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Non-technical summary

The establishment of the EMU was accompanied by a broad discussion of potential core-
periphery tendencies and asymmetric regional developments due to possible stronger sectoral
concentration and regional specialisation. Up to now, we have no clear indication about the
level of regional specialisation in the EU, specifically not about the specialisation tendencies
to be expected due to increased factor mobility and market integration. In an analysis of the
determinants of the level of relative investment specialisation in EU regions, Stirboeck (2002)
provided evidence on the importance of regional size, gross domestic product, population
density, the number of patents, economic openness, capital market integration, and the
peripheral or central location of the region in the explanation of the even or uneven sectoral
allocation of gross fixed capital formation. In this study, the sensitivity of the results in
Stirboeck (2002) is tested with respect to the influence of differing formulations of
specialisation measures. In addition, the spatial pattern of the data and the potential spatial
interdependence between EU regions are taken into account. Besides classical econometric
techniques, spatial econometric procedures are thus applied.

In order to test the robustness of the potential impacts, a Gini-coefficient, a coefficient of
variation, as well as a Finger-Kreinin-index, are calculated to measure the level of relative
regional specialisation of 56 NUTS 2- and 33 NUTS 1-regions. The respective sectoral
allocation is measured in relation to the average EU investment structure. We consistently get
the same results for all three indicators in GLS estimates, estimates in logit terms,
instrumental variable estimates to control for potential effects of reverse causation, and a
dynamic specification capturing possible first-order correlation effects. We find a bigger
market size as well as a larger size of the region to reduce the level of regional specialisation.
A higher unemployment rate, increasing economic openness, higher population density, the
fact of being a central region, and the distance from this central region, instead, increase
regional specialisation.

Independent of the specification of the spatial dependence, the spatial econometric regressions
display negative spatial dependence or correlation. The OLS test diagnostics on spatial
dependence point to a negative spatial error correlation, what is in line with the information
criteria which indicate a better performance of the spatial error model compared to the spatial
lag model. This negative spatial correlation of the error terms might simply be a result of
measurement errors. Data inconsistencies, the regional databases’ shortcomings as well as
incompatibilities of the units of observation with actual economic regions may be one reason
for such spatial nuisances in the data. Further improvements of the spatial econometric
estimates can be obtained by adding spatially lagged external variables. This, however, leads
to rather inconsistent results, largely depending on the specific model and spatial weights
matrix chosen. However, independent of the spatial dependence model accounting for
regional interactions and spatial correlation in the regional data, we can confirm the
determinants of relative regional specialisation identified with the classical econometric
methods.
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I Motivation

The establishment of the EMU was accompanied by a broad discussion of potential core-
periphery tendencies and asymmetric regional developments due to possible stronger sectoral
concentration and regional specialisation. Sectoral concentration or regional specialisation
enables the exploitation of industry-level economies of scale and knowledge spillovers. How-
ever, the absorption of asymmetric shocks or growth imbalances by national monetary poli-
cies is reduced. Up to date, we have no clear indication about the level of regional specialisa-
tion in the EU and especially not about the specialisation tendencies to be expected due to
increased factor mobility and market integration.

In traditional trade theory, regional specialisation across sectors is assumed to be in accor-
dance with comparative advantages. Market integration increases regional specialisation in
line with trade expansion. Agglomeration tendencies such as a high density of population,
capital or economic activity in only one regional area and a disequilibrium in economic de-
velopments are, however, not to be expected. Gravity models in international economics
(Tinbergen, 1962; Linnemann, 1966) explain economic flows between regions through
gravitational and resistance forces such as market size or market potential, distance, barriers
to international activity etc. The spatial concentration of e.g. investments can thus be the re-
sult of gravitational forces which become stronger as soon as resistance forces, such as trans-
port costs or imperfect integration, weaken.

The new economic geography has sharply increased the importance of regional economic
theory in the 1990s. It has induced a new wave of attention to concentration and specialisation
patterns. However, already before the 1990s, polarisation theories in the framework of re-
gional economics have provided explanations for circular and cumulative agglomeration ten-
dencies due to “forward and backward linkages” (Hirschman, 1958) or “backwash-effects”
(Myrdal, 1957) which are unfortunate for peripheral regions. Since Krugman (1991), the new
economic geography has gained a special focus of attention as according to these models,
specialisation need not – like in the neo-classical world – develop according to the compara-
tive advantage of regions, but can be the result of historical conditions and macroeconomic
(partly random) processes. Thus, even similar regions can develop differently and the result-
ing patterns of specialisation are ex ante unpredictable. Due to the existence of economies of
scale at the plant level (further increased by economies of localisation at the industrial level),
firms do not produce at each single place of local demand. Instead, the production of each
differentiated good is locally concentrated and close to large markets. The core thus special-
ises in scale-intensive economic activity, the periphery in agriculture or industries with con-
stant or decreasing economies of scale. Transport costs are a centrifugal force working against
the concentration of production. In case of high transport costs, the allocation of production
over space is rather persistent. Decreasing transport costs, though, strengthen the centripetal
force of economies of scale and might thus be a trigger for the concentration of production.

A number of empirical studies on sectoral agglomeration tendencies as well as regional spe-
cialisation have emerged in the last years. Though, only few provide econometric evidence on
the determinants of sectoral concentration or regional specialisation. In addition, the regional
(not national) focus as well as the analysis of capital (not only production, trade or employ-
ment) patterns, is neglected. An overview on recent descriptive and econometric studies on
the named topics is given by Stirboeck (2001, 2002).

In an analysis of the determinants of the level of relative investment specialisation, Stirboeck
(2002) provided evidence on the importance of regional size, gross domestic product (GDP),
population density, the number of patents, economic openness, capital market integration, and
the peripheral or central location of the region in the explanation of the even or uneven secto-
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ral allocation of gross fixed capital formation. These analyses are now extended in this study
testing for the sensitivity of the results with respect to the influence of different specialisation
measures. In addition the spatial pattern of the data and potential spatial interdependence is
accounted for. Besides classical econometric techniques, spatial econometric procedures are
thus applied in the following.

II Determinants of relative regional specialisation levels

Based on the above referred different theoretical approaches, the level of  regional specialisa-
tion in terms of gross fixed capital formation is to be explained by a large number of eco-
nomic variables. However, explanatory variables added in this analysis are to some extent
limited by data availability. Including the core variables mentioned above, the following
specification was tested in Stirboeck (2002)1 to explain the level of relative regional speciali-
sation (LEVSPEC):

LEVSPECj = β0 + β1MARj + β2AREAj + β3PODENj + β4UEWPj + β5DISTj 

+ β6INTj + β7CENTRj

The market size (MAR) of region j is approximated by gross domestic product (GDP). Addi-
tional important exogenous variables are the size of a region (AREA), population density
(PODEN), unemployment rate in percent of working population (UEWP) which are all taken
from the REGIO database. The distance of the region to the economic centre (DIST) captur-
ing peripherality effects, an index of economic openness (QUINN_OPENN) reflecting market
integration (INT)2 as well as an indicator variable for central, economically most important
regions (CENTR) are added. Details on all these variables are given in the appendix A. We
now extend the analysis to test for the sensitivity of the results with respect to different esti-
mation techniques and regional specialisation indicators.

In order to abstract from size and classification effects (i.e. the differing importance of sectors
and the possibly inadequate disaggregation of economic activity in subsectors) in the calcula-
tion of regional specialisation, we refer to relative specialisation measures, i.e. specialisation
in relation to an economy of reference. This is important since the absolute allocation of eco-
nomic activity across sectors does not tell us anything about a particularly high level of secto-
ral engagement of a region while this is what we focus on: relative allocation and hence, rela-
tive specialisation. It is the unequal size of regions or sectors which generally causes the dif-
ference between the absolute and the relative specialisation index3.

Relative regional specialisation in the EU can, of course, be analysed applying two different
perspectives. First, it is possible to investigate the regional investment structure in relation to
the national one which would be a national perspective. Second, the regional investment
structure can be compared to the average EU structure, what means adopting a European per-

                                           
1 We exclude the number of patents in the following estimates as regional data on this variables are only avail-

able since 1989.
2 In Stirboeck (2002) an indicator of capital market integration was additionally tested and confirmed the results

for the economic openness indicator.
3 While measures of absolute allocation are influenced by regional size and sectoral classification, measures of

relative allocation are influenced by the sectoral patterns of either the economy of reference or the average
pattern of the group of countries included. In case of a very special pattern of the reference economy, the
relative specialisation pattern of the economic entities analysed can be biased. Further details on the con-
struction of different relative and absolute concentration and specialisation indices can be found in Stirboeck
(2001) as well as Krieger-Boden (1999).
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spective. Both perspectives lead to slightly different specialisation patterns. These differing
perspectives, however, appear to influence the regression results only to a negligible extent
(Stirboeck, 2002). In this analysis, we thus focus on the European perspective. Up to 17 dif-
ferentiated sectors – consistent to the industrial classification of Nace Rev. 1 - Nomenclature
des activités économiques dans les Communautés Européennes - are available in the REGIO
database and are included in this study.

The regional economic literature suggests a number of measures of regional specialisation.
The studies of Krugman (1991), Brülhart (1998), Klüver and Rübel (1998), and Amiti (1999)
refer to a Gini-coefficient. However, Sapir (1996) analysing absolute country specialisation
with export data made use of the Herfindahl index instead, Greenaway and Hine (1991) as
well as Kalemli-Ozcan, Sorensen and Yosha (1999) apply the Finger-Kreinin index.

In order to test the robustness of the explanatory variables, three different formulations of
relative regional specialisation levels are included in the classical econometric analysis:

1. A coefficient of variation4 (VCCFEU) is calculated as follows:

sr
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It thus measures the variation of the relative investment shares Bsr
5 and captures their degree

of homogeneity. This coefficient ranges in the interval [0, 1n � ]. It is standardised by di-

viding by 1
1n �

 to lie in the [0,1] interval.

2. A Gini-coefficient6 (GCCFEU) of the region in focus is calculated as suggested by Krug-
man (1991) and applied in most recent empirical work. The cumulative sums of sectoral

                                           
4 The coefficient of variation stresses changes at the outer sides of the distribution of relative sectoral shares

which contrasts to the weighting of the Gini-coefficient described in footnote 5.
5 Relative investment indices have been constructed by dividing the sectoral investment share of the respective

region sij by the average investment share of the sector in the reference economy ri:
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with i (j) as the sectoral (regional) index. As a result, this adapted „Balassa-index“ reflects the relative in-
vestment performance of a region in a sector. If the region’s investment in one sector is relatively strong
(low) compared to the other regions, the index is higher (smaller) than 1.

As national GFCF data are not in all cases as complete as we wish them to be, we had to use adequate but differ-
ent data representing the economic extent or importance of the different sectors in any country or region to
calculate sectoral specialisation indices. Therefore it is referred to data of gross value added at factor costs
when calculating EU sectoral shares. Eurostat (2000b) similarly uses the regional contributions of national
gross value added as distributional weights when dividing the national values of GDP among the regions.

6 The Gini-coefficient gives strong weight to the middle parts of the distribution of relative sectoral shares. As a
consequence, changes in industrial sectors with relative shares similar to the median structure have a larger
effect on the value of the Gini-coefficient than changes in industrial sectors at the outer sides of the distribu-
tion (Cowell, 1995). However, the coefficient’s range between 0 (low concentration) and (N-1)/N (high con-
centration) usually reflects well differences in the level of concentration. Therefore, the Gini-coefficient is
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shares of the given regions are thus plotted against those of the reference economy ranked
according to the Balassa-indices. Both sectoral structures are thus compared. In case of equal
sectoral structures, we get a Gini-coefficient of zero representing a low level of relative in-
vestment specialisation. The Gini-coefficient ranges between 0 and (N-1)/N. The standardised
Gini-coefficient G*N/(N-1) – ranging between 0 and 1 – is referred to as the Lorenz-
Münzner-coefficient.

The outcome of the Gini-coefficient is slightly different from the one of the coefficient of
variation. Both sectoral shares, the one of the respective region as well as the one of the refer-
ence economy, influence the value of the Gini-coefficient. If a large sectoral share in e.g. the
reference economy is confronted with an even larger sectoral share in the region in focus, the
value of the Gini-coefficient is largely determined by this economically important sector. This
is the case for a number of regions.

3. The Finger-Kreinin-index (FKCFEU) is a bilateral comparison of sectoral shares of the
region in focus and the average EU pattern. It is defined as:

,min( )
n

j ij i
i

FK s r��

with sij as the share of region j and ri as the share of the reference economy in sector i.

The first two indices are standardised to range between 0 (low specialisation) and 1 (high spe-
cialisation) while The Finger-Kreinin-index per definition lies in the interval [0,1]. Its inter-
pretation, though, is inverse to the other two indices with 0 as perfect specialisation and 1
reflecting sectors of equal relative importance. A graphical comparison of all three indicators
shows a similar development over time, the main difference is a generally lower value of the
coefficient of variation which, however, does not influence its course. We therefore do not
expect sharply differing results when using these alternative measures.

The estimates for the NUTS 2-level are displayed in Table 1, those for the higher aggregated
NUTS 1-regions in the appendix in Table B1. For all three indicators measuring the regional
level of specialisation, the estimates, indeed, mostly demonstrate the same significant deter-
minants. We consistently get the same impact for the significant variables, i.e. an opposite
sign of the explanatory variables in the analysis of the Finger-Kreinin index compared to the
analyses of the coefficient of variation as well as the Gini-coefficient.

As the indicators are restricted to lie in the range between 0 and 1, we are possibly confronted
with an econometric modelling problem in a simple linear specification. The specification was
therefore additionally formulated in logit terms, i.e. a logistic transformation of the estimation
model: z = ln [y/(1-y)]. This leads to the same significant determinants (see Table 1 and B1),
since none of our specialisation indicators lies near the extremes of the given range.

We find a bigger market size (except for the Finger-Kreinin index at NUTS 2-level) as well as
a larger size of the region to reduce the level of regional specialisation. A higher unemploy-
ment rate, increasing economic openness7, the fact of being a central region as well as the
distance from this central region, instead, increase regional specialisation. The population
density is not consistently significant in the estimates. When running separate estimates in-

                                                                                                                                       
the most widely used inequality measure in the analysis of the spatial allocation of sectors or sectoral alloca-
tion of regional economic activity.

7 This variable is not significant for the Gini-coefficient at NUTS 2-level. However, for the other two coeffi-
cients as well as at NUTS 1-level, we get a significant and positive impact on the level of specialisation.
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cluding either population density or the central region dummy as an explanatory variable at
NUTS 2-level, we find a significant increasing impact on specialisation of both variables
which is in line with the results at NUTS 1-level.

The results of the estimates at NUTS 1-level are mostly comparable to those at NUTS 2-level.
Only the variables DIST as well as AREA are not significant for two of the three indicators.
In addition, the unemployment rate is insignificant for the Finger-Kreinin-index. For the re-
spectively significant coefficients, we get consistent signs. The insignificance of the regional
size variable at NUTS 1-level might simply be due to the fact that NUTS 1-regions are less
varying in their size than NUTS 2-regions.

Table 1: Estimation Results for the Determinants of Relative Regional Investment
Specialisation, NUTS 2-level, 1985-1994

VCCFEU GCCFEU FKCFEU VCCFEU GCCFEU FKCFEU
level level level logit logit logit

Constant 0.1083 0.3322 0.8012 -1.9003 -0.7137 1.3482
2.86 10.80 25.70 -10.69 -5.24 9.41

GDP -0.0007 -0.0004 -0.00005 -0.0037 -0.0019 -0.0001
-4.96 -4.00 -0.24 -5.8 -3.95 -0.14

CENTR 0.1656 0.1654 -0.1277 0.9647 0.7001 -0.5850
5.75 7.06 -7.16 7.13 6.76 -7.14

UEWP 0.0048 0.0065 -0.0061 0.0272 0.0266 -0.0280
4.68 7.78 -8.02 5.67 7.25 -7.96

PODEN 0.0044 0.0015 0.1043 -0.0269 0.0144 0.4456
0.63 0.26 1.89 -0.82 0.57 1.76

AREA -0.0012 -0.0015 0.0018 -0.0074 -0.0060 0.0085
-2.25 -3.28 4.18 -2.88 -3.03 4.17

QUINN_OPENN 0.0055 0.0026 -0.0075 0.0288 0.0123 -0.0361
2.01 1.18 -3.30 2.26 1.26 -3.47

DIST 0.0598 0.0678 -0.0463 0.3583 0.2881 -0.2187
3.08 4.30 -3.81 3.93 4.13 -3.91

DUM_FRA 0.0056 -0.0295 0.0292 0.0026 -0.1202 0.1308
0.51 -3.33 4.35 0.05 -3.07 4.25

DUM_BEL 0.1596 0.1141 -- 0.8008 0.4872 --
10.94 9.63 11.70 9.29

DUM_IRE 0.0537 0.0003 -0.3303 0.1737 -0.0139 -1.5011
0.99 0.01 -9.77 0.68 -0.07 -9.66

DUM_LUX -0.1065 -0.1939 -0.0541 -0.5969 -0.8364 -0.2202
-2.49 -5.58 -2.05 -2.97 -5.44 -1.82

DUM_DEN 0.0300 -0.1177 -0.3818 0.1420 -0.4982 -1.6813
0.69 -3.35 -14.11 0.70 -3.21 -13.52

no. obs. 487 487 377 487 487 377
SSR 3.6470 2.4063 1.0514 80.2778 47.1407 22.2063
Log Likelihood 500.75 602.00 573.84 -252.05 -122.42 -274.34
Prob Chi2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AIC -2.003 -2.419 -2.975 1.088 0.556 0.075

Note: Lines below the coefficients report the z-values of the GLS estimates. SSR displays the sum of
squared residuals. The probability of the Chi²-test gives the overall fit of the model. Since sectoral sums
for gross fixed capital formation are not available for Belgian regions, we cannot calculate Finger-
Kreinin indices for the 110 NUTS 2-Belgian regions.
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In the specification used so far, we cannot exclude a potential problem of reverse causation
between the level of capital concentration and regional gross domestic product or the regional
rate of unemployment8. In order to control for such problems of endogeneity, instrumental
variable regressions have been run additionally by the use of lagged values of the unemploy-
ment rate as well as of gross domestic product. Results presented in Table B2 are very similar,
since most coefficients are nearly identical9.

In order to take account of potential time correlation effects, a simple dynamic specification
capturing first-order serial correlation was tested additionally. Results are also presented in
Table B2. Besides the size of the region (at NUTS 2-level) and the distance to the centre, the
impact of the explanatory determinants on regional investment specialisation patterns is
mostly confirmed10.

Our results are thus neither sensitive to the estimation method nor to the formulation of the
indicator of regional specialisation. When controlling for spatial interdependencies in the fol-
lowing, we restrict our analysis of potential spatial autocorrelation to the coefficient of varia-
tion.

III Spatial econometric estimates

Regional economic developments and specialisation tendencies potentially underlie spatial
dependence or interaction. If economic events in neighbouring regions are not independent,
but influence each other, there is spatial dependence. In addition, regional data might have
shortcomings such as a bad quality due to measurement problems or inadequately defined
regional units, what is reflected in spatial autocorrelation. Standard regressions do not account
for spatial dependence or autocorrelation thus leading to inefficient inference or even biased
estimates in case of significant spatial processes. In addition to the use of classical economet-
ric methods presented so far, we therefore refer to models of spatial econometrics in this sec-
tion, which explicitly take account of spatial interaction (see e.g. Anselin, 1988). The struc-
ture of spatial interconnectedness is usually imposed by so-called spatial weights matrices
(W). Wy, e.g., thus displays the spatially weighted average of y in nearby regions. A number
of different spatial econometric models – as well as combinations of those – can be formu-
lated: spatial correlation of the error term in e.g. a spatial autoregressive error model, of the
endogenous variable itself in a spatial lag model as well as of explanatory variables in a spa-
tial cross-regressive model11.

                                           
8 It is possible that the level of regional GDP (UEWP) increases (decreases) due to a strong specialisation in a

sector with high growth-potential. On the other hand, a strong specialisation in the “wrong” sectors can also
weaken GDP or augment UEWP. We thus see no obvious and clear reverse causation.

9 We restricted these robustness tests to the Gini-coefficient and the coefficient of variation since only these two
include all observations (resp. all regions).

10 When excluding the British observations from the regressions at NUTS 1-level, we can also confirm the im-
pact of the distance to the centre. Since we generally have information on only few sectors for the British re-
gions, the British specialisation indices are less reliable than the other indices.

11 In addition to spatial error models with a spatial autoregressive error term, the disturbance term can also fol-
low a spatial moving-average process. For a discussion of different first or higher order spatial processes
combining spatial autoregressive dependent variables or error terms, spatial moving-average error terms as
well as spatially lagged external variables in such called “SARMA”- or “SARMAX”-models, see e.g. An-
selin/Bera (1998: 251f).
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In a spatial autoregressive error model, �12 captures the spatial autoregression of the error
term � while u is the independently and normally distributed error term with constant vari-
ance:

Y = X� + � , � = � W� + u = (I - � W)-1u,      u ~ N (0, �²u I). (M1)

The spatial autoregressive parameter � thus displays the strength of correlation between the
disturbance term � and the weighted average of the disturbance terms of neighbouring regions
W�.

In a spatial lag model, � is the spatial autoregressive parameter which measures the reaction
of Y to economic developments in surrounding areas, i.e. spatial spillovers or the influence
exerted by a change in the specialisation level of a neighbouring region on the level of spe-
cialisation in region j:

Y = �WY + X� + v ,      v ~ N (0, �²u I) . (M2)

Besides spatially interdependent endogenous variables, spatially interdependent economic
events might affect neighbouring regions through spatially lagged exogenous variables, thus
giving rise to a “ spatial cross-regressive model” with spatial regressive explanatory vari-
ables:

Y = X1�1 + WX2�2 + w ,   w ~ N (0, �²u I) . (M3)

A model specification with spatially lagged explanatory variables only can be estimated by
simple OLS estimates13. However, to prevent inefficient or even biased estimates in case of
spatial lag or error dependence, we have to refer to different estimation methods. A standard
technique to deal with spatial lag dependence or spatial autoregressive error terms is to con-
duct Maximum-Likelihood (ML) estimates14.

The standard software (SpaceStat1.90) for this kind of analysis does not capture time-space-
models15. However, as explained above, the simple dynamic relationship (presented in Table
B2) provides evidence for significant serial first-order correlation. But this dynamic specifi-
cation also confirms our results for the main determinants of the level of regional specialisa-
tion. Due to this, we might now limit our estimations to pure space models. Since the tests on
spatial dependence require a normal distribution in the errors of the models estimated, we
eliminate outlying observations from the datasets so that the hypothesis of the non-normality

                                           
12 In spatial processes, the spatial autoregressive parameters are not restricted to the usual interval (–1,+1). The

parameter space is instead restricted by 1/ωmin and 1/ωmax with ωmin and ωmax as the smallest and largest ei-
genvalues of the spatial weights matrix implemented in the regression. In case of row-standardised weights
matrices ωmax =1, but ωmin > -1. Thus, the spatial autoregressive parameters of the spatial autoregressive error
model as well as the spatial lag model can be smaller than –1 (Anselin, 2001: 321).

13 See e.g. Haining (1990: 344-50). A problem of multicollinearity (between X and WX), however, arises in case
of spatially autocorrelated external variables. In this case, estimated parameters have to be interpreted care-
fully.

14 While OLS provides biased estimates in case of spatial lag dependence, it leads to unbiased, but inefficient
estimates in case of spatial autocorrelation of the error terms. Since the autocorrelation parameter � is un-
known, we cannot simply conduct weighted least squares estimates, however, and have to refer to maximum-
likelihood estimates as well. For further details on this topic, see e.g. Anselin (1988, 1999a).

15 The implementation of simultaneous time-space effects would have high computational costs and be rather
complicated. In the past, different solutions to this problem have been suggested. Schulze (1982) e.g., first,
eliminates serial correlation and, second, models the spatial dependence what he refers to as a “four-step-
Aitken procedure”.
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of errors can be rejected for each model presented in the following, i.e. we can assume a nor-
mal distribution of the error terms16.

In order to prevent that our findings are due to the formulation of spatial dependence imposed
by the spatial weights matrix, we control the sensitivity of our results with respect to different
weights matrices17. First, we include two inverse distance matrices and, second, a neighbour-
hood contiguity matrix. The distance matrices are based on Euclidean distances between ad-
ministrative centres of the regions as well as between regional centres as provided by the
ArcView software. We use the squared inverse of both distance matrices which thus reflects a
decreasing intensity of influence of nearby regions with increasing distance18. In addition, we
use a neighbourhood contiguity matrix, with the element wij = 1 in case of a common border
of the regions i and j, and 0 otherwise, while the diagonal is set to 0.

Graph 1: Moran Scatterplot for NUTS2-regions with bivariate regression line, aver-
age level of relative specialisation for 1985-94, squared inverse distance between re-
gional capitals
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Note: Z_VNCFEU displays the deviation of the different VNCFEU from their mean while W_VNCFEU
represents the spatially weighted average of the neighbouring values.

                                           
16 Tests on normality of errors are based on skewness tests as well as Jarque-Bera tests – both are applied in such

a way that the non-normality of errors cannot even be assumed at the 10% level of significance. By this, we
can suppose a normal distribution of the residuals.

17 However, a common procedure is also to test a variety of slightly differing distance matrices in order to find
the spatial weights matrix that best fits the underlying process of spatial dependence like e.g. in Molho
(1995) or Niebuhr (2001).

18 We additionally tested for the potential influence of inverse distance matrices with constant influence. In many
cases, we got similar results, though the estimates’ fit was generally not as good as the one for the preferred
weights matrices capturing a decreasing strength of the influence of neighbourhood economic activity.
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The Moran scatterplot was introduced by Anselin (1995)19 and is used to visualise the patterns
of spatial association between neighbouring regions. It thus gives a description of the spatial
distribution of the variable observed. The Moran scatterplot in Graph 1 displays the spatial
association between the 56 regions (Anselin, 1996) with respect to their average level of spe-
cialisation and the spatially weighted average of the neighbouring values (W_VNCFEU). The
levels of specialisation are taken as deviations from their means (Z_VNCFEU), the scatterplot
is thus centred around [0,0]. By this, different scatterplots are comparable. In the upper right
and the lower left quadrant, those regions are displayed which are surrounded by similarly
specialised regions and are thus marked by positive spatial association. Regions with dissem-
bling neighbours are located in the upper left (regions with low specialisation surrounded by
highly specialised regions) and the lower right quadrants (vice versa). Using the weights ma-
trix of the squared inverse distances of regional capitals we find four outlying regions20: Brus-
sels (BRU), Namur (NAM), Luxembourg/Belgium (LUB)21  and Basse-Normandie (BNO) all
with a strongly uneven allocation of relative investment shares. The two former, however, are
surrounded by similarly specialised regions while the two latter are surrounded by dissimilar
regions. The degree of linear association between the vectors Z_VNCFEU and W_VNCFEU
is displayed by the linear regression line superimposed in Graph 1. The linear association
between the average specialisation levels of the 56 regions and the spatially weighted average
of the neighbouring regions’ specialisation levels is thus positive.

In addition to the visualisation of the linear association by use of the bivariate regression line
in a Moran scatterplot, its degree, i.e. the slope of the bivariate regression line, is also for-
mally indicated by the Moran I statistic. Moran I is defined as I=y’Wy/y’y with W as the row-
standardised weights matrix (Anselin, 1995: 105)22. The Moran I coefficient is centred around
its theoretical expected mean which is -1/(N-1). Values larger than its expected mean display
positive spatial autocorrelation. Referring to all 442 observations23 of the 56 regions we ana-
lyse, and not the regional averages like in the graph above, this expected mean amounts to
-0.0023. For the two squared inverse distance matrices, the different significant Moran I-
values are 0.2477 (distance between regional capitals) and 0.2445 (distance between regional
centres), and 0.2452 for the neighbourhood-contiguity matrix – at a 1%-level of significance
respectively. The Moran coefficient thus points to a significant positive spatial autocorrelation
of the level of specialisation, i.e. regions with similar levels of specialisation are more spa-
tially clustered than in the case of random patterns. In other words, regions with a high (low)
level of specialisation are likely to be surrounded by highly (low) specialised regions.

However, from this kind of analysis, we only get information about spatial associations, i.e.
the spatial clustering of similar or dissimilar regions. Evidence on spatial dependencies or
even causal interactions have to be derived from spatial regression analyses.

                                           
19 The exploratory spatial data analysis tools rely on the methods of exploratory data analysis following e.g.

Tukey (1977).
20 In the standardised Moran scatterplot, those values further than two units away from the origin are ususally

treated as outliers according to the two-sigma rule (Anselin, 1995: 45).
21 However, we have to note than in contrast to the Italian and French regions, specialisation indices for Belgian

regions only base on 11 of the 17 sectors.
22 For further details on the Moran I coefficient see Anselin (1996: 115ff) and Anselin (1992: 132f).
23 We now refer to the 442 observations of the restricted dataset which lead to normally distributed residuals in

the OLS estimates of the given specification.
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III.1 Spatial lag and error dependence models

Table 2 displays the diagnostics on the potential spatial structure to be found in the distur-
bance terms of simple OLS estimates. Evidence on spatial dependence in our analysis of rela-
tive regional specialisation levels is provided by a number of tests. The Moran I test24 is a
general test on spatial correlation without giving precise information on the particular spatial
structure. It provides evidence for a negative spatial dependence as the two significant Moran
I values are smaller than its expected value of –0.0023. In addition to the Moran I test, we
refer to two tests basing on the Lagrange-Multiplier (LM) principle which both test for a spe-
cific form of spatial dependence. The LM-error test, suggested by Burridge (1980), tests the
null hypotheses of no spatial correlation of the residuals: H0: � = 0. The LM-lag-test, intro-
duced by Anselin (1988), tests the one of absence of spatial dependence of the endogenous
variable: H0: � = 0 25. In all cases, the Lagrange Multiplier (LM)-error test has a higher value
than the LM-lag-test thus pointing to a model of spatial error dependence rather than of spatial
lag dependence26.

The significant spatial structure in the residuals thus provides evidence that the GLS estimates
presented above suffer from a misspecification. Our aim is now to investigate these effects in
more detail in order to check for robustness of the determinants and efficiency of the
coefficient tests identified by use of classical econometric techniques.

Table 2: Diagnostics on Spatial Dependence, OLS estimates

ID_K2 ID_Z2 NGH_CM
Moran's I (error) -9.6033 *** -9.4960 *** -7.9972 ***
Lagrange Multiplier (error) 45.4157 *** 42.9428 *** 43.2672 ***
Lagrange Multiplier (lag) 20.8389 *** 17.6116 *** 18.3823 ***

Note: Spatial weights matrices are defined as follows: ID_K2: squared inverse of distance between regional
capitals; ID_Z2: squared inverse of distance between regional centres; NGH_CM: neighbourhood contigu-
ity matrix with the element wjk = 1 in case of a common border of the regions j and k, and 0 otherwise.

With respect to the spatial lag specification presented in Table 3, we get a significant spatial
lag (W_VNCFEU) with � differing between –0.15 and –0.34 for the three weights matrices. A
higher level of specialisation in one region significantly reduces specialisation in the neigh-
bouring regions. Therefore, we seem to be confronted with a negative spatial interaction be-
tween the levels of regional specialisation of surrounding areas. Regarding the other explana-
tory variables, the model’s results coincide with the above found results. While the LR-tests
confirm the spatial lag dependence, the test diagnostics for further spatial error dependence
provide evidence for a still existing spatial structure in the error terms.

                                           
24 The same test statistic, we used earlier on to analyse the spatial association of the VNCFEU variable, is now

applied to the residuals of the OLS regression. For further details, see Anselin and Bera (1998: 265ff).
25 For detailed information on both tests, see Anselin and Bera (1998).
26 In addition, we also pay attention to two further modifications of these spatial LM-tests, the robust LM-lag and

LM-error tests which control for a joint significance of both, spatial lag and error dependence. These are de-
veloped by Bera and Yoon (1993) and are discussed in detail in Anselin et al. (1996). However, throughout
the study they do not provide other information than the “simple” LM-error and LM–lag tests.
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Table 3: Maximum-Likelihood Estimates of Spatial Lag Models (442 obs.)
VARIABLE \ weights matrix ID_K2 z-value ID_Z2 z-value NGH_CM z-value
W_VNCFEU -0.3360 -3.71 -0.1918 -3.59 -0.1518 -3.48
CONSTANT 0.1551 6.11 0.1292 6.18 0.1286 6.06
GDP -0.0005 -7.58 -0.0005 -8.01 -0.0005 -8.21
CENTR 0.1252 9.76 0.1293 10.23 0.1227 9.41
UEWP 0.0054 10.90 0.0049 10.60 0.0045 9.85
PODEN 0.0341 10.31 0.0335 10.07 0.0363 10.94
AREA -0.0010 -3.93 -0.0009 -3.72 -0.0008 -3.54
QUINN_OPENN 0.0054 4.27 0.0053 4.22 0.0052 4.15
DIST 0.0623 7.12 0.0648 7.51 0.0474 4.34
DUM_FRA -0.0087 -1.78 -0.0108 -2.24 -0.0129 -2.68
DUM_BEL 0.1281 11.06 0.1157 12.44 0.0980 13.92
DUM_IRE -0.0748 -2.52 -0.0823 -2.80 -0.1157 -3.88
DUM_LUX -0.0344 -1.76 -0.0442 -2.31 -0.0610 -3.30
DUM_DEN 0.0639 3.26 0.0558 2.93 0.0185 0.92

Breusch-Pagan test 111.6672 *** 102.6882 *** 98.6269 ***
LR-Test on spatial lag dependence 17.3318 *** 14.8472 *** 15.3765 ***
LM-Test on spatial error dependence 7.4510 *** 5.2042 ** 3.8535 **
Log Likelihood 827.64 826.40 826.66
AIC -3.6816 -3.6760 -3.6772

Note: For spatial weights matrices see Table 2.

Table 4: Maximum-Likelihood Estimates of Spatial Error Models (442 obs.)
VARIABLE \ weights matrix ID_K2 z-value ID_Z2 z-value NGH_CM z-value
CONSTANT 0.0685 4.48 0.0806 5.05 0.0731 4.49
GDP -0.0005 -8.72 -0.0005 -8.60 -0.0005 -9.45
CENTR 0.1338 10.93 0.1289 10.03 0.1306 10.06
UEWP 0.0055 19.96 0.0054 17.40 0.0056 16.89
PODEN 0.0460 13.42 0.0367 11.19 0.0339 10.34
AREA -0.0002 -0.73 -0.0005 -2.38 -0.0005 -2.07
QUINN_OPENN 0.0054 4.64 0.0054 4.48 0.0055 4.54
DIST 0.0635 9.87 0.0597 8.56 0.0637 8.47
DUM_FRA -0.0153 -4.54 -0.0148 -3.99 -0.0128 -3.72
DUM_BEL 0.0858 17.38 0.0864 16.12 0.0918 17.46
DUM_IRE -0.1348 -5.05 -0.1118 -4.00 -0.1181 -4.28
DUM_LUX -0.0335 -2.14 -0.0530 -2.92 -0.0600 -3.44
DUM_DEN 0.0225 1.29 0.0353 1.93 0.0385 2.14
Lambda -1.8751 -15.05 -1.2889 -11.35 -0.8625 -6.29

Breusch-Pagan test 121.3978 *** 102.9594 *** 110.3036 ***
LR-Test on spatial error dependence 57.8458 *** 37.5543 *** 35.0633 ***
LM-Test on spatial lag dependence 0.1184 2.1527 0.0233
Log Likelihood 847.90 837.75 836.51
AIC -3.7778 -3.7319 -3.7263

Note: For spatial weights matrices see Table 2.

ML estimates of the spatial autoregressive error specification are presented in Table 4. Like in
the spatial lag specification, all explanatory determinants remain significant and do not
change their sign. Again, we find a negative spatial correlation which is displayed in the
negative spatial autocorrelation coefficients for the error terms27. The LR-tests on spatial error

                                           
27 As explained above, spatial correlation coefficients are restricted to the range between 1/ωmin and 1/ωmax. Cal-

culating the smallest eigenvalues for the different weights matrices, we get the following minimal values of
the spatial error correlation coefficient: -2.17 using ID_K2 (with ωmin = -0.461), -1.477 in case of ID_Z2
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correlation confirm the spatial autoregressive error dependence and the tests on further spatial
lag dependence are not significant.

Both spatial models (spatial lag as well as spatial autoregressive error model) provide evi-
dence for the same empirical relationships between the level of specialisation and the ex-
planatory variables we identified by the use of classical econometric approaches without tak-
ing account of spatial dependence28. In addition, both models appear to be better specified
than the OLS estimates of the non-spatial model which has an AIC of –3.64729. Comparing
the two specifications, we consistently get better (i.e. lower) information criteria for the spa-
tial error specification what is in line with the spatial dependence diagnostics for the OLS
estimates. However, it is possible that we are confronted with a misspecification of the spatial
error model since the additionally conducted two tests on the common factor hypothesis are
significant, thus pointing to an “inherent inconsistency” of the spatial error model. This might
be caused by a further influence of spatially lagged explanatory variables (see Anselin, 1992:
212). This is worth being analysed in the following section.

III.2 Estimates including spatially lagged external variables

Searching for the optimal specification capturing the underlying spatial dependence, we there-
fore also tested for possible spatial dependence of spatially lagged external variables. The
economic situation of the nearby regions might be of importance for the regional level of spe-
cialisation. As explained above, a specification with spatial regressive components, i.e. spa-
tially lagged exogenous variables, can be estimated by use of OLS. Results of this “spatial
cross-regressive model” specified by equation M3 are displayed in Table 5. The fit of the
model compared to the spatial error model, however, does not convincingly improve30.

With respect to the spatial regressive components, we can find that they are significant in
many cases and consistently show the same sign for different spatial weights matrices. This
means that our results do not dependent on the choice of the distance matrix. In most cases,
higher unemployment, a bigger market size (gross domestic product), a bigger geographical
size as well as a lower population density of the neighbouring regions have a significant in-
creasing influence on the level of regional specialisation. A larger size, a higher gross domes-
tic product, and a lower population density of a region also lower its level of specialisation.
Except for the spatially lagged unemployment rate, the analysis of the spatially lagged exter-
nal variables thus displays the same impact of neighbouring regions as the analysis of the
level of specialisation of nearby regions itself. This means that the results of the spatial cross-
regressive model in Table 5 focusing on the spatially lagged external variables size, gross
domestic product and population density largely confirm the negative spatial lag dependence
identified above. The influence of the spatial lag of the unemployment rate, instead, is point-
ing to a positive spatial autocorrelation.

                                                                                                                                       
(with ωmin = -0.677), and –1.41 by use of the neighbourhood contiguity matrix (with ωmin = -0.711). For our
three estimates, the spatial error correlation coefficient is thus within the necessary range.

28 Population density is insignificant in the estimates at NUTS 2-level with all 487 observations, but significant
and positive in the estimates with the restricted dataset of 442 observations and in the spatial dependence
models as well as in the estimates at NUTS 1-level.

29 These values refer to the estimates only including 442 observations.
30 The fit of the model is slightly better compared to the spatial error specification in case of the weights matrix

ID_Z2 according to the AIC.
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Table 5: Spatial cross-regressive model (442 obs.)
VARIABLE \ weights matrix ID_K2 t-value ID_Z2 t-value NGH_CM t-value
Constant -0.0162 -0.70 0.0060 0.26 0.0880 4.11
GDP -0.0004 -6.31 -0.0004 -6.64 -0.0005 -8.19
CENTR 0.1219 9.64 0.1224 9.59 0.1283 9.80
UEWP 0.0036 5.47 0.0033 5.24 0.0043 7.06
PODEN 0.0407 11.80 0.0397 11.55 0.0368 10.81
AREA -0.0010 -4.19 -0.0011 -4.33 -0.0009 -3.86
QUINN_OPENN 0.0046 3.73 0.0046 3.70 0.0052 4.09
DIST 0.0567 6.35 0.0560 6.08 0.0679 6.70
W_UEWP 0.0063 4.25 0.0061 4.38 0.0008 1.11
W_GDP 0.0006 2.38 0.0007 2.64 -0.00005 -0.38
W_PODEN 0.0085 0.90 -0.0094 -2.14 -0.0539 -3.06
W_AREA 0.0028 4.33 0.0019 2.93 0.0007 2.10
DUM_FRA -0.0166 -3.10 -0.0137 -2.63 -0.0201 -3.61
DUM_BEL 0.1265 11.00 0.1327 13.73 0.1128 11.56
DUM_IRE -0.0611 -2.08 -0.0577 -1.95 -0.0705 -2.33
DUM_LUX -0.0390 -2.11 -0.0390 -2.08 -0.0689 -3.64
DUM_DEN 0.0627 3.35 0.0669 3.54 0.0593 2.97

Jarque-Bera  19.3293 *** 13.8962 *** 7.6363 **
Heteroscedasticity test 105.2997 *** 98.4490 *** 102.2501 ***
Moran's I (error) -8.8796 *** -4.6882 *** -8.7775 ***
Lagrange Multiplier (error) 36.6833 *** 11.0126 *** 45.1469 ***
Lagrange Multiplier (lag) 33.7476 *** 24.4012 *** 84.6808 ***
Log Likelihood 849.4870 842.7620 831.9830
AIC -3.7669 -3.7365 -3.6877
R² adj. 0.8093 0.8034 0.7935
Prob F 0.0000 0.0000 0.0000

Note: For spatial weights matrices see Table 2. SpaceStat carried out the Breusch-Pagan test for ID_K2, and the
Koenker-Basset test for the other two weights matrices to test heteroscedasticity.

The diagnostics for spatial dependence point to an additional spatial dependence in all three
cases. We therefore also checked a combination of spatial lagged exogenous and endogenous
variables (combination of models M2 and M3), i.e. a “mixed regressive-spatial regressive
model” (Florax und Folmer, 1992), as well as a combination of spatial lagged exogenous
variables and spatial error autocorrelation (combining M1 and M3). The estimation results for
the combination of spatial lagged exogenous and endogenous variables are given in Table B3.
However, the spatially lagged external variables size and GDP become insignificant. The co-
efficients of the significant spatially lagged external variables PODEN and UEWP now both
point again to a positive spatial correlation, in addition to the significant negative spatial lag
dependence. With respect to the information criteria, all estimates display a better fit than the
simple OLS estimates of spatially lagged external variables (specification M3) as well as the
ML estimates of the spatial error model (specification M2).

The results of the mixed regressive-spatial autoregressive error models are also displayed in
Table B3. The test on further spatial lag dependence is highly significant for the estimates
using the neighbourhood contiguity matrix, thus pointing to a misspecification. Only the use
of the weights matrix on the basis of squared inverse distances between regional capitals
(ID_K2) provides evidence of an improved fit for this specification. In this regression, how-
ever, we find a negative spatial dependence with respect to the spatial error term and the spa-
tially lagged GDP and size of the region, but the contrary with respect to the spatially lagged
population density and unemployment rate. Using ID_Z2 (NGH_CM), we only have two
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(three) significant spatially lagged external variables, also differing in their impact. Results
are thus inconsistent and largely dependent on the choice of the spatial interaction matrix for
this specification.

However, both extensions of the simple spatial cross-regressive model largely confirm the
described impacts of economic variables on the regional level of specialisation while control-
ling for spatial interdependencies. Thus, the determinants identified by classical econometric
methods remain robust throughout all the spatial econometric estimates.

It might be possible to further improve the spatial specification by the use of e.g. higher-order
spatial models or models of spatial heterogeneity. In addition, the autocorrelation which is
still obvious in the Breusch-Pagan tests might also be due to time correlation and not to fur-
ther spatial variation. However, we restrict our analyses to the presented spatial specifications
since more sophisticated spatial models are not implemented in the software so far.

IV Conclusion

This analysis further checked the results of an earlier study (Stirboeck, 2002) with respect to
the use of different measures of relative investment specialisation and different estimation
methods. In particular, potential regional interdependencies as well as spatial data correlation
due to shortcomings of regional data or an inadequate definition of regional entities are taken
into account by the use of spatial econometric tools. Independent of the estimation technique
and the indicator used, we find similar results to Stirboeck (2002).

Table 6: Impact of economic variables on the level of relative specialisation

Economic variable Sign of impact on the level of
investment specialisation

Market potential (Gross domestic product) -
Fact of being a central region +
Unemployment rate +
Population density +
Size if a region -
Economic openness +
Distance to economic centre +

Table 6 summarises the identified determinants of the level of relative specialisation. The
bigger the size of a region is, the higher is the similarity of relative investments. Market size
reflects the economic and demand potential of a region: The higher it is, the lower the relative
specialisation in terms of investments tends to be. This contrasts to the results of recent em-
pirical studies on sectoral agglomeration, which found market size to have an increasing in-
fluence on sectoral concentration across space. While firms tend to locate close to large mar-
kets and high demand (thus increasing the spatial concentration of sectors), regions with a
large market seem to attract capital of all types of sectors with a rather even relative allocation
(thus decreasing relative regional dissimilarities). This effect is counteracted by an apparently
strong tendency towards high specialisation of central, economically most important regions
who demonstrate to have a significantly higher level of relative investment specialisation. The
unemployment rate, finally, reflects negative economic performance of a region (not ac-
counting for migration effects etc.). The higher it is, the stronger the relative regional speciali-
sation turns out to be.
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The higher the distance of a region to its national economic centre is, the less similar are its
investment shares to EU average. Peripheral regions are thus stronger specialised in terms of
relative investments than regions closer to the centre. In addition, the extent of economic
openness consistently seems to have a significant increasing impact on relative specialisation
levels of gross fixed capital formation. This means that further market integration of EU
countries can be assumed to lead to a lower diversification of sectoral investments in EU re-
gions. Regional investment structures will thus become more dissimilar. Finally, the impacts
of population density on the specialisation level are not significant throughout all estimates.
However, we might still suppose an increasing impact on regional specialisation.

The level of regional specialisation might also influence the unemployment rate or gross do-
mestic product respectively, what we controlled for in instrumental-variable estimates. How-
ever, we are confronted with highly specialised regions which are subject to a good economic
performance as well as highly specialised regions which are not. Thus, not only the level of
specialisation is essential, but also the sectoral pattern of specialisation. This is an important
topic which is worth being analysed further in future research.

Regardless of the estimation method and the discussion about the best fit, the spatial
econometric regressions display negative spatial dependence or interaction between the re-
gions. The OLS test diagnostics on spatial dependence point to a spatial error correlation,
what is in line with the information criteria which indicate a better performance of the spatial
error model compared to the spatial lag model. We might thus interpret the spatial correlation
in the data as nuisance manifested in negatively spatially correlated error terms. Data incon-
sistencies, shortcomings of the regional databases or incompatibilities of the units of observa-
tion with actual economic regions might be one reason for such spatial nuisances in the data.

Further improvements of the spatial econometric estimates can be obtained by adding spa-
tially lagged external variables. However, results are rather inconsistent with respect to the
identification of the nature of the spatial dependence, largely differing with respect to the spe-
cific model and spatial weights matrix chosen.
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Appendix

A Data description

The regional disaggregation of the data is given according to the Nomenclature of Territorial
Units for Statistics (NUTS - Nomenclature des unités territoriales statistiques). The REGIO
database disaggregates data for the three aggregation levels NUTS 1, 2 and 3. However, data
for GFCF is not available further disaggregated than the NUTS 2-level. In addition, it is not
complete (with regard to the regional and/or the sectoral disaggregation – the latter needed for
the calculation of the specialisation indices). Data availability is sufficient for the seven
countries given below. Here, the UK does not provide data disaggregated further than NUTS
1-level. Luxembourg, Denmark as well as Ireland are only regarded as one single region at the
NUTS 1- as well as at the NUTS 2-level (=monoregional countries). The maximum number
of regions available is therefore 33 at the NUTS 1-level and 56 at the NUTS 2-level.

 Table A1: Regional data for GFCF from the REGIO database
Country NUTS

level
Respective national dis-
aggregation level

Number of
regions
NUTS 1

Number of
regions
NUTS 2

UK 1 Groups of Counties or
local authority regions

11
(with 3 n.a.)

n.a.

Belgium 2 Provinces 3 11
France 2 Régions 8 22
Italy 2 Regioni 11 20
Denmark 1&2 - 1 1
Ireland 1&2 - 1 1
Luxembourg 1&2 - 1 1
Total number of regions 33 (+ 3 n.a.) 56

Note: Version of NUTS 1995. French oversea departments (DOM – départements
outre-mer) are not counted in total sums for France as well as for the EU. The three non-
available British regions are: North, North-West as well as South East (including London).

Table A1 displays the availability and the number of regions for the two levels of aggregation.
Table A2 presents the respective regions.
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Table A2: Overview on NUTS 2- as well as NUTS 1-regions

France Italy Belgium United Kingdom

Alsace ALS Abruzzo ABR Antwerpen ANT
Aquitaine AQU Basilicata BAS Brabant Wallon BWA
Auvergne AUV Calabria CAL Bruxelles-capitale BRU
Basse-Normandie BNO Campania CAM Hainaut HAI
Bourgogne BOU Emilia-Romagna ERO Liège LIE
Bretagne BRT Friuli-Venezia Giulia FVG Limburg (B) LIM
Centre (F) CTR Lazio LAZ Luxembourg (B) LUB
Champagne-Ardenne CHA Liguria LIG Namur NAM
Corse CRS Lombardia LOM Oost-Vlaanderen OVL
Franche-Comté FRC Marche MAR Vlaams Brabant VBR
Haute-Normandie HNO Molise MOL West-Vlaanderen WVL
Ile de France IDF Piemonte PIE
Languedoc-Rousillon LRO Puglia PUG Monoregional Countries (Nuts2, Nuts1)
Limousin LIS Sardegna SAR Denmark DEN
Lorraine LOR Sicilia SIC Ireland IRE
Midi-Pyrénées MPY Toscana TOS Luxembourg LUX
Nord - Pas-de-Calais NPC Trentino-Alto Adige TAA
Pays de la Loire PDL Umbria UMB
Picardie PIC Valle d'Aosta VAO
Poitou-Charentes POI Veneto VEN
Provence-Alpes-Côte d'Azur PAC
Rhône-Alpes RAL

Bassin Parisien BPA Abruzzo-Molise ABM Bruxelles-capitale BRU East Anglia EAN
Centre-Est CES Campania CAM Région Wallonne RWA East Midlands EMI
Est (F) EST Centro (I) CEI Vlaams Gewest VLA North NOR
Ile de France IDF Emilia-Romagna ERO North West NWE
Méditerranée MED Lazio LAZ Northern Ireland NIR
Nord - Pas-de-Calais NPC Lombardia LOM Scotland SCO
Ouest OUE Nord Est NES South East SOE
Sud-Ouest SOU Nord Ovest NOV South West SOW

Sardegna SAR Wales WAL
Sicilia SIC West Midlands WMI
Sud SUD Yorkshire and the Humber YOR

Nuts 2 Nuts 2 Nuts 2

Nuts 1 Nuts 1 Nuts 1 Nuts 1
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Data are taken from the Eurostat REGIO Database (yearbooks up to 2000) which – for gross
fixed capital formation - comprises data for the years 1985 to 1994. All data included in the
analysis are based on ESA79 (European System of Accounts, Version 1979).

Table A3: List of explanatory variables, REGIO Database
abbreviation variable unit
GFCF Gross Fixed Capital Formation Currency: Billions of ECU
GDP Gross domestic product Currency: Billions of ECU
PAT European R&D patent applications total number
UEWP Total Unemployment rates in % OF WORKING POPULATION
POP Total annual average population in Mio. PERSONS 
PODEN Population density in 1000 INHABITANTS/KM2

In addition to the available national account data, a number of further variables has been used
in the econometric analysis. Transport costs are proxied by a distance variable (DIST) which
measures the optimal route distance to the centres of the respective countries which are Paris,
Rome, London and Brussels. The distance is defined to be 1 for Denmark, Luxembourg as
well as Ireland, and it is equally 1 for the regions containing the capital of the respective
country. Central and economically important regions (CENTR) in the analysis are Île de
France (France), Brussels (Belgium), and Lazio (Italy).

Table A4: List of further explanatory variables
abbreviation variable unit
DIST distance to centre, index of peripherality 1000 km
CENTR regional dummy set for central region 0 or 1
QUINN_OPENN indicator of openness per country 0-14 (variation by 0.5)

Available indicators of liberalisation arising from official sources are mostly indicator vari-
ables being either 0 or 1. However, such indicator variables do not allow to differentiate the
varying levels of control or to capture a decreasing level of control over time. Measuring a
level of integration for each year is therefore a better solution from an econometric point of
view. Quinn (1997, 2000) has constructed such a yearly index of openness on the basis of
those restrictions published by the IMF since the 1950s. This index is scaled from 0 (highest
degree of restrictions) up to 14 (highest degree of liberalisation) and aggregates the different
indicators of liberalisation progress in seven specified fields (capital in – and outflows, im–
and exports of goods and of services as well as international conventions of liberalisation)
with a respective degree of liberalisation between 0.5 and 2. Quinn weighs quantitative re-
strictions of imports for example the highest (i.e. he attributes the lowest partial liberalisation
index of 0 in case of full and 0.5 in case of partly quantitative restrictions), existence of laws
requiring the approval of international transactions are scored 1, taxes 1.5 and finally free
trade 2. With regard to capital account liberalisation, Quinn attributes 0 in case of required
approval for capital transactions which are rarely granted, 0.5 (1) in case of occasional (fre-
quent) approval and finally 1.5 in case of taxing measurements (without the need of an offi-
cial approval).

These indicators, however, are only available at country, not regional, level, which has to be
taken into account in econometric analysis. Detailed restrictions for Luxembourg are not
available as Luxembourg and Belgium are part of a common monetary union since the 1950s.
In our analysis the „Quinn-indicator“ for Luxembourg is therefore naturally set equal to the
one of Belgium.
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B Estimation Results

Table B1: Estimation Results for the Determinants of Relative Regional Investment
Specialisation, NUTS 1-level, 1985-1994

VCCFEU GCCFEU FKCFEU VCCFEU GCCFEU FKCFEU
level level level logit logit logit

Constant 0.0498 0.2835 1.0009 -2.2550 -0.9265 2.3059
1.41 8.84 21.48 -12.13 -6.70 10.33

GDP -0.0004 -0.0004 0.0011 -0.0024 -0.0018 0.0051
-3.80 -4.03 3.77 -4.05 -4.05 3.76

CENTR 0.1108 0.1251 -0.1283 0.7193 0.5244 -0.5924
5.64 7.04 -6.16 6.98 6.85 -5.93

UEWP 0.0021 0.0050 0.0000 0.0171 0.0205 0.0016
2.05 5.41 0.02 3.21 5.18 0.22

PODEN 0.0453 0.0326 -0.2501 0.1705 0.1469 -1.2060
8.57 6.81 -3.09 6.14 7.12 -3.11

AREA 0.0002 -0.0001 -0.0008 0.0010 -0.0005 -0.0036
1.08 -0.86 -2.3 1.15 -0.80 -2.27

QUINN_OPENN 0.0097 0.0067 -0.0230 0.0494 0.0303 -0.1118
3.63 2.76 -6.33 3.52 2.90 -6.41

DIST 0.0270 0.0215 -0.0744 0.1684 0.0942 -0.3594
1.48 1.3 -3.15 1.76 1.32 -3.17

DUM_FRA -0.0151 -0.0211 0.0254 -0.1129 -0.0842 0.1157
-1.24 -1.91 1.96 -1.76 -1.77 1.86

DUM_BEL 0.0268 -0.0020 -- 0.1663 -0.0046 --
1.70 -0.14 2.01 -0.07

DUM_IRE 0.0499 -0.0313 -0.2813 0.0458 -0.1345 -1.2804
1.67 -1.16 -8.95 0.29 -1.15 -8.5

DUM_LUX -0.0499 -0.1589 -0.0305 -0.2827 -0.6839 -0.0970
-1.60 -5.63 -0.90 -1.73 -5.62 -0.59

DUM_DEN 0.0183 -0.1346 -0.3821 0.0362 -0.5616 -1.6789
0.68 -5.54 -12.88 0.26 -5.37 -11.81

DUM_UKD 0.1314 0.0080 -0.4464 0.7095 0.0352 -1.9785
14.22 0.96 -41.98 14.63 0.98 -38.82

no. obs. 292 292 262 292 292 262
SSR 0.9453 0.7746 0.9269 26.0299 14.3837 21.2893
Log Likelihood 422.69 451.77 367.64 -61.37 25.2256 -42.93
Prob Chi² 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AIC -2.799 -2.998 -2.700 0.516 -0.077 0.435

Note: Line below the coefficients presents the z-values of the GLS estimates. SSR displays the sum of
squared residuals. The probability of the Chi²-test gives the joint significance of all coefficients. Since
sectoral sums for gross fixed capital formation are not available for Belgian regions, we cannot calcu-
late Finger-Kreinin indices for the 30 NUTS 1-Belgian regions.



Table B2: Estimates checking for robustness, 1985-94
NUTS 2 NUTS 1 NUTS 2 NUTS 1 NUTS 2 NUTS 1 NUTS 2 NUTS 1

IV 2SLS VCCFEU VCCFEU GCCFEU GCCFEU dyn. model VCCFEU VCCFEU GCCFEU GCCFEU
Constant 0.1054 0.0460 0.3288 0.2784 Constant 0.0007 0.0111 0.1093 0.0645

2.55 1.21 9.69 8.13 0.03 0.42 3.61 2.52
End. lag AR(1) 0.7586 0.6529 0.6071 0.6857

25.36 15.81 15.45 17.29
GDP (IV) -0.0007 -0.0004 -0.0004 -0.0004 GDP -0.0002 -0.0002 -0.0002 -0.0001

-4.72 -3.85 -3.76 -3.85 -2.00 -2.08 -1.83 -1.74
CENTR 0.1683 0.1145 0.1703 0.1286 CENTR 0.0458 0.0394 0.0662 0.0404

5.50 5.62 6.79 6.99 2.32 2.71 3.15 3.13
UEWP (IV) 0.0046 0.0018 0.0064 0.0048 UEWP 0.0009 0.0003 0.0023 0.0014

3.97 1.59 6.81 4.85 1.33 0.46 3.02 2.12
PODEN 0.0028 0.0435 0.0004 0.0313 PODEN 0.0016 0.0161 0.0021 0.0105

0.37 7.90 0.06 6.29 0.35 3.90 0.43 3.03
AREA -0.0012 0.0002 -0.0014 -0.0001 AREA -0.0002 0.0001 -0.0003 -0.00003

-2.16 1.06 -3.1 -0.81 -0.66 0.44 -0.88 -0.27
QUINN_OPENN 0.0059 0.0103 0.0028 0.0071 QUINN_OPENN 0.0033 0.0043 0.0028 0.0042

2.01 3.71 1.15 2.8 1.80 2.23 1.43 2.51
DIST 0.0576 0.0254 0.0666 0.0174 DIST 0.0205 0.0070 0.0200 0.0009

2.86 1.35 4.04 1.03 1.56 0.54 1.44 0.08
DUM_FRA 0.0063 -0.0127 -0.0279 -0.0189 DUM_FRA 0.0011 -0.0050 -0.0154 -0.0081

0.55 -1.03 -2.98 -1.7 0.15 -0.57 -1.98 -1.07
DUM_BEL 0.1594 0.0259 0.1183 0.0046 DUM_BEL 0.0388 0.0072 0.0455 0.0058

10.33 1.58 9.36 0.31 3.56 0.64 4.05 0.60
DUM_IRE 0.0516 0.0487 -0.0043 -0.0327 DUM_IRE 0.0256 0.0316 -0.0035 0.0002

0.91 1.61 -0.09 -1.19 0.69 1.44 -0.09 0.01
DUM_LUX -0.1106 -0.0561 -0.1973 -0.1613 DUM_LUX -0.0301 -0.0235 -0.0772 -0.0521

-2.48 -1.74 -5.39 -5.55 -1.01 -1.03 -2.42 -2.54
DUM_DEN 0.0257 0.0150 -0.1225 -0.1377 DUM_DEN 0.0202 0.0206 -0.0609 -0.0499

0.57 0.56 -3.34 -5.63 0.67 1.03 -1.92 -2.77
DUM_UKD --- 0.1444 --- 0.0178 DUM_UKD --- 0.0608 --- 0.0127

14.81 2.02 7.21 2.22

no. obs. 457 270 457 270 no. obs. 428 256 428 256
SSR 3.4217 0.8065 2.2969 0.6582 SSR 1.2571 0.3673 1.3749 0.2750
Prob F 0.0000 0.0000 0.0000 0.0000 Prob Chi2 0.0000 0.0000 0.0000 0.0000

Note: GDP and UEWP have been instrumented by their first lag. The probability of the F-test and Chi²-test for IV and GLS estimates 
respectively display the joint significance of all coefficients. T-values are given in the IV estimates, z-values for the dynamic model.
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Table B3: Maximum likelihood estimates of mixed regressive-spatial autoregressive lag/error models (442 observations)

Spatial lag model with spatially lagged exog. var. Spatial error model with spatially lagged exog. var.
VARIABLE \ weights matrix ID_K2 z-value ID_Z2 z-value NGH_CM z-value ID_K2 z-value ID_Z2 z-value NGH_CM z-value
W_VNCFEU -1.1626 -6.10 -1.0722 -6.95 -0.5843 -8.92
CONSTANT 0.2259 4.86 0.2359 6.15 0.1680 7.90 -0.0321 -1.54 0.0457 2.24 0.0743 4.01
GDP -0.0004 -7.06 -0.0004 -6.91 -0.0004 -7.63 -0.0004 -7.22 -0.0004 -7.13 -0.0005 -7.63
W_GDP 0.0000 -0.16 0.0000 -0.06 -0.0001 -0.87 0.0006 2.64 0.0000 0.00 0.0001 0.82
CENTR 0.1055 8.31 0.1039 8.38 0.0874 6.86 0.1339 11.24 0.1257 9.68 0.1306 9.34
UEWP 0.0043 6.81 0.0041 6.51 0.0028 4.88 0.0035 5.21 0.0029 4.43 0.0047 7.98
W_UEWP 0.0105 6.94 0.0102 7.31 0.0084 8.18 0.0072 5.11 0.0055 4.52 0.0020 2.98
PODEN 0.0477 14.00 0.0435 12.95 0.0466 14.44 0.0432 12.30 0.0308 6.02 0.0411 10.44
W_PODEN 0.0950 6.28 0.0626 6.01 -0.0161 -0.98 0.0308 3.35 0.0157 1.65 -0.0692 -3.27
AREA -0.0008 -3.46 -0.0009 -3.92 -0.0009 -4.00 -0.0008 -3.00 -0.0009 -3.37 -0.0006 -2.20
W_AREA -0.0001 -0.12 -0.0009 -1.28 0.0005 1.54 0.0030 4.73 0.0014 2.18 0.0000 0.09
QUINN_OPENN 0.0048 4.17 0.0048 4.05 0.0045 3.90 0.0045 3.96 0.0045 3.78 0.0052 4.32
DIST 0.0608 7.26 0.0594 6.85 0.0335 3.33 0.0600 8.81 0.0611 7.58 0.0688 7.91
DUM_FRA -0.0099 -1.87 -0.0074 -1.47 -0.0253 -5.07 -0.0236 -5.96 -0.0173 -4.05 -0.0150 -3.94
DUM_BEL 0.1325 11.91 0.1376 14.67 0.1351 15.03 0.1033 11.10 0.0869 8.07 0.1164 12.57
DUM_IRE -0.0534 -1.91 -0.0426 -1.52 -0.0823 -3.04 -0.0890 -3.23 -0.0722 -2.48 -0.0879 -2.99
DUM_LUX 0.0103 0.59 0.0031 0.16 -0.0585 -3.46 0.0280 1.61 -0.0554 -3.08 -0.0662 -3.87
DUM_DEN 0.0804 4.35 0.0874 4.76 0.0302 1.67 0.0418 2.39 0.0441 2.34 0.0528 2.79
Lambda -1.7179 -10.36 -1.3164 -13.17 -0.8295 -5.84

Breusch-Pagan test 145.6835 *** 146.1669 *** 151.7797 *** 157.1167 *** 139.5096 *** 116.9912 ***
LR-Test on spatial lag/error dependence 32.4698 *** 28.0814 *** 78.6685 *** 58.1719 *** 22.4040 *** 33.0700 ***
LM-Test on spatial error/lag dependence 0.3817 0.4956 0.0099 0.0083 1.2940 33.3046 ***
Log Likelihood 865.72 856.80 871.32 878.57 853.96 848.52
AIC -3.8358 -3.7955 -3.8612 -3.8985 -3.7872 -3.7625

Note: For spatial weights matrices see Table 5. Lambda displays the spatial error autocorrelation.




