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i3MAGE: Incremental, Interactive, Inter-Model Mapping Generation

by Christoph Pinkel

Data integration is a highly important prerequisite for most enterprise data analyses.

While hard in general, a particular concern is about human effort for designing a global

integration schema, authoring queries against that schema, and creating mappings to

connect data sources with the global schema.

Ontology-based data integration (OBDI), which employs ontologies as a target model,

reduces the effort for schema design and usage. On the other side, it requires mappings

that are particularly difficult to create. Architects who work with OBDI hence need

systems to support the process of mapping development. One key type of tooling to

support mapping development is automatic or semi-automatic generation of mapping

suggestions. While many such tools exist in the wider sphere of data integration, few

are built to work in the case of OBDI, where the inter-model gap between relational

input schemata and a target ontology has to be bridged. Among those that support

OBDI at all, none so far are fully optimized for this specific case by performing a truly

inter-model matching while also leveraging distinct but corresponding aspects of both

models.

We propose i3MAGE, an approach and a system for automatic and semi-automatic

generation of mappings in OBDI. The system is built on generic inter-model matching,

and it is optimized in various ways for matching relational source schemata to target

ontology schemata. To be truly semi-automatic in every respect, i3MAGE works both

incrementally, building mappings pay-as-you-go, and interactively in exchange with a

human user. We introduce a specialized benchmark and evaluate i3MAGE against a

number of other approaches. In addition, we provide examples, where i3MAGE can be

deployed in holistic data integration environments.

http://www.uni-mannheim.de/
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Chapter 1

Introduction

1.1 Motivation

Data integration is a big challenge for the industry dealing with enterprise data, but also

in many other application domains like life sciences, or the Web. Today, data has not

only reached large volumes, but also comes in a variety of formats. Data integration ([1])

increases the utility of data by providing a unified access point to several data sources.

It is also a prerequisite to analyze data from disparate sources, e.g., by correlating them

and by identifying important patterns [2, 3].

One of the major challenges in data integration tasks is to address the heterogeneity or

variety of data.

Traditionally, in data integration scenarios, dedicated information systems are used to

run analyses. They are normally backed by large scale data warehouse systems (DWHs)

or, more recently, by big data frameworks such as Hadoop YARN [4] that work as data

operating systems running a mix of data warehousing and other data-processing appli-

cations. In all of these cases, data are typically imported from their original locations

using an extract-transform-load process (ETL), which leads to a unified, integrated,

global view.

Data warehouse solutions, however, come with a significant downside: they require a

dedicated global warehousing schema, which first needs to be carefully designed, and

mappings need to be constructed. The resulting schema then is still on a technical,

non-conceptual level, and consumers need to interact with the integrated data on that

level. This comes at the price of either a limited set of globally accessible data and query

support with little flexibility. Or, if the scope of access and flexibility needs to increase,

it requires even more effort for programming all the tasks and queries to be supported.

1
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Worse, with a number of data sources that quickly change in structure, maintenance of

the integrated global schema, mappings and queries can quickly become very difficult.

User

Manual	Query	Authoring

Diverse	Data	Sources

Information	Request

IT	Expert

Baseline

(a) Baseline ana-
lytics with no sys-
tematic data inte-

gration

User

Manual	Query	Authoring

Diverse	Data	Sources

A.	Prepared	Query

IT	Expert

DWH

Data	Warehouse

B.	Specific	Requests

ETL	Data	Transport
ETL	

Mappings

DWH	
Schema

Schema	Maintenance

Mapping	Maintenance

(b) Analytics with traditional data warehousing

Figure 1.1: Traditional architectures for data analyses over multiple sources, with
and without data warehousing

Figure 1.1 depicts the exemplary schematics of integrative data analytics without any

specific tooling at all (Figure 1.1a) and with a traditional data warehouse architecture

(Figure 1.1b). If no specific data integration systems are employed at all, any information

requests that span several data sources need to be “programmed” by one or several IT

experts. This works well for a very small number of queries that do not change very

often, but causes intense effort with a larger, changing or growing number of diverse

information requests. A data warehouse allows users to pose queries against a unified

global schema, but shifts the effort into designing and maintaining that schema as well

as the mappings that translate from the original data sources. Also, because the global

schema still remains technical in nature, end users typically still rely on the assistance

of IT experts for all but a limited number of prepared standard queries.

For scenarios with a high degree of schema complexity in the data sources or with a

large number of data sources with only partially overlapping schemata, the problem of

upfront setup effort becomes particularly pressing. A global schema reflects all of the

data sources considered in the scenario. Its size and structural complexity therefore

approximately reflect the sum of the sizes and complex structural elements from all

non-overlapping parts of all data sources involved.
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Often enough, the effort for setup and maintenance becomes unacceptable. This con-

tributes to the current situation, where enterprises are assumed to analyze less than one

sixth of their potentially relevant data.1

A promising recent approach to address part of this predicament is to use ontologies,

semantically rich conceptual models [6], to provide a conceptual integration and an

access layer on top of data sources [7]. Ontologies then act as the global, integrated

schema. This approach is referred to as either ontology-based data access (OBDA) when

applied to a single data source, or as ontology-based data integration (OBDI) in the more

general case. The approach has been successfully applied in academia as well as in the

industry [8–11]. Ontologies are connected to databases with the help of mappings that

describe the relationship between the elements of relational database schemata and the

ontological vocabulary, expressed in RDF. They are therefore referred to as RDB2 RDF

(Relational Database to RDF) mappings.

User

Diverse	Data	Sources

Ontology	Query

OBDI

OBDI	Layer

Automatic	
Query	Rewriting

RDB2RDF	
Mappings

Ontologies

Mapping	Maintenance

Figure 1.2: Data integration architecture for ODBI

Figure 1.2 schematically depicts an OBDI data integration system.

Other than in traditional data warehousing, the ontologies used in OBDI mediate be-

tween the data and its consumers. Consequently, users (or applications) who wish to

access the data can formulate semantically rich queries in their own high-level view of

a conceptual domain model represented by the ontology. This enables them to phrase

1According to a recent study of business analysts [5], surveying several hundreds of enterprises.
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a much wider range of information needs directly against the system and without the

intervention of an IT expert. It also means, that an ontology that acts as a global

schema reflects more closely the conceptual properties of the application domain and

is therefore less dependent on technical properties of the source schemata. Other than

traditional integration schemata they thus do not normally need to be changed along

with structural changes in data sources.

Also, expert ontologies are already publicly available in many application domains, and

many of them can naturally be employed to support OBDI scenarios. For example, in

biology there is the Gene Ontology [12], and in medicine [13] there is the International

Classification of Diseases (ICD) ontology. Another recent example is schema.org,2 an

ontology to mark up data on the web with schema information. Industrial examples

include the NPD FactPages ontology [14] created for oil exploration and the Siemens

ontology [10] for turbine hardware and sensor measurements.

In many cases with OBDI it is therefore not necessary to design a new global schema

from scratch.

Still, OBDI crucially depends on the quality of not only ontologies but also on RDB2 RDF

mappings that connect relational databases to RDF-based ontologies.

Mapping development has however been given much less attention than the development

of ontologies has seen. Moreover, existing mappings are typically tailored to relate

generic ontologies to specific database schemata. As the result, in contrast to ontologies,

mappings typically cannot be reused across integration scenarios. Thus, each new OBDI

scenario essentially still requires the development of mappings from scratch.

Figure 1.2 highlights RDB2 RDF mapping development and maintenance as the ma-

jor remaining bottleneck in OBDI. In fact, mapping development for OBDI could be

considered an even more difficult task than mapping development in general. This is

because with RDB2 RDF mappings, the cognitive accomplishment of translating from

underlying, low-level data source models to a conceptual high-level target ontology has

to be encoded in the mappings. Both of the other labor-intensive tasks in data ware-

housing that normally require IT experts, i.e., schema maintenance and the formulation

of individual queries, have been mostly alleviated in OBDI. Mapping development still

remains a complex and time-consuming process.

2https://schema.org

https://schema.org
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1.2 Support for RDB2RDF Mapping Development

As mapping development requires significant time in OBDI, support for users needs to

be addressed in order to achieve the overarching aim of reducing the human effort in

complex data integration.

More broadly, mapping creation and maintenance are a part of the issues that make

data integration hard in general.

For instance, Doan et al. [1] take an introductory, high-level view on hard challenges

surrounding data integration. They group those challenges into four categories: they

start with systems reasons and logical reasons, which both are technical. Then, they

discuss social and administrative reasons as well as setting expectations as the remaining

two categories, which are motivational. On the motivational side, i.e., expectations, the

authors of [1] also make clear that the first aim is to reduce human effort, with accuracy

often being a competing goal.

Assuming this perspective, support could be provided from different angles. Chiefly,

users could be assisted with technical challenges, e.g., by automatically proposing map-

pings, by visualizing complex logical connections between data sources, or by providing

a suitable user interface to translate the mapping idea of a user into a formal language.

They could also be supported with managing the motivational challenges, e.g., by means

of matching their expectations with available assets, or by guiding them through the

mapping creation process along the lines of administrative requirements. It should be

the aim of any technical system in the field of data integration to solve some parts of

the technical problems, but at the same time appropriately consider the soft factors.

In particular, any supportive approach should be designed with the consideration that

other forms of support may be eventually needed in addition to and in combination with

it.

One key approach to offer support in developing and maintaining mappings is automatic

or semi-automatic support for mapping generation. Systems that help constructing

mappings of good quality are therefore needed.

Numerous such systems exist in the wider sphere of data integration. Because the

approaches need to scale with the size and complexity of schemata and as fully automatic

solutions are usually insufficient in terms of quality, it has been widely accepted that

such tools should be semi-automatic systems (c.f., [15–17]) and highly specialized for

the task.
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Consequently, a number of systems have also recently been developed to address mapping

generation support for the special case of RDB2 RDF [18–22]. In addition, a few earlier

systems also support some flavor of RDB2 RDF mapping generation [23, 24].

All of those systems, however, fail to fully address the particular issues of the inter-

model gap that make RDB2 RDF special. For instance, as relational source databases

yield no explicitly modeled semantics, it cannot be automatically expected, that general-

purpose reasoning works as effectively as is known from ontology alignment [25, 26].

General-purpose matching algorithms, like graph-based structural matching, therefore

would appear more promising at first. Still, the target schema is an ontology, and also

source relational schemata contain at least some implicit semantics. It is therefore still

reasonable to assume that reasoning techniques can also have a positive impact if and

when tuned and applied to the specific situation. Additionally, in any inter-model gap

there potentially exist corresponding pairs of typical design patterns, which may look

largely different in either model but are frequently used to model the same type of

information.

We therefore argue that a specialized system, which considers the specific particularities

of RDB2 RDF inter-model mapping generation, should hypothetically be capable of

producing better results.

Although some approaches take steps into the direction, a system that systematically

considers the RDB2 RDF inter-model gap has not yet been described in the literature.

A prominent early system, COMA++ [24], has addressed the problem of inter-model

gaps by generalizing all kind of models to a common structural graph. This makes inter-

model matchings generally feasible between any two supported models. The system does

not, however, consider the particularities of those different input models. It does also

not provide any particular optimizations for inter-model matching. For instance, corre-

spondences between design patterns in RDB2 RDF are not considered. More specialized

early approaches like RONTO [23] consider what we now refer to as basic inter-model

patterns. RONTO does not combine this approach with generic inter-model match-

ing techniques such as the ones employed by COMA++, though. Recent systems like

BootOX [19] combine ontology alignment with some consideration of the particulari-

ties of relational source schemata. Again, BootOX does not consider correspondence

patterns or generic structural properties.

Our initial field experience with semi-automatic mapping generation support has also

lead us to the assumption that specialized optimizations for RDB2 RDF may be neces-

sary to bridge the inter-model gap effectively.
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We therefore propose a system, which addresses the specific problems of interactive

mapping generation in RDB2 RDF inter-model settings. The system should aim to

reduce the overall human effort in the process of creating sufficiently accurate mappings.

Sufficient accuracy, of course, is eventually laid out by user requirements and in the

scope of our motivational scenario usually refers to perfect accuracy w.r.t. a certain set

of tasks or queries. On the technical side, we therefore first aim to generate mapping

suggestions that are as close to the eventually expected mapping as possible, optimizing

on particular technical challenges of the inter-model use case. However, such a system

should also attempt to provide suggestions in a way that makes them easy to process in

user interactions, allows them to improve incrementally on user feedback, and fits into

a wider mapping development process where other forms of support could be leveraged

simultaneously.

1.3 Research Questions and Contributions

This work aims to tackle the specific issues in incremental, interactive schema mapping

generation in the case of RDB2 RDF inter-model mappings. We build on established

best practices in schema matching and focus on unsolved issues that occur exclusively

or primarily in the context of inter-model matching, while all contributions are designed

to work in an incremental and interactive setup. In particular, we address the research

questions listed below and make contributions as follows:

• What are the specific challenges of inter-model mapping generation as opposed to

generating regular intra-model mappings, specifically w.r.t. RDB2RDF mappings?

We discuss specific challenges and previous approaches that attempt to address

those challenges and point out gaps and shortcomings that have not been suffi-

ciently addressed to date. To this end we bring together observations of design

patterns from the fields of traditional (relational) database management, schema

matching and ontology matching and discuss their joint impact on RDB2 RDF

inter-model matching. We also analyze how partial mappings of complex schemata

can be exploited in such a setting to improve match suggestion quality incremen-

tally.

• How can mapping generation systems be designed to provide enhanced support for

those specific RDB2RDF mapping generation challenges?

We discuss potential specific features and introduce i3MAGE, a system that com-

bines several such features for automated RDB2 RDF mapping generation. i3MAGE
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uses a combination of lexical, structural and logical features in ontologies and re-

lational database schemata to generate tailored suggestions. Besides specific ad-

justments to established matching best practices, we propose new measures to

optimize mapping generation for RDB2 RDF, including the consideration of sys-

tematic correspondences between design patterns.

• How can the quality of generated RDB2RDF mappings be measured w.r.t. real-

world utility and how do specialized approaches compare to the state of the art?

We discuss the requirements for a broadly applicable quality benchmark of au-

tomatically generated RDB2 RDF mappings. As no such benchmark has been

previously available for RDB2 RDF mapping generation, we design a benchmark

according to those requirements. We provide a broad experimental evaluation

of i3MAGE and several other systems in the field to identify their performance,

strengths and weaknesses. Beside our own evaluation, the benchmark has since

also been applied by several research groups to test their own approaches.

• How can user-feedback and other context be exploited to gradually improve the

quality of generated mappings?

We discuss prerequisites and opportunities to make i3MAGE semi-automatic along

two related dimensions, incremental, pay-as-you-go development of mappings, and

interactive user feedback. As a result, we implement and evaluate the effect of

iterative user feedback to refine mapping suggestions, but also process partial

mappings and query workloads as additional context.

• How can such generated mappings be integrated non-intrusively in a semi-automatic

process?

We present use cases and system environments that may make use of i3MAGE,

and discuss requirements to effectively include i3MAGE in these environments.

Additionally, we present prototypical implementations of i3MAGE in two such

environments, demonstrating how i3MAGE can be used in real-world end-to-end

use cases.

1.4 Outline

The remainder of this work is structured as follows: We first discuss the background

on automatic and semi-automatic matching and mapping generation in Chapter 2, and

give an overview of related work.

In Chapter 3 we introduce our i3MAGE approach to RDB2 RDF mapping generation,

including the high-level idea and rationale for inter-model graph matching, our take on
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RDB2 RDF optimizations, and our approach to support incremental and interactive pro-

cesses. Then, Chapter 4 presents the technical implementation of i3MAGE, including a

formal definition of the graph matching model and optimizations, as well as implemen-

tation details.

Chapter 5 introduces the RODI benchmark suite that we have designed to evaluate the

quality of automatically generated RDB2 RDF mappings and gives a detailed comparison

of i3MAGE vis-a-vis other systems in the field. Finally, we discuss application scenarios,

where i3MAGE has been deployed in Chapter 6, and we exemplify how the different

system capabilities could be used in practice.

We conclude in Chapter 7 by summarizing and discussing our findings and contributions

and by pointing to possible avenues of future work.



Chapter 2

Background

In this chapter, we start with an introduction to the high-level idea of automatic mapping

generation in Section 2.1. We introduce basic terminology that we will use throughout

the remainder of this work and give definitions of the key terms in Section 2.2. We then

discuss the state of the art in related literature in Section 2.3.

2.1 Automatic Mapping Generation

Simply speaking, mappings mediate or translate between two or more non-compatible

sets of data.

Mapping'
(deciding'how'to'translate)

Matching'
(iden4fying'similari4es)

Mapping'
(rules)

Source Target

Figure 2.1: High-level view of a typical automatic mapping generation process

10
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Figure 2.1 depicts a typical process for automatic mapping generation in the general case.

As input, a system takes the two (or more) different data sets and eventually outputs a

mapping. The process is often implemented in two steps: during matching, similarities

between the different input data sets are being defined. For instance, matching could

determine that some A corresponds to some B with a similarity score of 0.61, but A

also corresponds to some C with a score of 0.85. Then, during mapping, the system

acts on those identified similarities to produce mappings in some sort of (often formal)

mapping language. However, those two aspects may not necessarily take the shape of

clearly separated steps in implementation.

This work concerns itself with a novel approach and a system for automatic incremen-

tal, inter-model mapping generation with interactive user feedback. More specifically,

the approach is focused on the particular case of schema mapping between relational

databases and RDF-based ontologies (RDB2 RDF). Thus, in our case, the input to au-

tomatic mapping generation will mostly be a relational schema and an ontology. Also,

inputs and outputs may be incomplete at various stages for incremental mapping gen-

eration, and partial mappings may become input to future iterations. Similarly, user

feedback concerning previous results and other user input needs to be taken into con-

sideration.

Mapping	
(deciding	how	to	translate)

Matching	
(iden4fying	similari4es)

Source

fe
ed

ba
ck

Mapping	
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partial	m
apping

Target

reads

Figure 2.2: High-level view of automatic incremental, interactive RDB2 RDF mapping

Still largely simplifying the process, Figure 2.2 depicts a prototypical architecture for the

automatic generation of such incremental, interactive, inter-model mappings as we have
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them in our case. Here, users can be involved, and both their feedback and previous

mappings can later be used as subsequent input.

2.2 Terminology and Definitions

We tackle problems in the scope of automatic schema mapping generation, more specif-

ically for the particular case of semi-automatic RDB2 RDF schema mapping generation.

Definition 2.1 (Modeling Languages, Schema Elements). We refer to languages that

are designed to model data according to some structure as modeling languages. We

denote the set of all such modeling languages as L. For each language L ∈ L, we denote

modeling primitives p ∈ L as schema elements.

Examples of modeling languages include the relational model as well as different ontology

languages. Schema elements comprise aspects such as, e.g., class definitions in the case

of an ontology language.

Definition 2.2 (Schemata and Instances). For any schema S in language L ∈ L, we

call D a database of S or an instance of S, if D adheres to the model described by S.

We use S to denote the set of all schemata, independent of the language in which they

are expressed, and D for the set of all databases. By instanceOf(D,S), we denote that

a database D ∈ D is an instance of a specific schema S ∈ S.

In case of ontologies, a schema is typically given by means of the ontology’s T-Box, with

axioms as schema elements.1 For relational databases, the schema is a relational schema

in a modeling language based on what has been originally described as the relational

model [27]. In practice, relational schemata are today expressed in DDL (Data Definition

Language, c.f. [28, Chap. 2.3]).

More specifically:

Definition 2.3 (Ontology Schema). For schemata O that are modeled in an ontology

language, we call O ∈ O ⊂ S an ontology schema.

Instances of ontology schemata usually coincide with the A-Box of the ontology.

We leave the exact definition of ontology languages open, as different but equally le-

gitimate definitions could be applied for different cases of schema mapping generation.

In practice, we will mostly refer to ontology languages in terms of the Web Ontology

Language (OWL) [29].

1Depending on the expressivity of the T-Box, not all of its axioms might be considered as relevant
parts of the schema.
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Definition 2.4 (Relational Schema). We call a schema R a relational schema, if it is

modeled as a constrained enumeration of relation signatures. We use R ⊂ S to denote

the set of all relational schemata. In this work we represent relational schemata as a set

of attribute definitions, relation definitions and constraints, i.e., R ⊂ {r1, r2, . . . }, ∀ri :

relation(ri) ∨ attribute(ri) ∨ constraint(ri).

Instances of relational schemata are any collections of attribute tuples that fit into the

relations defined by the schema and do not violate any constraints of that schema.

Mappings between any two schemata are described by mapping rules:

Definition 2.5 (Schema Mapping Rules). Let S, T ∈ S be a source schema and target

schema, respectively. Then mapping rules are a set of rules M ∈ M to rewrite data

from instances of S to instances of T : ∀DS ∈ D ∧ instanceOf(DS , S) : there is a

transformation function t, which can produce a target database from a source database

using these mapping rules, i.e., ∃t : (D,M)→ D, t(DS ,M) = DT ∧ instanceOf(DT , T )

In the following, we refer to schema mapping rules simply as mapping rules.

Note, that our definitions so far mostly follow the definition of semantic GLAV (Global

and Local as View) mappings according to [1, Chap. 3]. We leave the semantics of

transformation rules (i.e., query semantics) more open, though. We also do not require

a logically sound transformation of one schema into another, but rather require only their

contents (i.e., any data instances) to be translatable. This is in contrast to some stricter

definitions that often require a formally defined mapping language. In general, however,

there is a large degree of divergence in definitions. Ten Cate et al. [30] summarize

schema mapping definitions as “high-level specifications that describe the relationship

between two [schemata] (...) typically expressed in declarative languages based on logical

formalisms”. This definition largely fits our needs in this work, although we have no

strict requirement for any of the aspects described as “typical” in this definition: both

the use of a declarative language and a foundation in logical formalisms are optional

according to our own definition. Also, a relation between two schemata, in our case, is

sufficiently specified if it can be applied to somehow rewrite a database that is described

by one schema into a database described by the other. Through this relaxation compared

to some other definitions we gain the flexibility to apply complex inter-model mappings

in a pragmatic and useful way, even without necessarily having full knowledge of formal

and universal translation semantics between the models. On the other side, we lose the

ability to formally prove equality or subsumption of the schemata under given mappings

and thus will require different quality measures.
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Definition 2.6 (Mapping Instances). For source schema S ∈ S and target schema

T ∈ S, let M ∈ M be a set of mapping rules between S and T . Then, a mapping

instance I ∈ I can be defined as a tuple I = (S, T,M).

When producing mappings, the initial state of a mapping instance is usually still lacking

any mapping rules, i.e., Iinit = (S, T, {}). Mapping rules can then be added either at

once or during the course of several iterations that continuously refine the mapping

instance, i.e., I1 = (S, T,M1), I2 = (S, T,M2), . . . Changing one mapping instance into

another can be a manual rewriting step or could be automated.

Definition 2.7 (Mapping Generator). A mapping generator is a function g that rewrites

a mapping instance into another, changing only mapping rules. That is, g : I →
I, g(S, T,M) = (S, T,M ′)

Note, that some broader definitions have been used in the literature as well (e.g., [31]).

In those definitions, modifications to the target schema are allowed or required during

mapping generation (e.g., grelaxed : I → I, g2(S, T,M) = (S, T ′,M ′). We focus on the

strict case where a mapping generator produces only mappings, i.e., mappings between

two given sides, source and target.

A mapping generator may take into account additional context, if available. Such addi-

tional context could, for instance, be a sample database or a query workload on either

S or T , or human input. Formally, you may think of such a generator as a higher-order

function, which takes context as input and yields a final mapping generator function.

In this work we consider mapping generation in incremental, interactive scenarios. That

is, we consider scenarios where several mapping generation functions can be chained, and

additional context becomes available in-between each step, following human interaction.

Definition 2.8 (Mapping Task). A mapping task is the task to transform any mapping

instance I to bring it closer to meeting user-specified expectations. Formally, a mapping

task is defined by a mapping instance and a utility function or a measure of success, i.e.,

a pair (I ∈ I, u : I → [0..1]).

A mapping generator can be judged by the gain in utility that results from its rewriting

of a mapping instance.

For instance, a simple mapping task in a testing or benchmark setting could involve a

source schema S, a target schema T an initial mapping instance Iinit = (S, T, {}), and

a reference mapping Mref with reference mapping instance Iref = (S, T,Mref ). In that

case, the mapping task would be to rewrite Iinit into some Iresult by adding mapping
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rules in such a way, that Iresult closely resembles Iref . A utility function could measure

success by executing both Iresult and Iref and compare the resulting databases in terms

of precision and recall.

Definition 2.9 (Multi-source Integration). Multi-source integration following this def-

inition is set of mapping tasks, sharing the same target schema: I = {(S1, T,M1),

(S2, T,M2), . . . }.

In this work, we mainly consider individual mapping tasks w.r.t. mapping generation,

although some cases of multi-source schema integration are being discussed.

We primarily aim to tackle mapping tasks for RDB2 RDF, i.e., to generate mappings with

the goal of optimizing mapping utility in a relational-to-ontology inter-model setting,

possibly over several iterations.

2.3 Related Work

We start by summarizing the state of the art in general schema mapping, including auto-

matic approaches in Section 2.3.1. Then, we discuss existing incremental and interactive

approaches in Section 2.3.2 and previous work on inter-model mapping in Section 2.3.3.

Finally, in Section 2.3.4 we give an overview of previous approaches to evaluate the

quality of automatically generated mappings, in particular for RDB2 RDF, and discuss

related work on benchmarks.

2.3.1 Schema Mapping

Schema mapping is a key aspect of data integration, which is a well studied research

problem [1, 3]. As such, the field of schema mapping has seen research efforts as far back

as the early 1980s (e.g., [32]). Roughly ten years on, the field gained momentum with

new architecture proposals (e.g., [33]). Later, it became a topic of even more intense

research, in particular in the context of enterprise information integration (e.g., [34–36]).

An early survey on schema integration methodologies has been provided by Batini et

al. [37]. Later surveys include the ones of Ouksel and Sheth [38], or by Doan and

Halevy [39]. As most later surveys in the increasingly broadening field, however, those

papers assume a rather selective and focused point of view. Data integration textbooks

(e.g., [1]) give a more general overview of methodologies, approaches, and technologies,

as well as of the history of schema integration.
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Mapping rules can be formulated in various ways. A common definition considers map-

pings as declarative constraining relations between source and target (Miller et al. [40]).

Our definition instead follows the observation that, in enterprise practice, mappings

cannot always easily be expressed or understood in basic declarative terms. We thus

adopt the more relaxed definition where mapping rules are (possibly Touring complete)

procedural transformation rules. This is the kind of mappings typically used in ETL-

based data integration systems [1, Chap. 1].2 For the more formal approach, a raft of

logical mapping languages has been proposed. Detailed comparisons between the differ-

ent mapping language formalisms have been made by Ullman [41], Lenzerini [42], or ten

Cate and Kolaitis [30].

2.3.1.1 Automatic Schema Matching and Mapping

Automatic mapping is the approach to solving (or partially solving) mapping tasks

automatically using a mapping generator. It thus constitutes a fundamental aspect at

the heart of i3MAGE. The field of automatic mapping is generally broad and not bound

to the exact scope of mapping tasks as per our previous Definition 2.8, i.e., the task to

(re-)write mapping rules with the aim of improving w.r.t. some utility measure.

Basically all approaches to automatic mapping, including our own, use a pool of common

fundamental matching techniques [43], though. The most common ones of those can be

roughly grouped into three categories:

1. Lexical matching, essentially based on string matching and similar techniques [44],

often from the field of Information Retrieval. Elements in a schema are considered

similar, if their labels or descriptions are similar.

2. Structural matching, based on the similarity of either fixed structural patterns

or using graph matching (e.g., [45]). Elements in a schema are then considered

similar, if they are embedded in a similar or comparable structure. A special

case of structural matching are logical rules, which could be used to either define

and detect structural patterns or to even reason on the consequences of explicitly

known semantics.

3. Third, matching with auxiliary information such as thesauri or dictionaries of

various kinds. Elements in a schema are considered similar, if available auxiliary

information indicates that they are described in terms that are semantically similar

(e.g. [46]).

2i3MAGE is not an ETL system and mappings produced by i3MAGE are declarative. However,
i3MAGE could be used in ETL context and we intend to keep it comparable with systems that employ
non-declarative mappings.
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Matches can be considered building blocks to automatic mapping, where a match de-

scribes the degree of similarity between any two structural elements of the schemata on

either side. Matches are also often interchangeably referred to as correspondences [1,

Chap. 5].

In the context of schema mapping, automatic mapping is even sometimes referred to as

schema matching. Although slightly inaccurate, this pays tribute to the fact that gen-

erated matches are the foundation for generated mappings, and in some cases matching

and mapping are inseparable. The COMA++ paper [24] is an example where authors do

not differentiate between match results and mappings, instead saying that “the obtained

mapping is a set of correspondences” [24, p. 907].

A general overview of different matching techniques can be found in the surveys of

Shvaiko and Euzenat [47] or in the more recent survey of Bernstein et al. [48].

A significant number of schema matching and mapping systems have been described

in the literature, including Clio [17], Cupid [49], Artemis [46], MOMIS [50], Similarity

Flooding [45], COMA [16], and AgreementMaker [51].

Of those, Similarity Flooding is most closely related to our approach, as our core com-

ponent IncMap [52, 53] uses the matching principles of Similarity Flooding. In general,

Clio and COMA take a particularly prominent position as a point of reference for many

later systems.

Similarity Flooding [45, 54] is rather a generic algorithm with associated data structures

than a complete system, although the authors have implemented a complete prototype

for experimental purposes. The approach builds around graph matching in a fixpoint

computation algorithm. In [45], the authors therefore devise two general purpose graph

structures that can be used in the algorithm, a pairwise connectivity graph and an in-

duced similarity propagation graph. A more detailed discussion of both data structures

can be found in [54]. As a prerequisite to applying Similarity Flooding, compatible graph

representations of the source and target schema with colored nodes and generic, labeled

edges have to be produced. For their own experiments, the authors devise such graphs

in particular for relational databases and in a most straightforward manner. In IncMap

we use IncGraph, which is a compatible input to Similarity Flooding. The pairwise

connectivity graph then results from a Cartesian product of the nodes of input graphs

of the same color. Nodes in the graph need initial similarities, which can be assigned

using arbitrary lexical matching methods. From the pairwise connectivity graph, the

induced similarity propagation graph can be constructed. Slightly simplifying, induced

similarity graphs can be considered as another representation of the pairwise connectiv-

ity graph, with changes in edges and weights to fit the following fixpoint computation.



Chapter II. Background 18

Intuitively, the idea behind the fixpoint computation is to favor nodes in larger sub-

graphs over smaller ones and to increase the scores of strongly connected nodes. The

fixpoint computation runs in several iterations with score normalization between each

two iterations. It ends after either no more significant changes to scores happen, or

after reaching a configurable maximum number of iterations. We discuss all aspects of

Similarity Flooding that are used in IncMap in greater detail in Chapter 4.

Clio [17, 55, 56] was one of the earliest advanced research prototypes in automatic

schema matching, although it is described in limited detail in the literature. It has also

later made its way into commercial mapping technologies at IBM [55]. While originally

developed for matching relational schemata, the system has later been extended to also

support XML. In contrast to most other systems, Clio puts the actual mapping gener-

ation at the center of its efforts and considers matches merely as an input produced by

a schema matching component, which is not discussed in detail. It therefore works with

simple matches and follows a tableaux-based approach to calculate complex mappings

on that basis. One of its strong suits is its RDB-specific advanced support for relational

constraints and join paths. Clio supports an internal logical representation of mappings

and can export them in several query languages for actual transformations.

COMA [16] builds on two core ideas: combining different match algorithms in a flexible

way and enabling the reuse of results from previous match operations. At the core of

the system, a library of matchers supports different matching strategies by choosing

any matcher or a combination of several matchers. The library is extensible not only

with future increases of functionality in mind but also to enable the use of COMA

as a framework for evaluating matchers or their combinations. Matchers are meant

to be combined in a composite approach, aggregating their different scores for match

candidates to derive a combined similarity value. All matchers work on a common

graph structure representation of the input schemata, which supports different models,

such as relational schemata or XML. The graph represents schema elements in a similar

fashion to IncGraph, although it uses different edge semantics and does not use the

graph structure to model any additional knowledge, patterns or other heuristics. Also,

schema elements in COMA represent paths of arbitrary length rather than individual

nodes. While lending less weight to overall structural features within the graph, this

naturally accommodates matches between any two paths of different lengths. COMA’s

own evaluation demonstrates high accuracy w.r.t. expectations set by the authors and

also some practical usefulness on a selection of medium-sized schemata. COMA has

later been improved and republished in an extended version as COMA++ [24]. Where

the original version did already feature generic, model-independent data representation

with a focus on relational schemata and XML, COMA++ also supports OWL. Inter-

model matchings between any two different data models are in principle supported.
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However, while matchers can cater to the characteristics of different models individually,

no dedicated inter-model matchers are available. Consequently, the tool is not assisting

the user in bridging the impedance mismatch, and it could be assumed that it would

perform better in intra-model matchings than it does in complex inter-model matchings.

Besides published works, a series of commercial systems has emerged as well. Among

the most prominent are Altova’s MapForce3, IBM’s Rational Data Architect4 and Mi-

crosoft’s BizTalk.5

2.3.1.2 Ontology Alignment

Schema matching between ontologies is either referred to as ontology matching or as

ontology alignment. To some degree this may simply be a result of the fact that ontol-

ogy alignment has been investigated largely independently from other schema matching

research in its own community. However, schema matching between ontologies differs

significantly from other types of schema matching, and these differences also warrant for

a term on its own.

While ontology matchers often employ the same basic matching techniques as regular

schema matchers, they can also apply logical reasoning. This is because, in contrast to

all other popular schema models, ontologies as a schema contain explicit and often rich

semantics. For the same reason, there is usually even less a distinction between matching

and mapping in ontology alignment than there is in schema matching and mapping:

logical correspondences between schema elements with explicit semantics (e.g., class

equivalence or entailment) are already sufficient to deterministically derive a complete

mapping. Hence, there is no room for research on appropriate mapping heuristics or

mapping algorithms drawing on additional external information.

Ontology aligners include PROMPT [57], LogMap [58], CODI [59], AlViz [60], SAMBO [61],

RiMOM [62], YAM++ [63], and others.

Further actively developed systems can be found in the yearly lists of participants and

results of the OAEI [25] (Ontology Alignment Evaluation Initiative), e.g., [26].

From the family of traditional schema matchers discussed in the previous Section 2.3.1.1,

COMA++ [24] and AgreementMaker [51] also additionally qualify as ontology aligners.

For surveys, see [64] or [65].

3http://www.altova.com
4Recently rebranded as InfoSphere Data Architect, http://www.ibm.com/software/products/en/

ibminfodataarch
5http://www.microsoft.com/en-us/server-cloud/products/biztalk/

http://www.altova.com
http://www.ibm.com/software/products/en/ibminfodataarch
http://www.ibm.com/software/products/en/ibminfodataarch
http://www.microsoft.com/en-us/server-cloud/products/biztalk/
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2.3.2 Incremental and Interactive Approaches

Quite generally, it has been a long accepted fact that purely automatic mapping ap-

proaches will often fall foul of quality expectations (c.f. [1, 15, 16, 66]). A lot of research

efforts have therefore been made in the field of semi-automatic mapping approaches.

Examples in traditional schema matching include most established systems (e.g., Clio [17])

as well as basically all commercially established systems.

In ontology alignment, examples include PROMPT [57], AlViz [60], NeOn’s [67] On-

toMap and others. For RDB2 RDF, RONTO [23] is an early example, and BootOX [19,

68] a more recent one. While being semi-automatic and thus interactive, none of them

follows a truly incremental approach. Instead, the more traditional approach is the one

described in detail by Clio [55], which runs in three stages. First, fully automatic match-

ing is performed. Then, a human user is being confronted with all of those matches,

and can add, remove or change matches. Finally, mappings are generated based on the

corrected matches. At best, steps one and two can be repeated several times, leading

up to an iterative process. Consequently, they offer poor support for constructing a

mapping part by part, subsequent automatic mappings cannot significantly leverage on

feedback or partial mappings from earlier steps.

Approaches that do involve user interaction for incremental mapping generation in-

clude [69–72]. Typically, these pay-as-you-go approaches assume a classical mass sce-

nario with a large number of users, massive but simple end-user feedback, a lot of noise

and statistical methods to harvest feedback. This is in contrast to our approach of re-

questing very explicit feedback from a small number of expert users. Similarly, classical

human computer interaction and, more recently, crowd sourcing have been investigated

(e.g., [73]) but they remain just as limited in perspective of seeing users as a large sample

to be observed statistically.

Karma [18] is semi-automatic in a highly incremental way and designed for RDB2 RDF

data integration. At the same time it is far less automatic than our own approach. In

particular, Karma makes suggestions for mapping semantic types inside their editor,

which the system learns from previously integrated types. That is, their incremental

steps occur between repeated mappings of source types to the same semantic concepts.

Karma will make suggestions mostly in multi-source integration but will usually not start

to provide any suggestions before at least one source has been manually integrated. Also,

certain mapping steps in Karma provide no suggestion support at all and will always

require elaborated manual input in the form of transformations scripted in Python.
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Bernstein et al. describe a demonstration of a pay-as-you-go schema matching approach

that they also call an incremental approach [15]. Basically, the authors argue from a HCI

point of view that users are overwhelmed when confronted with automatically calculated

matches for the whole schema at once and thus need to proceed step by step. Also, they

include an “implicit scope” in their match generator, which favors matches in areas of

other recent matches. On the side of match generation and mapping composition no

aspects about the incremental state of mappings are leveraged or even discussed. In

terms of matching and mapping the approach is therefore rather just interactive than

incremental.

Wagner et al. have proposed a thoroughly incremental ontology aligner, the I3M aligner [74].

The tool works both interactively and incrementally over several iterations (hence the

third ’I’ in the name of their aligner). The key idea is to split ontologies into partitions,

and match each partition in several iterations, using different matchers and collecting

user feedback in-between iterations.

In a way very similar to incremental mapping, Lambrix and Liu analyze the benefits of

using what they call “partial reference alignments” for ontologies [75]. Partial reference

alignments refer to confirmed partial mappings between two ontologies. In contrast to a

truly incremental approach, the authors consider partial mappings only as initial input in

one single processing step. They make use of such input in three different ways. First,

they override any other suggestion with confirmed partial mappings, where available.

Second, they consider using partial mappings to partition the mapping problem into

smaller bits to improve scalability. Finally, they use given references in the matching

step, following the observation, that often “common patterns can be found between two

correct mappings”. Their observed patterns are linguistic patterns on a string level, i.e.,

they describe similarities between the linguistic structure of term strings. The authors

also experiment with all of the above mentioned techniques in filter step during mapping

selection. Overall, they discovered only minor advantages of using partial mappings in

their series of experiments.

QODI [20] presents an approach to use queries over an ontology target schema to improve

the choice between ambiguous mappings. The approach could in principle fit into an

incremental mapping generation process driven by queries. However, the authors’ main

concern in the paper is to disambiguate alternative mappings at runtime in the context of

queries. QODI and its semi-automatic commercial sister system Ultrawrap Mapper [22]

have been built for use with OBDA system Ultrawrap [76].

The COMA system [16, 24] is designed to be interactive and iterative as a result of

the observation that fully automated solutions are not usually feasible. A fully auto-

mated, one-iteration mode exists as well. Through re-ranking and reuse of mappings
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between iterations it is also partially incremental. However, it does reuse mappings only

in wider settings where a larger number of schemata comes into play (or a number of

similar chunks of a schema, called schema fragments). Reusability of individual previous

matches is based on the similarity of the schemata or schema fragments with matched

schemata or schema fragments, respectively. It is then assumed, that matches can be in-

terpreted transitively between the different schemata. Essentially, the matcher performs

a join on two transitively connected matches, thus deriving a third one, which directly

connects the first schema element to the last. This presumably yields the best results

when several schemata are to be matched pairwise in all directions. It has arguable no

or little effect on basic schema translations from one source to one target. At the same

time, user feedback can be employed to accept and reject match candidates between

iterations. Similarity scores for accepted or rejected nodes are adjusted and remain in-

variant during follow-up iterations. This corresponds to one of the three strategies in

IncMap for leveraging user feedback. For the interactive and iterative mode of COMA,

no evaluations have been performed in [16].

In terms of interaction paradigms, semi-automatic approaches can either follow the

traditional semi-automatic workflow (i.e., present many correspondences and allow to

remove, add, and edit them), or they could assist users in with suggestions in a context

where they are potentially useful. Such a context could be, most obviously, a mapping

editor, where an expert user has already started to create some mapping. It could also

be some more sophisticated and indirect context, e.g., a view that requires additional

mappings in virtual integration, or some sort of a hybrid approach.

At the heart of understanding opportunities for mapping suggestion support beyond tra-

ditional semi-automatic matching are mapping editors. For RDB2 RDF, the standard

mapping language is R2RML [77], which has recently received the status of a W3C rec-

ommendation. Some existing RDB2 RDF editors offer advanced and more or less visual

user interfaces, e.g., [78, 79]. However, these are based on domain specific languages

predating R2RML. [80] describes an Eclipse plugin that supports R2RML execution as

well as mapping generation with custom algorithms. Neto et al. have demonstrated

a mapping editor with a highly visual interface that eventually generates R2RML [81].

However, they do not expose R2RML semantics but only simple correspondences used as

assertions. Arguably, the expressiveness of these assertions is only a subset of R2RML.

Our basic R2RML editor [82] originally demonstrated in a much earlier version as [83]

closely follows the syntax and structure of the R2RML language. Users can visually

edit complex mapping rules in structured views, where each view corresponds to one

top-level R2RML rule (called a TriplesMap). This leaves room for mapping suggestion

in a per-rule context and at various degrees of rule completion.
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A few recent papers include user studies that analyze approaches for user-centric data

integration and thus take a broader look at interface support options, also for built-in

mapping suggestions.

Falconer and Noy summarize and discuss the state of the art in semi-automatic on-

tology matching and visualization [84]. To the authors, this largely means any kind

of user involvement on the one hand and explanation of results on the other. Besides

that, they consider crowd sourcing and Web 2.0-style collaborative user involvement as

a related challenge. While generally assuming the traditional semi-automatic approach

as a baseline, where matches are first produced automatically and then adjusted and

complemented manually, the authors note an increasing “trend towards a more human-

centered approach to ontology matching” [84, p. 30]. In this context, they talk about

an upcoming “symbiosis between tool and user” that gives rise to a growing number

of new tools, following this novel trend. In their view, a key reason for this trend are

problems that arise from large ontologies and large sets and the large number of result-

ing correspondences produced by tools in the traditional approach. The paper surveys

interactive ontology alignment tools (e.g., [24, 57]) in some detail and also briefly dis-

cusses traditional schema matching tools. In their discussion, the authors note that there

are important principled differences between schema matching and ontology alignment,

which mostly stem from the different rationales when designing ontologies vs. relational

schemata. This supports our argument that the specific requirements of RDB2 RDF

mappings call for dedicated, specialized tools. Evaluations of interactive approaches are

briefly discussed in the paper and the authors summarize five (mostly small-scale) user

studies.

Stuckenschmidt et al. have fielded a user study [85] that analyzes the effectiveness and

efficiency of their own interactive approach and follows a cognitive support model [86].

This cognitive support model defines a fairly general and principled approach for creating

mapping rules. Here, a set of mapping rules is first created automatically, then these

rules are applied to some data, and finally users verify the individual rules by marking

the results as correct or incorrect.

In contrast to this strict procedural approach, Wrangler [87] introduces a new visual

and interactive data transformation language that leaves much freedom to the user as

to which approach they will apply. Basically, the user can apply a set of data transfor-

mation primitives in any order and is supported by interactive data visualization tools

to preview results, histories to undo changes, etc. Rather than schema mappings the

tool is built with data matching and transformation in mind. Wrangler focuses on ease

of use and clarity of transformations, discussing advanced HCI aspects, transformation

documentation and provenance. Natural language descriptions of transformations and
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visualized previews also play an important role. Implementation-wise, an important

feature of the system is a dual execution strategy, allowing both online previews and

in-browser transformations as well as compilations of the same rules into Python scripts

or even MapReduce [88]. The authors also present a user study comparing Wrangler

with manual Excel transformations, where human effort to a perceived final solution of

each task is the measure of success.

2.3.3 Inter-Model Mapping

Inter-model mapping, i.e., mapping from a schema in one data model to another schema

in an entirely different data model, introduces additional challenges. All popular data

models are based in logic. At the first glance, those additional challenges could there-

fore appear to consist simply of the transformation of modeling primitives and modeling

structure. At second glance, however, this is not the case. Besides the structural trans-

formation, inter-model mappings lead up to at least three additional road blocks that

are not present in intra-model mappings:

1. Impedance mismatch, i.e., differences in how the model relates to its data.

2. Different expressiveness, e.g., the logically formulated semantics in OWL ontologies

are much stronger and expressive than semantics of relational algebra.

3. Different purpose and usage, i.e., different goals w.r.t. the kind of data that should

be expressible in the model and about how that data might typically be used.

Impedance mismatch, a term borrowed from electrical engineering, has initially been

used in data management with object oriented databases as the object-relational mis-

match. The object-relational mismatch states that problems arise because the relational

model structures data as related data values, while other models structure data as ob-

jects. For the wider object-relational mismatch see [89], for a discussion in the context

of RDB2 RDF c.f. [90]. Also, another side of the impedance mismatch for RDB2 RDF

mappings is the gap between the closed world assumption and the open world assump-

tion. The modeling of some piece of information might be perfectly clear in closed-world

semantics, but be less clear (or at least incomplete) in open world semantics. For in-

stance, this has lead for some systems to require mappings to be marked as exact, when

it is known that all relevant information is covered by the mapping in accordance with

closed world semantics (e.g., [79]).

In addition, different levels of expressiveness are supported in different data models.

Although the issue is a general problem in finding semantic mappings [1, Chap. 3]
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whenever application semantics play a role, it becomes more pressing when models

involved already enforce a gap in semantics.

Finally, a more practical problem originates from how experts are used to design data

in each model. This has to do with broadly accepted design practices but also with the

typical purpose of modeled data. For instance, relational data should likely be queried

in many ways and queries should perform efficiently. Ontological data might be used for

reasoning and interlinking of information.

Inter-model mappings have first been discussed between relational databases and object

oriented databases [91], later for XML. Systems built for both relational databases and

XML include many of the later tools (e.g., Clio [55] and, of course, more general-purpose

matchers such as (e.g., COMA [16]). They usually feature inter-model mappings, but

offer no or little specific optimizations for the case w.r.t. the above mentioned challenges.

More recently, RDB2 RDF mappings have become a topic of increased interest.

In either case, relational databases are often on the source side of the mapping. One

technique that is frequently employed with relational databases to close in on the expres-

siveness gap is database reverse engineering. Database reverse engineering is a field of

primarily earlier database research that attempts to reconstruct conceptual models from

logical or even physical relational database models. Some of the more prominent early

papers include [92, 93]. Traditional reverse database engineering is usually aiming to

construct entity-relationship models (ER) or extended entity relationship models (EER)

from a logical relational schema.

Müller et al. summarize database reverse engineering tools and techniques from the

perspective of the year 2000 as well as some of the key challenges of the time [94, Sec. 3].

In their paper, they also put database reverse engineering in the context of wider reverse

engineering motivations, techniques and challenges. Malpani et al. propose a modern

approach to database reverse engineering [95]. They follow a more recent motivation

for the task, by connecting the idea of understanding database content with the task of

building applications for the data. This is not unlike the motivation for OBDA, which

often originates from the desire to use domain ontologies as a semantic, conceptual basis

to construct complex queries in the domain.

Reverse engineering techniques have also been occasionally discussed in the context

of RDB2 RDF (e.g., [96, 97]). Many more papers effectively consider the same class

of techniques, but usually without alluding to database reverse engineering explicitly

(e.g., [19, 21, 23, 98]). In IncMap, we also effectively rely on database reverse engineer-

ing techniques by recognizing modeling patterns. However, we do not use these patterns

to transform the database schema, but to annotate its matching graph, s.t., both the
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original structure and recognized patterns could be exploited for mapping generation.

Also, our patterns are based on previous enumerations of RDB2 RDF mapping pat-

terns ([98]) together with relational design patterns as explained in database textbooks

(e.g., [28, Chap. 4.5f]) and typically taught in undergraduate database courses.

For XML, semi-structured data and unstructured data, the process corresponding to

database reverse engineering is often referred to as schema extraction [99]. This term

reflects the fact that data with less rigid structure does not necessarily originate from

an engineered model translation process that could be reversed.

RDB2 RDF mappings form a case where the inter-model gap is particularly wide. The

general groundwork has been laid out by RDB2 RDF mapping languages and trans-

formation systems. Popular established systems include D2R [100], or R2O [101]. As

mapping language, R2RML [77] has recently become a standard. For a survey on map-

ping languages that predate R2RML, c.f. [102]. Some recent research has also suggested

alternatives to R2RML, e.g., [103], or [104], which extends R2RML to map also map

from non-relational sources to RDF.

Most closely related to i3MAGE, some previous work has described efforts to auto-

matically construct RDB2 RDF mappings. In practice, however, most systems do not

approach the task of true inter-model mappings. Instead, they attempt to transform

the problem into a better understood, yet not equivalent problem, e.g., ontology align-

ment [65]. For example, [105] transforms relational schemata and ontologies into directed

labeled graphs and reuses COMA [24] for what essentially amounts to syntactic graph

matching. The few approaches for directly matching aspects from relational schemata

to corresponding aspects in ontologies date back several years and have been written

with a different motivation and under vastly different preliminaries. Overall, the driving

motivation to develop automatic and semi-automatic RDB2 RDF techniques at the time

can be summarized as the desire to get more data into the Semantic Web (in a most

literal sense, i.e., to complement actual web pages).

KAON-REVERSE [106] represents one of the earliest exceptions. The system is designed

to directly map relational data to a given ontology and explicitly uses database reverse

engineering [92, 107]. As a target language, F-Logic [89] is being used, which was initially

developed as a formal logical language for object oriented databases [91]. The authors

provide a tool for semi-automatic usage, i.e., with mapping suggestions. To produce

suggestion it uses a number of fixed mapping rules defined in the paper, which they

derive from reverse engineering of the logical relational schema. Those, in turn, are

based on a reverse-engineered semantic representation based on the database logical

schema. The reverse engineering process borrows from earlier approaches of mapping

relational databases to object oriented databases. In an unusual trait, user interaction
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for semi-automatic mapping happens on two separate stages, reverse engineering and

concept alignment. Without human interaction, both reverse engineering and automatic

mapping act deterministically and in ignorance of each other on ambiguous patterns.

In this case, although formally following a direct mapping approach, KAON-REVERSE

behaves very similar to an indirect mapping approach: the reverse engineering phase

could be considered an initial mapping, while automatic mapping corresponds to plain

ontology alignment.

Another early system, RONTO [23], uses a combination of syntactic strategies to discover

mappings by distinguishing the types of entities in relational schemata. The tool is

aimed explicitly towards semi-automatic mapping generation of relational schemata to

ontologies. In their paper, the authors also discuss the issue of bootstrapping ontologies

for the purpose. RONTO uses basic rules to match concepts and properties to relations

(including views) and attributes. The system follows a direct inter-model mapping

approach, which enables the use of inter-model mapping patterns. More specifically,

RONTO considers n : m relationship relations and joined tables.

Hu and Qu exploit structure of ontologies and relational schemata by calculating the

confidence measures between virtual documents corresponding to them via the TF/IDF

model [66]. The authors maintain that any purely manual approach to constructing

mappings would be tedious and therefore improbable, thus also assume a semi-automatic

approach.

Finally, An et al. describe an approach to derive complex correspondences for a rela-

tional schema to ontology mapping using simple correspondences as input [108]. The

paper mentions the problem of different design patterns used in ontologies and relational

databases, but stops short of addressing the issue of patterns specifically. Instead, the

authors focus on a special case to follow their primary aim of deriving complex mappings.

Another avenue of work considers mapping generation, but primarily in the sense of

mapping and ontology bootstrapping, i.e., they produce mappings and a fitting ontology

based only on the input schema and without considering a target schema.

For instance, Sequeda et al. [31] have formally defined a direct RDB2 RDF mapping,

based on the general ideas behind W3C’s definition of a direct mapping [109]. The basic

motivation is to automatically generate a mapping together with a target ontology. In

their paper, the authors base their direct mapping ontology on RDF and OWL vocab-

ulary. As specific contributions, they prove that selected basic and desirable properties

hold for direct mappings following their approach. In particular, they can guarantee

information preservation (i.e., any database could be losslessly restored from the gen-

erated graph by an inverse mapping) and query preservation (i.e., all queries could be
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equivalently translated) as well as either one of monotonicity (i.e., adding data to the

source database has no effect on triples generated for any previous data) or seman-

tics preservation (i.e., referential integrity should be truthfully reflected in the resulting

RDF graph’s consistency). The authors prove that monotonicity and preservation of

semantics are mutually exclusive, and no such direct mapping could guarantee both.

Other examples for bootstrapping mapping generators include [21, 76, 79, 110]. In

principle, BootOX [19] also fits into that category, but in contrast to the others it is

built to cooperate with an ontology aligner to eventually still map to a target ontology.

A comprehensive overview of RDB2 RDF efforts, including (but not limited to) related

approaches of automatic mapping generation, can be found in the survey of Spanos et

al. [90].

2.3.4 Mapping Quality and Benchmarking

Mappings between ontologies are usually evaluated only on the basis of their underlying

correspondences (i.e., alignments). The OAEI [25, 111] provides tests and benchmarks

for those alignments that can be considered as a de-facto standard, although alternative

benchmarks have also been proposed [112]. OAEI results are being published regularly

(e.g., [26]).

However, other related benchmarks have also been proposed and approach the topic

from a different angle. For instance, Rivero et al. [113] have devised a benchmark for

linked data translation (data exchange), i.e., for mapping RDF data on the web between

different vocabularies. There, the authors assume a particular mapping model in which

all mappings are based on correspondences in such a way that executable mappings are

queries resulting directly from a combination of correspondences. Measured aspects

include expressivity (i.e., the general ability of systems to somehow express either of the

mapping patterns) and also performance. The benchmark does not, however, consider

any kind of precision or recall of produced mappings besides the upper limit given by

expressivity.

For XML mappings, at least one somewhat influential benchmark, STBenchmark [114],

has been proposed. STBenchmark has been designed for XML but has a potential reach

beyond the XML model, as it supports a number of fairly generic mapping challenges.

However, its generated data do not support any of the specific properties of models

other than XML, e.g., no relational constraints or ontology axioms adding advanced

expressivity. STBenchmark offers capabilities for generating pairs of source and target

XML schemata in a controlled fashion as well as instance data and XQuery reference
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mappings. It uses fairly generic terms for mapping challenges (or basic mapping scenarios

in STBenchmark terminology). For instance, normalization artifacts are called vertical

partitioning, while the hierarchy pattern that requires us to extract several entity types

from a single table is called horizontal partitioning. STBenchmark does not outline any

single one benchmark but is rather considered a mapping benchmark scenario generator.

Mappings between relational databases are typically not evaluated in a common bench-

mark. Instead, authors compare their tools to an industry standard system (e.g., [16,

17, 24, 55]) in a scenario of their choice. However, some benchmarks have also been

proposed (e.g., [115, 116]).

In addition, certain non-comprehensive evaluation criteria have been presented as side

contributions in other work (e.g., [117, 118]).

A novel TPC benchmark, TPC-DI [119] was created only recently. It is based on a fixed

set of source and target schemata. TPC-DI has a clear focus on the wider field of data

integration as opposed to schema mappings, only. Notably, however, this includes the

integration of heterogeneous sources comprising relational and XML data sources and

thus also touching aspects of inter-model data integration. Aiming to be an industry

class benchmark, TPC-DI is designed to assume a typical industry setup. For instance,

the target schema is a classical relational OLAP data warehousing schema structured

around dimensions and fact tables. As of March 2016 no results have been published on

their web site,6 though. Also, TPC-DI is designed mostly to benchmark ETL mapping

execution efficiency, as opposed to mapping quality.

Similarly, evaluations of RDB2 RDF mapping generating systems were earlier based

on one or several data sets deemed appropriate by the authors and are therefore not

comparable. In one of the most comprehensive previous evaluations, QODI [20] was

evaluated on several real-world data sets, though some of the reference mappings were

rather simple. Also, IncMap [52], a component of i3MAGE, was initially evaluated on

real-world mapping problems based on data from two different domains.

A number of papers discuss various quality aspects of generated mappings in a more

general manner.

Console and Lenzerini have devised a series of theoretical quality checks w.r.t. consis-

tency [120]. Bienvenu and Rosati discuss query-based notions of mapping equivalence

in OBDA from a formal point of view [121]. Westphal et al. have discussed a wide range

of possible quality measures that may play a role in for RDB2 RDF [122]. In a simi-

larly broad approach, Wang has proposed a framework for quality assessment in data

integration [123].

6http://www.tpc.org/tpcdi

http://www.tpc.org/tpcdi
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In a related benchmark, Impraliou et al. generate synthetic queries to measure the cor-

rectness and completeness of OBDA query rewriting [124]. The presence of complete and

correct mappings is a prerequisite to their approach. Mora and Corcho discuss issues and

possible solutions to benchmark the query rewriting step in OBDA systems [125]. Map-

pings are supposed to be given as immutable input. The NPD benchmark [126] measures

performance of OBDA query evaluation. Neither of these papers, however, addresses the

issue of systematically measuring mapping quality w.r.t. utility, i.e., expected results. In

an even more specific variation, Schoenfisch and Stuckenschmidt propose a benchmark

to measure the performance of OBDA systems at scale using probabilistic databases and

ontologies [127].

Our RODI benchmark suite [128] has been developed specifically to fill this gap and sys-

tematically evaluate the utility of i3MAGE, also comparing it to competing approaches.

An alternative benchmark that could be used in a way similar to RODI is iBench [116],

which has most recently been presented in the form of a technical report and follows

the idea sketched out in another, earlier technical report [129]. While iBench provides a

significant degree of control over synthetic data generation, it does not offer a complete

benchmark framework for ready evaluation of RDB2 RDF tools.

In iBench, the authors present a meta-data generator for benchmarking schema map-

pings. Essentially, the idea is to automatically generate rich schemata and also logical

GLAV mappings between them in a scalable fashion. iBench is designed as an extension

of an earlier benchmark, STBenchmark [114]. Just as in STBenchmark, the authors

consider their work as a basis to create different benchmarks in data integration and

related fields rather than one fixed benchmark. The generator is constructed to produce

scenarios in two steps: first, simple scenarios are generated according to specifications.

Simple scenarios consist of one source and target schema each. An orchestration engine

could then chain and combine several such simple scenarios into complex ones. And

second, the orchestration engine can trigger a data generator to fill schemata or pro-

duce a sample query workload. As primitives, iBench aims to support both handcrafted

specific challenges as well as wrapped-up real-world examples. Notably, iBench extends

STBenchmark to fully support relational models, e.g., by supporting the generation of

database constraints but also by supporting additional mapping patterns, called mapping

primitives in the paper.

In their papers, the authors discuss certain details of fundamentally different use cases

and setups that may call for the generation of different integration benchmarks, e.g.,

schema evolution mapping, mapping composition, initial mapping creation, etc. The

authors also give a formal definition for the requirements of generating such meta-data
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(i.e., to generate schemata) and for the relations of meta-data elements in different

schemata.

The later report [116] also provides an initial evaluation with three mapping generat-

ing systems, including Clio [17]. Notably, in this evaluation, the authors include an

RDB2 RDF mapping scenario. However, they build this scenario in a mostly naive fash-

ion. In particular, they consider only four specific RDB2 RDF mapping patterns and

give little consideration to discussing their choice of patterns. It seems that their aim is

to use a basic set of patterns that may possibly be used to map some relational databases

to an ontology. For instance, they employ exactly one hierarchy pattern, called IS-A,

which assumes one single modeling pattern of hierarchies in all relational databases.

Intuitively, this mindset for bridging the inter-model gap is similar to the one assumed

by the basic version of IncMap without patterns and reasoning. However, the scenario

demonstrates how iBench might in the future be used to generate benchmarks similar

to RODI, assuming a thoughtful selection of additional patterns and a fitting configura-

tion. In any case, iBench does not produce actual ontologies in any standard language

(such as OWL ontologies) or reference mapping (like R2RML mappings) but only an

XML description, which indirectly mimics such artifacts using a relational metaphor

and terminology.

A survey by Bellahsene et al. gives an overview of different approaches for evaluating

schema matching and mapping [130]. The paper also includes an overview of system

characteristics that enable or even call for those different types of evaluation. In their

notion all data models, including ontologies, are sufficiently described by structural

schemata, and thus no distinction between different models needs to be made w.r.t.

schema matching and mapping. Consequently, the survey does not specifically cover

RDB2 RDF or any other inter-model mappings. The authors start out by emphasiz-

ing the importance of evaluation standards for the increasing number of mapping tools.

While observing that no generally accepted benchmark for schema matching and map-

ping did exist at the point, they identified different metrics that are recurrently being

used for evaluation. Among those, they singled out quality metrics based on precision

and recall as the key measures for efficacy, including the kind of end-to-end instance

comparisons now used in RODI. More theoretical quality measures as well as efficiency

measures that cover both computational efficiency and human effort are also discussed

in the survey.
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i3MAGE Approach

In this chapter, we give a systematic overview of our approach with all relevant main

aspects. We describe in Section 3.1 the key problem addressed and list associated chal-

lenges. Then, we introduce the overall idea of our proposed approach, and present the

rationale behind choosing this particular approach in Section 3.2.

3.1 Problem Statement and Challenges

3.1.1 Problem Statement

i3MAGE addresses inter-model mapping tasks for RDB2 RDF in an incremental and in-

teractive fashion. That is, it attempts to generate and improve mappings between a given

relational source schema and a given target ontology with support of user feedback over

several semi-automatic iterations. Formally, i3MAGE rewrites input mapping instances

with initial (and possibly empty) sets of mapping rules in the shape of Iin = (R,O,Min)

into output mapping instances Iout = (R,O,Mout), with R a relational source schema,

O a target ontology and Min,Mout sets of mapping rules. The aim of rewriting is to

increase utility of the mapping instance (c.f. Definition 2.8). i3MAGE needs to imple-

ment an incremental approach by running any number of iterations rewriting the output

of the previous iterations Iin. It also supports interactive feedback by accepting user

feedback as additional input in-between iterations.

The primary research problem is therefore to design a mapping generator (c.f. Defini-

tion 2.7), which is suitably adapted to the specific challenges of RDB2 RDF inter-model

mappings, as opposed to regular intra-model mappings.

32
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With what amounts to a second problem to solve, the system is required to make use of

semi-automatic feedback in this specific context as effectively as possible.

In particular, this means that, unlike most other semi-automatic mapping generation

approaches, i3MAGE needs to work fully incrementally. That is, i3MAGE should map

only parts of the schemata at a time and needs to allow manual modifications between

any two incremental steps. It should also be capable of leveraging previous partial map-

pings resulting from such modifications to improve the quality of subsequently generated

mapping parts. User feedback should also be employed where available to re-rank and

refine results, making the approach semi-automatic. In addition, information needs that

stir the incremental process should also be leveraged as context.

3.1.2 Challenges

As i3MAGE is targeted to RDB2 RDF inter-model mappings, specific challenges result

from the inter-model gap. While all kinds of mappings are challenged by the model-

ing differences between schemata, this is particularly true for inter-model mappings. In

addition to common issues such as slightly different semantic perspectives (and thus

modeling) of the same aspects, inter-model mappings have to deal with different mod-

eling primitives on both ends.

For RDB2 RDF, the relational source models consist of constrained relations between

values, while the target ontology models contain a semantically rich description of con-

nections between the entities of semantic concepts, their meaning and possible implica-

tions. Largely different modeling primitives and different degrees of expressiveness on

either side, however, lead to the use of thoroughly different modeling patterns.

This situation is aggravated by the different perspectives that database architects and

ontologists take on their respective data models: relational database schemata are seen

as the technical, low-level models that they are. Consequently, they should host data in

a clean but most of all in a high-performing and usable way. Ontologies, on the other

side, are mostly considered from by a high-level, meaning-driven point of view. In other

words, while a database architect aims to fit existing or required data somehow into a

model and may restructure them following technical rules with little consideration of

data semantics, an ontology designer attempts to describe the meaning of both present

and potential future data as accurately as possible. For example, a database architect

might put two semantically distinct concepts together in one table if they are in a strict

1 : 1 relation with one another. They would also split up information about one single

concept into several tables if some of its properties were in a n : 1 relationship with the

concept.
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The main challenge in RDB2 RDF mapping generation vis-a-vis regular, intra-model

mapping approaches is thus to understand and handle the different modeling patterns

appropriately.

In addition, i3MAGE stands apart from many semi-automatic mapping approaches in

being fully incremental, i.e., the system does not only accept manual input at the end

of the process but effectively and continuously reacts and adjusts to user feedback and

input while producing the mapping piece by piece. This process can also be driven by

immediate information needs (i.e., queries), which could serve as additional input.

However, compared to different modeling primitives and patterns, these aspects play a

lesser role when it comes to specific challenges. Mostly, user feedback is solicited in a

form similar to other, well-studied mapping generation approaches. Thus, the use of

existing partial mappings and pay-as-you-go query workload as input are left as the

only challenges to the system that significantly exceed mere engineering problems on

the semi-automatic side.

3.1.2.1 RDB2RDF Challenges Regarding Modeling Primitives

Target

Source(
Option(1

Address
ID
Street
Number
City
P_ID((FK)

Person
ID
Name
E@Mail

Person AddresshasAddress

Person
ID
Name
E@Mail
Street
Number
City

Source((
Option(2

Figure 3.1: Simple inter-model matching scenario with persons and their addresses
(target ontology, and two alternative relational source schemata, including matches)

In inter-model mapping, even basic modeling primitives display a number of differences

that are no concern for intra-model mappings.
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Example 3.1 (Persons, Addresses). Consider a simple ontology with persons and their

addresses, together with different fitting database schemata as shown in Figure 3.1. The

ontology consists of classes Person and Address. In addition, there is an object prop-

erty, hasAddress, that connects those concepts. Datatype properties are not depicted for

brevity.

Figure 3.1 illustrates a mapping scenario for this example. Matches in this scenario

are considered for classes and object properties with tables and foreign key constraints.

Although still rather trivial, even this simple example illustrates some of the inter-model

gap encountered in inter-model matching.

In case of the first (left hand) source schema, the two classes match with tables while the

object property matches with a foreign key constraint. While most clear and straight-

forward, it hides a first aspects of the inter-model gap: in fact, the relation described

by object property hasAddress from the ontology is not represented by a foreign key in

the relational database but by a join path established through a join condition (or join

predicate) between the two tables. What the foreign key gives us is simply a hint on

how to phrase such a reasonable join condition. In general, however, a join condition

is something, which can be formulated freely on top of a schema. It can not be found

anywhere inside the schema explicitly and thus cannot easily be used as an element in

schema matching. Even in this straight-forward case, slight changes in modeling could

make this issue visible. For instance, if the foreign key was not explicitly modeled in the

schema, a straight-forward match between schema elements (i.e., between a property

and a constraint) would no longer be possible.

For the case of the second (right hand) source schema in Figure 3.1, we assume that

persons and their addresses are related 1 : 1. This can be a reasonable assumption

for a relational database if only one (i.e., primary) address will be kept per person

anyways. In this case, relational design theory recommends to join all information

about both entities into a single table. Both classes from the ontology can still match

with a table (the only table in the schema) in a n : 1 matching. There is no clear match

for object property hasAddress, though. Neither of this would be a problem in intra-

model mappings, e.g., ontology alignment or relational schema matching. For ontologies,

relations between different entities will always be modeled as object properties on either

side. In relational schemata, on the other side, relations and join conditions that express

them exist independently from the question of how the data is managed in different

tables, as long as functional dependencies are preserved. Therefore, establishing those

connections in a matching is less critical.



Chapter III. i3MAGE Approach 36

Although these differences between modeling primitives require some consideration when

matching, they do not pose a novel research challenge to this point. At the end of the

day, relevant differences are relatively clear and non-ambiguous. Therefore, they can be

easily handled individually by enumerating reasonable match types of different modeling

primitives (e.g., RONTO [23]). Also, differences could be neutralized in a unified internal

representation (e.g., COMA [16]).

3.1.2.2 Basic Mapping Pattern Challenges
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Figure 3.2: Inter-model matching scenario with papers, reviews and reviewers

Modeling patterns in inter-model mapping complicate the situation beyond mere mod-

eling primitives. This is the case even for relatively simple and highly frequent patterns,

such as the ones used in relational databases for modeling n : m relationships or 1 : n

datatype properties.

Example 3.2 (Papers, Reviewers, Reviews). Consider a small ontology in the confer-

ence domain with papers and associated reviews. The ontology consists of classes Paper,

Reviewer and Review. In addition, there are object properties that connect those con-

cepts: a reviewer reviews a paper and thereby writes a review. Also, papers may have

reviews ( hasReview). Datatype properties are left out for brevity.

Figure 3.2 shows both this ontology and a matching relational database schema.
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The example includes one highly common modeling pattern from relational databases,

a relationship relation (rel-rel ; c.f. [27]). Relationship relations are the default method

to model n : m relationships between entity types in the relational world. The correct

correspondence for this pattern in the ontology would be the property reviews. However,

no single modeling primitive in the database schema is a suitable match for this property.

It is neither table Paper Assignm, nor any single one of its attributes that describe the

connection. Instead, what the corresponding object property does express is a join path

between document and person that involves two separate attributes in Paper Assignm,

in addition to key attributes from both tables that it connects.

Generally, the database schema in this example is more realistic and a bit more complex

than the previous example in terms of relational modeling patterns. Still, most systems

get this right in some way, as this particular pattern of relationship relations is so obvi-

ously important that no RDB2 RDF mapping generation system can expect to produce

reasonable output without it. For instance, COMA [16] considers this one specific pat-

tern by supporting (and identifying) matches between object properties and tables that

in fact implement the pattern of relationship relations. A subsequent mapping generator

then needs to take the hint and construct the join predicate accordingly.

Numerous such patterns exist, especially on properties and type hierarchies. For in-

stance, besides the above example there are different patterns for 1 : n datatype prop-

erties. Also, subclass relationships can be commonly modeled in at least three different

ways in relational schemata.

The general importance of considering mapping patterns for realistic mapping genera-

tion has long been known and accepted in the wider field of schema mapping. For in-

stance, STBenchmark [114] is built around a series of complex mapping patterns within

XML, named basic mapping scenarios.1 More recently, iBench [116] even considers some

primitive inter-model patterns as an unavoidable means to test the quality of mapping

generators (although mapping patterns are dubbed mapping primitives in the report).

For RDB2 RDF, Sequeda et al. enumerate a significant subset of fundamental mapping

patterns [98].

3.1.2.3 Advanced Inter-model Mapping Patterns

More advanced patterns exist as well. And while most RDB2 RDF systems can still

handle some of the most basic patterns, this is not necessarily the case for any of the

more advanced ones. This is because most traditional systems do not consider patterns

1http://db.disi.unitn.eu/pages/stbenchmark/basic.htm

http://db.disi.unitn.eu/pages/stbenchmark/basic.htm
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systematically, and instead implement a special-case treatment for some of the most

obvious cases, such as n : m relationship relations.
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Figure 3.3: Extended inter-model matching scenario using advanced patterns

Still following Example 3.2 with papers, reviewers and reviews, Figure 3.3 shows a

different database schema with the same ontology as before.

The schema differs from the previous one by having an even more indirect relationship

between tables Person and Document. An intermediate relation (R Conf Role) has

been added, which introduces a role of applicable persons. For instance, a paper could

be assigned to John in his role as a reviewer of some conference, but also to Jane in

her role as track chair at the same conference. This pattern essentially represents lazy

modeling of an n-ary relationship. Connecting Person and Document correctly now

requires a four-way join. Although both less likely and more ambiguous than the plain

n : m relationship depicted previously (Figure 3.2), this is a pattern that occurs in

practice. And in case of the current example it is required for the only semantically

correct interpretation for a mapping to the target ontology.

One critical aspect in this example is the ambiguous nature of the pattern: while se-

mantically intuitive, there is no strong technical evidence that would turn it into an

obvious intermediate link between persons and documents. Also, following the common

assumption of Steiner trees, i.e., that the shortest path between any two tables is also

most likely the correct semantic connection between them, would lead to an incorrect

interpretation in this case (c.f. [108]).
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It is thus important to understand and consider this pattern in a the way that it could

point to a reasonable match in this case, but with a good degree of uncertainty. It

is similarly important to understand the pattern to be what modeling patterns are by

nature in the general case: a design decision that follows certain principles, but which

is also influenced by the preferences, experience and convenience of whoever makes the

design choices. Therefore, it is a reasonable assumption that non-trivial patterns have

a differently likelihood in different schemata, depending on who did design the schema

and to which purpose. Consequently, it appears insufficient to use only fixed if-then

rules to produce matches from such patterns.

More, and more complex patterns of that sort exist in everyday database design. Ex-

amples include modeling of complex or indirect relationships, various modeling patterns

used for type hierarchies, recursion, or even symbolic encoding of some significant indi-

viduals for partitioning.

3.1.2.4 Approaches to Pattern Recognition Challenge

Quite generally, mapping generation between schemata of different models can be ap-

proached in two different ways: (1) directly, by relating the schemata of different models

with one another using some internal representation that allows to identify such direct

matches, or (2) indirectly, by first transforming one of the schemata into the model

of the other using best-effort translations and then perform intra-model matching and

mapping generation between the two.

A variant of the first case makes use of a unified internal representation that encodes all

relevant aspects from both the source and target model.

While all our previous examples have assumed direct mapping as a default, Figure 3.4

illustrates a simple indirect mapping case. The relational schema is first translated into

a canonical ontology representation, which can then be aligned with the actual target

ontology in a second step.

There are representative systems for both approaches in inter-model mapping, e.g.,

RONTO [23], which uses a variant of direct mapping, or BootOX [19], which follows

the indirect approach.

Intuitively, the direct approach (or any variant of it) appears to be more appealing.

First, it can naturally access native patterns. Second, at least when building a new

system from scratch, there is no obvious reason for taking an architectural detour when

it is also possible to proceed directly.
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Figure 3.4: Simple inter-model matching using an indirect approach

On the other side, there is a strong motivation for taking an indirect approach as well.

Indirect mappings happen in two separate stages, so it is possible to re-use existing com-

ponents in either one stage. Such components may already be available and could have

been developed independently for producing intra-model mappings, i.e., for mappings

between different schemata within the scope of the same data model. Existing compo-

nents may bring a proven track record to the table and have the apparent advantage

that their re-use reduces development efforts for any new mapping system.

At the same time, such reusable components have typically been developed for a different

purpose, e.g., for generating intra-model mappings. Thus, they are not built to consider

the specific challenges of any particular inter-model mapping.

Figure 3.5 depicts indirect mapping scenarios for our example with papers, reviews and

reviewers (Example 3.2).

First, Figure 3.5a illustrates the case of naive indirect mapping without patterns. This

can easily lead to mismatches, as exemplified in the figure.

In a more ambitious approach some systems overcome parts of these limitations by

considering patterns through a strategy of database reverse-engineering. Those systems

carry their perception of patterns over to the intermediate ontology that they produce.

Figure 3.5b shows how such systems could solve the problem just as well as a direct

approach by translating the reverse-engineered pattern into the intermediate ontology.
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Still, applying reverse engineering this way means that a fixed and final semantic inter-

pretation of each input pattern has to be decided before the actual mapping takes place.

Consequently, those systems are bound to decide on exactly one interpretation of a pat-

tern that they consider globally most likely. However, other interpretations may exist

that could later become the most likely (and correct) interpretation given the mapping

context. For instance, this would be the case if table Paper Assignm would not be a

relationship relation after all, but would describe an entity that just happens to depend

on two other entity types. This is a less frequent case but still happens. A typical

example for this exception could be, e.g., a report, which is an entity but is defined by

its topic (one external entity and table) and a type (which might be another entity, in a

third table). A similar case could be constructed for the previous example if we consider

a slightly more complex database schema, e.g., using the schema variant from previous

Figure 3.3 with its ambiguous 4-way join pattern.

One more alternative for using patterns in an indirect mapping approach would also be

possible: converting the input model more or less naively into an intermediate ontology,

but keep rich provenance as annotations. Provenance information could then be used by

the eventual mapping generator to consider mapping patterns when aligning with the

actual target ontology. However, to this end the mapping generator would need to be

aware of provenance information, recognize relevant patterns, and consider them when

generating mappings. This requirement somewhat counteracts the initial motivation to

simply re-use existing mapping components, as components would neither be aware of

additional provenance information nor could they act on the consequences of such infor-

mation, e.g., by considering or preferring different mapping options. Also, to the best of

our knowledge, no published systems use provenance this way for indirect RDB2 RDF

mapping generation.

Even though indirect matching approaches can be tuned and extended to overcome most

of their limitations w.r.t. inter-model mapping generation as discussed above, this is not

easily possible in every case. With i3MAGE’s IncMap we therefore follow the first (i.e.,

direct) approach to mapping generation.

3.1.2.5 Challenges in Incremental Matching

Next to mapping generation capabilities, i3MAGE also provides components for UI inte-

gration and effective interactions with human users. We adopt an interaction paradigm

where a manual editing process is the default [131, 132]. Users can then either request

specific mappings explicitly or, more frequently, make use of mapping suggestions that
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are offered to them in context of their current actions, and which they could either

accept or reject.

Despite these specific characteristics, incrementality plays a lesser role than inter-model

patterns when it comes to specific challenges. This is because, to the most part, user

feedback is solicited in a form that is similar to other, well-studied mapping generation

approaches.

Two notable exceptions need to be considered:

1. Full incrementality: i3MAGE is designed to generate mappings incrementally, i.e.,

to produce partial mappings and also to accept hand-crafted or manually checked

partial mappings as input to subsequent iterations. This is important because

partial mappings can be seen as the most generic (and also most expressive) type

of perceivable human input. Confirmed partial mappings also have another specific

characteristic that separates them from most other forms of human input: they

are final. On the one hand, they therefore are no longer useful to further refine the

part of the mapping that they already describe themselves. On the other hand,

they are only indirectly or weakly connected to other parts of a future mapping.

The challenge is thus to still leverage those partial mappings to re-rank suggestions

for other, indirectly related, parts of the mapping.

2. Interaction through query workload: i3MAGE is expected to proceed pay-as-you-

go for mapping generation as needed. This means, most specifically, that a part

of the mapping needs to be generated if data is to be queried but has not yet

been mapped. As a consequence of this requirement, queries are often available as

context for mapping. Therefore, a challenge is to leverage individual queries over

the target schema as input for mapping generation.

Besides these two challenges, working interactively in a semi-automatic setup can be

considered as a mere engineering challenge.

3.2 Matching and Mapping Generation Approach

At the core of i3MAGE is a mapping generator, IncMap [52], which has been built specif-

ically to work in inter-model mapping tasks with further optimizations for RDB2 RDF

in particular. IncMap is also designed to scale between a fully automatic and a semi-

automatic approach. The semi-automatic approach solicits human feedback but also

leverages manually curated partial mappings to adjust the automatic mapping and to
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Figure 3.6: High-level view of mapping process with i3MAGE

re-rank suggestions. In addition, it can use a query workload as context to locate areas

of interest in the target schema and identify the most relevant semantic connections.

Figure 3.6 depicts an overview of the mapping generation process in i3MAGE with

IncMap. The system automatically generates RDB2 RDF mappings based on iterative

schema graph matching and operates in five stages:

1. Creating source and target schema graphs (IncGraph)

2. Reasoning and heuristic pattern annotation to infer additional information

3. Initial lexical matching to build a matching graph

4. Refining matching scored using a fixpoint computation

5. Mapping generation

In the following, we give an overview of these steps. Details and a more formal expla-

nation are given afterwards in Chapter 4.
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3.2.1 Creating Schema Graphs

As a first step we need to build schema graphs for both source and target. Those can

later serve as input to the matching computation. We have devised a dedicated data

structure, IncGraph, to represent relational schemata and ontologies in a unified, yet

model-aware fashion as schema graphs. To construct the IncGraphs, we iterate over

all elements in the input schemata (i.e., axioms such as class definitions and relational

schema elements such as table declarations).

Example 3.3 (Papers and Authors). Consider a small ontology, again in the conference

domain, which simply models authors who write papers. The ontology consists of concepts

Author and Paper, some datatype properties of those concepts and an object property

that connects them ( writes). To simplify, papers in this example have only one author.

Figure 3.7 depicts this scenario with a relational schema that captures the information

(Figure 3.7a), an ontology (Figure 3.7b) and IncGraphs for both of them (Figures 3.7c

and 3.7d).

The relational schema and the ontology in this example both capture the same informa-

tion.2 However, while Author is a dedicated concept in the ontology, in the relational

schema this classification is established only implicitly by Persons who have authored

Papers. The resulting basic IncGraph representations in Figure 3.7c and Figure 3.7d

already show a number of potential direct correspondences: Classes may correspond to

database tables, datatype properties may correspond to attribute values, object prop-

erties correspond to referential constraints, and explicit datatype ranges provide means

for identification.

The relations between nodes are generalized to basic roles such as referencing, acting as

the smallest common denominator between both models. Moreover, on the database side

referentially constrained attributes (i.e., foreign keys) are modeled both as values and

references to allow them to be matched in both their capacities. Also, edges representing

referential constraints are effectively undirected.3 This is because referential constraints

have no semantic direction, whereas the semantic direction present in object properties

does not yield cardinality information (which is implied by a foreign key’s direction).

Note, that we use different colors of nodes for the different aspects. In Figures 3.7ff,

class and table notes are white, nodes of properties and referential constraints are light

blue, type nodes are green, etc. When matches are calculated in the next step, only

2Apparently, the depicted ontology is semantically richer. Both, however, can be considered a schema
to accommodate the exact same data or A-Box facts.

3Technically, there are two edges in opposite directions, having a combined effect that is equivalent
to undirected edges w.r.t. our algorithms.
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nodes of the same color need to be considered as correspondences. For instance, classes

will only be matched with tables.

3.2.2 Reasoning and Patterns

Figure 3.7 also highlights one of several possible distortions between the IncGraph rep-

resentation of relational schemata and ontologies: intuitively, the Person class would be

the most accurate match for the Person table, however, the node is disconnected from

the rest of the graph making it a structurally less attractive match. This is because the

subClassOf connection between Author and Person is not modeled as it cannot have a

correspondence in the relational database.

For this reason, as a second step we apply reasoning techniques on the input ontology and

use heuristics to annotate modeling patterns on the source database. Figure 3.8 depicts

knowledge derived from reasoning on the ontology and also adds detected patterns to

the IncGraphs from Example 3.3.
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(a) Full IncGraph(R) (simplified)

refref
Author writes Paper

hasTitle
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ref

(b) Full IncGraph(O) (simplified)

Figure 3.8: Schema and ontology with advanced IncGraphs

In Figure 3.8a, the relational IncGraph now annotates the Person node with a pattern,

which heuristically states that this table very likely contain individuals of several types

(e.g., using subclasses or sibling classes). At the same time the ontology IncGraph in

Figure 3.8b now contains a dedicated node for the subClassOf axiom. This information

can now be used to derive a new correspondences with the relational side.
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Additionally, a reference edge is added to the ontology graph, which directly connects

Person and Writes. This knowledge is derived through reasoning and basically states

that some persons write papers. In our example this encourages correspondences along

the path of (Person/Person) – (writes/PersID) – (Paper/Paper), which would be the

most accurate alignment of the input schemata. The additional edge, however, is down-

weighted to cover for the fact that only some persons would actually write papers,

making it a less likely correspondence in the general case.

3.2.3 Matching

Based on a source and target schema IncGraph, we next calculate the initial matching

graph. Figure 3.9 illustrates a simplified match of the basic IncGraphs from Example 3.3.

For every color (or type) of nodes the cross product is matched into paired nodes.

Possible matches are shown in Figure 3.9a: all concepts could match with any table

(cross product), but for node writes there is only one possible match as there is only a

single node of corresponding color in the source graph. Paired nodes are then connected

if their inner nodes (source and target) were each connected with the same edge type in

the original IncGraph. All paired node also receive an initial score using lexical matching.

Intuitively, several alternative alignments form sub graphs, as shown in Figure 3.9b.

3.2.4 Fixpoint Computation

In subsequent next steps, IncMap calculates a modified matching graph, preparing it

to perform a fixpoint computation. Matching graph transformation closely follows the

process described in [45] for Similarity Flooding. Changes to the initial matching graph

aim to balance the influence of edges. The fixpoint computation serves to refine match

scores based on the graph structure. Intuitively, the process favors nodes in larger sub

graphs over smaller ones and increases the scores of strongly connected nodes. We

introduce Similarity Flooding in more detail in Chapter 4.

Different from the original Similarity Flooding algorithm, we introduce modifications

for features such as weighted edges in the input graphs and selectively activating edges

during the fixpoint computation (e.g., based on patterns). Moreover, in order to ad-

ditionally support incremental mapping scenarios where user feedback is available, we

can accommodate information on partial mappings. Despite its incremental, interactive

process, IncMap is also able to generate mappings completely without any user feedback.
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3.2.5 Mapping Generation

Finally, mappings are generated from the correspondences in the matching graph.

In the fully automatic mapping case, a selection is made from the set of all correspon-

dences. From the initial Cartesian matching of colored nodes, relevant correspondences

can be grouped in four categories: class-table correspondences, property-reference corre-

spondences, property-attribute correspondences, and patter-supported correspondences.

Due to the way that IncGraphs are constructed, properties always appear in the context

of one concrete domain and range (i.e., they can occur several times for different specific

domain/range pairs). Thus, each correspondence can be translated straightforward into

a simple mapping rule. Correspondences are selected based on their similarity score of

the fixpoint computation and consistent alignment interpretation. Consistency in this
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context means that we will, for each class, select only at most one corresponding table

and choose property correspondences only where domain and range interpretations are

consistent with previously chosen classes.

For interactive mappings with suggestions, a suggestion selector reads and presents a

specific selection of correspondences in context (e.g., all top−3 matches that are somehow

associated with a specific class or table). In this case, no automatic selection of corre-

spondences takes place. Instead, the suggestion selector requests mapping generation

for individual confirmed matches, only.

To enable mapping generation technically, we encode provenance information with all

nodes.

3.2.6 Incremental and Interactive Mapping Generation

User feedback on individual correspondences or partial corrected mappings can be used

to refine suggestions iteratively. In this case the fixpoint computation and mapping

generation will be repeated after each round of feedback.

3.2.6.1 Incremental Mapping

Incremental mapping works iteratively with partial mappings at different stages of com-

pletions [133]. This process allows us to leverage user feedback after each iteration to

improve the quality of mapping suggestions in subsequent iterations. ne of the reasons

why we have chosen Similarity Flooding [45] as a basis for i3MAGE’s IncMap is the fact

that user feedback can be easily integrated by adopting the initial match scores in a

graph before the fix-point computation starts.

Although the possibility of an incremental approach has been mentioned already in

the Similarity Flooding paper, it so far has not been implemented and systematically

evaluated. Also, while it is simple to see where user feedback could be incorporated, it

is far less trivial to decide which feedback should be employed and how exactly it should

be integrated in the graph.

Figure 3.10 illustrates the general principle of including feedback that is usable in Simi-

larity Flooding. Initially, matches yield scores that have been assigned by some previous

processing step, as depicted in Figure 3.10a (only a subset of correspondences is actually

shown in the figure).

After a round of feedback, while most nodes still yield the initial matching score calcu-

lated in the previous phase, some are confirmed or rejected matches. They yield a score
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of 1.0 (confirmed) or 0.0 (rejected). In Figure 3.10b, they are printed in green and red,

respectively.

Feedback can be given in form of an explicit user interaction or in form of partial

mappings. We focus on leveraging only the most important and most decisive kind of

user feedback, i.e., the previous confirmation or rejection of suggested mappings. We

have devised and tested three alternative methods how to add this kind of feedback into

the graph.

The main one follows a largely straightforward idea: it simply maximizes the influence

of feedback from the modification throughout the fix-point computation. Instead of

just initializing a confirmed or rejected match with their final score once, we repeat the

initialization at the end of each step of the fix-point computation after normalization.

This way, nodes with definite user feedback influence their neighborhood with their full

score during each step of the computation, while changes from nodes with non-definite

scores do not affect them in return. We therefore call this method Self-Confidence Nodes.

We introduce and compare all implemented methods in detail in Chapter 4.

Incremental mapping as a process can also be stirred by queries that implement certain

information needs and are provided pay-as-you-go. If this is the case, then those queries

can also be used as input for matching. We leverage known information needs to locate

areas of current interest in the target schema and increase the score for all matches

related to schema elements in the scope of current interest. This introduces a bias for

match constellations that consistently cover all of the area of interest. In addition,

they highlight specific sub-type interpretations as part of this bias, which may hint

to more realistic matches. For instance, if a query asks for authors who know other

authors, and assuming that this query can be reasonably answered over the available

data, then it is more than likely that such a connection is explicitly modeled in the

underlying relational database. At the same time, no connection between two persons

might be explicitly modeled in the database, even if the domain and range of knows in

the ontology is Person, rather than Author.

3.2.6.2 Interactive Feedback

Apparently, incremental mappings require some form of external input to control, which

parts of the mapping are to be calculated at which point in time. This external input

usually comes in the shape of human interactions. Essentially, a human user chooses

parts of the source or target schema that are of immediate interest to them and should

thus be mapped.
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Due to the interactive nature of controlling such incremental steps, this opens a natural

opportunity for additional human feedback on each such calculated increment.

In our approach increments can be triggered from various contexts, e.g., when a user

manually edits a mapping or when a user query taps into still-unmapped parts of the

A-Box. We then offer atomic mapping suggestions based on a single match, which can

be accepted or rejected. Mapping suggestions from IncMap can be transformed into

mappings in a most straightforward manner (c.f. Section 3.2.5), and thus directly relate

back to its underlying match.

If a user accepts or rejects a suggestion we thus confirm or obliterate the related match

in the matching graph and re-initiate the fixpoint computation to update related sug-

gestions.

A more difficult case arises from increments that have been performed outside the con-

trol of i3MAGE, i.e., when partial mappings have been added fully manually. In this

case we check those mappings to derive certain IncMap matches that they corroborate,

and confirm those. We cannot, however, obliterate any matches. Also, our grip on

understanding the semantics of manually curated mappings is limited in some cases for

technical reasons.



Chapter 4

i3MAGE System

In this chapter, we give a detailed description of the i3MAGE system. We first give

an architectural overview in Section 4.1, before we discuss the details of the IncGraph

model used by i3MAGE’s core component IncMap in Section 4.2. In Section 4.3, we add

additional background on the Similarity Flooding algorithm used by IncMap. Then,

we discuss the implementation of matching in Section 4.4. In Section 4.5, we present

the implementation of correspondence selection and mapping generation in i3MAGE.

Finally, we describe additional components of i3MAGE in Section 4.6.

4.1 System Overview and Architecture

From a high-level point of view, i3MAGE can be seen as a system that primarily provides

mapping suggestions, translates them into actual mappings upon request and refines its

suggestions from the feedback harvested during this process. Figure 4.1 illustrates this

high-level perspective from an end-user’s viewpoint.

Users communicate with a user interface (UI) that allows them to somehow view un-

derlying data or interact with it. Depending on the background of the users and the

system, they could possibly even modify the mappings that make such data accessi-

ble. With i3MAGE in the picture, the UI also provides suggestions on how semantic

bits of data could be further mapped, i.e., how data can be enriched with individuals.

Those suggestions can appear inside a mapping editor or in any other place where the

user-facing system realizes that additional data need to be mapped. Users interact with

suggestions by accepting or rejecting them. They can watch the consequences of their

decision in changes to the data that they view. This behavior is made possible by a

multi-component architecture.

54
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Figure 4.2 depicts the overall architecture of i3MAGE. At its heart is IncMap [52],

our incremental matching and mapping generation system. Looking at the architecture
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diagram from bottom right clockwise, further components of i3MAGE are:

• A database reader that connects to running DBMSs, reads their schema informa-

tion and transforms those information for IncMap’s API. The database reader also

accepts textual DDL as an alternative.

• An OWL ontology reader that loads mapping target ontologies using the OWL

API [134] and transforms relevant axioms for IncMap’s API.

• A mapping analyzer, which reads existing partial R2RML mappings, derives corre-

spondences from them and feeds those to IncMap. Partial mappings could be the

result of previous iterations running i3MAGE, or they could have been manually

curated.

• A mapping writer, which reads IncMap’s mappings and exports them as plain

R2RML mappings. The mapping writer exposes mappings using an API, but can

also serialize them in Turtle RDF format, as required by the R2RML standard [77].

• A mapping suggester that offers an API to find and pick suggestions by context

(e.g., related to one particular class or table). The mapping suggester also trans-

lates suggestions into human readable form, including some explanation.

• A UI is not part of i3MAGE, but required for users to interact with the system

and thus closely connected.

• A feedback collector accepts feedback on suggested mappings indirectly via the

mapping suggester, and forwards it to IncMap.

Figure 4.2 illustrates the inner components and architecture of IncMap. From bottom

to top, IncMap exposes an API for setting schema elements of the source and target

schemata through a number of setter methods (Schema API ). This native schema in-

formation can then be used by IncGraph builders to construct an IncGraph from either

relational schema information (DDL IncGraph Builder) or from an OWL ontology (OWL

IncGraph Builder).

Next, the relational source IncGraph and OWL target IncGraph need to be connected.

To this end, an extended pairwise connectivity graph (PCG+) will be built by the PCG+

Generator. A PCG+ is based on a graph structure that has been first introduced by

Melnik et al. [45], which we have extended for our purposes in IncMap. Basically, the

idea of the PCG+ is to calculate a Cartesian product from all valid combinations of

nodes in the two IncGraphs and then to reconstruct shared edges between the resulting

nodes.
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The PCG+ generator also assigns initial scores to all paired nodes in the PCG+ using

one of the built-in Lexical Match Tools.

Next, the IPG Generator takes a PCG+ graph and transforms it into an induced prop-

agation graph. The IPG is a variant of the PCG+ that can be used for running a

Similarity Flooding fixpoint computation. PCG+ generation as well as IPG generation

closely follow the process laid out in the Similarity Flooding paper [45]. We discuss

Similarity Flooding in more detail in Section 4.3.

As an artifact from all of the previous steps combined, the IPG graph is the central asset

during incremental and interactive mapping of any two schemata. It already encodes

all possible matches, with their initial scores. Raw matches as well as materializable

mappings can be generated from it at any point. To refine the matches based on graph

structure, the Similarity Flooding component can be executed with an IPG as input,

and will produce a refined IPG as output. Similarly, the Feedback System will adjust

the IPG over time whenever it learns about the correctness of individual matches in the

graph.

4.1.2 Implementation Notes on Architecture

All of the architecture of i3MAGE described above is implemented in Java. The different

components expose APIs to allow interaction with their peer components. The system
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requires a dynamic configuration for connecting with databases, ontologies, etc. Mapping

suggestions, mapping export, and feedback are again handled through APIs exposed to

external components, e.g., a user-facing system. i3MAGE is thus designed to work as a

technically independent component, running in-process of other applications written in

Java or compatible languages. Naturally, such an application could also take the shape

of a Java wrapper that exposes the functionality of i3MAGE as a server to connected

clients.

4.2 IncGraph

In this section, we describe the IncGraph model used by IncMap to represent schema

elements of an OWL ontology O and a relational schema R in a unified way. The

IncGraph model is defined as a directed labeled graph, which can be used as input for

matching.

As the structural matching process follows along the lines of Similarity Flooding [45],

IncGraphs are designed to be a suitable input for further processing with Similarity

Flooding. This idea is not new in principle. Most prominently, COMA++ [24] is based

on the same concept for generic, graph based inter-model matching. IncGraph stands out

by optimizing the graph structure specifically to reduce the inter-model gap by assuming

a unifying basic structure and by applying a number of further unifying annotations, as

we discuss below.

4.2.1 Running Example

We will use the following running example to explain the various steps of IncGraph

construction.

Example 4.1 (Papers and Authors). Consider an ontology in the conference domain,

which models authors who write papers. The ontology consists of concepts Author and

Paper, some datatype properties of those concepts and an object property that connects

them ( writes). Figure 4.4 depicts this scenario with the target ontology (Figure 4.4a)

and a relational schema that captures the same information (Figure 4.4b).

Different variations of IncGraphs can be constructed for both the relational and ontology

sides, as we will illustrate in the following.
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Figure 4.4: Running example for IncGraph construction (input target ontology and
relational source schema)

4.2.2 Modeling Assumptions

Ontology Schema O ∈ O: As ontology schemata (c.f. Definitions 2.3) we denote

all schematic elements (c.f. Definition 2.1) from an ontology, usually the axioms in its

T-Box. We consider OWL 2 ontologies [29]. For all reasoning-related considerations, we

assume RDF-based semantics.

For all ontologies, we assume and require a clear majority of classes and properties to be

declared with an explicit IRI using an OWL class expression.1 In addition, we assume

that a majority of properties yields precise domain and range information, i.e., with a

domain other than Thing and a range other than Thing or PlainLiteral.

Relational Schema R ∈ R: A relational schema R (c.f. Definition 2.4) is described

by a set of relational schema elements (c.f. Definition 2.1). Each relation (table) is

defined by its unique label and is associated with the set of its attributes (columns),

which are identified by their labels and may have additional information restricting the

attribute domain (datatype). Subsets of attributes can be constrained to hold unique

values (i.e., to form a candidate key), and we require at least one such key to be explicitly

defined in each relation as primary key. Additionally, we consider referential constraints

(foreign keys) to define references between different relations.

1While blank nodes are not a hindrance for building IncGraphs, our matching partially relies on the
presence of IRIs.
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This definition is slightly relaxed compared to the original definition of the relational

data model [27] or of the common modern SQL variants [28, Chap. 2]. While the former

usually also require some kind of order of attributes or make attribute domains a manda-

tory part of attribute definitions, we leave out any notion of attribute order and consider

attribute domains as optional constraints. Common definitions of relational models can

thus deterministically project to our definition, although the opposite direction is not

necessarily possible.

4.2.3 IncGraph Model Definition

The main goal of the IncGraph model is to represent the schema elements of ontology

O and relational schema R in a unified way, and make it a suitable input for graph

matching.

An IncGraph model is defined as a labeled graph G = (V, lblV , E, lblE ,WE). It can be

used as input by the matching algorithm of IncMap.

V is a set of colored vertices. Each vertice (node) in the graph can be of one of the

following colors (types):

• object/table (T ): represents schema elements that can have class characteristics,

e.g., ontology classes or tables. Depicted plain white in the figures.

• reference (R): represents a relation between objects, e.g., an OWL object property

or a relation supported by a foreign key constraint. Depicted in a light blue shade.

• data attribute (A): represents elements in the schema that act as handles for atomic

literal data, e.g., datatype properties or individual attributes. Depicted light grey

in the figures.

• datatype (D): value domains of data nodes, e.g., the range of a datatype property

or the type of an attribute. Depicted in the figures in green.

• pattern type (X ): in advanced IncGraphs only, meta information about knowledge

observed in the original input schemata can be encoded and introduce specific

features of the input model for matching in a unified way. Patterns can be the

canonical representation of ontological features such as a subclass relationship, or

could describe relational model patterns, such as relationship relations. Depicted

dark blue in the figures.

• pattern (Y ): each occurrence of a pattern is modeled by a dedicated pattern node.

Depicted as a dark blue radiant with a lighter center.
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E is a set of edges. There are labeling relations lblV and lblE for vertices and edges,

respectively. They relate exactly one label to each vertex or edge in the graph. WE ⊂
E × [−m;m] is a weight assignment relation for edges, where m denotes the maximum

weight.2

In our implementation, we apply a maximum edge weight of m = 2.0. The default edge

weight is 1.0. For brevity, we assume in the following that edge weight is 1.0 for all

edges, unless explicitly stated otherwise.

Label lv is the label of v ∈ V if (v, lv) ∈ lblV , and represents a name of a schema

element. Similarly, le ∈ {“ref”, “val”, “type”, “pe”, “pi”, “pt”} is a label of edge e ∈ E if

(e, le) ∈ lblE and describes the function of the edge as follows:

• ref : reference, as in object properties or referential constraints.

• val : leads to a data node, as in datatype properties or attributes.

• type: point to the datatype of data values (e.g., XSD types or SQL types).

• pe: pattern end-point.

• pi : pattern inner node.

• pt : points to a pattern type.

The apparent redundancy between the types of edge and the nodes that edges are

pointing to is a necessary feature to effectively and efficiently process IncGraphs later

on for matching: when graphs are paired, edge labels act as a filter to consider only

combinations of connections that can potentially have the same semantics.

4.2.4 Basic IncGraph Construction

Let R ∈ R be a relational schema, O ∈ O an ontology.

Basic nodes (vertices) and edges for IncGraph are based on input schema elements, i.e.,

tables and attributes for IncGraph(R) or classes and properties for IncGraph(O).

4.2.4.1 Relational Schemata (IncGraph(R))

Let T the set of tables (relations) in the schema, At the set of attribute of table t ∈ T ,

P ⊂ {(t1, a1, t2, a2)|t1, t2 ∈ T, a1 ∈ At1 , a2 ∈ At2} the set of non-compound referential

constraints between tables in R. Then:
2Negative edge weights are a mere technicality. We denote optional edges with negative weights.

They can then be activated during matching by multiplication of their weight with −1.0.
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Table Nodes:

t ∈ T → vt ∈ V ∧ vt.type = ”T” ∧ (vt, name(t)) ∈ lblV

Attribute Nodes:

a ∈ At ∧ t ∈ T → va ∈ V ∧ va.type = ”A”

∧(va, name(a)) ∈ lblV ∧ ea = (vt, va) ∈ E ∧ (ea, ”val”) ∈ lblE

Datatype Nodes:

va ∈ V ∧ va.type = ”A”→ vdt ∈ V ∧ vdt.type = ”D”

∧(vdt, name(dt(va))) ∈ lblV

∧edt = (va, vdt) ∈ E ∧ (edt, ”type”) ∈ lblE

Reference Nodes:

(t1, a1, t2, a2) ∈ P → vp ∈ V vp.type = ”R”

∧(vp, name(a1)) ∈ lblV ∧ ep1 = (vt1 , vp) ∈ E

∧(ep1 , ”ref”) ∈ lblE ∧ ep2 = (vt2 , vp) ∈ E

∧(ep2 , ”ref”) ∈ lblE

PaperID

Paper titleval

varchar
ref

PersonID val

ID val

writes

PersID

PaperID
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type
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Figure 4.5: Basic IncGraph(R)
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Figure 4.5 shows a basic IncGraph constructed from running Example 4.1 for the rela-

tional schema according to the above definition. Edge weight is 1.0 for all edges, as none

of the above rules specifies a deviation from default.

4.2.4.2 Ontologies (IncGraph(O))

Let C, DP , OP the set of class axioms, datatype property axioms, and object property

axioms in O, respectively, and X be the set of OWL datatypes. Then:

Class Nodes:

c ∈ C → vc ∈ V ∧ vc.type = ”T” ∧ (vc, name(c)) ∈ lblV

Datatype Property Nodes:

d ∈ D ∧ c = domain(d) ∈ DP

→ vd ∈ V ∧ vd.type = ”A” ∧ (vd, name(d)) ∈ lblV

∧ed = (vc, vd) ∈ E ∧ (ed, ”val”) ∈ lblE

Datatype Range Nodes:

vd ∈ V ∧ vd.type = ”A” ∧ r = range(vd) ∈ X

→ vx ∈ V ∧ vx.type = ”D” ∧ (vx, name(r)) ∈ lblV

∧ex = (vd, vx)inE ∧ (ex, ”type”) ∈ lblE

Object Property Nodes:

p ∈ P ∧ d = domain(p) ∧ r = range(p)

→ vp ∈ V ∧ vp.type = ”R” ∧ (vp, name(p)) ∈ lblV

∧ep1 = (vd, vp) ∈ E ∧ (ep1 , ”ref”) ∈ lblE

∧ep2 = (vr, vp) ∈ E ∧ (ep2 , ”ref”) ∈ lblE

Figure 4.6 shows a basic IncGraph constructed for the ontology from running Exam-

ple 4.1. Again, edge weight is 1.0 for all edges, as none of the rules for the basic definition

specifies any deviation from the default.
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Figure 4.6: Basic IncGraph(O)

4.2.5 Unifying Annotations

We extend IncGraphs with further nodes and edges, which we call annotations. Different

types of annotations add further implicit schema information to the basic IncGraphs

during the construction phase. The goal of these annotations is to further unify the

structure of the IncGraph models with respect to different design principles that are

applied during the modeling of ontologies and relational schemata.

Adding annotations must be done carefully since additional graph elements might also

blur the schema structure, i.e., add noise. This can have a negative effect on the quality

of the results of the matching process used by IncMap.

Therefore, we add some annotated edges in an inactive state to the IncGraph mod-

els (i.e., such that they are initially not used for matching). IncMap can selectively

activate inactive edges during the matching process. They are encoded as having a neg-

ative edge weight, and IncMap implements a special handling for edges with negative

weight. There is no need for any deactivation of annotated nodes, as nodes that are

only (or mostly) connected through inactive edges behave the same as nodes that are

disconnected (or poorly connected). Structural matching will assert that disconnected

nodes cannot maintain their weight. Details about selective activation are presented in

Section 4.4.2.

In the following, we discuss various forms of IncGraph annotations.

4.2.6 Self References

Self-reference annotations are added to IncGraph(R) for each node that represents a

table. This annotation mitigates differences that can occur if an ontology uses multiple

classes to model the content of one table of the relational schema. When these different

entity types are in a 1 : 1 relation in the database, then it is likely that there are also

object properties in the ontology that relate them. Note, that this may even be the case

for properties that are not restricted as being functional and inverse functional, as the

restriction of the relationship as 1 : 1 could be enforced only in the technical view of
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the database (e.g., because this restriction is for the database application and applying

it simplifies the schema). The same property might be non-functional from a semantic

point of view in the general case. In either case, such relations are implicit in a relational

database, as information about related entities are already stored in the same tuples of

the same table. Therefore, no corresponding graph structure could be found between

basic IncGraphs for such relations.
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title
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Figure 4.7: IncGraph construction with papers and abstracts

Consider the ontology and relational schema shown in Figure 4.7, which follows our

running Example 4.1 but adds Abstracts to Papers and leaves out the concept of Authors
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for conciseness. Each paper has exactly one abstract. But whereas the abstract content

in IncGraph(O) is a property of Abstract (and thus structurally separated from Paper

by object node hasAbstract), it is a direct property of node Paper in IncGraph(R).

Thus, no structural correspondence could be found between the two. Adding a self

referencing node and edges, however, introduces a path in IncGraph(R) that can align

with IncGraph(O) (shown in left part of Figure 4.7d). Node Paper in IncGraph(R) then

aligns to both Paper and Abstract in IncGraph(O) and hasAbstract can be followed in a

similar structural way on both sides. Note, that in Figure 4.7d we have labeled the self

referencing node hasAbstract to highlight the similarities between both IncGraphs. In

reality, relevant similarities are merely structural and self-referencing nodes have empty

labels.

This example shows that self-referencing annotations can result in a better structural

similarity of IncGraph(O) and IncGraph(R).

We repeatedly encountered such situations in practice. Still, self-references are added in

an inactive state.

4.2.7 Mapping Corresponding RDB2RDF Patterns

Although IncGraph narrows the gap in representation between relational schemata and

ontologies as discussed above, differences still remain. Those are, by and large, again

due to fundamentally different design patterns used on both sides. Where those patterns

become more elaborate than the ones introduced above and encode complex semantics,

simple and generic graph construction rules will no longer suffice to successfully map

between them. In such cases, a correct mapping will need to be supported by knowledge

about more complex mapping patterns.

Due to the different data modeling approaches, the same information is structured differ-

ently in relational databases and ontologies, and direct correspondences between model-

ing constructs are often difficult to establish. For instance, relational database schemata

do not model hierarchies of concepts and properties explicitly, many-to-many relations

are expressed using intermediate tables, etc. There exist at least three different ways in

which an ontological subClassOf relation can be emulated in a relational model (Fig-

ure 4.8). In the database community, research has identified common design patterns

for modeling interrelated data [28, Chap. 4.5f], and the Semantic Web research in turn

noted some common ways for matching these database schema structures with the se-

mantically equivalent ontology constructs [98, 135].
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Such common correspondence patterns provide valuable background knowledge that

helps to generate mappings between ontologies and relational databases. A specific

subset of initial mappings can be reinforced if they appear to satisfy a convincing pattern.
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Figure 4.8: Correspondence patterns: class-subclass hierarchy

Based on common structures listed in the literature, we have identified the following

patterns that are relevant, could directly be used, and are not already covered by our

basic IncGraph or by basic unifying annotations:

• Subclass relations between classes:

– One common table for all. An example is shown as Option 1 in Fig. 4.8. Here

one table stores information about all people: both authors and reviewers.
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Figure 4.9: Correspondence patterns: properties

The type column stores the type of the record, and the type-specific fields,

such as e-mail and area receive NULL values if they are not relevant for the

record.

– Separate unrelated tables. Option 2 in Fig. 4.8 provides an illustration: au-

thors and reviewers are stored in separate tables containing only fields rele-

vant for the specific type. Common fields such as name are contained in both

tables.

– Separate tables linked via a 1 : 1 foreign key relation. See Option 3 in Fig. 4.8:

common fields are defined in the Person table, which has 1 : 1 foreign key

relations to both category-specific ones.
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• Object property links:

– 1 : 1 relation: two tables are connected via their unique keys, similarly to the

relation between the tables Author and LoginAccount in Fig. 4.9.

– 1 : n relation: two tables are connected via a foreign key, which is unique in

one of the tables, as is the Organization table in Fig. 4.9. The unique key oid

of the Organization table is referenced in the Author table.

– n : m relation: two tables are connected via an intermediate table containing

two foreign key columns. The PaperAuthor table in Fig. 4.9 is used as such

an intermediary between the Author and Paper tables.

– object join path: where a sequence of connected tables shows a pattern auf

a plausible join path, this may correspond to a single object property, often

(but not necessarily) in a n : m relation.

– transitive relation: independent of cardinalities, if a property is known to be

transitive it might likely correspond to a recursive pattern in the database

(not shown in the figures), i.e., where a non-key attribute references a key of

the same table.

• Datatype property links:

– 1 : 1 relation: a column in the table directly contains the value of a datatype

functional property (e.g., hasTitle).

– 1 : n relation: a separate table is linked via a foreign key to the main table

and contains an additional column for the data values. The example is the

PaperKeywords table in Fig. 4.9.

– data join path: where a sequence of connected tables shows a pattern auf a

plausible join path, some data might be reachable through this path, only. It

thus could correspond to a (likely non-functional) datatype property.

Note, that this list is not exhaustive but based on previous analyses on most relevant

patterns ([28, 98, 135]). It is also limited to those cases that are not already generically

covered by the basic IncGraph model or other unifying annotations discussed earlier.

Also note, that these patterns do not deterministically imply the specific semantics that

our list of correspondences suggests. That is, they are merely heuristics, which can

be leveraged to identify likely correspondences, which could otherwise not be matched

with IncGraph. Our approach to implementing support for such patterns is therefore

designed to be flexible, self-adjusting and extensible.
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4.2.8 Ontology Meta Knowledge Annotations

As discussed in previous Section 4.2.7, even complex patterns in a relational schema

often correspond to a single axiom on the ontology side. In fact, although there are

many more complex design patterns in ontologies as well, all of the relevant relational

patterns listed above can be seen as correspondences to individual axioms.

This is why, when constructing IncGraphs from ontologies, we mostly use a selection

of these axioms to construct pattern type nodes in IncGraph(O). Note, that we call

the corresponding IncGraph nodes pattern nodes (axiom occurrences) and pattern type

nodes (different axiom types) even on the ontology side. This way, we end up with

identical types of nodes in both IncGraph(R) and IncGraph(O) to support matching.

In addition to classes, object properties and datatype properties, which are already mod-

eled by basic IncGraphs, we annotate the following types of OWL 2 axioms, whenever

available:

• As potential correspondences for hierarchy patterns:

– SubClassOf (directly indicating object hierarchies)

– SubObjectPropertyOf (indirectly indicating object hierarchies)

– UnionOf, DisjointUnionOf (indicating potential anonymous super types)

• As correspondences for cardinality patterns:

– FunctionalObjectProperty, FunctionalDataProperty (indicating n : 1 rela-

tions)

– InverseFunctionalObjectProperty (indicating 1 : n relations)

– ObjectMinCardinality, DataMinCardinality, ObjectMaxCardinality, DataMax-

Cardinality, ObjectExactCardinality, DataExactCardinality (indicating car-

dinalities depending on exact values and combination)

– HasKey (an obvious candidate in theory, which we have never observed in

actual ontology that we were testing)

– Properties in the absence of any of the above (lack of restriction may indicate

n : m in some cases)

• As correspondence candidates for recursion patterns:

– TransitiveObjectProperty

– SymmetricObjectProperty
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Again, the above list is not exhausting and we keep the system open to additional axioms

by making this list configurable in the implementation. Note, that the grouping above

into classes of potential correspondences is indicative in nature but does not impose

any limitations of potential pattern correspondences. In principle, any pattern type

node in IncGraph(O) can align with any pattern type node in IncGraph(R) if repeated

co-occurrences suggest such an alignment.

As a precondition for leveraging knowledge from the ontology during matching, relevant

axioms need to be captured in IncGraph(O).

Let u ∈ U be a unary ontology axiom that appears in O, and let va ∈ V be a any node

constructed from a ∈ O. Then:

Unary Axiom Nodes:

u(a)→ vy ∈ V ∧ vy.type = ”Y ” ∧ ey = (va, vy) ∈ E ∧ (ey, ”pi”) ∈ lblE

∧vx ∈ V ∧ vx.type = ”X” ∧ (vx, name(u)) ∈ lblV

∧ex = (vy, vx) ∈ E ∧ (ey, ”pt”) ∈ lblE

Technically, in addition to inner pattern edges (pi), pattern endpoint edges (pe) are also

constructed to connect with elements that are immediate neighbors of the element on

which the unary axiom applies. For better readability we do not reflect this addition in

the above formula.

Let b ∈ B be a binary ontology axiom that appears in O, and let va1 , va2 ∈ V be nodes

constructed from a1, a2 ∈ O. Then:

Binary Axiom Nodes:

b(a1, a2)→ vy ∈ V ∧ vy.type = ”Y ”

∧ey = (va1 , vy) ∈ E ∧ (ey, ”pe”) ∈ lblE ∧ ey = (va2 , vy) ∈ E ∧ (ey, ”pe”) ∈ lblE

∧vx ∈ V ∧ vx.type = ”X” ∧ (vx, name(b)) ∈ lblV

∧ex = (vy, vx) ∈ E ∧ (ey, ”pt”) ∈ lblE

Figure 4.10 shows a full IncGraph(O) from running Example 4.1 with annotations of

ontology meta knowledge in pattern style. Besides all of the nodes that are already

present in the basic IncGraph, nodes from two additional axioms have been added. At

the bottom, property writes is marked as an unrestricted property, which may indicate
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Figure 4.10: Full regular IncGraph(O)

that it is used as an n : m property. A pattern node (Meta 2 ) is therefore included in the

graph. Also, this node is connected to a pattern type node (unknown funct.). This is a

unary axiom, and a meta node (vertice type pattern) has been directly connected to the

node representing the property (pi -edge). Additional pe-edges are supporting the scope

of the pattern. Those edges help to smoothen alignment with corresponding patterns

that may be less atomic in structure. On the left side of the figure, Author is modeled

as a subclass of Person, which is represented by a binary axiom pattern connecting the

two.

Note, that this two-stage modeling of pattern type nodes with intermediate pattern nodes

is necessary if several occurrences of the same axiom appear in the ontology. In this case,

all pattern nodes of the same axiom connect to the same pattern type node. This leads

to unique axiom pattern types to align well with corresponding pattern type nodes on

the relational side exactly if several of their pattern node instances co-occur in similar

context on both sides. Also note, that meta nodes technically have empty labels.

4.2.9 Reasoning on Ontology Annotations

Reasoning can add to the value of ontology IncGraphs.

It is important to understand, though, what reasoning in the context of IncGraph con-

struction means and which roles inferred axioms or facts may play. Any axioms or facts

that will reflect into an IncGraph will be represented as merely structural graph features.

This is the same as for any other modeling elements of the input ontology. As structural

graph features, they serve one single purpose: to act as match candidates during graph

matching. Adding missing features is therefore helpful if and only if they represent cor-

rect matches for corresponding features in the other IncGraph. If such graph features,

however, they act as noise and are potentially harmful for matching quality, even if

the axioms or facts that they represent are correct. Thus, we need to be careful about
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activating reasoning before the graph matching phase. It is also important to note that

the decision for or against reasoning at this stage does not preclude any later reasoning

on the resulting data.

When building a graph, reasoning can be applied at two different points in the process:

immediately before IncGraph construction, i.e., on an original input ontology, or during

IncGraph construction, i.e., using custom rules that operate directly on the IncGraph

model. Both of these options cause different effects.

Firstly, a reasoner could infer and materialize relevant T-Box axioms prior to IncGraph

generation. While obvious at first glance, this may in principle be an important step

to guarantee that all relevant nodes can be created during graph construction. Unfor-

tunately, in practice the approach also has several downsides: a few correct candidate

correspondences might be added, but many more unnecessary and potentially misleading

candidates could be added as well. In a number of initial tests that we conducted with

standard OWL QL reasoning enabled in this way, we did observe a generally detrimental

effect on mapping quality due to noise. One case where noise is a particularly troubling

problem is with the interpretation of concrete domains and ranges, which are crucial for

structural matching. On top of that, many ontologies are not designed as cleanly as one

might hope, adding the risk of inferring incorrect axioms. For these reasons, we do not

recommend to apply this step, unless the ontology in question is known to be clean and

also uses precise domain and range definitions.

Secondly, we derive implicit information using custom reasoning rules and directly en-

code consequences into IncGraph(O). Besides limiting the reasoning scope to select

rules, the main difference here is how we treat reasoning results as opposed to explicitly

stated axioms. More specifically, we derive implicit subclass axioms as well as equiv-

alences for both classes and properties. However, for all transitive calculations (e.g.,

subclass of subclass), we weigh down edges by slashing their weight in half with each

additional step down the path. This follows the intuition that axioms further away

from what has been explicitly declared are also less likely to be explicitly modeled in

a corresponding relational database. We additionally derive disjoint unions of classes

in some cases. Similarly, for properties, we derive axioms about their functionality as

well as information about their domains and ranges, although not exhaustingly. We

eventually also remove symmetric pairs of subclass axioms and superclass axioms (i.e.,

implicit equivalences) to avoid clutter in the resulting graph. By default, IncMap only

employs this form of built-in reasoning.

This way, we limit reasoning on IncGraph to a very small number of cases where we

have positively observed before that they are likely to be needed during structural graph

matching. In addition, by reducing the weight of edges in some cases, we reduce the
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noise effect of graph features that may be very helpful at times, but in relatively fewer

cases.

In the following, we discuss the non-standard reasoning rules applied in this phase.

4.2.9.1 Sub Classes and Super Classes

Domains and ranges are often modeled in a database at a granularity other than the

one expressed in a corresponding ontology. In one case, this may be one or more specific

subclass(es) of the actual domain or range, if the database is designed to accept only

information about those specific subclasses. In another case, however, this can even be a

super class of the domain or range, following the reasoning that some of the individuals

of the super class can have values of that property. Although somewhat less frequent,

databases occasionally happen to model properties in such an overly generic way.

In order to solve this, we add edges to encode all alternative connections. To express

the notion of more unexpected cases, we assign weight factors to additional edges:

Sub Classes:

v ∈ V ∧ vd.type ∈ {”A”, ”R”} ∧ e = (v, v′) ∈ E ∧ v′.type = ”T”

∧(e, le) ∈ lblE ∧ (e, we) ∈WE : ∀s ∈ C : subClass(class(v), s)

→ e′ = (v, node(s)) ∈ E ∧ (e′, le) ∈ lblE ∧ (e′, we/2) ∈ lblE

Super Classes:

v ∈ V ∧ vd.type ∈ {”A”, ”R”} ∧ e = (v, v′) ∈ E ∧ v′.type = ”T”

∧(e, le) ∈ lblE ∧ (e, we) ∈WE : ∀s ∈ C : superClass(class(v), s)

→ e′ = (v, s) ∈ E ∧ (e′, le) ∈ lblE ∧ (e′, we/4) ∈WE

Technically, to calculate super classes, we look at subClassOf axioms and apply edge

construction in inverse direction.

4.2.9.2 Equivalence and Pseudo Equivalence

We infer a number of equivalences using standard reasoning rules immediately before

graph construction.
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While real equivalences can also be made explicit by a reasoner in pre-processing, an-

other, subtler notion of equivalence may apply on IncGraph for axioms that are not even

equivalent in the ontology. We call this phenomenon pseudo-equivalences. It is caused

by relations and referential constraints having no semantic direction and because, in

IncGraph, we only model aspects that can find correspondences. As a consequence,

ontology properties also lose their direction in IncGraph w.r.t. matching. Therefore,

inverse properties become effectively equivalent in IncGraph. However, they are not

equivalent in the underlying ontology and thus are normally modeled separately dur-

ing graph construction. In this case they compete for matches and distract structural

alignment.

We solve this issue by unifying pseudo-equivalent property axioms into a single node

during IncGraph construction, but maintain both labels for alternative lexical matching.

Note, that no formal node construction rule for this modification can be given here, as

this is a replacement operation modifying existing nodes in the graph, not an addition

of extra nodes.

4.2.9.3 Deprecated Classes and Properties

OWL supports deprecation in form of a dedicated annotation property. In an ideal world,

deprecated features in an ontology should no longer be used for querying and might have

been replaced by other elements. Under this assumptions, deprecated elements should

not become part of IncGraph to avoid introducing unwanted matches. More realistically,

however, this conclusion can only sometimes be drawn for deprecated ontology elements,

not always.

We therefore attempt a compromise by post-processing nodes constructed for deprecated

ontology elements and by reducing the weight of all their edges by 50%.

4.2.10 Relational Pattern Annotations

For relational schemata, IncMap exploits design patterns with heuristic rules that en-

rich the IncGraphs with pattern nodes. Such pattern nodes represent a specific design

pattern (e.g., Class-SubClass) and are connected by edges to the relevant content nodes.

In contrast to axioms in the ontology, patterns in the database are merely structural

features, which may or may not represent the assumed semantics. In addition, some pat-

terns are also ambiguous (e.g., 1 : 1 relations vs. the third example option for modeling

hierarchies in relational databases). Also, a number of patterns cannot even be iden-

tified with certainty, but heuristics apply and lead to varying confidence scores. Thus,



Chapter IV. i3MAGE System 76

on the database side, we employ weighted edges to connect pattern nodes, representing

their detected confidence score. The role of the pattern nodes is to reinforce the con-

nection between semantically similar aspects on both sides, i.e., between IncGraph(R)

and IncGraph(O).

Formally, for each supported pattern P on relational schema R, there is a pattern

qualifier heuristic HP that assigns each subset of schema elements (i.e., each S ∈ P(R))

a score, denoting the confidence that they might form the specified pattern.

Pattern Nodes:

HP (S) > 0.0→ ∀el ∈ S : vy ∈ V ∧ vy.type = ”Y ”

∧ey = (vel, vy) ∈ E ∧ (ey, ”pi”) ∈ lblE

∧vx ∈ V ∧ vx.type = ”X” ∧ (vx, name(P )) ∈ lblV

∧ex = (vy, vx) ∈ E ∧ (ex, ”pt”) ∈ lblE ∧ (ex, HP (S)) ∈WE

Technically, instead of inner pattern edges (pi), pattern endpoint edges (pe) are con-

structed to connect with elements that have at most one connection with other elements

belonging to the pattern. For brevity, we do not reflect this distinction in the above

formula.
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Figure 4.11: Full regular IncGraph(R)

Figure 4.11 shows a full IncGraph(R) from running Example 4.1 with annotations of

relational patterns. Two pattern types have been added, rel-rel (indicating a possible
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relationship relation) and multi-type (indicating a table that likely contains tuples de-

scribing more than one entity type). For each pattern type, exactly one instance has

been observed.

If you relate this graph with the corresponding IncGraph(O) from Figure 4.10, it is easy

to see how pattern type rel-rel could align with unknown funct., while multi-type may

align with subClassOf.

4.2.11 Shortcut Edges

Even full IncGraphs can be further optimized with additional annotations.

While patterns can help to support alignments of related node groups, constructing

complex correspondences from two graphs still requires fully corresponding sub graphs

at both ends. This is often not possible, because patterns have been identified but look

structurally different.

For instance, the path from Person to Paper in Figure 4.11 is still longer than the path

from Person (or from Author) to Paper in Figure 4.10. A correspondence for property

writes, which connects the two, can therefore not be identified immediately although it

is supported by an aligned pattern.

In order to mitigate these differences and support arbitrary correspondences across pat-

terns we add shortcut edges to IncGraph(R) that represent potential join paths.

Figure 4.12 illustrates how shortcuts could solve this issue. The additional shortcut

path has the same structural properties as the property path in the corresponding

IncGraph(O) (Figure 4.10).

Adding shortcut edges everywhere where they potentially could make sense is dangerous,

though. Their introduction is always only one possibility among others, and adding them

carelessly adds a lot of noise to the matching graphs. We therefore add shortcut edges

in an inactive state and selectively activate them later on, only when they have strong

support by their surrounding patterns.

4.2.12 Annotations from User Queries

In ontologies, the range of an object property is often not precisely modeled. On the

one hand, this leads to greater flexibility in the application of these properties, which is

a particularly desirable feature to enable the re-use of ontologies. On the other hand, it
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Figure 4.12: Full IncGraph(R) with shortcut edges

increases the difficulty of identifying the correct matches in a relational database where

attributes are typically modeled in a single, specific place.

Using reasoning we can conclude, which concrete domains and ranges are possible. It

will not point us to the one (or few) concrete domains and ranges that are actually

semantically reasonable and used in practice. Those, however, are precisely the ones

that are the most likely to be reflected in a relational database schema. By extracting

information from a query workload we can in many cases understand a relevant domain

or range directly from the example of a user query.

Where available, we thus analyze query workloads and annotate relevant domains and

ranges explicitly in IncGraph(O). As those domains and ranges are likely more relevant

than the ones asserted in the ontology, we support such edges with the maximum weight

factor of 2.0.

In addition, we can limit our approach to create mappings only for an area of interest,

defined by concepts and properties covered by a query workload. This avoids the selec-

tion of mappings that are irrelevant and thus reduces the likelihood of incorrect matches

being selected.
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4.2.13 Implementation Notes on IncGraph Construction

IncMap requires information about input schemata to be added through its dedicated

API, i.e., IncGraph construction is passive.

Graph construction is implemented in IncMap using general-purpose graph structures

for directed labeled graphs built on indexed Java Collections. Labels can be stacked

and implement a minimal common interface only to be extensible to a degree where

they could contain, among other things, provenance information, translation methods

or even partial sub graphs. On this basis, IncGraph vertices and edges are being used

as building blocks also for all other graph structures during matching. We have taken

this decision to optimize overall memory consumption and to maintain a high degree of

flexibility in implementing different algorithms on top of the graph structures. It comes

at the price of a relatively high initialization overhead, though.

We augment IncGraph nodes with rich provenance information. For IncGraph (O),

this includes the target axioms, but also additional context in some cases, e.g., and

interpretation of the most specific domain and range for properties. For IncGraph (R),

provenance essentially describes a full Select-Project-Join (SPJ) access path to the data

described. Although this access path is stored in a dedicated data structure designed for

IncMap, it essentially expresses relational SPJ queries, although restricted to equi-joins

and with limited selection capabilities. Provenance information on the source schemata

can be automatically translated into SQL queries or partial SQL queries.

Edge weights are technically assigned based on configurable weight factors. The fixed

weight factors that we been reporting in this section are default choices, which we have

observed to work reasonably well in many example situations.

4.3 Matching Background: Similarity Flooding

In this section we briefly summarize the original Similarity Flooding algorithm for

schema matching as described by Melnik et al. [45, 54].

The starting point of the Similarity Flooding algorithm are two directed labeled graphs,

which represent the schema elements of a source schema and target schema to be

matched. Each graph is defined as a tuple G = (V,E) of vertices V and edges E,

where each edge e ∈ E is represented as a triple (s, p, o) with s ∈ V being the source

vertex, o ∈ V the target vertex and p the label of the edge.

The procedure to construct an input graph from a given schema is not defined by [45].

Thus, the Similarity Flooding algorithm is open for any graph construction process
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and for any graph structure, as long as it adheres to the model described above. It is

therefore up to the implementation, which vertices, edges, and labels are created for a

given schema.3

To explain the further process, we use the same example as the one presented in [45].

Figure 4.13 depicts this example. The two input graphs shown on the left hand side

(Figures 4.13a and 4.13b) represent the structure of a given source and target schema,

respectively.
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Figure 4.13: Similarity Flooding

As a next step in the Similarity Flooding algorithm, a so called pairwise connectivity

graph is built from the constructed source graph GS and target graph GT . The pairwise

connectivity graph (PCG) is defined as follows: nodes are elements from V (GS)×V (GT ),

representing potential match candidates (called match pairs in a PCG(S, T )). For ex-

ample, the node (a, b) in the example PCG (Figure 4.13c) represents a potential match

candidate of node a ∈ GS and b ∈ GT of the input graphs. Moreover, an edge of the

form ((x, y), p, (x′, y′)) between any two nodes (x, y) and (x′, y′) of a PCG is added if

(x, p, x′) ∈ E(GS)∧ (y, p, y′) ∈ E(GT ). The intuition behind the edges is to model struc-

tural commonalities in both graphs GS and GT in the PCG(GS , GT ). In the example

PCG of Figure 4.13, the match pair (a, b) has an edge to the match pair (a1, b1) with the

label l1 since both nodes a and b have an outgoing edge l1 in the given source (target)

graph to the node a1 (b1).

Based on the PCG(GS , GT ) a so called induced propagation graph (IPG) is derived. The

structure of IPG(GS , GT ) is similar to that of PCG(GS , GT ). The only difference is

that an additional edge in the opposite direction is added for each edge of PCG(GS , GT ).

Moreover, for each edge of IPG(GS , GT ) a weight is attached (called propagation coef-

ficient). The weight of an outgoing edge w(e) with label l (of a given node) is calculated

by w(e) = 1/outl where outl is the number of outgoing edges with the same label l. In

3[54] describes the authors’ assumptions for relational schema matching in some detail. They are not
part of a defined algorithm but rather presented as an example, though.
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the example IPG in Figure 4.13d the weights for the outgoing edges with label l1 of node

(a, b) are both set to 0.5, since the node has two outgoing edges with that label and has

to split its weight among them.

The final step of the Similarity Flooding algorithm is a fixpoint computation to propagate

initial similarities through the graph by using the structural dependencies. Therefore

each matching pair (x, y) of an IPG is initialized with its initial similarity σ0(x, y) by

using a lexical similarity matcher. Then, the initial similarities are adopted by a step-

wise computation: in every iteration i, with i >= 1, a new value of σi(x, y) is computed

for any match pair (x, y) by incrementing its similarity value of the previous iteration by

the σ-values of its neighbor pairs in the IPG multiplied by the propagation coefficients

on the edges going from the neighbor pairs to node (x, y).4

The idea is that a matching pair (x, y) of an IPG profits from the structural similarity

represented in the IPG by the edges. For example, if we assume that σ0(x, y) = 1 for

any match pair in the IPG of Figure 4.13, then σ1(a2, b1) = σ0(a2, b1) + 0.5 ∗ σ0(a, b) +

1.0 ∗ σ0(a1, b2) = 1 + 0, 5 ∗ 1 + 1 ∗ 1 = 2.5.

At the end of each iteration, the σi(x, y) value for each node (x, y) is normalized by

the maximal σ-value of this iteration (i.e., all σ-values are ≤ 1 and ≥ 0). The fixpoint

computation terminates if either the residual vector δ(σn, σn−1) becomes less than a

given ε or a maximum number of iterations n has been performed.

4.4 IncMap Matching

4.4.1 Basic Matching Process

Basic, non-incremental correspondences and mapping suggestions result from lexical

matches of the input IncGraphs that are then being re-ranked based on the structure of

their combined matching graph. This process mostly follows the Similarity Flooding [45]

algorithm.

Matching between a source and target IncGraph starts with calculating the Cartesian

products between nodes in the source and target, for each respective node type or color.

Essentially, we use a technique from Similarity Flooding with the two input graphs

(IncGraph(R) and IncGraph(O)), similar to the construction of PCGs as described in

Section 4.3.

4Some alternative propagation models are also discussed in [45, 54].
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An initial match operator then evaluates each pair of nodes, i.e., each potential match.

Initial matching calculates a lexical similarity score between the nodes, using one of sev-

eral interchangeable matchers. The primary source of information for lexical matching

are node labels, which normally result from schema element identifiers.5

Table 4.1: IncMap lexical matchers (default in bold print)

Matcher Short Description Label Document

LS Classic Levenshtein similarity (inverse edit distance) yes no
XLS Levenshtein variant (prefers distinctive scores) yes no
ID Identity matcher (string equality) yes no

AEQ All-equal at 1.0 (experimental baseline) no no
WB Document word bag Jaccard similarity no yes
MS Multi-source LS and WB LS WB

TWB String tokenizer, WB on tokens yes no
STB Stemmed, stop-word filtered, tokenized WB yes no

Table 4.1 shows a list of all our supported lexical matching operators. Each matcher is

listed with its identifier, a short description, and its basic modes of operation: matchers

could either work on labels, on the overall document of words drawn from additional

annotations, or on a combination of both. The table lists match operators in the his-

toric order of implementation: in IncMap’s first version (as described in the original

IncMap paper [52]), the operator list was implemented from top down to AEQ. Those

were mostly simple operators. For instance, Levenshtein similarity (LS ), the inverse of

the Levenshtein distance [136], is a traditional string similarity metric but not highly

performing. The all-equal matcher (AEQ) assigns a uniform default score to all nodes

without even looking at their labels or annotated documents. It serves as a baseline

measure for debugging and to demonstrate the viability of structural matching alone,

i.e., without effective support of any initial lexical matchers.

Operators can be selected by configuration. Our preferred and default initial match

operator is word-bag Jaccard similarity on stemmed, stop-word filtered tokenizations

(STB). It is both highly performing and has proven to be highly effective in most of

our experiments. This operator uses label information, only. For nodes with no lexical

labels, such as pattern nodes, the operator assigns an initial similarity of 0.5.

Once lexical matching is complete, paired nodes get reassembled into a new graph.

Graph reassembly is based on common edges that both paired nodes used to share in

their respective IncGraphs. For instance, if ontology node A has a ref edge to ontology

node B in IncGraph(O), and also relational schema node X has a ref edge to schema

5On the ontology side, rdf:labels are preferred, where available. We technically also support to
match on an annotated node document, which is a concatenation of annotation properties rdfs:comment,
rdfs:seeAlso, and rdfs:isDefinedBy for the ontology and PostgreSQL COMMENT text in case of relational
schemata. Textual annotations for schemata other than PostgreSQL are not currently supported.
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Figure 4.14: Construction of PCG+ (Simplified)

node Y in IncGraph(R), then we will add a ref edge between paired nodes (A,X) and

(B,Y).

Pairing of nodes results in an Extended Pairwise Connectivity Graph (PCG+). Fig-

ure 4.14 shows a generic and simplified example of two input graphs and the resulting

PCG+ (Figure 4.14c). The PCG+ has a node for every pair in any of the cross products

of nodes from the input graphs, where nodes of some type (or color) in one graph will

be paired only with nodes of the same type in the other. Therefore, in the figure, all

combinations of a, a1, a2, b, b1 and b2 are in the graph, but only one node pairing p1 with

p2. Edges are added to the PCG+ wherever both constituent nodes of a pair had a

shared type of edge in the same direction. For instance, a and b have both an outgoing

edge labeled l1, which leads to a1 and b1, respectively. Therefore, the pair (a, b) in the

PCG+ also has an outgoing edge l1 leading to the pair (a1, b1). In addition, if either

edge was weighted, their weights get multiplied for the PCG+. Unweighted edges are

assumed to carry a weight of 1.0. If either edge is inactive and therefore optional, the

common edge becomes inactive.

Our graph is based on the original PCG from [45] but extended in several ways, primarily

to accommodate weighted edges and optional edges, which are not supported in the

original PCG.

Weighted edges are our means to connect IncGraphs in uncertain ways and factor that

uncertainty into the graph structure. Other than adjusting the scores of nodes that those

edges connect, adding an edge weight allows us to gain more control over the graph flow

in the following fixpoint computation. Additionally, while node scores interact with their

neighborhood and can change quickly and unexpectedly during the fixpoint computation,

edge weights remain unchanged.
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Another difference is the handling of inactive ref edges in the input IncGraphs. For

inactive ref edges, which are not known to the original Similarity Flooding, we apply

the following rule when building the PCG+: if an edge in the PCG+ refers to at least

one inactive ref edge in one of the IncGraph models, it also becomes inactive in the

PCG+.

PCG+ generation is to prepare for a following phase, where a fixpoint computation based

on the Similarity Flooding algorithm [45] refines the initial scores based on structural

similarities.

The PCG+ is then transformed into the final input for Similarity Flooding by adding

inverse edges to avoid black holes in the fixpoint computation and by (re-)assigning

weights to all edges to balance the score distribution. At this point, user feedback or

partial mappings can be incorporated by adjusting the initial scores of matches to 0.0

or 1.0 and by optionally flagging them as stable (i.e., their score will remain unaffected

throughout the fixpoint computation and therefore exerts a more constant influence on

their structural neighborhood).

Finally, the fixpoint computation will repeatedly distribute scores of matches to neigh-

boring nodes. Distribution of scores depends on edge weights, thus refining the score of

correspondences structurally.

These last steps can be repeated several times for several iterations of user feedback.

One more difference between IncMap and original Similarity Flooding relates to propa-

gation coefficients. In IncMap they are modular and can be changed by configuration. In

particular, a new weighting formula supported by IncMap considers the similarity scores

on both ends of an edge in the IPG. The intuition behind this is that a higher score

indicates better chances of the match being correct. Thus, an edge between two matches

with relatively high scores each is much more relevant for the structure than edges be-

tween one isolated well-scored match and several ones with extremely poor scores. For

calculating the weight w(e) of a directed edge e = (n1, n2) from n1 to n2 in the IPG

where l is the label of the edge, IncMap can use one the following alternatives:

• Original Weight as in [45] : w(e) = 1/outl where outl is the number of edges

connected to node n1 with the same label l

• Similarity Product : w(e) = score(n1) ∗ score(n2) where score(n) is the score of

the initial lexical matching of represented by node n ∈ IPG.

• Normalized Similarity Product : w(e) = (score(n1) ∗ score(n2))/outl.

Of these, the normalized similarity product is our default.
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4.4.2 Extended IncMap Matching: Edge Activation

The first extension of the basic version of our matching process is to activate inactive

ref edges in the IPG before the fixpoint computation to be used for matching. In the

following we describe the activation strategies of IncMap.

As described before in Section 4.2.5, inactive edges are annotations that might be struc-

turally clarifying if applied carefully. However, since the number of possible edges is

generally high, they are kept inactive until there is an actual reason to consider them.

To activate inactive edges, we introduce the concept of a Node of Intense Interest (NII).

The intuition behind NIIs is to identify those match candidates in an IPG that most

likely represent a correct correspondence between schema elements in O and R. IncMap

supports two flavors of identifying NIIs: either a node in an IPG is an NII if it satisfies a

certain similarity score threshold, or if it belongs to a set of top-k nodes with the highest

matching scores in the IPG.

In order to activate an edge, we search for inactive edges (or edge paths, in the case of

shortcuts) that connect two NIIs. Since both ends of the edge are NIIs, they indicate

high quality matches. Intuitively, there are two potential policies as to when an inactive

edge could be activated based on NIIs: either, if the shortcut edge connects two NIIs

with each other (as described before), or, less strictly, if it connects an NII on one side

with any arbitrary node on the other side. IncMap supports both of these modes, but

recommends to use the strict approach.

Once inactive shortcut edges in an IPG are activated, IncMap starts or continues the

Similarity Flooding fixpoint computation to leverage the new structural properties. Dur-

ing each step of the fixpoint computation, the match scores of nodes in the IPG might

increase or decrease. As match scores change after each step of the fixpoint computation,

IncMap also adapts the set of NIIs.

Consequently, for each potential match (i.e., a node in the IPG) that has changed its

NII status after some step of the fixpoint computation, the set of activated edges needs

to be adjusted based on the new set of NIIs. Alternatively, the set of NIIs can be kept

stable after its first initialization, even while the matching scores in the IPG change and

some initially selected NIIs do not satisfy NII criteria anymore. This procedure would

significantly over-emphasize the influence of initial lexical matching, though. As soon

as the fixpoint computation terminates, the IPG yields the final set of matches based

on edge activation.

Edge activation leads to one more difference in IncMap over the original Similarity

Flooding. Other than in the original approach, where propagation coefficients for the
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IPG are ultimately determined during graph construction, our propagation coefficients

can be calculated several times when the graph changes with the activation and deacti-

vation of edges. This is necessary, as propagation coefficients depend on the number of

edges of each type per node, which varies as edges get activated or deactivated.

4.4.3 Extended IncMap Matching: Iterative User Feedback

User feedback can be leveraged after any round of matching. Typically, this will happen

in a semi-automatic mapping process, i.e., by offering the user mapping suggestions,

which they accept or reject. Query-driven incremental mappings offer a particular op-

portunity to leverage user feedback interactively.

One of the reasons why we have chosen Similarity Flooding as a basis for IncMap is the

fact that user feedback can be integrated by adopting the initial match scores in an IPG

before the fixpoint computation starts or restarts.

Although the possibility of an incremental approach has been mentioned already in the

Similarity Flooding paper [45], it has not previously been implemented and systemat-

ically evaluated. Also, while it is trivial to see when and where user feedback could

be incorporated in the IPG, it is far less trivial to decide, which feedback should be

employed and how exactly it should be integrated in the graph.

We focus on leveraging the most straight-forward and decisive kind of user feedback, i.e.,

the previous confirmation or rejection of suggested mappings. In addition, we accept

partial existing mappings as implicit confirmation. Partial mappings could be the result

of earlier iterations of an automatic approach or could have been hand-crafted.

We have devised three alternative methods how this kind of feedback could be added

into the graph.

First, as a confirmed match corresponds to a certain score of 1.0, while a rejected match

corresponds to a score of 0.0, we could simply re-run the fixpoint computation with

adjusted initial scores of confirmed and/or rejected matches. We call this first method

Initializer. However, there is a clear risk that the influence of such a simple initialization

on the resulting mapping is too small as scores tend to change rapidly during the first

steps of the fixpoint computation. For example, even a confirmed mapping would have

no more influence on the resulting mapping than one of potentially many perfect string

matches, some of which that may still be wrong.

To tackle this potential problem, our second method guarantees maximum influence of

feedback throughout the fixpoint computation. Instead of just initializing a confirmed or
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rejected match with their final score once, we could repeat the initialization at the end of

each step of the fixpoint computation after normalization. This way, nodes with definite

user feedback influence their neighborhood with their full score during each step of the

computation. We therefore call this method Self-Confidence Nodes. As scores generally

tend to decrease in most parts of the graph during the fixpoint computation and high

scores become more significant for the ranking of matches in later fixpoint computation

steps, this method implies the opposite risk of the Initializer method, namely, to over-

influence parts of the graph. For example, one confirmed match in a partially incorrect

graph neighborhood would almost certainly move all of its neighbors to the top of their

respective suggestion lists.

Finally, with our third method, we attempt to balance the effects of the previous two

methods. We therefore do not change a confirmed match directly but include an ad-

ditional node in IPG that can indirectly influence the match score during the fixpoint

computation. We name this method Influence Nodes.

4.4.4 Implementation Notes on Matching

Matching is implemented on the same graph structures also used for IncGraph construc-

tion. PCG+s are built by wrapping nodes around existing node objects from IncGraphs

and by stacking their labels. Thus, both underlying IncGraphs can still be navigated

from any node in the PCG+. IPGs are built essentially by re-wiring individual aspects

of PCG+s on the same objects. During matching, IPG objects are managed as changing

object structures with live state. Consequently, there is no going back to previous states,

once changes have been applied by matching algorithms. Resetting the initial state en-

tirely requires a recalculation of both the PCG+ and IPG. This limitation is justified

by i3MAGE’s principle to approach matching incrementally and without backtracking.

During matching, several indices and statistics are maintained on the IPG, which are in

part exposed in a matching API. Adjustment of the IPG due to feedback is also possibly

through the same API. Confirmation or rejection of individual matches can be applied

by calling for a score change on a specific graph node with any of the three supported

methods to either 1.0 or 0.0.

4.5 Mapping Generation

Mapping generation in i3MAGE can operate in two different modes. (1) Automatically,

i.e., by providing a best-effort overall mapping that covers as much of the target ontology

as possible. Or, (2) semi-automatically, i.e., based on manually confirmed suggestions.
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4.5.1 Fully Automatic Mapping Selection

In fully automatic mode, i3MAGE exports mappings based on most likely IncMap cor-

respondences calculated during the fixpoint computation. Correspondences are selected

based on final scores after the last iteration of IncMap.

i3MAGE interprets correspondences either as 1 : 1 mappings or as n : 1 mappings.

Combinations of correspondences that lead to 1 : n interpretations are not systematically

supported in automatic mode and hence the same holds for n : m mappings. This

essentially means that, while i3MAGE can map several concepts to a single table, it

cannot map a single ontology concept to several tables in automatic mode. What sounds

like a harsh restriction at first is often less limiting in practice: quite often, the case where

information about a single concept is stored in several tables of a relational database,

this effectively represents a union of subclasses of that concept, and i3MAGE is still

capable to map each of those subclasses separately if they are defined in the ontology.

On the other side, disallowing 1 : n mappings in automatic generation tightens the

search space and thus helps avoiding false positives.

Intuitively, following these rules, for each target side node (i.e., each node in the ontology

IncGraph), one correspondence should be selected in automatic mode. We refer to this

set of correspondences as the target top-1 set of correspondences.

However, target top-1 correspondences may lead to significant inconsistencies, lowering

the quality of the resulting mappings. For instance, the best match for a property

will in some cases match its range class to a table other than the one chosen as best

match for the class node of the range. While this might even be correct on occasion

– either, because the range class match is the one, which is incorrect, or because keys

in both matches define identical individuals – our general experience is that accepting

those inconsistencies lowers mapping quality on average. Therefore, we do not select

target top-1 correspondences but first choose target top-1 correspondences for classes

only and then choose for properties from a restricted set that interprets domains and

ranges consistently with the chosen class matches.

Finally, for each correspondence, one R2RML mapping rule is being generated. R2RML

generation employs skolemnization of URIs but is always deterministic, because our

matches imply a complete semantical description of the target concept (through the

underlying node from IncGraph(O)) and a complete relational SPJ-access path on the

source schema elements (through the underlying node from IncGraph(R)). This is pos-

sible thanks to rich provenance added to IncGraphs at construction time.
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4.5.2 Semi-automatic Mapping Selection

In semi-automatic mode, the selection process is driven by a user who confirms cer-

tain suggestions. For each suggestion, one R2RML mapping rule is immediately being

generated. Over time, a set of mappings builds up, which is based on an arbitrary

hand-curated selection of correspondences.

Both modes can be combined: a user may start to build mappings semi-automatically

but at some point decide to complete all further mappings in fully automatic mode.

As accepted suggestions in semi-automatic mode are also used as feedback for IncMap,

automatic mapping in such a mixed approach is likely resulting in higher mapping

accuracy.

4.5.3 Implementation Notes on Mapping Generation

Mapping generation relies on provenance information, which IncMap stores in its Inc-

Graph nodes. Provenance contains aspects such as fully qualified database identifiers,

ontology IRIs or additional context, such as a multi-hop join path underlying shortcut

nodes. This essentially amounts to semantic knowledge of axioms on the target ontology

side and to SPJ-type access in case of the relational database.

R2RML generation uses a commercial API for serialization.

4.6 Additional System Components

A number of additional supportive components are implemented in i3MAGE besides

IncMap and besides the mapping generation component. Those additional modules

support matching and mapping generation in productive setups.

4.6.1 Input Processing

While IncMap accepts its input through its own APIs, i3MAGE supports a range of

reader APIs to connect to actual data sources.

A database reader connects to running relational DBMSs and reads their schema infor-

mation and transforms those information for IncMap’s API. With some limitations the

database reader also accepts textual DDL as an alternative.
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An OWL ontology reader is available to load target ontologies and transforms relevant

axioms for IncMap’s API. Ontologies can be imported in i3MAGE from file or from a

named graph in a connected RDF database.

More advanced input is sometimes available in form of existing R2RML mappings. The

mapping analyzer is designed as a component to read existing partial R2RML mappings

and to derive correspondences from them as input for IncMap. Partial mappings could

be the result of previous iterations running i3MAGE, or they could have been manually

curated. Such extracted correspondences can be used in the same way as input from the

feedback system.

Similarly, a query workload may be present as input. i3MAGE can analyze SPARQL

queries for contained triple patterns, which are used in two different ways: firstly, to

identify an area of specific interest in the target ontology and to ignore the rest of the

ontology for suggestions, and secondly to derive concrete domain and range types.

4.6.2 Feedback System

Where IncMap provides suggestions (top-ranked matches) and solicits feedback from

users (acceptance or rejection of suggestions), additional components need to mediate

between native IncMap APIs and an external GUI that users can actually interact with.

i3MAGE implements a mapping suggester that exposes an API to external consumers,

such as a GUI frontend. The API supports search and selection of suggestions by context

(e.g., related to one particular class or table). The mapping suggester also translates

suggestions into human readable form that can be displayed in textual or hypermedia

format, including some explanation.

For receiving feedback, a collector component accepts feedback on suggested mappings

via the same API as the mapping suggester. It then translates feedback back and

forwards it to IncMap.

4.6.3 Implementation Notes on Additional Components

All components of i3MAGE are closely integrated in the overall system architecture,

implemented in Java. The database reader is compatible with all JDBC-compliant

RDBMSs that implement standard information schema.
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The OWL reader is implemented using an external component, the OWL API [134]. In

addition to standard OWL API functionality, the OWL reader implements a bridge to

load ontologies directly from a Sesame OpenRDF database [137].6

R2RML import, analysis and export rely on a commercial Java API. Analysis is techni-

cally limited to mappings that use SQL tables or views for specification of their R2RML

logical tables. So called R2RML views, i.e., ad hoc SQL views, cannot be analyzed due

to a lack of SQL parsing in i3MAGE. Similarly, query analysis is constrained by the

parser looking for basic triple patterns in the main WHERE clause of a SPARQL query,

only (e.g., no information from SPARQL FILTERs or SPARQL SELECT sub queries

can be considered).

All APIs in the feedback system are designed to be exposable as JSON APIs, although

all applications so far interact with it directly through a Java interface.

6http://rdf4j.org

http://rdf4j.org


Chapter 5

Benchmark Design and

Evaluation

This chapter introduces the benchmark that we have developed to test and compare

RDB2 RDF mapping generating systems, and presents our evaluation of i3MAGE.

First, we motivate the need for a dedicated benchmark suite and give a general overview

on our benchmark in Section 5.1. Next, we present our analysis of the different types

of mapping challenges for RDB2 RDF mapping generation in Section 5.2. Section 5.3

analyzes differences in mapping generation approaches that impact mapping generation,

and thus also need to be considered for designing appropriate evaluation approaches.

Then, Section 5.4 introduces our benchmark suite, called RODI, and discusses the eval-

uation procedure. Afterwards, Section 5.5 discusses implementation details that should

help researchers and practitioners to understand, how other systems could be evalu-

ated using RODI. Section 5.6 then presents our evaluation comparing i3MAGE to four

other RDB2 RDF systems, including a detailed discussion of observations. Finally, we

summarize experimental findings for i3MAGE in Section 5.6.5.

5.1 Overview of Benchmark Design

Ontology-based data integration crucially depends on the quality of ontologies and map-

pings.

The quality of such generated RDB2 RDF mappings is usually evaluated using self-

designed and therefore potentially biased benchmarks, which make it difficult to com-

pare results across systems. In practice, this is unsatisfactory since it does not provide

enough ground to select an adequate mapping generation system in ontology-based data

92
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integration projects. This limitation is evident in large scale industrial projects where

support of automatic or semi-automatic systems is vital (e.g., [138, 139]). Thus, in order

to ensure that ontology-based data integration can find its way into mainstream prac-

tice, there is a need for a generic and effective benchmark for reliable evaluation of the

quality of computed mappings w.r.t. their utility under actual query workloads.

RODI, our mapping-quality benchmark for Relational-to-Ontology Data I ntegration

scenarios, addresses this challenge.

The benchmark is composed of:

• A framework to test systems that generate mappings between relational schemata

and OWL 2 ontologies. The RODI software package has been implemented and

made available for public download under an open source license.1

• A scoring function to measure different facets of the quality of system-generated

mappings.

• Different datasets and queries for benchmarking, which we call benchmark sce-

narios: RODI consists of 18 ontology-based data integration test scenarios from

conference, geographical, and oil and gas domains. Scenarios are constituted of

databases, ontologies, mappings, and queries to check expected results. Com-

ponents of the scenarios are developed in such a way that they capture the key

challenges of RDB2 RDF mapping generation.

• An extension mechanism for adding further scenarios to the benchmark. Bench-

mark and scoring function are thus kept independent from benchmark scenarios,

and the benchmark suite can be expanded easily to cover additional tests or ap-

plication domains.

Using RODI one can evaluate the quality of RDB2 RDF mappings produced by systems

for ontology-based data integration from two perspectives: how good the mappings can

translate between various particularities of relational schemata and ontologies, and how

good they are from the query answering perspective.

To make this possible, RODI is designed as an end-to-end benchmark. That is, we

consider systems that can produce mappings directly between relational databases and

ontologies. Also, we evaluate mappings according to their utility for an actual query

workload. Besides the benefit of testing mapping utility rather than theoretic properties,

there are additional advantages of query workload-based evaluation that have recently

been discussed in the literature [121, 140].

1https://github.com/chrpin/rodi

https://github.com/chrpin/rodi


Chapter V. Benchmark and Evaluation 94

Ontology

Database

SPARQL 
Query 
Tests

SQL 
Queries

Benchmark Scenario X Candidate 
System

Benchmark 
Framework

m
appingsinitialize

rea
d inp

ut

Figure 5.1: RODI benchmark overview

Figure 5.1 depicts the schematics of the resulting architecture: the benchmark includes a

number of benchmark scenarios. Scenarios are initialized and setup for use by the frame-

work. Candidate systems then read their input from the active scenario and produce

mappings, which are evaluated again by our framework.

We have originally introduced RODI in [128]. Results presented in this work are based

on a later version of the benchmark, which significantly extends earlier results:

• Extended evaluation scenarios: We provide 9 new evaluation scenarios that are

important for testing mapping quality under real-world challenges such as high se-

mantic heterogeneity or complex query workloads in different application domains.

• Extended scope of the benchmark : Besides fully automatic mapping generation,

we can now also evaluate certain semi-automatic approaches and support several

modes of evaluation.

• Extended evaluation: We evaluate an additional system, COMA++, which follows

an approach that is closely related to i3MAGE. Although COMA++ is a much

earlier system, not actively developed any longer, and although it was never de-

signed specifically for RDB2 RDF mappings, it represents a significant point of

reference for i3MAGE’s core component IncMap as a baseline. This is because,
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just like IncMap, COMA++ follows a generic graph matching approach and sup-

ports inter-model matching. Besides this addition, the discussion of evaluation

results for all systems is significantly extended.

Besides, we have modified the benchmark scenarios to produce more specific individual

scores rather than aggregated values for relevant categories of tests. We also extended

the benchmark framework to allow detailed debugging of the results for each individual

test. On that basis we can point to individual issues and bugs in several systems, some

of which have already been addressed by the authors of the evaluated systems.

5.2 Integration Challenges

In the following we discuss our classification of different types of mapping challenges in

RDB2 RDF data integration scenarios. As a high-level classification, we use the stan-

dard classification for data integration described by Batini et al. [37]: naming conflicts,

structural heterogeneity, and semantic heterogeneity. For each challenge, we describe

the central issue of the problem and the main task faced by the mapping generation

tools.

5.2.1 Naming Conflicts

Typically, relational database schemata and ontologies use different conventions to name

their artifacts, even when they model the same domain and thus should use a similar

terminology. While database schemata tend to use short identifiers for tables and at-

tributes that often include technical artifacts (e.g. for tagging primary keys and for

foreign keys), ontologies typically use long “speaking” names. Thus, the main challenge

is to be able to find similar names despite the different naming patterns.

Other traditional differences include the use of plural vs. singular for class types, typically

different tokenization schemes, etc. Those differences are not present in other cases of

data integration (e.g., relational-to-relational or ontology alignment).

5.2.2 Structural Heterogeneity

The most important differences in RDB2 RDF integration scenarios compared to other

integration scenarios are structural heterogeneities. We discuss the different types of

structural heterogeneity covered by RODI.
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5.2.2.1 Type Conflicts

Relational schemata and ontologies represent the same artifacts by using different mod-

eling constructs. While relational schemata use tables, attributes, and constraints, on-

tologies use modeling elements such as classes, data properties and object properties, re-

strictions, etc. Clearly, there exist direct (i.e., naive) mappings from relational schemata

to ontologies for some of the elements (e.g., some classes immediately map to tables).

However, most real-world relational schemata and corresponding ontologies cannot be

related by any such naive mapping. This is because big differences exist in the way how

the same concepts are modeled (i.e., type conflicts). Consequently, mapping rules need

to be much more complex. One reason why these differences are so big is that relational

schemata are often optimized towards a given workload (e.g., they are normalized for

update-intensive workloads or denormalized for read-intensive workloads). Ontologies,

on the other side, model a domain on the conceptual level. Another reason is that some

modeling elements have no single direct translation (e.g., class hierarchies in ontologies

can be mapped to relational schemata in different ways). In the following, we list the

different type conflicts covered by RODI:

• Normalization artifacts: Often, properties that belong to a class in an ontology

are spread over different tables in the relational schema as a consequence of nor-

malization.

• Denormalization artifacts: For read-intensive workloads, tables are often denor-

malized. Thus, properties of different classes in the ontology might map to at-

tributes in the same table.

• Class hierarchies: Ontologies typically make use of explicit class hierarchies. Re-

lational models implement class hierarchies implicitly, typically using one of three

different common modeling patterns (c.f., [28, Chap. 3]). In previous Section 4.2.7

we have discussed different relational patterns in detail. For class hierarchies,

literature lists three different common patterns for relational databases:

1. In one common variant the relational schema materializes several subclasses

in the same table and uses additional attributes to indicate the subclass of

each individual. Those additional attributes can take the shape of a numeric

type column for disjoint subclasses and/or a combination of several type or

role flags for non-disjoint subclasses. In this case, several classes need to be

mapped to the same table and can be told apart only by secondary features

in the data, such as the value in a type column. With this variant, mapping

systems have to resolve n:1 matches, i.e., they need to filter from one single

table to extract information about different classes.
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2. Another common way is to use one table per most specific class in the class

hierarchy and to materialize the inherited attributes in each table separately.

Thus, the same property of the ontology must be mapped to several tables.

In this variant, mapping systems need to resolve 1:n matches, i.e., build a

union of information from several tables to retrieve entities for a single class.

3. A third variant uses one table for each class in the hierarchy, including the

possibly abstract superclasses. Tables then use primary key-foreign key ref-

erences to indicate the subclass relationship. This variant has a closer resem-

blance to ontology design patterns. However, it is also rarely used in practice,

as it is more difficult to design, harder to query, impractical to update, and

usually considered unnecessarily complex.

5.2.2.2 Key Conflicts

In ontologies and relational schemata, keys and references are represented differently. In

the following, we list the different key conflicts covered by RODI:

• Keys: Keys in databases are usually implemented using primary keys and unique

constraints. Keys may be composite, and in some cases partial keys of a table

identify different related entities (e.g., denormalized tables on the relational side).

Ontologies use IRIs as identifiers for individuals. Technically, OWL 2 also supports

a notion of keys, but this feature is very rarely used.

Thus, the challenge is that integration tools must be able to generate mapping

rules for creating IRIs for individuals from the correct choice of keys.

• References: A similar observation holds for references. While references are typ-

ically modeled as foreign keys in relational schemata, ontologies use object prop-

erties. Moreover, sometimes relational databases do not model foreign key con-

straints at all. In that case an integration tool must be able to derive references

from the relational schema (e.g., based on the naming scheme and types or indi-

viduals).

5.2.2.3 Dependency Conflicts

These conflicts arise when a group of concepts are related among each other with different

dependencies (i.e., 1:1, 1:n, n:m) in the relational schema and the ontology. Relational

schemata may use foreign keys over attributes as constraints to explicitly model 1:1 and

1:n relationships between different tables. They often model n:m relationships using
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an additional connecting table, which describes a relationship relation. Ontologies may

model functionalities (i.e., functional properties or inverse functional properties), or they

define cardinalities explicitly using cardinality restrictions. However, many ontologies do

not make use of these restrictions and thus are often underspecified in this respect [141].

Table 5.1: Detailed list of specific structural mapping challenges. RDB patterns may
correspond to some of the “guiding” ontology axioms. Specific difficulties explain par-
ticular hurdles in constructing mappings for those cases, which make the combinations

unusually challenging.

# Challenge type RDB pattern Guiding OWL axioms Specific difficulty

(1) Normalization
Weak entity table (depends on
other table, e.g., in a part-of
relationship)

owl:Class JOIN to extract full IDs

(2) 1:n attribute owl:DatatypeProperty JOIN to relate attribute with
entity ID

(3) 1:n relation owl:ObjectProperty,
owl:InverseFunctionalProperty

JOIN to relate entity IDs

(4) n:m relation owl:ObjectProperty 3-way JOIN to relate entity
IDs

(5)
Indirect n:m relation (using
additional intermediary tables)

owl:ObjectProperty k-way JOIN to relate entity
IDs

(6) Denormalization
Correlated entities (in shared
table)

owl:Class Filter condition

(7) Multi-value owl:DatatypeProperty,
owl:maxCardinality [>1]

Handling of duplicate IDs

(8) Class hierarchies 1:n property match rdfs:subClassOf, owl:unionOf,
owl:disjointWith

UNION to assemble redundant
properties

(9) n:1 class match with type col-
umn

rdfs:subClassOf, owl:unionOf Filter condition

(10) n:1 class match without type
column

rdfs:subClassOf, owl:unionOf JOIN condition as implicit fil-
ter

(11) Key conflicts Plain composite key owl:Class, owl:hasKey Technical handling

(12)
Composite key, n:1 class
matching to partial keys

owl:Class, owl:hasKey,
rdfs:subClassOf

Choice of correct partial keys

(13)
Missing key (e.g., no UNIQUE
constraint on secondary key)

owl:Class, owl:hasKey Choice of correct non-key at-
tribute as ID

(14)
Missing reference (no foreign
key where relevant relation ex-
ists)

owl:ObjectProperty,
owl:DatatypeProperty

Unconstrained attributes as
references

(15) Dependency
conflicts

1:n attribute

owl:FunctionalProperty,
owl:minCardinality [>1],
owl:maxCardinality [>1],
owl:cardinality [>1]

Misleading guiding axioms;
possible restriction violations

(16) 1:n relation

owl:FunctionalProperty,
owl:minCardinality [>1],
owl:maxCardinality [>1],
owl:cardinality [>1]

Misleading guiding axioms;
possible restriction violations

(17) n:m relation

owl:FunctionalProperty,
owl:InverseFunctionalProperty,
owl:minCardinality [>1],
owl:maxCardinality [>1],
owl:cardinality [>1]

Misleading guiding axioms;
possible restriction violations

Table 5.1 lists all specific testable RDB2 RDF structural challenges that we have iden-

tified.
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5.2.3 Semantic Heterogeneity

Semantic heterogeneity plays a highly important role for data integration in general.

Therefore, we extensively test scenarios that bring significant semantic heterogeneity.

This challenge is not specific to RDB2 RDF data integration, but a property of data

integration in general.

Besides the usual semantic differences between any two conceptual models of the same

domain, three additional factors apply to RDB2 RDF data integration:

• Object-relational impedance mismatch: An impedance mismatch caused by the

object-relational gap, i.e., ontologies group information around entities (objects),

while relational databases encode them in a series of values that are structured in

relations.

• CWA-OWA gap: The impedance mismatch between the closed-world assumption

(CWA) in databases and the open-world assumption (OWA) in ontologies.

• Expressivity gap: The difference in semantic expressiveness, i.e., databases may

model some concepts or data explicitly, where they are derived logically in ontolo-

gies.

All of these factors are inherent to all RDB2 RDF mapping problems.

5.3 Analysis of Mapping Approaches

Different mapping generation systems make different assumptions and implement dif-

ferent approaches. Thus, a benchmark needs to consider each approach appropriately.

In the following, we first discuss the major differences regarding the availability of in-

put. For instance, do we only have access to the ontology’s T-Box axioms or also to

some additional A-Box facts that could be used as data examples? Afterwards, we dis-

cuss the different approaches of implementing mapping processes and their effects on a

benchmark, e.g., automatic vs. different forms of semi-automatic processes.

5.3.1 Differences in Availability and Relevance of Input

Different input may be available to an automatic mapping generator. In RDB2 RDF data

integration, the main difference between available inputs concerns the target ontology.

The ontology could be specified entirely and in detail, or it could still be incomplete (or
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even missing) when mapping construction starts. Moreover, other differences are also

related to available input. For instance, data or a query workload could be available in

addition to mere schema information on either side.

The case where both the relational database schema and the ontology are completely

available could be motivated by different situations. For example, a company may wish

to integrate a relational data source into an existing, mature, Semantic Web application.

In this case, the target ontology would already be well defined and also be populated

with some A-Box data. In addition, a SPARQL query workload could be known and

could be available as additional input to a mapping generator.

On the other side, RDB2 RDF data integration might be motivated by a large-scale

industry data integration scenario (e.g., [139, 142]). In this scenario, the task at hand

is to make complex and confusing schemata easier to understand for experts who write

specialized queries. In this case, at the beginning no real ontology is given. At best there

might be an initial, incomplete vocabulary. Mappings and ontology are basically being

developed simultaneously over time. That is, no complete target ontology is available

as input to a mapping generator.

Essentially, the different scenarios can all be distinguished by the following question:

which information is available as input, besides the relational database? This can be

a mix of an ontology’s T-Box (or even just incomplete T-Box), A-Box data and an

existing query workload in either SQL or SPARQL. Note, that we always assume that

the relational source database is completely accessible (both schema and data), as this

is a fundamental requirement, without which RDB2 RDF data integration applications

cannot reasonably be motivated. Besides the availability of input for mapping gener-

ation, there could be additional knowledge, about which parts of the input are even

relevant. For instance, it may be clear that only parts of the ontology that are being

used by a certain query workload need to be mapped. If so, this information could also

be leveraged by the mapping generation system (e.g., by analyzing the query workload).

5.3.2 Differences in Mapping Process

Other differences can arise from the process in which mapping generation is approached.

These can be either fully-automatic approaches or semi-automatic approaches. Truly

semi-automatic approaches are usually iterative [84], as they consist of a sequence of

mapping generation steps that get interrupted to allow human feedback, corrections, or

other input. Their process is driven by the human perspective rather than by an auto-

matic component. Since we want to better adjust our benchmark to the semi-automatic

approaches, we first discuss different ways that are known for the semi-automatic case.
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Heyvaert et al. [132] have recently identified four different ways for manual RDB2 RDF

mapping creation. Each of those directions inflicts a different interaction paradigm be-

tween the system and the user and thus solicits different forms of human input: users

can edit mappings based on either the source or target definitions, they can drive the

process by providing result examples or could theoretically even edit mappings irrespec-

tive of either the source or target in an abstract fashion. We have also earlier identified

two fundamentally different user perspectives on mapping generation [131] that drive

the process. They largely correspond to the first two ways described in [132].

Moreover, while some approaches consider manual corrections only at the end of the

mapping process, more thoroughly semi-automatic approaches allow or even require

such input during the process.

In terms of their potential evaluation, iterative approaches of this kind must be consid-

ered according to two additional characteristics: First, whether iterative human input

is mandatory or generally optional. Second, whether input is only used to improve the

mapping as such, or if the systems also exploit it as feedback for their next automated

iteration. Systems that solicit input only optionally and do not use it as feedback can be

evaluated like non-iterative systems on a fully automatic baseline without limitations.

Systems with only optional input that do learn from the feedback (if provided), can still

be evaluated on the same baseline but may not demonstrate their full potential. Where

input is mandatory, systems need to be either steered by an actual human user or at

least require simulated human input produced by an oracle.

Next, the kind of human input that a system can process makes a difference for evaluation

settings. Most semi-automatic systems either provide suggestions that users can confirm

or delete, or they allow users to adjust the mapping manually. An alternative approach

is mapping by example, where users provide expected results. In addition, however, some

systems may require complex or indirect interactions, or simply resort to more unusual

forms of input that cannot easily be foreseen.

All the differences discussed before have an impact on how mapping generation systems

need to be evaluated. Each mapping generation system is usually tied to one specific

approach and does not allow for much freedom. We therefore decided that an end-to-end

evaluation that allows the use of different types of input is best. Since semi-automatic

approaches are becoming more and more relevant, we decided to support them using an

automated oracle that simulates user input where possible.
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5.4 RODI Benchmark Suite

In the following, we present the details of our RODI benchmark: we first give an

overview, then we discuss the data sets (relational schemata and ontologies) that can

be used, as well as the queries. Finally, we present our scoring function to evaluate the

benchmark results.

5.4.1 Overview

Figure 5.2 gives an overview of the scenarios used in our benchmark. The benchmark

ships with data sets from three different application domains: conferences, geodata

and the oil & gas exploration domain. In its basic mode of operation, the benchmark

provides one or more target ontologies for each of those domains (T-Box only) together

with relational source databases for each ontology (schema and data). For some of

the ontologies there are different variants of accompanying relational schemata that

systematically vary the types of targeted mapping challenges.

Conference	ontology	1	

Target	
Ontologies	
(Schema)	

Oil	&	gas	ontology	

Source	
Databases	

(Schema+Data)	

CMT	
Var	X	

CMT	
Naive	 …	 Conf.	

Var	X	
Conf.	
Naive	 …	 Single,	large	

real-world	schema	

Mapping	Rules?	 Mapping	Rules?	 Mapping	Rules?	

…	

Conference	ontology	2	

Mond.	
Var	X	

Mond.	
Rel.	 …	

Mapping	Rules?	

Geodata	ontology	

Figure 5.2: Overview of RODI benchmark scenarios

The benchmark asks systems to create mapping rules from the different source databases

to their corresponding target ontologies. We call each such combination of a database

and an ontology a benchmark scenario. For evaluation, we provide query pairs for each

scenario to test a range of mapping challenges. Query pairs are evaluated against the

instantiated ontology and the provided databases, respectively. Results are compared

for each query pair and aggregated in the light of different mapping challenges using our

scoring function.

While challenges that result from different naming or semantic heterogeneity are mostly

covered by complete scenarios, we target structural challenges on a more fine-granular

level of individual query tests with a dedicated score. Table 5.2 again lists individual
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structural challenges and our coverage by dedicated tests. We cover all identified chal-

lenges. Most challenges (marked with a check in the table) are tested throughout a

majority of scenarios. Missing constraints are modeled in only one dedicated scenario

and are therefore only tested in that case. For dependency conflicts, we do not test with

data, which would violate ontology restrictions, though. Instead, we only introduce the

mismatch at schema level (i.e., misleading axioms), so all query tests still have exactly

one correct solution.

Table 5.2: Coverage of structural challenges in default benchmark scenarios. Chal-
lenges marked with a check are tested throughout the majority of scenarios. ’Single
scenario’ marks challenges that could only be tested in a dedicated scenario. For de-
pendency conflicts, we test only a part of the challenge (misleading axioms), but no

restriction violations.

# Challenge type RDB pattern Guiding OWL axioms Covered

(1) Normalization Weak entity owl:Class X
(2) 1:n attribute owl:DatatypeProperty X
(3) 1:n relation owl:ObjectProperty,

owl:InverseFunctionalProperty
X

(4) n:m relation owl:ObjectProperty X
(5) Indirect n:m relation owl:ObjectProperty X

(6) Denormalization Correlated entities owl:Class X
(7) Multi-value owl:DatatypeProperty,

owl:maxCardinality [>1]
X

(8) Class hierarchies 1:n property match rdfs:subClassOf, owl:unionOf,
owl:disjointWith

X

(9) n:1 class match with type col-
umn

rdfs:subClassOf, owl:unionOf X

(10) n:1 class match without type
column

rdfs:subClassOf, owl:unionOf X

(11) Key conflicts Plain composite key owl:Class, owl:hasKey X

(12)
Composite key, partial match-
ing

owl:Class, owl:hasKey,
rdfs:subClassOf

X

(13) Missing key owl:Class, owl:hasKey Single scenario
(14) Missing reference owl:ObjectProperty,

owl:DatatypeProperty
Single scenario

(15) Dependency
conflicts

1:n attribute

owl:FunctionalProperty,
owl:minCardinality [>1],
owl:maxCardinality [>1],
owl:cardinality [>1]

Only
misleading

axioms

(16) 1:n relation

owl:FunctionalProperty,
owl:minCardinality [>1],
owl:maxCardinality [>1],
owl:cardinality [>1]

Only
misleading

axioms

(17) n:m relation

owl:FunctionalProperty,
owl:InverseFunctionalProperty,
owl:minCardinality [>1],
owl:maxCardinality [>1],
owl:cardinality [>1]

Only
misleading

axioms

Multi-source integration can be tested as a sequence of different scenarios that share

the same target ontology. We include specialized scenarios for such testing with the

conference domain.

In order to be open for other data sets and different domains, our benchmark can be

easily extended to include scenarios with real-world ontologies and databases. In our
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initial version, we already provide one such extension from a real-world application of

the oil and gas domain.

5.4.2 Data Sources and Scenarios

In the following, we present the data sources (i.e., ontologies and relational schemata)

as well as the combinations used as integration scenarios for the benchmark in more

details. RODI ships with scenarios based on data sources from three different application

domains.

5.4.3 Conference Scenarios

As our primary domain for testing, we chose the conference domain: it is well understood,

comprehensible even for non-domain experts but still complex enough for realistic testing

and it has been successfully used as the domain of choice in other benchmarks before

(e.g., by the OAEI [25]).

5.4.3.1 Ontologies

The conference ontologies in this benchmark are provided by the Ontology Alignment

Evaluation Initiative (OAEI) [25]. They were originally developed by the OntoFarm

project [143]. We selected three particular ontologies (CMT, SIGKDD, Conference),

based on a number of criteria: variation in size, the presence of functional cardinalities,

the coverage of the domain, variations in modeling style, and the expressive power of

the ontology language used. Different modeling styles result from the fact that each

ontology was modeled by different people based on various views on the domain, e.g.,

they modeled it according to an existing conference management tool, expert insider

knowledge, or according to a conference website. To cover our mapping challenges

(Section 5.2), we selectively modified the ontologies (e.g., we included labels to add

interesting lexical matching challenges). In SIGKDD, we have fixed a total of seven

inconsistencies that we discovered in this ontology as follows: (1) We selectively added

annotations like labels and comments, as these can help to identify correspondences

lexically; (2) we added a few additional datatype properties where they were scarce, as

they test other mapping challenges than just classes and object properties; and (3), we

fixed a total of seven inconsistencies that we discovered in SIGKDD when adding A-

Box facts (e.g., each place with a zip code automatically became a sponsor, who were

modeled as a subclass of persons).
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5.4.3.2 Relational Schemata

We synthetically derived different relational schemata for each of the ontologies, focusing

on different mapping challenges. We provide benchmark scenarios as combinations of

those derived schemata with either their ontologies of origin, or, for more advanced

testing, paired with any of the other ontologies. First, for each ontology we derived

a relational schema that can be mapped to the ontology using a naive mapping as

described in [135]. The algorithm works by deriving an ER model from an OWL DL

ontology. It then translates this ER model into a relational schema according to text

book rules (e.g., [28]). In this work, we extended the algorithm to cover the full range

of expected relational design patterns. In particular, the previous version did cover

only one out of the above-mentioned three design patterns to translate class hierarchies

into relational tables. Additionally, we extended this algorithm to consider ontology

instance data to derive more proper functionalities (rather than just looking at the T-

Box as the previous algorithms do). Otherwise, the generated naive relational schemata

would have contained an unrealistically high number of n:m-relationship tables. The

naively translated schemata of the algorithm are guaranteed to be in fourth normal

form (4NF), fulfilling normalization requirements of standard design practices. Thus, the

naive schemata already include various normalization artifacts as mapping challenges.

From each naively translated schema, we systematically created different variants by

introducing different aspects on how a real-world schema may differ from a naive trans-

lation and thus to test different mapping challenges:

1. Adjusted Naming: As described in Section 5.2.1, ontology designers typically con-

sider other naming schemes than database architects do, even when implement-

ing the same (verbal) specification. Those differences include longer vs. shorter

names, “speaking” prefixes, human-readable property IRIs vs. technical abbrevi-

ations (e.g., “hasRole” vs. ”RID”), camel case vs. underscore tokenization, pre-

ferred use of singular vs. plural, and others. For each naively translated schema

we automatically generate a variant with identifier names changed accordingly.

2. Restructured Hierarchies: The most critical structural challenge in terms of diffi-

culty comes with different relational design patterns to model class hierarchies more

or less implicitly. As we have discussed in Section 5.2.2, these changes introduce

significant structural dissimilarities between source and target. We automatically

derive variants of all naively translated schemata, where different hierarchy design

patterns are presented. The choice of design pattern in each case is algorithmically

determined on a “best fit” approach considering the number of specific and shared

(inherited) attributes for each of the classes.



Chapter V. Benchmark and Evaluation 106

3. Combined Case: In the real world, both of the previous cases (i.e., adjusted naming

and hierarchies) would usually apply at the same time. To find out how tools cope

with such a situation, we also built scenarios where both are combined.

4. Removing Foreign Keys: Although it is considered as bad style, databases without

foreign keys are not uncommon in real-world applications. This can be a result

from either lazy design or come with legacy applications (e.g., one popular open

source DBMS introduced plugin-free support for foreign keys less than five years

ago). The mapping challenge is that mapping tools must find the join paths to

connect tables of different entities. Additionally, they sometimes even need to

guess a join path for reading attributes of the same entity, if its data is split over

several tables as a consequence of normalization. Therefore, we have created one

dedicated scenario to test this challenge with the Conference ontology and based

it on the schema variant with restructured hierarchies.

5. Partial Denormalization: In many cases, schemata get partially denormalized to

optimize for a certain read-mostly workload. Denormalization essentially means

that correlated (yet separated) information is jointly stored in the same table and

partially redundant. We provide one such scenario for the CMT ontology. As

denormalization requires conscious design choices, this schema is the only one that

we had to hand-craft. It is based on the variant with restructured hierarchies.

In some cases, data transformations may also be required for a mapping to fully work as

expected. A significant number of fundamentally different transformation types needs

to be considered, each adding complexity in a different way. These comprise translations

between different representations of date and time (e.g., a dedicated date type versus

Epoch time stamps), simple numeric unit transformations (e.g., MB vs. GB), unit trans-

formations requiring more complex formulae (e.g., degrees Celsius vs. Fahrenheit), string

based data cleansing (e.g., removing trailing white space), string compositions (e.g., con-

catenating a first and last name), more complex string modifications (e.g., breaking up

a string based on a learned regular expression), table based name translations (e.g.,

replacing names using a thesaurus), noise removal (e.g., ignoring erroneous tuples), etc.

While our extension mechanism (see Section 5.4.6) is suited to even add dedicated sce-

narios for testing such conversions, we excluded them from our default benchmark for

mere practical reasons: (1) To the best of our knowledge, they play no role in any

RDB2 RDF mapping generation system to date, so there is little practical relevance as

of now. And (2), not all of the different transformation types typically co-occur in the

same application domain, and it would be hard to incorporate them into our conference

domain scenario in appropriate variety without making the scenario less realistic.
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Table 5.3: Basic scenario variants

CMTConference SIGKDD

Naive (X) (X) (X)
Adjusted Naming X X X

Restructured Hierarchies X X X
Combined Case (X) (X) X

Missing FKs - X -
Denormalized X - -

5.4.3.3 Scenario Variants

For each of our three main ontologies, CMT, Conference, and SIGKDD, the bench-

mark includes five scenarios, each with a different variant of the database schema (dis-

cussed before). Table 5.3 lists the different versions.

As discussed before, Naive closely mimics the structure of the original ontology, but the

schemata are normalized and thus the scenario contains the challenge of normalization

artifacts. Adjusted Naming adds the naming conflicts as discussed before. Restructured

hierarchies tests the critical structural challenge of different relational patterns to model

class hierarchies, which, among others, subsumes the challenge to correctly build n:1

mappings between classes and tables. In the Combined Case, renamed, restructured

hierarchies are employed and their effects are tested in combination. This is a more

advanced test case. A special challenge arises from databases with no (or few) foreign

key constraints (Missing FKs). In such a scenario, mapping tools must guess the join

paths to connect tables that correspond to different entity types. The technical mapping

challenge arising from Denormalized schemata consists in identifying the correct partial

key for each of those correlated entities, and in identifying, which attributes and relations

belong to which of the types.

To keep the number of scenarios small for the default setup, we differentiate between

default scenarios and non-default scenarios. We excluded scenarios with the most trivial

schema versions. In addition, we did limit the number of combinations for the most

complex schema versions by including only one of each type as a default scenario. While

the default scenarios are mandatory to cover all mapping challenges, the non-default

scenarios are optional (i.e., users could decide to run them in order to gain additional

insights). Non-default scenarios are put in parentheses in Table 5.3. However, they are

not supposed to be executed in a default run of the benchmark.

Similarly, we include scenarios that require mappings of schemata to one of the other

ontologies (e.g., mapping a CMT database schema variant to the SIGKDD ontology).
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They represent more advanced data integration scenarios and are part of default scenar-

ios.

5.4.3.4 Data

We provide data to fill both the databases and ontologies. Conference ontologies are

originally provided as T-Boxes, only, i.e., no A-Box. We first generate data as A-

Box facts for the different ontologies, and then translate them into the corresponding

relational data. Transformation of data follows the same process as translating the T-

Box. For evaluation, data is only needed in the relational databases, so, generating

ontology A-Boxes would not even be necessary. However, this procedure simplifies data

generation, since all databases can be automatically derived from the given ontologies

as described before.

Our conference data generator deterministically produces a scalable amount of synthetic

facts around key concepts in the ontologies, such as conferences, papers, authors, review-

ers, and others. In total, we generate data for 23 classes, 66 object properties (including

inverse properties) and 11 datatype properties (some of which apply to several classes).

However, not all of those concepts and properties are supported by every ontology. For

each ontology, we only generate facts for the subset of classes and properties that have

an equivalent in the relational schema in question.

5.4.3.5 Queries

We test each integration scenario with a series of query pairs, consisting of semanti-

cally equivalent queries against the instantiated ontology and the provided databases,

respectively.

Query pairs are manually curated and designed to test different mapping challenges. To

this end, all query pairs are tagged with categories, relating them to different mapping

challenges. All scenarios draw on the same pool of 56 query pairs, accordingly translated

for each ontology and schema. However, the same query may face different challenges

in different scenarios, e.g., a simple 1:1 mapping between a class and table in a naive

scenario can turn into a complicated n:1 mapping problem in a scenario with restructured

hierarchies. Also, not all query pairs are applicable on all ontologies (and thus, on their

derived schemata).

Query pairs are grouped into three basic categories to test the correct mapping of class

instances, instantiations of datatype properties and object properties, respectively. Addi-

tional categories relate queries to n:1 and n:m mapping problems or prolonged property
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join paths resulting from normalization artifacts. A specific category exists for the de-

normalization challenge.

5.4.4 Geodata Domain – Mondial Scenarios

As a second application domain, RODI ships scenarios in the domain of geographical

data.

The Mondial database is a manually curated database containing information about

countries, cities, organizations, as well as about geographic features such as waters (with

subclasses lakes, rivers, and seas), mountains, and islands. It has been designed as a

medium-sized case study for several scientific aspects and data models [144].

Based on Mondial, we have developed a number of benchmark scenarios. First, there

is a scenario based on the original relational database, which features a wide range of

relational modeling patterns, and the Mondial OWL ontology. In addition, we have

added a series of further scenarios with synthetically modified variants of the database

to focus on the effect of specific different relational modeling patterns. This is similar to

the different variants produced in the conference domain. To keep the number of tested

scenarios at bay, we do not consider those additional synthetic variants as part of the

default benchmark. Instead, we recommend to only test the main Mondial scenario with

others being available as optional tests to dig deeper into specific behavioral patterns in

this domain.

In all scenarios, we use a query workload that mainly approximates real-world explorative

queries on the data, although limited to queries of low or medium complexity. Still,

those queries typically co-relate more than one concept or require several attributes

to be correctly mapped at the same time in order to return any correct results. The

degree of difficulty in Mondial scenarios is therefore generally higher than the one of our

scenarios in the conference domain.

5.4.5 Oil & Gas Domain – NPD FactPages Scenarios

Finally, we include an example of an actual real-world database and ontology in the oil

and gas domain: The Norwegian Petroleum Directorate (NPD) FactPages [14]. Our test

set contains a small relational database (approximately 40 MB), but with a relatively

complex structure (70 tables, around 1000 total columns and approximately 100 foreign

keys), and an ontology covering the domain of the database. The database is constructed

from a publicly available dataset containing reference data about past and ongoing

activities in the Norwegian petroleum industry, such as oil and gas production and
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exploration. The corresponding ontology contains around 300 classes and more than

300 different properties.

With this pair of a database and an ontology, we have constructed two scenarios that

feature a different series of tests on the data: first, there are queries that are built from

information needs collected from real users of the FactPages and cover large parts of the

dataset. Those queries are highly complex compared to the ones in other scenarios and

require a significant number of schema elements to be correctly mapped at the same

time to bear any results. We have collected 17 such queries in scenario npd user tests.

And second, we have generated a large number of small, atomic query tests for baseline

testing. These are similar to the ones used with the conference domain, i.e., they test

for individual classes or properties to be correctly mapped. A total of 439 such queries

have been compiled in scenario npd atomic tests to cover all of the non-empty fields in

our sample database.

A specific feature resulting from the structure of the FactPages database and ontology

is a high number of 1:n matches, i.e., concepts or properties in the ontology that require

a UNION over several relations to return complete results. 1:n matches as a structural

feature can therefore best be tested in the npd atomic tests scenario.

5.4.6 Extension Scenarios

Our benchmark suite is designed to be extensible, i.e., additional scenarios can be easily

added. The primary aim of supporting such extensions is to allow domain-specific,

real-world mapping challenges to be tested alongside our default scenarios. Extension

scenarios can be added by users of our benchmark without any programming efforts.

Also, creating and adding scenarios are described in the user documentation of the

RODI benchmark suite.

5.4.7 Evaluation Criteria – Scoring Function

It is our aim to measure the practical usefulness of mappings. We are therefore interested

in the utility of query results, rather than comparing mappings directly to a reference

mapping set or than measuring precision and recall on all elements of the schemata.

This is important because a number of different mappings might effectively produce

the same data w.r.t. a specific input database. Also, the mere number of facts is no

indicator of their semantic importance for answering queries (e.g., the overall number of

conferences is much smaller than the number of paper submissions, yet they are at least

as important in a query on information about the same papers). In addition, in many
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cases only a subset of the information is relevant in practice, and we define our queries

on a meaningful subset of information needs.

We therefore observe a score that reflects utility of the mappings with relation to our

query tests as our main measure. Intuitively, this score reports the percentage of suc-

cessful queries for each scenario.

However, in a number of cases, queries may return correct but incomplete results, or

could return a mix of correct and incorrect results. In these cases, we consider per-

query accuracy by means of a local per-query F-measure. Technically, our reported

overall score for each scenario is the average of F-measures for each query test, rather

than a simple percentile of successful queries. To calculate these per-query F-measures,

we also need to consider query results that contain IRIs.

Apparently, different mapping generators will generate different IRIs for the same en-

tities, e.g., by choosing different prefixes. F-measures for query results containing IRIs

are therefore w.r.t. the degree to which they satisfy structural equivalence with a refer-

ence result. For practical reasons, we use query results on the original, underlying SQL

databases as technical reference during evaluation. Structural equivalence effectively

means that if same-as links were established appropriately, then both results would be

semantically identical.

Formally, we define precision and recall locally for each individual test (i.e., for each

query pair) and use a simple scoring function to calculate averages for different subsets

of tests, i.e., for tests relating to a specific mapping challenge. Note, that it is still

possible with this approach to evaluate all produced data by including a query like

CONSTRUCT WHERE {?s ?p ?o}.

Unfortunately, precision and recall cannot be measured by naively comparing results

of query pairs tuple by tuple, as different mappings typically generate different IRIs to

denote the same entities. Instead, we define an equivalence measure between mappings

that is agnostic of entity IRIs called mapping equivalence.

In the following, we define mapping equivalence based on a more general equivalence of

query results (i.e., tuple sets):

Definition 5.1 (Structural Tuple Set Equivalence). Let V = IRI ∪ Lit ∪ Blank be

the set of all IRIs, literals and blank nodes, T = V × ... × V the set of all n-tuples

of V . Then two tuple sets t1, t2 ∈ P(T ) are structurally equivalent if an isomorphism

φ : (IRI ∩ t1)→ (IRI ∩ t2).
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For instance, {(urn:p-1, ’John Doe’)} and {(http://my#john, ’John Doe’)} are struc-

turally equivalent. On this basis, we can easily define the equivalence of query results

w.r.t. a mapping target ontology:

Definition 5.2 (Tuple Set Equivalence w.r.t. Ontology (∼O)). Let O be a target on-

tology of a mapping, I ⊂ IRI the set of IRIs used in O and t1, t2 ∈ P(T ) result sets of

queries q1 and q2 evaluated on a superset of O (i.e., over O plus A-Box facts added by

a mapping).

Then, t1 ∼O t2 (are structurally equivalent w.r.t. O) iff t1 and t2 are structurally equiv-

alent and ∀i ∈ I : φ(i) = i

For instance, {(urn:p-1, ’John Doe’)} and {(http://my#john, ’John Doe’)} are struc-

turally equivalent, iff http://my#john is not already defined in the target ontology.

Finally, we can define mapping equivalence:

Definition 5.3 (Mapping Equivalence w.r.t. O). Let m1,m2 ∈ M be mappings from

relational databases R1, R2 to a target ontology O, and Q be the set of queries applicable

on O.

Then, m1,m2 are equivalent w.r.t. target ontology O iff: ∀q ∈ Q : q(O ∪m1(R1)) ∼O

q(O ∪m2(R2)).

In other words, two mappings are equivalent w.r.t. a target ontology if every possible

query will produce structurally equivalent result sets w.r.t. that ontology when it runs

on data generated by one of the mappings versus the other. In practice, we evaluate

against a specified subset of all possible queries covering interesting parts of the target

ontology reasonably well.

We observe precision and recall locally on each query test, i.e., based on how many of

the result tuples of each query are structurally equivalent to a reference query result set.

Formally:

Definition 5.4 (Precision and Recall under Structural Equivalence). Let tr ∈ P(T )

be a reference tuple set, tt ∈ P(T ) a test tuple set and trsub, ttsub ∈ P(T ) be maximal

subsets of tr and tt, s.t., trsub ∼O ttsub.

Then the precision of the test set tt is P = |ttsub|
|tt| and recall is R = |trsub|

|tr| .

Table 5.4 shows an example with a query test that asks for the names of all authors.

Result set 1 is structurally equivalent to the reference result set, i.e., it has found all

authors and did not return anything else, so both precision and recall are 1.0. Result set
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Table 5.4: Example results from a query pair asking for author names
(e.g., SQL: SELECT name FROM persons WHERE person type=2;
SPARQL: SELECT ?name WHERE ?p a :Author; foaf:name ?name)

(a) Reference

John

Jane

(b) Result 1

Jane

John

(c) Result 2

John

(d) Result 3

Jane

John

James

2 is equivalent with only a subset of the reference result (e.g., it did not include those

authors who are also reviewers). Here, precision is still 1.0, but recall is only 0.5. In

case of result set 3, all expected authors are included, but also another person, James.

Here, precision is 0.66 but recall is 1.0.

To aggregate results of individual query pairs, a scoring function calculates the averages

of per query numbers for each scenario and for each challenge category. For instance,

we calculate averages of all queries testing 1:n mappings. Thus, for each scenario there

is a number of scores that rate performance on different technical challenges. Also, the

benchmark can log detailed per-query output for debugging purposes.

5.4.8 System Requirements

With RODI, we can test mapping generators that work in either one or two stages:

that is, they either directly map data from the relational source database to the target

ontology in one stage (e.g., i3MAGE or also COMA++ [24]). Or, they bootstrap their

own ontology, which they use as an intermediate mapping target. In this case, to get

to the full end-to-end mappings that we can test, the intermediate ontology and the

actual target ontology should be integrated via ontology alignment in a second stage.

Two-stage systems may either include a dedicated ontology alignment stage (e.g., [19])

or they deliver the first stage only ([21, 79]). In the latter case, RODI can step in to fill

the missing second stage with a standard ontology alignment setup.

Our tests check the accuracy of SPARQL query results. Queries ask for individuals

of a certain type (or their aggregates), properties correlating them, associated values

and combinations thereof, sometimes also using additional SPARQL language features

such as filters to narrow down the result set. This means that mapped data will be

deemed correct if it contains correct RDF triples for all tested cases. For entities, this

means that systems need to construct one correctly typed IRI for each entity of a certain

type. For object properties, they need to construct triples to correctly relate those typed

IRIs, and for datatype properties, they need to assign the correct literal values to each

of the entity IRIs using the right predicates. Systems do therefore not strictly need
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to understand or to produce any OWL axioms in the target ontology. However, our

target ontologies are in OWL 2, using different degrees of expressiveness. Axioms in

the target ontology can be important as guidance to identify suitable correspondences

for one-stage systems. Similarly, if two-stage systems construct expressive axioms in

their intermediate ontology, this may guide the second stage of ontology alignment. For

instance, if a predicate is known to be an object property in the target ontology, results

will suffer if a mapping generation tool assigns literal values using this property. Also, if

a property is known to be functional it might be a better match for a n:1 relation than

a non-functional property would be.

5.5 Framework Implementation

In this section, we discuss some implementation details in order to guide researchers and

practitioners to include their system in our benchmarking suite.

5.5.1 Architecture of the Benchmarking Suite

Figure 5.3 depicts the overall architecture of our benchmarking suite. The framework

requires upfront initialization per scenario. Artifacts generated or provided during ini-

tialization are depicted blue in the figure. After initialization, a mapping tool can access

the database (directly or via the framework’s API) and target ontology (via the Sesame

OpenRDF API [137] or using SPARQL, or serialized as an RDF file). Finally, it submits

generated R2RML2 mappings in a special folder on the file system, so evaluation can be

triggered. As an alternative, mapping tools could also execute mappings themselves and

submit final mapped data instead of R2RML. This would be the preferred procedure

for tools that do not support R2RML but other mapping languages. More generally,

mapping tools that cannot comply with the assisted benchmark workflow can always

trigger individual aspects of initialization of evaluation separately.

5.5.2 Details on the Evaluation Phase

Unless a mapping system under evaluation decides to skip individual steps, i.e., to

implement them independently, in the evaluation phase, the benchmark suite will:

1. Read submitted R2RML mappings and execute them on the database.

2http://www.w3.org/TR/r2rml/

http://www.w3.org/TR/r2rml/
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Figure 5.3: RODI framework architecture

2. Materialize the resulting A-Box facts in a Sesame RDF repository together with

the target ontology (T-Box).

3. Optionally apply reasoning through an external OWL API [134] compatible rea-

soner to infer additional facts that may be requested for evaluation.

4. Evaluate all query pairs of the scenario on the repository and relational database.

5. Produce a detailed evaluation report.

We evaluate query results as described in Section 5.4.7 by attempting to construct an

isomorphism φ to transform query result sets into reference results. Technically, we use

the results of the SQL queries from query pairs to calculate the reference result set. For

each SQL query in a query pair, we flag attributes that together serve as keys, so keys

can be matched with IRIs rather than with literal values. Obviously, keys and IRIs need

to match only on the count of being the same unique value wherever they appear, while

literal values need to be exact matches.
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For constructing φ, we first index all individual IRIs (i.e., IRIs that identify instances

of some class) in the query result. Next, we build a corresponding index for keys in the

reference set. For both sets we determine binding dependencies across tuples (i.e., re-

occurrences of the same IRI or key in different tuples). As a next step, we narrow down

match candidates to tuples where all corresponding literal values are exact matches. Fi-

nally, we match complete result tuples with reference tuples, i.e., we also check for viable

correspondences between keys and IRIs. As discussed, the criterion for a viable match

between a key and an IRI is that for each occurrence of this particular key and of this

particular IRI in any of the tuples, both need to be matched with the same partner. This

last step corresponds to identifying a maximal common subgraph (MCS) between the

dependency graphs of tuples on both sides, i.e., it corresponds to the MCS-isomorphism

problem. For efficiency reasons, we approximate the MCS if dependency graphs contain

transitive dependencies, breaking them down to fully connected subgraphs. However, it

is usually possible to formulate query results to not contain any such transitive depen-

dencies by avoiding inter-dependent IRIs in SPARQL SELECT results in favor of a set

of significant literals describing them. All queries shipped with this benchmark are free

of transitive dependencies, hence the algorithm is accurate for all delivered scenarios.

Finally, we count tuples that could not be matched in the result and reference set, respec-

tively. Precision is then calculated as |res|−|unmatched(res)|
|res| and recall as |ref |−|unmatched(ref)|

|ref | .

Aggregated numbers are calculated per query pair category as the averages of precision

and recall of all queries in each category.

5.6 Benchmark Results

We have performed an in-depth analysis comparing i3MAGE with a range of other

systems using RODI.

5.6.1 Evaluated Systems

We perform experiments with three different configurations of IncMap running inside

i3MAGE:

1. IncMap Basic is the latest version of IncMap without specialized reasoning pattern

support. This is to demonstrate how IncMap can cope as a general-purpose inter-

model matching tool, only with graph structures optimizations for the specific

models.
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2. IncMap Complete is the full latest version of IncMap, including special rule-based

reasoning and pattern support during graph construction.

3. IncMap QW uses the same system configuration as IncMap Complete, but allows

the system to peek into the SPARQL side of the query workload (QW). As one

of the interaction paradigms of i3MAGE is to be query-driven, the system uses

queries to steer matching into areas of interest, and to reinforce connections of

particular relevance to the queries.

As competing systems we evaluate the current contender in the automatic mapping gen-

eration segment, BootOX [19]. Also, we evaluate against more general-purpose mapping

generators that we combine with ontology alignment to measure in the benchmark (-

ontop- [79] and MIRROR [21]). In addition, we test a much earlier, yet state-of-the-art

system in inter-model matching, COMA++ [24].

1. BootOX is based on the approach called direct mapping by the W3C [109]: every

table in the database (except for those representing n:m relationships) is mapped to

one class in the ontology; every data attribute is mapped to one data property; and

every foreign key to one object property. Explicit and implicit database constraints

from the schema are also used to enrich the bootstrapped ontology with axioms

about the classes and properties from these direct mappings. Afterwards, BootOX

performs an alignment with the target ontology using the LogMap system [58, 145,

146].

BootOX is a current contender in systems designed specifically for automatic

RDB2 RDF mapping generation with end-to-end capabilities and thus a direct

competitor of i3MAGE.

2. MIRROR is a tool for generating an ontology and R2RML direct mappings au-

tomatically from a relational schema. It has been implemented as a module of

the RDB2RDF engine morph-RDB [147]. MIRROR is specialized in extracting

sophisticated design patterns from databases. Its output is oblivious of the re-

quired target ontology, though, so we perform post-processing with the ontology

alignment tool LogMap [58].

Like BootOX, MIRROR is a current contender in RDB2 RDF mapping generation.

As discussed, it does not support end-to-end mapping generation on its own but

does require post-processing using ontology alignment. This is because it has been

designed and optimized for slightly different use cases.

3. The -ontop- Protege Plugin is a mapping generator developed for ontop [79]. -

ontop- is a full-fledged query rewriting system with limited ontology and mapping

bootstrapping capabilities.
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-ontop- can be seen as a rather naive baseline case, which is very close to the W3C’s

direct mapping [109]. Like MIRROR, it has been built for a slightly different use

case and requires additional ontology alignment to produce end-to-end mappings.

4. COMA++ has been a contender in the field of schema matching for several years

already; it is still widely considered state of the art. In contrast to other systems

from the same era, COMA++ is built explicitly also for inter-model matching. To

evaluate the system, we had to perform a translation of its output correspondences

into modern R2RML.

COMA++ is an important baseline for i3MAGE as they both apply a matching

approach that is mostly based on structural graph matching, and COMA++ also

supports RDB2 RDF matching. Despite the fact that COMA++ was never specif-

ically designed for RDB2 RDF matching and does therefore not implement any

tuning for this specific case, it features a generic multi-model matching approach

and, to the best of our knowledge, is the only established system based on graph

matching to support RDB2 RDF.

5.6.2 Experimental Setup

5.6.2.1 Automatic Experiments

For all systems, we conduct default experiments from the RODI benchmark suite as

described in Section 5.4. This includes a selection of nine prototypical scenarios from

the conference domain, one from the geodata domain and two from the oil & gas domain,

as well as five different cross-matching scenarios. For all of these main experiments, we

observe and report overall RODI scores as well as specific selected scores in individual

categories.

These experiments are suited to demonstrate the overall capabilities of i3MAGE in

different situations and vis-a-vis other systems on an easily comparable basis of fully au-

tomatic matching and mapping generation. They also demonstrate differences between

the distinct versions and setups of IncMap and highlight the impact of the different core

features used in these versions.

5.6.2.2 Incremental Experiments

In addition, we perform incremental, semi-automatic experiments on a subset of sce-

narios specifically for i3MAGE. A direct comparison with competing systems is not
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possible, because none of the other systems tested supports a semi-automatic incremen-

tal approach that is comparable with i3MAGE. Also, other published systems that do

support semi-automatic mapping generation, most notably Karma [18], would not be

directly comparable. In Karma’s case this is because it solicits completely different types

of human input but also requires a different integration workflow, with (semi-)automatic

support kicking in only in cases of multi-source data integration, while i3MAGE does of-

fer automatic mapping support for single-source mappings. We therefore did not include

such systems in the evaluation.

With IncMap, we could simulate human feedback by responding to suggestions by taking

a response from the benchmark that indicates changes in mapping quality. We assume an

interface that presents users with a short list of strictly alternative mapping suggestions

and asks them to either point out the correct one, or mark them as inadequate. Mapping

suggestions are kept minimal, e.g., to map individuals of one particular class in the

ontology, values for one datatype property in the context of one particular class. To

simulate a human user, we use the benchmark suite as an oracle, submitting the different

partial mapping suggestions separately and observing the score. We then report overall

benchmark scores on mapping quality after k succinct interactions, i.e., a “score @k

interactions”. This corresponds to the evaluation approach suggested in [148]. We

manually fixed a randomly chosen order of query tasks (i.e., partial mappings) to test

in i3MAGE.

This line of experiments is designed to demonstrate the feasibility and utility of i3MAGE’s

interactive and incremental mode of operation.

5.6.3 Automatic Experiments: Results

Tables 5.5–5.10 show overall scores for all systems on all default scenarios from the RODI

benchmark.

5.6.3.1 Overall Conference Domain Results

For most scenarios, i3MAGE in at least one of the different IncMap setups outperforms

all other systems with varying margins. Between the different versions of IncMap, a

positive impact of core features activated in the more advanced versions could be gen-

erally observed. In almost all cases, i3MAGE performs better with IncMap Complete

(i.e., enabling custom reasoning rules and advanced patterns) than it does with IncMap

Basic. Also, leveraging the query workload (IncMap QW) has an additional positive

effect, although its impact is moderate in most cases. It is important to note that no
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Figure 5.4: Overview of result scores in default conference scenarios by different
systems. Different i3MAGE configurations in shades of green.

Table 5.5: Overall scores in conference adjusted naming scenarios (scores based on
average of per-test F-measure). Best numbers per scenario in bold print.

System CMT Conf. SIGKDD

IncMap Basic 0.45 0.56 0.79
IncMap Complete 0.66 0.64 0.90

IncMap QW 0.69 0.64 0.93
BootOX 0.76 0.51 0.86
-ontop- 0.28 0.26 0.38

MIRROR 0.28 0.27 0.30
COMA++ 0.48 0.36 0.66

trade-offs need to be considered between the different versions of IncMap: without ex-

ception, more advanced versions with additional core features score at least as well as

any of the less advanced versions, for all RODI benchmark scenarios.

As another observation, however, we notice that i3MAGE, even while outperforming

other systems, significantly struggles with most of the more complex scenarios. This

matches another general impression on all tested systems, namely, that systems manage

to solve some parts of the mapping scenarios, but with declining success as scenario

complexity increases.

Figure 5.4 gives an overview of results in main conference domain scenarios, with com-

plexity of scenario types increasing from left (adjusted naming) to right (special chal-

lenges).
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Table 5.6: Overall scores in conference restructured scenarios (scores based on average
of per-test F-measure). Best numbers per scenario in bold print.

System CMT Conf. SIGKDD

IncMap Basic 0.45 0.46 0.45
IncMap Complete 0.64 0.56 0.69

IncMap QW 0.67 0.56 0.72
BootOX 0.41 0.41 0.52
-ontop- 0.14 0.13 0.21

MIRROR 0.17 0.23 0.11
COMA++ 0.38 0.31 0.41

Table 5.7: Overall scores in conference special case scenarios (scores based on average
of per-test F-measure). Best numbers per scenario in bold print.

System
CMT

Denormalized

Conf.
Missing FKs

SIGKDD
Combined

IncMap Basic 0.52 0.41 0.45
IncMap Complete 0.71 0.41 0.55

IncMap QW 0.71 0.51 0.59
BootOX 0.44 0.33 0.48
-ontop- 0.20 - 0.21

MIRROR 0.22 0.17 0.11
COMA++ - 0.21 0.28

This overall picture also shows in individual numbers. For instance, relational schemata

in the conference adjusted naming scenarios follow modeling patterns from their cor-

responding ontologies very closely (Table 5.5). Consequently, all systems without ex-

ception generally perform best in this part of the experiments. Quality drops for other

types of scenarios, i.e., whenever we introduce additional challenges that are specific

to the RDB2 RDF modeling gap. The drop in accuracy between adjusted naming and

restructured scenarios (Table 5.6) is to the most part due to the n:1 mapping challenge.

This challenge is introduced by one of the relational patterns that represent class hier-

archies, namely, the one which groups data for several subclasses in a single table. In

even more advanced conference cases (Table 5.7), systems tend to lose further due to

the additional challenges, although to different degrees.

Table 5.8 showcases results from the semantically most heterogeneous scenarios in the

conference domain. All of them are built on the “combined case” scenarios, i.e., they

contain a mix of all of the standard RDB2 RDF mapping challenges except for denormal-

ization and lazy modeling of constraints. In addition, they increase the level of semantic

heterogeneity by asking for mappings between a schema derived from one ontology to a

completely different and independent ontology in the same domain.
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Table 5.8: Overall scores in cross-matching scenarios (scores based on average of
per-test F-measure). Best numbers per scenario in bold print.

System
Conf.

to
CMT

SIGKDD
to

CMT

CMT
to

Conf.

SIGKDD
to

Conf.

CMT
to

SIGKDD

Conf.
to

SIGKDD

IncMap Basic 0.35 0.33 0.34 0.30 0.51 0.44
IncMap Complete 0.40 0.52 0.69 0.42 0.64 0.65

IncMap QW 0.45 0.57 0.69 0.42 0.69 0.65
BootOX 0.20 0.33 0.20 0.13 0.46 0.22
-ontop- 0.10 0.19 0.05 0.09 0.19 0.13

MIRROR 0.00 0.00 0.00 0.00 0.00 0.00
COMA++ 0.00 0.14 0.05 0.04 0.24 0.09

Scores achieved by all systems are generally lower than in the basic conference cases

discussed above. Reasonable scores can still be achieved by some tested systems. The

most notable and surprising observation is that i3MAGE outperforms all other systems

in all of its configurations. That is, even i3MAGE running IncMap Basic achieves better

scores than any non-i3MAGE competitor in any of the scenarios that focus on semantic

heterogeneity.

Why this is the case remains partially unclear to us, even after inspecting individual

per-query results for several systems. In fact, the scores achieved by i3MAGE setups are

broadly in line with expectations, i.e., they are generally somewhat lower than in the

comparable basic scenarios tested above, but not massively. The same largely holds for

-ontop-. For BootOX, the relatively low scores can be partially explained by the fact that

those scenarios combine all challenges from both “adjusted naming” and “restructured”

scenarios. The weakness that BootOX exhibits in “restructured” scenarios also takes its

toll on the overall scores in cross-matching scenarios. More surprisingly, COMA++ also

loses out more than other contenders. COMA++ works in a similar manner to IncMap

Basic in many ways, i.e., it matches directly between the relational and ontology models

and uses model-independent graph matching to achieve this goal. Although i3MAGE

optimizes its matching graph for RDB2 RDF, where COMA++ uses general-purpose

graphs, the most relevant optimizations are only introduced in IncMap Complete, and

we had therefore expected to see a relatively similar behavior between IncMap Basic and

COMA++. We inspected the match output produced by COMA++ in search for an

explanation and could rule out an issue introduced by our own translation of matches

into R2RML mappings. It was not possible for us to debug and understand the matching

process inside COMA++. Possibly, some other settings of COMA++ could have lead to

a more consistent behavior, but we were using a configuration that has been confirmed

by the authors as suitable under the given circumstances. Also, a few other variations
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Table 5.9: Overall scores in geodata scenario (scores based on average of per-test
F-measure). Best numbers per scenario in bold print.

System Geodata

IncMap Basic 0.08
IncMap Complete 0.08

IncMap QW 0.28
BootOX 0.13
-ontop- -

MIRROR -
COMA++ -

Table 5.10: Overall scores in oil & gas scenarios (scores based on average of per-test
F-measure). Best numbers per scenario in bold print.

System Oil & Gas User Oil & Gas Atomic

IncMap Basic 0.00 0.12
IncMap Complete 0.00 0.17

IncMap QW 0.06 0.17
BootOX 0.00 0.14
-ontop- 0.00 0.10

MIRROR 0.00 0.00
COMA++ 0.00 0.02

that we tried did not give better overall results. For MIRROR we also cannot offer

any plausible explanation for the sharp drop compared to the basic conference scenarios

above (no tasks solved at all). This drop is unexpected in part because MIRROR

essentially applies the same ontology alignment technology as BootOX for matching,

but performs even worse on these tasks. It could be an indicator that out-of-the-box

ontology alignment techniques could not take the same leverage that they do when

aligning original ontologies. We suspect that some different setup of ontology alignment

exists, which would be more favorable for using the intermediate ontologies produced by

MIRROR.

5.6.3.2 Overall Results for Geodata and Oil & Gas

While all of the conference scenarios test a wide range of specific RDB2 RDF mapping

challenges, they do so in a highly controlled fashion. Schemata are of medium size and

complexity, and the query workload used is largely simplified. For instance, queries in

the conference domain scenarios would separately check for mappings of authors, person

names, and papers. They would not, however, pose any queries like asking for the names

of authors who did participate in at least five different papers. The huge difference here

is that, if two out of three of these elements were mapped correctly, the simple atomic
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queries would report an average score of 0.66, while the single, more application-like

query that correlates the same elements would not retrieve anything, thus resulting in

a score of 0.00. This kind of real-world queries that mimic an actual application query

workload is the focus of the remaining RODI default scenarios, which are set in the

geodata and oil & gas exploration domains, respectively. Consequently, scores are lower

again in those scenarios.

In the geodata scenario (Table 5.9), only a minority of query tests could be solved.

Detailed debugging did show the reason for this to be in the nature of queries, most

of which go beyond returning simple results of just a single mapped element. Another

related reason is the use of some generic datatype properties such as names, with either

fairly generic domains or complex unions as their domain. The kind of n:1 mapping

required for them can easily be mismatched, yet those properties are extensively used in

many of the queries. This is also the reason, why in this scenario i3MAGE with IncMap

QW performs significantly better than with any other version of IncMap, but also clearly

outperforms all other tested systems. Among the two advantages that IncMap gains

by accessing the query workload, limiting the target ontology to a relevant core and

disambiguating relevant domains and ranges, the second proved to be more important

in this scenario, as we found out by inspecting individual per-query results and internal

match processing. Note, that -ontop-, MIRROR and COMA++ failed to load or process

the target ontology and therefore did not produce any results.

In the oil & gas case (Table 5.10), the situation becomes even more difficult than for

geodata. Here, the schema and ontology are again a bit more complex than in the

geodata scenario, and so is the explorative query workload (“user queries”). None of

the systems was able to answer any of these queries correctly after a round of automatic

mapping, except for IncMap QW, which managed to solve one out of 17 query tests.

After inspecting individual per-query results and internal match processing we suspect

that IncMap QW could have the potential for solving an even greater number of tests

in similar situations, but a degree of effective randomness involved in choosing between

similar matches for mapping generation did not play out in its favor on several occasions

for this scenario. In contrast to the geodata scenario, the positive effect of knowing the

query workload in this case was chiefly a result of limiting the (rather large) target

ontology to a relevant core.

To retrieve more meaningful results on oil & gas data, we added a second scenario on

the same data, but with a synthetic query workload of atomic queries (“atomic”), which

covers most of the schema and ontology. On this scenario, results could be computed.

Overall scores remain however low. This is mostly due to the size and complexity

of the schema and ontology with a large search space, hinting at the general need to
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improve matching and mapping generation especially for large and complex schemata.

In addition, the scenario requires a high number of 1:n matches, testing this challenge

much more thoroughly than any other scenario in the benchmark.

5.6.3.3 Drill-down on Selected Challenges

Table 5.11: Score break-down for queries on different match types with adjusted
naming conference scenarios. ’C’ stands for queries on classes, ’D’ for data properties,

’O’ for object properties.

System
CMT Conference SIGKDD

C D O C D O C D O

IncMap Basic 0.58 0.46 0.17 0.81 0.53 0.13 1.00 0.70 0.25
IncMap Complete 0.75 0.73 0.33 0.81 0.67 0.25 1.00 0.80 0.75

IncMap QW 0.75 0.82 0.33 0.81 0.67 0.25 1.00 0.90 0.75
BootOX 0.92 0.73 0.50 0.81 0.27 0.38 1.00 0.90 0.25
-ontop- 0.67 0.00 0.00 0.63 0.00 0.00 0.73 0.00 0.00

MIRROR 0.56 0.00 0.00 0.53 0.00 0.00 0.46 0.00 0.00
COMA++ 0.75 0.46 0.00 0.50 0.40 0.00 0.80 0.70 0.00

All systems perform better for identifying class correspondences than they do for cor-

rectly identifying properties, as Table 5.11 shows. A further drill-down shows that this is

in part due to the challenge of normalization artifacts, with systems struggling to detect

properties that map to multi-hop join paths in the tables. Mapping data to class types

appears to be generally easier for all contenders. i3MAGE and BootOX are performing

best in most cases with all kinds of properties.

For i3MAGE, this drill-down highlights in particular where and how the effects of custom

reasoning rules and advanced patterns brought by IncMap Complete affect the mapping:

they improve the quality of property mappings, and object property mappings in par-

ticular. While the score gains from reasoning rules and patterns for all three categories,

the gain for object properties is much more significant with at least about two times

more correctly solved tests. Manual inspection of per-query results and debugging of

the internal match generation process additionally indicates that some of the gains for

class matches indirectly also result from better object property matches, as they sup-

port correct matches for their respective domain and range classes during structural

matching.

The drill-down also gives some indication about the impact of a known query workload

in these scenarios with IncMap QW: in some cases they improve the score for datatype

properties. Manual inspection confirms that this is due to the correct disambiguation

of relevant concrete domains for these properties, e.g., where rdfs:labels are used as a
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Table 5.12: Score break-down for queries that test n:1 matches in restructured con-
ference domain scenarios. 1:1 and n:1 stand for queries involving 1:1 or n:1 mappings

among classes and tables, respectively.

System
CMT Conference SIGKDD

1:1 n:1 1:1 n:1 1:1 n:1

IncMap Basic 0.79 0.00 0.89 0.00 0.86 0.00
IncMap Complete 1.00 0.60 0.89 0.14 1.00 0.38

IncMap QW 1.00 0.60 0.89 0.14 1.00 0.38
BootOX 0.86 0.00 0.78 0.00 1.00 0.00
-ontop- 0.57 0.00 0.56 0.00 0.86 0.00

MIRROR 0.00 0.00 0.00 0.00 0.00 0.00
COMA++ 0.58 0.00 0.56 0.00 0.86 0.00

Table 5.13: Score break-down for queries that require 1:n class matches on the Oil &
Gas atomic tests scenario.

System
Oil & Gas Atomic
1:1 1:2 1:3

IncMap Basic 0.20 0.01 0.03
IncMap Complete 0.28 0.11 0.09

IncMap QW 0.28 0.11 0.09
BootOX 0.17 0.11 0.07
-ontop- 0.10 0.09 0.07

MIRROR 0.00 0.00 0.00
COMA++ 0.03 0.00 0.00

naming property. The same effect did not manifest for object properties in any of the

conference domain scenarios, because they are using sufficiently specific domains and

ranges in all of the ontologies in question. Also, the second possible positive effect

of using a query workload, namely, to limit matching to a relevant core subset of the

ontology, does not appear to have any visible effect. This makes sense given the generally

medium sizes of ontologies in these scenarios and the relatively large subset covered by

some of the queries.

Tables 5.12 and 5.13 show the behavior of systems for finding n:1 and 1:n matches

between ontology classes and table content, respectively. We highlight the n:1 case on

restructured conference scenarios and 1:n matches on the oil & gas scenario as they

include the highest number of tests in the respective categories.

In both cases results for anything but the 1:1 case are low, with all systems failing the

large majority of tests.

For IncMap Basic as well as for all non-i3MAGE systems, 1:n matches the situation

is slightly better than it is with n:1 matches. However, IncMap Complete shows the
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Table 5.14: Impact of incremental mappings: Numbers for IncMap Complete @k
human interactions. Bold print numbers mark first reaching the peak.

Scenario @0 @6 @12 @24

Conference adjusted naming

CMT 0.66 0.78 0.96 0.96
CONFERENCE 0.64 0.80 0.83 0.83

SIGKDD 0.90 0.93 1.00 1.00

Conference restructured

CMT 0.64 0.70 0.78 0.78
CONFERENCE 0.56 0.62 0.70 0.74

SIGKDD 0.69 0.69 0.75 0.75

opposite behavior. This is a significant result, because 1:n matches can be composed

in mapping rules by simply adding up several correct 1:1 matches. A correct mapping

of n:1 matches between classes and tables, on the other side, usually requires the much

more challenging task of filtering from the table that holds entities of different types. To

identify tables that use such a pattern is one of the specific features in IncMap Complete.

For i3MAGE, the same argument could be technically made for 1:n matches, and the

score gain between IncMap Basic and IncMap Complete is also high. But while i3MAGE

uses patterns to also identify 1:n matches, other systems (BootOX and -ontop-) handle

them without them, but with a similar degree of success, probably by adding up several

individual 1:1 matches as described above. At the same time this is not the case for n:1

matches, which we consider very hard to solve without patterns and which none of the

tested systems other than i3MAGE succeed with.

5.6.4 Incremental Experiments: Results

We have also conducted a series of incremental, semi-automatic RODI experiments with

i3MAGE. For this line of experiments we use i3MAGE with IncMap Complete.

Table 5.14 shows results for an incremental run of i3MAGE, i.e., using an oracle to

simulate human feedback in several iterations.

The number “@k” in table headers denotes the number of simulated human interactions

that we performed before the overall mapping quality did reach the specified score. Con-

sequently, “@0” describes the baseline with no human interaction, and scores coincide

with those of i3MAGE in the previous experiments.

Numbers “@6” and “@12” increase constantly, demonstrating the ability of i3MAGE

to successfully consume simple feedback and improve mappings with a relatively small

number of iterations.
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At the same time, no further improvements could be made with more iterations (> 12) in

all but one case. Manual inspection did show two reasons for this upper limit: (1) some

more improvement could have been reached with a more exhaustive feedback strategy,

involving repeated lists of suggestions on the same query test or longer initial lists of

suggestions. However, such an approach would inevitably also involve higher human

effort. And (2), to some part the upper limit demonstrates a limitation of i3MAGE’s

mapping suggestions. i3MAGE is incapable of suggesting certain mappings requested

by the benchmark, because most complex mappings (1:n, or involving n-way joins) will

only be constructed during matching, when heuristic patterns support them with a

sufficiently high score.

5.6.5 Summary of Results

The big picture in fully automatic mapping generation on RODI default scenarios shows

that i3MAGE (with its different IncMap setups) is generally clearly leading the field.

Looking at the broader landscape of other tested systems, both of the two most spe-

cialized and actively developed tools, i3MAGE and BootOX, can be considered the top

contenders. Among those two, BootOX performs particularly well in scenarios where the

inter-model gap between relational schema and ontology is relatively small (e.g., “ad-

justed naming”). i3MAGE is gaining ground when more specific inter-model mapping

challenges are added. Other systems achieve generally weaker results. For MIRROR

and -ontop- it has to be noted, though, that these systems have been originally de-

signed and optimized for a somewhat different task than the full end-to-end mapping

generation setup tested with RODI. COMA++ keeps up well, given that it is no longer

actively developed and improved. However, results clearly show a significant advantage

of i3MAGE over all of these systems, including COMA++. We can assume that this is,

at least in part, because COMA++ has been constructed to support inter-model match-

ing in general but has not been explicitly optimized for the specific case of RDB2 RDF

matching.

Among the different setups of IncMap used in i3MAGE, a constant increase of mapping

quality can be observed while features are added. In particular, IncMap Complete always

performs at least as good as IncMap Basic, and IncMap QW always achieves at least

the same score as IncMap Complete. In many cases there is a significant gain between

IncMap Basic and IncMap Complete. This means, that the effect of custom reasoning

rules and relational patterns is generally important. The additional increase in scores

achieved by IncMap QW is modest in most cases, but significant gains can be observed

in a few scenarios. In particular, query workload analysis with IncMap QW can increase
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the score for large and complex schemata where only a small subset is relevant, and also

for cases where the ontology uses properties with complex or poorly specified domains

and ranges.

When evaluated semi-automatically, numbers show that i3MAGE is well suited to also

being used in an interactive scenario with feedback. It can help users to improve mapping

quality with little effort beyond the fully automatic baseline, up to a point where the

assistance of a technical expert is required.



Chapter 6

i3MAGE Applications

In this chapter, we introduce i3MAGE use cases and applications. We present i3MAGE

as a mapping generator that can be applied in complete end-to-end use cases and can

therefore be built into different applications.

First, in Section 6.1 we give an overview of use cases and applications that involve

i3MAGE. Next, Section 6.2 presents the primary application of i3MAGE, its use for

suggestions in an ETL workflow with a mapping editor. Finally, we also introduce a

secondary application that can make use of i3MAGE’s query-driven mode of interaction

in Section 6.3.

6.1 Overview of i3MAGE Use Cases and Applications

i3MAGE has been motivated by RDB2 RDF data integration use cases with complex

schemata and ontologies in mind. It has been implemented and tested with different

applications. Each of them makes use of some of the different modes of operation offered

by i3MAGE.

6.1.1 Use Cases

The Optique project1 is an EU-sponsored research project with the aim of developing

a platform for scalable end-user access to big data, with a focus on schema complexity.

As a platform [142, 149], Optique includes active mapping management [150], which can

provide mapping suggestions from i3MAGE.

1http://optique-project.eu
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Optique has been deployed and tested mainly in two industry use cases in the energy

sector: at oil and gas company Statoil [8, 138] to access oil field exploration data, and

at Siemens [139] for analyzing (partially streaming) data from gas turbines. i3MAGE

has been installed in conjunction with demonstrations of these use cases.

Additional use cases have been elicited from standard data integration applications of

Information Workbench [151], a semantic platform, which is also used as the technolog-

ical foundation of Optique. Information Workbench contains specific modules for data

integration and is used in different enterprise scenarios. Those data integration scenarios

are typically of lower complexity compared to Optique use cases (e.g., meta data and

business data in data center management). Nevertheless, they are adding to the scope

of use cases in which we have tested i3MAGE in practice.

6.1.2 Application Environments

On the one hand, i3MAGE produces small-granular mapping suggestions, generated by

IncMap, its core matching and mapping component. On the other hand, i3MAGE can

also generate complete mappings in a fully automatic manner. Both capabilities are

being used in different applications.

Suggestions can be used within a mapping editor that is a part of the DataOps data

integration solution (Section 6.2). In the same application, fully automatic mappings

can alternatively be used to bootstrap a collection of mapping rules prior to manual

editing. The environment of DataOps therefore constitutes a conventional setup for

both automatic and semi-automatic use of mappings generated by i3MAGE. That is, it

follows a normally manual process for assembling mappings, which can be extended and

varied with support of automatic and semi-automatic mechanisms.

In the more complex and versatile data integration environment of the Optique platform,

i3MAGE suggestions can additionally be used in a query-driven mode of operation. That

is, i3MAGE suggestions can be used to curate mappings ad-hoc when needed by a query

(Section 6.3). In this case, traditional suggestions in a mapping editor are also possible

while fully automatic mappings are not supported through i3MAGE.

6.2 i3MAGE Support in DataOps Mapping Editor

When making suggestions while mappings are being edited, i3MAGE is employed in the

mapping editor [83, 131] of the DataOps ETL solution [82].
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6.2.1 DataOps Overview

Individual components for OBDI are commonly available, but end-to-end solutions are

generally rare. DataOps has been designed with the aim of being a commercial-grade

“Anything-to-RDF semantic data integration toolkit” [82]. It is thus positioned as an

OBDI solution. DataOps has been developed at fluid Operations2 as part of the com-

pany’s strategic data integration solutions and builds on the technology of a semantic

platform, Information Workbench [151]. It has already been used with dozens of Infor-

mation Workbench systems and customer projects, where it has also repeatedly been

deployed for productive use.

Traditionally, for analytical applications on large or complex information, data ware-

house systems are used as a backend and data is loaded by ETL-style processes. Those

systems share an important property for enterprise use. Packaged as readily deploy-

able solutions, they include everything needed for end-to-end enterprise information

integration: from assisted setup, over a broad selection of data access methods, graphi-

cal configuration interfaces, ETL pipeline editing, explorative debugging, execution and

re-publishing, to comprehensive documentation and reliable support.

However, these traditional solutions also come with a significant downside: in classical

data warehouses, a dedicated global warehousing schema needs to be designed, mappings

need to be constructed, and the resulting schema must be documented and communi-

cated to consumers. This comes at the price of either a limited set of accessible data

and query support with little flexibility. Or, if the scope of access and flexibility need

to increase, it requires even more effort for programming all the tasks and queries to

be supported. Worse, with a number of data sources that quickly change in struc-

ture, maintenance for the resulting schema, mapping and queries can quickly become a

nightmare.

OBDI, with its flexible graph model and vocabularies, is one possible and natural way

to address this predicament.

It is the aim of the DataOps toolkit to leverage the particular potential of OBDI over

other data integration approaches. To do so, it provides a data integration environment

with comprehensive functionality and a focus on end-to-end usability, much the same as

traditional enterprise data warehousing solutions do. Although certain OBDI compo-

nents are commonly available, complete end-to-end solutions that cater to the require-

ments of a production environment are few. Some existing and established frameworks

such as the Linked Data Integration Framework [152] focus on Web-scale data rather

than in-house enterprise data. More recent examples, e.g., UnifiedViews [153], provide

2http://www.fluidops.com/

http://www.fluidops.com/
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integrated, easy to use interfaces but focus on processing of pre-existing RDF data.

Many systems composed of loosely coupled special-purpose components (where setup or

maintenance involve intense human effort) fail the one key requirement that motivates

their use in the first place: to significantly reduce overall effort in configuration and

maintenance.

DataOps attempts to deliver an end-to-end solution for ontology-based ETL data in-

tegration that supports seamless setup, configuration and maintenance procedures. It

bundles important components for every step of the process as a single toolkit out of

the box, fills any gaps between those components and offers an integrated user interface,

built on industry-proven platform technology.

The toolkit supports the integration of both semantic and non-semantic data from a

host of different formats, including relational databases, CSV, Excel, XML, JSON, ex-

isting RDF graphs and others. Additional source formats can be integrated through an

extension mechanism. For instance, in the scope of a particular project, a specialized

data source that allows to directly access results from the statistical software suite R has

been developed. In addition, each data source can be accessed from different physical or

logical locations. For instance, data may reside in local files, on network shares (which

may additionally require authentication), on the Web accessible through HTTP, or even

hidden behind custom protocols.

Figure 6.1: DataOps process

As an integrated toolkit, DataOps supports all setup, configuration and maintenance

steps through a fully integrated Web interface with configuration forms and different

mapping editors. Setting up data sources end-to-end is implemented in a three-step

process (Figure 6.1):

1. Accessing the different data sources from arbitrary locations through different

mechanisms (see screenshot in Figure 6.2a for details).
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2. Specifying mappings depending on the data source format (Figure 6.2b). In the

most common case of RDB2 RDF, mappings are specified in R2RML using an

integrated R2RML editor.

3. Consolidating new data with existing data instances, e.g., by establishing owl:sameAs

links (Figure 6.2c).

For some of its features, DataOps makes use of established external components that

are integrated in the backend. In particular, ETL extraction of relational databases

currently relies on DB2Triples3 and entity reconciliation uses Silk [154]. All modules

are pluggable using generic interfaces and standards. Post-processor modules can even

be stacked as pipelines of sub components. Other components are also in principle

exchangeable. For example, other standard R2RML mapping engines can be hooked

in, if required. The built-in interface used for editing RDB2 RDF mappings itself is

extensible in several ways. It builds on an initial prototype presented in [131], but has

since been thoroughly remodeled [82].

6.2.2 i3MAGE Application with DataOps

DataOps supports plug-ins and extensions in different ways, e.g., through the Java ser-

vice loader mechanism, method hook points, libraries, or UI customization. Specific

features for data integration and business analytics use cases can then be bundled and

installed as apps. Examples for this are more advanced visualization components, addi-

tional data sources, or, in the case of i3MAGE, automatic and semi-automatic mapping

support.

The DataOps/Information Workbench i3MAGE app contains the complete JAR library

of i3MAGE with all of its components. In addition, it contains platform integration

components that are specific to the app:

• Suggestion translation using i3MAGE’s API, which materializes suggestions with

the relevant meta data in an informal RDF vocabulary. Translation is triggered by

i3MAGE’s API and RDF data is materialized through the platform data manager,

which wraps around a Sesame OpenRDF API [137].

• Batch translation, pulling complete mappings from i3MAGE.

• A trigger method to invoke pulling automatic mappings and a UI mechanism to

invoke this trigger. It is implemented by a platform component that is called a Code

3https://github.com/antidot/db2triples/

https://github.com/antidot/db2triples/
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(a) Step 1: configuration of data sources

(b) Step 2: main mapping editor (R2RML)

(c) Step 3: reconciliation rules

Figure 6.2: Configuration/editing steps for DataOps mappings
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Execution Widget. That is, a link is implemented through simple UI customizing

and a click on the link uses a platform mechanism to trigger custom server-side

Java code included with the i3MAGE app.

• An update trigger that gives implicit feedback based on manually created cor-

respondences (selection of class types and/or tables in basic mapping rules) and

triggers a fresh iteration of IncMap structural matching inside i3MAGE. The trig-

ger uses method hookpoints.

• A dedicated UI component for visualizing i3MAGE suggestions (as materialized by

the suggestion translation mechanism). This component is implemented through

Information Workbench UI customization. It is thus deeply integrated with DataOps

and its underlying platform.

• Suggestion confirmation and feedback handling, which is implemented alongside

the UI component to visualize suggestions. Essentially, confirmation (or rejection)

of suggestions and thus feedback to i3MAGE is triggered by a simple link that is

again implemented by a platform Code Execution Widget.

6.2.2.1 Bootstrapping

There are two modes in which i3MAGE can be used in the DataOps app. With the first

and more coarse-grained option, i3MAGE is used to bootstrap mappings.

For each data source, DataOps supports mapping creation either by creating an empty

mapping collection (i.e., a set of R2RML mapping rules) or by bootstrapping a mapping

collection. Bootstrapping a mapping collection by default means that DataOps will

apply a variant of the W3C’s direct mapping [109] to naively generate mapping rules for

all data in the relational schema.

The i3MAGE app for DataOps offers an alternative bootstrapping method for DataOps

mapping collections, which instead applies the mappings that i3MAGE generates fully

automatically.

6.2.2.2 Mapping Suggestions

As a second option, mapping suggestions can make use of i3MAGE’s semi-automatic

mode of operation. In this case, DataOps would simply create empty mapping collections

and suggestions can appear while a user authors or modifies individual mapping rules

manually.
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(a) Type suggestions: create instances of a specific type

(b) Predicate/object suggestions: create triples (properties and object values) for instances of a
specific type

Figure 6.3: i3MAGE suggestions in DataOps

Figure 6.3 shows how such suggestions look in DataOps in practice. In the editing

view of a freshly created or partially incomplete mapping rule, i3MAGE asks whether to

complement the mapping according in some way. Suggestions are short-listed to display

a top-3 of best ranked applicable suggestions. Each suggestion is labeled by a brief

headline in bold-print, which should normally be sufficient to understand its purpose. A

more verbose explanation of its effects is added in small print, mostly to reassure first-

time users or occasional users. For each suggestion, two linked icons allow to accept and

apply, or to reject and remove the suggestion. Accepted suggestions will immediately



Chapter VI. i3MAGE Applications 138

modify and reload the mapping rule. Rejected suggestions are removed from the list

another suggestion, the one which is next in line according to its calculated score, will

be displayed instead. In both cases, feedback is provided to i3MAGE.

Due to the primary workflow of DataOps, suggestions are limited to appear in only two

contexts: (1) to suggest IRI construction rules and ontology class types for R2RML

mapping rules that have already a relational table selected (Figure 6.3a), and (2) for

suggesting additional property/attribute matches in the context of existing R2RML

mapping rules (Figure 6.3b).

While suggestions in these situations fit well with the manual mapping editing process

of DataOps, they are not the only ones that i3MAGE could provide in general and they

are not necessarily the most effective ones, either. In particular, a user always needs to

manually identify a table from the database to map from, which can be difficult and

tedious with complex schemata [131]. i3MAGE does identify matches between classes

and tables and could thus in principle help with the selection. However, this would

require a “class type first”, ontology-driven editing approach, which is not supported

in the standard edition of DataOps. Experimentally, we have added such other kinds

of suggestions, e.g., proposing complete mappings for a particular ontology class. They

have not become a part of the app, though, as they have to be displayed in views that

do belong to the core platform, not DataOps, and can therefore be confusing in other

contexts.

6.3 i3MAGE in Query Driven Setups

i3MAGE is also used for generating mappings within Optique ([138, 149]). Optique is

a research prototype for scalable, semantic data integration and end-user access. Like

DataOps, it builds on the platform technology of Information Workbench and integra-

tion therefore works in a similar way. Consequently, the same types of suggestions that

i3MAGE makes for DataOps can also be made for Optique and have been demonstrated

in [138]. As Optique brings its own bootstrapping capabilities [19], i3MAGE bootstrap-

ping has not been deployed with Optique.

Optique forms a holistic data integration suite and offers a number of advanced compo-

nents and more versatile workflows, which inspire further applications of i3MAGE. In

particular, query formulation for analysis and customizing is supported through both

an administrative and an end-user UI component in Optique [155].
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(a) Administrative editing of queries in Optique

(b) Optique visual query formulation editor

(c) Information Workbench query catalog, running in Optique

Figure 6.4: Authoring queries in Optique
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Figure 6.4 shows different options to author or edit queries in Optique. Queries can be

authored in the usual expert way as plain SPARQL queries4 (Figure 6.4a) or they can

be edited visually even by non-experts (Figure 6.4b). Eventually, queries are stored in

a platform query catalog (Figure 6.4c), where they can be directly executed or called

upon for UI customization.

In particular the visual editing approach motivates the use of i3MAGE’s query-driven

mode: if a mapping is required for one particular query only, i3MAGE can analyze

the query and provide targeted suggestions as discussed previously in Section 4.2.12.

Visual query editing is a particularly good fit for this approach for two reasons. Firstly,

visual query formulation targets domain experts who are power-users but do not possess

the knowledge and skills to write queries, administer a database, or author mappings.

They are therefore specifically dependent on support, either automated or by technical

experts, whenever they run in a situation where mappings are incomplete. And secondly,

the limitations of query parsing in i3MAGE as discussed in Section 4.6 play no role in

practice with visual query formulation, as the editor produces straight-forward queries

of limited complexity that contain no critical information outside the scope of what

i3MAGE can parse.

With such a setup, mapping suggestions are employed to generate mappings ad hoc

when a query is being phrased and makes use of unmapped ontology axioms. As soon

as a query has been stored in the query catalog, i3MAGE can analyze it and suggest to

map required concepts or properties.

The screenshot shown in Figure 6.5 demonstrates how queries look in the query catalog

with this approach. If the query relies on any concept or property for which no existing

mappings have been identified by the mapping analyzer, i3MAGE will provide sugges-

tions to extend the mapping. As usual, these suggestions contain a brief summary as

well as some explanation. They can be accepted or rejected with a single click.

Note, that suggestions provided in this application exceed the scope of suggestions from

the DataOps app. Suggestions in Figure 6.5 propose a match of a table for a given

concept instead of the other way around. Similarly, in some cases a suggestion might

be to draw data from a SQL JOIN over several tables rather than from just one single

table. Also, to map properties with a domain of a type that is already mapped, the

suggestion would attempt to match both URI construction for the existing type of the

triple subjects and value construction for the property at the same time. All of these

suggestions immediately correspond to individual mapping rules generated by i3MAGE

4Technically, Optique also supports queries in a dedicated query language for semantic streams.
These cannot be parsed by i3MAGE, though, and are thus not supported.
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Figure 6.5: Query based mapping suggestions

from IncMap’s internal mapping model. That is, they do not need to be explicitly

composed or otherwise post-processed to suit the purpose.

In addition to the better use that this application makes of i3MAGE suggestions (com-

pared with DataOps), it also benefits from the additional advantages of i3MAGE’s query

driven mode: queries steer the system to consider only areas of interest in the target

ontology, and they may also help to disambiguate relevant domains and ranges of prop-

erties.
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Discussion

7.1 Summary

We have presented i3MAGE, a mapping generation system, which addresses the specific

problems of incremental, interactive mapping generation in RDB2 RDF inter-model set-

tings. The system aims to reduce the overall human effort in the process of creating

sufficiently accurate mappings. We generate mapping suggestions that are as close to the

eventually expected mapping as possible, optimizing on particular technical challenges

of the RDB2 RDF inter-model use case. The system also attempts to provide sugges-

tions in a way that makes them easy to process in user interactions and allows them to

improve incrementally on user feedback. i3MAGE is built to fit into a wider mapping

development process where other forms of support could be leveraged simultaneously.

We have designed and evaluated i3MAGE according to the following lead questions:

• What are the specific challenges of inter-model mapping generation as opposed to

generating regular intra-model mappings, specifically w.r.t. RDB2RDF mappings?

• How can mapping generation systems be designed to provide enhanced support for

those specific RDB2RDF challenges?

• How can the quality of generated RDB2RDF mappings be measured w.r.t. real-

world utility and how do specialized approaches compare to the state of the art?

• How can user-feedback and other context be exploited to gradually improve the

quality of generated mappings?

• How can such generated mappings be integrated non-intrusively in a semi-automatic

process?

142
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To this end, we have discussed specific challenges on the basis of a broader discussion

about the technical background and related approaches that attempt to address those

challenges (Chapter 2).

In the course of this discussion we have pointed out gaps and shortcomings that have not

been sufficiently addressed to date. We have then proposed an approach that addresses

those gaps and discussed its rationale (Chapter 3). We also introduced a novel system,

i3MAGE, which implements our approach, and we have described this system and its

technical foundations in detail (Chapter 4).

In order to evaluate our approach and system not only on grounds of feasibility but

also in direct comparison to other approaches, we have analyzed existing benchmarks

proposed in the literature and discussed the requirements for a broadly applicable end-

to-end quality benchmark for RDB2 RDF mapping generation. We did then design

such a benchmark according to elicited requirements and provided a broad experimental

evaluation of i3MAGE and several other systems with that benchmark (Chapter 5).

Additionally, we have analyzed potential opportunities for enhancing i3MAGE by mak-

ing it incrementally semi-automatic and have considered additional information from

interactive environments as matching context. We have proposed and implemented sev-

eral such features along two related dimensions, incremental, pay-as-you-go development

of mappings and interactive user feedback (c.f. Chapter 4). We have also separately eval-

uated the impact of those features (Chapter 5).

To demonstrate the applicability of i3MAGE in practice and to put the system into a

wider context, we have analyzed potential uses of i3MAGE in real-world applications.

We have presented a prototypical implementation of two such use cases and system

environments and have discussed how i3MAGE is being used in these settings in practice

(Chapter 6).

7.2 Discussion of Results

With our i3MAGE system, we have demonstrated the feasibility of a specialized inter-

model RDB2 RDF mapping generation system, which combines both generic structural

commonalities between the different data models and specialized features to leverage

specific properties of the particular models. The specific features are elicited from a

thorough analytic discussion of both shared and distinct features of the different data

models. No such approach has been proposed so far in the literature to the best of our

knowledge.
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In addition, we have analyzed potential opportunities of enhancing i3MAGE by making it

incrementally semi-automatic and by considering additional information from interactive

environments as matching context. While not the main research focus of this work, these

additions are highly important to optimize the utility and usability of i3MAGE and can

be seen as a precondition for its deployment in real-world application scenarios.

Based on our discussion and implementation of i3MAGE, we have gained experimental

insights into the strengths and weaknesses of automatic and semi-automatic RDB2 RDF

mapping generation in general and into the performance of i3MAGE in particular. For

RDB2 RDF, no previous evaluations on generated mapping quality did compare a sig-

nificant number of different systems and approaches. Among other findings, we could

identify a number of particularly hard challenges that are difficult to solve for almost

all systems. Besides a number of generally tough data integration challenges, several

of those are specific features of the RDB2 RDF inter-model gap, e.g., a type hierarchy

pattern, where several types are modeled jointly in the same relational table. These

findings support our hypothesis that special adjustments of matching algorithms for

RDB2 RDF may help in achieving better quality of generated mappings. Experiments

could also provide evidence that interactive, incremental features such as user feedback

could improve the results provided by i3MAGE.

In direct comparison to other approaches i3MAGE performs about as well as the best

competing approaches, even in its basic version. When used with all advanced features

enabled i3MAGE typically outperforms all other approaches.

However, we could also identify cases, where the performance of all known approaches,

including i3MAGE, is still modest, and their usability in practice is questionable. This

chiefly concerns cases of large and complex data sources with complex resulting map-

pings, i.e., situations where a large number of potential match candidates are difficult

to disambiguate.

In addition to a principled experimental evaluation, we have demonstrated how i3MAGE

could be employed in the context of holistic data integration systems and use cases. From

these implementations we have learned that different modes of operation are required

from i3MAGE to smoothly fit into different contexts. For instance, fully automatic map-

ping generation can only be useful in one specific type of mapping curation workflows.

This also means that not all features of i3MAGE could be effectively employed in all ap-

plication contexts. The modular and complementing nature of these features, however,

makes i3MAGE usable in significantly different setups and configurations, and thus in

several different types of applications.
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7.3 Future Work

We have shown that i3MAGE can effectively generate RDB2 RDF mappings and map-

ping suggestions and usually outperforms other approaches in terms of mapping quality.

However, the approach could still be improved on several counts.

Future work includes support for auto-tuning strategies to set the various knobs and

configuration options in i3MAGE. In particular, the best choice of lexical matching,

graph edge weight factors and a number of Similarity Flooding control options could

first be learned on a large corpus of RDB2 RDF scenarios to provide improved default

parameters. In incremental scenarios, parameter learning could continue during map-

ping creation to tailor parameters further to each individual case. The same applies to

activation strategies for inactive edges and their respective activation thresholds.

Along the lines of the same idea, i.e., to use learning techniques, we could also likely

improve the impact of relational patterns. We use complex relational patterns to support

candidate correspondences with a number of ontology axioms. To identify such patterns,

we currently use heuristic rules that check on one or more characteristics of elements or

data in the relational schema, e.g., on the number and types of columns or the number

of rows in a table. While these rules are currently hand-written, both binary thresholds

and the weights for combining them into the overall pattern heuristic could be learned.

In addition, it might be worth exploring to not only tune parameters of hand-written

patterns with learning techniques but also to try feature extraction to identify additional

usable patterns.

Also, while we have improved i3MAGE significantly by detecting advanced modeling

patterns in relational schemata, we only associate them with individual corresponding

axioms on the ontology side. This is sufficient in those cases that we did identify as

obvious matching candidates. However, complex modeling patterns are common in

ontologies as well and they could be used as correspondence candidates in a similar

manner as relational patterns. It is reasonable to assume that such a widening of the

scope of potential correspondences could help to improve matching for a number of edge

cases.

Besides these possible optimizations, additional forms of interactions and human feed-

back might be worth exploring in another avenue of future work. While a positive impact

of feedback and incremental mapping strategies have been observed, this aspect could

be extended in various ways, and we expect to see further improvements when doing

so. For instance, the system might ask leading questions to gather explicit feedback on

the quality of mapping suggestions. Asking a user to provide samples of missing results
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might be another way for enhanced interactivity, which promises an overall improvement

in mapping quality.

Finally, while our current approach is based on schema matching and mapping, future

work could extend into additional elements of data mapping. This way, automatic

matching could not only become more precise (by validating match candidates on data

instances). It could, in addition, become more expressive. For instance, it could propose

fundamental data transformations such as the concatenation of a first name and last

name into a full name field.
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Information – A Survey of Existing Approaches. In IJCAI, 2001.
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and Riccardo Rosati. Optique – Zooming In on Big Data Access. IEEE Computer,

48(3), 2015.



Bibliography 158

[143] Ondrej Svab, Vojtech Svatek, Petr Berka, Dusan Rak, and Petr Tomasek. Onto-

Farm: Towards an Experimental Collection of Parallel Ontologies. In ISWC

(Posters & Demos), 2005.

[144] Wolfgang May. Information Extraction and Integration with Florid: The Mon-

dial Case Study. Technical report, Universität Freiburg, Institut für Informatik,

1999.
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Ruiz, Evgeny Kharlamov, Johan W. Klüwer, Christoph Pinkel, Riccardo Rosati,

Valerio Santarelli, Ahmet Soylu, and Dmitriy Zheleznyakov. Optique System:

Towards Ontology and Mapping Management in OBDA Solutions. In WoDOOM,

2013.

[151] Peter Haase, Michael Schmidt, and Andreas Schwarte. The Information Work-

bench as a Self-Service Platform for Linked Data Applications. In COLD, 2011.

[152] Andreas Schultz, Andrea Matteini, Robert Isele, Christian Bizer, and Christian

Becker. LDIF - Linked Data Integration Framework. In COLD, 2011.
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