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Zusammenfassung

In der vorliegenden Dissertation werden zwei neue räumliche Filterverfahren zur

Artefaktkorrektur in kontinuierlichen Aufzeichnungen des Elektro- (EEG) und

Magnetoenzephalogramms (MEG) dargestellt. Oberstes Ziel der Artefaktkorrektur ist es,

Artefakte komplett zu entfernen ohne relevante Hirnaktivität zu verzerren.

Die beiden vorgestellten räumlichen Filter unterscheiden sich von früheren räumlichen

Filterverfahren wie dem multiplen Quellenansatz zur (Augen-)Artefaktkorrektur (engl.

multiple source eye correction, Abk. MSEC) (Berg und Scherg, 1991a,b, 1994) und der

Unabhängigkeitsanalyse (engl. independent component analysis, Abk. ICA) (z.B. Vigário et

al., 1998; Jung et al., 1998, 2000a,b) in den Techniken, die zur Modellierung von

Artefakt- und Signalraum verwendet werden. Artefakttopographien werden wie in der

MSEC-Methode von einzelnen oder gemittelten Artefaktprototypen abgeleitet. Zur Schätzung

des Signalraums wurden im Rahmen der Doktorarbeit zwei neue Verfahren entwickelt: der

Präselektions-Ansatz (Ille et al., 1997) und die Unabhängigkeitsanalyse mit räumlicher

Nebenbedingung (engl. spatially constrained ICA, Abk. SCICA) (Ille et al., 2001).

Im Präselektions-Ansatz werden die Signaltopographien in einer Eigenvektor-Zerlegung aus

einem artefaktfreien Ausschnitt des zu korrigierenden Datensegments ermittelt. Um den

artefaktfreien Ausschnitt zu erzeugen, werden Signaltopographien aus dem gemessenen

Datensegment ausgeschlossen, die einen Amplitudenschwellwert oder eine maximale

Korrelation mit dem vordefinierten Artefaktraum überschreiten.

In der SCICA-Methode werden die Signaltopographien aus dem gesamten zu korrigierenden

Datensegment geschätzt. SCICA nutzt das Vorwissen über die Artefakttopographien und

kombiniert dieses mit der zeitlich-statistischen Vorgehensweise der ICA, um die

Signaltopographien zu ermitteln. Ausgehend von n Artefakttopographien wird ein

m-kanäliges Datensegment iterativ in m-n weitere Komponenten zerlegt, so dass die Wellen-

formen aller Komponenten unter der räumlichen Nebenbedingung maximal unabhängig sind.

Ein iterativer Algorithmus zur Berechnung der SCICA-Zerlegung wird vorgestellt.

Anwendung von räumlicher Filterung mit Präselektion und SCICA auf EEG-/MEG-Segmente

zeigt, dass beide Verfahren in der Lage sind, Artefakte komplett zu entfernen ohne dabei

relevante Hirnaktivität zu zerstören. Die Qualität der räumlichen Filterung mit Präselektion

hängt jedoch entscheidend von dem gewählten Amplituden- und Korrelationsschwellwert

sowie der Anzahl der verwendeten Eigenvektoren ab. Vorteile der SCICA-Zerlegung

gegenüber der herkömmlichen ICA werden dargestellt.
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1. Introduction

Spontaneous and event-related recordings of the electroencephalogram (EEG) and

magnetoencephalogram (MEG) can be severely contaminated by artifacts such as eye

movements, blinks, cardiac and muscle activity or line noise. During review of spontaneous

EEG and MEG recordings artifacts may seriously interfere with the detection and analysis of

events of interest. In event-related recordings artifact-contaminated trials often have to be

excluded from averaging. This may result in an unacceptable loss of data. Therefore, it has

become a well established procedure to try to correct artifacts in the recorded data. The prime

goal of artifact correction is to remove artifacts completely without distortion of underlying

brain signals of interest. The most promising approaches to artifact correction are spatial

filters based on artifact and brain signal topographies such as the spatial filters calculated

from the multiple source approach for (eye) artifact correction (MSEC) (Berg and Scherg,

1991a,b, 1994) or independent component analysis (ICA) (Vigário et al., 1998; Jung et al.,

1998, 2000a,b). Modeling both artifact and brain signal topographies enables artifact removal

without distortion of relevant brain signals. The two approaches, MSEC and ICA, differ in the

way artifact and brain signal topographies are estimated.

In MSEC, artifact and brain signal topographies are determined separately. In the first step,

artifact topographies are extracted from single or averaged artifacts of the same recording

session using principal component analysis (PCA). In the second step, brain signal

topographies are determined by spatio-temporal dipole source analysis (Scherg and von

Cramon, 1985; Scherg, 1990) in the presence of the predefined artifact topographies. As

MSEC requires a dipole source model it is essentially useful for averaged event-related data.

Surrogate MSEC (Berg and Scherg, 1991b, 1994) presents an extension to continuous (i.e.

spontaneous or event-related) recordings. In surrogate MSEC, a steady unoptimized dipole

source configuration is used to model brain activity. If brain and artifact activity are spatially

correlated, an unoptimized dipole model may, however, not be sufficient to completely

separate brain and artifact activity as will be demonstrated in this thesis.

In ICA, artifact and brain signal topographies are determined together. ICA decomposes the

artifact-contaminated data segment of m channels into an equal number of statistically

independent waveforms and corresponding topographies. In continuous recordings, brain and

artifact activity are in general sufficiently independent to separate into different components.

The independent artifact components have to be detected manually. This can be very

time-consuming (Jung et al., 2000a).



2

In this thesis two spatial filter approaches for artifact correction in continuous EEG and MEG

recordings are presented that in contrast to MSEC do not depend on the existence of a dipole

source model and that unlike ICA require no a posteriori manual identification of artifact

components. Comparable to MSEC, artifact topographies are derived in advance from single

or averaged artifact prototypes. In order to model brain signal topographies two novel

concepts are introduced in this thesis: the preselection approach (Ille et al., 1997) and spatially

constrained ICA (SCICA) (Ille et al., 2001).

In the preselection approach a relevant number of eigenvectors is extracted from an

artifact-free subset of the data segment. The subset is obtained by excluding sample vectors

from the original data segment that exceed a certain amplitude or correlation with the

predefined artifact subspace. The aptness of the estimated brain signal topographies, however,

depends crucially on the subjective choice of parameters such as the correlation threshold that

is hard to estimate automatically.

The new concept of SCICA offers an alternative way of modeling the brain signal

topographies. Unlike preselection, it is based on the whole data segment and is free of

parameters that are hard to determine automatically. SCICA uses the prior knowledge about

artifact topographies and combines this spatial information with the temporal-statistical

strategy of ICA to estimate brain signal topographies. Starting from n a priori determined

artifact topographies, the artifact-contaminated data segment of m channels is decomposed

iteratively into m-n further components until all waveforms are maximally independent under

the spatial constraint. The m-n obtained components represent the brain activity. MSEC and

spatial filtering with preselection, on the contrary, use only the spatial information about

artifacts while ICA applies solely the temporal assumption of statistically independent

waveforms.

In chapter 2 an overview over different types of artifact that may contaminate continuous

EEG and MEG recordings is given. In chapter 3 alternative approaches to artifact correction

are reviewed. In chapter 4 the spatial filter for artifact correction employed in this thesis is

presented. In chapter 5 the preselection approach and its parameters are described. Examples

illustrate the good performance of the method but also demonstrate its dependence on a

suitable choice of the parameter thresholds. In chapter 6 the SCICA approach and an

algorithm to perform the SCICA decomposition are introduced. Using simulated and real

EEG/MEG data it is demonstrated that SCICA can remove artifacts without relevant

distortion of brain activity. Spatial filtering with preselection and SCICA is applied to
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spontaneous EEG/MEG segments in this thesis. Applicability to continuous event-related

recordings is only considered theoretically. The quality of artifact correction is quantified for

simulated data. For real data, artifact correction is evaluated by thorough visual comparison of

the EEG/MEG segment before and after spatial filtering. In chapter 7 advantages of SCICA

over ICA are demonstrated. The thesis closes with a summary and discussion in chapter 8.
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2. Artifacts

Recordings of the EEG and MEG may be heavily contaminated by artifacts. Any electric

potential or magnetic field that is not generated by the electrical activity of the brain is

considered to be an artifact. Artifacts can be of physiological or non-physiological origin.

Physiological artifacts are subject-induced. They are mainly caused by eye movements,

blinks, cardiac, or muscle activity. Non-physiological artifacts are due to the recording device,

electrodes/sensors, or are externally introduced like, for instance, line noise. In sections 2.1

and 2.2 an overview over physiological and non-physiological artifacts is given.

2.1. Physiological artifacts

A variety of physiological artifacts may be found in continuous EEG and MEG recordings. In

the next chapters ocular, cardiac, muscle, respiratory and electro-dermal artifacts are

considered. Not all artifacts are of general concern. The most severe contamination is caused

by blinks and eye movements. Blink and eye movement artifacts are of high amplitude,

interfere with brain activity in the low-frequent delta (1-4 Hz) and theta (4–8 Hz) range and

occur in almost any EEG or MEG recording even during sleep or with eyes closed. Cardiac

and muscle artifacts are of smaller amplitude, with the exception of cardiac artifacts in MEG,

and overlap with brain activity in the high-frequent alpha (8–14 Hz), beta (14–30 Hz) and

gamma (30–70 Hz) range. They are not commonly observed but especially cardiac activity

may be very distracting. Respiratory or electro-dermal artifacts are in general less relevant for

the clinical review of spontaneous EEG/MEG recordings as they are already eliminated when

using a standard low-cutoff filter of 1 Hz (Ebner et al., 1999). In event-related studies, on the

contrary, where DC recording or long time constants may be necessary to register slow

event-related components these types of artifact may be very disturbing.

2.1.1. Ocular artifacts

When the eyes move or blink the potential distribution at the scalp changes. Ocular potentials

are maximum in the electro-oculogram (EOG) recorded bipolarly between electrodes located

near the eyes. Horizontal eye movements are best recorded in the horizontal EOG (HEOG)

with electrodes placed in the left and right outer canthi. Vertical eye movements and blinks

can be observed in the vertical EOG (VEOG) between electrodes above and below one eye.
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Ocular potentials are also recorded at some distance from the eyes and can thus contaminate

EEG and MEG recordings. In Fig. 2.1 a blink and a horizontal eye movement in an EEG

segment are depicted. The ocular artifacts are of high amplitude. The blink has its maximum

(positive) deflection at electrodes Fp1 and Fp2. Note that negativity is shown upwards. The

horizontal eye movement is maximum at right frontal electrodes F8/F10 and minimum at left

frontal electrodes F7/F9. While an eye movement may last several hundreds of milliseconds, a

blink usually does not exceed 200 to 300 ms. The typical topography of a blink and a

horizontal eye movement is shown in the voltage maps of Fig. 2.1.

Fig. 2.1: A blink and a horizontal eye movement in an EEG segment (5 s, unfiltered, reference FCz).
Negativity is shown upwards. The topography of the ocular artifacts at the marked time point in the
boxes is depicted in the voltage maps. Areas of negative potential are hatched in the maps.

The source of the ocular artifacts is the corneo-retinal potential difference. The cornea is

charged positively relative to the retina. To describe its electrical and magnetic properties, the

eye has often been modeled as a current dipole oriented along the optic axis of the eye (e.g.

Barry and Melvill Jones, 1965; Katila et al., 1981; Antervo et al., 1985).

When the eyes move, the orientation of the corneo-retinal dipole changes relative to the

electrodes/sensors. The difference dipole ∆p = p2 – p1 between the corneo-retinal dipole at the

beginning (p1) and the end (p2) of the eye movement represents the measured field pattern

(e.g. Katila et al., 1981). The electrical potential at the scalp in direction of the eye movement

becomes positive, in the opposite direction it is negative. Thus, the horizontal eye movement

in Fig. 2.1 was caused by a movement of the eyes to the right.
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For the generating mechanism of a blink two different hypothesis exist. On the one hand, it

has been assumed that the blink potential is caused by an upward rotation of the eyeball under

closed eyelids (e.g. Hector, 1980) comparable to Bell's phenomenon at peripheral facial palsy

where the eyeball rotates upwards during an attempted eye closure against a paralyzed lid. On

the other hand, Matsuo et al. (1975) have shown that no upward rotation of the eyeball occurs

during a blink and that already a simple downward movement of the upper eyelid over the

cornea changes the electrical potential at the scalp. The eyelids act as a sliding electrode

connecting the forehead to the positively charged anterior pole of the eyeball. The eyelid

hypothesis implying different generator mechanisms for vertical eye movements and blinks is

also supported by the different field patterns that may be observed for vertical saccades and

blinks (e.g. Overton and Shagass, 1969; Picton et al., 2000a,b). In Fig. 2.2 the topography of a

blink and an upward saccade is depicted. The blink potential falls off more rapidly from the

front to the back of the scalp than the potential caused by the saccade. Dipole modeling

yielding dipoles with different locations and orientations for blinks and vertical saccades

further confirms the eyelid hypothesis (Berg and Scherg, 1991a,b; Lins et al., 1993).

Vertical saccades may be accompanied by an additional spike-like artifact called the rider

artifact. The rider artifact has been shown to be generated by the eyelid during upward

movement of the eyeball (Barry and Melvill Jones, 1965; Lins et al., 1993).

Fig. 2.2: Voltage map of a blink
and a vertical upward saccade.
The blink potential falls off more
rapidly from the front to the back
of the scalp.

To avoid ocular artifacts during event-related recordings subjects are often asked to fixate a

point or to refrain from eye movement and blinking. However, this introduces a secondary

task into the experiment that may interfere with the original task (Brunia et al., 1989).
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Moreover, children, psychiatric and neurological patients often cannot adequately follow this

instruction. Therefore, EEGs and MEGs may be recorded with eyes closed. This avoids

blinking but can introduce eye movements under closed eyelids. Eye artifacts also occur

during sleep. They are slow when falling asleep and rapid during the REM (rapid eye

movement) sleep stage.

2.1.2. Cardiac artifacts

Recordings of the EEG or MEG (Jousmäki and Hari, 1996) may be contaminated by cardiac

artifacts. Usually only the sharp R-wave of the cardiac cycle is observed. Sometimes the

T-wave may be visible too. Cardiac artifacts can be identified easily by simultaneously

recording the EKG. In the left panel of Fig. 2.3 an EEG segment superimposed by cardiac

activity is shown together with the simultaneously recorded EKG. The artifacts are of

relatively small amplitude. In the right panel the average of several hundreds of cardiac cycles

having an enhanced signal-to-noise ratio (SNR) is depicted. The R-wave is very prominent at

temporal electrodes. Even a small T-wave is visible in the average. The topography of the

averaged R-wave exhibiting a right temporal negativity and a left temporal positivity is

displayed in the voltage map. In MEG recordings cardiac artifacts in temporal sensors may be

of considerably higher amplitude than spontaneous brain activity.

Fig. 2.3: (Left) Cardiac artifacts in an EEG segment (5 s, 1-70 Hz, average-reference). The
simultaneously recorded EKG is shown at the bottom. (Right) Averaged cardiac artifact (1 s). The
R-wave is most prominent at left and right temporal electrodes. The voltage map depicts the
topography of the averaged R-wave.
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Cardiac artifacts are caused by the electrical activity of the heart. During a cardiac cycle the

potential difference in the heart changes. The location, orientation and magnitude of the heart

dipole varies according to Fig. 2.4. At the R-wave, the magnitude of the dipole is maximum.

Whether cardiac activity is recorded in the EEG/MEG depends on the individual position of

the heart dipole relative to the electrodes/sensors and the particular conductivity properties.

Cardiac contamination is more frequent, for instance, in obese or short-necked subjects

(Cooper et al., 1984).

Fig. 2.4: Change of potential differences during
a cardiac cycle. The magnitude of the heart
dipole reaches its maximum at the R-wave
during the QRS-complex. Adapted from Antoni
(1993).

In MEG even ballistocardiographic artifacts have been reported (Hari, 1993). They are caused

by the movement of magnetic particles, e.g. in clothes, at the rhythm of the heart beat.

2.1.3. Muscle artifacts

When a subject is anxious or not relaxed, high-frequent muscle activity may appear in EEG

and MEG recordings (cf. Fig. 2.5). The artifact is caused by the electrical activity of a

contracted muscle. Each muscle is composed of a great number of 'motor units' which are

activated proportionately to the strength of the muscular contraction. On the one hand,

isolated muscle potentials may occur, for instance rectus lateralis spikes during photo

stimulation. On the other hand, complex high-frequent interference patterns (cf. Fig. 2.5) may

be observed if many motor units fire at high frequencies.

Muscle artifacts are mainly recorded in electrodes or sensors over the contracted muscle.

They may be seen at any recording position, but predominantly occur over temporal regions,
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for instance, if subjects contract their jaws or clench their teeth (Hector, 1980). As a remedy

subjects may be asked to open the mouth (Cooper et al., 1984). Frontal muscle artifacts, for

example, may be caused by frowning. Occipital muscle activity occurs if the subject's head is

badly positioned.

Fig. 2.5: An EEG segment (5 s, 1-70 Hz, referenced to FCz) contaminated by high-frequent muscle
activity at right temporal electrode T8.

2.1.4. Other physiological artifacts

Sometimes EEG or MEG recordings are contaminated by respiratory artifacts. In EEG, the

contamination is caused by the mechanical displacement of an electrode during respiration.

Respiratory artifacts are very frequent in children, especially during hyperventilation (Hector,

1980). The artifact occurs synchronously with respiration, i.e. every 2-6 s for adults and faster

in infants. In MEG recordings, this type of artifact is only observed if magnetic material, e.g.

in clothes, is moved by respiration.

When the skin resistance changes electro-dermal activity may be recorded in the EEG.

Electro-dermal artifacts are very slow waves of high amplitude (Hector, 1980). The skin

resistance is mainly influenced by sweating, but also by instructions or noise.
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2.2. Non-physiological artifacts

Besides subject-induced physiological artifacts a couple of non-physiological artifacts caused,

for instance, by the recording device, electrodes/sensors, or cables may be found in

continuous EEG and MEG recordings. In EEG recordings, the 50 Hz mains frequency may be

introduced as line noise into one or several electrodes (cf. Fig. 2.6). The artifact can be

eliminated with a 50 Hz notch filter unless high-frequency phenomena in the gamma band are

of interest. In some recordings, there may also be high-amplitude electrode artifacts caused,

for example, by the movement of a badly fixed electrode (cf. Fig. 2.7).

Fig. 2.6: 50 Hz line noise at electrode Pz in
an EEG segment (5 s, 1-70 Hz, average-
reference).

Fig. 2.7: An electrode artifact at electrode
O1 in an EEG segment (5 s, 0.1-70 Hz,
reference FCz).

In MEG recordings, environmental artifacts are reduced to some extent by carrying out the

measurement in a magnetically shielded room. Gradiometer coils or compensation coils in

magnetometer systems further diminish artifact contamination. Nevertheless, external

magnetic fields may be a severe problem in MEG recordings. Non-physiological

contamination may also occur inside the shielded room, e.g. by a digital watch (Hari, 1993).

Under suitable recording conditions, however, non-physiological artifacts in EEG and MEG

recordings can be largely avoided.
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3. Existing methods for artifact correction

In the previous chapter different types of artifact that may contaminate spontaneous or

event-related EEG and MEG recordings have been discussed. Using a standard filter setting

of 1-70 Hz for clinical review of spontaneous data (Ebner et al., 1999) some artifacts are

already eliminated. Artifacts such as eye movement, blink, or cardiac activity, however, that

interfere with the frequency range of relevant brain activity cannot be removed simply by

temporal filtering and may be found very distracting during review and analysis of a

spontaneous EEG/MEG. In event-related recordings, artifact-contaminated trials are often

excluded from averaging. This may result in an unacceptable loss of data. Therefore, it has

become a well established procedure to try to correct artifacts in the recorded data. The main

goal of artifact correction is to remove artifacts completely but largely preserve the

topography of the underlying brain signals of interest. In this chapter the major approaches to

artifact correction are presented and evaluated: EOG subtraction, projection method, multiple

source eye correction (MSEC), and independent component analysis (ICA). All methods

except EOG subtraction can be expressed as spatial filters. While the spatial filter in the

projection method is based on artifact topographies only, the spatial filters derived from

MSEC and ICA consider both artifact and brain signal topographies and, thus, enable a

distortion-free separation of artifact and brain activity.

3.1. EOG subtraction

EOG subtraction methods (reviewed e.g. by Jervis et al., 1988 and Brunia et al., 1989) deal

primarily with the removal of ocular artifacts from event-related EEG recordings. For each

EEG channel the proportion of ocular contamination is estimated utilizing one or several

simultaneously recorded EOG derivations as reference channels. In order to yield the

corrected data the EOG signals are scaled by the estimated proportion and subtracted from the

original EEG signals. In the so-called time domain approach the scaling factor is equal for

each frequency as opposed to the frequency domain approach where the scaling function

varies with frequency. In chapter 3.1.1 the correction formulae of the time and frequency

domain approach are contrasted. In chapter 3.1.2 different techniques to estimating the scaling

factors and functions are collected. In 3.1.3 subtracting the EOG itself is addressed. It is

shown that subtracting the EOG may distort brain activity as the EOG is no clean artifact

channel but may contain brain activity as well.
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3.1.1. Time and frequency domain approach

A wealth of EOG subtraction variants has been proposed using either on-line analogous

circuits (e.g. Girton and Kamiya, 1973; Barlow and Rémond, 1981) or off-line correction

formulae in the time or frequency domain (time domain, e.g. Hillyard and Galambos, 1970;

Corby and Kopell, 1972; Verleger et al., 1982; Gratton et al., 1983; Fortgens and de Bruin,

1983; Elbert et al., 1985; Schwind and Dormann, 1986; Semlitsch et al., 1986; Van den

Berg-Lenssen et al., 1989; Croft and Barry, 2000; frequency domain, e.g. Whitton et al.,

1978; Woestenburg et al., 1983; Gasser et al., 1985, 1986). The time domain approach to

EOG subtraction can be summarized in the following correction formula:

)(d)(d)(d EOG,corr, trtt
j

jijii �−=

where )(d EOG, tj  and )(d ti  are the signals measured in the jth EOG channel and in the ith EEG

channel. The scaling factor ijr , also referred to as propagation factor, describes the

relationship between the ith EEG channel and the jth EOG channel, )(dcorr, ti  is the corrected

EEG signal. The frequency domain approach takes into account a frequency-specific

relationship between EOG and EEG. It may be described by the following correction formula:

�−=
j

ii tt )(d)(dcorr, ℱ }{ )(d)(r EOG,
1 ff jij

−

where )(d EOG, fj  is the complex Fourier transform of the jth EOG signal. The generally

complex scaling function )(r fij  (also called transfer function) describes the relationship

between the ith EEG channel and the jth EOG channel for each frequency f. The operator ℱ-1

denotes the inverse Fourier transformation. Thus, in the frequency domain approach each

EOG signal is filtered before subtraction using its individual scaling function.

3.1.2. Scaling factors and functions

In order to estimate the scaling factors/functions different techniques are applied, e.g.

calculation of amplitude ratios (e.g. Hillyard and Galambos, 1970; Corby and Kopell, 1972)

respectively ratios between frequency spectra (Whitton et al., 1978) or linear regression (time

domain, e.g. Verleger et al., 1982; Gratton et al., 1983; frequency domain, e.g. Woestenburg

et al., 1983; Gasser et al., 1985, 1986). Different numbers and types of EOG derivations are

propagated to comprise all directions of eye movements (e.g. Fortgens and de Bruin, 1983;

Elbert et al., 1985; Jervis et al., 1988). The scaling factors are either determined in calibration

data sets containing voluntary eye movements and a negligible portion of brain activity only
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(e.g. Hillyard and Galambos, 1970; Fortgens and de Bruin, 1983) or are estimated directly in

the experiment to bypass possible differences between voluntary and involuntary eye

movements (e.g. Verleger et al., 1982; Gratton et al., 1983). Calculating the scaling factor in

the experiment entails the necessity to consider brain activity in EEG or EOG (e.g. Gratton et

al., 1983; Elbert et al., 1985; Gasser et al., 1985, 1986; Schwind and Dormann, 1986) in order

to minimize errors in the scaling factor estimates. Brain activity is taken into account, e.g. by

incorporating the average of selected artifact-free trials as a further regressor in the multiple

regression model (Schwind and Dormann, 1986) or by correcting the scaling function for

coherent brain activity in the EOG (Gasser et al., 1985). Coherent brain activity is estimated

from selected artifact-free trials too. These approaches are only approximate as they do not

attempt to model brain activity that actually underlies an individual trial. Moreover, they

depend on recognizing artifact-free epochs of brain activity in the recorded data.

Low-frequent brain activity in EOG channels, for instance, that is hardly distinguishable from

ocular artifacts, will therefore most probably not be taken into account.

3.1.3. Subtracting the EOG

However, the major problem of EOG subtraction arises during subtraction itself. On the one

hand, subtraction significantly reduces the ocular artifacts up to small residuals (e.g. Berg,

1986; Iacono and O'Toole, 1987; Lins et al., 1993). On the other hand, subtraction can distort

the topography of relevant brain signals if the subtracted EOG is not free of brain activity

(e.g. Berg, 1986; Brunia et al., 1989; Berg and Scherg, 1994; Jung et al., 2000b). To partially

avoid distortion, the EOG signals may be filtered with a low pass of 8 Hz before subtraction

(Whitton et al., 1978; Jervis et al., 1988). Yet, this will not remove slow brain waves from the

EOG. Theoretically, filtering the EOG with an individual scaling function corrected for

coherent brain activity (Gasser et al., 1985) is an adequate approach. Practically, the problem

of estimating coherent brain activity remains unsolved by EOG subtraction techniques.

3.2. Projection method

The projection method was originally developed by Ilmoniemi (1992) and was applied to

artifact correction, e.g. by Huotilainen et al. (1995). In chapter 3.2.1 the method is described

and evaluated. It is shown that artifact correction that is based on artifact topographies only

results in a distortion of brain signal topographies. In chapter 3.2.2 the projection method is

summarized in a spatial filter operator.
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3.2.1. Projection method for artifact correction

In the projection method for each topography m
i ℜ∈d  of the original data segment

( ) tm
t

×ℜ∈= ddD ,,1 �  the portion in direction of a predefined and normalized artifact

topography mℜ∈a  is projected out according to

( )DaaDD T
corr −=

leaving the corrected data matrix ( ) tm
t

×ℜ∈= corr,1corr,corr ,, ddD �  of m channels and t time

points. The unit vector a models the artifact. In Huotilainen et al. (1995) a is obtained from a

measured artifact epoch as the normalized topography m
t ℜ∈
max,ad  at the time point tmax of

maximum amplitude:

max

max

,

,

t

t

a

a

d
d

a = .

Note that DaT  in the first equation yields the time course of the predefined artifact

topography and that ( )Daa T  is the estimated artifact activity ( ) tm
t

×ℜ∈= a,1a,a
ˆ,,ˆˆ ddD �  at each

electrode/sensor.

In panel (A) of Fig. 3.1 the projection method is applied to a topography 2ℜ∈id . The

estimated artifact topography ia,d̂ , i.e. the portion of di in direction of a, is obtained by

orthogonal projection of di onto a. Subtracting ia,d̂  from di yields the corrected topography

dcorr,i that is perpendicular to a. In panels (B)-(D) it is illustrated why brain signal

topographies are generally distorted by the projection method. In panel (B) it is first assumed

that the measured vector di is the sum of artifact topography da and an orthogonal brain signal

vector ds. Only in this particular case ia,d̂  and dcorr,i are exact estimates of da and ds. If da and

ds are not orthogonal as in panel (C), the artifact is still completely eliminated but as the brain

signal topography is not taken into account the portion of ds in direction of a is mistaken for

artifact activity and ia,d̂  is overestimated. Consequently, dcorr,i is a distorted estimate of ds.

The distortion is even worse in panel (D) where di is equal to ds and no artifact at all is

present. The distortion increases as the angle between ds and a decreases. The depicted angle

of distortion is equal to 90° - ∢(a, ds). Distortion can only be avoided if brain signal

topographies are taken into account by artifact correction.
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Fig. 3.1: Applying the projection method to the measured vector di. (A) The vector ia,d̂ , i.e. the
portion of di in direction of the predefined normalized artifact topography a, is subtracted from di
leaving the corrected vector dcorr,i. (B)-(D) Only if di is the sum of artifact topography da and an
orthogonal signal topography ds as shown in panel (B), ia,d̂  and dcorr,i are correct estimates of da and
ds. Otherwise the subtracted artifact portion is overestimated resulting in a distortion of ds. The angle
of distortion is depicted in panels (C) and (D).

3.2.2. Spatial filter

The projection method can be summarized in the spatial filter operator mm×ℜ∈F
TaaIF −=

with identity matrix mm×ℜ∈I  or in

†AAIF −=

in the more general case of n artifact topographies ( ) nm
n

×ℜ∈= aaA ,,1 � . As is apparent

from the first equation in the previous subsection the corrected data Dcorr are obtained by

premultiplying the spatial filter F to the data matrix D. The spatial filter completely removes

the modeled artifacts, but equally suppresses any spatially correlated brain activity as it is

composed of artifact topographies only and does not take into account brain activity.

3.3. Multiple source eye correction (MSEC)

Multiple source eye correction (MSEC) (Berg and Scherg, 1991a,b, 1994) was introduced for

the removal of ocular artifacts from averaged event-related data, but can be easily extended to

the correction of other types of artifact. MSEC is based on the spatio-temporal multiple source

approach (Scherg and von Cramon, 1985; Scherg, 1990). Therefore, in chapter 3.3.1 the

multiple source approach is briefly introduced. In 3.3.2 artifact correction by MSEC is

described. It is assessed that artifact correction taking into account artifact and brain activity

preserves brain activity that is otherwise distorted. In chapter 3.3.3 a variant of MSEC called

surrogate MSEC is presented. Surrogate MSEC refrains from exact modeling of brain activity
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and is, thus, in principle also applicable to continuous data. Using a segment of continuous

data it is illustrated, however, that approximate modeling of brain activity may not be

sufficient if artifact and brain activity are spatially correlated.

Artifact correction by MSEC can also be expressed as a spatial filter. In contrast to the

projection method the spatial filter is based on artifact and brain signal topographies. The

spatial filter operator is derived in chapter 4. It is also used in the novel approaches to artifact

correction introduced in this thesis.

3.3.1. Multiple source approach

In the multiple source approach (Scherg and von Cramon, 1985; Scherg, 1990; Mosher et al.,

1992) the activity tm×ℜ∈D  measured in the EEG or MEG at m electrodes/sensors and t time

points is assumed to be generated by superposition of l* unknown dipole sources:
** SCD = .

The column vector m
i ℜ∈*c  of ( ) **

*
*
1

* ,, lm
l

×ℜ∈= ccC �  represents the location and orientation

of the ith dipole source. The matrix ( ) tl
l

×ℜ∈= *T*
*

*
1

* ,, ssS �  contains the source waveforms

with t
i ℜ∈*s  corresponding to dipole topography *

ic . Dipole source modeling of data matrix

tm×ℜ∈D , e.g. a segment of averaged evoked data, can be summarized in:

min
2

=− CSD

where ( ) lm
l

×ℜ∈= ccC ,,1 �  is a matrix of l estimated dipole topographies ( ml ≤ ). Each

topography m
i ℜ∈c  is generated by a dipole with a particular orientation and location in the

underlying head model. The matrix tl×ℜ∈S  containing the l corresponding source waveforms

is determined according to

DCS †=

where lxmℜ∈†C  is the Moore-Penrose pseudo-inverse of C. Starting from an initial solution

dipole orientations and locations are adjusted iteratively using the simplex algorithm for

non-linear optimization (Nelder and Mead, 1965) until the best least-square fit to the data is

achieved. The optimization may be subject to further constraints such as left-right symmetry

of dipoles. Alternatively, source locations may be derived from the individual anatomy or

other imaging techniques, e.g. functional magnetic resonance imaging (fMRI) (Scherg et al.,

1999).
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3.3.2. Multiple source approach for (eye) artifact correction (MSEC)

The multiple source approach for (eye) artifact correction (MSEC) is a special case of the

multiple source approach. In MSEC, the data segment tm×ℜ∈D  is regarded as the sum of

artifact activity tm×ℜ∈AD  and brain activity tm×ℜ∈BD :

*B
*

*A
*

BA SBSADDD +=+=

where AD  is assumed to be generated by the superposition of n* unknown artifact sources

and BD  is postulated to be the linear sum of p* unknown brain dipole sources. The columns

of ** nm×ℜ∈A  and ** pm×ℜ∈B  represent the topographies of the artifact and brain sources.

The rows of tn ×ℜ∈ *
*AS  and tp ×ℜ∈ *

*BS  contain the corresponding waveforms.

First, a set of not necessarily dipolar topographies nm×ℜ∈A  is determined yielding an

estimate of the artifact subspace )(range *A . Ocular artifact topographies, for instance, may

be extracted from calibration data with eye movements and blinks using PCA. Ocular artifacts

are not modeled by dipoles located somewhere in both eyes as the head model is usually not

accurate enough around the eyes. Estimating the artifact subspace is further addressed in

chapter 4.2.

Dipole source modeling of brain activity is performed in the presence of the predefined

artifact topographies nm×ℜ∈A :

min
2BA =−− BSASD

where pm×ℜ∈B  is the matrix of p dipolar brain signal topographies ( mpn ≤+ ). The

matrices SA and SB contain the corresponding waveforms:

( ) DBA
S
S †

B

A =��
�

�
��
�

�

where ( )†BA  denotes the Moore-Penrose pseudo-inverse of the compound matrix

( ) )( pnm +×ℜ∈BA . The predefined artifact topographies remain unchanged during optimization

of the brain signal dipoles. Only their waveforms vary depending on the current brain signal

topographies. Complete separation of artifact and brain signal activity is achieved if the

estimated artifact signals are free of brain activity and vice versa. The corrected data matrix
tm×ℜ∈corrD  may finally be obtained by subtracting the estimated artifact activity at the

electrodes/sensors ( AAS ) from the original data matrix:

Acorr ASDD −= .
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The MSEC approach is applicable to averaged event-related recordings or signals of sufficient

SNR, for example epileptiform spikes (Ebersole, 1991), provided that a dipole source model

exists for the data under investigation. Comparison of MSEC with traditional correction by

EOG subtraction has confirmed that incorporating brain signal dipoles preserves brain activity

especially in frontal channels that is otherwise removed (Berg and Scherg, 1991b, 1994).

3.3.3. Surrogate MSEC

For continuous data in the absence of suitable optimized dipole source models, Berg and

Scherg (1991b, 1994) have proposed the surrogate MSEC. In surrogate MSEC, a set of dipole

sources is placed at strategic positions of the brain. These dipoles are not optimized and are

expected to explain some or most of the brain activity. By definition, surrogate MSEC is less

effective than the optimizing variant of MSEC as the estimate of brain activity is only

approximate. However, for averaged event-related data surrogate MSEC has been shown to

still perform better than traditional correction by EOG subtraction (Berg and Scherg, 1994). In

Fig. 3.2 surrogate MSEC is applied to continuous EEG data. The example illustrates that an

unoptimized dipole model may not model spatially correlated brain and artifact activity

adequately. The original EEG segment (5 s, 1-70 Hz, referenced to the average of F3 and F4)

shown in the left panel contains a blink in the 1st second and an oblique eye movement in the

2nd second followed by rhythmic brain activity. Brain and artifact activity occur in similar

channels (e.g. C3, P3, P4, O1, O2, P7, Pz, P9) suggesting their correlation. In the right panel

the surrogate MSEC model is displayed. Sources 1-4 are the unoptimized compensation

sources used to explain brain activity. They are so-called regional sources consisting of 3

orthogonal dipoles at the same location. Therefore, for each regional source an overplot of

three waveforms is displayed. The position of the compensation sources was adopted from

Berg and Scherg (1991b, 1994). Sources 5 and 6 model artifact activity. Their topographies

are derived from a PCA over the first two seconds of the original data segment containing

mainly artifact activity. Component 5 explains 84 %, component 6 still 9 % of the variance.

For display in the head schemes the PCA topographies are represented by their best-fit dipoles

yielding a center of gravity. Using sources 1-5 a considerable amount of artifact still projects

onto brain sources 1 and 4. If this model was applied, artifact correction would be incomplete.

Adding artifact component 6 all brain signal waveforms are free of artifact activity.

Component 6, however, represents a considerable amount of brain activity. Applying the

latter model would distort correlated brain activity.
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Fig. 3.2: Applying surrogate MSEC to a continuous EEG segment. (Left) Original EEG segment (5 s,
1-70 Hz, reference: average of F3/F4) with spatially correlated artifact and brain signal activity.
(Right) The surrogate MSEC model. Regional sources 1-4 are placed at strategic positions in the brain.
They are supposed to compensate for brain activity. PCA topographies 5 and 6 model artifact activity.
PCA has been calculated over the first two seconds of the original segment. Either model (sources
1-5/1-6) results in an incomplete separation of artifact and brain signal activity.

3.4. Independent component analysis (ICA)

Most recently ICA has been suggested and successfully employed for artifact correction

(Makeig et al., 1996; Vigário, 1997; Vigário et al., 1998; Jung et al., 1998, 2000a,b). ICA

decomposes a data segment of m channels into an equal number of topographies and

statistically independent waveforms. The independent components are achieved by optimizing

suitable contrast (objective) functions. In chapter 3.4.1 the problem of ICA is defined. In 3.4.2

the relation of ICA to PCA is discussed. The term statistical independence is illustrated in

section 3.4.3 and distinguished from the condition of uncorrelatedness that plays a key role in

PCA. In 3.4.4 some important contrast functions are presented. Their close relationship is

pointed out. Optimization of the contrast functions is treated in chapter 3.4.5 focusing on the

extended infomax (Lee et al., 1999) and JADE algorithms (Cardoso and Souloumiac, 1993)

that will be employed for comparison with the new SCICA algorithm in chapter 7. Extended

infomax is also referred to as extended ICA in the literature. JADE stands for joint

approximate diagonalization of eigenmatrices. In chapter 3.4.6 application of ICA to artifact
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correction is summarized. It is assessed that manual identification of independent components

representing artifact activity can be time-consuming especially if an artifact is spread over

different independent components. Artifact correction by ICA can be expressed by the same

spatial filter operator as MSEC. The main difference between both approaches is how artifact

and brain signal topographies are estimated. The spatial filter operator itself that will be

further employed in this thesis is derived in chapter 4. Finally, in the Appendix in chapter

3.4.7 the terms kurtosis and cumulants referred to in the text are defined. Further overviews of

ICA may be found, for instance, in Cardoso (1998), Hyvärinen (1999), or Hyvärinen and Oja

(2000).

3.4.1. Definition of ICA

The basic assumption of linear ICA is that the observed data segment
tm

m
×ℜ∈= T

1 ),,( ddD �  of m channels and t time points is the weighted sum of m statistically

independent waveforms ( ) tm
m

×ℜ∈= T**
1

* ,, ssS � :

** SCD =

where mm×ℜ∈*C  denotes the unknown mixing matrix that is supposed to have full column

rank. The ith column vector of *C  describes the topography of the ith waveform *
is . Each of

the t samples of the column vector *
is  is assumed to be an independent realization of the

random variable *
is  distributed with probability density function (pdf) pi( *

is ). The vectors *
is

are expected to have zero mean, i.e. E{ *
is }=0. Centered vectors *

is  can be easily achieved by

subtracting the mean im  from each observed waveform, i.e. E{di}=0. In the rest of chapter

3.4 when talking about the (observed) data segment D it is assumed that E{di}=0.

The problem of ICA is to find a linear transformation or unmixing matrix mm×ℜ∈W  so that

the corresponding waveforms

DWS =

are an estimate of *S . In order to solve the problem ICA uses information on the distribution

of the unknown independent waveforms. The information is either a priori available or is

estimated from the data. Comon (1994) has shown that it is possible to extract the

independent waveforms from the received mixtures if at most one of the independent

waveforms is normally distributed.
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Note that the initially subtracted mean can easily be considered after estimating the unmixing

matrix by adding MW  back to the centered estimate S with ( ) tm
t

×ℜ∈= mmM ,,1 �  and

( )T
1 ,, mi mm �=m for i=1...t.

3.4.2. Relation to PCA

In this chapter the relation between ICA and PCA is established. Both, ICA and PCA, are

linear transformation techniques. PCA decomposes the observed data segment tm×ℜ∈D  into

)(rank D=r  topographies rm×ℜ∈C  and waveforms ( ) tr
r

×ℜ∈= T
1 ,, ssS � :

SCD = .

The columns of the topography matrix C  are equal to the eigenvectors of TDD . Thus, they

are orthonormal, i.e.

ICC =T

in contrast to ICA where the independent topographies C are usually not orthogonal. The

basic waveforms is  are decorrelated in time:

jijiji ≠=− for0EEE }{}{}{ T ssss .

Note that the basic waveforms have zero mean as the observed waveforms have been initially

centered. PCA may be calculated as the singular value decomposition (SVD) of D
TVΣUD =

with left singular vectors rm
r

×ℜ∈= ),,( 1 uuU � , singular values rr
rσσ ×ℜ∈= ),,(diag 1 �Σ ,

rσσ ≥≥�1 , right singular vectors rt
r

×ℜ∈= ),,( 1 vvV � , UC =  and TVΣS = . The first

principal component explains the maximum amount of variance in the data. The second

principal component explains the maximum amount of variance in the residual and so on.

PCA, thus, yields a decomposition that is optimal in the least-mean-square sense. Therefore, it

is often used for data reduction by keeping only the first l of the r principal components:

�
=

=
l

i
iiil σ

1

TvuD .

In most cases, however, PCA provides no meaningful transformation of the data, not even

after orthogonal rotation, for instance, of the basic waveforms that preserves their

decorrelation but gives up the orthogonality of the topographies and the optimal

decomposition in the least-mean-square sense. In contrast to PCA, ICA tries to find a

meaningful decomposition by searching not only for decorrelated but for statistically
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independent waveforms. Statistical independence is a much stronger requirement than

decorrelation as will be seen in the next section.

3.4.3. Statistical independence

The random variables s1, s2, ..., sm are statistically independent if their joint probability density

function ),,p( 1 mss �  can be factorized (Papoulis, 1991):

 ∏=
m

iim sss )(p),,p( 1 �

where )(p ii s  denotes the marginal density of si. Statistical independence is illustrated in the

following example adapted from an ICA demo found at http://www.cis.hut.fi/projectes/ica/

icademo. In the left panel of Fig. 3.3 two observed waveforms are depicted that are known to

be the linear mixture of two statistically independent signals. The mixture is statistically

dependent as each waveform carries information that is also contained in the other waveform.

In the right panel the two-dimensional joint pdf of the signals is shown generated by plotting

the amplitude of the bottom signal (x axis) versus the amplitude of the top signal (y axis) at

each time point. Below the x axis and to the left of the y axis the marginal densities of the

bottom and top signal are depicted. They show the frequency of occurrence for each

amplitude value.

In Fig. 3.4 the waveforms of the previous figure are displayed after decorrelation together

with their joint and marginal densities. Despite decorrelation each waveform provides a

considerable amount of information about the other waveform. Consequently, the waveforms

are still statistically dependent.

Finally, in Fig. 3.5 the original independent signals are shown. The waveforms, an impulsive

noise signal and a sinusoid, are clearly separated. According to the definition of statistical

independence the joint density can now be seen to be the product of the marginal densities in

contrast to the two preceding figures.

Comparing the marginal densities in Fig. 3.3 and Fig. 3.5 reveals that the linear mixtures are

more Gaussian than the original independent signals. The same phenomenon is expressed by

the central limit theorem. Thus, in order to derive the independent components ICA has to

maximize the non-normality of the marginal densities. This also explains why at most one

independent signal underlying the mixture may be normally distributed (cf. chapter 3.4.1).

Moreover, the example clearly illustrates that statistical independence is a much stronger

requirement than uncorrelatedness. Only for normally distributed random variables that are

completely defined by their first and second moment as higher moments are zero,
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decorrelation, i.e. a zero second moment, implies statistical independence. For any other

distribution there can still be statistical dependence in spite of decorrelation (cf. Fig. 3.4).

Fig. 3.3: Observed signals and density. (Left) Two observed signals generated by linear mixture of
two statistically independent waveforms. (Right) The two-dimensional joint density of the observed
signals and their respective marginal densities.

Fig. 3.4: Decorrelated signals and density. (Left) The two signals of Fig. 3.3 after decorrelation.
(Right) Their two-dimensional joint density and marginal densities.

Fig. 3.5: Independent signals and density. (Left) The independent signals underlying the observed
signals of Fig. 3.3. (Right) Their two-dimensional joint density and marginal densities.

3.4.4. Contrast functions

ICA is performed by optimizing a suitable contrast function. The contrast function is designed

in such a way that the independent components are achieved when the function reaches its

optimum. There are a couple of different contrast functions based, for instance, on maximum

likelihood (e.g. Pham et al., 1992), the infomax principle (e.g. Nadal and Parga, 1994; Bell

and Sejnowski, 1995), or higher order approximation of mutual information by cumulants
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(e.g. Comon, 1992, 1994; Cardoso and Souloumiac, 1993). In the next sections these

approaches are introduced. It is pointed out that maximum likelihood, infomax and mutual

information are equivalent under certain conditions. The presented maximum likelihood

contrast Lφ  and the cumulant-based contrast o
ICAφ  will appear again in chapter 6 in connection

with the new SCICA algorithm.

Maximum likelihood

In the maximum likelihood approach it is assumed that the m (marginal) pdfs pi(.) of the

unknown independent waveforms are a priori known. With the knowledge of the pdfs it is

possible to specify for any decomposition of the observed signals SCD =  with mm×ℜ∈C

and tm×ℜ∈S  the joint pdf q(.) of the observed signals (Papoulis, 1991):

)(pdet)q( T

1
ji

m

i
ij dwWd ∏

=

=

denoting by ( ) T
1 ,, mwwW �=  the matrix 1−C  and by dj the jth column vector of D, i.e. the

observed vector over all channels at time point j. The likelihood L, finally, is the product of

the joint density q(.) over all samples

∏
=

=
t

j
j

1

)q(L d .

In Pham et al. (1992) the normalized (i.e. divided by t samples) log-likelihood whose gradient

can be easily derived for optimization was introduced as a contrast function Lφ :

( ) ( ) maxdetlnpln1Lln1
1 1

T
L =+== ��

= =

t

j

m

i
jiitt

Wdwφ .

The likelihood can be understood as a measure of the probability of a given decomposition.

Maximizing the likelihood with respect to W using a suitable assumption about the pdfs of

the unknown independent waveforms yields the required independent components. The pdfs

need not be determined with great precision. In fact it is sufficient to estimate whether the pdf

of the ith independent component is super- or sub-Gaussian, i.e. has a positive or negative

kurtosis (for definition of kurtosis refer to Appendix A1 in 3.4.7), and then to use a given

super- or sub-Gaussian pdf instead of the real pdf (Girolami, 1998; Lee et al., 1999).

Infomax

The infomax approach has been derived from the neural network viewpoint (Nadal and Parga,

1994; Bell and Sejnowski, 1995). It is based on maximizing the output entropy (or

information flow) of a single-layer feedforward neural network with non-linear units. The m
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observed signals tm×ℜ∈D  are the input to the neural network. The m output units transform

the input according to )(g TDw ii  where gi(.) is a non-linear function and

( ) mm
m

×ℜ∈= T
1 ,, wwW �  is the unmixing matrix. The infomax contrast function Iφ  can be

summarized in

max))(g,),((gH TT
11I == DwDw mm�φ

with differential entropy H. If the gi are well chosen, maximizing H with respect to W

minimizes the statistical dependence of the output waveforms. Several authors, e.g. Cardoso

(1997), have proven that the infomax principle and the maximum likelihood approach are

equivalent if the non-linearities gi(.) are chosen as the cumulative distribution function of the

pdfs pi(.) used in the maximum likelihood estimate:

(.)p(.)g ii =′ .

In the original infomax approach of Bell and Sejnowski (1995) only non-linearities

corresponding to super-Gaussian pdfs were used. Original infomax is therefore not able to

recover sub-Gaussian signals such as line noise in EEG recordings, for instance. The extended

infomax approach (Girolami, 1998; Lee et al., 1999) overcomes this limitation by switching

as required between a super- and sub-Gaussian pdf. The decision whether a pdf is modeled as

sub- or super-Gaussian is taken in each optimization step, for instance by using a switching

rule (Lee et al., 1999) that guarantees local stability of the unmixing matrix W (Cardoso and

Laheld, 1996; Cardoso, 1998). The switching rule will be detailed as part of the extended

infomax algorithm in chapter 3.4.5.

Cumulant-based contrasts derived from higher order approximation of mutual information

Mutual information is the natural measure of independence. It is always non-negative, and

zero if and only if statistical independence is achieved. Mutual information is defined as the

Kullback-Leibler divergence between a distribution and the closest distribution with

independent entries. Cardoso (1998) has shown that the principles of mutual information and

maximum likelihood are essentially equivalent provided that the pdfs in the maximum

likelihood approach are accurately determined. As mutual information itself is difficult to

estimate some authors have approximated it by polynomial density expansions (e.g. Comon,

1992, 1994) leading to higher order approximations of mutual information by cumulants (for

definition of cumulants, see Appendix A2 in 3.4.7). Simplifying such a higher-order

approximation, Comon (1994) has derived a fourth-order cumulant-based contrast function.

This contrast does not necessarily approximate mutual information but minimizes statistical
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dependence of the m waveforms DWS =  with unmixing matrix ( ) mm
m

×ℜ∈= T
1 ,, wwW �

and observed data matrix tm×ℜ∈D . Statistical dependence is minimized by either minimizing

the sum of the squared fourth-order cross-cumulants of the decomposed waveforms:

[ ] min,,,Cum
1

TTTT2o
ICA == �

≠
=

m

iiiiijkl
ijkl

lkji DwDwDwDwφ

or equivalently by maximizing the sum of the smaller set of squared fourth-order

auto-cumulants with respect to W:

[ ] max,,,Cum
1

TTTT2o
ICA == �

=

m

i
iiii DwDwDwDwφ .

Both contrast functions are orthogonal (as denoted by °) meaning that they are only valid

under the whiteness constraint ISS =}{ TE . Cardoso and Souloumiac (1993) have introduced

another orthogonal contrast function operating on a subset of fourth-order cumulants:

[ ] min,,,Cum
1

TTTT2o
JADE == �

≠
=

m

ijkkijkl
ijkl

lkji DwDwDwDwφ

respectively

[ ] max,,,Cum
1

TTTT2o
JADE == �

=

m

ijk
kkji DwDwDwDwφ .

This particular subset enables the usage of a specific algorithm called JADE that will be

described in the next chapter.

The cumulant-based contrasts differ from other contrasts derived from maximum likelihood

or infomax, for instance, inasmuch as they require no assumption about the pdf of the

independent components but explicitly estimate the higher-order statistics from the

decomposed data by means of cumulants.

3.4.5. ICA optimization algorithms

After choosing an ICA contrast function, a practicable optimization algorithm is needed. The

optimization problem is treated in this chapter. As most ICA algorithms require or perform

some preprocessing before optimization, preprocessing of the observed data is discussed in

the first section. In the second section algorithms for maximum likelihood or infomax

estimation are presented focusing on the extended infomax algorithm (Girolami, 1998; Lee et

al., 1999) and a switching rule used therein (Lee et al. 1999) that guarantees local stability of

the unmixing matrix (Cardoso and Laheld, 1996; Cardoso, 1998). The switching rule is also
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applied in the new SCICA algorithm (cf. chapter 6). The last section is concerned with

optimization of fourth-order cumulant-based algorithms concentrating mainly on the joint

diagonalization of cumulant matrices as performed in the JADE algorithm (Cardoso and

Souloumiac, 1993). There are a couple of further ICA contrast functions and corresponding

optimization algorithms reviewed e.g. by Hyvärinen (1999) that are not treated here as they

are of no concern for the present work.

Preprocessing of the data

As has already been mentioned in the initial chapter 3.4.1 the basic preprocessing step of ICA

is to center the observed data waveforms. In most ICA algorithms the centered data tm×ℜ∈D

are additionally whitened (sphered) before optimization

DWD =

where tm×ℜ∈D  are the whitened signals with IDD =}{ TE . Centered and whitened

waveforms have a unit variance and are decorrelated. The whitening matrix mm×ℜ∈W  may

be obtained from the SVD T1 DD
t

= TUUΣ  setting T2
1

UW
−

Σ= . Whitening D changes the

ICA problem to

DWWDWS == .

Only if mm×ℜ∈W  is a rotation (or orthogonal) matrix, i.e. IWWWW == TT , it is

guaranteed that ISS =}{ TE  which is a prerequisite for orthogonal contrasts such as o
ICAφ  or

o
JADEφ . Thus, under the whiteness constraint ISS =}{ TE  the ICA problem reduces to

whitening the data and finding a suitable orthogonal matrix W. For non-orthogonal contrasts

whitening is, in principle, not necessary but improves convergence of the optimization

algorithm.

Sometimes it may also be useful to reduce the dimension of the centered data D in

combination with whitening by truncating the SVD (PCA) of D at component l < rank(D)

�
=

=
l

i
iiil σ

1

TvuD

and setting tl
lt ×ℜ∈= T

1 ),,( vvD �  which is equivalent to replacing the m observed

waveforms by their first l whitened basic waveforms (Comon, 1994). In the remainder of

chapter 3.4 especially when talking about the fourth-order cumulant-based algorithms it is
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assumed that the data has been preprocessed by centering and whitening. For simplicity of

notation, the preprocessed data are denoted again by D.

Algorithms for maximum likelihood or infomax estimation

Algorithms for maximizing the log-likelihood or infomax contrasts Lφ  and Iφ with respect to

W are usually based on gradient ascent of the contrast function. An update rule for W based

on stochastic gradient ascent was derived e.g. in Bell and Sejnowski (1995):

( ) T1T )( DWDWW ϕ−∝∆ − .

Despite whitening of the input data D this algorithm may converge very slowly. Convergence

can be improved by following the natural (Amari et al., 1996; Amari, 1998) or relative

gradient (Cardoso and Laheld, 1996) which gives the steepest direction of the target function.

Both principles amount to multiplying the right-hand side of the previous learning rule by

WTW yielding:

( ) WWDWDIW ])([ Tϕ−∝∆ .

The entry-wise non-linear function [ ])(,),()( 11 mm ssS ϕϕϕ �=  collects the score functions

related to the m decomposed waveforms DWS =  with ( ) tm
m

×ℜ∈= T
1 ,, ssS � . The score

functions are defined as )(.)p(ln(.) ′−= iiϕ  or equivalently 
(.)p
(.)p(.)

i

i
i

′−=ϕ  where pi is the pdf

of the ith decomposed waveform. The extended infomax algorithm (Girolami, 1998; Lee et al.,

1999) switches between two score functions derived from a super- and sub-Gaussian pdf. A

pair of score functions is, for example (Girolami, 1998; Lee et al., 1999):

�
�
�

−−=
−+=

+=
Gaussiansub:1

Gaussiansuper:1
)tanh()(

i

i
iiiii u

u
u sssϕ

corresponding to the super- and sub-Gaussian pdfs:

( ) ( ) )(sech1,0Np 2
super ss ∝  and ( ) ( )( ))1,1N(1,1N

2
1psub −+=s

where ( )2,N σµ  is the Gaussian density with mean µ  and variance 2σ . The switching rule

proposed in Lee et al. (1999)

( ) ( )( )}{}{}{ tanhEEsechEsign 22
i iiiiu ssss −=

is based on the stability analysis of Cardoso and Laheld (1996). Stability analysis deals with

the local stability of the unmixing matrix. The unmixing matrix is considered to be locally

stable if small perturbations from equilibrium are pulled back to the separating point. A

sufficient stability condition is (Cardoso and Laheld, 1996; Cardoso, 1998)
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( ) 0EE)(E }{}{}{ 2 >−′= iiiiiii ssss ϕϕκ

for all waveforms is  with mi �1= . Substituting the score function into the stability

condition gives (Lee et al., 1999)

[ ] }{}{}{ )tanh(EE)(sech1E 22
iiiiiiii uu sssss +−+=κ

( )}{}{}{ )tanh(EE)(sechE 22
iiiiiu ssss −= .

To ensure 0>iκ  the sign of }{}{}{ )tanh(EE)(sechE 22
iiii ssss −  must be the same as the

sign of ui. This yields exactly the above switching rule.

A Matlab toolbox containing the infomax and extended infomax algorithm is available at

http://www.cnl.salk.edu/~scott/ica.html. The implemented extended infomax algorithm uses a

switching rule based on the sign of the kurtosis estimated for each is . This switching rule,

however, does not necessarily guarantee stability of the unmixing matrix (Cardoso, 1998).

Fourth-order cumulant-based algorithms

The orthogonal fourth-order cumulant-based contrast functions o
ICAφ  and o

JADEφ  allow for the

usage of special optimization techniques. Maximizing the sum of all squared fourth-order

auto-cumulants as in o
ICAφ  may, for instance, be reduced to a pairwise optimization problem

(Comon, 1994). Starting from an initial decomposition of the data SCD =  with
mm

m
×ℜ∈= ),,( 1 ccC �  and tm×ℜ∈S  each pair of topographies ),( ji cc  with j > i is rotated by

a suitable Givens rotation such that the sum of fourth-order auto-cumulants of both

corresponding (rotated) waveforms is maximal with the optimal angle at each step being

available in closed form. This sequence of pairwise rotations is repeated until the rotation

angles are negligibly small. The particular subset of fourth-order cumulants in the JADE

contrast o
JADEφ  may be optimized by joint diagonalization of m2 cumulant matrices

mm
kl

×ℜ∈N :

[ ] max)(diag,,,Cum
1

T

1

2o
JADE === ��

==

m

kl
kl

m

ijk
kkji WNWssssφ

where (.)diag  is the vector built from the diagonal of the matrix argument. The joint

diagonalizer mm×ℜ∈W  is equal to the unmixing matrix with DWS =  and

( ) tm
m

×ℜ∈= T
1 ,, ssS � . The cumulant matrices ( ) )( kl

ijkl n=N  are derived according to

( ) ],,,Cum[ lkji
kl

ijn ssss=  for mijkl �1= . Exploiting the symmetries lkkl NN =  of the
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cumulant matrices (cf. Appendix A2 in 3.4.7) it is sufficient to diagonalize the subset of

m(m+1)/2 cumulant matrices with kl ≥ :

max)(diag
1

T =�
≥
=

m

kl
kl

kl WNW .

Diagonalization may be performed by successive pairwise Givens rotations of the columns of

W with the optimal angle in each step being available in closed form. In the noise-free or

low-noise case the dimension of the problem may be further reduced by approximating the m2

cumulant matrices by their first m eigenmatrices and diagonalizing these m eigenmatrices

(Cardoso and Souloumiac, 1993). Hence the name JADE: joint approximate diagonalization

of eigenmatrices. A Matlab implementation of the JADE algorithm based on diagonalization

of m(m+1)/2 cumulant matrices is available at http://sig.enst.fr/~cardoso/stuff.html.

3.4.6. Artifact correction by ICA

Application of ICA to artifact correction has been initiated by Makeig et al. (1996) and

Vigário (1997) who realized that brain and non-brain activity often separate into different

independent components. Independent components have to be manually classified as artifact

or brain signal components. Artifact correction is, finally, accomplished by multiplying the

matrix of p brain signal topographies pm×ℜ∈B  with their corresponding independent

waveforms tp×ℜ∈BS  (Jung et al., 1998, 2000a,b):

Bcorr BSD = .

Note that this is just the opposite way to MSEC where the matrix of n artifact topographies
nm×ℜ∈A  is multiplied with the corresponding artifact waveforms tn×ℜ∈AS  and is then

subtracted from the original data (see 3.3.2). In principle, however, ICA artifact correction

could also be performed the latter way.

ICA can be applied to the correction of all artifacts whose time courses are independent from

cerebral activity irrespective of their spatial correlation. This includes also muscle artifacts

and even sub-Gaussian line noise provided that the extended infomax algorithm is applied

(Jung et al., 1998, 2000a). The main assumption for artifact and brain activity to separate into

distinct components is their independence. In continuous recordings decomposing 10-s

epochs artifact and cerebral activity are in general sufficiently independent (Jung et al.,

2000a). Artifact and cerebral waveforms in averaged event-related recordings, however, may

be highly dependent. ICA is therefore not suitable for artifact correction in averaged data.

Alternatively, it can be applied to continuous event-related recordings before averaging (Jung
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et al., 2000b). The major drawback of artifact correction by ICA is the a posteriori visual

identification of artifact components that can be very time-consuming (Jung et al., 2000a).

3.4.7. Appendix

A1: Kurtosis

The kurtosis of the pdf p(s) of a random variable s is equal to the normalized fourth-order

auto-cumulant of p(s) (Kendall and Stuart, 1977):

{ }22E
],,,[Cum ]K[

s
sssss =

where the brackets [.] used with K[.] and Cum[.] denote that kurtosis and cumulants are

functions of the distribution of s. Kurtosis can be considered a measure of the

non-Gaussianity of a pdf. For a Gaussian pdf kurtosis is zero. It is typically positive for

unimodal symmetric pdfs that are more sharply peaked than the Gaussian pdf and negative for

unimodal symmetric pdfs that are flatter around the mean than the Gaussian density. Pdfs of

positive (respectively negative) kurtosis are called super-Gaussian (respectively

sub-Gaussian). In Fig. 3.6 a sub- and super-Gaussian pdf are depicted together with the

Gaussian density.

A2: Cumulants

Consider the vector ( ) m
mtt ℜ∈= T

1 ,,�t  and the vector ( ) m
mss ℜ∈= T

1 ,,�s  of m

zero-mean random variables si whose characteristic function is denoted by )(f̂ t :

{ })exp(iE)(f̂ Tst=t .

The kth order cumulant ],,[Cum
1 kii ss �  of the random variables mss ,,1 �  with

mii k �� 1,,1 =  is defined as the coefficient of the term 
kii tt ,,

1
�  in the Taylor series

expansion of the cumulant-generating function k(t) (Kendall and Stuart, 1977):

)(f̂ln)k( tt =  .

The first-, second-, third- and fourth-order cumulants, for example, are given by

}{E][Cum
11 ii ss =

}{E],[Cum
2121 iiii ssss =

}{E],,[Cum
321321 iiiiii ssssss =

}E{}E{}E{}E{}E{}E{}E{],,,[Cum
32414231432143214321 iiiiiiiiiiiiiiiiiiii ssssssssssssssssssss −−−= .
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The auto-cumulants of si of order k=1...4 are obtained by dropping the distinct indices:

}{E][Cum ii ss =

}{E],[Cum 2
iii sss =

}{E],,[Cum 3
iiii ssss =

{ } { }224 E3E],,,[Cum iiiiii ssssss −= .

Any cumulant of at least two random variables is called a cross-cumulant. Note that

auto-cumulants up to order k=3 are equal to the kth moment of si defined as { }k
isE , i.e. the

mean (k=1), variance (k=2) and skewness (k=3) of the distribution of si. The normalized, i.e.

divided by the squared variance, fourth-order auto-cumulant is also referred to as kurtosis (cf.

A1).

In the case of non zero-mean random variables si, ki
s  in the above formulae has to be replaced

by }E{
kk ii ss −  yielding, for instance, for the fourth-order auto-cumulant:

{ } { } { } { } { } { } { }iiiiiiiiiii sssssssssss 4322224 E6EE4EE12E3E],,,[Cum +−+−= .

The cumulants are symmetric in their arguments, i.e. ],,[Cum],,[Cum
11 kjjk ssss �� =

where ),,( 1 kjj �  is a permutation of ),,1( k� . This property is exploited in the JADE

algorithm (chapter 3.4.5) in order to reduce the number of cumulant matrices from m2 to

m(m+1)/2. Further properties of cumulants may be found in Kendall and Stuart (1977).

Fig. 3.6: The super-Gaussian density
function (kurtosis>0) is more sharply
peaked than the Gaussian density function
(kurtosis=0). The sub-Gaussian density
(kurtosis<0) is flatter around the mean
than the Gaussian density.



4. Spatial filter for artifact correction

In chapter 4 the spatial filter for artifact correction used in this thesis is described in detail

starting in section 4.1 with the basic model underlying artifact correction. The spatial filter is

based on artifact and brain signal topographies to enable a distortion-free separation of artifact

and cerebral activity. It differs from earlier approaches such as MSEC or ICA that have been

described in the previous chapter in the way artifact and brain signal topographies are

estimated. Comparable to MSEC, artifact topographies are derived from single or averaged

artifact prototypes. The calculation of artifact topographies is described in section 4.2. In

order to estimate brain signal topographies two new approaches are introduced in this thesis:

the preselection approach and SCICA. Section 4.3 points out their basic ideas. The new

approaches are described in detail in chapters 5 and 6. The spatial filter operator itself is

introduced in section 4.4 in compact mathematical formulation. The same operator may be

used with artifact and brain signal topographies determined by MSEC and ICA.

4.1. Basic model

The artifact-contaminated activity tm×ℜ∈D  measured in the EEG or MEG at m

electrodes/sensors and t time points is assumed to be the weighted sum of n* unknown artifact

signals ( ) tn
n

×ℜ∈= *T
**,A1*,A*A ,, ssS �  and p* unknown brain signals

( ) tp
p

×ℜ∈= *T
**,B1*,B*B ,, ssS � :

*B
*

*A
* SBSAD +=

where ** nm×ℜ∈A  and ** pm×ℜ∈B  are the unknown mixing matrices. The ith column vector of
*A  ( *B ) describes the topography of the ith waveform i*,As  ( i*,Bs ). Contributions to D of

artifact and cerebral origin can be separated by estimating two sets of topographies nm×ℜ∈A

and pm×ℜ∈B  with n=)(rank A , p=)(rank B  and mpn ≤+  such that )(range A  is an

estimate of )(range *A  and )(range B  is an estimate of )(range *B .

First the artifact subspace )(range A  is modeled using prior knowledge about artifacts that is

not necessarily derived from D. Each modeled artifact topography belongs to a basic artifact

category. The spatial distribution of the artifacts is assumed to be nearly constant throughout

the recording. Based on the predefined artifact subspace the brain signal subspace )(range B

of the current data segment D is estimated. For that purpose it is further assumed in SCICA
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that the waveforms ( ) tn
n

×ℜ∈= T
,A1,AA ,, ssS �  and ( ) tp

p
×ℜ∈= T

,B1,BB ,, ssS �  corresponding

to A and B with

( ) DBA
S
S †

B

A =��
�

�
��
�

�

are maximally independent where ( )†BA  denotes the Moore-Penrose pseudo-inverse of the

compound matrix ( ) )( pnm +×ℜ∈BA . Comparable to ICA (cf. chapter 3.4.1) it is assessed that

each of the t samples of the decomposed signals i,As  and i,Bs  is an independent realization of

the random variable is ,A , is ,B  distributed with pdf )(p ,A,A ii s , )(p ,B,B ii s .

4.2. Modeling the artifact subspace

Modeling the artifact subspace may be accomplished by calculating the eigenvectors (PCA

topographies) of the moment matrix of suitable artifact prototypes. For eye artifacts,

eigenvectors can be determined on individual calibration data sets containing blinks,

horizontal and vertical eye movements. Oblique eye movements do not have to be modeled

explicitly as they are inherently expressed as linear combinations of horizontal and vertical

eye movements. For cardiac artifacts, eigenvectors are best derived from the average of

several hundreds of cardiac cycles having an enhanced SNR compared to a single cardiac

artifact. In general it is sufficient to describe ocular artifacts by the eigenvector with the

maximum eigenvalue. Cardiac artifacts may have to be modeled by more than one

eigenvector if further eigenvalues still explain a significant amount of the total variance. The

n usually non-orthogonal artifact topographies (eigenvectors) are summarized in

( ) nm
n

×ℜ∈= aaA ,,1 � .

Linear independence of the ia , i.e. n=)(rank A , is guaranteed by adding only artifact

topographies to A that cannot be expressed as a linear combination of the existing column

vectors of A. The artifact subspace has to be determined only once for a recording session.

Note that )(range *A  may be embedded into )(range A , for instance if a data segment contains

an oblique eye movement that is modeled as linear combination of a horizontal and vertical

eye movement topography or if A encloses topographies that are not part of *A .
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4.3. Modeling the signal subspace

The brain signal subspace is determined separately for each data segment to be corrected. In

order to model the brain signal subspace the new preselection approach and the novel concept

of SCICA are introduced.

In the preselection approach, modeling the brain signal subspace consists of extracting a

relevant number p of eigenvectors (PCA topographies) from an artifact-free subset of the data

segment. The subset is obtained by excluding sample vectors from the original data segment

that exceed a certain amplitude or correlation with the artifact subspace. The preselection

approach is described in detail in chapter 5.

In the SCICA approach, the brain signal subspace is estimated from the whole data segment.

SCICA utilizes the prior knowledge about artifact topographies and combines this with the

temporal-statistical strategy of ICA to estimate brain signal topographies. Starting from the n

predefined artifact topographies, the artifact-contaminated data segment is decomposed

iteratively into p further components until all waveforms are maximally independent under

the spatial constraint. The additionally obtained components represent an estimate of cerebral

activity. The new SCICA decomposition is described in detail in chapter 6.

The  p linearly independent brain signal topographies are summarized in

( ) pm
p

×ℜ∈= bbB ,,1 � .

In the preselection approach the ib  are orthonormal.

4.4. Spatial filter

Once n artifact and p signal topographies are determined, a matrix C of both sets of

topographies is composed:

( ) ( ) lm
pn

×ℜ∈== bbaaBAC ,,,,, 11 ��

with lpn =+  and inverted calculating the Moore-Penrose pseudo-inverse

( ) lxm
pn ℜ∈= T 

11
† ',,',',,' bbaaC �� .

Premultiplying the spatial filter

( ) mn
n

×ℜ∈= T 
11 ',,' aaF �

to the EEG/MEG data matrix D yields the waveforms corresponding to the artifact

topographies.
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The artifact-free data segment is determined by premultiplying the spatial filter

( )( ) mm
nn

×ℜ∈−= T 
112 ',,',, aaaaIF ��

to the EEG/MEG data matrix D with identity matrix mm×ℜ∈I . Applying the spatial filter F2

is equivalent to subtracting the reconstructed artifact activity at the electrodes/sensors from

the artifact-contaminated data D. In principle, it is also possible to reconstruct the artifact-free

brain activity directly at each electrode/sensor using the spatial filter

( )( ) mm
pp

×ℜ∈= T 
113 ',,',, bbbbF �� .

This approach employed e.g. with ICA (Jung et al., 1998, 2000a,b) is only advisable if brain

activity is completely represented by the brain signal topographies. In the preselection

approach, for instance, which involves reduction of the data to a subset and further

approximation of the subset by p relevant eigenvectors, brain activity may be sufficiently

modeled to guarantee distortion-free separation from artifact activity but not exhaustively to

justify application of F3. The same reasoning applies if the dimension of data matrix D is

reduced before estimating the brain signal topographies using truncated SVD, for instance. In

these cases it is preferable to subtract the reconstructed artifact activity from the original data

as it is modeled more precisely. In the rest of this thesis, therefore, only spatial filter F2 is

applied.



5. A new approach: Modeling the signal subspace by preselection

In this chapter the novel preselection approach to model the brain signal subspace is

introduced. The approach and its parameters are described in chapter 5.1. In chapter 5.2 two

examples for spatial filtering with preselection are given. The examples illustrate the good

performance of the method but also demonstrate its dependence on a suitable choice of the

parameter thresholds. In chapter 5.3 the approach is discussed. The spatial filter with

preselection has been published as the spatial component method in Ille et al. (1997).

5.1. Method

In the preselection approach, a relevant number of eigenvectors (PCA topographies) is

determined from the moment matrix of an artifact-free subset of the data segment. The subset

subD  is obtained by excluding sample vectors m
i ℜ∈d  from the original data segment

( ) tm
t

×ℜ∈= ddD ,,1 �  that exceed a certain amplitude at one or more electrodes/sensors or a

specific correlation with the matrix of artifact topographies nm×ℜ∈A  defined in chapter 4.2.

The amplitude and correlation criterion and the number of eigenvectors are discussed in the

following sections.

5.1.1. Amplitude criterion

By means of the amplitude criterion high-amplitude artifacts exceeding the normal amplitude

range of the EEG/MEG are identified, e.g. eye movements or blinks in the EEG or cardiac

activity in the MEG. The amplitude threshold should be set to a value slightly above the

maximum brain signal amplitude. In an adult's EEG the threshold is in general about 100 µV.

In children's EEG a threshold may be more difficult to determine as signal amplitudes are

usually higher and may interfere with the amplitude range of high-amplitude artifacts. In an

MEG system with planar gradiometers the amplitude threshold usually lies between 500 and

800 fT/cm. The indicated thresholds hold for a filter setting of 1-70 Hz.

5.1.2. Correlation criterion

Sample vectors of artifact origin that have not been identified by the amplitude criterion may

be detected by the correlation criterion. The (subspace) correlation can be calculated as the

cosine of the principal angle between the sample vector id  and the matrix of predefined
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artifact topographies A (Golub and van Loan, 1996). Alternatively, it may be derived from the

scalar products of the normalized sample vector and the n vectors o
ja  that form an

orthonormal basis of range(A) according to

�
=

�
�
�

�
�
�
�

�
=

n

j
j

i

i
i

1

2

o
T

corr a
d
d  .

The o
ja  can be determined by QR-decomposition of A (Golub and van Loan, 1996). The

particular correlation threshold depends on the unknown correlation between cerebral and

artifact activity and has to be determined empirically. The higher the correlation, the higher

the threshold has to be set to allow the correlated sample vectors of cerebral origin to enter

subD . With an adequate choice of the correlation threshold correlated brain activity remains

undistorted by spatial filtering.

5.1.3. Number of eigenvectors

The number of eigenvectors that can be derived from the moment matrix of subD  is equal to

rank( subD ). The eigenvectors mainly model cerebral activity but also noise and to some extent

artifact activity that has not been detected by the amplitude and correlation criterion. Noise

and remaining artifact activity are primarily represented by eigenvectors with low

eigenvalues. Therefore only the first p of the eigenvectors sorted from highest to lowest

eigenvalue are used as an estimate of the brain signal subspace in the spatial filter design. The

model of the brain signal subspace containing p orthonormal eigenvectors can be summarized

in

( ) pm
p

×ℜ∈= bbB ,,1 � .

The particular number p of eigenvectors depends on the unknown number of distinguishable

cerebral sources and the unknown amount of artifact in subD . It has to be determined

empirically. If too few eigenvectors are used, brain activity may be distorted. Applying too

many eigenvectors may result in noise enhancement as will be demonstrated in the following

chapter.
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5.2. Examples

The spatial filter described in chapter 4 using preselection to model the brain signal subspace

was implemented in C (Microsoft Visual C++ 6.0). In this section it is applied to two

segments taken from spontaneous EEG recordings. The examples demonstrate the influence

of correlation threshold and number of eigenvectors on artifact correction. In Example 1

(5.2.1) an incorrect correlation threshold results in a severe distortion of brain activity. In

Example 2 (5.2.2) an inadequate number of eigenvectors leads to a considerable noise

enhancement. In both examples, the quality of artifact correction is evaluated by thorough

visual comparison of the original and artifact-corrected EEG segment. Artifacts are

considered to be completely removed if they are reduced to below visibility. Brain activity is

regarded as undistorted if no apparent changes in brain signals can be observed, i.e. if no

spurious activity is added and no relevant brain activity is increased or decreased in amplitude

or even removed.

5.2.1. Example 1: Influence of correlation threshold

In Fig. 5.1 the influence of the correlation threshold on artifact correction is demonstrated. In

the upper left panel the original EEG segment (5 s, 1–70 Hz, referenced to the average of F3

and F4) containing a blink in the 1st second followed by an oblique eye movement in the 2nd

second is depicted. Horizontal and vertical eye movement topographies were defined on

single prototypes of the respective artifact category. In this example it is not necessary to

define an additional blink topography as the blink is adequately modeled by the vertical eye

movement topography. The amplitude threshold was set to 120 µV because the rhythmic

brain activity starting in the 3rd second exhibits a maximum amplitude of about 110 µV. The

correlation threshold was varied between 10 % and  90 % in steps of 20 %. The number of

eigenvectors was set to 3 giving the best results with a suitable correlation threshold. The

subsequent panels of Fig. 5.1 show the data segment after artifact correction with the different

correlation thresholds. Below each artifact-corrected segment the reconstructed horizontal and

vertical eye movements are displayed. Using a correlation threshold of 10 % (cf. upper middle

panel) the rhythmic brain activity is not adequately modeled. Therefore it projects onto the

correlated vertical eye movement topography as can be clearly seen in the 3rd to 5th second of

the corresponding VEOG waveform. As a result spatial filtering not only eliminates the

artifacts but also causes a severe distortion of the rhythmic brain activity. While brain activity

is reduced erroneously in some traces, e.g. P7, Pz or P9, it is added into other channels such
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as Fp1, Fp2 or F8. With higher correlation thresholds (30 %, 50 %) the distortion gradually

decreases (cf. upper right and lower left panel). Using a correlation threshold of 70 % or 90 %

the brain activity seems to be modeled adequately. No more distortion is observable. The

artifact activity, on the contrary, is reduced to below visibility for every applied correlation

threshold. The same EEG segment has already been decomposed by surrogate MSEC in

Fig. 3.2. Surrogate MSEC, however, could not completely separate artifact and brain activity.

5.2.2. Example 2: Influence of number of eigenvectors

In the second example the influence of the number of eigenvectors on artifact correction is

demonstrated. In the upper left panel of Fig. 5.2 the original EEG segment (4 s, 1–70 Hz,

reference FCz) superimposed by a blink and horizontal eye movements in the 2nd and 3rd

second is shown. Blink and horizontal eye movement topographies were defined on single

prototypes of the respective artifact category. The amplitude threshold was set to 70 µV as the

5-Hz epileptic activity does not exceed a maximum amplitude of about 60 µV. The

correlation threshold was established at 50 % giving the best results with a suitable number of

eigenvectors. The number of eigenvectors was varied from 1 to 5 corresponding to an

explained variance of 77.4 % (1 eigenvector), 85.4 % (2 eigenvectors), 90.1 % (3

eigenvectors), 92.8 % (4 eigenvectors) and 94.9 % (5 eigenvectors). The remaining panels of

Fig. 5.2 show the data segment after artifact correction with increasing numbers of

eigenvectors. Below each artifact-corrected segment the reconstructed horizontal eye

movement and blink waveforms are displayed. The artifact activity is eliminated in each

corrected segment. Using 1 eigenvector results in an almost distortion-free artifact correction.

With 2 and 3 eigenvectors only minor changes occur. Two differences are marked by arrows

in the top middle and top right panel. Using 4 or 5 eigenvectors considerably enhances the

noise in the reconstructed HEOG. In the case of 5 eigenvectors noise is also enhanced in the

blink waveform. Accordingly, the muscle activity in traces Fp2 and F8 that can already be

observed in the original EEG increases. Moreover, noise is introduced into channels F9, F7

and F10. The noise enhancement aggravates with an increasing number of eigenvectors.

Correspondingly, the correlation between each artifact topography and the brain signal

subspace rises as can be seen in Table 5.1. Thus, the observed noise enhancement seems to be

caused mainly by artifact contamination of the estimated brain signal subspace.
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Fig. 5.1: Influence of correlation threshold on artifact correction in the preselection approach. Upper
left panel: An EEG segment (5 s, 1-70 Hz) with a blink and an oblique eye movement. Remaining
panels: The EEG segment after artifact correction with different correlation thresholds. The
reconstructed eye artifacts are depicted in separate traces below each segment.
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Fig. 5.2: Influence of the number of eigenvectors on artifact correction in the preselection approach.
Upper left panel: An EEG segment (4 s, 1-70 Hz) contaminated by a blink and horizontal eye
movements. Remaining panels: The EEG segment after artifact correction with different numbers of
eigenvectors. The reconstructed eye artifacts are depicted in separate traces below each segment. The
arrows mark differences in the corrected data using 1 or 2 eigenvectors.
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Table 5.1: Correlation between artifact topographies and the brain signal subspace spanned by
different numbers of eigenvectors (cf. Example 2 in chapter 5.2.2 and Fig. 5.2).

HEOG Blink

1 eigenvector 3.1 % 14.6 %

2 eigenvectors 70.7 % 14.8 %

3 eigenvectors 85.5 % 72.2 %

4 eigenvectors 99.0 % 80.1 %

5 eigenvectors 99.5 % 98.1 %

5.3. Discussion

The preceding examples illustrate that the preselection approach crucially depends on its

parameters. With an adequate choice of amplitude threshold, correlation threshold and

number of eigenvectors artifacts are eliminated completely without apparent distortion of

brain activity. A reasonable amplitude threshold can be found easily in most cases.

Correlation threshold and number of eigenvectors have still to be determined empirically. The

parameters, especially the correlation threshold, are hard to estimate automatically. Incorrect

thresholds may result in severe distortion of brain activity (Fig. 5.1) or considerable noise

enhancement (Fig. 5.2).

Further application of the approach has shown that suitable thresholds generally exist for

spontaneous recordings. Theoretical considerations suggest, however, that this may not be the

case for raw data containing evoked activity of low SNR. Choosing a low number of

eigenvectors in this case event-related signals that correlate with artifact activity may not be

adequately modeled and may therefore be distorted. Choosing a higher number of

eigenvectors artifact activity of low SNR that remained in the 'artifact-free' subset may

contaminate the estimated brain signal subspace and result in noise enhancement. Therefore,

spatial filtering with preselection is appropriate to artifact correction when reviewing

spontaneous EEG/MEG recordings but seems to be less suitable for event-related continuous

data.

Spatial filtering with preselection is very fast. Even for large data matrices, artifact correction

requires at most a few seconds on an Intel Pentium III-800 MHz processor using the current C

implementation. Spatial filtering with preselection can, therefore, be applied while paging

through the segments of an EEG/MEG recording. However, parameters may have to be

adjusted manually from one epoch to another if the correlation of artifact and brain activity
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changes or the number of eigenvectors varies with the state of vigilance. This also limits the

application of the method in combination with automated processes such as averaging or

mean FFT analysis.

In the next chapter an alternative way of modeling the brain signal subspace is introduced. In

contrast to the preselection approach, the novel estimate is based on the whole data segment

and is free of parameters that are hard to determine automatically.



6. A new approach: Modeling the signal subspace by SCICA

In this chapter the new concept of SCICA (Ille et al., 2001) to model the brain signal subspace

is introduced. The method and an iterative algorithm to perform the SCICA decomposition

are described in section 6.1. Some specific algorithmic details are presented separately in the

Appendix in section 6.5. In 6.2 spatial filtering with SCICA is applied to simulated data and

spontaneous EEG and MEG segments. The examples illustrate the good performance of the

approach. In chapter 6.3 the speed of convergence of the presented SCICA algorithm is

analyzed. Finally, in section 6.4 the novel approach is discussed.

6.1. Method

SCICA uses the prior knowledge about artifact topographies and combines this with the

temporal-statistical strategy of ICA to estimate brain signal topographies from the whole data

segment to be corrected. Starting from n a priori determined artifact topographies, the

artifact-contaminated data segment is decomposed iteratively into p further components until

all waveforms are maximally independent under the spatial constraint. The additionally

obtained components represent cerebral activity and unmodeled non-brain activity. In chapter

6.1.1 an iterative algorithm to perform the SCICA decomposition is presented. In chapter

6.1.2 the parameters of the algorithm are discussed in detail.

6.1.1. SCICA algorithm

The basic idea of the SCICA algorithm is summarized in the following steps:

1. Preprocessing. Optionally, reduce the dimension of the data matrix tm×ℜ∈D  from

rank(D) to l where )(rank D<< ln . Discard artifact topographies from the matrix of

predefined artifact topographies nm×ℜ∈A (cf. chapter 4.2) that do not contaminate the

data  tm
l

×ℜ∈D  of reduced dimensionality (to ease notation it is assumed here that none of

the n artifact topographies is discarded from A). Optionally, project the columns of A and

lD  into ( )lDrange  to reduce the number of parameters in the following iteration.

Begin iteration

2. Allow for slight perturbation of the n projected artifact topographies to compensate for

small deviations from predefined artifact topographies.
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3. Find an orthonormal basis of the l-dimensional vector space spanned by the projected data

with the first n basis vectors being equal to the perturbed and orthonormalized artifact

topographies.

4. Determine p=l-n signal topographies as linear combinations of the orthonormal basis

vectors.

5. Determine waveforms corresponding to the current set of artifact and signal topographies.

6. Evaluate independence of waveforms using a suitable ICA contrast function.

7. Repeat steps 2. to 6. with optimized parameters for perturbation and linear combination

until the contrast function is optimized, i.e. all waveforms are maximally independent

under the spatial constraint.

End iteration

8. After convergence, project the l-n signal topographies back.

The decomposition is performed by direct evaluation of an ICA contrast function. Due to the

spatial constraint, elaborate ICA optimization strategies based, for instance, on natural

gradient descent or joint diagonalization of cumulant matrices cannot be transferred simply to

SCICA. The spatial constraint is realized by keeping the predefined artifact topographies

almost unchanged during decomposition except for small perturbations. The brain signal

topographies are determined as linear combinations. During optimization the linear

combination is sought that yields maximally independent waveforms in combination with the

perturbed artifact topographies. During preprocessing, artifact topographies that are irrelevant

for the current decomposition are discarded. In order to make the decomposition

computationally effective it is also useful to reduce the number of SCICA components to be

estimated to the minimum necessary. Below, steps 1-8 of the SCICA algorithm are derived in

detail.

Step 1: Preprocessing

Reducing dimension

A useful preprocessing step limiting the number of SCICA components to the minimum

necessary is to reduce the dimension of D. This can be achieved easily by truncating the SVD

expansion of D at component l:

�
=

=
l

i
iiil σ

1

TvuD
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with left singular vectors (eigenvectors) m
i ℜ∈u , right singular vectors t

i ℜ∈v , singular

values ,1 rσσ ≥≥�  )(rank D=r  and rln << . With a suitable choice of l all relevant

activity of D is still represented in lD . ( )lDRange  is the l-dimensional subspace in mℜ

spanned by artifact and signal topographies. For the remaining preprocessing steps matrix

( ) lm
l

×ℜ∈= uuC ,,1o �  is needed whose columns (left singular vectors!) form an orthonormal

basis of ( )lDrange .

Discarding artifact topographies

Artifact topographies falling below a certain subspace correlation corrmin with oC  (e.g.

corrmin = 0.99) are not considered to contaminate lD  and are therefore discarded from A. The

subspace correlation may be calculated as the cosine of the principal angle between artifact

topography and oC . Alternatively, it may be derived from the scalar products of the (already

normalized) artifact topography ia  and the l column vectors of oC  according to

( )�
=

=
l

j
jiicorr

1

2Tua  .

Projection

In order to reduce the parameters in the following iteration, the columns of A  and D  are

projected into ( )lDrange :

ACA T
o=

�
=

===
l

i
iil σ

1

TT
o

T
o vDCDCD ,

where nl×ℜ∈A  is the matrix of projected artifact topographies and tl×ℜ∈D  is the projected

data matrix. Projecting the columns of D into ( )lDrange  is equivalent to replacing the m

originally observed waveforms by their first l basic waveforms. ( )DRange  is the

l-dimensional vector space lℜ  spanned by the n projected artifact topographies and the l-n

unknown projected signal topographies. In the following iteration we are looking for l-n

projected signal topographies in lℜ .
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Step 2: Iteration: Perturbation of projected artifact topographies

As the SCICA decomposition may be quite sensitive to small deviations from the predefined

artifact topographies, the projected artifact topographies ( ) nl
n

×ℜ∈= aaA ,,1 �  are slightly

perturbed at each iteration. To ensure only small variations, the perturbed artifact

topographies in the kth iteration ( ) ( ) ( )( ) nlk
n

kk ×ℜ∈= aaA ,,1 �  may not exceed a maximum angle

of maxε  with the projected artifact topographies:

≤− maxε ∢ ( )( ) max, ε≤k
ii aa  for ni �1= .

Empirically we have found °= 5.1maxε  to be a suitable upper boundary. The ( )k
ia  are derived

from the ia  using the current set of perturbation parameters that consists of n(l-1) angles (cf.

Appendix A2 in chapter 6.5.2).

In order to find a particular orthonormal basis of lℜ , i.e. ( )Drange , in the next step an

orthonormal basis of the perturbed artifact subspace range( ( )kA ) is needed. The matrix
( ) nlk ×ℜ∈oA  whose columns form an orthonormal basis of range( ( )kA ) may be determined by

QR-decomposition of ( )kA .

Step 3: Iteration: Orthonormal basis of ℜl

In step 3, an orthonormal basis of lℜ  with the first n basis vectors being equal to ( )k
oA  is

sought. This particular basis makes it possible to determine the unknown projected signal

topographies as linear combinations while preserving the known projected artifact

topographies. The matrix ( ) llk ×ℜ∈oC  whose columns form an orthonormal basis of lℜ  with

( ) ( ) ( )kk n oo :1,: AC =  may be determined by expanding the basis spanned by the column vectors

of ( )k
oA  as described in Appendix A1 (chapter 6.5.1).

Step 4: Iteration: Projected signal topographies as linear combinations of basis vectors

After ( )k
oC  has been derived, l-n (projected) signal topographies are determined as linear

combinations of the column vectors of ( )k
oC . Linear combination is accomplished by

( ) ( ) ( )kkk RCC o= .
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The column vectors of ( ) lxlk ℜ∈C  are the linearly combined topographies. The matrix
( ) llk ×ℜ∈R  contains the weights of linear combination in the kth iteration. The column vectors

( )k
ir  of  ( )kR  share the following properties:

• ( )
i

k
i er =  for  ni �1=  where l

i ℜ∈e  is the ith canonical vector

• ≤minε ∢ ( ) ( ){ } ( )( ) min11 180,,,span ε−°≤−
k

i
k

i
k rrr �  for lni �)1( += .

Property 1 guarantees that the perturbed and orthonormalized artifact topographies are

unchanged by linear combination, i.e. ( ) ( ) ):1,(:):1,(: o nn kk CC = . The last (l-n) column

vectors of ( )kC  contain the linearly combined (projected) signal topographies in the kth

iteration.

Property 2 ensures full column rank of ( )kR  and ( )kC . Whether the column vectors are

sufficiently linearly independent in a numerical sense is affected by the particular value of

minε . In most practical cases ( 20≤l ) we have found °= 10minε  to be a suitable lower

boundary using floating point precision. Full column rank of ( )kC  is required in the next step

when the waveforms corresponding to ( )kC  are whitened.

For construction of the last (l-n) column vectors ( )k
ir  of ( )kR , refer to Appendix A3 (chapter

6.5.3). The algorithm described there uses the current set of linear combination parameters

consisting of 0.5(l-n)(l-n+3) angles to determine the ( )k
ir .

Step 5: Iteration: Deriving waveforms

The waveforms corresponding to the set of perturbed and orthonormalized artifact

topographies and linearly combined signal topographies ( )kC  in the kth iteration are derived

by

( ) ( )( ) DCS 1−= kk ,

where the rows of ( ) tlk ×ℜ∈S  contain the waveforms. To enable the usage of simpler

orthogonal contrast functions in step 6, the waveforms have to be whitened:
( ) ( ) ( )kkk SWS =W ,

where ( ) llk ×ℜ∈W  is the whitening matrix in the kth iteration. The rows of ( ) tlk ×ℜ∈WS  contain

the whitened waveforms. Applying the inverse of ( )kW  to ( )kC

( ) ( ) ( )( ) 1
W

−= kkk WCC
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yields the topographies ( ) ( ) ( )( ) llk
l

kk ×ℜ∈= ,W1,WW ,, ccC �  corresponding to the whitened waveforms

as is apparent from ( ) ( ) ( ) ( )kkkk
WW SCSCD == . As whitening the waveforms affects the column

vectors ( )k
ic  of )(kC , the matrix ( )kW  not only has to fulfill the whitening condition

•  ( ) ( )( ){ } ISS =T
WW
kkE  but also

• ( ) ( )( ) ( ) ( )( )k
n

kk
n

k cccc ,,span,,span 1,W1,W �� = .

Condition 2 guarantees that the artifact subspace spanned by the first n column vectors of
)(kC  remains unchanged even if the topographies themselves are modified by whitening. The

last (l-n) column vectors of ( )k
WC  are the final (projected) signal topographies of the kth

iteration. For construction of ( )kW  see Appendix A4 (chapter 6.5.4).

If ( )kC  has linearly dependent columns despite step 4, ( )kS  can still be calculated by replacing

the inverse in the first formula by the pseudo-inverse. In this case, however, the rows of ( )kS

are linearly dependent and the whitening matrix ( )kW  cannot be determined (see chapter

6.5.4). Consequently, the algorithm has to be restarted with a different initialization, a lower

number l of SCICA components, or a higher value of minε .

Step 6: Iteration: Evaluation of waveform independence

To assess the independence of the whitened waveforms ( ) ( ) ( )( )T
,W1,WW ,, k
l

kk ssS �=  in the kth

iteration, a contrast function is evaluated. We have investigated the orthogonal fourth-order

cumulant-based contrast o
ICAφ  (Comon, 1994) and the orthogonal log-likelihood contrast o

Lφ

that avoids explicit estimation of the fourth-order statistics. The latter contrast was derived

from the non-orthogonal log-likelihood contrast Lφ  of Pham et al. (1992). Comparable to the

extended infomax algorithm (Girolami, 1998; Lee et al., 1999) o
Lφ  switches between a

sub- and super-Gaussian density function. The switching rule (Lee et al., 1999) is based on

the stability analysis of Cardoso and Laheld (1996). Both orthogonal contrast functions, o
ICAφ

and o
Lφ , are only valid under the whiteness constraint which is fulfilled by whitening the

waveforms in step 5. Minimizing either contrast function minimizes the statistical dependence

of the waveforms ( )k
i,Ws .
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Alternative 1: Fourth-order cumulant-based contrast

The fourth-order auto-cumulant-based contrast function o
ICAφ  is described in chapter 3.4.4. It

is defined as (Comon, 1994):

( ) ( ) ( ) ( )[ ] min,,,Cum
1

W,iW,iW,iW,i
2o

ICA =−= �
=

l

i

kkkk ssssφ

where }{}{}{}{}{ 4324 E6EE4E123E],,,[Cum sssssssss +−+−=  is the fourth-order

auto-cumulant of the non zero-mean random variable s with { } 1E 2 =s  (whiteness constraint)

expressed in terms of expectations. For a definition of cumulants refer to chapter 3.4.7.

Alternative 2: Log-likelihood contrast

From the normalized log-likelihood contrast Lφ  (Pham et al., 1992) described in chapter 3.4.4

the following orthogonal contrast function can be derived (cf. Appendix A5 in chapter 6.5.5):

( ) ( )( ) minpln1
1 1

,W
o
L =−= ��

= =

t

j

l

i

k
ii j

t
sφ

where ( ) ( )( )jk
ii ,Wp s  is the pdf of the ith whitened waveform in the kth iteration. For each

waveform (here denoted by s) either the sub-Gaussian density function

( ) ( )( ))1,1N(1,1N
2
1psub −+=s

or the super-Gaussian density function

( ) ( ) )(sech1,0Np 2
super ss ⋅= c

is used where ( )2σµ,N  is the Gaussian density with mean µ  and variance 2σ . The

normalization constant 650967.1≈c  was determined by numerical integration in Maple V

(release 4). The same pdfs are utilized in the extended infomax algorithm (Girolami, 1998;

Lee et al., 1999) described in chapter 3.4.4. In Fig. 3.6 they are depicted together with the

Gaussian density N(0,1). The switching rule between sub- and super-Gaussian pdf is adopted

from the extended infomax algorithm of Lee et al. (1999):

( ){ } { } ( ){ }( ) ( )
( )�

�
�

→−
→+

=−
s
s

ssss
sub

super22

p1
p1

tanhEEsechEsign .

For a derivation of the switching rule refer to chapter 3.4.5.
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Step 7: Iteration: Optimization

The angles used to derive the perturbed artifact topographies and the weighting vectors of

linear combination are optimized in each iteration applying the simplex algorithm for

non-linear optimization by Nelder and Mead (1965) until the chosen contrast function is

minimized. In order to minimize a function of x variables, the simplex method compares the

function values at (x+1) x-dimensional vertices and replaces the vertex with the highest value

by another point. The simplex enclosed by the vertices adapts itself to the local landscape and

contracts on to the final (possibly local) minimum. We have employed the simplex

implementation of Press et al. (1992). In this implementation the optimization terminates

when the contrast function value of the vertex with the minimum value exceeds a particular

portion ( ) ( )ftolftolrtol +−= 22  of the contrast function value of the vertex with the

maximum value. The fractional convergence tolerance ftol was set to 1.e-4 corresponding to

rtol= 99.99 %.

Step 8: Projecting back the signal topographies

After convergence in the kth iteration, the topography matrix ( )k
WC  has to be projected back (cf.

step 1: projection):
( ) ( ) lmkk ×ℜ∈= WoW CCC .

The last p=l-n columns of ( )k
WC  contain the topographies of the maximally independent signal

components found under the spatial constraint
( ) ( )lnk :1:,W += CB  with ( ) pm

p
×ℜ∈= bbB ,,1 � .

Using the matrix of predefined artifact topographies A and the matrix of signal topographies

B, the spatial filter operator may be composed as outlined in chapter 4.4.

6.1.2. Parameters of the SCICA algorithm

In this chapter the parameters of the SCICA algorithm are presented in detail: the number l of

SCICA components, the correlation threshold corrmin used to decide whether a predefined

artifact contaminates the current data segment, the maximum allowed perturbation angle of

artifact topographies maxε  and the minimum angle minε  ensuring full column rank of the linear

combination matrix. The number of components is the only parameter that has to be set for

SCICA. It can be estimated automatically. The other parameters may be kept constant. They

were set to 99.0min =corr , °= 5.1maxε  and °= 10minε  in the current thesis.
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Number of SCICA components

The number l of SCICA components is the main parameter of the SCICA decomposition. It

has to be set individually for each decomposed segment. The maximum number of SCICA

components is equivalent to the rank of the original data segment. The number of components

may be limited by reducing the dimension of the data segment (cf. step 1, chapter 6.1.1), i.e.

by truncating the SVD of the original data matrix at component l. If l is set too low, relevant

activity in the original data segment may not be considered. If l is chosen too high, the SCICA

decomposition may become relatively slow as will be shown in chapter 6.3 without achieving

any further apparent improvement of the decomposition. For spontaneous EEG/MEG, the

dimension of the data segment may be reduced to the number of left singular vectors

(eigenvectors) each explaining at least 1 % of the total data variance. Applying this 1 % rule

the number of SCICA components can be determined automatically.

Correlation threshold corrmin

Before the SCICA decomposition is calculated, predefined artifact topographies that are not

part of the current data segment are discarded (cf. step 1, chapter 6.1.1). An artifact is only

considered to contaminate the current epoch if its predefined topography exceeds a minimum

subspace correlation corrmin with the data segment of reduced dimension Dl. In the current

implementation of SCICA a relatively high threshold 99.0min =corr  is applied. Establishing

the threshold too low, brain signals correlating with the artifact above the threshold may

suggest that the particular artifact is present in the current epoch. In this case the artifact

topography is retained even if the artifact does not occur. Supposing the artifact is not present,

the correlated brain signal is partially represented by the artifact topography and is distorted

by spatial filtering. On the contrary, setting the correlation threshold too high, an artifact of

very low variance in the original data segment D may not be recognized on condition that it is

not completely represented in the epoch of reduced dimension Dl (depending on l). The

corresponding artifact topography is discarded erroneously and the artifact remains

uncorrected. The latter problem may be avoided, however, by investigating whether a

predefined artifact topography is part of the original data segment D instead of the epoch of

reduced dimension Dl. The correlation threshold is important to exclude predefined

topographies automatically from artifact correction without visual control. If only selected

epochs are corrected, unnecessary artifact topographies may be discarded manually.
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Perturbation angle maxε

Perturbation of artifact topographies in step 2 of the SCICA decomposition (chapter 6.1.1)

seems to be an important issue. Simulations have shown that with a slightly misspecified

artifact topography that is kept constant during optimization the originally simulated

waveforms may not be completely separable as the simulated signal topographies do not seem

to be part of the vector space accessible with the particular artifact topography. Therefore, the

artifact topographies are allowed to vary up to a maximum angle maxε . If maxε  is chosen too

small, not every conceivable variation of artifact topographies may be accounted for. The

optimal signal topographies may, however, be sufficiently approximated such that a possibly

incomplete separation of waveforms is in the order of magnitude of noise only. If maxε  is set

too high, it may be larger than the (unknown) minimum angle between an artifact and a signal

topography. In this case the perturbed artifact topography may represent the correlated signal

topography while one of the signal topographies is equivalent to the actual artifact

topography. This leads to considerable noise enhancement as the estimated signal subspace

that is combined with the original artifact subspace for spatial filtering contains an artifact

topography. In the current implementation of SCICA the angle maxε  is set to a rather small

value of 1.5°. Empirically, this threshold has proven to be suitable for spontaneous EEG/MEG

recordings.

Linear combination angle minε

The angle minε  is supposed to ensure full column rank of the linear combination matrix (cf.

step 4, chapter 6.1.1). If minε  is chosen too small, linear independence may not be achievable

in a numerical sense depending on the number l of SCICA components. In the current

implementation of SCICA the angle minε  was set to 10°. With °= 10minε  linear dependence

was never observed if up to 15 SCICA components were calculated. For 2015 ≤≤ l  linear

dependence occurred occasionally, especially for 20=l . In most cases it was sufficient,

though, to restart the algorithm with a different random initialization. Applying °= 10minε , no

linear dependence happened in the examples of this thesis. If more than 20 components are

calculated, the value of minε  should be raised. In our observations, increasing minε  even for

20<l  does not seem to have any apparent influence on the SCICA decomposition, although

the set of possible linear combinations in step 4 of the algorithm is restricted. This is probably

due to the whitening operation in step 5 that changes the topographies and the angles between

the topographies.
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For the fourth-order auto-cumulant contrast, minε  may even be omitted if the algorithm is

altered slightly. First, property 2 imposed on the column vectors ( ) ( )k
l

k
n rr ,,1 �+  of the linear

combination matrix ( )kR  in step 4 of the algorithm is dropped. Equivalently, the linear

combination parameter )(k
iα  no longer has to be constrained to [ minε ,180°- minε ] (cf. Appendix

A3 and Table 6.4 in chapter 6.5.3). Instead, the particular vectors ( ) ( )k
l

k
n rr ,,1 �+  of the kth

iteration are taken into account only if the resulting matrix ( )kR  still has full column rank in a

numerical sense. Otherwise, they are rejected. Consequently, the number of linearly combined

brain signal topographies and, thus, the total number of SCICA components may be reduced

in step 4. The waveforms corresponding to the possibly reduced set of topographies are

derived in step 5 using the pseudo-inverse instead of the inverse. Whitening is possible in this

case because the waveforms, i.e. the rows of ( )kS , are linearly independent. Finally, in step 6

the current value of the contrast function o
ICAφ  is calculated over a possibly reduced number of

waveforms. As o
ICAφ  tends towards ∞− , solutions with the full number of waveforms yield

(in absolute values) a larger value of o
ICAφ  and should, thus, be preferred quite naturally during

optimization. The outlined change of the algorithm does not seem to be applicable with the

log-likelihood contrast o
Lφ  that tends towards zero and is, therefore, expected to converge into

a useless solution without any brain signal topography.

6.2. Examples

Spatial filtering with SCICA was implemented in C (Microsoft Visual C++ 6.0) and was

applied to simulated data as is demonstrated in chapter 6.2.1. The simulation shows the good

performance of the decomposition and confirms that it is not influenced by the spatial

correlation between artifact and signal subspace. SCICA was also successfully tested on

spontaneous EEG and MEG data as is illustrated in chapters 6.2.2 and 6.2.3.

For the simulated data, the quality of artifact correction was quantified. For the real EEG and

MEG segments, artifact correction was again evaluated by thorough visual comparison of the

epoch before and after artifact correction applying the criteria defined in the first paragraph of

chapter 5.2. To ease visual comparison overplots of the original and corrected segments are

shown.
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Before artifact correction the data dimension was always reduced (cf. step 1 of chapter 6.1.1).

For real data, only eigenvectors explaining at least 1 % of the total data variance were retained

(1 % rule). For simulated data, the number of eigenvectors was set to the rank of the simulated

epoch (rank rule).

6.2.1. Applying SCICA to simulated data

This example uses simulated EEG data to show that the SCICA decomposition is capable of

recovering the original independent waveforms from a simulated mixture of waveforms. It

also illustrates that SCICA does not depend on the spatial correlation between artifact and

signal subspace. The completeness of artifact removal and the distortion of signal activity are

quantified. The small quantified distortion is shown to be in the noise range of continuous

EEG recordings.

We have simulated three 6-s data sets with a low (10 %), medium (50 %) and high (90 %)

spatial correlation between artifact and signal subspace using dipoles in a 4-shell spherical

head model. In Fig. 6.1 the simulation is depicted. Dipoles 1 and 2 and their corresponding

waveform represent a blink artifact in the 2nd and 5th second. The artifact dipoles are equal in

each simulation. Dipoles 3 and 4 model the brain signal subspace. They have been determined

randomly. The subspace (plane) they are spanning has the desired correlation of 10 %, 50 %

or 90 % with the artifact subspace. The 6-s sawtooth and sine waveforms of dipoles 3 and 4

are unrealistic but have been chosen as they are largely independent.

Fig. 6.1: Dipole simulation of three 6-s data
sets with a low (10 %), medium (50 %) and
high (90 %) correlation between artifact and
signal subspace. Dipoles 1 and 2 model the
artifact subspace. Dipoles 3 and 4 represent the
brain signal subspace. The waveforms are
largely independent.
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In row (A) of Fig. 6.2 the three simulated data sets are displayed. The electrode configuration

(Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz, Pz, A1, A2, F9,

F10, P9, P10) includes the standard 10-20 electrodes plus 3 infero-temporal electrodes on

either side of the head. No noise has been added to the simulated data.

In row (B) of the same figure overplots of the original segments (red) and the epochs after

spatial filtering with SCICA (black) applying the fourth-order cumulant contrast are shown.

The blinks in the 2nd and 5th second are removed in each data set without apparent distortion

of the signal activity. The artifact topography was defined in a separate epoch containing a

simulated blink only. Before artifact correction the data dimension was reduced to 3

eigenvectors (rank rule).

Finally, in row (C) the three equally scaled SCICA waveforms are depicted. Waveform 1

corresponds to the predefined blink topography, waveforms 2 and 3 represent the signal

activity estimated by SCICA. Irrespective of the spatial correlation between artifact and signal

subspace the original waveforms have been recovered by SCICA up to a tiny residual signal

waveform superimposed on each blink waveform. This residual signal is not visible in the

displayed blink waveforms (SCICA waveforms 1) as its average peak-to-peak amplitude

amounts to less than 0.41 % of the maximum blink amplitude only (cf. Table 6.1). To account

for initialization effects, average values over 100 randomly initialized repetitions of the

SCICA decompositions are given. The peak-to-peak signal amplitudes in SCICA waveform 1

were calculated as the difference between maximum and minimum amplitude in the 3rd and

4th second. The maximum blink amplitude in SCICA waveform 1 was determined as the

maximum amplitude of the absolute of the whole time series.

Of course, the residual signal is also part of the estimated artifact activity that is subtracted

from the original data to obtain the corrected data. The peak-to-peak amplitudes of the

residual signal in the subtracted data were determined in the 3rd and 4th second in channel Fp1

where apart from channel Fp2 the weights of the predefined blink topography are maximum,

i.e. SCICA waveform 1 is maximally enhanced. On average, the peak-to-peak amplitudes of

the residual signal in the subtracted data are less than 0.36 µV (N=100) (cf. Table 6.1).

Amplitude changes in this order of magnitude are too small to be visible in panels (B) of

Fig. 6.2. Moreover, they lie in the recording noise range of continuous EEG data which may

be up to 2 µV peak-to-peak (Nuwer et al., 1999). The quantified peak-to-peak amplitudes can

thus be regarded as irrelevant. Dividing the absolute mean peak-to-peak amplitude by the

corresponding relative mean peak-to-peak amplitude using the values given in Table 6.1 (with
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higher precision), the maximum blink amplitude in the subtracted data can be estimated to

86.9 µV in each case. This value is equivalent to the maximum simulated blink amplitude.

Fig. 6.2: Applying spatial filtering with SCICA to simulated data. (A) The three simulated 6-s data
sets with a low (10 %), medium (50 %) and high (90 %) correlation between artifact and signal
subspace derived from the dipole simulation in Fig. 6.1. (B) The same segments after spatial filtering.
(C) The waveforms recovered by SCICA. Waveform 1 corresponds to the predefined artifact
topography.
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Table 6.1: Peak-to-peak signal amplitude in SCICA waveform 1 (cf. Fig. 6.2) in percent of maximum
blink amplitude in SCICA waveform 1 and peak-to-peak amplitude of the subtracted signal for a
correlation between artifact and signal subspace of 10 %, 50 % and 90 %. Mean values and standard
deviations determined over N=100 randomly initialized repetitions of the particular decomposition are
shown.

peak-to-peak signal amp. in percent
of max. blink amp. in SCICA
waveform 1

peak-to-peak amp. of subtracted
signal

10 % 0.41 % ± 0.20 % 0.36 µV ± 0.17 µV

50 % 0.40 % ± 0.19 % 0.34 µV ± 0.16 µV

90 % 0.31 % ± 0.13 % 0.27 µV ± 0.11 µV

In order to quantify the completeness of artifact removal, the rank of the subspace spanned by

the SCICA corrected data is determined. If the blinks were not completely removed, a rank of

three would be expected. The rank was found to be two in each case (cf. Table 6.2). Thus, the

blinks are completely eliminated confirming the visual impression in Fig. 6.2 (B). The rank

was determined as the number of non-zero singular values. Singular values falling below the

tolerance eps)valuesingularmax(),max( ⋅⋅tm  were set to zero (Dongarra et al., 1979) with

number of channels m, number of samples t and the floating point relative accuracy

eps=1.192092896e-07.

To quantify the amount of topographic distortion introduced by a residual signal in the blink

waveform of the above-mentioned order of magnitude, the angle between the simulated signal

subspace spanned by dipole topographies 3 and 4 and the rank 2 subspace spanned by the

SCICA corrected data is calculated. The angle is determined as the largest principal angle

between the two subspaces (Golub and van Loan, 1996). As can be seen in Table 6.2 the

average subspace angles are below 0.48° (N=100) corresponding to a subspace correlation

(cosine of subspace angle) of more than 99.99 %.

Table 6.2: Rank of SCICA corrected data and angle between simulated signal subspace and subspace
spanned by SCICA corrected data for a correlation between artifact and signal subspace of 10 %, 50 %
and 90 %. Mean values and standard deviations determined over N=100 randomly initialized
repetitions of the decomposition are shown.

rank of SCICA corrected data angle between simulated signal
subspace and subspace spanned by
SCICA corrected data

10 % 2 ± 0 0.41° ± 0.22°

50 % 2 ± 0 0.48° ± 0.25°

90 % 2 ± 0 0.17° ± 0.07°
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The three simulated data sets were also decomposed by ICA. ICA analysis was performed

with both Matlab implementations of the JADE and the extended infomax algorithm (see

chapter 3.4.5). Both ICA decompositions resulted in a comparable residual signal in the blink

waveform.

6.2.2. Applying SCICA to EEG data

In the following three examples spatial filtering with SCICA is applied to spontaneous EEG

segments. The presented data contain relevant brain signal activity contaminated by eye

movements, blinks or cardiac artifacts. The examples demonstrate the good performance of

the approach on real EEG data. They also show that the fourth-order cumulant-based contrast

and the log-likelihood contrast presented in chapter 6.1.1 (step 6) perform equally well.

Example 1: Removing blink and eye movement from EEG by SCICA

In the upper left panel of Fig. 6.3 an EEG epoch (10 s, 1-70 Hz, common reference FCz)

recorded during an epileptic seizure is shown. The 5-Hz epileptic activity is superimposed by

a blink and a horizontal eye movement in the 4th and 5th second. The same segment after

artifact correction with SCICA using the log-likelihood contrast function is depicted in the

upper right panel. The artifacts are completely removed without apparent distortion of the

periodic activity. The SCICA waveforms corresponding to horizontal eye movement and

blink are displayed below the corrected EEG. Before artifact correction the data dimension

was reduced to 6 eigenvectors (1 % rule). The topography of horizontal eye movement and

blink were defined on single prototypes of the respective artifact category. The overplot of

original EEG in red and corrected EEG in black in the lower left panel illustrates the good

correspondence of the pathological brain activity before and after artifact correction. In the

lower right panel the difference waveforms between original and corrected EEG, i.e. the

estimated artifact signals at each electrode, are shown. In Fig. 5.2 a portion of the same EEG

segment (3rd to 6th second) has already been corrected by spatial filtering with preselection.

Choosing an adequate number of eigenvectors for preselection, both approaches perform

equally well.

Example 2: Removing eye movement and cardiac artifacts from EEG by SCICA

In the left upper panel of Fig. 6.4 an EEG segment (6 s, 1-70 Hz, referenced to the average of

F3 and F4) recorded with eyes closed is shown. The epoch contains normal alpha rhythm and

is contaminated by cardiac artifacts and on-going small vertical movements of the eyes under

the closed eye-lids. The upper right panel depicts the same segment after spatial filtering with
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SCICA using the fourth-order cumulant-based contrast. The reconstructed vertical eye

movements and cardiac activity are displayed below the corrected EEG. The vertical eye

movement topography was derived from a single prototype. The EKG topography was

defined on the averaged QRS-complex of several hundreds of cardiac cycles. Before artifact

correction the data dimension was reduced to 8 eigenvectors (1 % rule). Spatial filtering

removes the artifacts to below visibility without obvious distortion of the alpha rhythm. This

is also illustrated in the overplot of original (red) and corrected EEG (black) in the lower left

panel. The estimated artifact signals at each electrode are shown in the lower right panel.

Example 3: Removing blink and eye movement from EEG by SCICA

The upper left panel of Fig. 6.5 depicts another EEG segment (6 s, 1-70 Hz, common

reference FCz) contaminated by blinks and a horizontal eye movement. The artifacts coincide

temporally with pathological delta bursts. In the upper right panel the same segment is shown

after artifact correction by SCICA applying again the log-likelihood contrast function. The

eye artifacts are suppressed without recognizable distortion of the pathological delta activity.

The reconstructed horizontal eye movement and blink waveforms are displayed below the

corrected EEG. The artifact topographies were defined on single prototypes of the respective

artifact category. Before artifact correction the data dimension was reduced to 7 eigenvectors

(1 % rule). The overplot of the original EEG in red and the corrected data in black shown in

the lower left panel reveals that not only the delta bursts but also the remaining brain signal

activity is almost completely maintained by spatial filtering with SCICA. Finally, in the lower

right panel the estimated artifact signal at each electrode is depicted.
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Fig. 6.3: Applying spatial filtering with SCICA to spontaneous EEG data (cf. Example 1 in chapter
6.2.2). Upper left panel: The original EEG segment (10 s, 1-70 Hz) contaminated by a horizontal eye
movement and a blink. Upper right panel: The same epoch after artifact correction using the
log-likelihood contrast. Below the corrected data the reconstructed horizontal eye movement and blink
waveforms are shown. Lower left panel: Overplot of the original (red) and the corrected (black) EEG
segment. Lower right panel: Difference between original and corrected EEG segment.
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Fig. 6.4: Applying spatial filtering with SCICA to spontaneous EEG data (cf. Example 2 in chapter
6.2.2). Upper left panel: The original EEG segment (6 s, 1-70 Hz) contaminated by vertical eye
movements and cardiac artifacts. Upper right panel: The same epoch after artifact correction using the
fourth-order cumulant-based contrast. Below the corrected data the reconstructed vertical eye
movements and EKG are shown. Lower left panel: Overplot of the original (red) and the corrected
(black) EEG segment. Lower right panel: Difference between original and corrected EEG segment.



66

Fig. 6.5: Applying spatial filtering with SCICA to spontaneous EEG data (cf. Example 3 in chapter
6.2.2). Upper left panel: The original EEG segment (6 s, 1-70 Hz) contaminated by blinks and a
horizontal eye movement. Upper right panel: The same epoch after artifact correction using the
log-likelihood contrast. Below the corrected data the reconstructed horizontal eye movement and blink
waveforms are shown. Lower left panel: Overplot of the original (red) and the corrected (black) EEG
segment. Lower right panel: Difference between original and corrected EEG segment.
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6.2.3. Applying SCICA to MEG data

In the subsequent three examples spatial filtering with SCICA is applied to spontaneous MEG

segments. The presented data again contain relevant brain signal activity contaminated by eye

movements, blinks or cardiac artifacts. The examples demonstrate the good performance of

the approach on real MEG data. They further confirm that the fourth-order cumulant-based

contrast and the log-likelihood contrast (step 6, chapter 6.1.1) perform equally well. The

MEGs were recorded with a 122-channel whole-head planar gradiometer system (Neuromag

Ltd.) in a magnetically shielded room. For clarity, in each example only a subset of relevant

sensors measuring the tangential magnetic field gradient along top-bottom meridians are

considered. The sensors are named by equivalent EEG electrode labels.

Example 1: Removing cardiac artifacts from MEG by SCICA

The upper left panel of Fig. 6.6 shows an MEG segment (6 s, 1-70 Hz) that is heavily

contaminated by cardiac activity. A subset of 32 left-hemispheric and midline sensors is

shown in a longitudinal arrangement. The upper right panel depicts the same MEG segment

after artifact correction using SCICA with the fourth-order cumulant-based contrast function.

The cardiac potentials are corrected without apparent distortion of the theta activity and the

delta bursts in the 3rd and 5th second that are most prominent over left centro-parietal sensors.

Below the corrected MEG, the SCICA waveform corresponding to cardiac activity is

displayed. Before artifact correction the dimensionality of the data was reduced to 9

eigenvectors (1 % rule). The topography of the cardiac artifact was defined on the averaged

QRS-complex of several hundreds of cardiac cycles. The overplot of original (red) and

corrected (black) MEG in the lower left panel demonstrates the good correspondence of brain

activity before and after artifact correction. In the lower right panel the difference waveforms

between original and corrected MEG, i.e. the estimated artifact signals at each sensor, are

shown.

Example 2: Removing blinks and eye movements from MEG by SCICA

An MEG segment (10 s, 1-70 Hz) containing a series of voluntary horizontal eye movements

and blinks is depicted in the upper left panel of Fig. 6.7. Only a subset of 34 frontal to central

sensors is displayed in a transversal arrangement. The same MEG epoch after spatial filtering

with SCICA using the log-likelihood contrast is shown in the upper right panel. The

reconstructed horizontal eye movements and blinks are depicted in separate traces below the

corrected MEG. The artifact topographies were defined on single prototypes of the respective

artifact category. Before spatial filtering the dimensionality of the data was reduced to 13
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eigenvectors (1 % rule). The pronounced brain signal activity in the theta and alpha range

over left temporal sensors (FC9, T9) remains unaffected by spatial filtering as is also

illustrated in the overplot of original (red) and corrected (black) MEG in the lower left panel.

The lower right panel depicts the estimated artifact signals at each sensor.

Example 3: Removing cardiac artifacts from MEG by SCICA

The upper left panel of Fig. 6.8 shows another 6-s MEG epoch contaminated by cardiac

artifacts. Only a subset of 33 left-hemispheric and central sensors is displayed in a

longitudinal arrangement. The MEG was filtered between 0.1 and 70 Hz to reveal the slow

delta activity over deep left frontal, temporal and parietal sensors caused by an ischemic

stroke in the territory of the left medial cerebral artery. The same MEG epoch after artifact

correction with SCICA again using the fourth-order cumulant-based contrast is shown in the

upper right panel. After elimination of the cardiac artifacts the pathological slow activity is

much more apparent. Below the corrected data, the reconstructed EKG waveform is

displayed. The EKG topography was defined on the averaged QRS-complex of several

hundreds of cardiac cycles. Before artifact correction the dimensionality of the data segment

was reduced to 11 eigenvectors (1 %  rule). In the lower left panel the overplot of original

MEG in red and corrected MEG in black is shown. It illustrates that the brain signal activity is

almost undistorted by artifact correction. In the lower right panel the estimated cardiac

artifacts at each sensor are displayed. Comparison with the overplot reveals that the

non-cardiac activity between the 3rd and 4th cardiac cycle in channels FC9, T9 or CP9, for

instance, does not introduce any relevant distortion.
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Fig. 6.6: Applying spatial filtering with SCICA to spontaneous MEG data (cf. Example 1 in chapter
6.2.3). Upper left panel: The original MEG segment (6 s, 1-70 Hz) that is heavily contaminated by
cardiac artifacts. Upper right panel: The same epoch after artifact correction using the fourth-order
cumulant-based contrast. Below the corrected data the reconstructed EKG is shown. Lower left panel:
Overplot of the original (red) and the corrected (black) MEG segment. Lower right panel: Difference
between original and corrected MEG segment.
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Fig. 6.7: Applying spatial filtering with SCICA to spontaneous MEG data (cf. Example 2 in chapter
6.2.3). Upper left panel: The original MEG segment (10 s, 1-70 Hz) contaminated by horizontal eye
movements and blinks. Upper right panel: The same epoch after artifact correction using the
log-likelihood contrast. Below the corrected data the reconstructed horizontal eye movements and
blinks are shown. Lower left panel: Overplot of the original (red) and the corrected (black) MEG
segment. Lower right panel: Difference between original and corrected MEG segment.



71

Fig. 6.8: Applying spatial filtering with SCICA to spontaneous MEG data (cf. Example 3 in chapter
6.2.3). Upper left panel: The original MEG segment (6 s, 0.1-70 Hz) contaminated by cardiac artifacts.
Upper right panel: The same epoch after artifact correction using the fourth-order cumulant-based
contrast. Below the corrected data the reconstructed EKG is shown. Lower left panel: Overplot of the
original (red) and the corrected (black) MEG segment. Lower right panel: Difference between original
and corrected MEG segment.
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6.3. Speed of convergence

As the SCICA decomposition is an iterative process it is not as fast as the preselection

approach. A decomposition in the current implementation in C requires a few seconds to

several minutes on an Intel Pentium III-800 MHz processor until convergence is achieved. In

this chapter the factors influencing the duration of a single iteration and the total number of

iterations are analyzed. It is shown that the fourth-order auto-cumulant contrast is

considerably faster than the log-likelihood contrast and concluded that a total of 15 to 20

SCICA components should not be exceeded to allow for a computationally efficient

decomposition.

In Fig. 6.9 the average duration of a single iteration, i.e. steps 2 to 6 of the algorithm

described in chapter 6.1.1, is displayed for different numbers of SCICA components and time

samples applying either the fourth-order auto-cumulant contrast or the log-likelihood contrast.

The time measurement was performed for six different EEG segments that were increased to

comprise 2000, 3000 and 4000 samples corresponding to an epoch of 10 s, 15 s and 20 s with

a sample rate of 200 Hz. The number of SCICA components (l in the above algorithm) was

set to 5, 10, 15 and 20 including 2 artifact topographies in each decomposition. The elapsed

times were obtained as the averages over 100 iterations using the system's high resolution

performance counter to measure the duration of a single iteration. The figures show that the

mean time required for one iteration increases with a growing number of samples and SCICA

components. For a high number of samples, enhancing the number of SCICA components

results in a stronger rise of the time per iteration than for a low number of samples.

Fig. 6.9: Mean time in seconds for one pass through the SCICA algorithm depending on the number of
components and time samples applying either the fourth-order auto-cumulant or the log-likelihood
contrast. Mean values and standard deviations of 100 subsequent iterations are displayed.
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The fourth-order auto-cumulant contrast is considerably faster than the log-likelihood

contrast. Separate time measurement for steps 2 to 6 of the SCICA algorithm reveals that the

cumulant contrast spends 70 % (± 12 %) of the time per iteration in step 5 with the matrix

multiplications to obtain ( )kS  and ( )k
WS  and 23 % (± 9 %) in step 6. The likelihood contrast, on

the contrary, uses 81 % (± 8 %) of the time per iteration in step 6 with calculation of the

switching condition and the contrast function itself and further 18 % (± 9 %) in step 5. The

indicated values were determined as the ratios of the mean time per single step (N=100

iterations) and the mean time per iteration (N=100 iterations) averaged over the 72

observations of Fig. 6.9 (4 different numbers of SCICA components times 3 different

numbers of samples times 6 different EEG segments).

With an increasing number of SCICA components not only the duration of one iteration, but

also the total number of iterations rises as the amount of parameters that has to be estimated

by the Nelder and Mead simplex algorithm grows. The relationship between number of

SCICA components and parameters is depicted in Fig. 6.10.

Fig. 6.10: Relationship between number of
SCICA components (including 1-5 artifacts) and
total number of parameters. The number of
parameters is derived from the formulae given in
Tables 6.3 and 6.4 in chapter 6.5.

The simplex algorithm is not very efficient in terms of the number of iterations (Press et al.,

1992). For 5 SCICA components several hundred passes through the algorithm are needed

until convergence, applying a fractional convergence tolerance of 1.e-4 (cf. chapter 6.1.1, step

7). For 20 SCICA components more than 10000 iterations may be required. These numbers

hold for both the cumulant and the log-likelihood contrast. The actual number of iterations,

however, strongly depends on the current random initialization. The number of iterations may

be reduced by increasing the convergence tolerance.

Thus, calculating 5 SCICA components from a data segment of 2000 samples using the faster

cumulant contrast and a fractional convergence tolerance of 1.e-4 amounts to a total duration
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of less than 2 seconds while deriving 20 SCICA components from an epoch of 4000 samples,

again applying the cumulant contrast, may already require 20 minutes.

Summarizing, it is concluded that a total of 15 to 20 SCICA components should not be

exceeded in the present SCICA implementation to allow for a computationally reasonable

decomposition. Moreover, the length of one decomposed data segment should be reduced to

the minimum necessary. In the ICA literature 10-s segments are recommended (Jung et al.,

2000a). Experience suggests, however, that shorter epochs may be sufficient for SCICA due

to the spatial constraint.

6.4. Discussion

The presented examples demonstrate that spatial filters derived from SCICA can remove

artifacts from spontaneous EEG/MEG recordings without apparent distortion of brain activity

(Figs. 6.3-6.8) irrespective of the spatial correlation between artifact and brain signal subspace

(Fig. 6.2). A small quantified distortion in the simulated data was shown to be in the order of

magnitude of recording noise and was, thus, considered to be irrelevant. Both the fourth-order

auto-cumulant contrast and the log-likelihood contrast performed equally well. The cumulant

contrast, however, is considerably faster than the log-likelihood objective function.

In order to allow for a computationally efficient estimation of the parameters by the simplex

algorithm a total of 15 to 20 SCICA components may not be exceeded. Therefore, the

dimension of the data segment which is equal to the number of SCICA components is always

restricted to the minimum necessary. The dimension is the only parameter that has to be set

for SCICA while the remaining parameters may be kept constant. The dimension can be

estimated automatically. For spontaneous EEG/MEG, we have found it appropriate to reduce

the dimensionality of the data to the number of eigenvectors each explaining at least 1 % of

the total data variance. Our examples show that the number of eigenvectors estimated by the

1 % rule usually remains below the limit of 15/20. For raw EEG containing evoked activity of

low SNR the 1 % rule may have to be lowered. Theoretically, there is no restriction to apply

spatial filtering with SCICA to continuous event-related data. Thus, artifact correction with

SCICA is equally applicable to spontaneous and event-related continuous recordings.

Before the SCICA decomposition is calculated it has to be checked whether the predefined

artifacts are part of the current data segment. If a particular predefined artifact is present, its

subspace correlation with the data segment is in general high. In the current implementation
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of SCICA a criterion based on the subspace correlation is employed successfully to exclude

predefined artifact topographies automatically from artifact correction of a particular segment.

Using automatic exclusion of predefined artifact topographies and the above 1 % rule, SCICA

is sufficiently automated to be applied in combination with automated processing such as

averaging or mean FFT analysis.

As the SCICA decomposition is an iterative process it is not as fast as the preselection

approach. The current implementation in C requires a few seconds to several minutes on an

Intel Pentium III-800 MHz processor depending on the number of SCICA components and

time samples even if the faster cumulant contrast is applied. Currently, this prohibits an

artifact correction during rapid clinical review of spontaneous EEG/MEG recordings.

Artifacts may, however, be corrected in a separate step before any further analysis.

6.5. Appendix

In the Appendix specific algorithmic details of the SCICA decomposition referred to in

section 6.1.1 are detailed.

6.5.1. A1: Expanding an orthonormal basis

Let ( ) nl
n

×ℜ∈= vvV ,,1 � , ln <≤1  be a matrix with orthonormal columns. The following

algorithm may be used to construct a matrix of orthonormal columns ( ) ll
l

×ℜ∈= wwW ,,1 �

with ( ) VW =n:1:, .

1. Set IW =  with identity matrix ll×ℜ∈I .

2. For ni �1= : exchange vectors wi and wj if maxT =ij vw  for lij �= .

3. Set ( ) VW =n:1:, . Note that due to step 2 still l=)(rank W  which is a prerequisite for

the modified Gram-Schmidt algorithm.

4. Apply the modified Gram-Schmidt algorithm (Meyer, 2000) to W:

For li �2= :

• For lij �= : ( ) 1
T

1 −−−= ijijj wwwww

• iii www =

Note that the orthonormal topographies nww ,,2 �  of step 3 are not changed by step 4.
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6.5.2. A2: Perturbation of artifact topographies

The following algorithm is used to derive the perturbed artifact topographies
( ) ( ) ( )( ) nlk

n
kk ×ℜ∈= aaA ,,1 �  from the original artifact topographies ( ) nl

n
×ℜ∈= aaA ,,1 �  in

the kth iteration.

1. For 
i

i
ini

a
aa == :1� .

2. Find a matrix ( ) ll
liii

×ℜ∈= ,1, ,, uuU �  with orthonormal columns and ii au =1,  for

ni �1=  referring, for instance, to the algorithm described in Appendix A1.

3. For ( ) ( ) ( )k
i

k
ii

k
i αni vaa ⋅+== tan:1� .

The vector ( )k
iv  is defined recursively according to ( )

1−= l
k

i vv

:1=j 2,ij uv =

for ( ) :12 −= lj �

( ) ( )
1,1,11, sincos +−−− ⋅+⋅= ji

k
jij

k
jij ββ uvv

In Fig. 6.11 the procedure is illustrated for one artifact (n=1) in three dimensions (l=3). The

angles α  and β  are randomly initialized and optimized in each iteration. For an overview of

the number of angles and their initialization and optimization intervals refer to Table 6.3. The

angle ( )k
iα  is constrained to [-1.5°, 1.5°] in order to guarantee that ∢ ( )( ) °≤ 5.1, k

ii aa  for

ni �1= .

Fig. 6.11: The perturbed artifact topography ( ) 3
1 ℜ∈ka

is derived from 3
1 ℜ∈a  in the kth iteration as

described in Appendix A2. All vectors on the rim of the
cone share the same angle ( )kα1  with 1a . The direction
of the particular vector ( )k

1a  is determined by ( )k
1v  i.e.

( )kβ 1,1 .
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Table 6.3: Parameters for perturbation of n artifact topographies in lℜ  as described in Appendix A2.

number random initialization
in interval

optimization constrained
to initial interval

iα  for ni �1= 1 [-1.5°,1.5°] yes

iβ  for ni �1= l-2 [0°,180°] no

� n(l-1)

6.5.3. A3: Linear combination matrix

Let ( ) ( ) ( ) ( ) ( )( ) llk
l

k
n

k
n

kk ×
+ ℜ∈= rrrrR ,,,,, 11 ��  be the linear combination matrix in the kth iteration

with ( )
i

k
i er =  for ni �1= , ln <≤1 . The vector l

i ℜ∈e  is the ith canonical vector. In order

to construct the last l-n column vectors the following algorithm is used:

For ( ) ( )
( ) ( ) ( ) ( )

( ) ( )�
�

�
�

�

=

≠⋅+
=+=

2

2
tan

:1 π

π

k
i

k
i

k
i

k
i

k
i

k
i

k
i

α

αα
lni

r

ru
r� .

The vectors ( )k
ir  and ( )k

iu  enclose an angle of ( )k
iα . The unit vector ( )k

iu  lies in one of the

planes spanned by ( ) ( )k
i

k
11 ,, −rr � . The vectors ( ) ( )k

i
k

11 ,, −rr �  form an orthonormal basis of the

already determined column vectors ( ) ( )k
i

k
11 ,, −rr �  with ( ) ( )k

j
k

j rr =  for nj �1= . The particular

direction of ( )k
ir  away from ( )k

iu  is determined by unit vector ( )k
ir  that is perpendicular to

( ) ( )k
i

k
11 ,, −rr � . Consequently, the vectors ( ) ( )k

i
k rr ,,1 �  also form an orthonormal basis of

( ) ( ) ),,(span 1
k

i
k rr � .

In Fig. 6.12 the algorithm is illustrated for one artifact (n=1) and two signal topographies

(l=3). In the next two subsections the calculation of ( ) ( )k
i

k rr ,,1 �  and ( )k
iu  is described.

Calculation of  ( ) ( )k
i

k rr ,,1 �

The following recursive algorithm accumulates the orthonormal basis vectors ( ) ( )k
i

k rr ,,1 �  of

( ) ( ) ),,(span 1
k

i
k rr �  in the first i columns of the orthogonal matrix ( ) llk

i
×ℜ∈R :

for ( ) ( ) :11 −+= lni �

( ) ( ) ( )( )
( )
∏

+=
−=

lij

k
ji

k
i

k
i ji

�1
,1 ,, βGRR

:li = ( ) ( )k
i

k
i 1−= RR

with ( ) llk
n

×ℜ∈= IR  and the Givens rotation matrix
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that rotates the plane spanned by the ith and jth column vector of ( )k
i 1−R  by an angle of β  (Golub

and van Loan, 1996). Note that the first (i-1) columns of  ( )k
iR  and ( )k

i 1−R  are equal as Givens

rotations are applied to columns of  ( )k
i 1−R  with an index larger than i-1 only. The ith column

vector of  ( )k
iR  is determined in the ith iteration.

Calculation of  ( )k
iu

The vector ( )k
iu  lies in one of the planes spanned by ( ) ( )k

i
k

11 ,, −rr � :

:2=i ( ) ( )
11 eru == kk

i

:2>i ( ) ( ) ( ) ( ) ( ) 11,sincos −≤<≤+= itsδδ k
t

k
i

k
s

k
i

k
i rru .

The ( )( )
2

21
2

1 −−=��
�

�
��
�

� − iii
 possible planes, i.e. combinations of s and t, are coded in the angle

( )k
iδ . For a given angle ( )k

iδ  with ( ) ( )
��
�

�
��
�

� −
≤≤°⋅<≤°⋅−

2
1

1,1801801
i

wwδw k
i , the parameters

s and t are chosen as the wth combination of  s and t.

The angles α , β  and δ  are randomly initialized and optimized in each iteration. For an

overview of the number of angles and their initialization and optimization intervals refer to

Table 6.4. The angle ( )k
iα  is constrained to the interval [10°, 170°] in order to guarantee that

( ) ( ){ } ( )( ) °≤≤° − 170,,,span10 11
k

i
k

i
k rrr � for lni �)1( += .
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Fig. 6.12: Constructing the three column vectors ( )k
1r , ( )k

2r , ( )k
3r  of the

linear combination matrix ( )kR  for one artifact (n=1) and two signal
topographies in 3ℜ  (l=3) in the kth iteration. The notation corresponds to
the algorithm described in Appendix A3.

(1) The first column vector ( )k
1r  is the first canonical vector

( )T
1 0,0,1=e  in 3ℜ . Thus, the artifact topography in the first column of

( )k
oC  remains unchanged by linear combination.

(2) The second column vector ( )k
2r  is ( )kα2  away from

( ) ( ) ( )
1112 erru === kkk . There is an infinite number of vectors sharing the

same angle ( )kα2  with ( )k
2u . The direction of the particular vector ( )k

2r  is
determined by ( )k

2r  that is perpendicular to ( )k
1r . The vectors ( )k

1r , ( )k
2r

form an orthonormal basis of the vector space spanned by ( )k
1r , ( )k

2r .

(3) The third column vector ( )k
3r  is ( )kα3  away from ( )k

3u  in direction of
( )k

3r . The vector ( )k
3u  lies in the plane spanned by ( )k

1r  and ( )k
2r . The

vector ( )k
3r  is perpendicular to ( )k

1r , ( )k
2r . The vectors ( )k

1r , ( )k
2r , ( )k

3r
form an orthonormal basis of the vector space spanned by ( )k

1r , ( )k
2r , ( )k

3r .

Table 6.4: Parameters for linear combination of l-n signal topographies in lℜ  as described in
Appendix A3. For i=2 (i.e. n=1) there is no iδ . In this case the total number (Σ) is reduced by 1!

number random initialization
in interval

optimization constrained
to initial interval

iα  for ( ) lni �1+= 1 [10°,170°] yes

iβ  for ( ) lni �1+= l-i [0°,180°] no

iδ  for ( ) lni �1+= 1
�
�

�
�
�

�
°��

�
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� −
° 180

2
1

,0
i yes

� ( )( )
2

3+−− nlnl

6.5.4. A4: Whitening matrix

Let ( ) ( )( ) tlkk ×− ℜ∈= DCS 1  be a matrix whose rows contain the waveforms corresponding to

data matrix tl×ℜ∈D  and topography matrix ( ) llk ×ℜ∈C  in the kth iteration. Let TVVΣ  be the

SVD of  ( ) ( )( )T1 kk

t
SS . Then ( ) llk ×−

ℜ∈Σ= T2
1

VW  is a whitening matrix fulfilling condition 1,



80

i.e. ( ) ( ) ( ) ( )( ){ } ISWSW =TE kkkk . Note that ( )kW  can only be determined if ( ) ( )( )T1 kk

t
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W

having zeros below the diagonal in the first n columns (Golub and van Loan, 1996). With the

inverse ( )( ) 1−kW  having zeros below the diagonal in the first n columns, too, the first n

column vectors ( ) ( )k
n

k
,W1,W ,, cc �  of ( ) ( ) ( )( ) 1

W
−= kkk WCC  are a linear combination of the first n

column vectors ( ) ( )k
n

k cc ,,1 �  of ( )kC  only. Thus, ( )kW  fulfills conditions 1 and 2:

• ( ) ( ) ( ) ( )( ){ } ISWSW =TE kkkk

• ( ) ( )( ) ( ) ( )( )k
n

kk
n

k cccc ,,span,,span 1,W1,W �� = .

6.5.5. A5: Orthogonal log-likelihood contrast

From the normalized (i.e. divided by t) natural logarithm of the likelihood L of the source

separation model ( ) ( ) tlkk ×ℜ∈= WW SCD  in the kth iteration with ( ) llk ×ℜ∈WC  and

( ) ( ) ( )( ) tlk
l

kk ×ℜ∈= T
,W1,WW ,, ssS �  the log-likelihood contrast Lφ  can be derived (Pham et al., 1992;

cf. chapter 3.4.4):

( ) ( )( ) ( )( )��
= =

− =+==
t

j

l

i

kk
ii j

tt 1 1

1
W,WL maxdetlnpln1lnL1 Csφ

where ( ) ( )( )jk
ii ,Wp s  is the probability density function of the ith whitened waveform.

Under the whiteness constraint ( ) ( )( ){ } ( ) { } ( ) ICDDCSS == −− T
W

T1
W

T
WW EE kkkk . With == 1det I

( )( ) { } ( )( )T
W

T1
W detEdetdet −− kk CDDC  and { } constEdet T =DD  it follows ( ) 1

Wdet −kC  is also

constant (Hyvärinen and Oja, 2000). This leads to the following orthogonal contrast function:
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7. Advantages of SCICA over ICA

In this chapter advantages of SCICA over the closely related ICA are demonstrated in the

context of artifact correction. The major drawback of ICA is that artifact components have to

be identified manually in the absence of a suitable automated detection approach. In SCICA

this problem does not occur because artifact topographies are incorporated as prior knowledge

into the decomposition. Being a conceivable alternative to SCICA, a simple automated

detection approach has been developed that identifies artifact ICA components after the

decomposition by correlating each ICA topography with the predefined artifact subspace. In

chapter 7.1 this approach is applied and compared with SCICA. Although automated

detection by topography is successful in many cases, the examples demonstrate that the

approach fails when eye movement artifacts are decomposed into (multiple) ICA components

exhibiting only a low correlation with the predefined artifact subspace. Therefore,

incorporating artifact topographies into the decomposition seems to be superior to making use

of their prior knowledge after the decomposition.

In chapter 7.2 SCICA and ICA are compared in the case of temporally dependent artifact and

brain signal activity. In the first example it is shown that SCICA is clearly superior to ICA if

brain and artifact activity occur simultaneously for some time and subepochs of brain signal

activity without artifact exist. While these periods of isolated brain activity are sufficient for

SCICA, ICA needs at least one further artifact in a different context to express its functional

independence from the brain activity. The second example uses simulated data to illustrate

that neither ICA nor SCICA are suitable if artifact and cerebral activity occur (nearly)

synchronously only as, for instance, in averaged evoked data. SCICA can separate temporally

dependent components, however, if their topographies are known in advance.

ICA analysis was performed with Matlab implementations either of the JADE or the extended

infomax algorithm (see chapter 3.4.5). Due to their close relationship the JADE algorithm was

compared to SCICA with the fourth-order auto-cumulant contrast, and the extended infomax

algorithm was contrasted to SCICA using the log-likelihood objective function. To be as close

as possible to our implementation the kurtosis switching rule in the extended ICA

implementation was replaced by the stability switching rule (Lee et al., 1999).

Before artifact correction the data dimension was reduced (cf. step 1 of chapter 6.1.1). For

real data, only eigenvectors explaining at least 1 % of the total data variance were retained

(1 % rule). For simulated data, the number of eigenvectors was set to the rank of the simulated

epoch (rank rule).
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7.1. SCICA and ICA with automated artifact detection by topography

In the following two examples artifact correction by SCICA is compared to artifact correction

by ICA with an automated artifact detection by topography. ICA components are considered

as artifacts if their topographies exceed a certain correlation, e.g. 90-95 %, with the

predefined SCICA artifact subspace. The examples demonstrate why an automated detection

of ICA components by topography is limited.

7.1.1. Example 1: Removing blinks and eye movements

In the first example artifact correction by SCICA using the log-likelihood contrast is

compared to extended infomax with automated detection of artifact components. Before

artifact correction the dimensionality of the data was reduced to 7 eigenvectors (1 % rule).

In the upper left panel of Fig. 7.1 the original EEG epoch (10 s, 1-70 Hz, referenced to the

average of F3 and F4) containing horizontal eye movements and blinks is depicted. In the

upper right panel the SCICA corrected segment and the SCICA waveforms corresponding to

horizontal eye movement and blink topography are shown. The eye artifacts are removed

without recognizable distortion of the delta activity at parieto-occipital electrodes. Artifact

topographies were derived from averaged blinks and horizontal eye movements. In the lower

left panel the 7 equally scaled ICA waveforms are displayed. Visual inspection of waveforms

and topographies reveals that the blinks are clearly concentrated in component 3 whereas the

horizontal eye movements are less clearly spread over components 2 and 6. Component 6 also

contributes to a negative potential at posterior electrodes (note areas of negative potential are

hatched in the maps). This explains the lower subspace correlation of 85.6 % with the SCICA

artifact subspace in comparison to 95.5 % and 98.9 % for components 2 and 3. The

correlation of the remaining ICA topographies with the SCICA artifact subspace is 79.3 %

(ICA 1), 70.6 % (ICA 4), 67.5 % (ICA 5) and 40.6 % (ICA 7). In this example, the automated

detection of artifact ICA components reveals only artifact components 2/3 assuming a

reasonable threshold of 90-95 %. Removing these two components yields the segment shown

in the lower right panel. Traces Fp2, F7, F8, F9 and F10 still contain a considerable amount of

horizontal eye artifacts. After eliminating ICA component 6 as well, the eye artifacts are

corrected. The distortion at posterior electrodes introduced by component 6 is below visibility

in this case.
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7.1.2. Example 2: Removing cardiac artifacts and eye movements

In the second example artifact correction by SCICA using the fourth-order cumulant-based

contrast is compared to the JADE algorithm with an automated detection of artifact

components. Before artifact correction the dimensionality of the data was reduced to 8

eigenvectors (1 % rule).

In the upper left panel of Fig. 7.2 the original EEG epoch (10 s, 1-70 Hz, referenced to the

average of F3 and F4) recorded with eyes closed is depicted. The epoch contains cardiac

artifacts and small vertical eye movements under the closed eye-lids. In the upper right panel

the SCICA corrected segment and the SCICA waveforms corresponding to vertical eye

movement and EKG topography are shown. The artifacts are removed without apparent

distortion of the alpha rhythm. The vertical eye movement topography was derived from a

single vertical eye movement. The EKG topography was determined from the averaged

QRS-complex of several hundreds of cardiac cycles. In the lower left panel the 8 equally

scaled ICA waveforms are displayed. Visual inspection of the waveforms shows that the

cardiac artifacts are modeled by component 4 whereas the ocular artifacts are represented by

component 6 and also to some extent by component 1. However, the automated detection of

artifact ICA components reveals only component 4 with a subspace correlation of 98.8 %

applying again a reasonable threshold of 90-95 %. As component 6 also contributes to a

positive potential at right temporal and posterior electrodes, its subspace correlation with the

predefined artifact subspace amounts merely to 69.8 %. Component 1 is slightly oblique and

has, therefore, only a subspace correlation of 86 %. The correlation of the remaining ICA

topographies with the SCICA artifact subspace is 55.3 % (ICA 2), 78.7 % (ICA 3), 56.1 %

(ICA 5), 35.6 % (ICA 7), and 33.5 % (ICA 8). Removing the automatically detected

component 4 yields the segment shown in the lower right panel. The ocular artifacts are not

corrected. Applying ICA component 6 as well, the eye movements are eliminated solely in

channels Fp1 and Fp2. The distortions introduced by component 6 are barely visible, though.

Additionally employing ICA component 1, the eye artifacts are completely removed.

However, part of the alpha activity is reduced, too, for example in the first 4 seconds in

channels A1, A2, F9, F10, P9, and P10.
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Fig. 7.1: Comparing SCICA and ICA with automated detection of artifact components by topography
(cf. Example 1 chapter 7.1.1). Upper left: The original EEG segment (10 s, 1-70 Hz) superimposed by
blinks and horizontal eye movements. Upper right: EEG segment after artifact removal by SCICA.
The reconstructed waveforms corresponding to the predefined horizontal eye movement and blink
topography are shown in separate traces at the bottom. Lower left: ICA waveforms and scalp maps for
selected components representing eye artifacts. Below the maps the subspace correlation of the ICA
topography with the SCICA artifact subspace is indicated. Applying a reasonable threshold of
90-95 % only ICA components 2 and 3 are automatically identified as artifacts. Lower right: Segment
after removing the automatically detected ICA components 2 and 3. Artifact removal is incomplete.
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Fig. 7.2: Comparing SCICA and ICA with automated detection of artifact components by topography
(cf. Example 2 chapter 7.1.2). Upper left: The original EEG segment (10 s, 1-70 Hz) superimposed by
cardiac artifacts and small vertical eye movements. Upper right: EEG segment after artifact removal
by SCICA. The reconstructed waveforms corresponding to the predefined vertical eye movement and
EKG topography are shown in separate traces at the bottom. Lower left: ICA waveforms and scalp
maps for selected components representing artifacts. Below the maps the subspace correlation of the
ICA topography with the SCICA artifact subspace is indicated. Applying a reasonable threshold of
90-95 % only ICA component 4 is automatically identified as an artifact. Lower right: EEG segment
after removing the automatically detected ICA component 4. The eye artifacts are not eliminated.
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7.2. SCICA and ICA in the case of temporally dependent activity

In the following examples artifact correction by SCICA and ICA is compared in the case of

temporally dependent artifact and brain activity. The examples demonstrate that incorporating

prior knowledge about the artifact topographies makes SCICA superior to ICA in the case of

temporally dependent activity.

7.2.1. Example 1: Subepochs of signal activity without artifact

In the first example, SCICA using the fourth-order cumulant-based contrast is compared to

the JADE algorithm. Before artifact correction the dimensionality of the data was reduced to 8

eigenvectors (1 % rule).

In panel (A) of Fig. 7.3 the original EEG segment (10 s, 1-70 Hz, referenced to the average of

F3 and F4) is shown. The epoch is contaminated by a single blink in the 4th second. The blink

coincides temporally with one burst of a 3-Hz rhythmic activity most prominent at electrodes

P3 and O1. Thus, artifact and brain signal activity are correlated in this time range. In panel

(B) the 8 equally scaled SCICA waveforms are displayed. Waveform 1 corresponds to the

predefined blink topography depicted below the SCICA waveforms. The blink topography

was defined on an averaged blink. An overplot of the original (red) and the SCICA corrected

(black) EEG is shown in panel (D). The blink is corrected without apparent distortion of the

rhythmic discharges. The amplitude of the delta burst at P3 and O1 in the marked time range

of the blink is more positive after SCICA correction (note positivity is shown downwards)

due to the eliminated negative contribution of the blink at posterior electrodes. In panel (C)

the 8 equally scaled ICA waveforms are displayed. Visual inspection of the waveforms shows

that waveform 6 clearly depicts the blink activity. The corresponding topography, however,

reveals that ICA erroneously combines the blink activity with the temporally dependent

discharge at electrodes P3 and O1 that is part of the rhythmic delta activity. Eliminating ICA

component 6 from the original EEG as shown in the overplot of original (red) and ICA

corrected (black) EEG in panel (E) thus not only corrects the blink but also eliminates the

temporally coinciding delta burst at electrodes P3 and O1 in the marked time range of

overlap.

In panel (A) of Fig. 7.4 the same EEG as in Fig. 7.3 is shown 2 seconds later. The blink that

was in the 4th second in the previous example is now in the 2nd second. In the last second

another blink occurs. The additional blink appears in a functionally different context as it does

not overlap with brain signal activity. Before artifact correction the dimensionality of the data
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was again reduced to 8 eigenvectors (1 % rule). In panel (B) the 8 equally scaled SCICA

waveforms are displayed. Waveform 1 corresponds to the predefined blink topography

depicted below the SCICA waveforms. In panel (C) the equally scaled ICA waveforms are

shown. Waveform 3 clearly contains the blinks. Due to the additional blink, the corresponding

topography 3 exclusively represents the blinks in this case. The overplot of original and

SCICA/ICA corrected EEG is shown in panels (D) and (E). Using either method the blinks

are removed without recognizable distortion of the rhythmic brain activity.

7.2.2. Example 2: No subepochs of signal activity without artifact

In the last example temporally dependent activity is simulated as it may, for instance, occur in

averaged evoked segments. In panel (A) of Fig. 7.5 the dipole simulation using a 4-shell

spherical head model is depicted. The waveforms corresponding to dipoles 1 (artifact) and 2

(signal) are temporally dependent. Signal waveforms 3 and 4 are clearly independent in time.

In panel (B) the 2-s simulated data set is shown. The electrode configuration includes the

standard 10-20 electrodes plus 3 infero-temporal electrodes on either side of the head and

4 eye electrodes. No noise was added to the simulated data. In panel (C) ICA and SCICA are

compared. Before ICA or SCICA decomposition the dimensionality of the data was reduced

to 4 eigenvectors (rank rule). Applying the JADE algorithm yields the waveforms and

topographies shown in the left column. ICA component 2 mainly represents the temporally

dependent activity of dipoles 1 and 2 while component 1 predominantly models the activity in

the small time range where dipole 1 is active without dipole 2. ICA components 3 and 4 are

quite similar to the simulated dipoles 3 and 4. Applying SCICA with the fourth-order

cumulant-based contrast and topography 1 predefined yields the waveforms and topographies

displayed in the middle column. Although the predefined SCICA topography 1 is correct,

SCICA component 2 still erroneously combines the correlated activity of dipoles 1 and 2.

Therefore, SCICA component 1 keeps representing the solo activity of dipole 1. SCICA

components 3 and 4, on the other hand, are almost equivalent to the simulated dipoles 3 and 4.

Finally, in the right column it is demonstrated that SCICA can separate the temporally

dependent sources 1 and 2 provided that both their topographies are known in advance. In

general, however, no prior information will be available about a signal topography.
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Fig. 7.3: Comparing SCICA and ICA in the case of temporally dependent brain and artifact activity
(cf. Example 1 chapter 7.2.1). (A) The original EEG segment (10 s, 1-70 Hz) is superimposed by a
blink that temporally coincides with one burst of the rhythmic brain activity at electrodes P3 and O1.
(B) The 8 equally scaled SCICA waveforms and the predefined blink topography. (C) The 8 equally
scaled ICA waveforms. Waveform 6 represents the blink activity. The corresponding topography
erroneously combines blink and temporally dependent brain activity. (D) Overplot of original and
SCICA corrected EEG segment. The brain activity at electrodes P3 and O1 in the marked time range is
preserved. (E) Overplot of original and ICA corrected EEG segment. The brain activity at electrodes
P3 and O1 in the marked time range is distorted.
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Fig. 7.4: Comparing SCICA and ICA in the case of temporally dependent brain and artifact activity
(cf. Example 1 chapter 7.2.1). (A) The original EEG segment (10 s, 1-70 Hz) starting 2 s later than the
epoch shown in Fig. 7.3 is still superimposed by the blink that temporally coincides with one burst of
the rhythmic brain activity at electrodes P3 and O1 and an additional blink appearing in a different
functional context. (B) The 8 equally scaled SCICA waveforms and the predefined blink topography.
(C) The 8 equally scaled ICA waveforms. Waveform and topography 3 correctly represent the blinks.
(D) Overplot of original and SCICA corrected EEG segment. (E) Overplot of original and ICA
corrected EEG segment. Using either method the brain activity at electrodes P3 and O1 in the marked
time range is preserved.



90

Fig. 7.5: Comparing SCICA and ICA in the case of simulated temporally dependent activity (cf.
Example 2 chapter 7.2.2). (A) The dipole simulation. Waveforms 1 and 2 are temporally dependent.
(B) The simulated data set (2 s). (C) ICA and SCICA decomposition of the simulated data. Only
SCICA with topographies 1 and 2 predefined (right column) can recover the simulated waveforms and
topographies completely.



8. Summary and Discussion

In this thesis two spatial filter approaches for artifact correction in continuous EEG and MEG

recordings have been presented. The spatial filters are based on artifact and brain signal

topographies comparable to the spatial filters derived from MSEC and ICA. Analogous to

MSEC, artifact topographies are derived in advance from single or averaged artifacts of the

same recording session. In order to estimate brain signal topographies two novel approaches

have been introduced in this dissertation: preselection and SCICA.

In the preselection approach brain signal topographies are determined as the eigenvectors of

an artifact-free subset of the data segment. The subset is obtained by excluding sample vectors

that exceed a certain amplitude or correlation with the predefined artifact subspace. The

quality of artifact correction with preselection depends crucially on the subjective choice of

amplitude threshold, correlation threshold and number of eigenvectors. The parameters are

hard to estimate automatically. Incorrect thresholds may result in severe distortion of brain

activity or noise enhancement. The preselection approach is especially useful for artifact

correction during review of spontaneous EEG/MEG recordings as it is sufficiently fast and as

suitable parameter thresholds may be found empirically. The only drawback is that parameters

may have to be adjusted manually from one epoch to another. The approach seems to be less

appropriate to artifact removal in event-related continuous data. An optimal number of

eigenvectors may not be found in this case due to the tradeoff between low SNR event-related

signals and remaining low SNR artifacts in the 'artifact-free' subset. As parameters cannot be

adjusted automatically, the preselection approach is also not suitable for artifact correction in

combination with automated processing such as averaging or mean FFT analysis.

The novel concept of SCICA offers an alternative way of modeling the brain signal subspace.

The basic idea of SCICA is to incorporate the prior knowledge about artifact topographies and

to decompose the artifact-contaminated data into additional brain signal components such that

artifact and brain signal waveforms are maximally independent under the spatial constraint.

Thus, in contrast to any other approach to artifact correction SCICA uses both available

spatial information about the artifacts and the temporal assumption that artifact and signal

waveforms are maximally independent. An iterative algorithm has been introduced in this

thesis performing the decomposition by direct evaluation of an ICA contrast function. To

make the decomposition computationally effective the dimension of the decomposed data

segment, i.e. the number of estimated SCICA components, is always reduced to the minimum

necessary. This is also a standard preprocessing step in ICA decomposition. The SCICA
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approach is not only useful for artifact correction in spontaneous EEG/MEG but seems to be

applicable to continuous event-related recordings too. This issue has only been addressed

theoretically in the current thesis, though. As an iterative decomposition, SCICA is not fast

enough to be employed directly during clinical review of spontaneous EEG/MEG. However,

the approach is sufficiently automated to be applied to the whole recording before review or

in combination with automated, less time-critical processing such as averaging or mean FFT

analysis.

Below, the preselection approach and SCICA are compared with other approaches to artifact

correction, i.e. EOG subtraction, projection method, MSEC and ICA. In contrast to EOG

subtraction and projection method, both new approaches avoid distortion of brain activity by

modeling not only artifact but also brain activity. Contrary to EOG subtraction, neither the

preselection approach nor SCICA depend on an external reference signal. The need for an

external reference signal is a crucial drawback. On the one hand, reference signals are not

available for all types of artifact, e.g. for muscle or line noise. On the other hand, available

reference signals such as the EOG or EKG are not always suitable. The EOG may be

contaminated by brain activity. The EKG incorporates details about the artifact that are not

present in the EEG/MEG.

In comparison to MSEC, preselection and SCICA do not depend on the existence of a dipole

source model and are, therefore, applicable to continuous recordings. Contrary to surrogate

MSEC, preselection and SCICA not only approximate brain activity but try to estimate it

precisely. Nevertheless, optimizing MSEC remains indispensable for artifact correction in

averaged event-related data. Alternatively, SCICA or ICA (Jung et al., 2000b) may be applied

to continuous event-related recordings before averaging.

In contrast to ICA, no a posteriori visual identification of artifact components is necessary

since artifact topographies are known in advance using preselection or SCICA. Visual

identification in each epoch of the recording can be very time-consuming especially if

artifacts are decomposed into different independent components. As a possible alternative to

SCICA, an automated identification of ICA artifact components by topography has been

considered in this thesis. Although often successful, the approach fails if eye movement

artifacts are decomposed into (multiple) ICA components exhibiting only a low correlation

with the predefined artifact subspace. Thus, incorporating known artifact topographies into

the estimate of the brain signal subspace seems to be preferable to an a posteriori

identification of artifact components by topography.
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Determining artifact topographies in advance poses usually no problem. The topography of

horizontal and vertical eye movements, blinks and cardiac activity can easily be derived from

single or averaged artifact prototypes. Oblique eye movements are expressed as linear

combination of horizontal and vertical eye movements. If eye movements or cardiac artifacts

are not completely eliminated by artifact correction, the respective artifact may have to be

modeled by more than one eigenvector. For muscle artifacts and line noise, on the contrary, it

is difficult to find a suitable prototypical pattern. Their topographies may be drawn from an

ICA decomposition or the signal subspace of SCICA by visual inspection of the components.

Once the topographies are determined, they can be used automatically for artifact correction

in any further epoch of the recording. Using one artifact topography for the whole recording

implies that the spatial distribution of artifacts is constant. Although this can often be

assumed, the spatial distribution of artifacts may vary. Cardiac contamination, for example, is

altered if the position of the head relative to the heart changes. The spatial distribution of

artifacts in MEG recordings varies if the position of the head relative to the MEG sensors

does not remain stable. In SCICA small changes of the spatial distribution of artifacts are

compensated by slight variations of the predefined artifact topographies.

ICA and SCICA require that artifact and brain activity are temporally independent. The

spatial distribution of the components, however, does not influence the decompositions. The

contrary holds for the preselection approach. Temporal independence is in general guaranteed

when using sufficiently large data segments. As SCICA incorporates artifact topographies, the

requirement of independence is even less restrictive than in ICA. For SCICA to separate

simultaneous artifact and brain activity it is sufficient if periods of isolated brain activity exist.

ICA needs at least one further artifact in a different context to express its functional

independence from the brain activity. Neither ICA (Jung et al., 2000a,b) nor SCICA are

suitable, however, if artifact and cerebral waveforms closely resemble and occur (nearly)

synchronously only as, for instance, in averaged evoked recordings. In that case SCICA will

probably yield a brain signal component whose topography combines the artifact and cerebral

spatial distribution and whose waveform represents the synchronous time course of both

sources. The waveform corresponding to the predefined artifact topography depicts only the

small residual periods of solo artifact activity. SCICA can separate such synchronous sources,

however, if their topographies are known in advance.

Both approaches introduced in this thesis present an important improvement over earlier

approaches to artifact correction. Above all they are capable of fulfilling the main goal of

artifact correction that is to remove artifacts completely without relevant distortion of brain
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activity. We conclude that SCICA is superior to the preselection approach. Although SCICA

is not as fast as preselection it provides a more comprehensive model of brain activity as the

brain signal subspace is estimated from the whole data segment. SCICA is easier to use than

preselection as no crucial parameters have to be set. Moreover, SCICA seems to be applicable

to artifact correction in continuous event-related EEG/MEG recordings too. Both novel

approaches may also be utilized in other contexts. One possible application is to trace further

occurrences of a particular signal of interest, e.g. an epileptiform spike, by generating a

waveform depicting only the signal of interest comparable to the reconstructed artifact

waveforms.
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10. Abbreviations

EEG electroencephalography, electroencephalogram, electroencephalographic

EKG electrocardiogram

EOG electro-oculogram

HEOG horizontal electro-oculogram

ICA independent component analysis

MEG magnetoencephalography, magnetoencephalogram, magnetoencephalographic

MSEC multiple source eye correction

PCA principal component analysis

pdf probability density function

SCICA spatially constrained independent component analysis

SNR signal-to-noise ratio

SVD singular value decomposition

VEOG vertical electro-oculogram
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11. Mathematical notation and symbols

a small letters in italics denote variables or scalars

a small boldface letters denote column vectors

A capital boldface letters denote matrices
mℜ∈a vector of m real elements

nm×ℜ∈A matrix of m rows and n columns; each matrix element is a real number

A(:,1:n) matrix composed of all rows and columns 1 to n of matrix A

AT, aT transpose of matrix A or column vector a
-1A inverse of a nonsingular square matrix A

2
1-

A square root of the inverse of A; 12
1-

2
1- −= AAA

†A Moore-Penrose pseudo-inverse of matrix A

a length of vector a, aaa T=

2
A 2-norm of matrix A

Cum[a1, ..., ar] rth order cumulant

det(A) determinant of square matrix A

diag(a) square matrix: diagonal is equal to a, off-diagonal elements are zero

diag(a1, ..., an) square matrix: diagonal is equal to a1, ..., an, off-diagonal elements are zero

diag(A) vector built from the diagonal of matrix A

E{a} expectation, i.e. average of elements of a

ei ith canonical vector having 1 at the ith position and zeros elsewhere

)(g x′ first derivative of function )g(x

I identity matrix, i.e. diag(1,…,1)

ln(x) natural logarithm of x

range(A) vector space spanned by the column vectors of matrix A

rank(A) dimension of vector space spanned by the column vectors of matrix A

sign(a) signum function, 1 for a > 0, -1 for a < 0

span(a1, ..., an) vector space spanned by the column vectors a1, ..., an

φ contrast function
oφ orthogonal contrast function

∝ proportional to
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