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Non Technical Summary

The panel probit model with individual effects plays an important role in applied

econometrics despite its shortcomings, the most important being the inconsistency of the

maximum likelihood estimator for the panel probit model with fixed individual effects when

the number of time periods, T, is small, and only the number of individuals, N, is large.

Several alternative models and estimators have been proposed to tackle this inconsistency

problem due to the lack of independence between individual effects and regressors, but all

present some drawbacks. For instance, the conditional logit model requires strict exogeneity

of the regressors, and stationarity over time. Semi-parametric estimators require strong

assumptions concerning the regressors and are difficult to implement with the relatively large

numbers of regressors typically used in empirical applications.

Here we propose estimators for the panel probit model with fixed individual effects which are

based on the conditional moment estimation framework. These estimators are asymptotically

normal and converge to their limit at the speed N . They achieve asymptotic efficiency in a

well-defined sense, and they are fairly easy to implement using standard software. The

moments used are derived from a first order approximation of the mean of the dependent

variable conditional on explanatory variables and on the fixed effect, ( )iiit cxyE ,| , around a

value c~ . We consider two different choices for the instruments and also introduce trimmed

estimators designed to reduce the bias. In a Monte Carlo study we compare the performance

of these estimators with those of the pooled probit estimator and of the conditional logit

estimator for nine different data generation processes. The results are encouraging.
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1 Introduction

The panel probit model with individual specific effects plays an important role in applied

econometrics, despite its shortcomings. The first obvious shortcoming lies in the arbitrariness

of the normality and homoscedasticity assumptions, the second in the inconsistency of the

maximum likelihood estimator for the panel probit model with fixed individual effects when

the number of time periods, T, is small, and only the number of individuals, N, is large.1

Several estimators have been proposed to tackle this inconsistency problem due to the lack of

independence between individual specific error terms and regressors. The estimator proposed

by Chamberlain (1984) to circumvent this problem appears to require a very large N in order

to yield satisfactory results (see Lechner and Breitung, 1996, for details). It also heavily relies

on correct specification of the distribution of the individual effects given the regressors.

A popular alternative to the panel probit model with fixed effects is the conditional logit

model (see Rasch, 1960, Andersen, 1970, and Chamberlain, 1980, and Oswald, 1998, for a

recent application and justification of this model choice). A drawback of the latter is that it

requires strict exogeneity of the regressors, and stationarity over time: for instance, it cannot,

at least in principle, accomodate heteroscedasticity over time in the latent model.2

Recently, less restrictive models and corresponding estimators have been proposed, but they

all present some drawbacks for the practitioner. The semiparametric estimator proposed by

Manski (1987) is difficult to implement and its speed of convergence is only 3 N ; this can be

improved somewhat by smoothing, as proposed by Horowitz (1992), Kyriazidou (1995), and

Charlier, Melenberg and van Soest (1995), but Chamberlain (1992) shows the impossibility of

attaining N consistency in the framework adopted by all these papers. More recently, Chen

(1998) and Lee (1999) have found sets of assumptions that permit N : Chen uses a

restriction on the nature of the dependence of the individual-specific error term on the

regressors, and Lee introduces a restriction on the time path of the regressors. While

undoubtedly appealing, these estimators require quite stringent regularity assumptions w.r.t.

                                                          
1 For the case of truly random effects (i.e., independent of the regressors), different estimators have been

proposed: see Avery et al. (1983), Butler and Moffitt (1982), Bertschek and Lechner (1998), and Chib (1996).
2 For completeness, we should also mention the promising Bayesian approach to the fixed effects panel probit

model initiated by Lancaster (1999, 2000, 2001), and the conditional probit approach of Magnac (2002).
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the regressors and become difficult or even impossible to implement with the relatively large

numbers of regressors typically used in empirical applications.3

Here we propose estimators for the panel probit model with fixed individual effects which are

based on the conditional moment estimation framework. Whether or not their limit is the true

value of the parameter, these estimators are asymptotically normal and converge to their limit

at the speed N . They achieve asymptotic efficiency in a well-defined sense, and they are

fairly easy to implement using standard GMM software. The moments used are derived from

a first order approximation of the mean of the dependent variable conditional on explanatory

variables and on the fixed effect, ( )iiit cxyE ,| , around a value c~ . We consider two different

choices for the instruments and also introduce trimmed estimators designed to reduce the bias.

In a Monte Carlo study we compare the performance of these estimators with those of the

pooled probit estimator and of the conditional logit estimator for nine different data

generation processes. The results are encouraging.

Section 2 presents the notation and the panel probit model, Section 3 presents the GMM

framework and the proposed estimators, Section 4 discusses the results of a Monte Carlo

study and Section 5 concludes. Appendices A, B and C concern the treatment of

heteroscedasticity over time, the choice of the expansion point for the Taylor approximation,

and the precise definition of the trimmed estimators, respectively.

2 The panel probit model

In this section we introduce notation and describe the model specification and the moment

conditions we will use as a starting point.

2.1 The fixed effects probit model

Equation (1) states the typical binary choice panel data model:

y x c uti ti i ti= + + ≥1 00[( ) ]β ;      t T i N= =1 1,..., ; ,..., . (1)

yti  denotes the zero/one observable outcome of unit i at time t. The K-dimensional vector xti

denote the characteristics of unit i at time t that are observable to the econometrician, whereas

ci  and uti  denote unobserved characteristics. β  is a deterministic coefficient vector. Its true

                                                          
3 See also Abrevaya (2000) and different approaches to estimation with predetermined regressors: Arellano and

Carrasco (2000), Honore and Kyriazidou (2000), Honore and Lewbel (2002), as well as the survey of
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value is denoted by β 0. Finally, 1( )⋅  denotes the indicator function that is one if its argument

is true, and zero otherwise. It is useful to collect the data over time in the following way:

z y xi i i= ( , ), y y yi i Ti= ( ,..., )1 , x x xi i Ti= ( ,..., )1 . The observations zi  are assumed to be

independent draws from some large population described by the random variables Z Y X= ( , ),

Y Y YT= ( ,..., )1 , X X XT= ( ,..., )1 , C and U U UT= ( ,..., )1 . The realisations of C and U are not

observable. In the following, small letters without the symbol i denote fixed values of the

corresponding random variables. With respect to the distribution of the error terms conditional

on the explanatory variables and the fixed effect, we assume a normal distribution with mean

zero and variance matrix Σ :

( | , ) ~ ( , ); ,U C c X x N c x= = ∀0 Σ . (2)

Equation (2) implies that the regressors are strictly exogenous, and we come back to that

assumption later. Note that random effects are taken care of through Σ , which is unrestricted

and could thus present equicorrelation, for instance. Due to the standard identification

problem in binary choice models, we normalise one element of the main diagonal of Σ  to be

unity. To ease notation, we will proceed as if all elements of the main diagonal are unity.4

The distribution of the other error term C conditional on the explanatory variables (X) is left

unrestricted. Therefore, it could potentially be correlated with regressors, and thus it must be

treated like a fixed effect.

2.2 Moment conditions

Equations (1) and (2) allow to derive the expectations of the observable dependent variables Y

conditional on regressors X and the fixed effects C:

E Y X x C c E Y X x C c x ct t t t t( | , ) ( | , ) ( )= = = = = = +Φ β 0 ;          t T= 1,..., . (3)

These moment conditions have the advantage that they are marginal in the sense that their

expression depends only on the univariate cdf of the normal distribution, denoted by Φ . The

latter can be easily and accurately evaluated numerically. Note that the panel probit model

implies several other moment conditions, for example for cross-products of the dependent

variables. However, such moment conditions are more difficult to evaluate because they

                                                                                                                                                                                    
Arellano and Honore (2002).

4 The adjustments necessitated by the estimation of the variances are described in Appendix A. Although
allowing for heteroscedasticity over time sounded promising, as several of the contenders (in particular the
conditional logit) cannot accommodate that feature, simulation results (available on request) suggest that this
is not much of a problem.
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depend on cdf's of the multivariate normal distribution. Therefore, the latter will be ignored in

the following. Incidentally, Bertschek and Lechner (1998) showed in a Monte Carlo study

that for the random effects panel probit model GMM estimators using optimally weighted

marginal moment conditions (similar to those of equation (3)), are almost as efficient as

maximum likelihood estimators.

Still, at this stage it is important to note that, as pointed out by Wooldridge (2000), estimation

of β  and Σ  will only give limited information on the conditional distribution of y given x.

Since the derivative of ( )cxyP tt ,|1=  w.r.t. a continuous regressor k
tx  depends on c through

the density ( )cxt +βϕ , we will only be able to infer the direction of the impact of the k-th

regressor on the probability of the outcome, but not its magnitude. But the quotients of the

marginal effects of continuous regressors, say k
tx  and j

tx  will be fully identified and coincide

with the quotient of the corresponding coefficients.

3 GMM estimation

We now discuss alternative approaches to solving the problem posed by this unobservable

individual effect C and consider in turn moment conditions leading to inconsistent estimators,

our proposal for moment conditions which will be approximately satisfied provided that the

individual effects are small, and estimators based on such moments.

3.1 Moment conditions leading to inconsistent estimators

The moment conditions obtained in equation (3) cannot readily be used for estimation because

the individual effects ci  are unobserved. There are two standard approaches in the literature to

circumvent this problem: The first way to deal with C is to include unit-specific dummy-

variables in the model, i.e. to estimate ci  together with the parameters of interest β . Heckman

(1981) showed that for T fixed such an estimator leads to inconsistent estimates for ci  and β .5

An alternative is to assume a random effects model, i.e. to assume ( ) ( )Σ=+ ~,0~| NxXCU

for all x. Using the same normalisation for Σ~  as before, the moment conditions

E Y X x xt t( | ) ( )= = Φ β 0  that do not depend on the individual effects can be used for consistent

estimation of β  (see Avery, Hansen, Hotz, 1983, or Bertschek, Lechner, 1998). However,

under the fixed effects specification such moment conditions are generally not valid, and

                                                          
5 All asymptotic arguments here are for the case of T fixed and N increasing.
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hence estimators based on them are inconsistent. The problem in this respect is the potential

correlation of the individual effects with the regressors.

3.2 Alternative moment conditions

A ‘solution’ to the problems described above is to find moment conditions that allow for the

existence of fixed effects, but do not depend on them. For example in the linear model this

approach leads to the well-known within and difference estimators. However, using some sort

of differencing in non-linear models is only possible in some special situations, like the

Poisson count data model, or the conditional logit model.6 Unfortunately, for the probit model

such transformations appear not to be available (although Magnac, 2002, shows how to

estimate a two-period conditional probit model, and how this can be used in the general case

of T periods). Our approach uses a similar idea but is based on a Taylor expansion of the

moment condition (3).

Equation (4) gives a linearized version of the moment conditions presented in equation (3).

This linearization is obtained by a first order Taylor expansion around c c= ~:

( ) ( ) ( ) ( )cxcccxcx ttt
~~~ +−++Φ≈+Φ βφββ ;              t T= 1,..., . (4)

When the individual effect is close enough to the value of c~  so that the first order Taylor

approximation in (4) is exact, we can write:7

[ ] ( )
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,   .,...,1, Tts =
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−
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Φ Φ
,   ;,...,1, Tts =    ,ts ≠ (5)

has a conditional mean of zero at the true value of β , given X = x:

( )[ ] ( )[ ]{ }xXcCxXZmEExXZmE otsots ===== |,|;|; ββ  = 0. (6)

Hence, m Zts ( ; )β  can be used as the basis for (almost) consistent estimation of the panel probit

model with fixed effects close to ~c .8 Under standard regularity conditions, a GMM estimator

                                                          
6 And in the latter case, homoscedasticity over time in the latent model is assumed.
7 We should use the symbol ≈  instead of = to be precise, but for notational convenience we will keep using the

= sign.
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of the coefficients for the time varying regressors of the panel probit model based on the

moment functions given in equation (6) is consistent (almost, given the Taylor

approximation) and N asymptotically normal (see Newey, 1993, or Newey, McFadden,

1994).

In order to alleviate notation in the sequel, let us define ( )cX tt
~~ +Φ≡Φ β , and

( )cX tt
~~

+≡ βφφ .

Remark 1: A referee suggested that, rather than focusing on almost consistent estimation of

the fixed effects probit model, one could instead focus on consistent estimation of a

model which is almost a fixed effects probit model, i.e., treat the right hand side of (4)

as the model. A drawback is of course that the latter expression does not necessarily

lie between 0 and 1, but it would be interesting to see if (4) could be modified so as to

be interpreted as the true model, while retaining the possibility of eliminating the fixed

effect.

Remark 2: Time-varying (or period-specific) coefficients may easily be introduced in this

framework, the only difference with time-constant coefficients lying in the

construction of the instruments described in Subsection 3.3. The case of period-

specific variances is fully described in Appendix A.

Remark 3: We could also use T moment functions that are in the spirit of within estimation,

like ( ) ∑
=

Φ−
−

Φ−
=

T

s s

ss

t

ttWI
ts

Y
T

Y
Zm

1
~

~
1

~
~

;
φφ

β . However, we can expect that the T(T-1)/2

moment functions based on all non-identical first differences are more informative,

although it must be recognised that these moment conditions are not independent – a

feature shared by the moments used in within estimation – and that in fact the T-1

moments ( ) ( )ββ ;,...,; ,112 ZmZm TT −  form a basis.

Remark 4: To obtain some insights about identification, especially concerning the coefficients

of time invariant regressors, which are usually not identified in fixed effects models, it

is useful to consider the first derivative of the functions m Zts ( ; )β  w.r.t. β :

                                                                                                                                                                                    
8 Note that the path followed here is very different from the ideas of Newey (1994), who specifies a panel

probit model where the conditional distribution of the sum of the individual effect and the idisyncratic error
term given the regressors is assumed normal, with a mean which is an unspecified function of the regressors.
By contrast, we assume normality for the idiosyncratic error, and independence from the regressors, but make
no assumption on the conditional distribution of the individual effects given the regressors. A similar
approach, developed independently in a maximum likelihood framework, is presented by Grant (2000).
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( ) ( )( ) ( )( ) ( )''' ~
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The only case where the expected values of these derivatives do not vary with a

coefficient is when all regressors are constant over time. To see this consider the

derivative with respect to the coefficient of variable k only:
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Taking the expectation and evaluating it at the true values of the coefficients using the

approximation (4) gives a simplified expression:

( ) ( )[ ]( ) .|~||
;

0
0 k

tstXXk
ts xxxxXcCExX

Zm
E k

s
k
t

β
β

β
−=−=









=
∂

∂
=

Thus the coefficients of the time invariant regressors are identified provided there is at

least one time varying regressor, and [ ] 0 |~ ≠=− xXcCE . However, since this

identification hinges on the local misspecification introduced by the Taylor

approximation, it seems preferable not to attempt an estimation of the coefficients of

the time invariant variables, and to subsume the impact of the latter in the individual

effect. Finally, note that the identification of period-specific coefficients poses no

problem.

Remark 5: In order to allow for predetermined regressors, a referee suggested replacing

assumption (2) with

{ } { }( ) ( )1,0~,,| NUXCU tsstsst ≤≤ . (2’)

This would yield

,,,,,,,|~
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,,,,,,|~
~

~
111111 




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

 Φ−
=







 Φ−
=− −− cyyxx

Y
Ecyyxx

Y
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s
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t

tt KKKK
φφ

and thus for t<s
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which yields the following set of conditional moment conditions:

0,,,,,|~
~

~
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





 Φ−
−

Φ−
−tt

s

ss

t

tt yyxx
YY
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  for all t and all s>t. (6’)

While this is undoubtedly a worthwhile extension, it must be stressed that (2’) implies

independence between tU  and all other variables in the model, so that in particular Σ

is restricted to be diagonal.

It remains to decide how the expansion point may be chosen, and Appendix B discusses our

choice of ~ ( )c y= −Φ 1 , where y  denotes the grand mean of the dependent variable. The Monte

Carlo study will show that this approach works fine when y  is not too far from 0.5. Otherwise

it appears that the approximation error due to the linearization is more severe. We then

propose to trim the sample to bring back y  close to 0.5. This trimming has to be based on

explanatory variables to avoid selection bias. Details concerning two versions of this trimmed

sample estimator can be found in Appendix C.

3.3  An estimator based on the alternative moment conditions

We consider GMM estimators of the type typically used with samples consisting of a large

number of independent observations.9 The GMM estimator minimizes the following quadratic

form:

).()'(minargˆ βββ
β

NNN
B

GMM
N gWg

∈
= (8)

where β  denotes the parameter vector of dimension K and B denotes the corresponding

parameter space. The vector of p moment functions ( )βNg  is computed as the average of the

individual moment functions ( )β,izg .

);(
1

)(
1

ββ i

N

i
N zg

N
g ∑

=

= . (9)

The p x p - dimensional weight matrix NW  is positive semi-definite and converges to some

non- random matrix W. When standard regularity conditions are fulfilled – a crucial condition
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for the asymptotic properties of that GMM estimator is that the individual moment functions

have mean zero at the true values of the parameters (Eg Z( ; )β 0 0= ) – the GMM estimator is

consistent and asymptotically normal:

11
0 )'(')'();,0()ˆ( −−=→− WGGWPWGGWGGVVNN d

N ββ ; (10)

'
);( 0

∂β
β∂ Zg

EG = ;                    ])';();([ 00 ββ ZgZgEP = .

Typically the individual moment functions can be decomposed in a conditional moment

function and an instrument matrix:

g z A x m zi i

p q

i

q

( ; ) ( ) ( ; )β β=
× ×

123124 34
1

. (11)

The corresponding condition for consistency and asymptotic normality in that case is:

χβ ∈∀== xxXZmE ,0]|);([ 0 ,   and this implies   0)];()([ 0 =βZmXAE .

In this case the matrix G appearing in the variance matrix V simplifies to:

G = 







'

);(
)( 0

∂β
β∂ Zm

XAE .

Given the conditional moment functions, the asymptotically optimal instruments have the

following form, where Q denotes some deterministic matrix of full rank:

1* )()()( −Ω= xxQDxA ; (12)

]|
)';(

[)( 0 xX
Zm

ExD ==
∂β

β∂
;  (13)

}|])';();({[)( 00 xXZmZmEx ==Ω ββ . (14)

From a practical point of view using instruments of the type given in equations (12) to (14)

has the advantage that the number of rows of the moment function gN ( )⋅  equals the number of

parameters (exact identification). Hence the weighting matrix NW  becomes irrelevant and

                                                                                                                                                                                    
9 The issues relating to this type of GMM estimator are discussed extensively by Newey (1993) and Newey and

McFadden (1994).
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issues related to bad small sample properties of GMM due to the imprecise estimation of NW

disappear.

Let us relate the expressions in equations (11), (12), and (13) to our specification of the panel

probit model. First, the conditional moment restriction has the following form:

( ) ( )[ ] ;',,,, KK ββ ZmZm ts=    .,,1;1,,1 TtsTt KK +=−= (15)

The derivative of a typical element of ( )β,Zm  is given in equation (7). Taking expectations

leads to the following equation:10

( ) ( )0
0 ;|

;
β

β
β

xdxX
Zm

E tsk
ts =








=

∂
∂

                                      ( ) ( ) ( )[ ]{ } ( )'.|~~~ '
0

'
0 tssstt xxxXxcxxcxcCE −+=+−+−= ββ (16)

Without further knowledge about the joint distribution of the fixed effects and the regressors,

this expression does not simplify and is difficult to estimate. Therefore, we use ( )ots xd β;
~

instead, with

( ) ( )'.;
~

tsots xxxd −=β (17)

Note that the resulting matrix has full rank if and only if the differences above are linearly

independent for each pair of periods: this condition would be violated by sets of regressors

moving over time in the same fashion, like for example age and potential experience. Note

again also that period-specific coefficients would lead to a different expression for ( )0; βxd ts

and thus would lead to different instruments.

Similar computational problems appear with the expression for the conditional variance of the

conditional moment functions:
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10 The stochastic nature of  ~ ( )c y= −Φ 1  is ignored.
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This expression cannot be estimated parametrically without further assumptions on the

conditional distribution of the fixed effects given the explanatory variables.11 In addition,

information about the intertemporal correlation of the remaining error terms is needed. As a

simplification, we assume that the errors terms uti  are uncorrelated over time, and – as before

– that (c ci = ~). Thus we have ( ) [ ]
( )

[ ]
( )20

00

20

00

0, ~

~1~

~

~1~
;~

s

ss

t

tt
tsts x

φφ
βω

Φ−Φ
+

Φ−Φ
= . In addition the off-

diagonal elements are set to zero, and Ω  has full rank, being a diagonal matrix with strictly

positive diagonal elements.

Note that these simplifications have no influence on the consistency of the estimator, but

affect its asymptotic variance. Taking everything together, we use the suboptimal – but fast

and easy to compute – instruments ~( ,
~

)A x Nβ  given by equation (18):

( ) ( ) ( )[ ] 1~
,

~~
,

~~
,

~ −
Ω= NNN xxDxA βββ , (18)

where 
~
β N  denotes some initial (not even necessarily consistent) estimate for β 0. Examples for

~
β N  are used in the Monte Carlo study, where we will refer to ~( ,

~
)A x Nβ  with 

~
β N  obtained

from the pooled probit estimate as “pooled instruments” and to ~( ,
~

)A x Nβ  with 
~
β N  obtained

from the GMM estimator with the pooled instruments as “consistent instruments”. The

trimmed sample estimators will use 
~
β N  obtained from the GMM estimator with the pooled

instruments for the first one, and the resulting estimate for the second one.

4 Monte Carlo study

This section presents a comparison of the performances of our estimators with those of the

pooled probit estimator (PPE) and of the conditional logit estimator (CLE) for 9 data

generating processes differing w.r.t. the correlation of the individual effects with the

                                                          
11 Non parametric estimation, in principle feasible, is cumbersome in the presence of numerous regressors.
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regressors, the mean of the dependent variable, and the correlation over time of either the

regressors or the idiosyncratic error term.

4.1  Presentation of the data generating processes

In all DGPs we consider three regressors: a regressor nx which is standard normal, its square

divided by 4, cx , which is chi-square and without correlation with nx  (because the

distribution of nx  is symmetric around 0 and has thus all odd moments 0), and a dummy, dx ,

with mean 0.5, independent of the rest. The rationale for this extensive list of regressors is that

we wish to mimic ‘real’ estimation problems. Except for DGP 3, the coefficients of these

variables will be 1, -1, and 0.5, respectively, and 1, -1, and 2.5 for DGP 3 which also contains

a constant equal to –1. The latent variable further contains an N(0,0.5) error term, independent

across periods and individuals, and independent from the regressors, and an individual

specific error term with variance 0.5. Unless otherwise mentioned, the observable dependent

variable has unconditional expectation 0.5.

In DGP 1 (fixed effects), the individual effect c is correlated with nx , but with none of the

other regressors (although it will of course not be independent of cx , which is a function of

nx ), whereas it is independent of all regressors in DGP 2 (random effects). The exact

specification of the error structure for DGP 1 is:

( )
)1,0(iidwith

12
1

1

N
T

x
T

c ti

T

t

ti
tini ε

ε
















+

+
= ∑

=

.

As nx  is uncorrelated over time, this yields a correlation ( ) 1/1, += Txc nρ . DGP1

constitutes our benchmark: with the exception of the pooled probit we expect all estimators to

do well in that situation. DGP 3 and DGP 5 to DGP 9 introduce more difficult situations for

our estimators, while DGP 4 should also prove difficult for the CLE. DGP 3 is as DGP 1 but

with the modification mentioned above: the constant –1 is added, and the coefficient of the

dummy is 2.5 instead of 0.5. DGP 4 is as DGP 1 but with the time varying error term AR(1),

with coefficient 0.8. This is the DGP which is most adverse to CLE in our list. DGP 5 is as

DGP 1, but with a constant of –1.2, so that the observable dependent variable has

unconditional expectation 0.22, and DGP 6 is the random effect equivalent, i.e. the

corresponding modification of DGP 2. Finally, DGP 7, 8 and 9 are as DGP 1, 5 and 6,

respectively, but with nx  following an AR(1) process with coefficient 0.9. This also affects
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cx , and considerably increases the correlation between c and nx . The idea behind this choice

is that our estimators and the CLE relate variation in y over time to variation in x over time,

and we reduce both types of variation by introducing persistence.

For all DGPs we consider 6 combinations of N and T: N=100, 400, 1600, and T=5, 10. Table

1 summarises the statistical characteristics of the DGPs.

Table 1 around here

Two points deserve notice: firstly, we have departed substantially from the assumption of

small individual effects in our set up, and thus put our estimators in situations that are a priori

difficult for them; secondly our design produces somewhat smaller correlations between

regressors and individual effects for the case T=10.

Measures of performance used in the Monte Carlo study include the bias in percentage points,

the root mean square error (RMSE) and the median of absolute error (MAE). Note that we

will differ from the usual conventions in referring to precision as measured by the mean

square error rather than by the variance.

4.2  Discussion of Monte Carlo results

Because of the difficulty of proper scaling of the conditional logit parameters for comparison

with the probit estimates and because binary choice models are only identified up to scale, we

only discuss results obtained for the ratios of coefficients to the coefficient of the first

regressor, nx , and call these ratios nββ χ /  and nd ββ / . Note that these ratios are also the

interesting identified quantities mentioned at the end of Subsection 2.2. The results discussed

here can be found in Tables 2 to 5, whereby we only include the results for DGPs 1, 2, 7 and

8. The complete results are available on request. In the sequel we refer to the four estimators

introduced in this paper as to the “almost consistent estimators” (ACEs).

Tables 2 to 5 around here

In order to acquaint the reader with the way the different DGPs affect the properties of the

estimators, we first look at the performance of the well-known pooled probit and conditional

logit estimators, which are also the most used in practice. Results concerning the latter are

interesting in their own right, as many researchers tend to use the conditional logit estimator

when they suspect a correlation between individual effects and regressors (see for instance

Oswald, 1998).
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4.2.1 Pooled probit

This simple estimator is consistent when individual effects are uncorrelated with the

regressors, but is inefficient because it ignores correlations across observations for each

individual. We thus expect it to give acceptable results in terms of asymptotic bias for DGPs

2, 6 and 9, which all have uncorrelated individual effects, but do not expect it to compare well

to other estimators in terms of precision.

Indeed the pooled probit estimator (PPE) has a small bias for those three DGPs, even in the

smaller samples. It is also fairly precise in comparison with the other estimators examined

here, especially for T=5. For that number of periods it even dominates all other estimators in

terms of bias, RMSE and MAE for DGP 9.

For the other DGPs it presents important and persistent biases (around 20% for DGPs 1, 3, 4

and 5, and 40% for DGPs 7 and 8). In terms of RMSE and MAE, its relative performance is

not too bad for N large, at least as regards coefficient nββ χ / . For the coefficient nd ββ /

some relatively large values of RMSE appear, especially for DGPs 3 and 7.

4.2.2 Conditional logit

This estimator is based on maximum likelihood for the conditional distribution of the

dichotomous dependent variable conditionally on its sum over time, as the latter is a sufficient

statistic for the individual effect, under the assumption that the regressors are strictly

exogenous and that the error term is i.i.d. with a logistic distribution and independent of the

regressors and of the individual effect. These distributional assumptions are violated to

various degrees by our DGPs, and so we cannot be assured a priori about the performance of

the CLE for our samples. One clear feature is that it does not exploit observations with no

change of status over time. For small T, and especially if the mean of the dependent variable

substantially departs from 0.5, this will mean the loss of a large portion of the sample, and

thus to a reduced efficiency relatively to methods that avoid such loss.12 Table 6 shows the

mean sample size used by conditional logit for each DGP for each T (percentages remain

stable across the N dimension of the original samples, so that it is enough to look at N=100).

The comparatively large remaining sample for DGP 3 is explained by the large coefficient of

the indicator variable, which implies that a change in that variable, which is independently

distributed over time with equal probabilities for the values 1 and 0, is almost sufficient for a

                                                          
12 One could argue that no efficiency loss is incurred by dropping uninformative observations. But the non-

movers are only uninformative if nothing is known about the individual effects, whereas we assume here that
these individual effects are small.
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status switch to occur. It is somewhat surprising that the same numbers of observations are

retained for DGPs 5 and 6 as for DGPs 1 and 2. The low numbers for DGPs 7 to 9 come from

the autocorrelation in nx , which induces a higher persistence in the dependent variable.

Table 6 around here

Given these considerations we may expect the conditional logit estimator to perform fairly

well in all situations in terms of bias, except for DGP 4, but expect it to be dominated by other

estimators in terms of precision when it rests on a smallish fraction of the original number of

observations, as is the case for DGPs 7 to 9. Generally we also expect it to function better for

T=10 than for T=5, for the same reason.

However, the results of the Monte Carlo study show a somewhat different picture. For the

random effects DGP 2, CLE is uniformly the most biased estimator, and it is almost

uniformly dominated in terms of precision by both the PPE and by all four ACEs. For DGP 9

(RE with one autocorrelated regressor), CLE performs relatively badly as regards nββ χ / ,

with a bias that increases with N for both values of T, and the worst performance in terms of

RMSE and MAE. Things are better for nd ββ /  as regards the latter two, but the behaviour in

terms of bias is also worrying, as bias does not monotonically decrease with N for fixed T. For

DGP 6 the contrast between the two coefficients is starker, as for nββ χ /  CLE performs

poorly, especially for T=5, but is almost uniformly best on all criteria for nd ββ / .

For the simple fixed effects DGP 1, CLE performs best on all accounts for T=10 and N=1600.

It is also the least biased estimator for nββ χ / , except for T=5 and N=100, where it is also

dominated by all four ACEs in terms of precision. It uniformly dominates PPE except for T=5

and N=100. For DGP 3, CLE is mostly the least biased estimator and has similar

performances in terms of RMSE and MAE as the ACEs, although it is more often dominated

when T=5. For DGP 4, with T=5, the CLE is almost always dominated by the ACEs. Yet, for

T=10 it is the least biased, but the difference vanishes with increasing N. For DGP 5, CLE is

again uniformly best for nd ββ /  and it is also almost uniformly best for nββ χ /  for T=10.

For T=5 it is dominated by the trimmed sample estimators (TSE). For DGP 7, CLE is the only

estimator with a bias below 10% for nββ χ / , but the bias appears not to vary monotonically,

either with N or with T. In spite of this, CLE only dominates all other estimators in terms of

RMSE and MAE for N=1600 (both for T=5 and T=10). Finally, DGP 8 turns out to be the

most nasty DGP of all, and again CLE is the only estimator with a bias below 10% for both



18

coefficients, but the bias does not decrease with N. The only serious contender here is the

second TSE, which tends to uniformly dominate CLE for N large.

What we have seen so far suggests that we should now separately discuss two groups among

the estimators introduced in this paper. We will call the first group IVE, and the second has

already been termed TSE.

4.2.3 Instrumental variables estimators

These are the pooled instruments and consistent instruments GMM estimators discussed at the

end of Subsection 3.3, and we shall refer to them as IVEP and IVEC, respectively. They

perform well for DGPs 1 to 4 and DGP 9, give mixed results for DGPs 6 and 7, and bad

results for DGPs 5 and 8.

For the DGPs where they give good results we discuss in turn the DGPs with random effects

(DGPs 2 and 9) and the DGPs with fixed effects (DGPs 1, 3, 4). For DGP 2, the IVEs

dominate for almost all T and N. Only the TSEs prove better for nββ χ /  for T=5 and N=100.

For DGP 9 the IVEs are almost uniformly best for T=10 and are dominated only by PPE for

T=5. For N=1600 they are dominated by the TSEs in terms of bias. For DGP 3 the

performance of the IVEs is similar to and sometimes better than the performance of the CLE.

For DGP 4, the IVEs are biased, much less than PPE, and only a little more than CLE for

T=10 and for T=5 and N=1600. In terms of RMSE and MAE they dominate uniformly for

T=5. For T=10 and N=1600, their performances are fairly close to those of CLE.

Turning to DGPs 6 and 7, the IVEs have the largest biases for DGP 6, but uniformly have the

lowest RMSE and MAE for nββ χ / , while for nd ββ /  they are only superseded by CLE. For

DGP 7, their bias is also important, about half the size of the bias of PPE, but in terms of

RMSE and MAE the results are not bad, especially for IVEC, which dominates CLE for T=5

N=100, N=400, and for T=10, N=100.

Finally, for DGP 5, the bias for nββ χ /  is high, and similar to that obtained with PPE, while

for DGP 8 the bias, RMSE and MAE for nββ χ /  are much higher than those of PPE,

especially for IVEC. The picture is less bleak for nd ββ / , but the IVEs are uniformly

dominated by CLE and the TSEs.
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4.2.4 Trimmed sample estimators

There is no DGP for which the performance of the TSEs is altogether bad. In particular, the

TSEs appear to be almost consistent for all DGPs considered here, even though the reduction

in bias with increasing N or T sometimes appears very slow (DGPs 1, 4, 7, 8). Their relative

performance is often worst for the smallest sample sizes (T=5, N=100). We begin our detailed

discussion with DGPs with random effects.

The TSEs perform well for DGP 2, where they are only dominated by the IVEs (almost

uniformly for T=10, less for T=5) and sometimes by PPE ( nββ χ / , T=5). For DGP 6 they

obtain the smallest bias for nββ χ /  except for T=5 and N=100. In terms of precision they are

clearly dominated by the IVEs for both coefficients, and by the CLE for nd ββ / . For DGP 9

they are increasingly successful in eliminating bias as N increases, both for T=5 and T=10, but

the first TSE encounters numerical problems for T=5, N=100, due to a few very small samples

after trimming. They are uniformly dominated by the IVEs in terms of precision, and by PPE

for T=5.

For DGPs 1, 3 and 4 they have larger biases than CLE and the IVEs and are also uniformly

less precise than the latter. For T=5, N=100 they are more precise than CLE. For DGP 3 their

performance comes close to that of the IVEs, while for DGP 4 they are a bit more biased than

CLE and the IVEs, but come close in terms of precision for nd ββ / . For DGP 5 their only

contender is CLE, which dominates them uniformly for T=10. For T=5 CLE is more precise

for nd ββ /  (and also less biased for N=100), but the TSEs dominate uniformly for nββ χ / .

For DGP 7, they perform badly in terms of bias for nββ χ / , with biases similar to those

obtained for PPE, while for nd ββ /  their performance comes close to those of the IVEs and

CLE. For DGP 8, the second TSE realises the smallest bias for nd ββ /  (except for N=100

where CLE does), and the second smallest bias for nββ χ / , the successful contender being

CLE (except for T=10 and N=1600 where they have the smallest biases). In terms of

precision, the second TSE dominates uniformly for nββ χ /  and almost uniformly for nd ββ /

(except for N=100), and again the only contender is CLE.

These results are also documented in the density graphs of Figures 1 to 3, where the lines

without symbols correspond to the PPE and the CLE. These are easily distinguished since the

PPE is more concentrated and more biased in all cases.

Figures 1 to 3 about here
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Thus the performance of the TSEs appears acceptable for all DGPs, as long as the sample is

not very small.

5 Conclusion

In this paper we have introduced GMM estimators of the fixed effects probit model based on

a first order Taylor approximation of the conditional expectation of the binary dependent

variable given the regressors and the individual effects,  ( )iiit cxyE ,| , around a value c~ . The

corresponding moment restrictions are approximately satisfied for small departures of ic  from

c~ , and therefore the estimators based on this moment restriction will be almost consistent.

The paper addresses questions of identification of the coefficients of time invariant regressors,

and of the informativeness of the observation of non-movers in this situation. We also showed

how heteroscedasticity over time can be accommodated, and how predetermined regressors

could be dealt with.

In a Monte Carlo study we compared the performance of our estimators with those of the

pooled probit and conditional logit (CLE) estimators, which are often used in practice. While

we have not placed our estimators in a favourable situation, because the nine DGPs examined

entail substantial variation in the individual effects, we found encouraging results: when the

individual effects are correlated with the regressors and the mean of the dependent variable is

near 0.5, our estimators outperform the CLE. They clearly dominate the CLE in the presence

of random effects. When the sample mean of the dependent variable is far from 0.5, we resort

to sample trimming in order to reduce the resulting bias. This turns out to work well in some

situations where the bias of the CLE increases with sample size.

In brief, these estimators which can be used with larger numbers of regressors than most of

the available semiparametric estimators, and also in situations where the scarcity of movers

would defeat the CLE, should prove useful to the practitioner. An obvious extension of this

work would be to devise tests based on comparisons between these estimators and possibly

also with the CLE.

References

Abrevaya, J. (2000): "Rank Estimation of a Generalized Fixed Effects Regression Model", Journal of
Econometrics, 95, 1-23.

Andersen, P.K. (1970): "Asymptotic Properties of Conditional Maximum Likelihood Estimators",
Journal of the Royal Statistical Society, Series B, 32, 283-301.



21

Arellano, M. and B. Honoré (2002): "Panel Data Models: Some Recent Developments", forthcoming
in J. Heckman and E. Leamer (eds.), Handbook of Econometrics, Vol. V, North-Holland,
Amsterdam.

Avery, R., L.P. Hansen, and V.J. Hotz (1983): "Multiperiod Probit Models and Orthogonality
Condition Estimation", International Economic Review, 24, 21-35.

Bertschek, I., and M. Lechner (1998): "Convenient Estimators for the Panel Probit Model", Journal of
Econometrics, 87, 329-371.

Butler, J.S. and Moffitt, R. (1982): "A Computationally Efficient Quadrature Procedure for the One-
Factor Multinomial Probit Model", Econometrica, 50, 761-764.

Chamberlain, G. (1980): "Analysis of Covariance with Qualitative Data", Review of Economic Studies,
47, 225-238.

Chamberlain, G. (1984): "Panel Data", in Z. Griliches und M.D. Intriligator, Ed., Handbook of
Econometrics, Vol. II, Ch. 22, North-Holland, Amsterdam.

Chamberlain, G. (1992): "Binary Response Models for Panel Data: Identification and Information",
mimeo, Harvard University.

Charlier, E., B. Melenberg, and A. van Soest (1995): "A Smoothed Maximum Score Estimator for the
Binary Choice Panel Model and an Application to Labour Force Participation", Statistica
Neerlandica, 49, 324-342.

Chen, S. (1998): "Root-N Consistent Estimation of a Panel Data Sample Selection Model",
unpublished discussion paper, Princeton University.

Chib, S. (1996): "Inference in Panel Data Models via Gibbs Sampling", Chapter 24 in L. Mátyás and
P. Sevestre (eds.) The Econometrics of Panel Data: Handbook of Theory and Applications, 2nd
edition (augmented) Kluwer, Amsterdam.

Grant, D. (2000): "Estimating a Discrete Choice Fixed Effects Model Using Weighted Least Squares",
unpublished discussion paper, Georgia Southern University, Statesboro.

Heckman, J.J. (1981): "Statistical Models for Discrete Panel Data," in C. Manski and D. McFadden,
Hrsg, Ed., Structural Analysis of Discrete Data, MIT Press, Cambridge, MA, 114-178.

Heckman, J.J. (1981): "The Incidental Parameters Problem and the Problem of Initial Conditions in
Estimating a Discrete Time - Discrete Data Stochastic Process and Some Monte-Carlo Evidence,"
in C. Manski and D. McFadden, Ed., Structural Analysis of Discrete Data, MIT Press, Cambridge,
MA, 179-195.

Honore, B. and E. Kyriazidou (2000): "Panel Data Discrete Choice Models with Lagged Dependent
Variables", Econometrica, 68, 839-874.

Honore, B. and A. Lewbel (2002): "Semiparametric Binary Choice Panel Data Models Without
Strictly Exogenous Regressors", unpublished discussion paper, Boston College.

Horowitz, J. (1992): "A Smoothed Maximum Score Estimator for the Binary Response Model",
Econometrica, 60, 505-531.

Hsiao, C. (1986): Analysis of Panel Data. Cambridge: Cambridge University Press.
Kyriazidou, E. (1995): Essays in Estimation and Testing of Econometric Models, Ph.D. dissertation,

Northwestern University.
Lancaster, T. (1999): "Panel Binary Choice with Fixed Effects", unpublished discussion paper, Brown

University.
Lancaster, T. (2000): "The Incidental Parameter Problem Since 1948", Journal of Econometrics, 95,

391-413.
Lancaster, T. (2001): "Orthogonal Parameters and Panel Data", unpublished discussion paper, Brown

University.
Lechner, M. and J. Breitung (1996): "Some GMM Estimation Methods and Specification Tests for

Nonlinear Models ", Chapter 22 in L. Mátyás and P. Sevestre (eds.) The Econometrics of Panel
Data: Handbook of Theory and Applications, 2nd edition (augmented) Kluwer, Amsterdam.

Lee, M.J. (1999): "A root-N Consistent Semiparametric Estimator for Related-Effect Binary Response
Panel Data", Econometrica, 67, 427-433.

Maddala, G.S. (1987): "Limited Dependent Variable Models Using Panel Data", Journal of Human
Resources, 22, 307-338.

Magnac, T. (2002): "Binary Variables and Fixed Effects: Generalizing the Conditional Logit",
unpublished discussion paper, INRA and CREST, Paris.



22

Manski, C. (1987): "Semiparametric Analysis of Random Effects Linear Models from Binary Panel
Data", Econometrica, 55, 357-362.

Newey, W.K. (1993): "Efficient Estimation of Models with Conditional Moment Restrictions", in G.S.
Maddala, C.R. Rao, and H.D. Vinod (eds.), Handbook of Statistics, Vol. 11: Econometrics, Ch. 16,
Amsterdam: North-Holland.

Newey, W.K. (1994): "The Asymptotic Variance of Semiparametric Estimators", Econometrica, 62,
1349-1382.

Newey, W.K. and D. McFadden (1994): "Large Sample Estimation and Hypothesis Testing", in R.F.
Engle and D.L. McFadden (eds.), Handbook of Econometrics, Vol. 4, 2113-2245, Amsterdam:
North-Holland.

Oswald, A. (1998): "The Missing Piece of the Unemployment Puzzle", unpublished discussion paper,
Warwick University.

Rasch, G. (1960): Probabilistic Models for Some Intelligence and Attainment Tests, Denmark
Paedagogiske Institut, Copenhaguen.

Wooldridge, J.M. (2000): "The Initial Conditions Problem in Dynamic, Nonlinear Panel Data Models
with Unobserved Heterogeneity", unpublished discussion paper, Michigan State University.



23

Appendix A: Heteroscedasticity over time

When allowing for heteroscedasticity over time, we still have to set one of the variances to 1, say the

first, and we define σ as the vector ( )'.,,2 Tσσσ K=  Now we replace (3) with
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As regards the identification of σ  it is easy to check that
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and thus that σ  will in general be identified unless both 0β  and c~  are equal to zero.

We skip the details of the adjustment to the determination of c~ . In Section 3.2, we have to replace β

with the vector ( )σβθ ,= , and (17) becomes
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We will refrain from giving the bulky new expression for ( )θω ;~
, xtsts and conclude by noting that

additional moments for σ would increase efficiency.
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Appendix B: Choice of the expansion point

Precisely because of the fact that the fixed effect absorbs the constant term and the time constant

variables, choosing ~c  = 0 is not attractive and some data dependent choice is called for.

The following equation defines the residual vti :

y x c vti ti i ti= + +Φ( )β 0     ⇒    x c y vti i ti tiβ 0
1+ = −−Φ ( ) . (B.1)

As the next step we consider the first order Taylor expansion of the right hand side of (8) around the

grand mean of yti  ( y ) and go through simple algebraic steps justifying the choice of  ~ ( )c y= −Φ 1 .
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Since in large samples v ≈ 0, choosing the expansion point as ~ ( )c y= −Φ 1  appears to be natural. Note

that in this case the explanatory variables should enter the estimation centred around their grand mean

(over time and units).
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Appendix C: Trimmed estimators

This appendix gives the details of the computation of the trimmed estimators used in the

Monte Carlo study. The first trimmed estimator is obtained through the following steps:

Step 1 Estimate 'standard' fixed effect probit model (GMM with pooled  instruments :
IVEP). This yields, say, Nβ

~
.

Step 2 Order units according to the mean of predicted index  ( $ $y
T

yi ti
t

T

=
=
∑1

1

, with

Ntiti xy β
~ˆ = ).

Step 3 Reduce the number of units according to the value of $yi ,  until the mean of predicted
index is close to 0, or until | . |y N− ⋅0 5  observations have been deleted.

Step 4 Compute new value for ~c  based on reduced sample, using equation (9).
Redo centering of explanatory variables in the reduced sample.

Step 5 Estimate 'standard' fixed effect probit model (GMM with consistent instruments:
IVEC).

The second trimmed estimator is obtained by going through steps 1 to 5 a second time, using

the estimate of the first TSE to build the instruments.
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Table 1: Summary description of individual effects in the different DGPs.

DGP 1 2 3 4 5 6 7 8 9
T=5
Min -2.79 -2.24 -3.29 -2.42 -4.12 -3.76 -2.34 -3.44 -3.45
Max 2.66 2.81 1.30 2.26 1.25 1.08 2.05 0.97 1.54

Mean -0.01 -0.00 -0.98 0.00 -1.22 -1.20 0.00 -1.18 -1.19

Std 0.70 0.71 0.73 0.70 0.72 0.71 0.71 0.71 0.70
( )nxc,ρ 0.40 0 0.42 0.40 0.41 0 0.90 0.90 0

T=10
Min -2.66 -2.20 -3.34 -2.22 -3.61 -3.54 -2.16 -3.38 -3.84
Max 2.69 2.71 1.55 2.69 1.27 1.27 2.15 1.16 1.06

Mean 0.04 -0.03 -0.98 -0.05 -1.17 -1.21 0.04 -1.18 -1.21

Std 0.72 0.73 0.70 0.71 0.70 0.70 0.71 0.71 0.72
( )nxc,ρ 0.31 0 0.30 0.30 0.29 0 0.85 0.84 0
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Table 2: Simulation results: Estimated coefficients for DGP 1 (correlated individual effects)

Bias in % Root MSE x 10 Median abs. err. x 10

nββ χ / nd ββ / nββ χ / nd ββ /
nββ χ / nd ββ /

N = 100 T = 5,  1000 replications

pooled probit -27.6 -21.8 3.97 1.54 2.51 1.13
conditional logit -9.8 -1.9 4.73 1.45 2.98 0.95
pooled instruments -9.2 -0.9 3.46 1.38 2.13 0.90
consistent. instr. -10.2 0.5 3.43 1.36 2.08 0.88
trimmed sample 1 -14.4 1.0 3.83 1.39 2.26 0.92
trimmed sample 2 -15.0 1.1 3.93 1.40 2.28 0.91
N = 400 T = 5, 1000 replications

pooled probit -24.1 -22.3 2.77 1.24 2.29 1.13

conditional logit -4.5 0.4 1.29 0.72 1.29 0.49
pooled instruments -5.4 -0.1 1.67 0.69 1.03 0.47

consistent instruments -6.1 -0.2 1.67 0.68 1.04 0.45
trimmed sample 1 -10.0 0.9 1.98 0.71 1.21 0.46
trimmed sample 2 -10.7 1.0 2.06 0.69 1.28 0.46
N = 1600 T = 5, 1000 replications

pooled probit -22.7 -22.2 2.36 1.14 2.28 1.11
conditional logit -2.0 0.6 1.07 0.37 0.68 0.25
pooled instruments -3.9 0.2 0.88 0.34 0.59 0.24
consistent instruments -4.6 0.1 0.89 0.34 0.60 0.24
trimmed sample 1 -8.3 1.3 1.19 0.35 0.85 0.25
trimmed sample 2 -9.1 1.4 1.27 0.35 0.92 0.25

N = 100 T = 10, 500 replications

pooled probit -19.1 -17.3 2.70 1.19 1.82 0.90
conditional logit -2.9 -1.2 2.34 0.88 1.51 0.59
pooled instruments -5.2 -0.1 2.02 0.89 1.24 0.62
consistent instruments -6.0 -0.1 2.03 0.90 1.25 0.60
trimmed sample 1 -8.2 0.4 2.25 0.91 1.33 0.61
trimmed sample 2 -8.3 0.4 2.25 0.91 1.37 0.64
N = 400 T = 10, 500 replications

pooled probit -18.9 -17.8 2.10 0.97 1.90 0.91
conditional logit -2.0 -0.1 1.14 0.44 0.79 0.29
pooled instruments -4.6 -0.1 1.09 0.44 0.70 0.33
consistent instruments -5.3 -0.1 1.11 0.44 0.73 0.33
trimmed sample 1 -7.4 0.5 1.26 0.46 0.82 0.33
trimmed sample 2 -7.6 0.6 1.28 0.46 0.83 0.33
N = 1600 T = 10, 500 replications

pooled probit -17.9 -17.8 1.85 0.91 1.79 0.89

conditional logit -0.4 0.0 0.61 0.21 0.41 0.15
pooled instruments -3.4 -0.0 0.62 0.23 0.45 0.16

consistent instruments -4.0 0.1 0.66 0.23 0.47 0.16
trimmed sample 1 -6.0 0.7 0.82 0.23 0.61 0.15
trimmed sample 2 -6.2 0.8 0.84 0.23 0.62 0.16

Note: bold: best performance; italic: worst (or worst after pooled probit); grey: better than conditional logit, or same.
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Table 3: Simulation results: Estimated coefficients for DGP 2 (uncorrelated indiv. effects)

Bias in % Root MSE x 10 Median abs. err. x 10

nββ χ / nd ββ / nββ χ / nd ββ /
nββ χ / nd ββ /

N = 100 T = 5,  1000 replications

pooled probit -2.3 0.2 2.73 1.31 1.78 0.85
conditional logit -12.9 1.1 4.83 1.50 2.87 1.00
pooled instruments -1.0 1.0 2.87 1.29 1.88 0.87
consistent instruments -0.9 1.0 2.79 1.28 1.88 0.88
trimmed sample 1 -1.5 -0.2 2.78 1.37 1.77 0.91
trimmed sample 2 -1.5 -0.1 2.86 1.39 1.74 0.93
N = 400 T = 5, 1000 replications

pooled probit -0.5 -0.4 1.25 0.66 0.80 0.44
conditional logit -4.9 0.6 2.18 0.75 1.36 0.49
pooled instruments -0.1 -0.6 1.25 0.64 0.82 0.42
consistent instr. -0.2 -0.5 1.24 0.64 0.81 0.43
trimmed sample 1 -0.2 -0.7 1.30 0.66 0.85 0.43
trimmed sample 2 -0.0 -0.7 1.34 0.68 0.90 0.45
N = 1600 T = 5, 1000 replications

pooled probit -0.4 0.1 0.60 0.33 0.42 0.23
conditional logit -2.6 0.1 1.07 0.37 0.76 0.25
pooled instruments -0.5 -0.0 0.60 0.32 0.38 0.22
consistent. instr. -0.5 -0.0 0.60 0.32 0.38 0.22
trimmed sample 1 -0.5 -0.1 0.63 0.33 0.41 0.23
trimmed sample 2 -0.5 -0.1 0.65 0.34 0.41 0.25

N = 100 T = 10, 500 replications

pooled probit -2.2 -0.1 1.83 0.92 1.20 0.60
conditional logit -3.6 0.6 2.51 0.88 1.57 0.59
pooled instruments -1.4 -0.5 1.78 0.85 1.12 0.57
consistent. instr. -1.5 -0.5 1.77 0.85 1.17 0.57
trimmed sample 1 -1.6 -0.7 1.92 0.87 1.23 0.59
trimmed sample 2 -1.5 -0.9 1.98 0.90 1.18 0.60
N = 400 T = 10, 500 replications

pooled probit -0.1 -0.2 0.90 0.46 0.60 0.32
conditional logit -1.9 -0.5 1.13 0.46 0.77 0.32
pooled instruments -0.2 -0.1 0.84 0.43 0.57 0.29
consistent instr. -0.3 -0.1 0.84 0.43 0.58 0.29
trimmed sample 1 -0.3 -0.1 0.88 0.44 0.61 0.28
trimmed sample 2 -0.5 0.0 0.91 0.44 0.61 0.27
N = 1600 T = 10, 500 replications

pooled probit 0.1 0.1 0.46 0.24 0.34 0.16
conditional logit -0.7 0.4 0.58 0.22 0.40 0.14
pooled instruments 0.1 0.2 0.42 0.22 0.28 0.15
consistent instr. 0.1 0.2 0.42 0.22 0.28 0.15
trimmed sample 1 0.1 0.2 0.44 0.23 0.31 0.15
trimmed sample 2 0.1 0.2 0.45 0.23 0.32 0.16

Note: bold: best performance; italic: worst performance (or worst after pooled probit); grey: better than conditional logit.
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Table 4: Simulation results: Estimated coefficients for DGP 7 (as DGP 1, but nx  AR(1))

Bias in % Root MSE x 10 Med. abs. err. x 10

nββ χ / nd ββ / nββ χ / nd ββ /
nββ χ / nd ββ /

N = 100 T = 5,  1000 replications

pooled probit -48.4 -39.7 6.31 2.13 4.06 1.97
conditional logit -7.9 1.6 10.7 1.76 7.17 1.10
pooled instruments -19.5 2.3 7.29 1.86 5.17 1.18
consistent instruments -31.8 -0.3 6.45 1.71 3.96 1.09
trimmed sample 1 -40.1 -0.0 7.27 1.72 4.53 1.10
trimmed sample 2 -47.0 0.7 7.96 1.74 4.83 1.10
N = 400 T = 5, 1000 replications

pooled probit -42.3 -38.7 4.72 1.97 4.10 1.95
conditional logit -3.5 0.6 4.74 0.89 2.97 0.63
pooled instruments -23.3 1.2 4.21 0.83 2.82 0.56
consistent instruments -28.0 0.6 4.09 0.78 2.52 0.52
trimmed sample 1 -37.8 1.2 5.00 0.79 3.49 0.54
trimmed sample 2 -46.5 1.4 5.89 0.79 4.31 0.54
N = 1600 T = 5, 1000 replications

pooled probit -40.7 -39.0 4.11 1.96 3.86 1.95
conditional logit -5.3 0.2 2.40 0.40 1.58 0.28
pooled instruments -22.7 -0.4 2.87 0.42 2.31 0.29
consistent instruments -24.6 -0.3 2.89 0.40 2.44 0.28
trimmed sample 1 -34.2 0.3 3.82 0.41 3.37 0.28
trimmed sample 2 -43.2 0.4 4.71 0.41 4.28 0.28

N = 100 T = 10, 500 replications

pooled probit -43.7 -37.8 5.22 1.97 4.00 1.92
conditional logit -8.9 0.3 5.24 1.07 3.46 0.74
pooled instruments -22.1 -0.4 4.45 1.06 2.86 0.75
consistent instruments -26.0 -1.2 4.36 1.00 2.49 0.70
trimmed sample 1 -36.2 -0.5 5.30 1.02 3.37 0.71
trimmed sample 2 -43.5 -0.3 6.11 1.02 3.94 0.70
N = 400 T = 10, 500 replications

pooled probit -38.4 -37.8 4.09 1.91 3.75 1.91
conditional logit -5.3 0.8 2.60 0.50 1.69 0.36
pooled instruments -17.9 -0.9 2.73 0.54 1.74 0.36
consistent instruments -18.4 -0.8 2.64 0.52 1.66 0.35
trimmed sample 1 -27.4 0.1 3.43 0.52 2.58 0.35
trimmed sample 2 -34.7 0.3 4.14 0.52 3.41 0.35
N = 1600 T = 10, 500 replications

Pooled probit -36.3 -37.4 3.69 1.87 3.59 1.87
conditional logit -6.6 0.2 1.51 0.25 1.13 0.16
pooled instruments -17.5 -0.0 1.99 0.27 1.76 0.18
consistent instruments -16.8 0.1 1.88 0.26 1.67 0.17
trimmed sample 1 -26.0 1.0 2.77 0.27 2.58 0.17
trimmed sample 2 -33.5 1.2 3.53 0.27 3.36 0.17

Note: bold: best performance; italic: worst performance (or worst after pooled probit); grey: better than conditional logit.
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Table 5: Simulation results: Estimated coefficients for DGP 8 (as DGP 7, but E(Y) = 0.22)

Bias in % Root MSE x 10 Med. abs. err. x 10

nββ χ / nd ββ / nββ χ / nd ββ /
nββ χ / nd ββ /

N = 100 T = 5,  1000 replications

pooled probit -45.4 -38.5 5.58 2.21 4.14 1.19
conditional logit -5.2 4.2 7.27 2.47 3.63 1.39
pooled instruments -72.6 26.3 11.0 3.37 6.28 1.54
consistent instruments -83.1 36.7 10.8 3.25 7.66 1.74
trimmed sample 1 -34.2 18.8 7.99 3.55 3.17 1.41
trimmed sample 2 -30.2 17.9 8.56 3.78 3.00 1.41
N = 400 T = 5, 1000 replications

pooled probit -41.3 -39.4 4.38 2.02 3.99 1.99
conditional logit 5.8 -2.2 2.97 1.01 2.04 0.67
pooled instruments -69.7 19.0 7.80 1.49 6.85 0.94
consistent instruments -77.0 31.0 8.50 1.94 7.39 1.47
trimmed sample 1 -18.7 6.0 3.24 1.12 1.78 0.67
trimmed sample 2 -12.4 2.2 2.73 1.08 1.46 0.68
N = 1600 T = 5, 1000 replications

pooled probit -39.9 -38.7 4.05 1.95 3.95 1.93
conditional logit 6.8 -4.2 1.55 0.54 1.12 0.38
pooled instruments -66.9 19.3 6.91 1.13 6.61 0.93
consistent instruments -71.2 31.0 7.34 1.66 7.02 1.52
trimmed sample 1 -12.7 4.9 1.69 0.58 1.20 0.35
trimmed sample 2 -8.1 1.7 1.29 0.54 0.83 0.35

N = 100 T = 10, 500 replications

pooled probit -40.6 -36.7 4.55 1.94 3.82 1.86
conditional logit 2.5 0.1 3.17 1.20 1.99 0.84
pooled instruments -57.9 18.8 6.99 1.66 5.27 1.11
consistent instruments -68.4 30.0 7.93 2.09 6.39 1.51
trimmed sample 1 -12.6 5.0 3.08 1.33 1.62 0.88
trimmed sample 2 -7.9 2.5 2.82 1.36 1.51 0.90
N = 400 T = 10, 500 replications

pooled probit -38.5 -37.2 3.98 1.88 3.73 1.86
conditional logit 3.9 -1.8 1.61 0.63 1.14 0.47
pooled instruments -56.9 18.1 6.05 1.14 5.50 0.88
consistent instruments -64.6 29.0 6.82 1.62 6.17 1.40
trimmed sample 1 -10.0 3.6 1.71 0.69 0.92 0.42
trimmed sample 2 -6.0 1.0 1.40 0.65 0.71 0.41
N = 1600 T = 10, 500 replications

pooled probit -37.3 -37.6 3.76 1.89 3.72 1.89
conditional logit 6.1 -3.2 0.93 0.34 0.67 0.25
pooled instruments -54.8 17.1 5.58 0.92 5.50 0.85
consistent instruments -61.7 27.7 6.26 1.44 6.09 1.37
trimmed sample 1 -7.0 2.0 0.94 0.35 0.64 0.23
trimmed sample 2 -3.9 -0.5 0.70 0.33 0.44 0.24

Note: bold: best performance; italic: worst performance (or worst after pooled probit); grey: better than conditional logit.
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Table 4: Mean number of individuals retained for conditional logit and trimmed estimators

DGP 1 2 3 4 5 6 7 8 9
N = 100, T = 5

conditional logit 72 72 83 64 72 72 41 41 41
trimmed sample 1 93 94 96 92 50 43 93 60 46
trimmed sample 2 92 91 95 91 42 25 91 55 34
N = 100, T = 10

conditional logit 89 89 96 64 83 89 61 55 55
trimmed sample 1 93 93 97 92 93 43 92 57 43
trimmed sample 2 92 90 96 91 92 23 91 53 31

Bold: largest; italics: smallest.
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Figure 1: Density of nββ χ
ˆ/ˆ  for correlated individual. effects and nx  AR(1), autocorr. 0.9
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Figure 2: Density of nββ χ
ˆ/ˆ , correlated  individual effects, nx  AR(1), autocorr. 0.9, E(Y)=0.22
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Figure 3: Density of nd ββ ˆ/ˆ , correlated  individual effects, nx  AR(1) with autocorrelation. 0.9, and E(Y)=0.22




