time step size in the limit δ → 0 to produce qualitatively good solutions. We start
with simulations for a network consisting of two types of junctions only: a merging
type and a dispersing type. Depending on the numerical method, we refer to the
corresponding coupling conditions. The regularization parameter δ is chosen
arbitrary small for a valid approximation of the discontinuous case. In both
studies, we are concerned with the quality of solutions and their interpretation.
For the simulation we use the maximal density ρmax = 1, the default velocity
a = 1 and ∆x = ∆t = 5 · 10−3 for the DFG method and δ = 10−2 as well as
∆t = 5 · 10−5 (cf. CFL condition) for the RFG scheme.

Merging Junction

At first, we consider a test case with two incoming and one outgoing edge. The
initial values of the two incoming edges are chosen as ρ1,0 = 0.8, ρ2,0 = 0.7 and
the outgoing edge is set to ρ3,0 = 0.5. Compared to the analytical investigations
in Subsection 2.1.2 (cf. Case A1), we expect the resulting boundary densities
ρ̄1 = 0.8, ρ̄e = 1 for e = 2, 3 and the maximal outflow γ2 = min{0.7, 1−0.8} = 0.2
for the ingoing edge e = 2. We observe a backward traveling shock wave solution

at edge e = 2 with speed s2 = −5
3 due to formula s2 =

ρ2,0−
1
5

ρ2,0−1 . However, the
inflow of the outgoing edge e = 3 is γ3 = 1 where the left boundary value is
ρ̄3 = 1. The solution is a forward traveling shock wave with velocity s3 = 1.
We compare the numerical solutions of the regularized network model computed
by the RFG method and the DFG method for networks. The Riemann solutions
discussed above are reproduced by both methods. The main difference is that
the solution computed by the RFG method are smeared while the DFG method
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gives exact results. There is also a great discrepancy considering the CPU times.
The RFG method consumes 228.5 seconds in contrast to the DFG method that
needs 0.2 seconds. The results are shown in Figure 2.13.
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Figure 2.13: Results of the RFG and the DFG method.

Dispersing Junction

Next, we consider another junction configuration, i.e., one incoming edge e =
1 and two outgoing edges e = 2, 3 where we set the distribution rates d2,1 =
0.75, d3,1 = 0.25. We assume the following initial densities: ρ1,0 = 1 for the
ingoing edge and and ρ2,0 = ρ3,0 = 0.5 for the outgoing ones. Corresponding to
Subsection 2.1.2 (cf. Case B2), we get γ1 = {1, 4

3 , 4} = 1, γ2 = 3
4 and γ3 = 1

4
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with boundary densities ρ̄1 = 1, ρ̄2 =
3
4 and ρ̄3 =

1
4 . Then, the solution of edge 1

is a backward traveling shock wave with s1 = −∞ whereas the solution of edges
e = 2, 3 are forward traveling shock waves with speed se = 1. The properties
of the numerical solutions and the computing times behave like in the previous
example and the simulation results are presented in Figure 2.14.
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Figure 2.14: Results of the RFG and the DFG method.

Network Sample

Finally, we combine our knowledge on merging and dispersing junctions and dis-
cuss a sample network. As we have seen, the CPU time of the DFG method is
much faster and more precise than the RFG scheme. Therefore, we restrict to
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the DFG method and the application to the discontinuous flux function. The fol-
lowing example shows simulation results of a connected network with 18 edges.
The network structure is given in Figure 2.15. For simplicity, all relevant pa-
rameters are fixed to 1, i.e., ae = Le = ρmax = 1 for all edges e. We choose a
time horizon of T = 20 with the same discretization as before. The overall CPU
time measures 3.5 seconds. The ingoing edges are defined by e = 1, 2, 3 with a
constant inflow of f(ρe(0, t)) = 0.4, ∀t. We assume that the whole network is
empty at time t = 0, i.e, ρe(x, 0) = 0 for all x ∈ [0, 1] where each edge is mapped
to the unit interval. Additionally, the outgoing edges of the network are assigned
by e = 4, 5, 6. We assume that no goods leave the network, i.e., the outflow of
edges e = 4, 5, 6 is equal to 0 and thus blocked. Wherever we have the freedom
to distribute goods, we fix a constant distribution rate of 0.6 for edges going to
the left and 0.4, respectively, for edges going to the right.
For the numerics, we realize the inflow by setting the numerical flux to F n,e

0 =
f(ρe(0, t)) = 0.4 for e = 1, 2, 3 and analogously the outflow to F n,e

N = 0 for
e = 4, 5, 6. The simulation results are shown in Figure 2.15 for different times t.
For time t < 3, we see that the flow of goods is spread over the complete network.
Due to the blocking of the outflow edges, we recognize tailbacks (thick lines) in
the network for t > 3.
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Figure 2.15: Simulation of a supply-chain network for different times.

Apparently, not every edge is filled with the maximal density at time t = 20.
This results from the coupling conditions derived in Section 2.1.2. Considering
the zoom in Figure 2.15 at time t = 20, we know that for at least one outgoing
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edge with ρ0 = 1 we end up with zero fluxes γe and boundary densities ρ̄e (cf.
Remark 2.1.5). Similar situations occur at many nodes inside the network. In
other words, whenever a tailback reaches an already blocked junction it is not
possible to distribute parts any more. Hence, in contrast to the original intension
that the network would be fully filled up by blocking edges 4, 5, 6, we observe a
steady state where some edges have maximal density, some are partly filled and
some remain empty.

2.5.2 MATLAB Optimization vs. MIP Optimization

An optimization process is responsible in finding parameters of the system with
respect to the objective function. There are many different approaches, but
perhaps one of the easiest approach is black box optimization. It does not requires
any significant knowledge about the system and works for each simulation process.
The black box approach needs only an optimization routine and an objective
function which includes the simulation process. Furthermore, the PDE simulation
is repeated successively, until the optimization algorithm recognizes the solution
as optimal.
Next, we apply the MATLAB routine fminsearch() to our black box optimiza-
tion. Note that the routine fminsearch() finds the minimum of a scalar function
by using the Nelder-Mead algorithm. Moreover, we are interested in finding the
optimal distribution rates of the following network problem. To reduce additional
computation times, the MATLAB optimization approach is restricted to constant
distribution rates d4,1, d51 . Finally, we compare the solutions to the results of the
MIP model.
We use the network in Figure 2.16 with following initial datas. All edges of the
network are empty at time t = 0, i.e., ρe(x, 0) = 0 for all x ∈ [0, 1], e ∈ E. The
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Figure 2.16: Network sample
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Figure 2.17: Plot of the cost functional

incoming edges e = 1 and e = 2 have an inflow of value f e
in = 0.25. Additionally,
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all outgoing edges e = 3, e = 6, and e = 7 have an outflow of zero, i.e,

f(ρe(0, t)) = 0.25, e ∈ {1, 2},
f(ρe(1, t)) = 0, e ∈ {3, 6, 7}.

The time horizon is set to T = 14 and we use the step sizes ∆x = ∆t = 0.2. The
objective function is formulated as

2∑

e=1

N∑

i=1

NT∑

n=1

ρn,ei → min .

The boundary condition ensures that no quantity leaves the network. Further-
more, the objective function stays minimal if no back traveling shock wave (tail-
back) reaches the edges e = 1 and e = 2; i.e., the solution becomes optimal if the
quantity is distributed completely to edges e = 3, ..., 7 and the quantity in edges
e = 1, 2 is reduced to a minimum. Thus, this is possible if 60 % of the quantity
is distributed to the edges e = 4 and e = 5.
The objective functional concerning the two distribution parameters is shown in
Figure 2.17. Clearly, this problem has only one minimum. In due of the MAT-
LAB approach, we choose d41 = d51 = 0.5 as an initial values for the optimization.
After only 0.054 seconds of computation time, the MATLAB algorithm termi-
nates with a default tolerance of 10−4. The optimization approach yields the
optimal distribution rates d41 = d52 = 0.6. If we change the initial values of the
optimization to d41 = 0.2, d51 = 0.8, the MATLAB routine requires about 0.132
seconds of computation time.
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Figure 2.18: Optimal Control by MIP

The MIP model reveals time-dependent distribution rates, cf. Figure 2.18. The
computation time of the MIP model is about 11.43 seconds and is slower than
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the computation time of the MATLAB optimization approach. However, the
objective value of both solutions is equal, i.e., J∗ = 230. As the MIP model leads
to global optimal solutions, this MATLAB approach yields also a global optimal
solution.

2.5.3 MIP Optimization with Presolving

In this experiment, we show and compare the efficiency of the presolving algo-
rithms of Section 2.4. Hence, the main criteria is the degree of simplification of
the MIP model for a faster computation. All results are computed with CPLEX
[71] using default settings. Accordingly, the absolute MIP gap tolerance is set to
10−6. Furthermore, all presented results (computed by CPLEX) are solved with
a gap of 0.00%.

Figure 2.19: Network sample with se-
rial and merging junctions

Figure 2.20: Network Sample

Merging Network

In this example, the evaluating network consists only of serial and merging junc-
tion types. This way, dispersing junctions are neglected in that case. Also, the
inflow of the network is known and prescribed. The solution for the serial and
merging junction type is uniquely defined. Hence, the underlying network prob-
lem has no degrees of freedom for any control and has a unique solution.
The network structure is given in Figure 2.19. The velocity and the maximal
density is set to a = ρmax = 1. Also, the network consists of 32 edges and all
incoming edges have an inflow of f e

in = 0.3. All outgoing edges have an outflow
boundary, i.e., f e

out = 1. The length of each edge is set to Le = 1. The system
is empty at time t = 0, i.e., ρe(x, 0) = 0 for all edges e and x ∈ [0, 1]. The time
horizon is specified to T = 8. We test this scenario with step sizes ∆x = 0.1 and
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∆x = 0.05. Thereby, the time step size is always set to ∆t = ∆x. The objective
function is formulated as

∑

e∈E

N∑

i=1

NT∑

n=1

ρn,ei → min .
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Figure 2.21: Simulation of a supply-chain network for different times.

Presolving time CPLEX solving time
∆x = ∆t PRE LVL 1 PRE LVL 2 NO PRE PRE LVL 1 or LVL 2

0.1 0.22s 0.27s 2.21s 0.45s
0.05 0.46s 0.53s 128.50s 2.04s

Table 2.1: Computation times in seconds for MIP models with presolving.

The solution of the MIP model is illustrated in Figure 2.21. We observe that
the quantity flows through the incoming edges into the center of the network.
Then the density increases to the maximal value in the inner network. In Figure
2.21 (b), we recognize a tailback (thick lines) which spread through the complete
network, cf. Figure 2.21 (c).
Presolve level 1 as well as Presolve level 2 solves all variables of the MIP model
indicated that the Presolve algorithms find for all lower bounds and upper bounds
which coincide. Hence, the presolving level 1 and level 2 yields the same result.
Thereby, we solve the network problem with the presolve routine level 1 or 2 (PRE
LVL 1 or 2) and without our presolve routines (NO PRE). The computation times
are compared in Table 2.1. We notice that the preprocessed MIP needs less time
than the MIPs without any preprocessing.

Minimizing Buffers

One obtains the following scenario. The network consists of 28 edges and is
illustrated in Figure 2.20. All incoming edges have an inflow of fin = 0.6. The
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transport velocity and the maximal density is set to one, i.e., a = ρmax = 1. The
outgoing edges have an outflow without any congestions, i.e., fout = aρmax = 1.
We consider this scenario for four different time horizons, i.e., T = 6, 8, 10, 12.
The objective function is formulated as

∑

e∈E

N∑

i=1

NT∑

n=1

ρn,ei → min .

Both presolve techniques compute a certain number of upper and lower bounds
for variables which coincides. The amount of solved variables is shown in Table
2.3. The total number of variables of the MIP grows with increasing the time
horizon T . However, the presolve level 1 solves only an identical number of vari-
ables, for example, about 10000 binary variables for all different time horizons.
This is related to the fact that the presolving level 1 technique computes good
bounds for the first time steps, but not for the later ones. Hence, there are more
flow decisions on a network for increasing time, which cannot be solved by this
presolving routine. In contrast to presolve level 1, the presolve level 2 routine
computes more variables, in particular, the number of binaries, solved by the pre-
solve level 2 routine, is much higher. The presolving level 2 calculates principally
better bounds for the density variables. Bounds are used to determine feasible
positions of possible existing tailbacks. This information is coupled to the binary
variables ξn,ei of the MIP model.

Presolving time CPLEX solving time
PRE LVL 1 PRE LVL 2 NO PRE PRE LVL 1 PRE LVL 2

T = 6 0.21s 0.28s 2.26s 2.17s 0.61s
T = 8 0.26s 0.33s 573.32s 424.91s 31.95s
T = 10 0.33s 0.41s infeasible 47445.85s 331.32s
T = 12 0.48s 0.51s infeasible infeasible 2013.77s

Table 2.2: Computation times in seconds for MIP models with presolving.

We compute the MIP model with the commercial CPLEX solver. The compu-
tation times of the scenarios are shown in Table 2.2. Obviously, the presolving
level 2 leads to faster computation times, as well as the presolving level 2 finds
a higher number of binaries. However, the computation time of the MIP model
rises enormously for any presolve technique with respect to the increasing time
horizon.
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T PRE LVL 1 PRE LVL 2
Variables: ρn,ei F n,e

i ξn,ei ρn,ei F n,e
i ξn,ei

T = 6
Solved: 11048 12073 9862 12270 13144 14121
Total: 17080 18480 15120 17080 18480 15120
Average: 64.68% 65.33% 65.22% 71.84% 71.13% 93.39%

T = 8
Solved: 11380 12517 10178 13185 14086 17469
Total: 22680 24640 20160 22680 24640 20160
Average: 50.18% 50.80% 50.49% 58.13% 57.17% 86.65%

T = 10
Solved: 11380 12597 10178 13585 14486 20529
Total: 28280 30800 25200 28280 30800 25200
Average: 40.24% 40.90% 40.39% 48.04% 47.03% 81.46%

T = 12
Solved: 11280 12567 10124 13985 14886 23589
Total: 33880 36960 30240 33880 36960 30240
Average: 33.29% 34.00% 33.48% 41.28% 40.28% 78.00%

Table 2.3: Number of solved variables by preprocessing. A variable is solved if
upper and lower bound coincide.





Chapter 3

Material Flow on Conveyor Belts

Achieving products in a manufacturing process with the same quality, optimum
material utilization, and long-term profitability, the entire material flow through
a manufacturing unit needs to be planned and controlled in detail. The required
productivity and product flexibility in the process is thereby achieved by means
of highly automated machining centers and production lines. The individual
functionalities of the machine tools and processing units as well as the material
flow must be considered over the complete production process.

In this chapter, we present three mathematical models for material flows on con-
veyor belts. The first one is a basic microscopic model, which tracks each part
in the material flow system and uses Newton’s law together with a detailed de-
scription of the acting forces to simulate the evolution of material distribution
and density. This modeling approach is well known from molecular simulations,
see e.g. [72] for a recent review. In the engineering community, models based
on this or similar principles are state of the art for material flow simulation, see
e.g. [90, 91, 103] as well as for other applications such as granular flow [24, 77],
computer graphics [36, 89] or traffic flow [57]. In this work, we introduce only the
basic concepts of microscopic modeling. For more details, we refer to [47, 67].
The other two mathematical models are based on macroscopic approaches. This
implies that these approaches use an average quantity as density (parts per area),
and the dynamic is prescribed by a material flux (parts per time). The first
macroscopic model is a two-dimensional extension of the model that is intro-
duced in Chapter 1. A phenomenological study of the microscopic model yields
the second macroscopic model, based on a two-dimensional nonlocal hyperbolic
partial differential equation (see [34] and the references therein for an overview).
This model is especially suitable to provide first estimates on material flow and
throughput rate of the production line. Similar ideas are used to rigorously derive
macroscopic models from microscopic ones via kinetic models, see [49, 104, 105].

The chapter is structured as follows: A concept and short introduction of the
microscopic model is mentioned in Section 3.1. In Section 3.2 we subsequently
present two macroscopic models for material flow on conveyor belts. At first, we
introduce the flow model that is a two-dimensional extension of the model al-
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ready introduced in Chapter 1. Afterwards, we present the extended flow model
that is an improvement of the previous flow model. In Section 3.3 we discuss two
numerical solution approaches for the macroscopic models. In detail, we intro-
duce a finite volume method with dimensional splitting in Subsection 3.3.1 and
a discontinuous Galerkin approach in Subsection 3.3.2. Due to control problems
for manufacturing systems, we investigate an optimization approach based on
the extended flow model, see Section 3.4. Finally, numerical results are shown in
Section 3.5. In particular, we compare the different presented numerical methods
and validate the macroscopic models against real world data. In conclusion, some
test cases are investigated.

3.1 Microscopic Modeling

In the microscopic material flow model the physical movement of each single
particle or cargo on material flow elements is studied in a general setting, i.e., a
3-dimensional space. Each cargo is described as an unbounded rigid body with
the corresponding mass and moment of inertia. The interactions between the
cargo among themselves or cargo and conveyor belt are presented through the
physical laws of contact mechanics [88]. This approach is mainly used in material
sciences (see e.g. [40, 74]) or granular flow (see e.g. [78]). In the following, we
review the well-established microscopic model in its standard formulation as it
applies to the transport of cylindrical cargo on a conveyor belt (see Figure 3.1),
where the cargo is separated by a rigid singularizer.

Conveyor

Cargo

Singularizer

Figure 3.1: Cargo is separated on the conveyor belt by a rigid singularizer.

The material flow process is described as the sum of the unbounded movable cargo
and the contact between other cargo and the material flow elements. The equation
of motion for the movement of the cargo i is derived by means of Newton’s law
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of motion:

dxi(t)

dt
= vi(t), (3.1a)

mi
dvi(t)

dt
=

Nf∑

n=1

f i,n(t), i = 1, . . . , Nn, (3.1b)

xi(0) = xi,0, vi(0) = vi,0, i = 1, . . . , Nn, (3.1c)

where xi ∈ R3 is the cargo position vector, vi ∈ R3 is the cargo velocity vector,
mi ∈ R+ is the cargo mass, Nn is the total number of cargo, f i,n ∈ R3 is the sum of
Nf forces affecting the conveyed material. As example, contact forces, occurring
friction forces and the gravitation can be used to specify the microscopic model.
Note that there is no need to prescribe boundary conditions, as the effect of the
boundaries is handled by the contact force that occurs when a cargo collides with
the conveyor boundary.

Example: Contact Force

In the following, we introduce an example for a simple contact force for two
colliding cargo objects. By observation, the cargo always lies on the conveyor
belt if the conveyor belt velocity is quite slow. As a consequence, we can exclude
an overlaying effect of cargo. This leads to the suitable assumption to locate the
cargo only on a two dimensional plane. Also, we assume that the cargo objects
are circle shaped with radius R. Additionally, we define the penetration depth
δi,j of two interacting cargo objects i and j, i.e.,

δi,j = 2R− ∥xi − xj∥.

The contact force of two interacting cargo objects i and j is prescribed by

f contact
i,j = −κδi,jH(δi,j)

xi − xj

∥xi − xj∥
,

where H denotes the Heaviside function and κ is a constant that depends on the
material property. An illustration of two colliding objects is given in Figure 3.2.
The resulting contact force f contact

i for a cargo object i is computed by the sum
over all contact forces f contact

i,j , i.e.,

f contact
i :=

∑

i ̸=j

f contact
i,j . (3.2)

If the cargo objects i and j have no interaction, the corresponding penetration
depth δi,j becomes negative and the contact force f contact

i,j is zero. However, if
the cargo objects interacts with each other, a repulsing force occurs that is linear
proportional to the penetration depth of the cargo objects i and j.
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Cargo i Cargo j

δi,jxi(t) xj(t)

f contact
i,j

Figure 3.2: Interacting cargo objects

3.2 Macroscopic Modeling

Continuous models relying on conservation laws are used in different engineering
areas, e.g. traffic flow [39], manufacturing systems [3], crowd and evacuation
dynamics [20, 21].
We consider the setting illustrated in Figure 3.1 where we mainly assume that
the number of cargo inside the system should be large. A singularizer is installed
to redirect and sort the cargo to another position on the moving conveyor belt,
i.e., phenomena such as queuing and changes of transport directions will occur.
It is well known that microscopic models capture the most accurate dynamics
but get computational extremely costly and produce inefficient simulation times.
Clearly, the macroscopic approaches shall represent the right dynamical behav-
ior of the material flow and provide suitable simulation times as well. This can
be achieved using a macroscopic model avoiding the individual tracking of parts
through the system using averaged quantities as part density (parts per area) and
flux (parts per time). As an approximation, we propose two dimensional hyper-
bolic partial differential equations (PDEs), or conservation laws, which determine
the motion of the part density.
To derive appropriate macroscopic models for the conveyor belt, the main ingre-
dients and assumptions are:

(I) Mass should be conserved, i.e, we do not gain or lose cargo.

(II) The model must allow the formation of congestions at obstacles.

(III) Similar to traffic models, a maximal density is needed to deal with over-
crowded situations.

3.2.1 The Flow Model

We set up an equation for the evolution of the part density at position and time.
For simplicity the velocity field is given by a fixed and smooth vector field vstat(x)
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describing the moving conveyor belt. Then, mathematically, the flow of material
depends obviously on the density. Therefore, we introduce the part density as
a two dimensional space and time depending function ρ : Ω × R+ → R+, with
Ω ⊂ R2 that governs dynamics of the following setting:

∂tρ+∇ · (f(ρ)vstat(x))) = 0, (3.3a)

f(ρ) = ρ ·H(ρmax − ρ), (3.3b)

ρ(x, 0) = ρ0(x), x ∈ R
2, (3.3c)

where ρmax is given as a user-defined constant (maximum possible number of
parts), ρ0(x) is the initial distribution of parts and H denotes the Heaviside-
function which is either 1 or 0. That means, in the first case, if ρ(x, t) < ρmax

parts do not collide and are transported with velocity vstat. Otherwise, if ρ(x, t) ≥
ρmax , the parts are immediately redirected so that the density does not become
higher than ρmax, see (II) and (III). According to (3.3a), the transportation is
modeled by a conservation law, i.e., no mass of parts are loss or gained in the
system, and (I) is fulfilled.

Remark 3.2.1. The boundary conditions of (3.3a) at ∂Ω are imposed by the
geometry of the conveyor belt. We divide the boundary into two areas:

∂Ω = ∂Ωwall ∪ ∂Ωinflow,

where ∂Ωwall describes solid boundaries and ∂Ωinflow denotes the inflow region.
At ∂Ωinflow, we set homogeneous Dirichlet conditions. Otherwise, at ∂Ωwall, we
apply free slip conditions.

ρ(x, t) = 0, x ∈ ∂Ωinflow, (3.4a)

⟨vstat(x), n⟩ = 0, x ∈ ∂Ωwall, (3.4b)

with n being the normal vector to ∂Ω.
Note that in our experimental setting we do not need an inflow profile since all
experiments are initialized with an initial distribution given by equation (3.3c).

Static Velocity Field

The static field generates a direction field in R2 which models all trajectories of
moving objects without self-interactions. As one can imagine, the field is mo-
tivated by the experiment introduced in Section 3.1. Ingredients such as the
conveyor belt itself, the singularizer and the boundaries have to be represented in
a correct way. Therefore, the static vector field is subdivided in different domains
A− C, see Figure 3.3, left.
Each domain is assigned to a dominating vector. Domain A prescribes the move-
ment of objects transported with the velocity of conveyor belt vT . Thus, within
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α

A
BC

Figure 3.3: Static velocity field of the conveyor belt. Left picture: schematic
view. Right picture: smoothed version for numerical simulations.

this area, the static field is defined as

vstat(x) = vT

(
1
0

)
, x ∈ A.

Domain B characterizes the shape of the singularizer. Since in reality it is not
possible that objects get through the obstacle, the static field should prohibit
trajectories intersecting the obstacle domain. This is done using an outgoing
vector field, i.e., trajectories move out of the domain B. For that reason the
dominating vector is directed to the normal of the obstacle surface.

vstat(x) = vT

(
− sin(α)
cos (α)

)
, x ∈ B.

Generally, cargo move along the singularizer. For that reason, we introduce
an additional velocity domain C to describe the slide effect at obstacles. The
dimensions of the domain C are chosen such that its length corresponds to the
length of the singularizer, while its width corresponds to the diameter of one
of the objects that are transported on the conveyor belt. In this domain, the
dominating vector is therefore given by:

vstat(x) = vT

(
cos(α) cos(α)
sin (α) cos(α)

)
, x ∈ C.

Remark 3.2.2. Note that walls can also be integrated in the static velocity field
vstat(x). For instance, consider the construction of domain B and use the normal
vector n of the walls as the dominating vector of the domain.

To avoid problems of well-posedness as well as stability issues in the numerical
simulations, we use a smoothed version of the above described velocity field in all
numerical experiments. The concrete static velocity field used in the simulations
is displayed in Figure 3.3 (right picture).
The static velocity field prescribes the movement of non-colliding parts. Accord-
ing to the flow model, the transportation of the quantity moves always along
the direction of the static velocity field vstat, although the parts interact with
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each other. In the latter case, this behavior is quite unrealistic in some cases,
and we expect an redirection of the velocity of interacting objects. Therefore, we
introduce an improvement of the previous flow model that contains an additional
velocity field for interacting cargo objects.

3.2.2 The extended Flow Model

The main idea of the model extension is a conservation law with a mass-dependent
velocity field, cf. [20, 21]. The corresponding PDE which is in fact a conservation
law can be stated as

∂tρ+∇ · (ρ(vdyn(ρ) + vstat(x))) = 0, (3.5a)

vdyn(ρ) = H(ρ− ρmax) · I(ρ), (3.5b)

I(ρ) = −ϵ ∇(η ∗ ρ)
√

1 + ∥∇(η ∗ ρ)∥22
, (3.5c)

ρ(x, 0) = ρ0(x), x ∈ R
2, (3.5d)

where ρ = ρ(x, t), H denotes the common Heaviside function assigning zero to
negative arguments and ρmax the fixed maximal density.
Corresponding to (I), equation (3.5a) determines the evolution of the initial part
density (3.5d) depending on the velocity field consisting of two parts: the time-
independent velocity field vstat(x) and a dynamic velocity field vdyn(ρ). The field
vstat(x) prescribes the transport velocity induced by the conveyor belt. Thus
vstat(x) defines the velocity field of single cargo without any interaction between
each other. Note that vstat(x) is already introduced in Subsection 3.2.1. How-
ever, the dynamic component vdyn(ρ) in equation (3.5c) reflects the movement
of colliding objects, similar to [20, 21]. We assume that the objects never move
out of the x1, x2-plane, i.e., objects cannot overlay in the third dimension. By
observation (II), the parts accumulate at the singularizer. But in reality colliding
objects do not penetrate each other. This implies that the density could not be
larger than the density of a close-packing of parts ρmax, see (III). That means, we
have to prevent situations that yield densities ρ > ρmax for ρ0(x1, x2) < ρmax in
a certain time t > 0 and space x ∈ R2. This scenario is relevant if the divergence
of the velocity field ∇ · vstat(x) is negative and ρ > 0. To ensure that the density
ρ does not become much larger than ρmax the density dependent velocity vdyn(ρ)
is introduced to reduce this effect. The velocity field vdyn(ρ) disperses clouds
with ρ > ρmax. Thus, further compressions are prevented and the density does
not exceed ρmax anymore. The term (3.5c) is obviously active if ρ > ρmax, i.e.,
H(ρ− ρmax) = 1, and 0 (inactive) vice versa.
We introduce the non-local operator I(ρ) that is controllable with the constant
parameter ϵ > 0. The negative gradient field yields the steepest descent of the
convolution η ∗ ρ, where η is a sufficiently smooth function with the properties
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∫
R2 η(x) dx = 1 and limε→0

1
ε2
η
(
x
ε

)
= δ(x), where δ(x) is the Dirac delta dis-

tribution. Such a function is also called a mollifier or smoothing function. The
denominator of I(ρ) ensures that the vector norm is bounded, i.e., ∥I(ρ)∥2 ≤ ϵ.
Consequently, the parts feel a force pushing them in direction to a lower density.
Moreover, inside a fully compressed cloud, the density is constant in space and
therefore the term ∇(η ∗ρ) does not give any contribution to the force field. This
is in accordance with the physical behavior where the forces inside the congested
region sum up to zero. Thus, the density dependent force term I(ρ) will only act
in a small neighborhood of the boundary of a congested region.

Let us summarize: The friction force between the parts and the conveyor belt
implies a strong damping effect. Thus, in reality, the velocity of non-colliding
parts converge to the transport velocity of the conveyor belt quite fast. In the
macroscopic model, due to the Heaviside function, the non-interacting (or free
flow) velocity is immediately vstat(x). This is possible because the macroscopic
model does not consider any inertia. On the other hand, if parts interact in the
microscopic model, a contact force (3.2) will appear which repulses interacting
parts. In the macroscopic model, a dispersing velocity field vdyn(ρ) is activated
which has a repulsive effect by the term I(ρ).

3.3 Numerical Methods

Now we present suitable numerical methods for the partial differential equa-
tions (3.3) and (3.5). The first approach is based on a one dimensional finite
volume method which is extended into a two dimensional problem solver by di-
mensional splitting. The other approach is a discontinuous Galerkin method
which is useful to compute accurate solutions on complex geometries.

3.3.1 Finite Volume Approach with Dimensional Splitting

The following procedures are based on the finite volume methods with dimen-
sional splitting, see [79]. The computation works with a discrete data set of the
density and velocity in space and time. The two dimensional spatial domain is
discretized equidistantly in rectangular cells. Each cell is identified by the indices
i, j. The center of a cell i, j is located at xi,j = (x1,i, x2,j)T . The lengths of the
cells are given by the spatial step sizes ∆x1, ∆x2. Additionally the time t is
discretized by step size ∆t. We use the following space and time grid:

x1,i = i∆x1, i = 1, .., Nx1
, x2,j = j∆x2, j = 1, .., Nx2

, tk = k∆t, k = 1, .., Nt.

The cells are presented as Qi,j = [x1,i− 1
2
, x1,i+ 1

2
] × [x2,j− 1

2
, x2,j+ 1

2
]. Note that for

numerical simulations the spatial domain is bounded and has a rectangular shape.
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Furthermore λd = ∆t
∆xd

for d = 1, 2 are the grid constants. The density ρ is now
defined as a step function

ρ(x, tk) = ρki,j ∈ R for x ∈ Qi,j.

A common way to solve two dimensional problems is the application of a dimen-
sional splitting, i.e., a fractional-step approach in which one-dimensional prob-
lems are solved sequentially along each coordinate direction. In that way the
multidimensional problem is split into a sequence of one dimensional problems.

Flow Model

Note that the flux function f(ρ) contains the discontinuous heaviside function H .
By analogy to the RFG method in Subsection 1.3.1, we regularize the flux f for
the presented numerical method, i.e.,

fδ(ρ) = min{ρ, 1
δ
(ρmax − ρ)} for δ > 0.

The multidimensional problem 3.3a is split into a sequence of one dimensional
problems. More concretely this means: Compute the problem

∂tρ+ ∂x1
(fδv

stat
1 ) = 0

by a finite volume method (e.g. Godunov) in the x1-direction for one time step
∆t. Subsequently, compute the problem in the x2-direction for the time step ∆t,
i.e.,

∂tρ+ ∂x2
(fδv

stat
2 ) = 0.

This procedure leads to the following scheme:

macro solver()

(1.1) For k = 0 to Nt − 1
(1.2) For j = 1 to Nx2

(1.3) For i = 1 to Nx1

(1.4) F+
1 := FG(ρki,j, ρ

k
i+1,j , v

stat
1 (xi+ 1

2
, j))

(1.5) F−
1 := FG(ρki−1,j , ρ

k
i,j, v

stat
1 (xi− 1

2
, j))

(1.6) ρ̃ki,j = ρki,j − λ1[F
+
1 − F−

1 ]
(1.7) End
(1.8) End
(1.9) For i = 1 to Nx1

(1.10) For j = 1 to Nx2
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(1.11) F+
2 := FG(ρ̃ki,j, ρ̃

k
i,j+1, v

stat
2 (xi,j+ 1

2
))

(1.12) F−
2 := FG(ρ̃ki,j−1, ρ̃

k
i,j, v

stat
2 (xi,j− 1

2
))

(1.13) ρk+1
i,j = ρ̃ki,j − λ2[F

+
2 − F−

2 ]
(1.14) End
(1.15) End
(1.16) End

The numerical flux FG is known as the Godunov flux, i.e.,

FG(ρ
k
i,j , ρ

k
i+1,j, v

stat
1 (xi+ 1

2
, j) :=

{
minw∈[ρki,j ,ρ

k
i+1,j)

vstat1 (xi+ 1
2
, j)fδ(w), ρki,j ≤ ρki+1,j ,

maxw∈[ρki+1,j ,ρ
k
i,j)

vstat1 (xi+ 1
2
, j)fδ(w), ρki,j ≥ ρki+1,j .

More details of the previous one-dimensional scheme with an spatial dependent
velocity field are found in [96].

Remark 3.3.1. As we have seen in Chapter 1, the discontinuous flux Godunov
method (DFG) yields more efficient results for one-dimensional problems than the
regularized flux Godunov method (RFG). Thus, the step size restriction does not
depend on the regularization parameter δ, and the shock waves are drawn in an
accurate way. A naive approach for a numerical scheme of the two-dimensional
flow model could be a splitting method combined with the DFG method. However,
such a splitting method does not work in practice.
The problem starts if ρki,j = ρmax. Flux information in direction x1 of a cell with
density ρmax do not depend on the flux information in direction x2 and vice versa.
Note that the DFG flux for a cell with density ρmax depends only on the choice
of the succeeding cells in one direction and the boundary outflow.

Extended Flow Model

By analogy to the previous scheme, the multidimensional problem (3.5) is split
into a sequence of one dimensional problems. Therefore, the fluxes ρ(vdyn(ρ) +
vstat(x)) used in the numerics are split in each dimension. The gradient and
the convolution are parts of the dispersive term I(ρ). It is necessary to discuss
the gradient and the convolution for the numerical solution method. In detail,
the gradient of the convolution term η ∗ ρ is a two dimensional vector where the
gradient operator can be directly applied to the mollifier η. This eliminates the
differential operator ∇ if the function ∇η is well-known.

∇(η ∗ ρ) = (∂x1
η ∗ ρ, ∂x2

η ∗ ρ)T . (3.6)

For clarification, we consider only the first component of the vector (3.6). For
the numerical method it is necessary to evaluate the flux between the cells. For
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that reason we compute the convolution in the spatial point x = (x1,i+ 1
2
, x2,j)T

at a fixed time tk.

(∂x1
η ∗ ρ)(x) =

∫

R2

∂x1
η(x− τ )ρ(τ )dτ (3.7a)

=
∑

p,q

ρkp,q

∫

Qp,q

∂x1
η(x− τ )dτ (3.7b)

=
∑

p,q

ρkp,q · c1i−p,j−q, (3.7c)

where the weights cdp,q are defined as

c1p,q :=

∫

Q
p+1

2
,q

∂x1
η(τ )dτ , c2p,q :=

∫

Q
p,q+1

2

∂x2
η(τ )dτ . (3.8)

As an analogy to the first component of the vector (3.6), the computation of
(∂x1

η ∗ ρ) yields the weights c2p,q.

Remark 3.3.2. The expression (3.7c) is formulated as an infinite sum. For the
numerical implementations, the sum is considered in a finite way with S1 · S2

summands.

The numerical flux in one dimension, i.e., d = 1 at points xi+ 1
2
,j and tk is a

modified Roe flux combined with the non local term I(ρ) :

F1(ρ, ρ
k
i,j, ρ

k
i+1,j,xi+ 1

2
,j) =

{
ρki,jH(ρki,j − ρmax)I1(ρ)(xi+ 1

2
,j), I1(ρ)(xi+ 1

2
,j) ≥ 0

ρki+1,jH(ρki+1,j − ρmax)I1(ρ)(xi+ 1
2
,j), I1(ρ)(xi+ 1

2
,j) ≤ 0.

I1(ρ) respectively I2(ρ) are the first and second components of the vector I(ρ).
Furthermore, the static flux is chosen as the classical Roe flux

G1(ρ
k
i,j , ρ

k
i+1,j, v

stat
i+ 1

2
,j
) =

⎧
⎨

⎩
ρki,jv

stat
1,i+ 1

2
,j
, vstat

1,i+ 1
2
,j
≥ 0

ρki+1,jv
stat
1,i+ 1

2
,j
, vstat

1,i+ 1
2
,j
≤ 0,

where the discretized static velocity field is given by

vstat
i+ 1

2
,j
:= (vstat1,i+ 1

2
,j
, vstat2,i+ 1

2
,j
)T := vstat(xi+ 1

2
,j).

The fluxes in x2-direction F2(ρ, ρkij , ρ
k
i,j+1,xi,j+ 1

2
) and G2(ρki,j, ρ

k
i,j+1, v

stat
i,j+ 1

2

) are

defined analogously.
The routine extended macro solver() describes a numerical solver for the ex-
tended flow model. The dynamic velocity field is solved explicitly for time tk
in the routine compute velocityfield(...). The static velocity field is time
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invariant and an update routine with respect to time is redundant. In lines 1.3 -
1.16 in extended macro solver(), the continuity equation for the velocity field
(vdyn(ρ) + vstat(x)) is solved for the next time step tk+1 by dimension splitting.

extended macro solver()

(1.1) For k = 0 to Nt − 1
(1.2) compute velocityfield()
(1.3) For j = 1 to Nx2

(1.4) For i = 1 to Nx1

(1.5) F+
1 := F1(ρ, ρki,j, ρ

k
i+1,j ,xi+ 1

2
,j) +G1(ρki,j, ρ

k
i+1,j , v

stat
i+ 1

2
,j
)

(1.6) F−
1 := F1(ρ, ρki−1,j, ρ

k
i,j ,xi− 1

2
,j) +G1(ρki−1,j, ρ

k
i,j , v

stat
i− 1

2
,j
)

(1.7) ρ̃ki,j = ρki,j − λ1[F
+
1 − F−

1 ]
(1.8) End
(1.9) End
(1.10) For i = 1 to Nx1

(1.11) For j = 1 to Nx2

(1.12) F+
2 := F2(ρ, ρ̃ki,j, ρ̃

k
i,j+1,xi,j+ 1

2
) +G2(ρ̃ki,j, ρ̃

k
i,j+1, v

stat
i,j+ 1

2

)

(1.13) F−
2 := F2(ρ, ρ̃ki,j−1, ρ̃

k
i,j ,xi,j− 1

2
) +G2(ρ̃ki,j−1, ρ̃

k
i,j , v

stat
i,j− 1

2

)

(1.14) ρk+1
i,j = ρ̃ki,j − λ2[F

+
2 − F−

2 ]
(1.15) End
(1.16) End
(1.17) End

compute velocityfield()

(2.1) For all i, j
(2.2) Dx1

ρi,j :=
∑

p,q ρ
k
p,q · c1i−p,j−q

(2.3) Dx2
ρi,j :=

∑
p,q ρ

k
p,q · c2i−p,j−q

(2.4) I1(ρ)(xi+ 1
2
,j) = −ϵ Dx1ρi,j√

1+(Dx1ρi,j)
2+(Dx2ρi,j)

2

(2.5) I2(ρ)(xi,j+ 1
2
) = −ϵ Dx2ρi,j√

1+(Dx1ρi,j)
2+(Dx2ρi,j)

2

(2.6) End

Remark 3.3.3. Some properties of the previous numerical scheme.
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1. If the integrals (3.8) are evaluated exactly, the convolution of the discretized
density ρ is also exact. Thus, the corresponding dynamic velocity field vdyn

is evaluated exactly for the discretized density ρ.

2. Using the notation ρ(vdyn(ρ) + vstat(x)) = (F1(ρ,x),F2(ρ,x))
T , we note

that the above discrete flux fulfills

F1(ρ̄, ρ̄, ρ̄,xi+ 1
2
,j) +G1(ρ̄, ρ̄, v

stat
i+ 1

2
,j
) = F1(ρ̄,xi+ 1

2
,j),

F2(ρ̄, ρ̄, ρ̄,xi,j+ 1
2
) +G2(ρ̄, ρ̄, v

stat
i,j+ 1

2

) = F2(ρ̄,xi,j+ 1
2
)

for all ρ̄ ∈ R+. This is necessary to get a consistent discretization of the
continuous flux ρ(vdyn(ρ) + vstat(x)).

3. The presented method is positive preserving as long as the grid constants
fulfill λd < 1

2(ϵ+max{vstatd }) . Indeed, let ρkij > 0 for all i, j. Then we have

|Id(ρ)| ≤ ϵ and can conclude

F+
1 :=≤ ρkij(ϵ+ vstat1,i+ 1

2
,j
),

F−
1 :=≥ −ρkij(ϵ+ vstat1,i− 1

2
,j
).

Therefore,

ρ̃kij := ρkij − λ1
(
F+
1 − F−

1

)
> 0.

Analogous arguments applied to F±
2 yield ρk+1

ij > 0.

Let us now analyze the complexity of the numerical method for the extended flow
model.

Lemma 3.3.4 (Macroscopic model: Runtime performance). Let the computation
times of a single operation be defined by
c1: Floating Point Addition and Subtraction,
c2: Floating Point Multiplication and Division,
c3: Comparison,
c4: Trigonometric, Square root and Pow operations,
c5: Negation,
c6: Jump operation,
c7: Assignment,
c8: Integer Increment/Decrement.
Then the runtime computation time Tmacro

run of the algorithm is assessable by the
formula

Tmacro
run = Nt · (Nx1

Nx2
(S1S2(2c1 + c2 + 2c3 + 4c6 + 2c7 + 2c8) (3.9)

+ 16c1 + 24c2 + 13c3 + 2c5 + 3c6 + 5c7 + 3c8)).
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Proof. Each iteration of a For loop costs a comparison, jump operation, assign-
ment and an integer increase. A For loop with Nt iterations needs the following
computation time

TLoop = Nt(c3 + c6 + c7 + c8).

We estimate the computation time of the procedure compute velocityfield().
The expressions in line 2.2 and line 2.3 have 2 · S1S2 additions, multiplications
and assignments. Note that this calculation is implemented with two convoluted
For loops. Line 2.4 and line 2.5 have 4 additions, 6 multiplications, 2 square
root operations, 2 negations, 2 assignments. The For loop in line 2.1 repeats this
computation Nx1

Nx2
times. This yields the computation time for the procedure

compute velocityfield():

TV el,1.2 = Nx1
Nx2

(2S1S2 · [c1 + c2 + c6 + (c3 + c6 + c7 + c8)]

+4c1 + 6c2 + 2c3 + 2c5 + 2c6 + (c3 + c6 + c7 + c8)).

Line 1.5 to line 1.7 in the main routine extended macro solver() uses 6 addi-
tions, 9 multiplications and 1 assignment. Furthermore the call of the function
F1() or G1() needs a comparison operation. The assignments of F+, F− are not
necessary and can be neglected. The convoluted For loops in line 1.3 and 1.4
repeat the operations in line 1.5-1.7 (Nx1

Nx2
) times. This yields a computation

time for line 1.3-1.9:

TLoop,1.3−1.9 = Nx1
Nx2

(6c1 + 9c2 + 4c3 + c7 + (c3 + c6 + c7 + c8)).

The computation time of line 1.10 - 1.16 is equal to line 1.3-1.9. The For loop in
line 1 repeats the computation for one time-step Nt times. This yields the entire
computation time for the routine extended macro solver()

Tmacro
run = Nt · (TV el,1.2 + 2Nx1

Nx2
(6c1 + 9c2 + 5c3 + 2c7 + c8).

This completes our proof.

Remark 3.3.5. A few remarks are in order.

1. The runtime performance is independent of the total number of objects. It
just depends on the number of time and space steps, i.e., the complexity is
O(Nx1

Nx2
S1S2Nt). Mollifier with non compact support are reduced to a fi-

nite number of grid points. For less computation times, it is recommendable
to use mollifiers with small supports.

2. To ensure stability of the algorithm extended macro solver(), the CFL
condition must be satisfied, i.e., ∆t

∆xd
maxρ ∥( ∂

∂ρ
[ρ(vdyn(ρ)+vstat(x))]∥∞ ≤ 1

for d = 1, 2. In our case this is valid for a smoothed version of the Heaviside
function. A similar expression can also be derived for the use of the (non-
smooth) Heaviside function.
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3.3.2 Discontinuous Galerkin Methods

Discontinuous Galerkin methods (DG methods) play an important role in finding
approximations of many physical applications based on hyperbolic partial differ-
ential equations. For example, popular applications are found in gas dynamics,
compressible and incompressible flows, chemical transports, granular flows, and
more. We refer to [9, 11, 17] for a short overview. These methods have some
interesting benefits, e.g., they preserve the flexibility of finite elements in han-
dling complicated geometries and they yield very accurate approximations. As
already seen in Subection 3.3.1, finite volume methods use constant cell averages.
In consideration of upwinding, this leads to artificial numerical diffusion which
can influence the approximation quality. Indeed, this leads to consider other ap-
proximation tools like the following discontinuous Galerkin method.

The main goal is finding solutions of hyperbolic partial differential equations of
the form

∂tρ+∇ · (F (ρ)) = 0. (3.10)

The macroscopic model equations (3.3) and (3.5) can be written into (3.10) by
the right choice of the flux F . Thus, the flux F is a two-dimensional function
and discontinuous in ρ. Note that the flux of the flow model and the extended
flow model contains the discontinuous Heavyside function H . However, due of
the discontinuous Galerkin method, the flux F is approximated by polynomials.
This will be shown in the later steps. Hence, it is necessary to require continuous
flux functions F to ensure numerical stability of the DG method. In particular,
we specify the continuous fluxes of the macroscopic models in Remark 3.3.6.

Remark 3.3.6. The presented discontinuous Galerkin method uses the following
fluxes for the macroscopic models.

• The flux of the flow model (3.3) is

F (ρ) = (fδ(ρ)v
stat
1 , fδ(ρ)v

stat
2 )T ,

fδ(ρ) = min{ρ, 1
δ
(ρmax − ρ)} for δ > 0.

The smoothed flux fδ is already introduced in Section 3.3.1 and in Chapter 1.

• The extended flow model (3.5) can be approximate by the smooth flux

F (ρ) = (ρ(vstat1 + vdyn1 ), ρ(vstat2 + vdyn2 ))T ,

vdynd (ρ) = H̃(ρ− ρmax)Id(ρ), d = 1, 2,

where H̃ is a smoothed version of the Heavyside function, i.e.,

H̃(u) =
1

π
arctan(βu) +

1

2
, β > 0.
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Space Integration

In this presentation of the DG method, some materials are drawn from these
work [18, 56, 66, 70].
We consider a finite element discretization of the spatial domain Ω ≃ Ωh =⋃̇K

k=1D
k, where Ωh is a disjoint union of triangle elements Dk. Also, we assume

that the position of each vertices of Dk can only coincide to other vertices of
neighboring triangle elements. An example of such finite element discretization
or triangulation is given in Figure 3.4. Note that h estimates the ”size” of all
triangle element Dk. In this thesis, h denotes the length of the largest triangle
edge of all elements Dk.
Let V = L2(Ω,R+) be the solution space of (3.10). Now let the approximate

Ω

Dk

Figure 3.4: A finite element discretization (triangulation) of a domain Ω (ellipse).

space Vh ⊂ V be defined by

Vh := {v ∈ V : v|Dk ∈ PN , k = 1, ..., K},

where PN is the space of the polynomials of degree N . By definition the solutions
v are discontinuous at the triangle interfaces. For the scheme we characterize all
elements v ∈ Vh by a nodal basis. In this presentation, a nodal basis is a special
case of a polynomial basis. Note that a two dimensional polynomial has

Np :=
(N + 1)(N + 2)

2

degrees of freedom for choosing the coefficients. All polynomials v|Dk , restricted
to a triangle shaped domainDk, are constructible by nodal basis functions ℓki (x) ∈
PN with

ℓki (x
k
j ) =

{
1 i = j,

0 i ̸= j,
for all i, j = 1, ..., Np,



3.3. Numerical Methods 113

where xk
j ∈ Dk are nodal points on the finite element k. The polynomials ℓki (x)

are called Lagragian basis functions. The nodal points xk
i for i = 1, ..., Np are

distributed on each triangle element Dk as respective shown in Figure 3.5. A
detailed description of finite elements can be found in [12, 66] for an overview.

(a) N = 1 (b) N = 2 (c) N = 3

Figure 3.5: Nodal points of the basis for linear, quadratic, and cubic triangle
elements Dk, see [12].

An approximation of the solution (3.10) is given by an element of Vh, i.e.,

ρkh(x, t) :=

Np∑

i=1

ρki (t)ℓ
k
i (x), F k

h(x, t) :=

Np∑

i=1

F (ρki (t))ℓ
k
i (x), ∀x ∈ Dk. (3.11)

The functions ρki (t) are unknowns and characterizes the solution ρkh at time t.
We distinguish that the approximations ρkh and the flux F k

h fulfills (3.10) in an
arbitrary way, i.e.,

∂tρ
k
h(x, t) +∇ · F k

h(x, t) = Rk
h(x, t), ∀x ∈ Dk,

where Rk
h(x, t) is the residual. Generally, the approximation ρkh does not fulfill

(3.10) exactly and the residual is not zero in all cases. Furthermore, we must
decide in which sense the residual should vanish. Therefore, we choose a test
function φ(x) ∈ Vh that is representable as

φk
h(x) :=

Np∑

i=1

φk
i ℓ

k
i (x), ∀x ∈ Dk.

We now require that the residual is orthogonal to all test functions in Vh, i.e.,
∫

Dk

Rk
h(x, t)φ

k
h(x)dx = 0.

This is true if and only if
∫

Dk

Rk
h(x, t)ℓ

k
j (x)dx = 0, ∀j = 1, ..., Np



114 Chapter 3. Material Flow on Conveyor Belts

holds. Thus, we obtain
∫

Dk

(∂tρ
k
h(x, t) +∇ · F k

h(x, t))ℓ
k
j (x)dx = 0. (3.12)

Integrating (3.12) by parts yields
∫

Dk

∂ρkh(x, t)

∂t
ℓkj (x)− F k

h(x, t) ·∇ℓkj (x)dx

= −
∫

∂Dk

n · F k
h(x, t)ℓ

k
j (x)dx ∀j = 1, ..., Np,

(3.13)

where n represents the local outward pointing normal. The solution at the in-
terfaces between triangle elements is multiply defined. At this moment, we have
a lack of conditions on the local solution and the test functions. Therefore, we
need here a correct combination of solutions to reduce the degree of freedoms. We
select a numerical flux F ∗ for the fluxes at the triangle interfaces. An illustrated
example is given in Figure 3.6.
Thus, equation (3.13) leads to the local statement.

∫

Dk

∂ρkh(x, t)

∂t
ℓkj (x)− F k

h(x, t) ·∇ℓkj (x)dx

= −
∫

∂Dk

n · F ∗ℓkj (x)dx ∀j = 1, ..., Np,

(3.14)

F ∗

n
ρlj =: ρ−ρ+ := ρki

Dk Dl

Interface

Figure 3.6: Interface of two neighboring triangles Dk and Dl. The position of
the nodal points xk

i (red) and xl
j (blue) coincides, i.e., xk

i = xl
j . The

interior and exterior densities ρ+, ρ− define the numerical flux F ∗ at
the transition point xk

i = xl
j .

Especially in this work, we choose the local Lax-Friedrichs flux for the presented
DG method:

F ∗(ρ+, ρ−) =
F (ρ+) + F (ρ−)

2
+

C

2
n(ρ+ − ρ−),
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where ρ+, ρ− are the interior and exterior solution value. Respectively, C is the
local maximum of the directional flux

C = max
ρ∈[ρ+,ρ−]

∣∣∣∣nx

∂F1

∂ρ
+ ny

∂F2

∂ρ

∣∣∣∣.

The goal is to achieve an ODE system to obtain the quantity ρki (t). We plug now
(3.11) into (3.13) and we get the following statement

Np∑

i=1

[
∂ρki (t)

∂t

∫

Dk

ℓki (x)ℓ
k
j (x)dx− F (ρki (t)) ·

∫

Dk

ℓki (x)∇ℓkj (x)dx
]
=

−
∫

∂Dk

n ·
Np∑

i=1

F ∗ℓki (x)ℓ
k
j (x)dx = −

3∑

e=1

∫

interface e

ne ·
Np∑

i=1

F ∗ℓki (x)ℓ
k
j (x)dx,

(3.15)

where ne denotes the outward pointing normal of the interface e of the triangle
Dk. The ODE system (3.15) can be written into a matrix notation, i.e.,

Mk∂ρ
k(t)

∂t
+ Sk

1F1(ρ
k(t)) + Sk

2F2(ρ
k(t)) = −

3∑

e=1

Mk,e(ne · F ∗), (3.16)

where ρk is a vector of dimension Np containing the cell unknowns ρki . The local
mass matrices Mk, and the stiffness matrices Sk

1 , Sk
2 are defined by

Mk
i,j =

∫

Dk

ℓki (x)ℓ
k
j (x)dx,

Sk
d,i,j =

∫

Dk

ℓki (x)∂xd
ℓkj (x)dx, d = 1, 2, ∀i, j = 1, ..., Np, k = 1, ..., K,

Mk,e
i,j =

∫

interface e

ℓki (x)ℓ
k
j (x)dx, e = 1, 2, 3.

Remark 3.3.7. The coefficient matrices Mk
i,j,Sk

d,i,j,M
k,e
i,j for d = 1, 2 and e =

1, 2, 3 depend only on the choice of the basis functions and the corresponding
triangulation. Therefore, it is useful to compute theses matrices once only for a
complete simulation. This can be done by a preprocessing routine.

Discontinuous and Shock Solutions - Filtering

As is known already, nonlinear equations lead to shocks or discontinuities in
solutions. However, the polynomial approximation of solutions of the DG method
is not able to prescribe discontinuities so far. If we apply the previous DG method
to problems with shock solutions, the following problems will occur:
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• The appearance of artificial and persistent oscillations around the point of
discontinuity.

• The loss of pointwise convergence at the point of discontinuity.

This phenomenon is already known as the Gibbs phenomenon and its behavior
is well understood [55].
Anyway, a high order polynomial basis on the elements gives an high order ac-
curacy of the scheme for smooth solutions. However, the DG method handles
discontinuities with persistent oscillations that distort the approximate solution
or influence the stability properties. Therefore, we propose the following filter
approach in stabilizing the computations and in reducing the oscillations.

The filter approach [15, 65] considers ways to recover some accuracy informations
hidden in the oscillatory solutions. One possibility is filtering out high frequent
redundant oscillations (high order polynomials) in the solutions. In the following,
we consider the canonical basis

ψm(r) = ri1r
j
2, , (i, j) ≥ 0; i+ j ≤ N, (3.17)

m := j + (N + 1)i+ 1− i

2
(i− 1), (i, j) ≥ 0; i+ j ≤ N. (3.18)

which spans the space of N -dimensional polynomials in two variables r = (r1, r2).
Additionally, the spatial variable r is restricted to a reference triangle I, i.e.,
r ∈ I := {(r1, r2) : r1, r2 ≥ −1, r1 + r2 ≤ 0}. However, it is a complete polyno-
mial basis and it can be orthonormalized through a Gram-Schmidt process. The
resulting basis is denoted by ψ̃m(r).
The next step is to transform the basis function ψ̃m(r) back on a triangle element
Dk. This is realizable by a linear mapping Ψ : I → Dk. Thus, we obtain the
basis function on Dk by ψ̃k

m(x) := ψ̃(Ψ−1(x)) with the property
∫

Dk

ψ̃m(x)ψ̃n(x)dx = δm,n.

An approximate solution of an element Dk is given by

ρkh(x) =

Np∑

i=1

ρki ℓ
k
i (x) =

Np∑

m=1

ρ̃kmψ̃
k
m. (3.19)

The solution above is given in a multidimensional Lagrange polynomial basis
ℓki . Now we transform ρkh(x) into the basis consisting of ψ̃k

m. Note that the
polynomial ψ̃k

m has the degree deg(ψ̃k
m) = i+ j. The idea of filtering is to reduce

the coefficient ρ̃km of high polynomial basis elements ψ̃k
m. A popular choice is the

exponential filter

ς(ω) = exp(−βω2s) (3.20)
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(a) β = 36, ωc = 0.5.
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(b) s = 2, ωc = 0.25.

Figure 3.7: Examples of how the filter function (3.21) varies from the three pa-
rameters; the order s, the cutoff Nc = Nωc, and the maximum damp-
ing parameter β.

to obtain the filtered expansion

ρk,Fh (x) =
i+j≤N∑

i,j≥0

ς

(
i+ j

N

)
ρ̃kmψ̃

k
m,

where the filter is characterized by the the maximum damping parameter β > 0
and the order s > 0. It is reasonable to use other filter approaches, see [15, 65].
In this work, we use a filter of the form

ς(ω) =

{
1, 0 ≤ ω ≤ ωc =

Nc

N

exp(−β((ω − ωc)/(1− ωc)2s), ωc ≤ ω ≤ 1.
(3.21)

The filter (3.21) is an extension of the exponential filter (3.20). Nc presents a
cutoff, i.e., polynomials ρ̃km with degree deg(ρ̃km) ≤ Nc are left untouched. An
example of the filter (3.21) with different parameters is shown in Figure 3.7.
Since filtering usage should be used both, as minimal as possible and as much

as needed. This is necessary to stabilize the method, reduce oscillatory solutions,
and reduce artificial viscosity.

Remark 3.3.8. For instance, other strategies to avoid redundant oscillations and
stabilize DG solutions are slope limiters [70], or subcell shock capturing strategies
[86, 87].
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Convolution Integration

In particular, the dispersive term I(ρ) of (3.5) depends on the convolution of the
density ρ and the gradient of the mollifier η, i.e.,

∇(η ∗ ρ) = (∂x1
η ∗ ρ, ∂x2

η ∗ ρ)T .

Hence, it is necessary to include the convolution process into the discontinuous
Galerkin Scheme. Without loss of generality, we consider the convolution of the
approximate solution ρh ∈ Vh and ∂1η in the nodal point xk

i of a triangle k, i.e.,

(∂x1
η ∗ ρh)(xk

i ) =

∫

Ω

η(xk
i − τ )ρh(τ )dτ =

K∑

l=1

∫

Dl

η(xk
i − τ )ρlh(τ )dτ

=
K∑

l=1

∫

Dl

η(xk
i − τ )

Np∑

j=1

ρljℓ
l
j(τ )dτ

=
K∑

l=1

Np∑

j=1

ρlj

∫

Dl

η(xk
i − τ )ℓlj(τ )dτ

︸ ︷︷ ︸
:=ck,li,j

=
K∑

l=1

Np∑

j=1

ρljc
k,l
i,j .

The computation for the convolution of ρh ∈ Vh and ∂2η works analogously.

Remark 3.3.9. Note that the weights ck,li,j are time independent. Therefore, the

ck,li,j can be computed once only before the simulation starts. However, the com-
putation can results in high computational efforts for a large number of triangles
K and polynomial degree N . Under certain circumstances, it is necessary to de-
termine and store a number of O((NpK)2) weights to evaluate the convolution
(∂x1

η ∗ ρh) for all nodal points.

Time Integration

The DG approximation leads to a system of Np ordinary differential equations
over each element Dk. After inverting the local mass matrix Mk, the system
(3.16) can be transformed in the following matrix form:

dρk(t)

dt
= A(ρk),

where ρk(t) is a vector of dimension Np containing the cell unknowns ρki . A(ρk)
denotes the components of the right hand side of the ODE system (3.16) mul-
tiplied by the inverse mass matrix Mk

i,j. The corresponding ODE system can
be solved by explicit methods, e.g., forward Euler, explicit Runge, Runge-Kutta,
and many more. For more details, we refer to [66, 70].
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Example: Forward Euler Method A simple approach is to use the explicit
Euler scheme to solve (3.16). As a result, the DG computation procedure is
illustrated by the following steps:

1. Computation of ρ̃k is given as follows

ρ̃k = ρk(tn) +∆tA(ρk(tn)), ∀k = 1, ..., K.

2. Reconstruction of the updated solution ρ̃k by applying

ρk(tn+1) = F(ρ̃k), ∀k = 1, ..., K,

where F denotes the filter process that is discussed above.

3.4 Optimization Approach

The singularizer has the task to sort and redirect the cargo on the conveyor belt.
Afterwards, the cargo is transported to the next machine tools for additional
production stages or quality controls. Therefore, it is useful to know how the
cargo moves along the singularizer and how the cargo is redirected to the next
machine tool. Often, machine tools have a limited capacity and require a certain
input (inflow). Hence, it is necessary to control the material flow of the conveyed
cargo by a demand f ∗

out. Indeed, there is a high degree of freedom for controlling.
Moreover, we are interested in finding the cargo position in front of the singular-
izer to fulfill the demand.
The presented task is modeled by a PDE restricted optimization problem. Note
that there exist several approaches for different applications which are based on
PDE-restricted optimization problems, e.g., [22, 63, 80, 99] for an overview.

min
u

1

2

∫ T

0

(∫

∂Ωout

ρ(vstat + vdyn) · ndx− f ∗
out(t)

)2

dt (3.22a)

subject to

∂tρ(x, t) +∇ · (ρ(x, t)(vstat(x) + vdyn(x, t))) = 0, (3.22b)

ρ(0,x) =

{
u(x) ∀x ∈ Ωcontrol

0 otherwise,
(3.22c)

0 ≤ u(x) ≤ ρmax. (3.22d)

The approach (3.22) is formulated as a PDE-restricted optimization problem
based on the extended flow model (3.5a). The corresponding objective function
(3.22a) computes a ”distance” between the demand and several outflows of the
extended flow model. That means if the outflow of the extended model ρ(vstat +
vdyn) is close to f ∗

out, the objective function becomes small. Additionally, (3.22b)
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describes the PDE-constraint with initial data (3.22c). The control function
u : Ωcontrol → [0, ρmax] characterizes the initial density (cargo position) at time 0
in Ωcontrol. A sketch of the spatial domain and the outflow boundary is given in
Figure 3.8.

n

∂Ωout

Ωcontrol

Ω

Figure 3.8: Optimal Control Problem

3.4.1 Black Box Optimization

The problem (3.22) searches a function u as the initial density for the extended
flow model with respect to an objective function (3.22a). Indeed, there are many
approaches to solve PDE-restricted optimization problems [26, 75, 100]. However,
one of the simplest approaches is the black box method. Therefore, u is divided
into N discrete values to reduce the complexity of the optimization problem, see
Figure 3.9. The black box method is based on a nonlinear optimization method.
Therefore, the PDE model is repeated until the optimization routine find an
optimal solution u. Famous standard optimization approaches are, e.g., gradient
descent methods, Nelder-Mead, etc. More optimization approaches can be found
in, e.g., [93].

Ωcontrol

u1 u2 u3 u4 u5

u6 u7 ...

... uN

Figure 3.9: Discretization of the control u.



3.5. Numerical Results 121

3.5 Numerical Results

Finally, we present computational results of the flow and extended flow models.
In particular, we cover the following aspects:

• In Subsection 3.5.1 we give a validation of the macroscopic models against
real world experiments.

• In Subsection 3.5.2 we investigate the numerical efforts for the extended
flow model. Therefore, we compare the discontinuous Galerkin method in
Subsection 3.3.2 with the finite volume approach of Subsection 3.3.1.

• Additionally, in Subsection 3.5.3 we analyze the lane and pattern artifacts
of the extended flow model and validate the results of the finite volume
approach against the results of the discontinuous Galerkin method.

• In Subsection 3.5.4 we consider the extended flow model and its optimiza-
tion issue. At first, we show the results of the conveyor belt outflow for
different initial data. Afterwards, we present the results of the black box
optimization approach.

• In Subsection 3.5.6 we present an example and a numerical test case of a
conveyor accumulation buffer system.

All computations are performed on the same platform, namely a 3.0 GHz Du-
alcore computer with 8 GB RAM. All algorithms are implemented in MATLAB
[83].

3.5.1 Real World Validation

Real World Settings The experiments describe the transport of cargo on a
conveyor belt redirected by a singularizer. To collect real world data, the upper
side of the conveyor belt is filmed by a high speed camera, see Figure 3.10. Image
processing tools use the camera data to determine the positions and velocity of
each object. Obviously, the quality of the real world data depends on several
factors, i.e., ambient light intensity, camera refraction and robustness of the image
processing algorithms. Hence, measuring errors cannot completely excluded. We
consider a total of Nn = 192 cargo in the shape of metal cylinders with a radius
of R = 0.012m and a height of l = 0.008m. The maximal cargo density is equal
to the hexagonal packings of two dimensional spheres with radius R. Therefore
the maximal density is about ρmax = 2004 parts per m2. The velocity of the
conveyor belt is vT = 0.395m/s.
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(a) Experimental setup (b) Exposure of the high-
speed-camera

Figure 3.10: The setup consists of a conveyor belt, a high speed camera, and
a computer for evaluating experimental data (left picture). The
exposure of the high speed camera shows cargo lying on the conveyor
belt [67] (right picture).

Macroscopic Model Settings The solution of the macroscopic model is com-
puted by the finite volume scheme with dimensional splitting introduced in Sec-
tion 3.3.1. The step sizes are set to ∆x1 = 5 ·10−3,∆x2 = 5 ·10−3,∆t = 1.25 ·10−3

in the following numerical computations. The mollifier η occurring in the opera-
tor I(ρ) is set as follows

η(x) =
σ

2π
exp

(
− 1

2
σ∥x∥22

)
, σ = 10000.

The influence of the operator I(ρ) is determined by the factor ϵ = 2vT . The
initial density ρ0(x) is given by the origin position of the cargo at time t = 0.
Since the vector xi,0 ∈ R2 denotes the position of a cargo i at time t = 0, the
initial density ρ0(x) can be modeled by

ρ0(x) =
σ0

2πρmax

Nn∑

i=1

exp
(
− 1

2
σ0∥x− xi,0∥22

)
, σ0 = 2500. (3.23)

In addition, the total mass of ρ0 yields
∫
ρ0(x)dx = 192.

Example 1: Flow Model vs. Extended Flow Model

We start with the setting that the singularizer angle is α is set to 60 degree.
The results are shown in Figure 3.11. The left column in Figure 3.11 shows the
measurements of a conveyor experiment. The middle and right column show the
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numerical results of the flow model and the extended flow model. Each Plot
visualize the cargo position for different times. In particular, the yellow cylinders
in the left column visualize the cargo objects. The pictures in the middle and
right column show the density functions as a gray-scaled image plot. Each color
specifies a density value. Therefore, a dark color represent a higher density (black
represent the maximal density) and vice versa. In all results, we observe that
the cargo are transported with the velocity vT . A formation of congestion is
observable in all results. In due of the flow model (middle column), the cargo
moves enormously slower along the singularizer than in the other results. The
emerging diffusion in the both macroscopic model plots is an numerical artifact.
The diffusion results from the step sizes in the numerical schemes. However,
from a qualitative point of view, the results of the extended flow model are
remarkably good and promising. The results of the flow model reproduce the
formation of congestion very well; nevertheless, the entire qualitative behavior is
quite unrealistic.

Mass balance and outflow behavior

Let us analyze the experiment quantitatively. We are interested in the amount
of cargo that pass the singularizer. A time-dynamic mass function U(t) counts
all cargo which have not passed the singularizer. The aim is to compare the
amount of passed objects for both models and the real data. For the real data,
the time-dynamic mass function U(t) is defined as

U(t) =
Nn∑

i=1

χΩ0
(xi(t)), χΩ0

(x) =

{
1 x ∈ Ω0

0 otherwise.

where Ω0 ⊂ Ω is the left sided region in front of the obstacle, i.e.,
Ω0 =

{
(x1, x2) ∈ R2

∣∣x1 < 0.75
}
. The time-dependent mass function Uρ(t) for the

macroscopic models is given by

Uρ(t) =

∫

Ω0

ρ(x, t)dx.

The evaluation of U and Uρ is shown in Figure 3.12. At the beginning t = 0,
the amount of cargo is 192. After a certain time, cargo pass the obstacle and
the amount U, Uρ decreases. We observe that macroscopic models fit quite well
for t < 2. After time t > 2 a huge gap appears for the flow model, however,
the amount Uρ decrease slowly. There is a small gap between the extended flow
model and the measurements from time t = 2 to time t = 5.

Remark 3.5.1. The macroscopic model was used with ad hoc parameter choices
and detailed parameter fits could significantly improve the results. However, in
real applications, experimental data is not always available such that parameter
fits cannot be performed.
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Figure 3.11: Real world data (left), flow model (middle), and extended flow model
(right).
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Figure 3.12: Comparison of the outflows over time. Each object and quantity is
measured in the conveyor-region x1 < 0.75. The dotted blue line rep-
resents the experimental data, while the dashed green and solid red
lines correspond to the flow and extended flow model respectively.

Example 2: Flow Model vs. Extended Flow Model

Again, we use the same parameter as in Example 1 but with the difference that
the singularizer angle is set to 90 degree now. The results are shown in Figure
3.13. The composition of the plots in Figure 3.13 is analogue to Figure 3.11. In
all models, the cargo are transported with the conveyor belt velocity in direction
of the singularizer. Due to the rectangular arrangement of the singularizer, we
recognize more crowded regions and congestions. Note that the rounded shape
of the congestion in Figure 3.13(f) is a result of the convolution ∇(η ∗ ρ).
As in the previous comparison in Figure 3.12 the congestion at the singularizer
dissolves slower in the flow model, than in the extended flow model and the
experiment. This effect is emphasized in Figure 3.14. At time t ≈ 2, an effect
of tilting occurs in the real data, explaining the small plateau of the blue line in
Figure 3.14. Note that this setting represents a very challenging experiment, since
not all cargo can pass the singularizer. In the experimental setting, vibrations
transmitted from the conveyor belt onto the cargo result in additional small
contributions to the velocity of the objects. Due to the 90 degree angle of the
singularizer, the overall outflow velocity of the cargo is lower than in Example 1,
such that the effect of vibration is of higher influence in this setting. However,
the additional contribution introduced by vibrations is not represented in the
numerical models. Since these models tend to predict slightly too high throughput
rates, but do not capture the additional velocity contribution, the gap in the
outflow rate is reduced in this example.
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Figure 3.13: Real world data (left), flow model (middle), and extended model
(right).
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Figure 3.14: Comparison of the outflows over time. Each object and quantity is
measured in the conveyor-region x1 < 0.75. The dotted blue line rep-
resents the experimental data, while the dashed green and solid red
lines correspond to the flow and extended flow model respectively.

3.5.2 Finite Volume vs. Discontinuous Galerkin

In this section, we compare the quality of the methods from Subsection 3.3.1 and
3.3.2. Additionally, we consider only solutions of the extended flow model. This
model is based on a integral-differential equation, using a convolution term in the
flux function. Similar models are already used for pedestrian flows [20]. How-
ever, certain lane or pattern artifacts are already observed for such pedestrian
models. Also, lane artifacts appear in the extended flow model under certain
assumptions. In this regard, it is not clearly understood why lane or pattern
formation occurs. Thus, to investigate this phenomena (lane formation) in more
details, we are motivated to reproduce these artifacts by a numerical scheme of
higher order. A detailed discussion about the pattern or lane artifacts is found
in the next section.
In the following, we present the numerical results of the extended flow model
computed by the methods introduced in Section 3.3. The finite volume method
and the discontinuous Galerkin method offer their benefits as well as drawbacks
that are independently discussed in this section.

Finite Volume Settings The grid sizes of the finite volume approach with
dimensional splitting are chosen as ∆x1 = ∆x2 = 5 · 10−3, ∆t = 1.25 · 10−3 in the
following computation.

Discontinuous Galerkin Settings The discontinuous Galerkin method uses
a triangulation Ωh with a maximal triangle edge length h = 0.1. The polynomial
degree of each finite element is N = 10. The ODE system (3.16) is solved by
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the explicit Euler method with a time step size ∆t = 10−3. Thereby the filter
procedure is called in each computational step of the ODE solver. The filter
settings are selected as β = 36, s = 6, and Nc = 1.

Macroscopic Model Settings As already mentioned in Remark 3.3.6, we
choose a smooth modification of the dynamic velocity field vdyn, i.e.,

vdyn = H̃(ρ− ρmax)I(ρ),

H̃(u) =
1

π
arctan(25u) +

1

2
,

where H̃ is a smooth approximation of the Heaviside function. The mollifier η,
occurring in the operator I(ρ), is defined as follows

η(x) =
σ

2π
exp

(
− 1

2
σ∥x∥22

)
, σ = 2500.

In this example, the maximal density is set to ρmax = 1. The strength of the
term I(ρ) is selected as ϵ = 2vT . Furthermore, the time horizon is T = 7, and
the singularizer angle α is set to 60 degree.

The results are shown in Figure 3.15. The left column shows the solution com-
puted by the finite volume approach with splitting. The right column shows the
results of the discontinuous Galerkin method. Each picture shows the density
function as a gray-scaled image plot and each color specifies a density value.
Thus, a dark color represent a higher density (black represent the maximal den-
sity) and vice versa. In all results, we observe that the cargo is transported by the
conveyor belt velocity vT . A formation of congestion is observable in all results.

In all plots, we recognize a weak dispersing of quantity, cf. Figure 3.15 (g), (h).
This is caused by the term vdyn = H̃(ρ− ρmax)I(ρ). The smoothed modification
H̃(ρ− ρmax) is never zero for ρ < ρmax. Consequently, the dispersing term I(ρ)
is always activated and the quantity drifts apart all the time. This is also true,
if the quantity has no connection to the singularizer, a dispersing effect is also
recognizable, see Figure 3.15 (a), (b). Moreover, the term I(ρ) disperses the
quantity with addition of artifacts (lane formation). Indeed, lane formations are
observable, e.g. in Figure 3.15 (g). The solution of the discontinuous Galerkin
method seems to be smooth and not accurate in contrast to the results of the
finite volume method. This is mainly due to the fact that the DG method uses
polynomials on triangle finite elements of degree N = 10. However, polynomials
are inherently smooth, and it is impossible to approximate accurate shock solu-
tions in due of the presented size of the finite elements. Indeed, the quality of
the DG method can be improved by refining the triangle mesh grid. Compared
to the DG method, the splitting method uses a 20 times higher discretization.
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Figure 3.15: Results of the finite volume method with splitting - ∆x1 = ∆x2 =
5 · 10−3 (left), and results of the discontinuous Galerkin method -
h ≈ 0.1, N = 10 (right).
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The question rises, what mesh grid sizes and what polynomial degrees are neces-
sary to ensure good approximations in due of the discontinuous Galerkin method?
In the following, the previous example is computed again by the DG method with
different triangulations and polynomial degrees. We test our problem on 3 dif-
ferent mesh grid sizes h = 0.1, h = 0.06 and h = 0.04. The results are shown in
Figure 3.16. For all grid sizes and polynomial degrees, the qualitative behavior
of the solution is approximated quite well. A finer grid or a higher polynomial
degree generates more precise solutions, i.e., quantity shocks and congested for-
mations are drawn in an accurate way.
However, a rough triagulation or a low polynomial degree causes bad approx-
imations, cf. Figure 3.16 (e). Compared to the other results, the congestion
formation in Figure 3.16 (e) looks quite degenerated.

The computation times of the DG method with respect to the mesh-sizes and
polynomial degrees are shown in Table 3.1 and Table 3.2. Furthermore, the
computation times are distinguished into preprocessing time, cf. Table 3.2, and
simulation time, cf. Table 3.1. Preprocessing contains the calculation of the
coefficients of the convolution, see Remark 3.3.9. The simulation time contains
the computation of the ODE system (3.16) by the explicit Euler method.

N h = 0.1 h = 0.06 h = 0.04

1 7.14s 12.30s 13.42s
3 9.30s 18.63s 51.70s
5 17.31s 46.29s -
7 30.10s 111.94s -
9 49.58s - -
11 88.70s - -

Table 3.1: Computation times of the discontinuous Galerkin method (simulation
process) with different grid sizes h and polynomial degrees N . The
time is measured in seconds.

N h = 0.1 h = 0.06 h = 0.04

1 0.06s 1.12s 1.73s
3 0.48s 3.88s 79.99s
5 2.01s 60.82s -
7 5.44s 420.08s -
9 47.11s - -
11 183.86s - -

Table 3.2: Computation times in seconds for the convolution preprocessing in due
of the grid size h and polynomial degree N .
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Figure 3.16: Results of the discontinuous Galerkin method with different trian-
gulations (h = 0.1, 0.06, 0.04) and polynomials degrees N . All plots
show the solution at time t = 1.
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The computing time required for the calculation of the finite volume approach
is about 788.21s. Consequently, the DG method is quite faster than the finite
volume approach for all presented settings. However, the computing times and
the memory requirements of the DG preprocessing increase enormously since
the computation of the convolution in one nodal point requires at most Np · K
coefficients. Furthermore, there are Np · K nodal points and the convolution is
evaluated twice in each dimension. Thus, it is necessary to calculate and store
about 2 · (Np ·K)2 coefficients. As a consequence, the computer was not able to
run the preprocessing routine successfully for small h and a large N , for example,
N = 11 and h = 0.06, see Table 3.2.
Let us summarize: The discontinuous Galerkin method is able to approximate
accurately the extended flow equations on complex geometric domains. However,
the presented example consists only a rectangle shaped domain and it is not
necessary to use methods for complex geometries, cf. regular grids. As already
seen, the DG method needs a very time and memory consuming preprocessing
in due of the convolution. Hence, it is very expensive to apply small step sizes
h for computation of accurate approximations and evaluating the corresponding
convergence behavior.

3.5.3 Lane and Pattern Formation

The extended flow model presented above has a discontinuous component, namely
the Heaviside function H , see (3.5c). This decision part is included in the dis-
persive term vdyn(ρ) = H(ρ − ρmax)I(ρ). If ρ > ρmax, the term I(ρ) will be
active.
In the literature, models for pedestrian flow use a similar model [20], but do
not limit the influence of the dispersive term to a maximum density. Therefore,
these models do not contain the Heaviside function and set vdyn(ρ) = I(ρ).
Additionally, we neglect the static velocity field vstat of equation (3.5). This
reduces to the following equation.

∂tρ+∇ · (ρ(I(ρ)) = 0,

I(ρ) = − ∇(η ∗ ρ)
√

1 + ∥∇(η ∗ ρ)∥22
.

(3.24)

In [20], lane formation was observed for the pedestrian model with smooth dis-
persive term, whereas this effect seems to be much less present in the above
presented non-smooth material flow model. Note that the extended flow model
in Subsection 3.5.2 uses a smoothed switching function H . In particular, we ob-
serve already lane artifacts in Figure 3.15 (g).

We reproduce the appearance of the lane formation in the extended flow model
and validate the results by both numerical methods (finite volume approach with
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Figure 3.17: Numerical solution of the simplified model (3.24) computed by the fi-
nite volume approach with dimensional splitting. Visualized for time
t = 0.1, 0.2, 0.3 and smoothing function parameter σ = 25, 100, 400.
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Figure 3.18: Comparison of the results of the discontinuous Galerkin Method with
different mesh-sizes h and polynomial degrees N . The plots show
the solution at time t = 0.2 for a smoothness parameter σ = 100.
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dimensional splitting and DG method). However, we solve the simplified equa-
tion (3.24) on the spatial domain Ω = [−1, 1]2. The initial density ρ(x, 0) is set to
1 for x ∈ [−1

2 ,
1
2 ]

2, otherwise ρ(x, 0) = 0. Additionally, we compute the simplified
model (3.24) for three different mollifiers, i.e., σ = 25, 100, 400. The step sizes of
the finite volume approach are ∆x1 = ∆x2 = 0.01 and ∆t = 0.005.

The results of the finite volume approach are shown in Figure 3.17. In all plots,
we observe that the quantity spreads out in all directions. The top row corre-
sponds to the setting with smoothing function parameter σ = 25. We recognize
a squared shaped pattern in all time series. In the middle and lower row of plots,
the smoothing function parameter σ = 100, 400 is used. Here, we observe a lane
formation with a circular shape. A further increase of the mollifier parameter σ
yields thiner lanes in the solution. However, we recognize the disappearance of
the lanes in Figure 3.17 (h),(i). This is caused by the artificial numerical diffusion
of the scheme which smears out the thin lanes in the solution.
Figure 3.18 shows the results of the discontinuous Galerkin Method for different
triangulations and polynomial degrees; however, the results are plotted for the
time t = 2 and σ = 100. All plots (exceptional (a) and (d)) lead to the same
result and they are similar to the plot of Figure 3.17 (e). Indeed, a low triangula-
tion and a low polynomial degree causes poor results, cf. Figure 3.18 (a) and (d).
To get the most solution accuracy, the usage of filters for the DG computations
is neglected. Therefore, some high frequent oscillations can appear, cf. Figure
3.17 (c).

3.5.4 Simulation

Comparison of the Outflow

We compare the behavior of the material outflow with respect to different choices
of initial data. Therefore, we introduce three configurations of initial density
values, i.e., we consider a higher, middle, and lower bulk of material as an initial
density distribution. Each bulk is distributed to a density ρ(x, 0) = 0.6. Outside
of a bulk, the initial density is 0. The shape and the size of each bulk is given in
Figure 3.19. The material transport is simulated by the extended flow model for
different singularizer angles α = 45, 60, 90. The corresponding numerical method
is the finite volume method with dimensional splitting. The following step sizes
are used, i.e., ∆x1 = ∆x2 = 10−2, and ∆t = 2.5 ·10−3. The conveyor belt velocity
is selected to vT = 0.395m

s
. The smoothing parameter of the mollifier η is set to

σ = 2500.
The outflow of the different bulks and different angles is shown in Figure 3.20.
We observe, that the quantity of the lower bulk is transported by velocity vT
without any interaction of the singularizer with angle α = 45, 60 degree. Hence,
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Figure 3.19: The initial density ρ(x, 0) is divided into three bulks (lower, middle,
and upper bulk).

the entire lower bulk flows directly out the domain without any additional delay.
In all other cases, the bulks interact with the singularizer. Therefore, a significant
delay of the mass transport is observable. In due of the case α = 90 degree, the
crowded quantity moves much slower than in the cases with α = 45, 60. This
results a very thin outflow rate for the lower and middle bulk, see Figure 3.20
(c).
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Figure 3.20: Cargo outflow for different singularizer angles (degrees). Each plot
shows the outflow for different initial density values (lower, middle,
and upper bulk).

3.5.5 Optimization

Optimal Outflow

The following numerical experiment leads to the optimal cargo position at starting
time t = 0 such that the conveyor outflow fulfills the certain demand f ∗

out =
0.01. Moreover, we apply the optimization model (3.22) in due of the black box
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method in Subsection 3.4.1. The MATLAB routine fmincon() is used to solve
approximately the optimization problem. The forward simulation is computed
by the finite volume method with dimensional splitting. Additionally, we select a
discretization with step sizes ∆x1 = ∆x2 = 0.02 and ∆t = 0.005. Three scenarios
are tested with different singularizer angles, i.e., α = 45, 60, 90 (in degree). To
reduce the complexity of optimization problem (3.22), we discretize the initial
distribution of the cargo u(x) into a squared 6 × 6 matrix which is prescribed
by a vector (u1, ..., uN) with N = 36. The values of the first iteration (start
iteration) are set to ui = 0.5. The corresponding results for ui = 0.5 in due of the
singularizer angle α = 60, 90 are shown in Figure 3.21. Indeed, the cargo outflow
of this scenario does not fulfill the demanded outflow f ∗

out.
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Figure 3.21: Outflow with cargo initial position u = 0.5.

The MATLAB optimization routine terminates for all scenarios and finds a local
optimal solution for all test cases with angle α = 45, 60, 90. The results of the
optimal solution u are given in Figure 3.22. The corresponding outflow is plotted
in Figure 3.23. The MATLAB routine fmincon() uses the active set algorithm
in this computational example. The routines terminates in about 2 hours.
Indeed, the optimal outflow approximates the demand remarkably well.
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Figure 3.22: Optimal cargo initial position. A dark color represents a higher
density.
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Figure 3.23: Outflow with optimal cargo initial position.

3.5.6 Conveyor Accumulation Buffer Systems

Often, production units do not work fluently or it is not possible to process
the entire material flow. Therefore, unprocessed materials can be stacked in
buffer systems to keep a steady production flow. In the following, we introduce
a conveyor accumulation buffer system that is installed in front of a production
unit. Concepts of the following accumulation buffer system are already offered
by the Paxona AG ∗.
We reproduce the accumulation buffer system as a test case for the extended flow
model.
The buffer system consists mainly of a primary and a secondary conveyor belt. As
usual, the primary conveyor belt transport materials to a production unit. The
secondary conveyor belt is installed parallel to the primary belt, and moves in
the corresponding reverse direction. A layout of the accumulation buffer system
is shown in Figure 3.24. The function of the secondary belt is an extension of
the primary conveyor belt. As a consequence, additional cargo can be stored in
the system to maintain a fluently production process.

Production Unit

Figure 3.24: Conveyor accumulation buffer system

Next, we consider a production unit with an accumulation buffer system. The
primary conveyor belt transports cargo to the production unit. Also, we assume

∗www.paxona.de
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Figure 3.25: Static velocity fields for the extended flow model. The left velocity
field models the conveyor accumulation buffer system with blocked
production unit (blockage). The right velocity field simulates the
same buffer system with working production unit (free flow).

that the production unit has a failure. Thus, the incoming cargo cannot be pro-
cessed anymore and the cargo accumulates in front of the production unit. The
congestion of cargo becomes larger until some cargo objects are pushed onto the
secondary belt. Subsequently, cargo on the secondary belt is conveyed backwards
to an angled obstacle (singlarizer) that redirects the cargo to the primary con-
veyor belt again. By that way, the system allows to stack additional cargo objects
in a production line.

We reproduce the above introduced buffer system by the extended flow model.
Furthermore, we simulate an increasing and decreasing of materials in the buffer.
The production unit stops at time 0 ≤ t ≤ 2.5 and continues its process at time
t > 2.5. However, we extend the static velocity field of Subsection 3.2.1 by an
additional conveyor belt with reverse direction. The failure and working of the
production unit is realized by two separated static velocity fields, cf. Figure 3.25.
The left static velocity field simulates the buffer system with a machine failure,
i.e., the material cannot flow out of the right domain via primary conveyor belt.
This velocity field is used for all times t < 2.5. However, the blockage is removed
at the right static velocity field, cf. Figure 3.25 (b). As a consequence, the
material can flow out of the conveyor system. After t > 2.5, the static velocity
field vstat switches from the blocked field (cf. Figure 3.25 (a)) to the free flow
field (cf. Figure 3.25 (b)).

The velocities of both conveyor belts are set to vT = 1. The maximal density is
given by ρmax = 1. The material inflow is described by the density 0.5 on the left
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boundary and on the primary belt (lower belt).
We choose a smooth modification of the dynamic velocity field vdyn, i.e.,

vdyn = H̃(ρ− ρmax)I(ρ),

H̃(u) =
1

π
arctan(25u) +

1

2
,

where H̃ is a smooth approximation of the Heaviside function. The mollifier η is
defined by

η(x) =
σ

2π
exp

(
− 1

2
σ∥x∥22

)
,

where σ = 2500. The simulation is computed by the finite volume approach with
dimensional splitting. The step sizes are selected as ∆x1 = ∆x2 = 0.01 and
∆t = 0.001.
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Figure 3.26: Accumulation system on a conveyor belt.

The results are plotted in Figure 3.26. At time t = 1, the material is transported
by the primary conveyor belt from left side to the right side. Also, we observe
a congestion of material on the right side of the domain. For time t = 2 and
t = 2.4, the size of congested material increases and a part of the material is
pushed onto the secondary conveyor belt (upper belt). Thereby material on the
secondary belt is transported to the singularizer, which redirect the material back
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to the primary belt. After time t > 2.5, we observe that the congested material
thins out and flows out of the domain. Note that the smoothed static velocity
field is quite zero at the boundary layer (blue dotted line), i.e., for x2 = 0.3.
Consequently, the material flow in that region is quite low.





Conclusion

In many applications, simulation tools based on mathematical models are helpful
to plan, organize and control manufacturing processes. In this work, we provided
different models for production systems that are characterized by conservation
laws (PDEs) with discontinuous flux functions. The first model describes an
entire production flow on networks with finite buffers and deterministic machine
break-downs. A scalar one-dimensional conservation law that is similar to the
model of Armbruster, Göttlich, and Herty in [4] was extended to a novel network
model. Therefore, the solution of the PDE was analyzed in detail by the wave
front tracking approach. According to the propagation of shock waves, valid
coupling conditions at the intersection could be found. Also, the wave front
tracking method enables to establish the novel numerical scheme, namely the
discontinuous flux Godunov (DFG) that is based on the finite volume method.
The main advantage of this method is that no regularization of the flux are used
and fast traveling shock waves are computed in an accurate way.
A further important application in manufacturing products is decision making
with aid of optimization problems, for instance, reducing the buffer sizes, finding
the optimal time interval of a maintenance, and more. To solve such optimization
problems, we applied two different discrete approaches by using the novel DFG
method. A reformulation of non linear parts in linear constraints and binary
variable restrictions enables a mixed integer programming formulation (MIP).
Additionally, we determined a discrete adjoint equation system of the PDE model
on a single edge. We analyzed and compared the results and also the structure
of the MIP and adjoint approach. Therefore, we could find a connection between
both optimization approaches. Indeed, the MIP model requires an enormous
computation time for large network problems. Due to accelerate the MIP com-
putation, we investigated two approaches for a MIP presolving technique. The
first presolving approach is based directly on the work of Dittel et al. in [33].
The second presolving approach is an extension of the first technique with an
additional routine that is based on the discretized PDE network model.

The second application within this work is the simulation of material flow on
conveyor belts. Therefore, we investigated two continuous flow models. The
first model, so-called flow model, is a two-dimensional extension of the one-
dimensional discontinuous conservation law of the presented network model. The
second model (extended flow model) is similar to the pedestrian model in the work
of Colombo et al. in [21]. Such models use a non local term including convolution
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that is integrated in a flux function. Furthermore, the results of both flow models
was validated against a real world experiment. The extended flow model reveals
good results for practical applications. Moreover, the computational costs for
simulations depend only on the grid size and is independent of the number of
objects on the conveyor.
The extended flow model was tested by two different numerical methods, namely
a finite volume method and a discontinuous Galerkin method. Solution artifacts
(lane formation) were detected in the model of [21] and also in the extended flow
model. We verified the appearance of such artifacts by the two different numeri-
cal solution approaches.
In summary, this work contains many fields of mathematics, i.e., in our case or-
dinary and partial differential equation systems, numerical methods and compu-
tations, and discrete optimization issues, that are connected to describe different
production processes.
This research has thrown up some questions in need of further investigation.

• The presented network model is unable to reproduce random effects, for
instance, random machine break-downs. How can stochastic processes be
included into the model?

• An important limitation lies in the fact that only one kind of products
is modeled. Is it possible to extend the presented model to a multiple
commodity model?

• Due to the conveyor belt problem, how can further optimization issues be
included into the model?

• How can the presented models be combined with existing production mod-
els?

Generally speaking, a further investigating of discontinuous conservation laws
and its optimization issues in relation to production models is a worthwhile task
with great potential.
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