
OPEN

ORIGINAL ARTICLE

The functional − 1019C/G HTR1A polymorphism and
mechanisms of fear
B Straube1,13, A Reif2,13, J Richter3,13, U Lueken4, H Weber3, V Arolt5, A Jansen1, P Zwanzger5, K Domschke2, P Pauli6, C Konrad1,5,
AL Gerlach7, T Lang4,8, T Fydrich9, GW Alpers10, A Ströhle11, A Wittmann11, B Pfleiderer12, H-U Wittchen4, A Hamm3,14, J Deckert2,14 and
T Kircher1,14

Serotonin receptor 1A gene (HTR1A) knockout mice show pronounced defensive behaviour and increased fear conditioning to
ambiguous conditioned stimuli. Such behaviour is a hallmark of pathological human anxiety, as observed in panic disorder with
agoraphobia (PD/AG). Thus, variations in HTR1A might contribute to neurophysiological differences within subgroups of PD/AG
patients. Here, we tested this hypothesis by combining genetic with behavioural techniques and neuroimaging. In a clinical
multicentre trial, patients with PD/AG received 12 sessions of manualized cognitive-behavioural therapy (CBT) and were genotyped
for HTR1A rs6295. In four subsamples of this multicentre trial, exposure behaviour (n= 185), defensive reactivity measured using a
behavioural avoidance test (BAT; before CBT: n= 245; after CBT: n= 171) and functional magnetic resonance imaging (fMRI) data
during fear conditioning were acquired before and after CBT (n= 39). HTR1A risk genotype (GG) carriers more often escaped during
the BAT before treatment. Exploratory fMRI results suggest increased activation of the amygdala in response to threat as well as
safety cues before and after treatment in GG carriers. Furthermore, GG carriers demonstrated reduced effects of CBT on differential
conditioning in regions including the bilateral insulae and the anterior cingulate cortex. Finally, risk genotype carriers demonstrated
reduced self-initiated exposure behaviour to aversive situations. This study demonstrates the effect of HTR1A variation on defensive
behaviour, amygdala activity, CBT-induced neural plasticity and normalization of defence behaviour in PD/AG. Our results,
therefore, translate evidence from animal studies to humans and suggest a central role for HTR1A in differentiating subgroups of
patients with anxiety disorders.
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INTRODUCTION
Albeit animal studies showed genetic modulation of fearful
behaviour by the serotonin receptor 1a gene (Htr1a), translational
approaches towards anxiety disorders are missing. The present
study aimed to close this gap by investigating behavioural and
neural consequences of HTR1A variation in panic disorder with
agoraphobia (PD/AG).
In rodents, disruption of Htr1a has been linked to increased

defensive behaviour,1–4 particularly with regard to ambiguous,
potential threat indicating stimuli.5,6 In these studies, ambiguous
cues have been created, for example, by combining unaffected
tactile and olfactory cues with spatial cues that were already
present in a context in which a fear-conditioning procedure was
previously conducted. During that fear training, knockout (KO)
mice showed significantly more freezing behaviour than the wild-
type mice and, more important, the freezing behaviour was
comparably high in the case of ambiguous stimuli in KO mice
whereas the freezing behaviour decreased during the test as

compared with the conditioning period in wild-type mice.5

Generalization of fear from fearful to neutral or safety signals
has been described as a potential mechanism in PD with or
without AG.7–9 Thus, variation in HTR1A might be relevant for the
etiopathogenesis of PD/AG.10 The G allele of HTR1A rs6295 has
been proposed to convey risk for the development of PD/AG.11–14

However, despite strong evidence for the role of HTR1A in fear
processing and PD/AG, the mechanisms underlying altered
behavioural and neural responses are largely unknown.
The 5-HT1A receptor acts as a presynaptic inhibitory auto- and

postsynaptic heteroreceptor mediating serotonin regulation.10

rs6295, in the transcriptional control region of HTR1A (−1019C/
G), modulates the expression of 5-HT1A receptors and hence auto-
inhibitory feedback on the presynaptic serotonergic neuron. While
the G allele increases receptor expression at the presynapse and
thereby reduces serotonergic neurotransmission due to enhanced
auto-inhibitory feedback, it also reduces the expression of
postsynaptic 5-HT1A leading to an overall reduction in
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serotonergic neurotransmission,15 especially in neuronal struc-
tures characterized by postsynaptic 5-HT1A heteroreceptors such
as frontal cortex, hippocampus and amygdala.16

Elevated defensive behaviours including escape and avoidance
have been demonstrated in Htr1a KO mice,2,16 and are also
important characteristics of patients with PD/AG.17 Healthy
subjects show shortened reaction times during the anticipation

Table 1. Demographic and clinical characteristics of the fMRI and BAT samples according to rs6295 (−1019C/G HTR1A) genotype

Genotype Differences (CC vs GG)

CC CG GG

Genetic-BAT-sample (N= 245)
N 60 120 65 χ2/F P
Female (n (%)) 42 (70.21) 82 (68.33) 54 (83.08) 2.99a 0.08
Age (years) 36.38 (10.88) 35.58 (11.50) 35.46 (10.23) 0.24 0.63
Clinical characteristics at baseline
SIGH-A total 24.53 (5.04) 23.71 (5.23) 24.46 (5.55) 0.01 0.94
PAS total 26.96 (9.64) 26.14 (9.96) 28.23 (9.33) 0.57 0.45
CGI 5.17 (0.74) 5.18 (0.72) 5.29 (0.61) 1.09 0.30
ASI total 31.15 (9.96) 30.51 (11.60) 32.28 (12.61) 0.31 0.58
BDI II total 16.19 (8.82) 16.56 (8.24) 15.87 (9.02) 0.04 0.84
MI7 2.07 (0.92) 1.93 (0.99) 1.92 (0.99) 0.69 0.41

Genotype Differences (CC/CG vs GG)

CC CG GG

Genetic-BAT-treatment-sample (N= 171)
N 43 85 43 χ2/F P
Female (n (%)) 29 (67.44) 57 (67.06) 34 (79.07) 2.17a 0.34
Age (years) 36.28 (11.31) 36.60 (12.09) 33.28 (9.40) 1.31 0.27
Clinical characteristics at baseline
SIGH-A total 25.09 (5.37) 23.62 (5.07) 25.19 (5.76) 1.74 0.18
PAS total 26.39 (9.18) 25.78 (9.85) 29.33 (9.37) 2.04 0.13
CGI 5.26 (0.76) 5.16 (0.72) 5.28 (0.63) 0.46 0.63
ASI total 32.81 (9.95) 30.72 (11.35) 33.12 (12.62) 0.84 0.43
BDI II total 16.67 (9.00) 16.34 (8.56) 15.51 (9.14) 0.21 0.81
MI7 1.97 (0.89) 1.83 (0.88) 1.87 (0.89) 0.35 0.70

Clinical characteristics at post-treatment
SIGH-A total 13.65 (7.89) 11.78 (7.57) 12.60 (6.90) 0.89 0.41
PAS total 13.68 (8.93) 14.21 (9.52) 14.18 (8.14) 0.05 0.95
CGI 3.42 (0.85) 3.46 (1.11) 3.40 (1.00) 0.06 0.94
ASI total 17.23 (10.36) 15.86 (10.42) 16.47 (10.04) 0.26 0.77
BDI II total 8.49 (8.36) 8.62 (7.99) 8.44 (8.26) 0.01 0.99
MI7 1.53 (0.68) 1.29 (0.49) 1.47 (0.68) 2.43 0.09

Genotype Differences (CC vs GG)

CC CG GG

Genetic-fMRI-treatment-sample (N=39)
N 9 21 9 F P
Female (n (%)) 7 (77.78) 14 (66.67) 5 (55.56) 1.00a 0.62
Age (years) 30.11 (11.47) 37.67 (10.01) 36.11 (7.57) 1.76 0.20
Clinical characteristics at baseline
SIGH-A total 22.89 (4.68) 23.62 (5.34) 26.22 (5.93) 1.75 0.20
PAS total 22.99 (6.72) 24.19 (9.33) 31.90 (7.80) 6.74 0.02
CGI 5.00 (0.71) 5.38 (0.59) 5.67 (0.50) 5.33 0.04
ASI total 30.44 (6.50) 29.14 (9.08) 36.00 (11.41) 1.61 0.22
BDI II total 14.00 (7.63) 16.05 (7.40) 18.67 (11.51) 1.03 0.33
MI7 1.84 (0.71) 1.84 (0.93) 1.65 (1.00) 0.22 0.65

Clinical characteristics at post-treatment
SIGH-A total 9.78 (3.99) 12.38 (6.66) 13.44 (9.38) 1.16 0.29
PAS total 9.15 (5.28) 13.57 (8.96) 18.54 (8.79) 7.54 0.01
CGI 3.22 (0.97) 3.62 (1.24) 3.78 (0.67) 2.00 0.18
ASI total 13.00 (7.81) 15.05 (7.41) 19.11 (11.94) 1.65 0.22
BDI II total 4.78 (6.40) 9.67 (6.16) 9.89 (11.17) 1.42 0.25
MI7 1.45 (0.71) 1.24 (0.38) 1.20 (0.41) 0.82 0.38

Abbreviations: ASI, Anxiety Sensitivity Index; BDI II, Beck Depression Inventory II; CGI, Clinical Global Impressions Scale; PAS, Panic and Agoraphobia Scale; MI7,
7-day version of the Movement Inventory (accompanied); SIGH-A, Hamilton Anxiety Scale. aPearson's Chi-square. Means (s.d.) except where noted. Due to
missing values, MI7 scores were available in the BAT total sample only in 229 patients (CC: 57, CG: 112, GG: 60) and in the BAT treatment group sample only in
160 patients (CC: 41, CG: 80, GG: 39).
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of threat stimuli if carrying the rs6295 GG genotype,18 probably as
a result of sensitized neural circuits predisposing to enhanced
processing of fear stimuli. Furthermore, in healthy subjects, a
reduced amygdala activity has been observed in GG homozygotes
during face processing (face 4 shapes19), which could reflect an
inhibition process. However, in PD/AG patients we recently
observed distinct defensive behaviours depending upon threat
imminence.17 During a standardized behavioural avoidance test
(BAT), acute panic and associated escape behaviour was
accompanied by intense autonomic mobilization, previously
associated with imminent threat processing.20 Variation across
patients in escape behaviour during the BAT17 could be partly
explained by a hitherto unidentified genetic predisposition
regarding the serotonergic system, for example, in HTR1A.
In addition to defence mechanisms, PD/AG was linked to

aberrant fear conditioning, overgeneralization of fear21–23 and
dysfunction of related neural networks.9,24–27 Findings in anxiety
disorders paralleled increased fear conditioning found in Htr1a KO
mice mediated by hippocampus and amygdala.5,6 The neural
network implicated in fear conditioning28–30 overlaps with brain
regions that are affected by 5-HT1A-mediated serotonergic
neurotransmission (specifically amygdala,31 PAG and ACC32).
However, the effect of genetic variations in HTR1A on the neural
correlates of fear conditioning in PD/AG is unknown.
With regard to treatment, cognitive-behavioural therapy (CBT)

has proven its efficacy for most mental disorders, and particularly
PD.33–35 More recently, neurofunctional brain changes related to
psychotherapy, particularly CBT, have been investigated.27,36–39

However, despite first evidence indicates that specific genetic
polymorphisms may contribute to CBT outcome and changes on
the neural and behavioural level,40–44 the effect of variation of
HTR1A on changes in context of psychotherapeutic interventions
are unknown. Considering, however, the converging evidence
suggesting a central role of HTR1A for fear processing, it is likely
that variation in HTR1A contributes to CBT effects in PD/AG.
In summary, animal studies have demonstrated that reduced

Htr1a expression goes along with a bias towards threat stimuli
predominantly mediated by hippocampus and amygdala. Varia-
tions in HTR1A might be of relevance to PD/AG, as increased
defence reactivity and an overgeneralization of conditioned fear is
an important mechanism in this disorder. rs6295 GG genotype—
going along with reduced serotonergic tone in frontal cortex,
amygdala and hippocampus—has been associated with PD/AG.
Deviations on the functional level, that is, defence reactivity and
fear conditioning and effects of exposure-based CBT, might thus
be influenced by rs6295. To test this empirically, we used a
multilevel strategy to link HTR1A genotype to behaviour,
neurofunctional activation and its changes in the course of
cognitive-behavioural therapy, respectively. We hypothesized that
the rs6295 GG genotype (a) facilitates escape behaviour during
the BAT, (b) goes along with increased fear responses reflected by
enhanced amygdala activity towards not fully predictive condi-
tioned stimuli (CS+ and CS− during early acquisition where initial
pairings of unconditioned stimulus and CS occur) and (c) reduced
effects of CBT on neural correlates of fear conditioning and
behavioural defence reactivity.

MATERIALS AND METHODS
Participants
All patients with PD/AG investigated in this study participated in the
Mechanism of Action in CBT study (see Table 1, Supplementary Figure S1)
that has been described in detail earlier.27 Inclusion criteria were: (a) a
current primary diagnosis of PD/AG; (b) a clinical interview score 418 on
the structured interview for the Hamilton anxiety scale (SIGH-A in anxiety
and depression); (c) a score 44 on the clinical global impressions scale; (d)
an age of 18–65 years; and (e) the ability and availability to regularly attend
treatment sessions.35,45 Exclusion criteria were (a) comorbid DSM-IV-TR

psychotic or bipolar I disorder; (b) current alcohol dependence/current
abuse or dependence on benzodiazepine and other psychoactive
substances; (c) current suicidal intent; (d) borderline personality disorder;
(e) concurrent ongoing psychotherapeutic or psychopharmacological
treatment for PD/AG or another mental disorder; (f) antidepressant or
anxiolytic pharmacotherapy; and (g) physician-verified contraindications of
exposure-based CBT (that is, severe cardiovascular, renal or neurological
diseases).45 Additional exclusion criteria were applied to fMRI subjects:
cardiac pacemaker, ferromagnetic metal implants, tattoos or permanent
make-up with ferromagnetic colours.
Eight treatment centres in Germany participated in the clinical multi-

centre trial including BAT procedure as part of the baseline diagnostics
(Aachen, Berlin-Adlershof, Berlin-Charité, Bremen, Dresden, Greifswald,
Münster, Würzburg). In the study, exposure-based CBT was administered in
12 twice-weekly sessions based on a highly standardized and controlled
treatment protocol.35,45 The treatment procedure was shown to be highly
effective.35

In total, n=369 patients were enrolled in the clinical study.35 Here, we
refer to four different subgroups of this clinical sample to investigate
genotype effects on (1) exposure behaviour, (2) on BAT before and (3) after
CBT, as well as (4) on the neural correlates of fear conditioning (see
Supplementary Figure 1 and ref. 40 for further details).

Exposure sample. For the investigation of genotype effects on exposure
behaviour, data of 184 patients were available (CC = 45; CG= 91; GG= 48).

BAT t1 sample. In total, 364 patients performed the BAT. From 306
patients, who entered the BAT box and were not re-randomized from the
waiting list group, blood samples were available in 245 patients (CC = 60;
CG=120; GG= 65).

BAT t2 sample. Of the 245 patients from the BAT t1 sample, 171 were
randomized to one of two active treatment conditions35,45 and also
repeated BAT during post-assessment (CC= 43; CG= 85; GG= 43).

fMRI sample. In total, 89 patients took part in the neuroimaging study,
because only four (Aachen, Berlin, Dresden and Münster) of the eight
treatment centres had fMRI technique assessable. Quality-controlled fMRI
data were available before and after CBT from 42 patients. Blood samples
for genotyping were obtained from 39 of these 42 patients (CC= 9;
CG=21; GG=9).
Clinical and demographic data of the BAT and fMRI subcohorts are

comparable to the scores of the whole sample (n=369) of the clinical trial
(compare Table 1 with Gloster et al.35,45).

Genotyping of rs6295 (HTR1A − 1019C/G)
Genomic DNA was extracted from blood by using a standard de-salting
procedure. A 163-bp fragment was amplified by polymerase chain reaction
(PCR). The PCR reaction mix included 25 ng of genomic DNA in 2.1 μl Gold
Star buffer, 25 mM MgCl2, 2.5 mM of each nucleotide, 10 μM of each forward
and modifying primer and 0.5 μl of Taq polymerase. Primer sequences
were 5′-GGAAGAAGACCGAGTGTGTCAT-3′ and 5′-GGCTGGACTGTTAGATG
ATAACG-3′. After an initial denaturation step for 5 min at 95 °C, 38 cycles of
denaturating at 95 °C for 30 s, annealing at 59.5 °C for 40 s and extension at
72 °C for 50 s were performed, followed by a final extension step at 72 °C
for 5 min. PCR products were digested with BseGI and visualized on a 5%
agarose gel containing ethidium bromide.
The rs6295 genotype groups did not significantly differ in age, gender

and clinical characteristics between the different subsamples (see Table 1).
Genotypes in the total cohort, the BAT and fMRI subcohort did not deviate
from Hardy–Weinberg equilibrium (P40.2).

Treatment intervention
For detailed information of the clinical and treatment aspects of the study,
please see Gloster et al.35,45 and Straube et al.46 Sessions 1–3 consisted of
psychoeducation and an individualized behavioural analysis of the
patient’s symptoms and coping behaviours. Sessions 4–5 provided the
treatment rational for exposure and implemented interoceptive exposure
exercises in the therapy room identically for both groups. Sessions 6–8
consisted of standardized in situ exposure exercises (bus, shopping mall
and forest), which were implemented after the patient agreed to enter the
situation without engaging in safety behaviours and waiting for the
anxiety to take its natural course. Session 9 reviewed progress to date and
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addressed anticipatory anxiety. Sessions 10–11 again consisted of in situ
exposures but now targeted the patients’ two most significant feared
situations. Session 12 repeated crucial elements of the manual and
instructed patients to continue exposing themselves to feared situations.
Since effects of genotype were expected specifically on exposure
behaviour, data of the exposure sessions (Sessions 6–8 and 10–11), where
patients where specifically motivated to do exposure homework, had been
collapsed for respective analyses (see below; and Gloster et al.35 for an
identical approach).

Behavioural avoidance test (BAT)
BAT procedure is described in detail elsewhere.17 Briefly, patients were
instructed first to sit in front of an open test chamber (75 × 120× 190 cm)
while defensive reactivity during anticipation of the upcoming exposure
was measured (for 10min). Afterwards, patients were asked to sit in the
dark and locked chamber as long as possible (maximum 10min). Stopping
exposure in the test chamber was always possible. Defensive reactivity was
measured by self-reports of anxiety on a visual analogue scale, and by
observable behaviour (premature escaping behaviour during exposure).
Defensive reactivity during anticipation and exposure was analysed as a
function of rs6295 HTR1A genotype.

fMRI
Parallel versions of a previously validated differential conditioning
paradigm were applied during fMRI data acquisition (Figure 1, details in
Reinhardt et al.30) before and after CBT (see Kircher et al.27 for
methodological details). The fMRI brain images were acquired using a 3T
Philips Achieva (Muenster and Aachen, Germany), a 3T Siemens Trio
(Dresden, Germany) and a 3T General Electric Healthcare (Berlin, Germany)
scanner (for acquisition parameters see Kircher et al.27). MR images were
analysed using standard procedures of the software Statistical Parametric
Mapping (SPM5; www.fil.ion.ucl.ac.uk) implemented in MATLAB 7.1 (the
Mathworks, Sherborn, MA, USA).
At the single-subject level, the realignment parameters of each patient

were included as regressors into the model to account for movement
artefacts. The BOLD response for each event type (CS+paired, CS+unpaired,
CS− , unconditioned stimulus) and each phase (familiarization phase (F):
early (F1) and late (F2); acquisition phase (A): early (A1) and late (A2);
extinction phase: early (E1) and late (E2)) was modelled by the canonical
haemodynamic response function used by SPM5 within the framework of
the general linear model to analyse brain activation differences related to
the onset of the different stimuli.27 Parameter estimates (β− ) and t-
statistic images were calculated for each subject.
Group analyses were performed by entering contrast images into

flexible factorial analyses as implemented in SPM5, in which subjects are
treated as random variables. The fMRI centre was introduced as a covariate

to account for scanner differences. To investigate the influence of rs6295
on neural activity, we compared the genetic subgroups during the
processing of CS+unpaired and CS− in the early acquisition phase of the
fear-conditioning paradigm (where the most pronounced effects and the
neural plasticity induced by CBT in PD/AG were detected, see Kircher
et al.27). Analyses were performed by contrasting the extreme groups of
the three genetic subgroups GG (n=9), CG (21) and CC (n= 9). Due to the
small sample size, these analyses should be considered as preliminary. To
explore general effect of genotype on the neural processing of not fully
conditioned stimuli in the early acquisition phase, the genotype main
effect (GG4CC) independent of time point (t1/t2) and stimulus type (CS
+/CS− ) had been calculated. To test for genotype-specific effects on CBT-
related changes, interaction analyses had been performed (GG/CC× t1/
t2 ×CS+/CS− ).
The identical cluster threshold of at least 142 voxels at SPM significance

level of Po0.005 uncorrected (based on a Monte Carlo simulation for
correction of multiple testing47), as in previous investigations of this
multicentre trial has been applied.9,27,40 For the anatomical localization,
functional data were referenced to probabilistic cytoarchitectonic maps48

and the AAL toolbox.49

RESULTS
Clinical characteristics
There was no significant effect of genotype on baseline
characteristics (t1) and post-treatment characteristics (t2) in the
BAT and fMRI samples (see Table 1).
Despite absence of effects on primary clinical outcome

variables, we found variation in HTR1A (GG vs CC) to be related
to differences in exposure behaviour during CBT (interaction effect
of HTR1A×CBT session: F(1,91) = 3.976, Po0.05), indicating that
CC in contrast to GG homozygotes performed more exposure on
their own during later exposure sessions of therapy; specifically
during the exposure sessions 10 and 11 (CC4GG, t91 = 2.025,
Po0.05; linear effect CC4CG4GG: F(1,181) = 4.203; Po0.05, see
Figure 1). Importantly variation in HTR1A is not related (P40.2) to
treatment variants (therapist vs self-guided exposure), which has
been previously shown to be related to exposure behaviour35 and
the neural correlates of conditioning.50

Behavioural avoidance test
Effect of HTR1A. Risk genotype was significantly associated with
acute flight behaviour before therapy (t1): GG genotype carriers
escaped more often during the exposure to the test chamber as
compared with CC carriers (χ2 = 5.12, Po0.05; see Figure 2a).
Univariate analysis of variance with genotype (GG carriers vs CC
carriers) and behaviour (escapers vs non-escapers) as between-
subjects variables revealed significant interaction effects between
genotype and behaviour on reported anxiety during anticipation
period (F(1,121) = 5.42, Po0.05) and exposure period (F
(1,121) = 6.40, Po0.05). Post hoc analysis displayed that CC
carriers who showed escaping behaviour during the exposure
already reported significantly more anticipatory anxiety as
compared with non-escaping patients at the anticipation period
(behaviour F(1,58) = 8.57, Po0.01) while anticipatory anxiety
between escaping and non-escaping G allele homozygotes was
comparable (behaviour F(1,63) = 0.11, P= 0.75; see Figure 2b)
suggesting that pronounced self-reported anticipatory anxiety
preceded escape behaviour only if carrying the CC gene variant.
During exposure, reported anxiety was significantly increased in
escaping patients as compared with non-escaping patients in
both, C allele (behaviour F(1,58) = 31.03, Po0.001) and G allele
homozygotes (behaviour F(1,63) = 12.88, Po0.01). However,
escaping CC carriers reported significantly higher anxiety than G
allele homozygous escapers (genotype F(1,28) = 6.96, Po0.05)
while no significant difference between genotypes was observed

Figure 1. Exposure behaviour. Every CBT session patients were asked
how long they exposed their self to an anxiety-related situation.
HTR1A CC genotype (light grey; n= 45) in contrast to GG (dark grey;
n= 48) genotype carriers reported longer exposure times, especially
during later sessions of CBT (session 10–11). The significant
difference (P40.05) between bars is illustrated by a black line.
Thus, the comparable clinical outcome between groups might be a
result of different exposure behaviour as a specific mechanism of
CBT. CBT, cognitive-behavioural therapy.
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in non-escaping patients (genotype F(1,93) = 0.53, P= 0.47; see
Figure 2b).

Effect of CBT. Of those 43 patients who were included in the
following analyses and who were carrying the CC genotype
variant, only four patients showed escape behaviour during t1
disallowing to conduct planned analyses. Since CC and CG
genotype carriers did not differ in any of the performed analyses
below (see Supplementary Material), we collapsed both groups for
the following analyses. Univariate analysis of variance with
genotype (GG carriers vs C carriers) and behaviour (escapers vs
non-escapers) as between-subjects variables and time (t1 vs t2) as
within-subject variable revealed significant interaction effects
between genotype, behaviour and time on anxiety during
anticipation period (F(1,167) = 6.34, Po0.05) and exposure period
(F(1,167) = 10.14, Po0.05), and exposure duration (F(1,167) = 3.84,
P= 0.05) observed in those 171 patients who obtained active
treatment. Post hoc analyses displayed significant larger fear
reductions from t1 to t2 in pretreatment BAT escapers carrying the
C allele during both, anticipation period (time× genotype F
(1,31) = 6.91, Po0.05; see Figure 3a) and exposure period (time×
genotype F(1,31) = 8.18, Po0.01; see Figure 3b). In contrast, no
significant genotype effect on fear reduction in pretreatment BAT
non-escaping patients was observed (anticipation period: time×
genotype F(1,136) = 0.24, P= 0.62; exposure period: time ×geno-
type F(1,136) = 2.27, P= 0.13). As a result, initial differences in
reported anxiety depending on genotype in escaping patients
during t1 (anticipation: genotype ×behaviour F(1,167) = 6.26,

Po0.05, post hoc escapers: genotype F(1,31) = 8.53, Po0.01, post
hoc completers: genotype F(1,136) = 0.17, P= 0.68; exposure:
genotype× behaviour F(1,167) = 8.92, Po0.01, post hoc escapers:
genotype F(1,31) = 12.72, P= 0.001, post hoc completers: genotype
F(1,136) = 0.97, P= 0.33) were no longer observable during t2
(anticipation period: genotype F(1,167) = 0.13, P= 0.72; genotype×
pretreatment behaviour F(1,167) = 0.10, P= 0.75; exposure period:
genotype F(1,167) = 0.34, P=0.56; genotype×pretreatment behav-
iour F(1,167) = 0.01, P= 0.93). In line with the results above, no
significant differences between genotype in the frequency of
escape behaviour were observed during t2 (CC/CG: N= 5, 3.9%;
GG: N= 5, 11.6%; exact Fisher’s P= 0.12).

fMRI results
Effect of HTR1A. The main effect of genotype (GG4CC) for the
processing of CS+unpaired and CS− during early acquisition phase
of the conditioning paradigm baseline (t1) and post-assessment
(t2) revealed activity in the bilateral amygdalae, hippocampi as
well as distributed regions including predominantly parietal,
temporal and cerebellar structures (see Figure 4a; Table 2). Risk
genotype carriers (GG; N= 9) in contrast to CC genotype carriers
generally demonstrated higher activity in these regions indepen-
dent of time point or stimulus type. Bar graphs in Figure 4a
illustrate the contrast estimates for the activity in the left
amygdala. Contrast estimates for all other activation clusters
demonstrate a similar pattern of increased activity in GG carriers
independent of measurement point.

Effect of CBT. The interaction of genotype (GGoCC), processing
of CS+unpaired vs CS− during early acquisition phase and baseline
(t1) vs post-assessment effects (t2) revealed activation in the
bilateral insulae, the middle cingulate cortex and distributed
regions of the parietal and occipital lobe (see Figure 4b, Table 2).
Bar graphs in Figure 4b illustrate the contrast estimates for the
activity in the left insula. Contrast estimates for all other activation
clusters show similar patterns. Risk genotype carriers demon-
strated relatively stable activity in the illustrated regions
independent of time point or stimulus type. By contrast, patients
with the protective genotype (CC; N= 9) showed a reduced
activation for the CS+unpaired after treatment and an opposite
effect for the CS− .
Exploratory correlation analyses were performed to reveal the

association of BAT anxiety ratings, genotype and fMRI activity.
While amygdala activity was correlated with numbers of G alleles
(left amygdala: r= 0.450, P= 0.004 uncorrected, P= 0.036 corrected
for multiple comparisons; right amygdala: r= 0.513, P= 0.001
uncorrected, P= 0.008 corrected for multiple comparisons), no
association between amygdala activity and anxiety ratings from
anticipation and exposure phase of the BAT task could be
observed (for all P40.20). For differential conditioning (CS
+unpaired4CS− ), the right insula correlated negatively with
anxiety ratings during the anticipation of BAT exposure before
treatment (r=− 0.344, P= 0.032 uncorrected, P= 0.324 corrected
for multiple comparisons). Activation change (t2− t1) for the
differential conditioning (CS+unpaired4CS− ) in the right insula was
positively correlated with the number of G alleles (r= 0.404,
P= 0.011 uncorrected, P= 0.099 corrected for multiple compar-
isons) and negatively correlated with changes in the anxiety
reports during BAT exposure after CBT (t2− t1; r=− 0.339,
P= 0.035 uncorrected, P= 0.315 corrected for multiple
comparisons).

DISCUSSION
The rationale of this study was built upon conclusive evidence
from animal research suggesting that lack of Htr1a in hippocam-
pus and amygdala neurons leads to increased fear response to

Figure 2. BAT baseline assessment. Rate of escaping behaviour
during exposure period ((a) GG= 32% (n= 21 of 65); CG= 23%
(n= 27 of 120); CC= 15% (n= 9 of 60)) and (b) means and s.e. of
reported anxiety during anticipation and exposure period as a
function of rs6295 [C(−1019)G] genotype and defensive behaviour in
245 PD/AG patients during baseline assessment before therapy. BAT,
behavioural avoidance test; PD/AG, panic disorder/agoraphobia.
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ambiguous stimuli.5,6 Thus, genetic variation in human HTR1A
should also be of relevance for the pathophysiology of PD/AG, as
generalization of fear to ambiguous or even safety signals is an
important aetiological mechanism for the disorder.7,9 In translat-
ing evidence from rodent models to humans with PD/AG, we
found that HTR1A rs6295 risk genotype (GG) carriers display
increased threat-related defensive reactivity (escape behaviour)
during BAT and increased amygdala activity—measured with fMRI
—for both threat as well as safety cues during fear conditioning.
Both behavioural styles can be interpreted as increased fear-
related flight behaviour in response to ambiguous cues, just as
observed in Htr1a knockout mice. In contrast, we found the CC
allele carriers to be associated with pronounced decreases of

defensive response during the BAT as well as neurofunctional
changes with regard to differential conditioning activity after 12
sessions of CBT.27,35 Despite these differences, both groups
demonstrated clinical improvement. However, these might be
obtained by different components of CBT as indicated by
increased exposure behaviour in CC genotype carriers. Synthesiz-
ing this data, we argue that HTR1A genotype contributes to
predisposing a patient to preferentially utilize different neural
pathways of fear (supported by escape behaviour and amygdala
activity in GG carriers and subjective anxiety and CBT effects on
fear conditioning in C allele carriers). Our data suggest that there
are neurogenetic subgroups of PD/AG patients and, depending on
genotype, CBT may act upon different pathways of fear. These
findings might be useful in the future for informing clinical
decisions regarding CBT treatment.
In line with the hypothesis that the GG genotype of HTR1A

should facilitate flight behaviour, GG homozygotes more often
escaped from a small, dark and closed test chamber during a
standardized BAT. Extensive animal research suggests that
defensive reactivity is dynamically organized as a function of
threat proximity51,52 resulting in different patterns of defensive
reactions, for example, increased autonomic arousal, and related
brain circuit activation. In the case of imminent threat, the dorsal
periaqueductal grey was shown to mediate the expression of
defensive behaviour53–55 and is also relevant for fear conditioning
in PD/AG.9 Electric or chemical stimulation of the PAG in animals
induces strong increases in autonomic arousal and fight/flight
behaviour, which are the dominant characteristics of defensive
responses during acute threat in general, but also during acute
panic states and escape behaviour in PD/AG patients.17 As 5-HT
inhibits PAG-mediated panic and escape behaviour,56 decreased
serotonergic neurotransmission as a consequence of the HTR1A
GG genotype might well contribute to increased escape behaviour
during the standardized BAT. Interestingly, escape behaviour was
preceded by increased anticipatory anxiety in CC but not GG
genotype carriers. Moreover, reported anxiety immediately before
escape was more pronounced in CC carriers as compared with GG
carriers. Although it remains speculative, our results suggest that
acute escape in C allele homozygotes might be driven by the
motivation to reduce anxious apprehension. In contrast, escape
behaviour in GG carriers might be less depending on previous
subjective distress. Future research has to clarify whether G allele-
associated flight behaviour in humans is indeed associated to a
more sensitive PAG as supposed by animal models and how
functionality of that brain structure might be affected by
anticipatory anxiety.
In line with the BAT data and the assumption that the presence

of G alleles goes along with increased fear reactions towards not
fully predictive conditioned stimuli, our preliminary neuroimaging
data suggest that HTR1A GG homozygotes show increased
activation of the bilateral amygdalae upon presentation of
conditioned stimuli (CS+unpaired and CS− ) as an indicator of
potential threat (unconditioned stimuli) detection. Evidence for
increased activation of the amygdala can also be found in
response to viewing emotional stimuli (faces) in patients with
panic disorder carrying the rs6295 GG genotype,13 whereas in
healthy subjects, even reduced amygdala activity has been
reported for the processing of faces.19 Intriguingly, increased
amygdala activation in GG homozygotes in our small fMRI sample
was highly stable and remained constant even after
successful CBT.
Previously, we have shown that PD/AG patients exhibit altered

top-down (prefrontal regions) and bottom-up processing (mid-
brain regions) of conditioned stimuli compared with healthy
individuals.9 Further, we also demonstrated that CBT predomi-
nantly influences top-down processes, as differential conditioning
activity in the left inferior frontal gyrus (IFG) was reduced after CBT
treatment.27 Here, we extend these findings in demonstrating

Figure 3. BAT baseline to post-assessment. Means and s.e. of
reported anxiety during anticipation period (a) and exposure period
(b) and of tolerated duration of exposure during baseline and post-
assessment (c) in 171 PD/AG patients randomized to one of two
active treatment groups. BAT, behavioural avoidance test; PD/AG,
panic disorder/agoraphobia.
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preliminary evidence for the effects of HTR1A on the neural
correlates of fear conditioning and related changes in the context
of CBT (in the CC group only). Amygdala activity upon CS+unpaired

and CS− presentation in the GG group suggest a dysfunctional
differential conditioning or general increased reactivity reflected
in a hyper-reactivity to both fear and safety cues in these PD/AG
risk genotype carriers, paralleling the reaction towards ambiguous
cues in Htr1a KO mice. Although this effect was not affected by
CBT, HTR1A CC homozygotes demonstrated effects of CBT on the
differential processing of CS+unpaired and CS− in the early
acquisition phase, as indicated by a significant interaction of
genotype group (GG vs CC), treatment (t1 vs t2) and stimulus (CS
+unpaired vs CS− ). After CBT, only the HTR1A CC group demon-
strated reduced activation in response to the CS+unpaired in a
network including the bilateral insulae, the anterior/middle
cingulate cortex and more distributed regions of the parietal
and occipital lobe. Especially the involvement of the bilateral
insulae might indicate successful differential conditioning29 and a

reduced interoceptive attention after CBT in this genotype patient
group.57,58 Thus, our exploratory fMRI data suggest that CBT
influenced the neural correlates of fear learning only in the CC
group, maybe as a result of longer durations of exposure training
in this patient subgroup. In line with this finding, stronger CBT-
related improvements (reduced anxiety; longer exposure tolera-
tion) in pretreatment escapers carrying the C allele compared with
G allele homozygotes were observed during BAT. Thus, CBT might
predominantly act on aversive expectations and avoidance in the
CC group, leading to a more efficient encoding in the conditioning
paradigm.
Our findings can only provide a starting point for further

investigations on the role of HTR1A in PD/AG and its treatment
and should be interpreted in light of some limitations. Especially,
the results of the fMRI analyses have to be interpreted with
caution because of the small sizes of the genotype subgroups.
Due to the small sample size, we cannot exclude that our results
either represent false positive effects or that important differences

Figure 4. Main effects and interactions of rs6295 (−1019C/G HTR1A) during early fear acquisition in patients with PD/AG. (a) Main effect of
genotype (GG4CC) for the processing of CS+unpaired and CS− during early acquisition phase of the conditioning paradigm at pre- (t1) and
post-treatment (t2). Risk type carriers (GG) generally demonstrated more activity in the illustrated regions independent of time point or
stimulus type. Bar graphs illustrate the contrast estimates for the activity in the left amygdala (collapsed across CS+unpaired and CS− at t1 and
t2; the cluster was restricted to the amygdala using a ROI defined by the anatomy toolbox of SPM.48,59 Cluster extension: 272 voxels). Contrast
estimates for all other activation clusters demonstrate a similar pattern of increased activity in the GG group. (b) Interaction of genotype, the
processing of CS+unpaired vs CS− during early acquisition phase and pre- (t1) vs post-treatment effects (t2). Bar graphs illustrate the contrast
estimates for the activity in the left insula (whole cluster: 330 voxels). Contrast estimates for all other activation clusters demonstrate similar
patterns. Risk type carriers demonstrated relatively stable activity in the illustrated regions independent of time point or stimulus type. By
contrast, patients with the protective genotype (CC) showed a reduced activation for the CS+unpaired after treatment and an opposite effect for
the CS− . For coordinates and statistics, see Table 2. CS, conditioned stimulus; PD/AG, panic disorder/agoraphobia; ROI, region of interest;
SPM, statistical parametric mapping.
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might have been missed due to false negative findings. Especially,
activation of the parietal lobe has to be interpreted with caution
since activation change in this region could also be observed in
healthy subjects (see Supplementary Material) and might be
unrelated to CBT. Replications of such gene by treatment
interactions in larger fMRI samples are necessary to support our
findings and interpretations. On the other hand, our data benefit
from coming from a large and controlled trial and from
converging lines of evidence that strengthen our findings. For
example, here we had the opportunity to perform correlations
between anxiety ratings during BAT and fMRI activity. Such
exploratory analyses indicate, for example, that activity predomi-
nantly in the right insular cortex is associated with the subjective
experience and evaluation of anxiety in context of the BAT,
whereas amygdala activity was unrelated to subjective anxiety
ratings. Another issue to be kept in mind is that variation in HTR1A,
which causes rather subtle molecular changes, is not identical to a
corresponding knockout in animals. Therefore, it is even more
remarkable that we still observe paralleling defensive behaviour
and fear conditioning to ambiguous conditioned stimuli in
humans and animals on neural and behavioural level.

Taken together, we demonstrated the effect of HTR1A on
mechanisms of fear, reflected in increased threat-related defensive
reactivity and dysfunctional differential conditioning processes
indicated by amygdala activity for both threat and safety cues in
GG homozygotes. On the other hand, in CC genotype carriers, we
found increased subjective anxiety as a precursor of escape
behaviour during BAT. Furthermore, only the latter group
demonstrated neurofunctional changes with regard to differential
conditioning activity due to CBT. Our results, therefore, translate
evidence from animal studies to humans and suggest a central
role for HTR1A in differentiating subgroups of patients with
anxiety disorders. Because therapy was effective for all patients
investigated with fMRI and BAT (see Table 1), our data could be
explained by the fact that distinct components of CBT influence
the processing of fear in different ways, as manualized CBT
embraced several interventions (such as cognitive strategies,
exposure therapy and so on.) with the overall goal of helping as
many patients as possible. Longer exposure times in CC
homozygote carriers suggest that exposure is the important
component of CBT, which might be responsible for the
neurofunctional changes within this patient subgroup. If future

Table 2. fMRI results (coordinates and statistics)

Contrast/region Cluster extensions/submaxima x y z t-value P uncorrected Cluster size

Main effect: GG4CC
Right Amy/HC Amy (SF, 69.7%; CM, 80.3%), HC (CA, 8.5%) 18 − 6 − 16 4.05 o0.001 837

Right putamen 30 − 8 − 6 3.54 o0.001
Right insula 32 − 18 20 3.51 o0.001

Left SPL − 18 − 64 54 4.01 o0.001 865
Left postcentral gyrus − 18 − 40 72 3.69 o0.001

Right postcentral gyrus Right postcentral gyrus 32 − 38 52 3.80 o0.001 802
Right precentral gyrus 28 − 26 68 3.53 o0.001

Right calcarine gyrus 16 − 58 12 3.44 o0.001 695
Right precuneus 18 − 54 16 3.26 0.001

Right thalamus 8 − 14 24 3.80 o0.001 460
Right SPL 24 − 66 52 3.20 0.001 303

Right cuneus 18 − 76 38 3.17 0.001
Left HC/Amy Amy (SF, 31.5%), HC (CA, 7.4%; FD, 13.3%) − 14 − 12 − 14 3.81 o0.001 279

Left HC − 28 − 20 − 12 3.30 0.001
Left SMA BA 6 − 6 10 70 3.56 o0.001 223

Right SMA 2 0 66 2.94 0.002
Thalamus − 20 − 14 8 3.17 0.001 202

Left insula − 34 − 20 4 3.06 0.001
Left cerebellum − 12 − 68 − 16 3.74 o0.001 143

Interaction: genotype (CC4GG)× time (t14t2)× stimulus (CS+unpaired4CS− )
Left precentral gyrus − 38 − 12 58 4.37 o0.001 4471

Right SMA 8 6 60 4.36 o0.001
Left precentral gyrus − 28 − 18 72 4.18 o0.001

Right middle occipital gyrus 30 − 74 30 4.34 o0.001 2360
Right postcentral gyrus 34 − 32 68 3.94 o0.001
Right precentral gyrus 30 − 28 74 3.94 o0.001

Right temporal pole 54 18 − 16 3.69 o0.001 455
Right temporal pole 60 14 − 4 3.17 0.001
Right insula 46 18 − 4 2.99 0.002

Left insula − 46 8 − 4 3.47 o0.001 330
Left temporal pole − 54 10 − 10 3.22 0.001
Left IFG (pars opercularis) − 40 8 8 2.93 0.002

Right MFG 48 48 6 3.71 o0.001 149
Right MFG 40 56 8 3.12 0.001

Left ACC − 10 34 26 3.18 0.001 144
Left superior medial gyrus − 2 32 34 2.98 0.002
Left ACC − 6 42 18 2.86 0.002

Left STG − 52 −18 10 3.10 0.001 142

Abbreviations: ACC, anterior cingulate gyrus; Amy, amygdala; CA, cornu amonis; CM, centromedial group; FD, fascicular dentata; HC, hippocampus; IFG, inferior
frontal gyrus; MFG, middle frontal gyrus; SF, superficial group; SPL, superior parietal lobe; STG, superior temporal gyrus. Significance level, t-values, uncorrected
P-value and the size of the respective cluster (voxels) at Po0.05, corrected (MC), were mentioned. Coordinates are listed in MNI atlas space. Contrasts are
named in italic letters. Cluster extensions denominate activated regions for larger voxel clusters encompassing different brain areas and should be considered
approximate. Anatomical regions have been defined by the anatomy toolbox of statistical parametric mapping.48,59
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studies are able to identify further components of CBT, a more
effective and personalized therapy for the individual patient might
ultimately be possible.
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