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MEAN-RISK HEDGING STRATEGIES IN ELECTRICITY MARKETS WITH LIMITED LIQUIDITY 

 

 

by Oliver Woll 

 

 

Abstract 

 

This article investigates mean risk hedging with respect to limited liquidity and studies the 

impact of different risk measures on the hedging strategies. For motivation and application 

purposes hedging in electricity markets is chosen, because the relevant hedging markets are 

characterized by limited liquidity. We enhance the approach in Woll and Weber (2015) to a 

mean-risk optimization under limited liquidity, including the risk measures absolute and 

relative Value and Conditional Value at Risk (VaR and CVaR). It can be shown that for 

position independent measures (Variance, relative VaR, relative CVaR) liquidity has no 

influence on the minimum risk hedging strategies, whereas for position dependent measures 

(absolute VaR, absolute CVaR) liquidity has an impact on the minimum risk hedging 

strategies. The article gives the mathematical formulations of the problems and discusses 

the economic relevance of the different models. In addition, we apply the analyzed concepts 

to the German Electricity markets.   
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1 Introduction 

The maximization of profits is the overall objective of any company. Attaining this objective 

nearly always implies decision making under uncertainty. This uncertainty generates risk for 

the company. In the case of a power producer, he has the goal to sell the energy produced 

generating the best possible profit. For energy trading, several markets and several products 

exist. The relevant markets are the electricity markets and the related commodity markets, 

such as coal, gas or CO2 markets. These markets are subject to different kinds of 

uncertainties. In this article the focus is on the electricity markets, because they are most 

important for a power producer. Prices on electricity markets depend, inter alia, on current 

demand, outages of the plants, fuel prices, temperature or current wind and solar power 

production, which all are stochastic. The calculation of the optimal trading strategy thus is a 

stochastic problem. The share of profits exposed to uncertainty corresponds to the 

economic risk incurred by the power plant operator. Maximizing the profit and minimizing 

the corresponding risk are hence complementary objectives for a power producer. A closer 

look at the electricity markets and the available products for trading electricity leads to the 

distinction of spot and futures markets. Spot market products are more flexible than futures 

market products, but risk on spot markets is in general much higher than on futures 

markets. So, operators usually engage in hedging on futures markets as an instrument for 

minimizing overall risk (cf. e.g. RWE AG (2014) p. 8). But the futures markets for electricity 

show a limited liquidity. This has an important implication: Power producers are not 

necessarily price takers on futures markets, but they can rather impact prices on futures 

markets by their own trading activity. Due to this strategic aspect, it is difficult to determine 

optimal hedging strategies in electricity markets with limited liquidity. An approach to 
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calculate optimal hedging strategies under limited liquidity is proposed by Woll and Weber 

(2015). They calculate the optimum based on a modified version of the classical mean-

variance approach going back to Markowitz. Measuring risk by the variance, however, is not 

always appropriate. In practice, many decision makers for example prefer downside risk 

measures for their risk management. Thus, the question arises whether and how optimal 

hedging strategies depend on the applied measure of risk in markets with limited liquidity. 

We give an answer to this question by first reviewing the relevant literature on mean-risk 

approaches in section two and the relevant risk measures in section three. Section four 

develops the modelling framework and section five contains the application to electricity 

markets. The article ends with a conclusion of the main results and their economic impacts. 

2 Mean-Risk Hedging Strategies in Literature 

Hedging comprises trading strategies with the objective to minimize the risk of a company. 

Usually these trading strategies create a portfolio consisting of different hedging products or 

trading activities of one hedging product over time, or both. Thus, finding the optimal 

hedging strategy leads to a portfolio optimization problem. There also exists a broad 

literature on mean-risk hedging in the context of asset portfolios and option pricing, such as 

Föllmer and Sondermann (1986), Schweitzer (1992) or Gourieroux et al. (1998). This kind of 

hedging is related to asset potfolios and focusses on the terminal value of a portfolio. 

Furthermore liquidity is not regarded in these articles. In this article we will focus on optimal 

hedging decisions. 

The literature on portfolio optimization is going back to Markowitz (1952), who provides a 

general mean-variance portfolio selection problem. Here the objective is to maximize the 

risk-adjusted return of a portfolio and the returns are assumed to follow a multivariate 
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normal distribution. Many works on the role of risk in portfolio selection have followed. The 

work of Sharpe (1964) links the portfolio selection to the CAPM and Tobin (1958) 

investigates liquidity preferences in the sense of accounting liquidity. Baumol (1963) is the 

first who criticises the variance as a measure of risk and proposes the expectation minus the 

K-weighted standard deviation, with K being any real number as an alternative risk 

measure.1 More recently, Alexander and Baptista (2002) compare the mean-variance 

approach with a mean-VaR approach. They show that it could be efficient to select 

portfolios with larger standard deviations when switching from variance to VaR as a 

measure of risk and thus emphasise that “VaR is not an unqualified improvement over 

variance as a measure of risk”. Rockafellar and Uryasev (2000) present the Conditional 

Value-at-Risk as “a new approach to optimizing or hedging a portfolio of financial 

instruments to reduce risk”. They focus on computational issues and give some applications. 

With regard to electricity markets, there are several works on mean-risk optimization in the 

context of operational portfolio management, such as Eichhorn et al. (2005), Xu et al. (2006) 

and Woll and Weber (2015). Whereas the first two articles focus on optimal power plant 

scheduling, the latter deals with trading forward contracts for hedging purposes. In addition, 

Woll and Weber (2015) address the case of limited market liquidity and its impact on 

optimal hedging strategies. Lo et al. (2003) have done some work on the impact of liquidity 

to the efficient frontier of a portfolio selection model, but without a direct link to hedging 

strategies over time.  

To complement the literature on mean-risk hedging strategies, we want to analyze the 

impact of mean-VaR and mean-CVaR optimization on hedging in the case of illiquid markets. 

1 For K= Nqα this leads to the mean-absolute VaR optimization and for K=
α
ϕ α )( Nq−

to the mean-absolute 

CVaR optimization. 
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Before giving the mathematical formulations for the optimization, we compare the risk 

measures used in this article.  

3 Comparison of different risk measures 

A classical measure for quantifying risk of an uncertain objective Z, such as cash flows, 

profits, or returns is the variance given as 

 f(z)dzE(z))-(z)Var( 2∫
+∞

∞-

⋅=Z   ( 1 ) 

with f(z) the corresponding probability density.  f(z)dzz)E( ∫
+∞

∞−

⋅=Z  is the expectation or rather 

the mean of Z. The variance and its square root, the standard deviation (Std(Z)), are 

measures for the statistical spread of a random variable Z and are often used in economic 

models, e.g. the mean-variance models going back to Markowitz (1952). The variance is a 

symmetric risk measure.  

Due to the fact that in most situations only the uncertainty of one side of a distribution is 

relevant, downside risk measures have been developed. One of the most important 

downside risk measures is the Value at Risk (VaR). According to Jorion (2001) the VaR is the 

“[...] expected maximum loss (or worst loss) over a target horizon with a given level of 

confidence [...]”. 

The VaR is hence the quantile { }αα ≥=
ℜ∈

 )(Finf)(q zZ Zz
 of the distribution F(Z) corresponding 

to a given confidence level α. With the use of the quantile function as the inverse of the 

distribution function the VaR can be written as 

)()(VaR 1
1 aa

−
− −= ZFZ   ( 2 ) 
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(see Jorion (2001)). This formulation is also called the absolute Value at risk (VaRabs) because 

the Value at Risk is measured as the distance to zero. Due to the fact that loss is sometimes 

defined as the deviation from the expectation of Z, a relative Value at Risk (VaRrel) may also 

be defined as 

)(VaR)()(VaR 11 ZZEZ absrel
aa −− +=   ( 3 )              

In many applications, the random variable Z can be assumed to be normally distributed 

).,(~ 2σµNZ Then an analytical expression for the VaR exists (see Dowd 1998). 

)()(VaR1 µσaa +⋅−=−
Nabσ qZ  σαα ⋅−=−

Nrel qZ )(VαR1  ( 4 ) 

with Nqα  the corresponding quantile of the standard normal distribution N(0,1). 

Another relevant downside risk-meausure is the Conditional Valuet at Risk (CVaR). In 

contrast to the VaR, the CVaR considers also information about the losses exceeding the 

VaR. Following the distinction of the VaR in absolute and relative VaR, the CVaR can be 

defined analogously (according to Strohbücker 2011).  

))(VaR()(CVaR 11 ZZZEZ absabs
aa −− −≤−=      ( 5 )

))(VaR)(()(CVaR 11 ZZZEZEZ absrel
aa −− −≤−−=  ( 6 ) 

Assuming again a normal distribution for Z, the analytic expressions for the CVaR are 









+

⋅−
−=− µ

α
σϕ α

α
)()(CVαR1

N
αbσ qZ             

α
σϕ α

α
⋅−

−=−
)()(CVαR1

N
rel qZ  ( 7 ) 

It is obvious that the following relations will hold for every random variable Z, 

)(CVaR)(VaR 11 ZZ absabs
aa −− ≤  and )(CVaR)(VaR 11 ZZ relrel

aa −− ≤  ( 8 ) 

and for positive E(Z) the relative VaR and CVaR are stronger risk measures than the absolute 

ones. 
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An important property of risk measures is whether the measure is dependent or 

independent from the position of the distribution of Z. This means that for a position 

dependent risk measure, the amount of the loss is crucial. An example for such a risk 

measure is the absolute VaR. By contrast, the relative VaR is a position independent 

measure. Figure 1 illustrates this difference with respect to position dependence. 

 
Figure 1:  Comparison of VaRabs and VaRrel for two different distributions of Z with the same 

variance but different means. 

 
Z1 and Z2 have a different position, nevertheless they have the same variance, but different 

means E(Z1) and E(Z2). The relative VaR as the difference from the α-quantile to the mean is 

the same for both distributions. But the absolute value of the α-quantile is different.  

Using a position independent risk measure, the risk obtained e.g. for two different strategies 

may be the same, even though the absolute risk of one alternative be much larger implying 

a larger loss, than for the other alternative. This illustrates the need for an appropriate 

f(Z2)f(Z1)

VaRabs(Z1) VaRabs(Z2)

VaRrel(Z1) VaRrel(Z2)=

f(Z1), f(Z2)

Z1, Z2

≠

E(Z1) E(Z2)
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choice of the risk measure depending on the application. Consequently the implications of 

the different measures need to be investigated. 

4 Mean-Risk Hedging Strategies with Limited Liquidity 

As mentioned in the introduction, hedging in energy markets and especially in electricity 

markets has to cope with limited market liquidity on forward markets. Therefore, we need a 

modelling framework taking into account that trading activities derived from mean-risk 

hedging strategies will have an influence on the market price of hedging products. Woll and 

Weber (2015) develop such a framework for mean-variance hedging strategies under 

limited liquidity. We take this modelling framework as a starting point and extend it with 

regard to different risk measures, absolute and relative VaR and CVaR. Thereby, we show 

that depending on the measure of risk, hedging strategies may exist which outperform the 

naïve risk-minimizing strategy of full hedging at the first time-step both in terms of profit 

and risk. 

4.1 General Mean-Risk Hedging with Limited Liquidity 

Following Woll and Weber (2015) limited liquidity is considered through a linear price-

impact function tu,tt x- pp β=  with xt the trading volume in a certain time step t, and β the 

illiquidity parameter of the market. pu,t is the price at sales quantity zero and β  the slope of 

the inverse residual demand (or price-sales) function.2 Thus, the higher the liquidity in the 

market, the lower the value of β. The price pu,t is assumed to be a normally distributed 

random variable, whereas β shall be non-stochastic in order to keep the problem quadratic. 

2 β may be estimated by dividing half the bid-ask spread of historical forward prices for 
electricity by the corresponding average trading volumes.  
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We label V0 the size of the portfolio. In the general mean-risk case, optimal hedging 

strategies under limited liquidity can be derived by maximizing the risk adjusted return:   

{ }xV
x

ιγρµ ′=− 0 max
  

( 9 ) 

This is equivalent to the minimization problem:
 







 ′=− xV

x
ιµ

γ
ρ 0

1 mιn
  

( 10 ) 

The set of efficient hedging strategies – i.e. the efficient frontier in a μ- ρ diagram - may 

then be determined by solving the following optimization problem for different values of μ 

(cf.  Merton (1972):
 

{ }xVxxp
x

ιβιµρ ′=′−= 00 ;)( mιn
  

( 11 )
 

Here, μ considers the linear price-impact function. This leads to the following Lagrangian 

function and the corresponding first order conditions. 

)())(( ),,( 020121 xVxxpxL ιλβιµλρλλ ′−+′−−+=  ( 12 ) 

0)( 21 =−+−+
∂
∂

=
∂
∂ ιλx2ιp

xx
L

0 βλρ
  ( 13 ) 

xxpxxpL )(0)( 00
1

′−=⇔=′−−=
∂
∂ βιµβιµ
λ

  ( 14 ) 

xVxVL ιι
λ

′=⇔=′−=
∂
∂

00
2

0   ( 15 ) 

4.2 Mean-Variance Hedging Strategies with Limited Liqudity 

Woll and Weber (2015) consider the optimal hedging strategy for an electricity sales volume 

over T discrete time steps with respect to the variance (σ2 ) as the measure of risk. This leads 

to the following optimization problem: 
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{ }xVxxp
x

ιβιµσ ′=′−= 00
2 ;)( mιn     ( 16 ) 

Iotaι  is thereby the unit vector. The price vector ),,( ,1, ′= Tuuu ppp   is assumed to be 

multivariately normally distributed, with ( )ι,Cp~Npu 0 . The expected price at sales quantity 

zero for all future periods is set equal to p0, to avoid systematic incentives for arbitrage 

trading. This also means that the price process for po,t is assumed to fulfil the martingale 

property, i.e. E[pu,t] = p0.  

The solution of this optimization problem is derived using the Lagrange method. The 

optimal hedging strategy in Woll and Weber (2015) is given by ι
ιλι
ιλ
)('

)(

1
1

1
1

0 −

−

=
M

MVx  and the 

corresponding mean and variance are 

( )21
1

1
22

0
00

)('
)('
ιλι
ιλιβµ

−

−

−=
M

MVVp  and ( )
( )21

1
1

1
1

1
2

0
2

)('
)()('

ιλι
ιλλισ

−

−−

=
M

MCMV  ( 17 ) 

Here, C is the covariance matrix, [ ]ICM βλλ 11 22:)( +=  and 1λ  is the Lagrangian multiplier 

corresponding to the equation for the given value of the expected return. Figure 2 

summarizes the results of Woll and Weber (2015). The main result is that limited liquidity 

reduces profits. Furthermore, the quantity to be hedged has an impact on the optimal 

solution: The larger the sales quantity, the later one should hedge. 
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Figure 2:  Results of Woll and Weber (2015) 

 
Here A denotes the minimum risk strategy of selling the entire volume at the first time-step 

and B denotes the point with maximum profit – at constant liquidity over time this 

corresponds to a uniform partition of the whole sales volume to the regarded trading 

months. The figure shows that the efficient frontier is monotonously increasing and that an 

increasing liquidity, i. e. smaller β, leads to a flatter efficient frontier. Thus, for a given target 

return on risk (cost of risk capital), the optimal μ- σ tradeoff will move towards point A and 

therefore lead to earlier hedging. In the case of perfect liquidity ( 0=β ), only the point of 

selling everything immediately is optimal. 

00Vp

minσ

Perfect
liquidity

Minimum 
Variance Portfolio

β 1

β 2

β

β 1< β 2< β

βA

2β
A

1β
A

βB
2β

B
1β

B

maxσ

minµ

maxµ
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4.3 Mean-Risk Hedging Strategies with Limited Liqudity 

For the investigation of mean-risk hedging with limited liquidity our focus concentrates on 

the analysis of the risk measures absolute and relative VaR and and CVaR. From equations 

(4) and (7) is it obvious, that these risk measures can be written as  

µσρ 21 kk −=     ( 18 ) 

with k2=0 for the relative measures and k2=1 for the absolute measures. Using this 

functional relation in (18) the optimization problem can be reformulated to:   







 ′=−− xVkk

x
ιµ

γ
µσ 021

1 mιn     ( 19 ) 

Using again the Merton approach it is obvious, that equation (14) and (15) from section 4.1 

are independent of the risk measure. Thus, the differences in the optimal solutions by 

choosing a different risk measure only depend on the derivative of the risk measure with 

respect to x. Under the assumption of a normal distribution for ( )ι,Cp~Npo 0 , these 

derivatives may be derived explicitly. For the absolute Value at Risk this leads to 

)2(
'

))((VaR
0

01 xp
Cxx

Cxq
x

xxp
x

N
abs

bιbιρ
a

a −−⋅−=
∂

′−∂
=

∂
∂ − . ( 20 ) 

And the derivative for the corresponding relative VaR is given by 

Cxx
Cxq

x
xxp

x
N

rel

'
))((VaR 01 ⋅−=

∂
′−∂

=
∂
∂ −

a
a βιr .  ( 21 ) 

Similar calculations can be performed for the CVaR measures, with the absolute CVaR’s 

derivative 

)2(
'

)())((VaR
0

01 Ixp
Cxx

Cxq
x

xxpC
x

Nabs

bι
a

ϕbιρ aa −−=
∂

′−∂
=

∂
∂ −  ( 22 ) 

And the relative CVaR’s derivative 
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Cxx
Cxq

x
xxpC

x

Nrel

'
)())((VaR 01

a
ϕaιr aa =

∂
′−∂

=
∂
∂ − .  ( 23 ) 

 

A comparison of these derivatives reveals that all of them are closely related to the 

derivative 
Cxx

Cx
'

of the standard deviation of X. In fact they differ at most by a scaling 

parameter plus a linear function of the original vector x. This follows directly from the 

functional realtion (18) and the use of the Merton approach and implies that for a given 

value of μ the same optimal solution for z will occur. 

For the position independent risk measures relative VaR and relative CVar, the risk is only a 

scaling of the standard deviation. Hence minimizing ρ in equation (11) leads to the same 

optimal hedging strategy z as minimizing σ. The efficient frontiers are hence only shifted 

and stretched in the risk dimension. Figure 3 sketches this rescaling for the relative VaR and 

the relative CVaR, which both stretch the standard deviation (for α < Φ-1(-1)) and shift it to 

the right. 
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Figure 3:  Efficient frontiers of position independent risk measures 

 

Here A and B again denote the points of selling everything immediately (A) and the uniform 

partition of the portfolio (B).  

In contrast, the risk function includes a term with the mean value for position dependent 

risk measures such as the absolute variants of VaR and CVaR.  Therefore, the shape of the 

efficient frontier changes. To get a better understanding, the analytical expressions for the 

mean and the risk in the optimum are computed. Since the optimal solution for x is identical 

for each risk measure, we take the expression from Woll and Weber (2015)

( )ιλλλ 211
1 ~~)~( += −

0pMx . With this expression, we are able to derive the following analytical 

expression for mean and risk, here exemplarily for the absolute CVaR:  

Perfect
liquidity
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minσ

maxµ

minµ

minσα
Nq

min
)( σ

α
ϕ α

Nq
maxσ maxσα

Nq
max

)( σ
α

ϕ α
Nq
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











−+−=

−

−

−

−−
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22
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1
1

1
1

1
1

0
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)~('

)~('
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ιλι

ιλιβ
ιλι

ιλλι
α

ϕρ α

M

MVVp
M

MCMVqN

. ( 25 ) 

In this case it is obvious that the risk ρ  depends on the illiquidity parameter β. It is already 

included in the expression for the mean and the mean is part of the risk term. This is a 

remarkable difference to the case of position independent measures, where ρ is only a 

multiple of the standard deviation σ (see equation (9) and (18)). However, the most 

important difference is that the minimum risk hedging strategy may change. Figure 4 

illustrates the shapes of the efficient frontiers for the case of position dependent risk 

measures. 

 

Figure 4:  Efficient frontiers of position depended risk measures 
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It is obvious that in this case the efficient frontier may no longer be expressed as a function 

µ(ρ), because two different profit levels exist for some risk levels and the point A, 

corresponding to hedging immediately the entire volume at the first time-step, is no longer 

the point with minimum risk. The point with minimum risk is labelled here C and B is again 

the point with maximum profit and the corresponding uniform distribution of sales over 

time. 

Given the form of the efficient frontier the optimal hedging strategy should be selected with 

special circumspection. In classical mean-variance optimization, the Sharpe-ratio (c.f. Sharpe 

(1964)) (and possibly the CAPM) are often used to derive the optimal portfolio. When 

changing the measure of risk, the link to the Sharpe-ratio is however no longer obvious. 

Therefore we focus in the following on the minimum risk strategy as a key element for 

decision support (cf. e.g. Perold and Sharpe (1988)). 

The minimum risk strategy for position independent risk measures is the same for all risk 

measures. It is the strategy of hedging the entire volume at the first time-step, because risk 

increases over time. In the case of position dependent risk measures, strategies exist with 

lower risk and higher mean, so that the immediate hedging strategy is obviously inefficient 

with respect to the chosen risk measure.  

A necessary condition for an interior risk minimum is that the derivative of the risk with 

respect to the mean is equal to zero. Using the realtion (18) this derivative can be computed 

as 

( )

212

1

1
1

1

1
2

1
1

1

1

21

1

1 kkkk
kkkk

−
∂
∂

=−

∂
∂
∂
∂

=

∂
∂

∂
∂

−
∂
∂

=

∂
∂
∂
+∂

=

∂
∂
∂
∂

=
∂
∂

µ
σ

λ
µ
λ
σ

λ
µ

λ
µ

λ
σ

λ
µ
λ

µσ

λ
µ
λ
ρ

µ
ρ  ( 26 ) 
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With this expression of the derivative of risk with respect to the mean, the minimum risk 

portfolio is given when  

1

2
21 00

k
kkk =

∂
∂

⇔=−
∂
∂

⇔=
∂
∂

µ
σ

µ
σ

µ
ρ

.  ( 27 ) 

Using this formulation, the minimum risk portfolio for the position dependent risk measures 

can be linked back to the efficient frontier of the mean-variance case. Thus, for the position 

independent case (k2=0), the minimum risk portfolio is obtained when the inverse slope of 

the efficient frontier of the mean-variance case is equal to zero. This confirms the results for 

relative VaR and CVaR that the optimal solutions are identical. On the other side, comparing 

this condition for the position dependent case (k2=1),  

N

abs

qk
k

a

a

µ
s

µ −
==

∂
∂

⇔=
∂

∂ − 10VaR

1

21                    
α

ϕ
µ
σ

µ
αα )(0VαR

1

21
Nαbσ q

k
kC

==
∂
∂

⇔=
∂

∂ −  ( 28 ) 

it can be confirmed that the optimal hedging solutions for the risk measures absolute VaR 

and CVaR are different than for the position independent measures and also compared to 

each other. Since the confidence level α for the downside risk measure is between zero and 

0.5, the relation N

N

q
q

α

α

α
ϕ

−
≤≤

1)(0  holds. Since 
µ
σ
∂
∂

 increases with µ, the absolute CVaR 

leads to a minimum risk portfolio with lower mean and, thus, using the results from Woll 

and Weber (2015), to earlier hedging activity.   

A further difference is that the minimum risk depends on liquidity in the case of position 

dependent risk measures, but not in the case of position independent measures. For the 

impact of liquidity on the minimum risk portfolio the conditions in equation (23) and the 

results from Woll and Weber (2015) may be used again. Equation (23) implies that the 

minimum risk portfolio in the position dependent case is found at the point of the mean-
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sigma efficient frontier with a slope equal to Nqα−  for the absolute VaR and 
)( Nqαϕ

α
 for the 

absolute CVaR respectively. According to Woll and Weber (2015) the slope of the mean-

sigma efficient frontier will increase with decreasing liquidity of the market. Lower liquidity 

implies hence that hedging is deferred to later time steps under the minimum risk strategy 

for the position dependent risk measures. Also the result on the impact of the hedging 

volume on the hedging strategy can be generalized to minimum risk portfolios. The larger 

the total volume, the later the hedges will be done in the minimum risk portfolio under all 

risk measures. 

For the position independent risk measures, the minimum risk strategy will be the same for 

all risk measures: it is the strategy with selling the entire volume in the first time-step. This 

means that liquidity has no influence on the minimum risk strategy for position independent 

risk measures. The results for the impact of limited liquidity as in Woll and Weber (2015) 

(see section 4.1) will hold for strategies with a higher risk than the minimum risk strategy, 

because the shape of the efficient frontiers will only be shifted and stretched by liquidity 

limitations. 
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5 Application 

We follow Woll and Weber (2015) for the setting for the application. We consider the case 

of hedging a given volume of electricity V0 by selling the forward product for a continuous 

band delivery for one year, called yearly base product. We start hedging 12 months before 

delivery and consider 13 time steps for hedging, including immediate hedging and hedging 

once per month in the 12 remaining months. The values for the parameters are given in the 

following table. 

Price at sales quantity 
zero [€/MWh] 

p0 

Liqudity 
[€/MWh2] 

β 

Portfolio size 
[MW] 

V0 

Std for covariance matrix 
[€/MWh] 

σ1 

Confidence 
level 
α 

52 0.0035 1000 2.85 0.1 

Table 1:  Parameter values for the application 

 

The covariance matrix C is constructed according to Woll and Weber (2015) as 
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





,  ( 29 ) 

with the rows and columns representing the different time steps for trading activities. The 

parameters are derived from historical data. For the estimation procedures see again Woll 

and Weber (2015). 

With these parameters, we compute the corresponding optimal hedging strategies and 

minimum risk portfolios for the different risk measures according to equation (24), (25) and 

(28). Figure 5 illustrates the different efficient frontiers for the different measures. 
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Figure 5:  Efficient frontier position independent risk measures (left); Efficient frontier position 

dependent risk measures (right) 

 

The figure shows the results derived in the previous section. The efficient frontiers for the 

position independent risk measures are only shifted and stretched, whereas the frontier in 

the position dependent case includes inefficient strategies with higher risk but less profit. In 

this case, risk is plotted in terms of losses. A negative value for the risk thus indicates a 

positive profit and therefore highly negative values correspond to low risk. For a comparison 

of the efficient frontiers of both position dependent and independent measures, we 

readjust the risk scale, using for each risk measure ρ0, the minimum risk for the perfect 

liquidity case, as a reference value. This risk value is obtained when the whole hedging 

volume is sold in the first time step with a liquidity parameter β=0.  Subsequently, the 

deviation of the risk on the different efficient frontiers from this ρ0 is calculated. The 

rescaled risk value is then given by 0)()( ρµρµρ −=tρans  . 
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Figure 6:  Efficient frontier comparison (left); Optimal hedging strategy in minimum risk case (right)  
 
For the position independent risk measures, the range of the risk between the portfolios 

with highest and lowest expected profit is according to Figure 6 much higher than for the 

corresponding dependent ones. The optimal hedging strategies in the minimum risk 

portfolio in the right part illustrate the result of section 4.2 that the minimum risk strategy 

leads to immediate full hedging for the position independent measures. For the position 

dependent measures, the stronger risk measure, i. e. the absolute CVaR, leads to earlier 

hedging. Or vice versa, the lower the (measured) risk, the more hedging is shifted to the 

future. 

Since the minimum risk strategy is invariant under changes in liquidity and portfolio size for 

position independent risk measures, the following sensitivity analysis for the liquidity 

parameter β, the portfolio size V0, and the price at sales quantity zero p0 are only performed 

for the position dependent case and illustrated for the absolute CVaR. 

The sensitivity analysis for the liquidity parameter β shows that minimum risk decreases 

with an increasing liquidity of the market. The corresponding mean in the minimum risk 

strategy increases simultaneously. Figure 7 shows these results. 
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Figure 7:  Sensitivity analysis for the liquidity parameter. Efficient frontier comparison (left); 

Optimal hedging strategy in the minimum risk case (right) 

 

The optimal hedging strategies indicate that with an increase in β, corresponding to a more 

illiquid market, the hedging strategy in the minimum risk case is to postpone hedging.  

A sensitivity analysis for the total hedging volume V0 shows similar results (cf. Figure 8). The 

minimum risk increases with an increasing quantity and the corresponding mean decreases.  

  

Figure 8:  Sensitivity analysis for the hedging volume. Efficient frontier comparison (left); Optimal 

hedging strategy in the minimum risk case (right) 

 
The hedging strategies corresponding to the different minimum risk cases explain these 

results. The hedging share in the first month decreases with an increasing total volume. 

Price reactions are then larger and it is hence optimal to sell later for the producer. 

Figure 9 shows a sensitivity analysis with respect to the price level p0. Obviously the price 

level has no influence on the minimum risk strategy, when we assume that the price level 
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has no impact on the liquidity parameterβ. Here the mean of the different cases is 

normalized in relation to the maximum mean for reasons of comparability. 

  

Figure 9:  Sensitivity analysis with respect to the price level. Efficient frontier comparison (left); 

Optimal hedging strategy in minimum risk case (right) 
 

A sensitivity analysis with respect to the standard deviation σ1 used for the 

calculation of the covariance matrix is shown in Figure 10. As expected, the riskier the 

market the earlier the hedging will be done. 

  

Figure 10:  Sensitivity analysis with respect to the standard deviation σ1. Efficient frontier 

comparison (left); Optimal hedging strategy in minimum risk case (right) 
 

6 Implications for Practical Financial Risk Management 

A major goal of practical risk management is sustainable growth of the company value. This 

value is often measured as the shareholder value based on discounted cash flows and can 

be increased by reducing the risk and/or improving the returns for a company. Often, the 
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ratio of risk and return is chosen for measuring the performance of risk management, 

because the two objectives are typically assumed to be countervailing. The corresponding 

measures are called risk-adjusted performance measures.  

One of these measures in the context of portfolio theory is the Sharpe ratio (in the mean-

variance case), which has been addressed in section 4. Analogous ratios exist for the mean-

risk cases. The major implication of the results in this article for practice is that reducing risk 

and improving returns or profits is not always a trade off, but also depends on the risk 

measure used. This means that the strategy focusing on the lowest standard deviation is not 

always the strategy with the lowest risk. When choosing a position dependent risk measure, 

such as absolute VaR and CVaR, strategies with higher expected profits and lower risk may 

exist. In this case a strategy with higher variance may decrease the overall risk. The results 

of section 4 additionally highlight that with decreasing market liquidity, the share of more 

risky operations (i. e.  deferred hedging) should be higher.  

Approaches widely used in practice for risk-adjusted performance measurement and 

integral risk-return management are the economic value added (EVA) and the risk adjusted 

return on capital (RORAC). They are often used in practice as instruments for value based 

risk management. EVA is an absolute performance measure and is calculated as 

 𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑟𝑟𝐻𝐻 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 

(see Diers 2011) with rH an internal hurdle rate and RiskCapital measured as risk of the 

profits with a certain risk measure, such as VaR or CVaR. The RORAC, in contrast, is a relative 

performance measure and is calculated as 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

, 

(see Diers 2011)  with the RiskCapital again measured as risk of the profits. 
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Within these frameworks the RiskCapital is usually interpreted as absolute loss and thus 

position dependent risk measures, such as the absolute VaR and CVaR, are used for 

calculation (see Scherpereel 2006). A further aspect why absolute measures are used for 

calculating the RiskCapital is the possibility of capital allocation, which is important for the 

planning of the optimal capital structure of a company and the determination of specific risk 

limits for different business units. Therefore the characteristic of absolute VaR and CVaR 

being translation invariant and, in the normally distributed case, subadditive is important 

because of the diversification effects of risk (see Scherpereel 2006). In contrast, the relative 

VaR and CVaR do not have the property of being translation invariant. Adding a risk free 

element to the portfolio will then not reduce the risk by the value of this risk free element. 

For practical risk management using EVA and RORAC the results from the previous section 

are very useful. The RORAC corresponds to the slope of the μ- ρ diagram. Considering a 

given hurdle rate for the RORAC the strategy would be to increase risk until the expected 

return is covered. Usually this meets a higher risk than the minimum risk. In order to derive 

an optimal hedging strategy for a perspective hurdle rate, this strategy can be determined 

analogous to the determination of the optimal portfolio in Woll and Weber (2015).Thus the 

slope of the efficient frontier has to be numerically calculated and the optimal strategy 

corresponds to the first point with a slope smaller than the perspective hurdle rate. This 

implies that capital is not scarce.  

7 Conclusion 

This article investigates mean-risk hedging strategies under limited liquidity and studies the 

impact of using different risk measures for the resulting hedging strategy. The risk measures 

are distinguished in position independent measures (Variance, relative VaR, relative CVaR) 
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and position dependent measures (absolute VaR, absolute CVaR). A key result is that the 

minimum risk strategy for the position independent measures is not affected by market 

liquidity. In this case, the minimum risk strategy always corresponds to the immediate 

hedging of the entire open position. In contrast, liquidity has an impact on the minimum risk 

strategy when position dependent measures are employed. Due to the dependence of the 

absolute risk measures on the mean, there exist strategies with lower risk and higher mean 

than the immediate full hedging strategy. As a third result, our modelling framework 

enables us to link back the the minimum risk strategy for all investigated risk measures to 

the efficient frontier in the mean-variance case.  This allows computation of the 

corresponding minimum-risk strategies. In addition, the results on the impact of limited 

liquidity in the mean-variance case from Woll and Weber (2015) are found to hold 

analogously for these more general mean-risk cases. Notably higher liquidity leads to earlier 

hedging in the minimum risk strategy and the total hedging volume has an influence on the 

minimum risk strategy. In addition, for practical risk management the results of the article 

emphasises how the choice of the risk measure can influence instruments for value based 

risk management. 
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