
Detecting Errors in Linked Data Using Ontology Learning and
Outlier Detection

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Daniel Fleischhacker
aus Groß-Gerau

Mannheim, 2015

Dekan: Professor Dr. Heinz Jürgen Müller, Universität Mannheim
Referent: Professor Dr. Heiner Stuckenschmidt, Universität Mannheim
Korreferent: Professor Dr. Felix Naumann, Universität Potsdam

Tag der mündlichen Prüfung: 11. März 2016

i

Abstract

Linked Data is one of the most successful implementations of the Semantic Web
idea. This is demonstrated by the large amount of data available in repositories
constituting the Linked Open Data cloud and being linked to each other. Many
of these datasets are not created manually but are extracted automatically from
existing datasets. Thus, extraction errors, which a human would easily recognize,
might go unnoticed and could hence considerably diminish the usability of Linked
Data. The large amount of data renders manual detection of such errors unrealistic
and makes automatic approaches for detecting errors desirable. To tackle this need,
this thesis focuses on error detection approaches on the logical level and on the
level of numerical data. In addition, the presented methods operate solely on the
Linked Data dataset without a requirement for additional external data.

The first two parts of this work deal with the detection of logical errors in
Linked Data. It is argued that an upstream formalization of the knowledge, which
is required for the error detection, into ontologies and then applying it in a sepa-
rate step has several advantages over approaches that skip the formalization step.
Consequently, the first part introduces inductive approaches for learning highly
expressive ontologies from existing instance data as a basis for detecting logical
errors. The proposed and evaluated techniques allow to learn class disjointness
axioms as well as several property-centric axiom types from instance data.

The second part of this thesis operates on the ontologies learned by the ap-
proaches proposed in the previous part. First, their quality is improved by detect-
ing errors possibly introduced by the automatic learning process. For this purpose,
a pattern-based approach for finding the root causes of ontology errors that is tai-
lored to the specifics of the learned ontologies is proposed and then used in the
context of ontology debugging approaches. To conclude the logical error detec-
tion, the usage of learned ontologies for finding erroneous statements in Linked
Data is evaluated in the final chapter of the second part. This is done by applying
a pattern-based error detection approach that employs the learned ontologies to the
DBpedia dataset and then manually evaluating the results which finally shows the
adequacy of learned ontologies for logical error detection.

The final part of this thesis complements the previously shown logical error
detection with an approach to detect data-level errors in numerical values. The
presented method applies outlier detection techniques to the datatype property val-
ues to find potentially erroneous ones whereby the result and performance of the
detection step is improved by the introduction of additional preprocessing steps.
Furthermore, a subsequent cross-checking step is proposed which allows to handle
the outlier detection imminent problem of natural outliers.

In summary, this work introduces a number of approaches that allow to detect
errors in Linked Data without a requirement for additional, external data. The
generated lists of potentially erroneous facts can be a first indication for errors and
the intermediate step of learning ontologies makes the full workflow even more
suited for being used in a scenario which includes human interaction.

ii

Zusammenfassung

Linked Data ist eine der erfolgreichsten Umsetzungen der Ideen des Semantic Web,
was insbesondere an den großen Datenmengen zu erkennen ist, welche im Rahmen
der Linked Open Data Cloud verfügbar sind. Viele dieser Datensätze sind jedoch
nicht manuell erstellt, sondern mittels automatisierter Ansätze aus bereits vorhan-
denen Datensätzen extrahiert worden. Hierdurch enthalten sie viele Fehler, welche
bei einer manuellen Erstellung der Daten hätten erkannt werden können, nun je-
doch die Verwendbarkeit der Daten einschränken. Da eine nachgelagerte manuelle
Fehlererkennung aufgrund der großen Datenmenge nicht praktikabel ist, ist ein
automatisierter Ansatz zur Erkennung von Datenfehlern wünschenswert. Die vor-
liegende Arbeit setzt hier an, indem sie Methoden zur Erkennung von Datenfehlern
auf der logischen und der numerischen Ebene einführt. Ein Hauptaugenmerk liegt
hierbei auf Ansätzen, welche ohne zusätzliche, externe Datenquellen direkt auf
dem Linked Data Datensatz angewandt werden können.

Die ersten beiden Teile dieser Arbeit befassen sich mit der Erkennung von
Fehlern auf der logischen Ebene. Grundlegend wird hierbei zugunsten der Nut-
zung von Ontologien zur vorgelagerten Formalisierung des Wissens, welches für
die Fehlererkennung genutzt wird, argumentiert. Daher werden im ersten Teil die-
ser Arbeit induktive Ansätze zum Lernen von expressiven Ontologien präsentiert,
welche Ontologie-Axiome für die Disjunktheit von Klassen sowie einer Reihe von
Property-spezifischen Axiomen unterstützen.

Der zweite Teil dieser Arbeit baut anschließend auf den dieserart gelernten
Ontologien auf. Zur Erkennung von Fehlern in den gelernten Ontologien wird ei-
ne muster-basierte Methode zur Bestimmung der Ursachen von Ontologie-Fehlern
vorgeschlagen, welche speziell auf die in den Ontologien verwendeten Axiomar-
ten und ihre Verwendung zugeschnitten ist. Diese Methode wird daraufhin im Rah-
men von verschiedenen Ansätzen zur Behebung von Fehlern in Ontologien genutzt
und die Ergebnisse ausgewertet. Schließlich wird die Erkennung logischer Feh-
ler mittels der gelernten Ontologien anhand von Experimenten auf dem DBpedia
Datensatz demonstriert. Die anschließende Auswertung zeigt die Anwendbarkeit
gelernter Ontologien zur Erkennung logischer Fehler.

Im dritten Teil wird daraufhin eine Methode zur Erkennung von Fehlern in
numerischen Werten erweitert, welche auf Techniken zur Erkennung von Ausrei-
ßern basiert. Hierbei verbessert ein Vorverarbeitungsschritt die Genauigkeit des
Ansatzes und reduziert gleichzeitig die benötigte Verarbeitungszeit. Ein zusätzli-
cher Nachbearbeitungsschritt erlaubt die Einbindung von im Linked Data Daten-
satz verbundenen Werten zur Behandlung von natürlichen Ausreißern.

Zusammenfassend präsentiert diese Arbeit Ansätze, deren Kombination es er-
laubt Fehler in Linked Data auf logischer und numerischer Ebene zu erkennen und
dabei unabhängig von externen Datenquellen zu sein. Die Listen potentieller Feh-
ler, welche durch diese Ansätze erstellt werden, können anschließend manuell ge-
prüft und wenn notwendig behoben werden. Der Zwischenschritt über Ontologien
eröffnet hierbei zusätzliche Möglichkeiten im interaktiven Einsatz.

Contents

1 Introduction 1
1.1 Research Questions . 5
1.2 Reader’s Guide . 6

2 Foundations 8
2.1 Description Logics and Ontologies 8
2.2 RDF and Linked Data . 16

2.2.1 Resource Description Framework 16
2.2.2 Linked Data . 17
2.2.3 DBpedia . 19

I Learning Expressive Schemas 23

3 Preliminaries 24
3.1 Learning from Instance Data . 25
3.2 Association Rule Mining . 27

3.2.1 Generating Association Rules 31
3.2.2 Other Algorithms . 32

3.3 Statistical Schema Induction . 33

4 Related Work 39
4.1 Ontology Learning . 39
4.2 Inductive Ontology Learning . 41
4.3 Learning Disjointness Axioms 42
4.4 Profiling Linked Data Datasets 46

5 Inductive Learning of Disjointness Axioms 48
5.1 Class Disjointness Gold Standard 50

5.1.1 Methodology . 50
5.1.2 Analysis . 52

5.2 Approaches . 57
5.2.1 Correlation-Based Approach 57
5.2.2 Association Rule Mining-Based Approach 59

iii

iv CONTENTS

5.2.3 Negative Association Rule-based Approach 61
5.3 Evaluation . 62
5.4 Conclusion . 68

6 Inductive Learning of Property Axioms 71
6.1 Approaches . 72

6.1.1 Terminology Acquisition 73
6.1.2 Creation of Transaction Tables 74
6.1.3 Association Rule Mining and Axiom Generation 76

6.2 Evaluation . 78
6.2.1 Settings . 78
6.2.2 Expert Evaluation . 79
6.2.3 Crowd-Sourced Evaluation 82

6.3 Conclusions and Contributions 86

II Logical Debugging of Linked Data 87

7 Generating Incoherence Explanations 88
7.1 Related Work . 90
7.2 Approach . 91

7.2.1 Generation of Explanations 94
7.2.2 Implementation . 96

7.3 Experiments . 97
7.3.1 Settings . 97
7.3.2 Results . 98

7.4 Conclusion . 101

8 Repairing Incoherent Ontologies 104
8.1 Related Work . 105
8.2 Approaches . 107

8.2.1 Baseline Approach . 108
8.2.2 Axiom Adding Approach 109
8.2.3 MAP Inference-Based Approach 110
8.2.4 Pure Markov Logic Approach 112

8.3 Evaluation . 112
8.3.1 Settings . 113
8.3.2 Results . 114

8.4 Conclusion . 116

9 Schema-Based Error Detection 118
9.1 Related Work . 119
9.2 Approach . 123
9.3 Experiments . 125

CONTENTS v

9.3.1 Disjointness-Enriched Ontologies 126
9.3.2 Property-Enriched Ontology 129

9.4 Conclusion . 131

III Detection of Numerical Errors in Linked Data 133

10 Preliminaries: Outlier Detection 134
10.1 Statistical Outlier Detection . 136
10.2 Nearest-Neighbor-Based Outlier Detection 137

11 Detecting Numerical Errors 143
11.1 Related Work . 145
11.2 Approach . 148

11.2.1 Dataset Inspection . 148
11.2.2 Generation of Possible Constraints 149
11.2.3 Finding Subpopulations 151
11.2.4 Outlier Detection and Outlier Scores 154
11.2.5 Cross-checking for Natural Outliers 155

11.3 Experiments . 157
11.3.1 Evaluation of Full Approach 157
11.3.2 Availability of Cross-Checking Data 164

11.4 Conclusion . 166

12 Conclusion 168
12.1 Future Work . 171

IV Appendix 173

A MLN Model Based on Entailment Rules 174

List of Algorithms

1 The Apriori algorithm . 30
2 The candidate itemset generation function 30
3 Algorithm for computing association rules from frequent itemsets 32
4 Algorithm for computing association rules with 1-item consequents 32
5 Randomized greedy ontology debugging 101
6 Greedy ontology debugging . 108
7 Axiom Adding . 109

vi

List of Figures

2.1 Graph structure formed by RDF statements 16
2.2 Linked Open Data cloud as of August 2014 18
2.3 Rendered infobox about Tim Berners-Lee 22

3.1 Steps of statistical schema induction 34

5.1 Gold standard creation methodology 51
5.2 Inter-annotator agreement for subtrees of selected classes 55

6.1 Triples leading to wrong transitive property axioms 82
6.2 Axiom evaluation task for crowd-evaluation 83

7.1 TRex explanation runtimes and number of retrieved explanations . 101

8.1 RockIt model for the MAP inference-based approach 111
8.2 Comparison of the runtime behavior of repair approaches 116

10.1 Examples for different outlier types 136
10.2 Example global versus local outlier detection 138
10.3 Plot of values used in the local outlier factor example. 140

11.1 Histogram of population counts for villages and countries 150
11.2 Example for subpopulation lattice for property population . . . 152
11.3 Example for cross-checked outlier detection 156
11.4 Value and error distribution for elevation 160
11.5 Value and error distribution for height 161
11.6 Value and error distribution for populationTotal 161
11.7 ROC for property elevation 163
11.8 ROC for property height . 164
11.9 ROC for property populationTotal 165

vii

List of Tables

2.1 Description logic naming convention 15

3.1 Example of a transaction database represented as table 28
3.2 The idea of statistical schema induction 33
3.3 Transaction table contents for statistical schema induction 38

5.1 Basic statistics about the gold standard 53
5.2 Levels of agreement . 54
5.3 Gold standard inter-annotator agreement 54
5.4 Example representation of instance and class data 57
5.5 Transaction database containing materialized class complements . 60
5.6 Performance of baselines . 64
5.7 Number of axioms generated by inductive approaches 64
5.8 Results of inductive approaches on Pall 65
5.9 Results for the basic association rule mining approach 66
5.10 Results for LeDA on Pall. 66
5.11 Results for LeDA without ontology similarity feature 67

6.1 Examples for instance pairs . 74
6.2 Serialization of transaction Table for object property symmetry . . 75
6.3 Summary of transaction table generation for property axioms . . . 77
6.4 Total number of generated axioms for given confidence thresholds 79
6.5 Results of expert evaluation on confidence threshold 0.5 80
6.6 Results of expert evaluation on confidence threshold 0.75 81
6.7 Results of expert evaluation on confidence threshold 1.0 81
6.8 Results of crowd-based evaluation on confidence threshold 0.5 . . 84
6.9 Results of crowd-based evaluation on confidence threshold 0.75 . 85
6.10 Results of crowd-sourced evaluation on confidence threshold 1.0 . 85

7.1 Types of supported axioms. 92
7.2 Statistics about ontologies used in experiments. 97
7.3 Runtimes in milliseconds for the detection of unsatisfiabilities. . . 99
7.4 Runtimes for generating explanations for unsatisfiable classes and

properties . 100

viii

LIST OF TABLES ix

8.1 Statistics about ontologies used in experiments. 114
8.2 Results for approaches on ontology B5 115

9.1 Number of problems detected by test case type using the disjoint-
ness enriched ontologies . 126

9.2 Statistics on violations that correctly indicated quality issues. . . . 127
9.3 Number of problems detected by test case type using the exten-

sively enriched ontology . 129
9.4 Statistics on violations that correctly indicated quality issues. . . . 131

11.1 Inter-annotator agreement observed for property samples and num-
ber of correct instance-value combinations according to majority of
annotators. 159

11.2 Area under the curve determined for the given samples and ap-
proaches . 162

11.3 Numbers of values found for different NELL instances 165

Acknowledgement

Thanks to all the people without whose support this work would not exist.

Thanks to Heiner for giving me the opportunity to write it although he had to take
so many bureaucratic hurdles. Thanks to Michael for many helpful discussions and
reassurance. Thanks to Dominique for her last-minute annotation sessions.

Many thanks to Sina for her support and also accepting that I put many hours of
additional work in this thesis though we had so much to see on the other side of the
world. Thanks to my parents for always supporting me.

Chapter 1

Introduction

The World Wide Web certainly presents the most extensive collection of knowl-
edge ever available to humans. This is not only due to large encyclopedic web-
sites like Wikipedia but rather this accumulation of knowledge and its growth is
fostered by the Web’s decentralized nature where anyone has the possibility to in-
troduce new websites. By means of links to other websites, these new sites can
also be integrated directly into the overall structure without large effort. However,
the largest share of the information available on the Internet is made for human
consumption since most data is expressed in natural language with arbitrary struc-
ture. This severely limits the possibilities of automatically processing the data and
thus hinders the realization of many potentially beneficial use cases. Even where
data is made available to automatic methods, e.g., by means of providing program-
matic access to the data, it often relies on proprietary formats. Hence, applications
consuming the data have to be specifically adapted to it on a per-provider base.

As a reply to these shortcomings, the so-called Semantic Web has received
much attention of researchers during the last years. One of its main ambitions is
to not only provide information contained in the form of natural language, which
is hard to use by automatic means, but provide data using a common, open for-
mat which also allows automatic processing without the need to first handle the
ambiguity of language to extract the relevant information. This basic structured
representation is extended by allowing to interlink data from different providers.
For this purpose, the concept of Uniform Resource Identifiers (URI) is employed
as in the World Wide Web. These links between datasets help to reduce the number
of isolated data repositories and thus can generate additional benefits exceeding the
sum of the single datasets’ benefits. Thus, the Semantic Web takes the two key-
stones of the Web’s success: decentralized organization and interlinking.

This basic idea is extended further by another fundamental building block of
the idea of the Semantic Web. This extension creates the to give the data seman-
tically founded underpinnings by means of ontologies that provide more formal
specifications of the meaning of the provided data. The latter aspect aims at di-
minishing the problem of applications that have to be adapted to each data source

1

2 CHAPTER 1. INTRODUCTION

specifically even if the data only differs by a small degree. Therefore, there is more
chance of interoperability. Ontologies as used in the Semantic Web also exceed a
purely declarative nature. They allow to describe concepts in the data as well as
to give details on relations between these concepts in a well-defined way to cap-
ture relevant domain knowledge including parts of the semantics which can then
be used to infer further knowledge. The overall idea of the Semantic Web and
possible usages are sketched by Berners-Lee et al. [15] where data availability and
properly defined semantics give plenty of new possibilities regarding interactions
between different systems. Finally, the realization of the Semantic Web would pro-
vide whole new possibilities to utilize data and achieve additional benefits for the
users whose extent could be only measured by those brought by the introduction
of the World Wide Web itself. This makes the Semantic Web sometimes being
referred to as Web 3.0.

Even though the overall appeal of the vision is recognizable, the actual spread-
ing of semantic technologies is still very limited. The main cause of this is as-
sumed to lie in the additional effort for content and data providers that is required
for providing information not only for human consumption but also in a way that
machines can profitably use it. More recently, efforts to make data available which
omit the detailed specification of semantics gained more traction. Above all, the
schema.org initiative1 proved to be successful in this direction. It provides a com-
mon vocabulary that can be used to annotate websites and simplifies the automatic
identification of relevant information. This way of annotating website content is es-
pecially pushed into practical use since it is backed by Google, Microsoft (Bing),
Yahoo and Yandex where it is used for extracting information relevant in their
search engine results. Linked Data [14] shares the idea of schema.org regarding
the concentration on providing data and putting less focus on formalizing the se-
mantics but, in contrast to just annotating the data, Linked Data takes the idea of
interlinking datasets into account. Basically, Linked Data fosters the provision of
data by means of open format and defines guidelines which give the possibility of
defining links between the dataset. In particular, it encourages the usage of URIs
for identifying and accessing data.

Linked Data is not as much targeted on a limited number of main consumers as
schema.org. This also means that its quality cannot simply be assessed by testing
it with these consumers. Instead there are many works that propose quality criteria
for Linked Data. Zaveri et al. [103] assembled an overview about the most impor-
tant criteria and categorized them into six main groups of dimensions. Moreover,
they summarize metrics which can be used to assess the different dimensions. The
accessibility dimensions, containing criteria like availability of the dataset, licens-
ing issues and interlinking to other datasets, capture how well a consumer is able
to retrieve the data and use it on a technical and legal level. The dimensions of
trust aims to achieve perceived trustworthiness of the data which is influenced by
criteria like the reputation of the data source and the verifiability of the data. In ad-

1http://schema.org

http://schema.org

3

dition, the dynamicity covers the time-dependent aspects of data, e.g., how current
the data is and how timely it is updated if the base data changes. Criteria whose
influence on the usability of the data are more task-dependent are summarized in
the contextual dimensions. This includes the available amount of data and its com-
pleteness which determine whether a given dataset can be applied in a certain use
case. Data design-specific criteria are captured by the representational dimensions
including understandability, i.e., how comprehensible the data is for human data
consumers, and the interpretability, describing whether an appropriate notation is
used that conforms to the user’s ability to process it. Finally, the intrinsic dimen-
sions are described. These cover all aspects not depending on the context of the
user. Zaveri et al. included three dimensions into this category. First, the accuracy
of the data describes the data’s syntactic correctness and its correctness regard-
ing the real world facts it is representing. Second, the data’s consistency covers
contradictions regarding the formal representation and also the inference mecha-
nisms applied to it. Third, the conciseness of the data represents another quality
dimension. For being concise, data should not contain redundant information on
the schema level (referred to as intensional conciseness) and the data level (ex-
tensional conciseness). Given the fact that the intrinsic features are independent
from the user’s context, they can be considered as the most far-reaching criteria
regarding the data’s overall usability.

Considering the currently available Linked Data datasets, many of them are
not natively created as Linked Data or as structured data at all but are generated
from semi-structured or unstructured data. Although this helps to kick start the
availability of Linked Data, also making it more attractive to use it as data source,
it poses some major challenges. In particular, methods for extracting structured
data from semi-structured data face many of the same problems as when trying
to extract information from usual, natural language-based websites like ambiguity
of information or the variety with respect to their representation. This leads to
the extraction of erroneous information which then gets included into the dataset.
When actually using the data, data errors are a problem which has shown to be
manageable when working on natural language documents by relying on statistical
methods and exploiting the large amount of data available. For structured data like
Linked Data however, this poses a much larger problem for several reasons. First,
while there are large amounts of unstructured information available in documents
which allow to handle data shortcomings or imprecisions, the same does not hold
for structured data. This limits the possibilities to handle the problems by merely
applying statistical methods. Secondly, the advantage of structured data lies in
the fact that it provides a structure for the data and discharges the data consumer
from doing additional complex processing of the supplied data. It follows that
either errors in the structured data are much more likely to cause problems on the
data consumer site because of fewer safety measures in the processing or the data
consumer has to process the data himself. The latter obviously means that the data
loses many of its potential benefits compared to unstructured data. Hence, proper
quality assurance for Linked Data is of great importance, especially for datasets

4 CHAPTER 1. INTRODUCTION

which are not manually crafted but automatically extracted from other datasets.
This way of creating Linked Data datasets causes them to often contain er-

rors with respect to their conformity with the real-world facts they describe and
might cause syntactic deviations that make the data hardly interpretable for data
consumers. Consequently, these datasets show weaknesses regarding the intrinsic
dimensions of Linked Data quality. Wrongly extracted data leads to flaws in the
accuracy of the resulting dataset. This limits the direct usability of the data regard-
less of the context it is used. An obvious first step into fixing these data flaws is the
detection of errors in the dataset. That is why, in this work, we investigate methods
for detecting errors in Linked Data so that the errors can be further assessed by
humans. Purely manual quality assurance is a cumbersome and laborious task es-
pecially for larger datasets. On the other hand, fully automatic approaches are not
suitable for reaching a satisfying level of quality. This holds even more for cases
where the initial error was introduced by automatic methods. Thus, the preferred
way of assuring quality in Linked Data is a compromise of both approaches which
includes the accuracy of human judgment but tries to reduce the workload put onto
the human annotator. Our work presented here is focused on developing methods
that are able to achieve this. We concentrate on two facets of Linked Data correct-
ness: the correctness of the links between entities and the correctness of numerical
values.

For detecting the linking errors, we first propose methods that take Linked Data
and inductively create a highly expressive ontology2 describing the data. By further
formalizing the domain-specific knowledge, we are also able to bring problems
which influence the accuracy dimension into the consistency dimension. This is
advantageous since logical problems causing contradictions in the data are easier
to detect by using logical methods than general discrepancies from real-world facts.
The inductive generation leads to an ontology that is conform with the majority of
the data contained in the dataset so that logical errors indicate data which behaves
differently. Such deviations can show that the violating data is erroneous. In case
the deviation is not caused by a problem in the violating data, the learned ontology
is potentially wrong. Due to its foundation in the patterns found in the majority of
data, a wrongly learned ontology also provides additional benefit since its errors
indicate errors in the majority of data entities.

Moreover, this upstream formalization step allows us to cover the additional as-
pect of supporting a longer-term correctness of the dataset. Reaching correctness
of a dataset at one point in time does not guarantee correctness for a longer period
since, like data in the World Wide Web, Linked Data datasets can change rapidly
and the increasing creation of data in collaborative manners further boosts the po-
tential change frequency. In particular for the collaborative creation, one promis-
ing way of assuring more consistent correctness of data is the provision of adequate
documentation regarding the data structure and specifics. Having an ontology spec-
ifying a dataset’s semantics provides us synergies in this respect. Though their ac-

2In this work, we use the notions of ontology and schema interchangeably.

1.1. RESEARCH QUESTIONS 5

tual purpose in the Semantic Web differs from the purpose of schemas in the area
of relational databases, which provide the general framework of expressing data
within the database, well-specified ontologies can also serve as a documentation of
a dataset. By summarizing the commonly occurring types of entities in a dataset
and typical constructs for expressing relations between those entities, ontologies
can provide a single reference point. Thus, if a dataset is accompanied by a corre-
sponding ontology, this reduces the effort to get an overview of the dataset which
in turn helps to maintain or extend the data in a way that it stays consistent and
at high quality. In this case, the expressivity of ontologies, which is exceeding
those of relational schemas by far, proves to be beneficial since it allows to for-
malize even more complex structures. Furthermore, the generation of expressive
ontologies provides additional value on its own since it can be used for performing
inference on the data bringing Linked Data one step further towards the overall
idea of the Semantic Web.

1.1 Research Questions

As already sketched in the preceding motivation, we are investigating error detec-
tion methods for Linked Data, concentrating on errors in the logical structure and
links of a dataset as well as on the correctness of numerical values contained in the
dataset. For the first aspect we employ ontologies that describe the datasets to de-
tect potential errors by looking for logical contradiction occurring when consider-
ing both ontology and data. Although many Linked Data datasets are accompanied
by an ontology, these are typically very lightweight. In particular, they most often
do not contain those kinds of axioms that are required to cause contradictions like
negation. Thus, we cannot directly use these ontologies. Instead, we first have to
enrich them with the required axiom types. For this purpose, we first discuss and
investigate the following research question.

(RQ1) Which types of constructs can be learned from given instance data?

When learning axioms automatically, the achieved correctness can be assumed
to be lower than for manually engineered axioms. Thus, the probability of in-
troducing logical errors into the learned ontology is high and to draw the most
advantage of ontologies, such errors should be recognized and fixed. Potentially,
the inclusion of humans into this process is also worthwhile since this carries the
promise of better results. This is particularly important when using the ontologies
for documentation purposes because in this case high quality ontologies are even
more desirable to actually reach the goal of guiding collaborators into producing
high quality data. Learned ontologies of high expressivity are a special case since
they do not follow the same paradigms as manually created ones. Thus, there is
further investigation required on how to detect and handle errors in such ontologies
properly.

6 CHAPTER 1. INTRODUCTION

(RQ2) What are suitable ways to debug and repair highly expressive, learned
ontologies? Which of these ways qualifies best for including humans into the
process?

Up until this point, we concentrated on enriching or learning the ontology and
ensuring its quality which is particularly important when using the ontology for
documentation purposes. As described above, we also apply the ontology for the
actual error detection in the dataset which leads us to the next question.

(RQ3) Are learned ontologies suited for being used to detect errors in Linked
Data datasets?

In this context, the influence of the ontologies’ coherence, i.e., the satisfiabil-
ity of all contained classes and properties, on the error detection in Linked Data
datasets is highly interesting given our previous investigations on the debugging of
the learned ontologies.

(RQ4) How does the coherence of learned ontologies influence the results
when using them for detecting errors in Linked Data?

Finally, we also examine another level of correctness of Linked Data. Even
though links in Linked Data are a fundamental building block, literal data also
carries important information. This data can also suffer from errors, e.g., caused
by parsing problems during the extraction from a source dataset. Thus, for making
Linked Data more useful, the correctness of literal values is also important. In our
work, we concentrate on the correctness of numerical values.

(RQ5) How can we detect errors in numerical value of a Linked Data dataset?

1.2 Reader’s Guide

In this work, we roughly follow the structure already outlined in the research ques-
tions. After completing this motivation, we first introduce the basic notions re-
quired for the remainder of this work in Chapter 2. This includes the definition
of Description Logic as foundation of the semantics in the Semantic Web as well
as a short description of the Web Ontology Language OWL used for representing
expressive ontologies. The introduction of Semantic Web-specific notions is com-
pleted by overviews on the Resource Description Framework (RDF), the idea of
Linked Data and DBpedia as one of the most central dataset in Linked Data.

This is followed by the first part of this work which deals with inductively
learning expressive ontologies. It is preluded by considerations on the possibil-
ities to learn OWL data from instance data in Chapter 3 which also introduces
the basics for learning ontologies from instance data: Association rule mining and
statistical schema induction. In the following Chapter 4 we describe appropriate
related work. Then, in Chapter 5, we examine different inductive approaches for

1.2. READER’S GUIDE 7

generating class disjointness from the instances contained in Linked Data datasets.
We introduce a correlation-based method and two strategies using the concept of
association rule mining and experimentally evaluate these methods. For this eval-
uation, we manually craft a class disjointness gold standard for the DBpedia 3.7
ontology on whose creation we give further details. Moreover, we compare one of
the inductive approaches to a state-of-the-art supervised method for learning class
disjointness.

In Chapter 6, we are again picking up association rule mining and propose
ways of generating a number of additional axioms types. In particular, we cover
the property axioms introduced with the second version of the OWL ontology lan-
guage. The generated axioms are evaluated two-fold: by ontology engineering
experts and by laymen using crowd-sourcing. This also enables us to get some
insights into the complexity of working with the newly expressable axiom types.

To tackle the problem of detecting errors in learned ontologies, we rely on
explanations for the problems existing in an ontology so that we can fix these. Cur-
rently existing approaches have difficulties in providing us explanations for our
expressive learned ontologies. Thus, in Chapter 7, we implement the generation of
explanations using rules specifically crafted to support the expressivity and char-
acteristics of ontologies created by our learning approaches.

Based on these explanations, we explore different ways of finding sets of ax-
ioms whose removal makes the ontology coherent again in Chapter 8. For this pur-
pose, we consider different types of greedy methods as well as approaches based
on Markov Logic.

In Chapter 9, we perform the final steps regarding the correctness of links in
Linked Data. We perform experiments to detect contradictions arising from the
combination of the different enriched ontologies and the actual dataset. Then, the
results are manually evaluated regarding whether they point to actual errors in the
dataset. This allows us to assess how well the detection of errors works based on
learned ontologies.

Afterwards,we shift our focus from logical errors in Linked Data over to erro-
neous literal values in the dataset and propose an approach for efficiently detecting
errors in numerical values. For this purpose, we use outlier detection whose foun-
dations are introduced in Chapter 10. Afterwards, in Chapter 11, we introduce
ways of discovering relevant subsets of values to perform outlier detection on as
well as a way of avoiding problems otherwise introduced by extraordinary but cor-
rect values.

Finally, in Chapter 12, we conclude this work by summarizing the main find-
ings, particularly regarding the research questions and also point out directions for
future work.

Chapter 2

Foundations

In this chapter, we give an introduction into the basics required for understanding
all approaches and experiments presented later in this work. First, we present the
basic notions of description logics, which are the formal underpinnings of knowl-
edge representation and inference in the Semantic Web, and of ontologies which
are relying on Description Logics. Afterwards, we give a short introduction into
RDF as well as into the principles of Linked Data. For the latter, we especially
highlight the DBpedia dataset.

2.1 Description Logics and Ontologies

Description Logics provide the formal background for the most popular knowledge
representation languages used in the Semantic Web. Even though they are less
expressive than first-order logic, description logics are preferred in these scenarios
because there are efficient reasoning procedures which are important for the usage
in real-world use cases. In the context of the Semantic Web, description logics of
different expressivity are used. One of the most basic description logics is called
ALC. In the following, we will introduceALC as an example of a description logic
and later-on extend this definition towards the additional expressivity provided by,
e.g., OWL 2. Our definitions of syntax and semantics are based on those given by
Baader [8] and Baader et al. [9].

The fundamental building blocks available in Description Logics are sets of
names for atomic classes1 and atomic properties.2 The relevant description logic
then provides a set of constructors that are used to define more complex descrip-
tions recursively. For ALC this leads to the following definition of class descrip-
tions.

Definition 1. Let NC be a set of class names and NP a set of property names.
Furthermore, let there be the atomic classes > and ⊥ called top and bottom class

1Classes are commonly also referred to as concepts.
2Sometimes also called roles or relations.

8

2.1. DESCRIPTION LOGICS AND ONTOLOGIES 9

respectively. The set of possible class descriptions in ALC is defined as follows:

• all class names inNC ,> and⊥ are class descriptions (called atomic classes),

• if C and D are class descriptions then C t D (called disjunction), C u D
(called conjunction) and ¬C (called complement) are class descriptions, and

• if C is a class description and P is a property name from NP then ∃P.C
(called existential restriction) and ∀P.C (called universal restriction) are
class descriptions.

We call all class descriptions that are not atomic classes complex class descrip-
tions.

By using this definition, we are able to generate all class descriptions possi-
ble in ALC. The semantics of these class descriptions are defined using model-
theoretic semantics by means of an interpretation.

Definition 2. An interpretation is a pair I = (∆I , ·I) consisting of the domain
∆I which is a non-empty set and an interpretation function ·I which maps each
class name A ∈ NC to a set AI ⊆ ∆I and each property name P ∈ NP to a set
P I ⊆ ∆I ×∆I .

For non-atomic class descriptions, we define:

• for class descriptions C and D:
(C tD)I = CI ∪DI , (C uD)I = CI ∩DI and (¬C)I = ∆I \ CI and

• for a class description C and a property name P ∈ NP :
(∃P.C)I = {i ∈ ∆I |∃b ∈ CI : (i, b) ∈ P I} resp.
(∀P.C)I = {i ∈ ∆I |∀b ∈ ∆I : (i, b) ∈ P I ⇒ b ∈ CI}

Furthermore, the top class > is mapped to ∆I while the bottom class ⊥ is
equivalent to ¬>.

This basic description logic can already represent a great number of different
classes. Some example class descriptions are shown in the following.

Example 1. Let the named classes Human, Dog, Cat and the properties isPetOf,
hasPet and isMarriedTo be given.

• Dog u ∃isPetOf.Human: Every dog which is the pet of a human.

• Human u ∃hasPet.Dog u ¬∃isMarriedTo.>: All humans which have
a dog as a pet and are not married.

There are other description logics which partly extend the capabilities provided
by ALC and some which only share parts of the expressivity ALC provides. The

10 CHAPTER 2. FOUNDATIONS

most important ones for our work are based on ALC and only extend it by pro-
viding additional class and property constructors. Some possible extensions are
presented in the following.

Qualified number restrictions provide a way to express classes of instances that
are used with a specific property at least or at most a given number of times. They
are represented by ≥ nP.C (at-least restriction) and ≤ nP.C (at-most restric-
tion) where n ≥ 0 is a non-negative integer, P ∈ NP a role name and C a class
description. The model-theoretic interpretation of qualified number restrictions is

(≥ nP.C)I :=
{
i ∈ ∆I |#{j ∈ P I |(i, j) ∈ P I} ≥ n

}
and

(≤ nP.C)I :=
{
i ∈ ∆I |#{j ∈ P I |(i, j) ∈ P I} ≤ n

}
respectively, where #S is the cardinality of the set S. There also are so-called

number restrictions which are equivalent to the qualified ones but only allow > to
be used at the concept position, often written as ≥ nP or ≤ nP .

Similar to the constructors provided for classes, there is a number of construc-
tors which allow the definition of more complex property descriptions recursively
based on atomic property descriptions. These are not included in theALC descrip-
tion logic but only available in more expressive DL variants.

Definition 3. Let NP be a set of property names. The set of possible property
descriptions is defined as follows:

• all property names in NP (called atomic properties) are property descrip-
tions,

• U is a property description called the universal property,

• if P is a property description then ¬P (called property complement) is a
property description,

• if P is a property description, P−1 is a property description called inverse
property to P ,

• if P and R are property descriptions, P ◦ R is a property description called
property chain

As for class descriptions, we define the semantics of property descriptions
based on set theory by means of an interpretation function.

Definition 4. Let an interpretation I = (∆I , ·I) as defined in Definition 2 be
given. For non-atomic property descriptions, we extend the interpretation function
·I as follows:

• (U)I = ∆I ×∆I ,

2.1. DESCRIPTION LOGICS AND ONTOLOGIES 11

• for property description P and R:
(¬P)I = (∆I ×∆I) \ P I

• for a property description R:
(P−1)I = {(b, a) | (a, b) ∈ P I}

• for property descriptions P and R:
(P ◦R)I = {(a, c) | a, c ∈ ∆I ∧ ∃b ∈ ∆I : (a, b) ∈ P I ∧ (b, c) ∈ RI}

Complementary to the complex class descriptions, we can use complex prop-
erty descriptions to cover various real-world relations between entities based on
other already existing property descriptions like in the following example.

Example 2. Let property names hasParent and isBrotherOf be given.

• Starting from the hasParent property, we can express that someone is a
parent of someone by using the inverse hasParent−1 which is the equiva-
lent to a property which could be named isParentOf.

• Using property chains, we can express the property of having an uncle as
hasParent ◦ isBrotherOf.

Given the different constructors of Description Logics as described before, it
is possible to define the actual notion of ontologies. Ontologies are commonly
divided into two parts: TBox and ABox. The TBox contains the terminological
knowledge, i.e., it describes the different classes, properties and their relations be-
tween each other. The relations between different classes or different properties
are defined by means of axioms as introduced in the following definition.

Definition 5. Given class descriptions C and D and property descriptions P and
Q, an axiom is given by

• C ≡ D and C v D (class equivalence axiom and class inclusion axiom) or

• P ≡ Q and P v Q (property equivalence axiom and property inclusion
axiom)

A finite set of axioms is called TBox.

In contrast to the TBox, the ABox as second part of an ontology contains the
assertional knowledge about named instances in the ontology.

Definition 6. Let a class description C, a property description P and a, b ∈ NI be
given. An individual assertion is either C(a) or R(a, b). An ABox is a finite set of
individual assertions.

An interpretation (∆I , ·I) maps each instance name a ∈ NI to an element of
the domain aI ∈ ∆I .

An ontology is fully defined by its TBox T and its ABox A.

12 CHAPTER 2. FOUNDATIONS

Since we now have all notions defined which are required for building an on-
tology, we need to define the semantics of an ontology based on the contents of its
TBox and ABox. This is done on a per axiom level and leads to the definition of
models of ontologies which are the main notion regarding ontology semantics.

Definition 7. Let C,D be class descriptions, P,Q property descriptions and a, b ∈
NI instance names. An interpretation (∆I , ·I) satisfies an axiom

• C v D iff CI ⊆ DI ,

• C ≡ D iff CI = DI ,

• P v Q iff P I ⊆ QI and

• P ≡ Q iff P I = QI .

Furthermore, an interpretation (∆I , ·I) satisfies the individual assertions

• C(a) iff aI ∈ CI and

• P (a, b) iff (aI , bI) ∈ P I

An interpretation is called a model of a TBox T if it satisfies each axioms in T .
An interpretation is a model of an ABoxA if it satisfies all individual assertions of
A. An interpretation (∆I , ·I) is a model of an ontologyO with TBox T and ABox
A if it is a model of both T and A.

It is obviously possible to define ontologies that have no models. For example,
an ontology only consisting of the axioms A v ¬B and A v B as well as the
individual assertion A(x) cannot have a model. This is easily visible from the fact
that the only interpretation which satisfies both axioms would assign the empty set
to the classes A and B, i.e., AI = ∅ and BI = ∅. However, this interpretation
would not satisfy the individual assertion since there is no element in A to which
the interpretation function could map x. Thus, there cannot be a model for this
ontology. This is formalized by the following definition.

Definition 8. A TBox T is satisfiable iff there is a model for T .
An ontology O is satisfiable or consistent iff there is a model for O otherwise

we call O unsatisfiable or inconsistent.
A class C in a TBox T is called satisfiable if there exists a model I of T with

CI 6= ∅. Likewise, a property P in a TBox T is called satisfiable if there exists a
model I of T with P I 6= ∅.

An ontology is incoherent if it contains unsatisfiable classes or properties.

A combination of these class and property constructors already allows us to
express many characteristics. However, for properties there are some additional
characteristics that can be assigned using so-called property assertions. We model
these statements according to Horrocks et al. [52].

2.1. DESCRIPTION LOGICS AND ONTOLOGIES 13

Definition 9. For property names P,R ∈ NP with P,R 6= U , we call the fol-
lowing assertions property assertions. For each property assertion, we provide the
restrictions they impose for an interpretation (∆I , ·I) and for all x, y, z ∈ ∆I

• Property Symmetry: if Sym(P) then (x, y) ∈ P I implies (y, x) ∈ P I ,

• Property Asymmetry: if Asym(P) then (x, y) ∈ P I implies (y, x) /∈ P I ,

• Property Transitivity: if Tra(P) then (x, y) ∈ P I ∧ (y, z) ∈ P I implies
(x, z) ∈ P I ,

• Property Reflexivity: if Ref(P) then (x, x) ∈ P I ,

• Property Irreflexivity: if Irr(P) then (x, x) /∈ P I ,

• Property Disjointness: if Dis(P,R) then (x, y) ∈ P I implies (x, y) /∈ RI .

• Property Functionality: if Fun(P) then (x, y) ∈ P I ∧ (x, z) ∈ P I implies
y = z

• Property Inverse Functionality: if InvFun(P) then (y, x) ∈ P I ∧ (z, x) ∈
P I implies y = z

Property symmetry, transitivity and disjointness are also expressible by ap-
plying the property constructors introduced before, i.e., Sym(P) is equivalent to
P v P−1, Tra(P) to P ◦P v P and Dis(P,R) can also be expressed by P v ¬R.
For these statements, the corresponding property assertions have been introduced
to constrain the expressivity to certain patterns. However, in this work, we merely
list the property assertion syntax for the matter of completeness.

One reason for using description logic as foundation of ontologies is that it
provides a way of formally deducing implicit knowledge from a knowledge base.
This process is called reasoning or inference and is formally defined on the level
of assertions as follows.

Definition 10. Given an ontology O, an assertion α is entailed by O (written as
O |= α) if every model of O also satisfies α.

Thus, it can be checked whether a given assertion can be inferred from the
ontology. To perform inference on the level of terminological axioms, the query
is reduced to the assertional case. For example, to check whether a class C is
subsumed by a class D, i.e., C v D, the entailment of (C v D)(x) is checked for
an instance x not yet contained in the ontology’s ABox.

To conclude this short introduction into Description Logic, we demonstrate the
constructs defined above in the following example ontology.

14 CHAPTER 2. FOUNDATIONS

Example 3. We first introduce the TBox of the ontology as follows.

Man v Human (2.1)

Woman v Human (2.2)

Dog v ¬Human (2.3)

> v ∀hasSister.Woman (2.4)

∃knows.> v Human (2.5)

hasSister v hasSibling (2.6)

hasChild v ¬hasParent (2.7)

hasChild ≡ hasParent−1 (2.8)

hasParent ◦ hasDaughter v hasSister (2.9)

Tra(hasAncestor) (2.10)

Ref(knows) (2.11)

Irr(hasParent) (2.12)

Here, we state that each man as well as each woman is a human (2.1, 2.2) but
that dogs are not humans (2.3). The next two axioms define that the relation of hav-
ing a sister can only hold to women (2.4) and that only humans can know someone
(2.5). After these class-related axioms, we introduce a number of property axioms.
First, we say that having a sister means having a sibling (2.6) and that children
cannot be parents of their parents (2.7). Rather, we say that when someone has a
child, this person is the child’s parent (2.8). In 2.9, the relation of being a sister is
defined to hold to all people which are daughters of the same parents. Finally, we
express that the ancestor of a person’s ancestor is also his ancestor (2.10), everyone
knows himself (2.11) and that nobody can be his own parent (2.12).

All classes provided here are satisfiable as are all properties. Nevertheless,
the axiom SuperDog v Dog u Human would introduce the unsatisfiable class
SuperDog and thus render the ontology incoherent.

We could extend the ABox of this ontology by assertions like Man(Peter),
knows(Peter) or hasSister(Peter, Andrea) which would all adhere to the
defined axioms. Adding the individual assertion

hasChild(MartyMcFly, MartyMcFly)

which shows a potential problem for time travelers like Marty McFly,3 however,
would lead to an inconsistent ontology since axiom 2.8 would imply that

hasParent(MartyMcFly, MartyMcFly)

also holds and thus 2.7 could not be satisfied.

3http://en.wikipedia.org/wiki/Marty_McFly

http://en.wikipedia.org/wiki/Marty_McFly

2.1. DESCRIPTION LOGICS AND ONTOLOGIES 15

Description logics are categorized by their expressivity, i.e., by the different
axiom types they provide and the restrictions to the syntactic structure they require
for specific axioms and constructors. To identify these different logics, there is a
naming schema based on letters each of which represents a specific capability of
the description logic as shown in Table 2.1. This table has been compiled from
Baader et al. [11], Horrocks and Sattler [53] and Horrocks et al. [54]. According
to this categorization, the Web Ontology Language OWL DL [70] is based on the
Description Logic SHOIN (D) and on SROIQ(D) in the more current version
OWL 2 [51].

Table 2.1: Naming convention for description logics used to describe logic capa-
bilities. A denotes an atomic class, C,D denote potentially complex class descrip-
tions, P,R denote properties.

Letter Supported Examples
AL atomic concepts, atomic nega-

tion, intersection, value restric-
tion, limited existential quantifi-
cation

A, ¬A, A u C, ∀R.C, ∃R.>

S ALC with transitive roles Tra(R)

U Union of concepts C tD
E Full existential quantification ∃R.C
N Number restrictions ≥ nR, ≤ nR
Q Qualifying number restrictions ≥ nR.C, ≤ nR.C
C Negation of arbitrary concepts ¬C
I Inverse property R−1

H Property hierarchy R v P
R Limited complex (regular) role

inclusion, reflexivity, irreflexiv-
ity, role disjointness

P ◦ R v R, Ref(R), Irr(R),
Dis(P,R) resp. P v ¬R

O Nominals {a, b, c}
(D) Data extensions R(a, “Name”)

16 CHAPTER 2. FOUNDATIONS

2.2 RDF and Linked Data

Given the foundations provided by description logic, the actual base of the Seman-
tic Web is formed by its standards as defined by the World Wide Web Consortium
(W3C) and others. In this section, we describe the Resource Description Frame-
work, the idea of Linked Data and highlight the latter by presenting the DBpedia
dataset.

2.2.1 Resource Description Framework

The Resource Description Framework (RDF) [86] is the most regularly used way of
representing data in the Semantic Web. In general, it is a framework which provides
capabilities to describe information about resources. The notion of resources is not
limited to specific objects, instead, RDF is explicitly made for being used on all
kind of resources, e.g., documents but also people or abstract objects. Information
in RDF is represented by means of a graph structure whose most basic building
part are triples of the form (subject, predicate, object) in this context regularly
written as

< subject > < predicate > < object > (2.13)

Such a triple can be used to state a relationship of the type predicate to hold
between the resources subject and object. This relationship, which is called prop-
erty in RDF, is defined directionally from subject to object.

Hence, each of these statements forms a directed graph consisting of two nodes,
formed by subject and object, and a typed directed edge connecting both nodes. By
adding more triples that have the same resource as subject, more outgoing edges
are added to the subject node which results in the categorization of RDF being a
graph-based model. Through extending the set of statements with statements about
resources used somewhere else as object a larger, connected graph arises as shown
in the upper left part of Figure 2.1. Nevertheless, there is no need for defining fully
connected graphs.

res1 res2

res3 res4

"literal"
p1

p2

p1

p1

p3

p4

Figure 2.1: Graph structure formed by RDF statements

2.2. RDF AND LINKED DATA 17

There are three general data types which can occur in an RDF triple. The
first type is an International Resource Identifier (IRI) which can be used in all
three positions: subject, object and predicate. IRIs are used throughout RDF and
the Semantic Web in general to uniquely identify resources. Being a generaliza-
tion of the Unified Resource Identifier (URI), URIs as http://example.com/
resource1 are valid IRIs as are all other strings satisfying the generic URI syn-
tax like tel:+491234567. RDF also allows relative IRIs to be used for identi-
fication of resources as long as it is clearly defined on which base IRI the relative
one has to be resolved. Literals as a second data type are only allowed at the object
position of a triple since they present raw data such as numbers or strings that lead
to a leaf node in the graph. They can be accompanied by a language tag which
allows to define the language they are specified in. The third type of nodes are
so-called blank nodes which are not identified by global name but merely take the
role of variables used to make statements about something not further specified in
an RDF graph without explicitly naming it. As the name implies, they can only be
used as nodes and thus are allowed at subject and object position.

There are several ways defined regarding how to serialize the graph formed by
using RDF into textual formats. This includes serializations into the XML format
which is the format most commonly used in practical applications. Since this XML
serialization introduces large amounts of textual redundancy, we will not use it in
this work. Instead, when having to state RDF graphs textually, we will resort to the
Turtle format [13] which uses triples similar to the one shown in 2.13 for textual
representation combined with some syntactical extensions for shortening the result.
A serialization in Turtle of a graph structure as shown in Figure 2.1 is given in
Listing 2.1.

Listing 2.1: Turtle representation of graph structure shown in Figure 2.1
@base <http://example.com/data#> .
@prefix preds: <http://example.com/predicates#> .
<#res1> preds:p1 <#res2>.
<#res1> preds:p1 <#res1>.
<#res2> preds:p1 <#res3>.
<#res1> preds:p2 <#res3>.
<#res4> preds:p3 <#res4>.
<#res2> preds:p4 "literal".

2.2.2 Linked Data

Based on the general idea of the Semantic Web and the RDF format, Tim Berners-
Lee coined the notion of Linked Data in 2006 [14]. He envisioned a network of
data repositories which are interlinked by means of typed links like RDF predicates
referring from resources in one repository to those from another repository. To fos-
ter this vision, Berners-Lee outlined four rules, known as Linked Data Principles

http://example.com/resource1
http://example.com/resource1
tel:+49 123 4567

18 CHAPTER 2. FOUNDATIONS

which qualify data as Linked Data.

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the stan-
dards.

4. Include links to other URIs, so that they can discover more things.

All of these principles aim at having data available in the Semantic Web for
automatic consumption very similar to data in the Web available for human con-
sumption. They promise the accessibility and discoverability of the data by means
of Web technologies. Consequently, Linked Data is especially positioned in con-
trast to so-called data silos where the information stored by some data provider is
only available by means of (proprietary) Web APIs without any links to data of
other providers.

The success of the idea of Linked Data is especially visible when having a look
at Linked Open Data (LOD) cloud as shown in Figure 2.2.4 Though containing
only datasets released under an open license, it consists of almost 300 datasets
interlinked to at least one other datasets in the LOD cloud.

Linked Datasets as of August 2014

Uniprot

Alexandria
Digital Library

Gazetteer

lobid
Organizations

chem2
bio2rdf

Multimedia
Lab University

Ghent

Open Data
Ecuador

Geo
Ecuador

Serendipity

UTPL
LOD

GovAgriBus
Denmark

DBpedia
live

URI
Burner

Identifiers

Eionet
RDF

lobid
Resources

Wiktionary
DBpedia

Viaf

Umthes

RKB
Explorer

Courseware

Opencyc

Olia

Gem.
Thesaurus

Audiovisuele
Archieven

Diseasome
FU-Berlin

Eurovoc
in

SKOS

DNB
GND

Cornetto

Bio2RDF
Pubmed

Bio2RDF
NDC

Bio2RDF
Mesh

IDS

Ontos
News
Portal

AEMET

ineverycrea

Linked
User

Feedback

Museos
Espania
GNOSS

Europeana

Nomenclator
Asturias

Red Uno
Internacional

GNOSS

Geo
Wordnet

Bio2RDF
HGNC

Ctic
Public

Dataset

Bio2RDF
Homologene

Bio2RDF
Affymetrix

Muninn
World War I

CKAN

Government
Web Integration

for
Linked
Data

Universidad
de Cuenca
Linkeddata

Freebase

Linklion

Ariadne

Organic
Edunet

Gene
Expression
Atlas RDF

Chembl
RDF

Biosamples
RDF

Identifiers
Org

Biomodels
RDF

Reactome
RDF

Disgenet

Semantic
Quran

IATI as
Linked Data

Dutch
Ships and

Sailors

Verrijktkoninkrijk

IServe

Arago-
dbpedia

Linked
TCGA

ABS
270a.info

RDF
License

Environmental
Applications

Reference
Thesaurus

Thist

JudaicaLink

BPR

OCD

Shoah
Victims
Names

Reload

Data for
Tourists in

Castilla y Leon

2001
Spanish
Census
to RDF

RKB
Explorer

Webscience

RKB
Explorer
Eprints
Harvest

NVS

EU Agencies
Bodies

EPO

Linked
NUTS

RKB
Explorer

Epsrc

Open
Mobile

Network

RKB
Explorer
Lisbon

RKB
Explorer

Italy

CE4R

Environment
Agency

Bathing Water
Quality

RKB
Explorer
Kaunas

Open
Data

Thesaurus

RKB
Explorer
Wordnet

RKB
Explorer

ECS

Austrian
Ski

Racers

Social-
semweb

Thesaurus

Data
Open
Ac Uk

RKB
Explorer

IEEE

RKB
Explorer

LAAS

RKB
Explorer

Wiki

RKB
Explorer

JISC

RKB
Explorer
Eprints

RKB
Explorer

Pisa

RKB
Explorer

Darmstadt

RKB
Explorer
unlocode

RKB
Explorer

Newcastle

RKB
Explorer

OS

RKB
Explorer

Curriculum

RKB
Explorer

Resex

RKB
Explorer

Roma

RKB
Explorer
Eurecom

RKB
Explorer

IBM

RKB
Explorer

NSF

RKB
Explorer

kisti

RKB
Explorer

DBLP

RKB
Explorer

ACM

RKB
Explorer
Citeseer

RKB
Explorer

Southampton

RKB
Explorer
Deepblue

RKB
Explorer
Deploy

RKB
Explorer

Risks

RKB
Explorer

ERA

RKB
Explorer

OAI

RKB
Explorer

FT

RKB
Explorer

Ulm

RKB
Explorer

Irit

RKB
Explorer
RAE2001

RKB
Explorer

Dotac

RKB
Explorer
Budapest

Swedish
Open Cultural

Heritage

Radatana

Courts
Thesaurus

German
Labor Law
Thesaurus

GovUK
Transport

Data

GovUK
Education

Data

Enakting
Mortality

Enakting
Energy

Enakting
Crime

Enakting
Population

Enakting
CO2Emission

Enakting
NHS

RKB
Explorer

Crime

RKB
Explorer
cordis

Govtrack

Geological
Survey of

Austria
Thesaurus

Geo
Linked
Data

Gesis
Thesoz

Bio2RDF
Pharmgkb

Bio2RDF
SabiorkBio2RDF

Ncbigene

Bio2RDF
Irefindex

Bio2RDF
Iproclass

Bio2RDF
GOA

Bio2RDF
Drugbank

Bio2RDF
CTD

Bio2RDF
Biomodels

Bio2RDF
DBSNP

Bio2RDF
Clinicaltrials

Bio2RDF
LSR

Bio2RDF
Orphanet

Bio2RDF
Wormbase

BIS
270a.info

DM2E

DBpedia
PT

DBpedia
ES

DBpedia
CS

DBnary

Alpino
RDF

YAGO

Pdev
Lemon

Lemonuby

Isocat

Ietflang

Core

KUPKB

Getty
AAT

Semantic
Web

Journal

OpenlinkSW
Dataspaces

MyOpenlink
Dataspaces

Jugem

Typepad

Aspire
Harper
Adams

NBN
Resolving

Worldcat

Bio2RDF

Bio2RDF
ECO

Taxon-
concept
Assets

Indymedia

GovUK
Societal

Wellbeing
Deprivation imd

Employment
Rank La 2010

GNU
Licenses

Greek
Wordnet

DBpedia

CIPFA

Yso.fi
Allars

Glottolog

StatusNet
Bonifaz

StatusNet
shnoulle

Revyu

StatusNet
Kathryl

Charging
Stations

Aspire
UCL

Tekord

Didactalia

Artenue
Vosmedios

GNOSS

Linked
Crunchbase

ESD
Standards

VIVO
University
of Florida

Bio2RDF
SGD

Resources

Product
Ontology

Datos
Bne.es

StatusNet
Mrblog

Bio2RDF
Dataset

EUNIS

GovUK
Housing
Market

LCSH

GovUK
Transparency
Impact ind.
Households

In temp.
Accom.

Uniprot
KB

StatusNet
Timttmy

Semantic
Web

Grundlagen

GovUK
Input ind.

Local Authority
Funding From
Government

Grant

StatusNet
Fcestrada

JITA

StatusNet
Somsants

StatusNet
Ilikefreedom

Drugbank
FU-Berlin

Semanlink

StatusNet
Dtdns

StatusNet
Status.net

DCS
Sheffield

Athelia
RFID

StatusNet
Tekk

Lista
Encabeza
Mientos
Materia

StatusNet
Fragdev

Morelab

DBTune
John Peel
Sessions

RDFize
last.fm

Open
Data

Euskadi

GovUK
Transparency

Input ind.
Local auth.
Funding f.

Gvmnt. Grant

MSC

Lexinfo

StatusNet
Equestriarp

Asn.us

GovUK
Societal

Wellbeing
Deprivation Imd
Health Rank la

2010

StatusNet
Macno

Oceandrilling
Borehole

Aspire
Qmul

GovUK
Impact

Indicators
Planning

Applications
Granted

Loius

Datahub.io

StatusNet
Maymay

Prospects
and

Trends
GNOSS

GovUK
Transparency

Impact Indicators
Energy Efficiency

new Builds

DBpedia
EU

Bio2RDF
Taxon

StatusNet
Tschlotfeldt

Jamendo
DBTune

Aspire
NTU

GovUK
Societal

Wellbeing
Deprivation Imd

Health Score
2010

Lotico
GNOSS

Uniprot
Metadata

Linked
Eurostat

Aspire
Sussex

Lexvo

Linked
Geo
Data

StatusNet
Spip

SORS

GovUK
Homeless-

ness
Accept. per

1000

TWC
IEEEvis

Aspire
Brunel

PlanetData
Project

Wiki

StatusNet
Freelish

Statistics
data.gov.uk

StatusNet
Mulestable

Enipedia

UK
Legislation

API

Linked
MDB

StatusNet
Qth

Sider
FU-Berlin

DBpedia
DE

GovUK
Households

Social lettings
General Needs

Lettings Prp
Number

Bedrooms

Agrovoc
Skos

My
Experiment

Proyecto
Apadrina

GovUK
Imd Crime
Rank 2010

SISVU

GovUK
Societal

Wellbeing
Deprivation Imd
Housing Rank la

2010

StatusNet
Uni

Siegen

Opendata
Scotland Simd

Education
Rank

StatusNet
Kaimi

GovUK
Households

Accommodated
per 1000

StatusNet
Planetlibre

DBpedia
EL

Sztaki
LOD

DBpedia
Lite

Drug
Interaction
Knowledge

Base
StatusNet

Qdnx

Amsterdam
Museum

AS EDN LOD

RDF
Ohloh

DBTune
artists
last.fm

Aspire
Uclan

Hellenic
Fire Brigade

Bibsonomy

Nottingham
Trent

Resource
Lists

Opendata
Scotland Simd
Income Rank

Randomness
Guide

London

Opendata
Scotland

Simd Health
Rank

Southampton
ECS Eprints

FRB
270a.info

StatusNet
Sebseb01

StatusNet
Bka

ESD
Toolkit

Hellenic
Police

StatusNet
Ced117

Open
Energy

Info Wiki

StatusNet
Lydiastench

Open
Data
RISP

Taxon-
concept

Occurences

Bio2RDF
SGD

UIS
270a.info

NYTimes
Linked Open

Data

Aspire
Keele

GovUK
Households
Projections
Population

W3C

Opendata
Scotland

Simd Housing
Rank

ZDB

StatusNet
1w6

StatusNet
Alexandre

Franke

Dewey
Decimal

Classification

StatusNet
Status

StatusNet
doomicile

Currency
Designators

StatusNet
Hiico

Linked
Edgar

GovUK
Households

2008

DOI

StatusNet
Pandaid

Brazilian
Politicians

NHS
Jargon

Theses.fr

Linked
Life
Data

Semantic Web
DogFood

UMBEL

Openly
Local

StatusNet
Ssweeny

Linked
Food

Interactive
Maps

GNOSS

OECD
270a.info

Sudoc.fr

Green
Competitive-

ness
GNOSS

StatusNet
Integralblue

WOLD

Linked
Stock
Index

Apache

KDATA

Linked
Open
Piracy

GovUK
Societal

Wellbeing
Deprv. Imd
Empl. Rank

La 2010

BBC
Music

StatusNet
Quitter

StatusNet
Scoffoni

Open
Election

Data
Project

Reference
data.gov.uk

StatusNet
Jonkman

Project
Gutenberg
FU-BerlinDBTropes

StatusNet
Spraci

Libris

ECB
270a.info

StatusNet
Thelovebug

Icane

Greek
Administrative

Geography

Bio2RDF
OMIM

StatusNet
Orangeseeds

National
Diet Library

WEB NDL
Authorities

Uniprot
Taxonomy

DBpedia
NL

L3S
DBLP

FAO
Geopolitical

Ontology

GovUK
Impact

Indicators
Housing Starts

Deutsche
Biographie

StatusNet
ldnfai

StatusNet
Keuser

StatusNet
Russwurm

GovUK Societal
Wellbeing

Deprivation Imd
Crime Rank 2010

GovUK
Imd Income

Rank La
2010

StatusNet
Datenfahrt

StatusNet
Imirhil

Southampton
ac.uk

LOD2
Project

Wiki

DBpedia
KO

Dailymed
FU-Berlin

WALS

DBpedia
IT

StatusNet
Recit

Livejournal

StatusNet
Exdc

Elviajero

Aves3D

Open
Calais

Zaragoza
Turruta

Aspire
Manchester

Wordnet
(VU)

GovUK
Transparency

Impact Indicators
Neighbourhood

Plans

StatusNet
David

Haberthuer

B3Kat

Pub
Bielefeld

Prefix.cc

NALT

Vulnera-
pedia

GovUK
Impact

Indicators
Affordable

Housing Starts

GovUK
Wellbeing lsoa

Happy
Yesterday

Mean

Flickr
Wrappr

Yso.fi
YSA

Open
Library

Aspire
Plymouth

StatusNet
Johndrink

Water

StatusNet
Gomertronic

Tags2con
Delicious

StatusNet
tl1n

StatusNet
Progval

Testee

World
Factbook
FU-Berlin

DBpedia
JA

StatusNet
Cooleysekula

Product
DB

IMF
270a.info

StatusNet
Postblue

StatusNet
Skilledtests

Nextweb
GNOSS

Eurostat
FU-Berlin

GovUK
Households

Social Lettings
General Needs

Lettings Prp
Household

Composition

StatusNet
Fcac

DWS
Group

Opendata
Scotland

Graph
Simd Rank

DNB

Clean
Energy
Data

Reegle

Opendata
Scotland Simd
Employment

Rank

Chronicling
America

GovUK
Societal

Wellbeing
Deprivation

Imd Rank 2010

StatusNet
Belfalas

Aspire
MMU

StatusNet
Legadolibre

Bluk
BNB

StatusNet
Lebsanft

GADM
Geovocab

GovUK
Imd Score

2010

Semantic
XBRL

UK
Postcodes

Geo
Names

EEARod
Aspire

Roehampton

BFS
270a.info

Camera
Deputati
Linked
Data

Bio2RDF
GeneID

GovUK
Transparency

Impact Indicators
Planning

Applications
Granted

StatusNet
Sweetie

Belle

O'Reilly

GNI

City
Lichfield

GovUK
Imd

Rank 2010

Bible
Ontology

Idref.fr

StatusNet
Atari

Frosch

Dev8d

Nobel
Prizes

StatusNet
Soucy

Archiveshub
Linked
Data

Linked
Railway

Data
Project

FAO
270a.info

GovUK
Wellbeing

Worthwhile
Mean

Bibbase

Semantic-
web.org

British
Museum

Collection

GovUK
Dev Local
Authority
Services

Code
Haus

Lingvoj

Ordnance
Survey
Linked
Data

Wordpress

Eurostat
RDF

StatusNet
Kenzoid

GEMET

GovUK
Societal

Wellbeing
Deprv. imd
Score '10

Mis
Museos
GNOSS

GovUK
Households
Projections

total
Houseolds

StatusNet
20100

EEA

Ciard
Ring

Opendata
Scotland Graph

Education
Pupils by

School and
Datazone

VIVO
Indiana

University

Pokepedia

Transparency
270a.info

StatusNet
Glou

GovUK
Homelessness

Households
Accommodated

Temporary
Housing Types

STW
Thesaurus

for
Economics

Debian
Package
Tracking
System

DBTune
Magnatune

NUTS
Geo-
vocab

GovUK
Societal

Wellbeing
Deprivation Imd
Income Rank La

2010

BBC
Wildlife
Finder

StatusNet
Mystatus

Miguiad
Eviajes
GNOSS

Acorn
Sat

Data
Bnf.fr

GovUK
imd env.

rank 2010

StatusNet
Opensimchat

Open
Food
Facts

GovUK
Societal

Wellbeing
Deprivation Imd

Education Rank La
2010

LOD
ACBDLS

FOAF-
Profiles

StatusNet
Samnoble

GovUK
Transparency

Impact Indicators
Affordable

Housing Starts

StatusNet
CoreyavisEnel

Shops

DBpedia
FR

StatusNet
Rainbowdash

StatusNet
Mamalibre

Princeton
Library

Findingaids

WWW
Foundation

Bio2RDF
OMIM

Resources

Opendata
Scotland Simd

Geographic
Access Rank

Gutenberg

StatusNet
Otbm

ODCL
SOA

StatusNet
Ourcoffs

Colinda

Web
Nmasuno
Traveler

StatusNet
Hackerposse

LOV

Garnica
Plywood

GovUK
wellb. happy

yesterday
std. dev.

StatusNet
Ludost

BBC
Program-

mes

GovUK
Societal

Wellbeing
Deprivation Imd

Environment
Rank 2010

Bio2RDF
Taxonomy

Worldbank
270a.info

OSM

DBTune
Music-
brainz

Linked
Mark
Mail

StatusNet
Deuxpi

GovUK
Transparency

Impact
Indicators

Housing Starts

Bizkai
Sense

GovUK
impact

indicators energy
efficiency new

builds

StatusNet
Morphtown

GovUK
Transparency

Input indicators
Local authorities

Working w. tr.
Families

ISO 639
Oasis

Aspire
Portsmouth

Zaragoza
Datos

Abiertos
Opendata
Scotland

Simd
Crime Rank

Berlios

StatusNet
piana

GovUK
Net Add.
Dwellings

Bootsnall

StatusNet
chromic

Geospecies

linkedct

Wordnet
(W3C)

StatusNet
thornton2

StatusNet
mkuttner

StatusNet
linuxwrangling

Eurostat
Linked
Data

GovUK
societal

wellbeing
deprv. imd

rank '07

GovUK
societal

wellbeing
deprv. imd
rank la '10

Linked
Open Data

of
Ecology

StatusNet
chickenkiller

StatusNet
gegeweb

Deusto
Tech

StatusNet
schiessle

GovUK
transparency

impact
indicators
tr. families

Taxon
concept

GovUK
service

expenditure

GovUK
societal

wellbeing
deprivation imd

employment
score 2010

Figure 2.2: Linked Open Data cloud as of August 2014

The Linked Open Data cloud encompasses many different fields reaching from
bibliographic and geographical data over medical datasets to census data and other

4Linking Open Data cloud diagram 2014, by Max Schmachtenberg, Christian Bizer, Anja
Jentzsch and Richard Cyganiak. http://lod-cloud.net/

2.2. RDF AND LINKED DATA 19

datasets provided by governments in the process of increasing transparency. This
particularly shows that the idea of Linked Data not only compelled computer scien-
tists but also prople from other areas in which large amounts of data are managed.
Thus, the LOD cloud covers a wide range of different domains.

To access these datasets, there are three ways commonly provided by the repos-
itories constituting the LOD cloud. The technically simplest one is the provision
as RDF dumps which are files containing the triples of the dataset’s serialized RDF
graph. A second option for publication is to provide an interface based on SPARQL
(SPARQL Protocol and RDF Query Language) [48]. This querying language de-
fines constructs allowing to traverse the RDF graph for specifying and retrieving
parts of its data similar to what the SQL query language does for relational data
models. The third option is to allow RDF crawling of the data, i.e., the repository
provides descriptions for all its entities. For these descriptions, there is a central
entry point from which the full dataset can be traversed by successively following
internal links between entities until all entities have been visited. It is worth to note
that for the former two publishing options, RDF dumps and SPARQL endpoint, it
is also required to provide dereferencable URIs to actually conform to the Linked
Data principles.

2.2.3 DBpedia

In the diagram of the LOD cloud shown in Figure 2.2, the DBpedia [66] dataset
stands out for being central and one of the most highly interconnected datasets re-
garding the number of other datasets linked to it. Like many of the major LOD
datasets, DBpedia is not manually created and maintained in its Linked Data vari-
ant. Instead, it is extracted from the Wikipedia infoboxes which are the boxes
visible on the right side of many Wikipedia articles.

Infoboxes are created from so-called infobox templates that are defined for spe-
cific types of entities commonly described in Wikipedia. The templates define a
number of attributes which are typically used for the type of entity. Apart from that,
the template also determine the information’s representation on the final Wikipedia
article page to foster a more unified look of Wikipedia articles. For example, the
code shown in Listing 2.2 defines some of the most relevant information about Tim
Berners-Lee. It uses the infobox template for entities of the type person which pro-
vides fields to enter information like the name, birth data, parents and occupation
but also less often used fields like honorific suffix whose use in an instantiation of
a template is optional.

Included in the Wikipedia article’s source code, this infobox code is then ren-
dered as shown in Figure 2.3 where, for example, the given image is used to depict
the person and the provided birth data is employed to compute Tim Berners-Lee’s
current age while the information about birth place and the birth name are used to
enrich it.

An important aspect of infoboxes is that the templates do not enforce certain
data types for their entries thus the authors of articles are free to provide all data

20 CHAPTER 2. FOUNDATIONS

Listing 2.2: Excerpt of the infobox code for the Wikipedia page of Tim Berners-
Lee
{{Infobox person
| honorific_prefix =
| name = Sir Tim Berners-Lee
| honorific_suffix =
| image = Tim Berners-Lee 2012.jpg
| caption = Berners-Lee in 2012
| birth_name = Timothy John Berners-Lee
| birth_date = {{birth date and age|1955|6|8|df=y}}
| birth_place = London, England
United Kingdom
| nationality = British
| residence = United Kingdom and United States
| alma_mater = [[The Queen’s College, Oxford]]
| occupation = [[Computer scientist]]
| title = Professor
| partner = Rosemary Leith
| parents = {{Plainlist|

* [[Conway Berners-Lee]]

* [[Mary Lee Woods]]
}}
| website = {{Url|www.w3.org/People/Berners-Lee}}
}}

in arbitrary textual formats. Although there is a recommended format for some
attributes, this format is only provided as a comment in the infobox template’s
definition without further (technical) implications arising from this. One explana-
tion for not having strict typing for the infobox attributes is that this would make
it harder for the authors of articles to provide certain kind of information if these
deviate from the allowed format which would finally lead to a limited degree of
adoption. Thus, this missing typing can be seen as one reason that infoboxes
are widely deployed in Wikipedia. For example, in August 20135 the English
Wikipedia contained approximately 4.4 million articles with a total number of 2.4
million infoboxes.6

In summary, infobox templates are drafts that provide possible characteristics
of certain types of things while the actual infoboxes instantiate these drafts to pro-
vide data about a specific thing. This makes the infobox template an approach for
defining an untyped semi-structured representation of information.

Starting from similar considerations, Auer and Lehmann [7] proposed to use
the semi-structured content provided by the infoboxes to extract semantically en-
riched content to allow the querying of this data. This work finally led to DBpedia [66]
which is using the infobox contents to create an RDF dataset. We will now shortly
describe the approach that is currently used for this.

5http://en.wikipedia.org/w/index.php?title=Wikipedia:
WikiProject_Infoboxes/Statistics&oldid=569281636

6http://stats.wikimedia.org/EN/TablesWikipediaEN.htm

http://en.wikipedia.org/w/index.php?title=Wikipedia:WikiProject_Infoboxes/Statistics&oldid=569281636
http://en.wikipedia.org/w/index.php?title=Wikipedia:WikiProject_Infoboxes/Statistics&oldid=569281636
http://stats.wikimedia.org/EN/TablesWikipediaEN.htm

2.2. RDF AND LINKED DATA 21

In the first versions, the extraction routines were just applied to the infobox
data available as dumps.7 This basic approach, also called “generic approach” is
still available and its result known as the “raw infobox dataset”. For each article
containing an infobox, a URI is derived from the URL of the article. This URI
is used as an identifier for an RDF instance which then gets assigned the values
contained in the infobox using RDF properties directly derived from the infobox’
attribute names.

This approach is straightforward but suffers from some problems which finally
led to the development of a more sophisticated approach as described by Bizer et
al. [16]. As explained by them, the main problem of the approach lies in the fact
that there is no central management which controls the creation of infoboxes but
each subgroup of the Wikipedia community might have its own template to de-
scribe the same sort of things and, furthermore, attribute names can differ across
different templates though they express the same information. Thus, the generic
approach leads to a relatively noisy dataset for which it is hard to formulate queries
that consider all relevant data due to the potentially large number of different prop-
erties and classes for the same information.

To solve these shortcomings, an OWL ontology called DBpedia ontology was
created. This ontology contains a class hierarchy and properties to which the in-
fobox templates and their properties can be mapped. Based on these mappings, an
article with an infobox is assigned to the ontology class its infobox is mapped to
and the attributes are assigned by means of their mapped ontology properties which
also define the object or data type used for a property even though these are not en-
forced. Since unmapped classes and properties are not extracted by this mapping-
based approach, there is a crowd-sourced possibility to extend the ontology by new
classes, properties and several other axiom types which allows interested parties to
improve the coverage. Furthermore, this possibility for extension allows to make
the ontology more expressive so that it gets more useful for tasks apart from the
extraction.

7The Wikipedia dumps are provided by the Wikimedia Foundation: http://dumps.
wikimedia.org/

http://dumps.wikimedia.org/
http://dumps.wikimedia.org/

22 CHAPTER 2. FOUNDATIONS

Figure 2.3: Rendered infobox about Tim Berners-Lee

Part I

Learning Expressive Schemas

23

Chapter 3

Preliminaries

In this first part of our work, we introduce and evaluate methods for learning on-
tologies from instance data contained in a Linked Data dataset. As we already
outlined in the motivation of our work, we do this as an intermediate step for de-
tecting errors. Obviously, this learning step is not required to actually perform error
detection later-on. For instance, it would be possible to apply approaches such as
outlier detection, which we use with a different focus in Chapter 11, directly on the
dataset to detect parts of the data that do not adhere to the typical patterns shown
in the dataset. Such an approach could even be considered more efficient due to
circumventing the preceding step of generating a corresponding ontology. Never-
theless, we consider this step worthwhile. First, the learned ontology formalizes
the typical patterns in the dataset and thus shows which behavior is considered
typical for the data. This allows to better explain why certain data was classified
as being erroneous and hence gives more opportunities to include humans into the
error detection process. Furthermore, given that all these patterns are explicitly
stated in the ontology, it is possible to let humans assess the patterns regarding
their correctness before using it to identify erroneous instance data.

Secondly, the learned ontology is useful on its own and not only in the context
of detecting errors in data. Additional class disjointness or property axioms allow
to employ inference techniques to deduce previously unstated information from
the dataset and thus give applications more data to work with. For instance, when
querying a dataset the inclusion of disjointness axioms in its ontology would allow
to more precisely deliver the query answer since the additional disjointness axioms
help to separate relevant from irrelevant information. Naturally, the quality of a
learned ontology might not be high enough for directly using it in such a scenario.
Nonetheless, the ontology can act as a starting point for further manual corrections
and extensions which make it more suited for specific inferencing scenarios.

Lastly, another advantage is the additional documentation provided by an on-
tology. As we already described in Chapter 1, the existence of an ontology helps
new contributors to get an overview about the dataset more quickly. For example,
an ontology containing a set of classes shows which types of instances the dataset

24

3.1. LEARNING FROM INSTANCE DATA 25

typically contains. From an ontology enriched with axiom types such as disjoint-
ness, contributors can derive additional information about the usage of the classes
and the delimitation of the different classes to each other.

In the following, we first detail on some general considerations about learning
OWL ontologies from instance data. Afterwards, we introduce the foundations of
association rule mining and statistical schema induction.

3.1 Learning from Instance Data

In this section, we have a look on the general possibility and limitations of learn-
ing different OWL constructs from given instance data. More specifically, we are
going to limit our explanation to schema-level axioms supported in OWL 2. When
learning schema-level information from data, the idea is to detect patterns in the
data and generalize those to a schema axiom valid for the whole dataset and, to
gain a more generally useful ontology, the whole domain of the dataset. This leads
to the main prerequisite: The dataset has to contain a sufficiently high number of
instances which are also assigned to classes. The lower the number of instances
in the dataset and the less extensive their assignment to classes, the higher the
probability that its recognizable patterns are misleading and do not generalize well
for the whole domain. In contrary, larger numbers of instances with proper class
assignments can be expected to show the behavior of the full domain better. Obvi-
ously, if learning property axioms is desired, the dataset has to also expose a certain
level of property assignments either between two instances (for object property ax-
ioms) or between an instance and a data value (for data property axioms). Since we
are considering typical patterns of data, a certain amount of erroneous assignments
regarding both classes and properties is tolerable without significant influence on
the detected patterns.

For our following considerations, we are going to assume that a dataset is given
that fulfills these prerequisites. Thus, we deal with the ideal scenario for learning a
schema from a dataset. Nevertheless, there are two factors which have to be consid-
ered when learning ontological knowledge for OWL from instance data. The first
one is the so-called open-world assumption (OWA) on which all OWL variants are
based. This assumption implies that each statement might be true unless it can be
proven otherwise. By implementing the OWA instead of a closed-world assump-
tion (CWA) as often used in databases, OWL allows to better handle incomplete
data and decentrally extend the data. Since leaving out a certain statement in an
OWL dataset does not state anything about its truth value, it is easily possible to
provide information about this statement in a different dataset without leading to
contradictions between both datasets. In a CWA scenario however, leaving out a
certain statement would assign the truth value ”false” to it and thus limit the pos-
sibilities to extend the dataset. For the case of learning an ontology from instance
data, this especially has impact regarding the learning axioms that are connected
with negative information. Though it is possible in OWL to explicitly state that a

26 CHAPTER 3. PRELIMINARIES

certain fact is not true using assertions to complement classes or negative property
assertions, this is rarely used in datasets. However, when trying to learn certain
axioms from the instance data, it is required to rely on negative information in
the dataset. Due to the low number of explicitly given negative statements, the
only possibility to get this information is to use the absence of a statement as an
evidence for it not being true. Thus, this is similar to applying a CWA to the consid-
ered dataset and might lead to learning wrong axioms where the statement would
be actually true but is just left out of the dataset. However, in our work presented
here, we argue that the overall impact is limited. Since we are looking into ap-
proaches to enrich large Linked Data datasets with additional axioms, we assume
that the volume of the available data compensates for many errors introduced by
applying a limited closed-world view to the actual open-world scenario because a
larger dataset makes it more probable that a relevant statement is explicitly stated
in the dataset at least once.

The second characteristic that influences the learning from instance data is the
fact that OWL and OWL 2 do not implement the unique name assumption (UNA).
This means that, given two different entity names, you cannot conclude that they
point to different entities just based on the name difference. The rationale for
not implementing the UNA in OWL is the fact that in a decentralized scenario
it cannot be guaranteed that there is one unique name for each real-world en-
tity across all different datasets. However, OWL provides the additional assertion
owl:differentFrom to explicitly state that two names point to different entities
which can be used when such a behavior is desired. For learning schema infor-
mation from instance data, this missing UNA has some implications. In general
it may lead to a generation of wrong axioms or not generating correct axioms. If
one entity is addressed by two different names and there are no assertions provided
that help to recognize this fact, the assertions made for this entity might be con-
sidered for each of the different names individually and thus make a pattern less
clear. This could hide patterns relevant for recognizing certain axioms fulfilled by
the real-world data that would only be detectable when all assertions for the entity
were regarded at once. Naturally, this characteristics of OWL can influence the
detection of all patterns. Despite that, we consider this characteristic to be of less
influence for the scenario we are going to investigate in the following. As long as
we are only relying on patterns from a single Linked Data dataset, it is most likely
that the largest share of entities is actually referred to by a unique name because this
makes the dataset more usable and manageable. Furthermore, in cases where one
entity is referred to by several names in the same dataset, a statement that indicates
this fact is more likely to be contained in the dataset. Thus, the largest influence of
the missing UNA can be expected when working not only on a single dataset but
on several datasets at once which is not the focus of our work on learning axioms
described in the following.

Keeping these two problems in mind, all class and object property axioms sup-
ported by OWL 2 can be learned from instance data. The same holds for data
property axioms, however, since data properties are used with literal values in ob-

3.2. ASSOCIATION RULE MINING 27

ject position, approaches more adapted to the different possible datatypes might be
more promising than the methods we are looking at for class and object property
axioms in the following. In particular, such methods could work on a much more
fine-grained level of values allowed by certain datatypes and also try to apply inter-
polation based on the given values and the knowledge about the datatype. The key
difference between the learnability of the different class and object properties lies
in the level of susceptibility from the way the open-world assumption and unique
name assumption are handled. Most axioms, like class and property subsump-
tion or property domain and range axioms, are mostly influenced by not having a
unique name assumption to rely on and only to a smaller degree by the open-world
assumption. The open-world assumption gains more influence for axioms that are
expressing kinds of negation. This obviously includes class and property disjoint-
ness axioms whose learning has to rely on a closed world perspective of the data.
Furthermore, this is also the fact for some more complex negation axioms like
property irreflexivity and property asymmetry which state negative characteristics
about the corresponding object properties.

Axioms can include more informativeness if they are not only defined for
atomic class descriptions but also for more complex descriptions like class inter-
section, class complement or even cardinality restrictions that represent a set of in-
stances. On a theoretical level, dealing with such descriptions when learning from
instance data is easily possible since they do not require a handling considerably
different from handling atomic class descriptions. However, the main challenge
here lies in the fact that, to recognize patterns, it has to be determined whether
certain instances belong to a specific complex class description or not. Particularly
for more complex descriptions, this might require the usage of inferencing sys-
tems which leads to greatly increased computational demands. Moreover, certain
class descriptions, especially cardinality restrictions, are also highly connected to
the open-world assumption and might lead to a higher probability of making errors
when including them in axioms learned from instance data. The more complex the
class expressions that should be learned get, the more instance data has to be avail-
able to learn from to increase the chance that there actually are instances adhering
to this class description which allows to learn expression at a sufficiently high level
of quality.

3.2 Association Rule Mining

Some of our approaches for detecting patterns in instance data presented in the re-
mainder of this work are based on association rule mining. Association rule mining
is an approach to discover regularities in large amounts of data. Originally, it has
been developed for being applied on the shopping baskets of customers of large
super market chains. These regularities could then, e.g., be used to improve the ar-
rangement of products in the markets so that products commonly bought together
are placed close to each other. With the rise of online shops, approaches for finding

28 CHAPTER 3. PRELIMINARIES

such regularities got even more traction since they allow to recommend additional
goods to customers based on buying patterns of other customers. Association rule
mining approaches are well-suited for this scenario since they are performing well
for large numbers of shopping carts combined with numerous candidate products.
The definitions presented here are modeled after those given by Borgelt [18].

Formally, association rule mining operates on a set I = {i1, . . . , in} of possible
items, called item base. In the online shopping scenario, the item base would
consist of all products that could be purchased from the online store. Furthermore,
we have a list T = (t1, . . . , tn) given, called transaction database, where each
ti ⊆ I (i ∈ {1, . . . n}) is a set of items called transaction. The transaction database
models the items bought by a customer in a single shopping cart.

Transaction databases are typically depicted as tables where the possible items
are represented by columns and the individual transactions form the rows of the
table as shown in Table 3.1. In this table, a 1 in cell (i, j) means that item j is
contained in transaction i while a 0 at this position means that transaction i does
not contain item j. For example, transaction t1 contains the items i1, i4 and i5 but
not items i2 and i3.

Table 3.1: Example of a transaction database represented as table

i1 i2 i3 i4 i5
t1 1 0 0 1 1
t2 1 1 1 0 0
t3 0 0 1 0 0

An association rule is an implication pattern A → B with A,B ⊆ I and
A ∩ B = ∅. We call A antecedent and B consequent. This rule can be interpreted
in a way that people who purchase the items in A usually also purchase items in
B. Thus, an association rule is similar to the logical implication A ⇒ B but it is
important to keep in mind that association rules might be violated by data.

Association rules are accompanied by the measures of support and confidence.
Support describes the number of transactions a given set of items is contained in
and is defined on the level of item sets. The support of A ⊆ I is given by

supp(A) =
#{t ∈ T |A ⊆ t}

#T

It is also possible to define the support in absolute numbers instead of normal-
izing it by the total number of transactions in the transaction database.

The confidence is defined directly for association rules and for a rule A → B
computed as

conf(A→ B) =
supp(A ∪B)

supp(A)

Hence, the confidence value of an association rule is the ratio of occurrences of the
antecedent in all transactions to the occurrences of both antecedent and consequent

3.2. ASSOCIATION RULE MINING 29

in the same transactions. This results in a value similar to the conditional proba-
bility of B given A and models the validity of the rule over the whole transaction
database.

To simplify the representation of association rules, in the following, we will
write i1i2 → i3 for {i1, i2} → {i3} for items i1, i2 and i3 if the intended meaning
remains clear.

The process of mining association rules for a given set of items and a given
transaction database T consists of two steps. First, the transaction database is
searched for frequent itemsets, i.e., itemsets whose support exceeds a defined thresh-
old. Second, based on the set of frequent item sets, the association rules are gener-
ated. In the following, we describe both steps separately.

Computation of Frequent Itemsets

For discovering frequent itemsets in a transaction database, one approach would
be to compute the support for all possible subsets of the itembase. However, for
an itembase containing n items this would mean computing the support value for
a total of 2n itemsets. This problem was first tackled by Agrawal and Srikant [3]
who proposed the so-called Apriori algorithm.

The Apriori algorithm operates in a bottom-up fashion by starting with all item-
sets containing only a single item and then moving to larger itemsets. From now
on, we will write n-itemset for an itemset which consists of n items from the item-
base. Algorithm 1 shows the basic Apriori algorithm. It assumes an itembase I
and a transaction database T to be given as well as the minimum support thresh-
oldminsupp > 0. Starting from the frequent 1-itemsets it uses apriori-gen to
generate candidate 2-itemsets, then counts and filters these candidates to determine
all frequent 2-itemsets. Then it successively generates the candidate n-itemsets
from the frequent (n− 1)-itemsets.

The main reason for being more efficient than exhaustively testing all possible
subsets of the itembase regarding their support, however, lies in the apriori-gen
function of the algorithm. This function generates candidate n-itemsets from a
given set of frequent (n− 1)-itemsets as shown in Algorithm 2.

The efficiency of this algorithm relies on the fact that, for itemsets i and j
with i ⊆ j, the relation supp(i) ≥ supp(j) holds. Given that all transactions
containing itemset j also contain itemset i this relation is obvious and directly
implies that an itemsets can only be frequent if all its subsets are also frequent. This
property is called anti-monotonicity and is used in the second part of the algorithm
to prune the set of candidate itemsets. Furthermore, this property is also used
for the termination criterion of Algorithm 1 since there cannot exist any frequent
k + 1-itemsets if there are no k-itemsets.

It remains to show that the set of candidate k-itemsets is complete, i.e., all
frequent k-itemsets are contained in Ck. The first line of Algorithm 2 generates the
unions of all itemsets in Lk−1 which share k− 2 items. Hence, the resulting union
of itemsets i1 and i2 is equivalent to Ck = (i1 ∩ i2) ∪ (i1 \ i2) ∪ (i2 \ i1) where

30 CHAPTER 3. PRELIMINARIES

Algorithm 1 The Apriori algorithm

L1 ← {}
for all 1-itemsets i do . Determine all frequent 1-itemsets

if supp(i) ≥ minsupp then
L1 ← L1 ∪ {i}

end if
end for
for k = 2; Lk 6= ∅; k = k + 1 do

Ck ← apriori-gen(Lk−1) . Generate candidate itemsets
for all transactions t ∈ T do

Ct = {c ∈ Ck | c ⊆ t}
for all c ∈ Ct do

count[c] = count[c] + 1 . Count occurrence in transaction
end for

end for
Lk = {c ∈ Ck | count[c] ≥ minsupp}

end for
res← ∪kLk

Algorithm 2 The candidate itemset generation function

Require: Lk−1 set of all frequent k − 1 itemsets
Ck ← {i1 ∪ i2 | i1 ∈ Lk−1 ∧ i2 ∈ Lk−1 ∧#(i1 ∩ i2) = k}
for all c ∈ Ck do

for all (k − 1)-item subsets s of c do
if s /∈ Lk−1 then

Ck ← Ck \ {c}
end if

end for
end for
return Ck

3.2. ASSOCIATION RULE MINING 31

the first intersection contains k − 2 items while the set differences contain 1 item
each and thus the resulting union is a k-itemset. All itemsets not in Ck cannot be
frequent. For showing this, we assume to have a frequent itemset a /∈ Lk. There
has to be a subset s1 ⊂ a with #s1 = k − 1 and s1 ∈ Lk−1 otherwise a could not
be frequent according to our previous observations. Thus, we have a single item x
which is in a but not in s1. Since a is not in Lk, we also know that there cannot
be an itemset s2 ∈ Lk−1 with #s2 = k − 1 and x ∈ s2 otherwise a would be
contained in Lk. But because s2 ⊂ a and s2 /∈ Lk−1, a cannot be frequent which
contradicts our assumption. Consequently, Ck as constructed in the first line of
the algorithm is a superset of the set of all frequent itemsets. Thus, Algorithm 2
generates a set of itemsets which contains all frequent k-itemsets.

This set of candidate itemsets is then pruned further in Algorithm 1 by checking
the support against the transaction database. After pruning, Lk exclusively contains
all frequent k-itemsets.

3.2.1 Generating Association Rules

The discovered frequent itemsets are used to compute association rules for the
considered transaction database. For each frequent itemset i, the basic approach is
to compute all non-empty subsets a ⊂ i and use these to generate rules of the form
a → (i \ a). These generated rules can be evaluated by means of the confidence
measure as described above and be included in the set of relevant association rules
if they exceed the required minimum confidence threshold.

Similar to the discovery of frequent itemsets, for association rules there is a
criterion which provides an upper bound for a rule’s confidence value given an
association rule derived from the same itemset. Let an association rule a→ (i \ a)
for a frequent itemset i and a ⊂ i be given. Then, for a set a′ ⊂ a, we know that
the association rule a′ → (i\a′) cannot exceed the confidence of a→ (i\a) since
the support of a′ is greater or equal to the one of a and the support of i \ a′ is less
than the support of its counterpart in the first rule.

Also based on this characteristic of confidence, Agrawal and Srikant [3] pro-
posed an efficient way of computing all association rules from given frequent item-
sets which is shown in Algorithm 3. This algorithm requires a single frequent
k-itemsets and a set of m-item consequents.

In each run, the function AP-GENRULES generates all association rules for the
given frequent itemset lk which have an (m + 1)-item consequent and exceed the
minimum confidence threshold minconf . To prevent the generation of superfluous
rules which cannot exceed the threshold according to the rule stated above, it al-
ways relies on the set of all m-item consequents Hm. Based on this set and using
the APRIORI-GEN function, (m+ 1)-item consequents hm+1 are generated and for
each the resulting association rule is determined and checked for sufficiently high
confidence value. If it fulfills the confidence threshold, the rule is output otherwise
hm+1 is removed from the set of relevant (m+1)-item consequentsHm+1. Finally,
Hm+1 is used to recursively call AP-GENRULES for generating all association rules

32 CHAPTER 3. PRELIMINARIES

Algorithm 3 Algorithm for computing association rules from frequent itemsets

function AP-GENRULES(lk, Hm)
if k > (m + 1) then

Hm+1 ← APRIORI-GEN(Hm)
for all hm+1 ∈ Hm+1 do

conf ← supp(lk)/ supp(lk \ hm+1)
if conf ≥ minconf then

output (lk\hm+1)→ hm+1 with confidence = conf and support
= supp(lk)

else
Hm+1 ← Hm+1 \ hm+1

end if
end for
AP-GENRULES(lk, Hm+1)

end if
end function

having (m+ 1)-item consequents.
To mine all association rules, AP-GENRULES is applied to all frequent k-itemsets

with k ≥ 2. For the first run, the set of 1-item consequents for a frequent itemset
lk is determined from the association rules having 1-item consequents. Those can
be generated by using Algorithm 4.

Algorithm 4 Algorithm for computing association rules with 1-item consequents

function GENRULES(lk)
A← {(k − 1)-itemsets ak−1 | ak−1 ⊂ lk}
for all ak−1 ∈ A do

conf ← supp(lk)/ supp(ak−1)
if conf ≥ minconf then

output (lk \ ak−1) → ak−1 with confidence = conf and support =
supp(lk)

end if
end for

end function

3.2.2 Other Algorithms

As noted by Borgelt [18], the Apriori algorithm for determining frequent itemsets
by Agrawal and Srikant as presented above has been mostly superseded by newer
algorithms which show advantages regarding their runtime and memory consump-
tion. Instead of computing frequent itemsets in a breadth-first manner many of the
newer algorithms, like Eclat [102] or FP-Growth [47], are based on a depth-first

3.3. STATISTICAL SCHEMA INDUCTION 33

principle and employ an improved candidate generation process. Nevertheless, in
the context of this work, we decided to use the Apriori algorithm since it is easier
to understand and its performance never showed to be a limiting factor in the ap-
proaches presented later-on. Since the discovery of frequent itemsets is a separate
step in the process and the actual generation of association rules operates on the
results of this step, alternative algorithms might be used as a drop-in replacement
without any further modification of other parts of the approach.

3.3 Statistical Schema Induction

In the first part of this work, we extend the approach of statistical schema in-
duction which has been introduced by Völker and Niepert [96]. For the sake of
self-containedness, we first give an extensive introduction into the work of Völker
and Niepert, before later-on describe our contributions which rely on the original
approach and extend it further into generating more axiom types.

Statistical schema induction is an approach for inducing a new schema for an
RDF repository or enriching an existing but possibly inexpressive schema with new
schema information. For this purpose, the actual data contained in the RDF repos-
itory is mined following the assumption that the semantics of any RDF resource is
revealed by the patterns of its usage in the repository. Stated differently, statistical
schema induction or inductive schema learning approaches in general assume that
the data contained in the repository follow the rules of a schema which might be
explicitly stated but in most cases is only discoverable by means of the patterns
shown by the actual data. Thus, the task of inductive approaches is to detect these
patterns which indicate certain conditions to hold in the data. This task is similar
to the task of finding hidden patterns in the behavior of customers for which asso-
ciation rule mining has been developed. Based on this insight, statistical schema
induction applies association rule mining for the pattern discovery. To clarify the
idea, we consider the transaction database given in Table 3.2 as it could be de-
rived from an RDF repository. Each row is an instance in the repository while each
column is a class occurring in the repository. We put a 1 in a specific cell if the
corresponding instance is assigned to the corresponding class. For example, the
instance Michael Jordan is assigned to the classes Person and Athlete while
Barack Obama is assigned to Person and Politician.

Table 3.2: The idea of statistical schema induction

Person Athlete Wrestler Politician

Hulk Hogan 1 1 1 0
Michael Jordan 1 1 0 0

Barack Obama 1 0 0 1
Angela Merkel 1 0 0 1

Considering this example dataset, we see that all instances which are athletes

34 CHAPTER 3. PRELIMINARIES

are persons and that all politicians are also persons. Applying an association rule
mining approach, this would lead to association rules like Athlete → Person

with an assigned relative support of 0.5 and a confidence score of 1 since all in-
stances in the transaction database show this pattern. The same support and confi-
dence scores hold for the association rule Person→ Politician while the rule
Athlete → Wrestler only has a support score of 0.25 and a confidence value
of 0.5 since the instance Michael Jordan does not comply with it. This shows
the ability of association rules to point out certain patterns in the data.

To generate schema information from the discovered rules, the corresponding
logical axioms in description logic have to be identified. In the case presented here,
the discovered association rules show the inclusion of one class into a different one
which equals the class subsumption axiom found in description logic. The axiom
Athlete v Person can be used to cover the relation between athletes and persons
while similarly Politician v Person does the same for politicians and persons.
By enforcing a certain confidence threshold, e.g., of 0.8, we can filter out axioms
like Athlete v Wrestler which are shown by some but not all instances and
thus would introduce possibly wrong schema knowledge.

In general, statistical schema induction as introduced by Völker and Niepert
is a three step process that can be applied to RDF repositories for generating or
enriching schemas. In Figure 3.1, we show the three steps towards acquiring ad-
ditional schema knowledge via statistical schema induction and describe them in
more detail in the following.

Terminology
Acquisition

𝑖1
𝑖2
𝑖3

𝐶1 𝐶3

𝐶3 𝐶4

𝐶1 𝐶3 𝐶4

RDF Repository

A
sso

ciatio
n

 R
u

le
M

in
in

g

𝐶1 ≡ 𝐶3
𝐶4 ⊑ 𝐶3

Ontology
Construction

RDF Repository

Ontology

Figure 3.1: Steps of statistical schema induction (based on Völker and
Niepert [96])

3.3. STATISTICAL SCHEMA INDUCTION 35

Terminology Acquisition

In this step, we collect the required information about the data contained in the
relevant RDF repository. In principle, all information could be extracted from
dumps of the RDF data but since most RDF repositories provide access to their data
via a SPARQL endpoint, gathering the relevant data by posing SPARQL queries to
this endpoint is the preferred and most convenient way. All data acquired during
this step is stored into a relational database which enables rapid retrieval of the data
later-on.

First, we gather information about resources which represent named classes
C ∈ NC in the repository. This is done by querying for all resources which are
used in the object position of an rdf:type axiom:

SELECT DISTINCT ?cls
WHERE {

?ind rdf:type ?cls
}

This has the advantage of including implicitly defined classes which can be ex-
pected to often occur in repositories that contain little to no explicit schema knowl-
edge. Since we cannot rely on inferencing abilities being available and active in the
repository, querying for all resources of type rdfs:Class or owl:Class in con-
trast would only return explicitly defined classes and thus could miss large parts of
the class terminology. However, the given query only gives a heuristic for detect-
ing classes in the repository. According to the experimental results presented by
Völker and Niepert, it works well for the most common RDF repositories. It is im-
portant to note, that only classes which are actually used by instances in the reposi-
tory are found by this query while classes only defined by explicit rdfs:Class or
owl:Class type statement are not discovered. This does not pose a problem since
for the later steps classes that are not used by instances do not have any influence on
the results. Each class discovered in the dataset using the heuristic is stored into a
relational database system accompanied by a unique numerical identifier. Further-
more, the instances which are assigned to classes are determined and stored into
the relational database for being used in the generation of the transaction tables.

Similarly, all named object properties P ∈ NP are extracted from the reposi-
tory using a heuristic which considers all properties connecting two resources (as
opposed to a resource with a data value) as being object properties, assigns them
a unique identifier and stores them into the relational database. This is done by
posing the following query to the endpoint:

SELECT DISTINCT ?pred
WHERE {

?r1 ?pred ?r2.
?r2 rdf:type [].

}

36 CHAPTER 3. PRELIMINARIES

to the SPARQL endpoint. The heuristics for detecting instances used before is
again applied by checking the resources for an existing type assignment. In addi-
tion to the object properties, all pairs of resources (r1, r2) which are connected by
an object property are retrieved and stored into the database with a unique identi-
fier.

To limit the schema generation to the current repository, all extracted classes,
object properties and instances can be filtered by their URI prefix, e.g., only those
having the common URI prefix of the repository are included in the resulting lists.
Independently of whether such a filtering step is applied, it is desirable to exclude
classes and properties from namespaces with predefined semantics, e.g., the RDF
or OWL vocabulary itself, in this step.

Based on the extracted basic terminology, it is now possible to consider more
complex class and property expressions. For example, the approach by Völker and
Niepert also supports the generation of domain and range restrictions like ∃r.> v
C. To enable the mining of those more complex axioms, it is required to also assign
unique identifiers for the class expressions of the types: ∃r.>, ∃r−1.> and ∃r.C for
each r ∈ NP and each C ∈ NC . Furthermore, for each r ∈ NP unique identifiers
for the expression r◦r are generated to enable the generation of transitivity axioms.

Association Rule Mining

Before actually mining association rules, we first have to generate transaction ta-
bles based on the terminology which was extracted from the repository in the pre-
vious step. Depending on the types of axioms that should be discovered from a
transaction table, the transaction tables are generated by either iterating over all
instances or all instance pairs in the repository. For each instance, a transaction
is added to the transaction table according to the schema provided in the second
column of Table 3.3.

For example, for the generation of each instance a a row containing the iden-
tifiers of all classes this instance belongs to is added to the transaction table. For
this purpose, the query

SELECT DISTINCT ?cls
WHERE {

<INSTANCE URI> rdf:type ?cls
}

is posed to the endpoint after INSTANCE URI has been replaced with the ac-
tual URI of the instance. Then, the returned classes are resolved to their unique
identifiers and added to the transaction table. For the complex class and prop-
erty expressions, more complex queries have to be considered. For example, for
retrieving the identifiers for the complex expressions ∃r.C, the query

3.3. STATISTICAL SCHEMA INDUCTION 37

SELECT DISTINCT ?r ?cls
WHERE {

<INSTANCE URI> ?r ?other.
?other rdf:type ?cls.

}

can be used which retrieves all pairs of properties and classes of instances as-
signed using this property.

Furthermore, Table 3.3 shows that some transaction tables can be used to mine
different axiom types which means that for generating all axiom types shown in
the table, we have to generate six different transaction tables.

After finishing the construction of a transaction table, a frequent itemset and
association rule mining approach as described in Section 3.2 is applied to them
leading to a set of association rules valid for the RDF repository. Then, these as-
sociation rules are explored for rules matching the patterns shown in the third col-
umn of Table 3.3. For example, an association rule {C} → {D} (after resolving
the unique identifiers assigned during the terminology acquisition step) is trans-
formed into an axiom C v D while an association rule {ri ◦ ri} → {ri} results
in a property transitivity axiom for the property r. All axioms generated by this
approach belong to the OWL 2 EL description logic as defined in the OWL 2 spec-
ifications. For each axiom, the confidence and support values of the corresponding
association rules are stored for the later process.

Ontology Construction

The last step in the process of statistical schema induction as described by Völker
and Niepert is the actual construction of the enriched ontology. We take the confi-
dence values as measures of certainty for the corresponding axiom. For example,
only adding axioms with a confidence of at least 1.0 leads to an enriched ontol-
ogy which exactly fits the actual data in a way that these axioms do not lead to
inconsistencies with the assertional data of the repository.

38 CHAPTER 3. PRELIMINARIES

Table 3.3: Contents of transaction tables for generating specific axiom types by
means of association rule mining. Each row in the transaction table either corre-
sponds to one instance a ∈ NI or a tuple of instances (a, b) ∈ NI ×NI . A concept
item Ci is added to the transaction if a ∈ CIi for the corresponding instance a.
A property item ri is added to the transaction if the corresponding property holds
between the instance tuple, i.e., a ri b. r−1i is added if b ri a. ri ◦ ri is contained
in a transaction if a ri x and x ri b for an arbitrary instance x ∈ NI . ∃r.C is added
if the instance a is used as subject of r with an object of class C, ∃r−1.C if it is
used as object with a subject of class C.

Axiom Type Transaction Table Row Association Rule
C v D a→ C1, . . . , Cn for a ∈ NI {Ci} → {Cj}

C uD v E a→ C1, . . . , Cn for a ∈ NI {Ci, Cj} → {Ck}
D v ∃r.C a→ C1, . . . , Cn, ∃r1.C11, . . . , ∃rm.Cmn for a ∈ NI {Ck} → {∃rj .Cjk}
∃r.C v D a→ C1, . . . , Cn, ∃r1.C11, . . . , ∃rm.Cmn for a ∈ NI {∃rj .Cjk} → {Ci}
∃r.> v C a→ C1, . . . , Cn, ∃r1.>, . . . , ∃rm.> for a ∈ NI {∃rj .>} → {Ci}
∃r−1.> v C a→ C1, . . . , Cn, ∃r−1

1 .>, . . . , ∃r−1
m .> for a ∈ NI {Ci} → {Cj}

r v s (a, b)→ r1, . . . , rn for a ∈ NI ×NI {ri} → {rj}
r ◦ r v r (a, b)→ r1, . . . , rn, r1 ◦ r1, . . . , rn ◦ rn for a ∈ NI ×NI {ri ◦ ri} → {ri}

Chapter 4

Related Work

The approaches proposed in the course of the first part of this work can be cat-
egorized as ontology learning methods. In this chapter, we give an overview on
the general idea of ontology learning, describe several approaches that have been
proposed in this area and give pointers to works that are strongly related to our
inductive ontology learning methods presented later-on in the first part.

4.1 Ontology Learning

Ontology learning as coined by Mädche and Staab [69] describes the creation of
structured knowledge as represented in ontologies by means of data-mining tech-
niques based on a multitude of different data sources. The primary reason for
the development of such approaches is the so-called knowledge acquisition bot-
tleneck which is caused by the fact that manual creation of knowledge bases is
a time-consuming and potentially complex task. The introduction of can support
knowledge engineers in the creation of knowledge bases by providing proposals
for additional axioms. This can considerably lower the time and labor required to
create the knowledge base and thus also reduce its overall cost which can be seen
as a major step towards a wider application of more expressive ontologies.

Ontology learning approaches can especially be distinguished by the type of
data they work on. Many early approaches use textual information which is avail-
able in very large quantities also thanks to the Web which provides easy access
to a great amount of texts for virtually all fields of knowledge. These approaches
are often based on linguistic concepts which are applied to derive logical relations
between entities or characteristics of the entities themselves. For example, the so-
called Hearst patterns [49], which were originally introduced to find hyponyms in
text corpora, have also been adopted in ontology learning. Patterns like “classA is
a kind of classB“ are used by the Text2Onto system by Cimiano and Völker [28] or
the OntoLearn system by Velardi et al. [93] for detecting subsumption relations be-
tween classes. These systems rely on the availability of a mapping between classes
in the ontology and terms in the employed texts. Since the task of reliably recog-

39

40 CHAPTER 4. RELATED WORK

nizing which part of a text references a certain class is not trivial, systems like this
are much simpler to use for generating ontologies from scratch, where the creation
of a class is directly linked to a certain part of the textual information, than for
enriching ontologies. In many cases, general data mining techniques have been ap-
plied onto the data extracted from the textual information. Especially noteworthy
in the context of the work we present later-on is the ontology learning framework
Text-To-Onto by Mädche and Staab [68], the predecessor of Text2Onto mentioned
above, which employs association rule mining approaches on data retrieved from
texts for the purpose of detecting relations between classes. A broader overview
on learning ontologies from textual data is given by Cimiano [27]. All these text-
based approaches only have a limited applicability with respect to Linked Data.
This is due to Linked Data only containing small amounts of texts. In the cases
where actual text is available, for example by means of comments, it often only
contains short sentences or excerpts which might not be well-suited to apply more
advanced linguistic processing. Taking data from the Web for enriching Linked
Data schemas is one possibility to work around this limitation, however, finding
adequate sources can be challenging and also the alignment of textual information
with the corresponding entities in the data repository is a non-trivial task.

Earlier approaches for ontology learning which are not working on texts but
are purely logic-based, mostly concentrated on supporting the knowledge engineer
in completing the axiomatization of the relevant domain. For instance, Baader
et al. [10] used attribute exploration from the field of Formal Concept Analysis to
determine which questions have to be posed to a human knowledge engineer to gain
the knowledge required to fully express the relevant domain knowledge. Though
this approach is promising on smaller knowledge bases, it is very questionable
whether it can be gainfully used on datasets of the size typically found in the Linked
Data cloud. As Baader et al. themselves state, their approach shares the high
computational complexity of Formal Concept Analysis which gives reason to the
assumption that it would not be able to handle most Linked Data sources due to
their sheer size.

Many of the approaches mentioned above not only support learning schemas,
i.e., create axioms for the TBoxes of ontologies, but also provide means of populat-
ing ontologies with instances and for generating additional information about the
instances and their relations. However, since we target our work on Linked Data
sources which already contain high amounts of instances, we do not further detail
on such ontology population approaches.

One problem shared by the greater part of the works given here is their lim-
ited support for more expressive ontologies. Many of them only support the basic
description logic ALC and thus are far away from exploiting the full potential of
OWL. Motivated by this lack of expressiveness, recent work started to support
more expressive description logics as used in OWL and OWL 2.

Völker et al. [95] proposed a method for enriching inexpressive schemas with
expressive axioms and implemented it in a tool named LExO. Instead of general
textual data, the approach requires definitory descriptions to be available for the

4.2. INDUCTIVE ONTOLOGY LEARNING 41

classes whose logical descriptions should be enriched with additional axioms. This
requirement also simplifies the aforementioned problem of aligning the entities in
the ontology with their textual representations since textual definitions are writ-
ten so that they specify a single concept further. Given a class to enrich and a
corresponding definition, Völker et al. employ linguistic techniques including the
analysis of the definitory sentences’ structure. After applying different processing
steps to the structure, pre-defined transformation rules are used to convert the rele-
vant parts of the structure into their logical representation. They propose a number
of transformation rules which reach from patterns for disjunctions up to more com-
plex constructs such as existential quantification. Due to the possibility of patterns
recursively containing other patterns, this leads to the support of complex axioms.
In their critical discussion, Völker et al. highlight a number of problems that they
encountered during the evaluation of their approach many of which have their roots
in the complexity and dynamics of natural language. Based on the work done in
this direction, Völker and Rudolph [97] also proposed a method that combines
the LExO approach with Relational Exploration which is used for posing decisive
questions to a human ontology engineer.

4.2 Inductive Ontology Learning

An alternative to relying on external data for enriching ontologies with additional
axioms is the use of instance data to discover new schema knowledge. One pos-
sibility to learn highly expressive axioms from instance data is the application of
logics-based ontology learning approaches. The most comprehensive collection of
algorithms for this purpose is provided in the DL-Learner system by Lehmann [64].
In particular, DL-Learner applies supervised machine learning techniques to de-
scription logics and also uses Inductive Logic Programming (ILP) to learn class
expressions for given positive and negative examples in a way that the resulting
expression covers as many positive examples while only applying to as few as pos-
sible negative examples. For this purpose, Lehmann defines refinement operators
which are used to explore the search space of possible class expressions in a struc-
tured way in this case by always starting at the top-level class (>) and then explor-
ing the search space in a tree-like manner where child nodes are representing class
expressions that are more specific than the class expression of their parent nodes.
Thus, by always producing more constraining class descriptions through adding
additional constraints, the search space is explored in a structured way and the cur-
rently achieved performance can be computed based on the examples. The main
challenge in doing this is to control the direction of further exploration to reduce
the number of steps required until finding the final result. This is achieved by using
heuristics which guide the search In addition, these heuristics are also responsi-
ble for introducing a preference to shorter class descriptions which is particularly
important in a general ontology engineering scenario where users of the ontology
would get quickly overwhelmed by too complex and long class descriptions. The

42 CHAPTER 4. RELATED WORK

main bottleneck of the ILP-based approach proposed by Lehmann is its reliance on
reasoning techniques. This dependency leads to the fact that the raw approach is
hardly applicable to large knowledge bases as they get more and more common in
the Linked Data field. Hellmann et al. [50] tackle this problem by extracting frag-
ments from larger knowledge bases on which the actual class expression learning
can then be applied. Nevertheless, the reasoning requirement is a major bottleneck
in the ILP-based approach.

There are some differences of the approaches which we present in the follow-
ing two chapters of this work to the DL-Learner approach. First, our approaches do
not rely on reasoning tasks to be performed on the instances of a knowledge base
but employ data mining approaches for discovering hidden information. Instead,
we only retrieve the information from the knowledge base as is and work directly
on it. This allows us to include all available instance data into our considerations.
Nevertheless, though it is not necessary to use reasoning, our approach is flexible
enough to be transparently extended to also gain advantage from inferable knowl-
edge. The second major difference is that the ILP-based approaches presented by
Lehmann are supervised which means that they need a set of examples to produce
the class expressions for. The positive examples are in most cases retrieved based
on their affiliation to the class for which an alternative class descriptions is desired
or by simply providing a set of arbitrary instances which should be contained in the
class. This allows a much larger amount of control into which expressions are pro-
duced but makes the application to a whole dataset at once impractical. In contrast,
our methods are based on unsupervised methods and therefore can be applied to
a knowledge base without the need of determining positive or negative examples.
Furthermore, since our approaches are not primarily developed for producing class
expressions, they are easily extendable to produce axioms having not only single
classes as a left-hand side as for class definitions but can be used to find more
general and complex subsumption relations.

4.3 Learning Disjointness Axioms

When producing expressive schemas, class disjointness axioms are an important
part. Nevertheless, they are only rarely used in current real-world ontologies. Thus,
in Chapter 5, we are introducing inductive methods for learning class disjointness
axioms. There are several works also including or specifically focusing on learning
this specific type of axioms. Völker et al. [98] proposed the usage of supervised
learning methods to generate class disjointness axioms which they implement in a
tool named LeDA. LeDA employs supervised classification algorithms which are
first trained on an ontology that has been manually annotated with class disjoint-
ness and afterwards are used to classify class pairs as disjoint or not disjoint. For
both involved ontologies, all possible class pairs are generated and for each class
pair a number of different features is computed. These features can be roughly
divided into three groups: lexical, logical and corpus features. The lexical features

4.3. LEARNING DISJOINTNESS AXIOMS 43

are a nummber of different similarity and relatedness measures used on the class
labels assigned in the ontology. Some of these measures just operate on the char-
acter level like the Levenshtein distance [67] which is used to compute the edit
distance between two class labels. Other measures, like the one proposed by Wu
and Palmer [101], try to capture the notion of semantic relatedness of words. For
this purpose, they resort to the lexical database WordNet [72] and use the lexical
relations encoded in this database for determining a measure of relatedness. To
find a WordNet sense for a given class label, LeDA resorts to the most common
sense for the given word. The logical features work on characteristics of the given
ontology. This includes the number of common subclasses of the two considered
concepts, the similarity regarding object properties and also a semantic distance
measure which is based on the minimum distance path between both concepts that
only consists of subclass relations. Finally, the corpus-based features rely on addi-
tional external data. This data consists of a text corpus generated from Wikipedia
articles corresponding to the ontology concepts and a so-called background ontol-
ogy created from the text corpus using the Text2Onto [28] tool. The background
ontology is used to apply the logical features also applied to the original ontol-
ogy. On the text corpus, the cosine similarity between the articles corresponding
to the classes is computed as a separate feature. Völker et al. evaluate the re-
sults of this classification process against a manually created gold standard for
the PROTON1 ontology whose creation is discussed in greater detail especially
highlighting commonly encountered human disagreements. The automated class
disjointness learning achieves a very good performance with accuracy values up to
90% for a cross-validation scenario.

Since LeDA can be considered the state-of-the-art approach for supervised
learning of class disjointness, we later-on compare its results to the results of our
different inductive methods. However, there also are clear distinctions between
both approaches. The most striking difference is the fact that LeDA works in a
supervised manner and thus needs training data for which the disjointness between
classes is already known. Since there are many different ways of modeling ontolo-
gies the results might be highly dependent on the specific combination of training
dataset and ontology to finally classify, thus it is hard to apply this approach in an
unsupervised way after a training phase because to reach the best results carefully
choosing the dataset to train on is required. Another difference is that LeDA needs
supplemental data to compute many of its features. For example, the WordNet
database is required to compute similarity measures which leads to limitations in
the general applicability of the approach since an analogous database only exists
for a very small number of languages and can often be regarded as less reliable
and comprehensive than their English counterpart. Therefore, developing unsuper-
vised approaches which do not rely on great amounts of external data can still be
beneficial even though they cannot generally be expected to outperform well-tuned
supervised approaches such as LeDA accompanied by well chosen training data.

1http://www.ontotext.com/proton-ontology

http://www.ontotext.com/proton-ontology

44 CHAPTER 4. RELATED WORK

Bühmann and Lehmann [22] also proposed ways to generate additional schema
axioms solely based on the instance data available in the dataset. For this pur-
pose, they first collect the basic schema knowledge, like classes and properties
contained in the dataset, by means of SPARQL queries. Afterwards, the evidence
needed to determine which additional schema axioms could hold according to the
instance data is retrieved by a number of predefined SPARQL query templates.
Bühmann and Lehmann present such templates for different axiom types includ-
ing class disjointness and class subsumption as well as more complex axiom types
like property symmetry and reflexivity. These SPARQL queries return the number
of occurrences of the specific patterns which is then interrelated with the overall
number of possibilities of the pattern which delivers the confidence for the validity
of the specific axiom. This approach always has to be applied to single classes and
properties in the ontology. Thus, for enriching the whole ontology, it is required to
iterate over all classes in the ontology and retrieve the result using the instantiated
templates for the currently desired axiom type.

The main difference to our approach lies in the fact that Bühmann and Lehmann
use the counting facilities of the SPARQL endpoint providing the dataset. Our ap-
proaches in contrast retrieve the raw instance assignments by means of very simple
SPARQL queries from the endpoint and all required counting operations are done
implicitly and locally. In cases where additional axiomatizations are only desired
for a very limited number of entities in the dataset, the more targeted application
scenario of Bühmann and Lehmann provides advantages with respect to runtime
and load on the dataset server. However, when there is no such precise need for
additional schema axioms, performing the counting operations on the server might
prove disadvantageous since it could lead to computing similar results multiple
times. Furthermore, the SPARQL pattern-based approach does not scale well when
more complex axioms like A v B u C are desired. In this case, each additional
conjunction element leads to the need for posing another query to the server while
especially the association rule mining-based approaches already have all required
information available locally so that it only takes small adjustments regarding the
parameters of the mining algorithm to also detect patterns representing such ax-
ioms. By relying on the well-researched foundations of association rule mining,
we can also expect achieve good performance even for more complex axiom types.

Bühmann and Lehmann [23] also extended this initial approach. In this exten-
sion, they mainly remove the need of manually defining SPARQL patterns. Rather,
they introduce an initialization step in which a set of ontologies is inspected and
contained axioms are retrieved. These axioms are generalized by replacing the
usage of specific classes with placeholder variables which leads to general axiom
patterns that are independent from the actual ontology. After this step, the further
processing is done on the dataset to enrich. Bühmann and Lehmann detail this for
the example pattern A v B u∃p.(C). By formulating SPARQL count queries, the
number of the pattern’s occurrences is determined for the left (A) and right hand
side (B u ∃p.(C)) as well as for the intersection of both sides of the axiom pat-
tern (A u B u ∃p.(C)) occurring together. These occurrence counts are then used

4.3. LEARNING DISJOINTNESS AXIOMS 45

to determine precision and recall of the given patterns which exactly resembles the
notion of confidence as defined in association rule mining. Precision and recall val-
ues are used in the further process to compute the F-measure for a pattern which is
then used to score it and decide about the inclusion of the instantiated axiom pat-
tern into the knowledge base. Since the counting process induces high load onto
the SPARQL endpoint server, Bühmann and Lehmann also propose to determine
fragments from the remote endpoint which can then be processed locally.

All in all, this approach seems to be closely related to the association rule min-
ing based approaches as introduced by Völker and Niepert and to the extensions
we are presenting in the course of this work. Bühmann and Lehmann introduce
a pattern learning step prior to actually looking at the data to enrich to reduce the
number of queries they have to pose to the SPARQL endpoint. This has the advan-
tage of only learning new axioms which are similar to those frequently used in the
training ontologies and thus the learned axioms might easier to understand for hu-
mans. However, this similarity to common usage patterns also forms a weakness
of the approach since it loses the ability to actually enrich datasets with axioms
which are not yet commonly used, e.g., the patterns shown in their evaluation do
not contain disjointness at all supposedly because it is not commonly contained in
the ontologies the patterns were extracted from. Using F-measure as a combina-
tion of precision and recall as primary means of judging the applicability of the
patterns might introduce problems when trying to learn subsumption patterns. In
cases where the occurrence frequencies of both sides of the axiom are not balanced
at all (e.g., |A| much smaller than |B u ∃p.(C)|), the precision value will be low
and thus influence the F-measure to a large degree. This case is similar to the con-
siderations of symmetry and non-symmetry for association rules as described in
Section 5.2 of the next chapter and could finally lead to the exclusion of totally
valid subsumption axioms. These two works by Bühmann and Lehmann [22, 23]
described here are also the only other approaches that are considering property
axioms in the context of ontology learning as we are doing in Chapter 6.

Töpper et al. [92] also learn class disjointness from Linked Data datasets. For
this purpose, they employ an approach based on a vector space model as commonly
used in the area of Information Retrieval. They represent classes by vectors whose
elements are based on the usage of properties for instances of the corresponding
class. By computing the distance between two vector representations of classes,
they determine the similarity of the classes regarding their property usage. Töp-
per et al. consider classes with a similarity below a certain threshold as disjoint.
According to their evaluation at least 97.4% of the disjointness axioms learned by
this approach are correct. Combined with learned domain and range axioms, the
disjointness axioms are employed for detecting wrong links during the DBpedia
extraction process.

46 CHAPTER 4. RELATED WORK

4.4 Profiling Linked Data Datasets

Instead of generating schema information from discovered patterns in the dataset, it
is also possible to use them for profiling a dataset and thus gaining insights into the
characteristics of the dataset. An early approach into this direction is the work by
Böhm et al. [17]. Being concerned with providing profiling techniques for Linked
Data sources which enable to more quickly discover and understand the datasets,
they propose to examine the data in several steps. First, they cluster the instances
based on their similarity regarding property usage and determine a so-called mean
schema from the most frequently used properties in the resulting clusters. This
clustering step is mainly done to limit the number of entities which have to be pro-
cessed in further steps. On each cluster of instances, different methods are used for
finding patterns which help to understand the actual usage of the data. For example,
Böhm et al. use association rule mining and correlations to find properties which
are commonly used in combination (e.g., the usage of a property isbn implies
that the instance also has assigned an author property) but also to detect equiva-
lences between properties which are detected by finding negative correlations and
association rules between two properties’ usages. From the correlations between
usages of a property p connecting instances x and y with a different property r con-
necting the instances in inverse order, they also gain knowledge about properties
which show characteristics of inverse properties. These schema-level insights are
complemented by further data type and pattern statistics.

Though the approach shows a number of similarities to our approaches, the
main difference is the actual usage of the discovered patterns. While Böhm et al.
use the pattern primarily for understanding the usage of vocabulary schema bet-
ter, we specifically use patterns recognized by means of association rule mining
and correlations between class and property usages for detecting specific structural
knowledge and use it for learning ontology schemas. This especially means that
we more carefully define the connections between discovered patterns and the cor-
responding schema representation. Furthermore, since we are not purely interested
in the behavior of the data but also in its implications on schema-level, we perform
a manual evaluation of the learned ontology elements. By combining the different
items which we use to find additional schema knowledge, we can also provide in-
formation about the actual data usage for a number of usage patterns which cannot
be as easily detected by the ProLOD system developed by Böhm et al.

Further in the direction of the initial work by Böhm et al. [17], Abedjan and
Naumann [1] apply association rule mining to Linked Open Data datasets with
the goal of supporting the improvement of the datasets. In particular, they define
the structure of their transaction tables by means of so-called configurations of
which they propose six. Based on the configurations, the application of associ-
ation rule mining leads to different discoveries for the dataset including schema
discovery, range discovery and schema matching. For example, Abedjan and Nau-
mann propose these configurations to find common co-occurrences of properties
or classes for many entities. They especially target at predicate suggestions and

4.4. PROFILING LINKED DATA DATASETS 47

auto-amendment of triples but also on proposals for changing the ontology which
might be desired if the ontology and the corresponding data develop in parallel for
some time and thus start to diverge. This work differs from ours since its main use
case is supporting the knowledge engineer in giving suggestions for modifications
in the dataset which lead to improvements or better suit the actual usage in the
data. Furthermore, it helps the engineers to discover and understand the usage of
the data.

Paulheim [75] also uses association rule mining to detect patterns of types
that commonly co-occur and to propose additional types for given instances. The
follow-up work by Paulheim and Bizer [77] focuses on completing the types of in-
stances. However, instead of relying on the already existing class assertions of the
instances, the properties used with an instance are employed for finding possible
types. This is done by considering the typical classes of entities used with a certain
property and then aggregating this information for all properties used with the cur-
rently considered instance for finally getting its most probable type. The authors
argue that this approach could complement or even replace the traditional inferenc-
ing which points in the same directions as the arguments given by d’Amato [31] in
favor of inductive methods. The advantage of these approaches compared to fully
schema-inferencing based approaches is that they do not suffer from problems in
the schema or from deviations between schema and the actual schema usage in the
data. On the other side, just using statistics-based approaches without ever mate-
rializing the generated rules so that an ontology engineer can check them, might
also rapidly lead to blowing up noise contained in the data. Therefore, we favor the
formalization of rules in a human-readable format so that the rules are available for
further checking. By providing confidence annotations for learned axioms, we also
circumvent the problem of usual schemas only containing hard-and-fast rules. An
ontology engineer can assess the formalized rules also considering the confidence
values and thus might remove wrongly learned rules which point to errors in the
data.

Chapter 5

Inductive Learning of Class
Disjointness Axioms

One central aspect of more expressive ontologies is negation. Nevertheless, it is
not widely used in real-world ontologies. Even class disjointness axioms, being
the simplest type of negation supported by many ontology languages, are only
used scarcely. According to the LODStats project,1 which crawls datasets in the
LOD cloud and provides statistics about the characteristics of the datasets, only
6 out of 365 properly crawled datasets (1.7%) contain class disjointness state-
ments. Glimm et al. [42] performed an analysis of the Billion Triple Challenge
2011 dataset. Though class disjointness belonged to the top-20 OWL primitives
employed in the dataset, its total number of usages was low.

This is especially a hindrance when working in the direction of data quality
since only negation and other more sophisticated axiom types provide knowledge
usable to detect inconsistencies in the dataset. Thus, these axioms are required to
identify problems in the data by means of most logics-based automatic approaches.
Furthermore, to serve as a documentation of the dataset, an ontology increases its
informative value when it not only provides non-binding definitions but also states
that certain situations and modeling cases are not possible. Regarding the logical
detection of problems, consider the following knowledge base described by means
of the DL syntax.

> v navigates.Ship

> v hasHometown.City

Person(Tom)

navigates(Tom, Berlin)

hasHometown(Tom, Berlin)

The TBox of this knowledge base describes the properties navigates and hasHometown
for both of which a domain restriction is given. While the domain of navigates

1http://stats.lod2.eu

48

http://stats.lod2.eu

49

is given as Ship, a City is defined to be the domain of hasHometown. In addi-
tion, the ABox describes Tom, an instance of the class Person who navigates the
instance Berlin which is also his hometown. For a human, it is self-evident that
there is some error in the data. Based on the domain restrictions, Berlin would
have to be both a city and a ship but common knowledge says that nothing can
be both at the same time. Probably, there has to be a ship named Berlin and the
city Berlin as separate instances thus the ABox contains errors in using the same
instance for the ship and the city. If automatic approaches were applied on this
knowledge base, they would not spot any errors since the relevant fact that cities
and ships are distinct is not expressed here. Thus, these approaches would not
be able to help finding the problems. By enriching the knowledge base with the
fact that ships and cities have no common instances, automatic methods for find-
ing errors would become applicable. This statement can be expressed by a class
disjointness axiom

Ship v ¬City

or equivalently Shipu City v ⊥ which specifies that the classes Ship and City
do not share any instances. This axiom would then render the ontology inconsistent
since the instance Tom could not be assigned to both classes in any model for the
ontology.

Given the low deployment of disjointness axioms in real-world data, a first
step into using them for detecting errors in Linked Data is to gather the disjoint-
ness holding between the different classes which are contained in the data. In this
chapter, we propose approaches which generate class disjointness inductively, i.e.,
which use instance data from the dataset itself for finding valid class disjointness
axioms. The choice was made for several reasons. First, this helps us to limit the
requirement for external data. For example, many extensional approaches require
text corpora which have some relation to the considered dataset. Though in many
cases such data might be easy to find, e.g., from the Internet, for more special-
ized datasets the additional information might be sparse. As an alternative, textual
information assigned to the entities of the dataset could replace this dependency,
however there is no guarantee for such textual information in the datasets. In ei-
ther case, for the most promising results, manual intervention regarding the choice
of additional data is most certainly needed. The second reason why we consider
the intensional approach here, is that learning disjointness axioms from the knowl-
edge base’s data leads to more compact statements regarding its contents which
can be helpful not only for being used in automatic approaches but also in sce-
narios where humans are involved. For example, if a certain disjointness axiom
would be expected by a human and it is not learned by the intensional approach,
a more detailed inspection could be fruitful since the data probably does not sup-
port this axiom and thus either the human expectation or the data might be wrong.
In both cases, the manual inspection either leads to the discovery of a structural
error in the data or additional insights into it. Disregarding this, for both meth-
ods, it is worth to note that manual inspection of their results is always beneficial

50 CHAPTER 5. INDUCTIVE LEARNING OF DISJOINTNESS AXIOMS

and helps to increase the data quality considerably. Given our focus on learning
additional axioms for Linked Data, another requirement is important for the pro-
posed approaches. Since Linked Data datasets easily contain many instances, the
approaches have to be scalable to these amounts of data. In particular, this makes
us disregard methods that rely on logical reasoning because reasoning systems can
hardly handle large numbers of instances.

This chapter is based on the work initially presented by Fleischhacker and
Völker [39] and Völker et al. [94]. It is structured as follows. First, we report
on the creation of a gold standard for class disjointness in the DBpedia ontology in
Section 5.1. Afterwards, Section 5.2 focuses on the three approaches for learning
class disjointness, one based on correlation and two using association rule mining.
In Section 5.3, we report on the results of the different approaches on the DBpedia
dataset and also compare the results of a state-of-the-art supervised approach to
one of the inductive approaches. Finally, we conclude this section by pointing out
the major findings of our experiments in Section 5.4.

5.1 Class Disjointness Gold Standard

For evaluating the results of learning class disjointness axioms, we manually cre-
ated a gold standard for the relevant classes of the DBpedia ontology version 3.7.
To give a better understanding of this gold standard, we provide a thorough de-
scription of the creation process in the first part of this section and afterwards we
give insights into the findings gained during this process.

5.1.1 Methodology

For making the results of the annotation more comparable between all annotators,
we defined a common methodology to apply while annotating the ontology classes
with disjointness which we describe in the following along with the overall setting.

We let three annotators independently work on the enrichment of the ontology.
The goal was a completely axiomatized ontology containing a disjointness axiom
between two classes if and only if the classes are considered disjoint by the annota-
tor. Each annotator was introduced into the methodology presented in Figure 5.1.

We provided all annotators with a cleaned up version of the original DBpedia
ontology. During the cleaning step, we removed all classes from the ontology
which did not belong to the DBpedia ontology namespace,2 the RDF or RDF
Schema namespace or to the OWL namespace. This was done to limit the gold
standard creation to the actual DBpedia ontology and to not include other refer-
enced ontologies linked to from DBpedia. Additionally, we removed all non-class
axioms from the ontology.

2http://dbpedia.org/ontology

http://dbpedia.org/ontology

5.1. CLASS DISJOINTNESS GOLD STANDARD 51

Add all valid
sibling disjoint-
ness axioms

Materialize
disjointness

Check and
correct disjoint

class pairs

Import disjoint-
ness information

Original ontology

Ontology

Class pairs +
disjointness
state

Class pairs +
disjointness
state

Ontology

Figure 5.1: Gold standard creation methodology

As a first step, the annotators started adding disjointness axioms using the Pro-
tege ontology editor3 in a top-down manner, first assessing the disjointness of the
top-most classes to their siblings and continuing the same on the next level of con-
cepts. This is similar to the disjoint siblings assumption used by Schlobach [84]
with the exception, that only manually assessed disjointness axioms are added to
the ontology. For this and all following assessments, the annotators had several
ways of gathering information on the actual meaning of a class. The most obvious
was the class label and the comment possibly assigned to the class but also the ex-
ternal sources like Wikipedia articles were valid resources for finding information
relevant for the decision. Furthermore, an inspection of the related classes, espe-
cially subclasses, and a small number of instances from the actual DBpedia dataset
often helped in understanding a class’ semantics.

The next step in the process consisted of materializing all disjointness axioms
inferable from the ontology created in the previous step and determine for all pairs
of classes in the ontology whether they are disjoint or not (their disjointness state).
This materialization step helped the engineers to see the actual implications of the
disjointness axioms added in the previous step. In the generated list, they were
able to directly specify whether a disjointness axiom should be added between
both classes or not. Based on this list, additional disjointness axioms were then
added to the ontology. Finally, the whole process started again by materializing the

3http://protege.stanford.edu/.

http://protege.stanford.edu/

52 CHAPTER 5. INDUCTIVE LEARNING OF DISJOINTNESS AXIOMS

resulting disjointness axioms to allow the engineers to check the results and correct
class pairs erroneously set to be disjoint. The whole process was continued until
the engineer was satisfied with the result.

All in all, we consider this workflow to be superior to approaches like the one
previously used by Völker et al. [98]. First, by also including the taxonomy, the
engineers were able to consider the subclass relations when determining whether
to set a class pair as disjoint which proved helpful in some cases for recognizing
the actual meaning of classes. In addition, the direct access to the ontology itself
allowed the engineers to also access the comments and additional labels contained
in the ontology which might clarify the meaning of specific classes further. More-
over, by including a materialization step in the workflow, inferenced disjointness
axioms are made apparent to the engineers. We think these aspects considerably
outweigh the problem that we had to rely on the subsumption hierarchy potentially
being faulty itself also because such problems could be discovered when wrong
inferred disjointness axioms are showing up.

5.1.2 Analysis

The resulting gold standard not only gives us the possibility to evaluate disjointness
learning approaches against it but also provides us with the possibility to better un-
derstand the complexity of disjointness in the DBpedia ontology and the problems
arising from this complexity. Starting the analysis of the gold standard, we com-
puted basic statistics about the distribution of votes on axioms which are given in
Table 5.1. In this table, the number of concept pairs is given which got a certain
number of votes for being disjoint. Obviously, since the gold standard was created
by three engineers, this ranges from zero votes for disjointness, i.e., all engineers
consider the two concepts not to be disjoint, up to three votes for disjointness, i.e.,
all engineers consider the given pair to be disjoint. The distribution of votes has
been computed for three different sets of class pairs. The set Pall contains all possi-
ble pairs of classes in the ontology (e.g. {A,B}). Pdirect contains all pairs {A,B}
whereA andB are direct siblings, i.e., have a common direct superclass. The third
set of pairs contains all pairs {A,B} for which neither A v B nor B v A holds.
This set is called Pindirect in the following. This three-fold evaluation was done
to particularly examine the annotators’ performance on sibling classes where we
expected the main complexity in the decision whether two classes are disjoint.

As we can see from these statistics, all annotators agreed on the disjointness
and non-disjointness for the majority of pairs. Furthermore, the agreement is con-
siderably lower for the direct siblings case compared to the all pairs case.

To more formally quantify the agreement between annotators, so-called inter-
annotator agreement measures are commonly used. The inter-annotator agree-
ment, also called inter-rater or inter-coder agreement, is a way of quantifying the
agreement between annotators on the same task. There are many different inter-
annotator agreement measures proposed which differ, e.g. regarding the number
of annotators they can compute agreement between, the number of annotation cat-

5.1. CLASS DISJOINTNESS GOLD STANDARD 53

Table 5.1: Basic statistics about the gold standard

Pall Pdirect Pindirect

% # % # %
0 votes 2,412 6.09 487 28.92 1,948 4.98
1 vote 286 0.72 72 4.28 269 0.69
2 votes 432 1.09 74 4.39 432 1.10
3 votes 36,491 92.10 1,051 62.41 36,486 93.23

egories and whether they take agreement by chance into account. An introduction
and overview is provided by Artstein and Poesio [6] whose article also provides
the basis for the following definitions. For our scenario, we have to consider the
annotations done by three annotators on a binary scale. We assess the agreement by
means of the observed agreement without any chance correction and additionally
by means of Fleiss’ κ, which is referred to as Fleiss’ multi-π by Artstein and Poe-
sio. The most basic definition regarding inter-annotator agreement is the observed
agreement for two annotators which is defined as:

AO =
1

]I

∑
i∈I

agri (5.1)

with I being the set of all annotated items and agri an indicator whether the anno-
tators agreed or not, given by

agri =

{
1 if both annotators assign item i to the same category
0 if both annotators assign item i to different categories

(5.2)

Based on this two-annotator case, the generalization for a set of annotators C
who annotate items from a set I with categories a and b is given in Equation 5.3.
The variables nai and nbi give the numbers of annotators who assigned category a
or b to item i.

AO =
1

]I]C(1−]C)

∑
i∈I

nai(nai − 1) + nbi(nbi − 1) (5.3)

The problem of the simple observed agreement is that the number of annotators
and, in the more general case, the number of categories directly influence the result
of the agreement measure. As a result, adding superfluous and thus never chosen
categories could lead to a raise of the observed agreement. Because of this, the
so-called chance-corrected measures have been proposed which use the observed
agreement but only consider it in relation to the agreement which would occur if all
annotators would just randomly pick the category for each item. Chance correction
is included in several measures which amongst others differ regarding the random
distribution lying behind this random choice. Fleiss’ κ, which we will use in this

54 CHAPTER 5. INDUCTIVE LEARNING OF DISJOINTNESS AXIOMS

work, assumes an equal distribution for all annotators. This distribution is derived
from the actual distribution of the category assignments which leads to an expected
agreement AE as shown in Equation 5.4 and finally to the actual measure provided
in Equation 5.5.

AE =
1

(]I]C)2

∑
k∈K

n2k (5.4)

κ =
AO −AE
1−AE

(5.5)

The resulting measure is in the range of −1 to 1, where 1 means perfect agree-
ment while 0 means that only the agreement was achieved that would have to be
expected by chance. Values of less than 0 hence mean that the agreement was
even lower than to be expected by chance. One possibility to qualify the level of
agreement is proposed by Landis and Koch [63] as shown in Table 5.2.

Table 5.2: Levels of agreement according to Landis and Koch [63]

Kappa Values Strength of Agreement
< 0.00 Poor

0.00 - 0.20 Slight
0.21 - 0.40 Fair
0.41 - 0.60 Moderate
0.61 - 0.80 Substantial
0.81 - 1.00 Almost Perfect

Table 5.3 provides observed agreement and Fleiss’ κ values for the annotation
made for creating the gold standard based on the categories of a class pair being
disjoint or non-disjoint. As we see, the intuitive observation of a good agreement
is confirmed by these values which all denote almost perfect agreement according
to the classification of Landis and Koch.

Table 5.3: Gold standard inter-annotator agreement

Pall Pdirect Pindirect

Observed 0.988 0.942 0.988
Fleiss’ κ 0.989 0.870 0.989

Since these values are computed over all pairs of the ontology they do not pro-
vide us with information whether some class pairs are harder to assess than others
when annotating them. We especially assume the complexity of the annotation to
differ for the types the classes represent, thus, we performed the inter-annotator
agreement evaluation not only on the full ontology but also on class pairs where
both classes belong to the same subtree of the ontology. Since the class tree is

5.1. CLASS DISJOINTNESS GOLD STANDARD 55

spanned by subclass and hence is-a relations, the class at the root node of each
subtree identifies the super type of all classes in this subtree. Some results of this
analysis are depicted in Figure 5.2. In this figure, the given κ-value shows the
agreement reached for class pairs where both classes are in the subtree spanned by
the concept shown in the diagram.

Figure 5.2: Inter-annotator agreement for subtrees of selected classes

owl:Thing

κ = 0.99

Organisation

κ = 0.75

Educational

Institution

κ = 0.35

Person

κ = 0.00

Place

κ = 0.35

Populated Place

κ = 0.05

Architectural

Structure

κ = 0.55

Natural Place

κ = 0.29

Species

κ = 0.99

As we can see in this diagram, the inter-annotator agreements for different sub-
trees differ widely. High agreements are mostly achieved for subtrees containing
classes which can be separated accurately like the species subtree consisting of bi-
ological classifications. Since biological taxonomies are disjoint, the disjointness
of the classes representing the biological classes is clearly defined. Most strik-
ingly, the agreement on the subtree of the class Person is 0.00 which would mean
no agreement above chance. However, the observed agreement for this subtree
is higher than 0.99 which means that the annotators almost all the time agreed
in their judgment. Considering the actual assessments given by the annotators, it
turned out that nearly all pairs where marked as non-disjoint and that the annota-
tors had only very few disagreements. This led to a bias in the distribution towards
non-disjointness and thus raised the expected agreement very high so that the few
disagreements had a great influence on the final agreement measure. The fact that
there is such a high agreement for non-disjointness in the Person subtree hints that
the annotators considered the fact that the membership to many of these classes can
change in the course of time and thus (time-independent) class disjointness might

56 CHAPTER 5. INDUCTIVE LEARNING OF DISJOINTNESS AXIOMS

not be the right way of representation here.
We also created a list of all cases of disagreements between the annotators, i.e.,

all pairs for which we only had one or two votes for disjointness. This list con-
tained 928 class pairs. To find out more about the reasons for these disagreements,
we passed the resulting list back to the annotators and let them discuss the indi-
vidual cases. From the notes taken during the annotators’ discussion, we tried to
categorize the disagreements by the facet which caused them. This categorization
is similar to the categorization done by Völker et al. [98] for their gold standard.
In the following, we describe the most common categories in more detail.

Many disagreements were caused by problems finding the right interpretation
of the classes in the ontology. Most of the time, the contents of the ontology itself
led to confusion like, e.g., when the RailwayLine class was subsumed by the
class ArchitecturalStructure but at the same time the comment of the for-
mer stated that it should “not be mistaken for a railway track” which was obviously
the interpretation leading to the subsumption. Another similar case was the class
Infrastructure which should have been named InfrastructureAsset
since it only described parts of the infrastructure and not the (rather abstract) infras-
tructure itself. Similarly, for spatial concepts like in AdministrativeRegion
or ProtectedArea, the annotators disagreed in their judgments because of the
missing additional documentation further describing the intended interpretation.

Another common problem which we discovered, was similar to the common
problem about properties changing in the course of time mentioned above. It oc-
curred for classes which were assigned to an instance because it had a specific
property but where the instance might lose this property in the course of time. Dur-
ing the creation of the gold standard, one example for this was the class Theater
which was a subclass of Building. Some annotators remarked that this class
could hardly be disjoint to Museum which is also subsumed by Building since
a theater that is no longer in use could be used as a museum. This problem seems
to be close to the well-known aspect of rigidity as also discussed by the OntoClean
approach [45] where the modeling of food classes is discussed which also posed
some problems to our annotators.

Further disagreements were caused by concepts where the intentions were dis-
joint while the extensions were equal. An example we found in the ontology for
this case were the concepts Band and MilitaryUnit. Some annotators argued
towards disjointness while others pointed out that there are military bands being
established as military units for themselves.

One problem which even led to incoherence in the gold standard was posed by
the class Library which was subsumed by both Organisation and Building.
Since those two superclasses were labeled as disjoint by all annotators, the class
Library became unsatisfiable. This problem is not solvable without modifying
the original ontology so that either one of the subsumption axioms is removed
from it or the Library class is split into one class for the organization of a library
and one for the building the library is located in.

All in all, from the discussions during this phase, we were able to conclude

5.2. APPROACHES 57

that the main problem in many cases could lie in the fact that the ontology was
created in a crowd-sourced scenario. Thus, there is no dedicated group of people
who maintains the ontology but different people develop the ontology without any
supervising authority. Also the fact that there is hardly any documentation describ-
ing the background of modeling ontologies and that probably very few contributors
have experience in modeling ontologies, seems to have led to a mixture of different
modeling approaches which maybe even contradict each other to a certain degree.
This in turn made it very hard even for ontology engineers to create a coherent
disjointness axiomatization based on the ontology. In addition, we also discovered
a number of problems which were already known from other ontology modeling
contexts not focused on the modeling of disjointness axioms.

5.2 Approaches

All three approaches presented here are working on the instance data of a data
source to deduce disjointness axioms for this data. The relevant parts for this
purpose are the instances contained in the knowledge base and the classes these
instances are assigned to. For all approaches, we consider transaction tables as
already used by Völker and Niepert [96] where each row represents an instance
of the dataset and each column represents a class to which at least one instance is
assigned. This leads to the basic representation as shown in Table 5.4.

Table 5.4: Example representation of instance and class data. 1 means that this
instance is assigned to the corresponding class, 0 means that no such assignment
exists in the dataset.

IRI Place City Person OfficeHolder

Berlin 1 1 0 0
Charles_Darwin 0 0 1 0
Eiffel_Tower 1 0 0 0

John_F._Kennedy 0 0 1 1
Golden_Gate_Bridge 1 0 0 0

For the following descriptions of the different approaches, we assume that such
an instance-class table already given.

5.2.1 Correlation-Based Approach

As a first approach for finding disjointness axioms from the instance to class as-
signments, we consider only pairs of classes and determine how often instances
are assigned to both classes at the same time by means of the rdf:type state-
ment. The basic idea is that for classes which are disjoint there should be no (or

58 CHAPTER 5. INDUCTIVE LEARNING OF DISJOINTNESS AXIOMS

only few, in case of data errors) instances that are assigned to both classes. Thus,
if an instance is assigned to one class, it is not assigned to the other one and vice
versa while for non-disjoint classes assignment of the same instance to both classes
can be expected more regularly.

For capturing the common occurrence of classes in this first approach, we use
the Pearson product-moment correlation coefficient, often also referred to as Pear-
son’s r, which is a widely known and commonly used measure for the strength of
linear relation of two sequences of data. Pearson’s r has also been used in a sim-
ilar fashion by Antonie and Zaïane [5] in combination with association rules for
filtering. Its general form for sample data is defined as follows:

r =

∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)√∑n
i=1

(
Xi − X̄

)2√∑n
i=1

(
Yi − Ȳ

)2 (5.6)

For the application on the class disjointness problem, we consider the instance-
class data mentioned above for a pair of classes C and D and compute the correla-
tion between the sequences of 0 and 1 given by the columns corresponding to the
classes. Based on these sequences, we compute the number of occurrences of the
four possible combinations of classes as depicted in the following table.

C ¬C
D n11 n01 n∗1
¬D n10 n00 n∗0

n1∗ n0∗

For this specific variant, which only contains binary data, the Pearson correla-
tion coefficient can be reduced to the so-called φ-coefficient:

φ =
n11n00 − n10n01√
n1∗n0∗n∗0n∗1

(5.7)

Given the correlation coefficients for a pair of classes, we can assess the strength
of their relation. The possible correlation coefficients are in the interval [−1.0, 1.0]
where 1.0 shows a total positive correlation and −1.0 a total negative correlation.
The former would be reached for two perfectly equivalent classes while the latter is
the result of two classes which are mutually exclusive and collectively exhaustive,
i.e., for classes which are a disjoint union of the whole set of instances.

For a more fine-grained subdivision based on the values of the correlation co-
efficients, we use the coarse categorization provided by Cohen [29]. According
to this work, a strong correlation is indicated by absolute values greater than 0.5,
medium correlation by absolute values in the range from 0.3 to 0.5 and small cor-
relation by absolute values in the range from 0.1 to 0.3. Absolute values of less
than 0.1 are considered as inexpressive.

5.2. APPROACHES 59

Based on these considerations, we can conclude that high negative correlation
coefficient values give the most evidence for a disjointness holding between both
classes. In the final approach, we consider class pairs with negative correlation
coefficients as disjointness candidates. We use the absolute value of the correlation
coefficient as confidence value for the disjointness.

For the transaction database shown in Table 5.4 and the classes Place and
OfficeHolder, we would get φ = −3√

24
= −0.61. From this strong negative

correlation, the correlation-based algorithm would propose a disjointness axiom
between both classes using the absolute correlation value as confidence.

5.2.2 Association Rule Mining-Based Approach

Both the second and the third approach which we present here for generating dis-
jointness axioms from the data in Table 5.4 are based on association rule mining as
introduced in Section 3.2. These methods develop the idea of Völker and Niepert
regarding subsumption mining further for finally generating disjointness between
classes. Analogical to the association rule pattern A → B for classes A and B,
which leads to a class subsumption A v B, the idea is to discover association rule
patterns like A → ¬B for finding disjointness axioms like A v ¬B. These types
of associations rules are frequently referred to as negative association rules. More
precisely, association rules are called negative association rules if one or both of
antecedent and consequent are negated, i.e., are sets not contained in a transaction
(cf. [104]). In case of negative association rules, the task of association rule mining
is not to find a set of items whose occurrence makes the presence of another item
set more probable. Instead, the task is, e.g., finding sets of items whose presence
makes the absence of another set more likely.

First, we describe the method most similar to the standard (positive) association
rule mining approaches. It exploits the fact that for a class A not only A itself but
also the class complement ¬A represents a valid class description. Thus, a possible
approach for generating association rules like A→ ¬B is to enrich the data shown
above by the assignment of instances to complement classes. As described in the
beginning of this chapter, we usually do not have the knowledge available which
instance belongs to which complement class. Thus, we assign those instances to
the class complement that are not asserted to belong to the corresponding class.
This allows us for circumventing the datasets’ limitation although it contradicts
the open-world assumption semantics employed by OWL and RDF as explained
in Chapter 3. Applying this approach extends the transaction data represented in
Table 5.4 as shown in Table 5.5.

This leads to some changes in the characteristics of the transaction tables for
the data. First, we double the number of items in the item base. Second, the size
of each transaction changes substantially. Typically, there are many more items
not contained in a transaction than items contained in a transaction. But by adding
the complement classes to each transaction, this is no longer valid. Since for each
class either the positive class or its complement is added to the transaction, we

60 CHAPTER 5. INDUCTIVE LEARNING OF DISJOINTNESS AXIOMS

Table 5.5: Transaction database containing materialized class complements

IRI P
l
a
c
e

C
i
t
y

P
e
r
s
o
n

O
f
f
i
c
e
H
o
l
d
e
r

¬
P
l
a
c
e

¬
C
i
t
y

¬
P
e
r
s
o
n

¬
O
f
f
i
c
e
H
o
l
d
e
r

Berlin 1 1 0 0 0 0 1 1
Charles_Darwin 0 0 1 0 1 1 0 1
Eiffel_Tower 1 0 0 0 0 1 1 1

John_F._Kennedy 0 0 1 1 1 1 0 0
Golden_Gate_Bridge 1 0 0 0 0 1 1 1

know in advance that each transaction will be of the size]I for an item base I
that contains both positive and complement class items. Furthermore, this also
leads to an increase regarding the number of frequent itemsets because the different
complement class items co-occur far more often than the positive classes. All this
together renders this approach, which is sometimes called naïve association rule
mining [5, 91], hardly applicable in the general scenario. Nevertheless, for our use
case we operate on a much more limited problem space, in particular, we typically
have to handle only a few thousand class descriptions compared to the itemset sizes
of around 106 or even more found in other applications of association rule mining.

In our example transaction database, we consider the itemset

{Place,¬OfficeHolder}

which reaches a support value of 3 because these items are contained in the transac-
tions for Berlin, Eiffel_Tower and Golden_Gate_Bridge. For the negative
association rule Place→ ¬OfficeHolder, we thus get a confidence value of

supp(Place,¬OfficeHolder)

supp(Place)
=

3

3
= 1

From the resulting association rules that follow the patternA→ ¬B, we create
corresponding disjointness axioms. Since association rules are implication pattern,
the validity of a rule like A → B does not necessarily imply the validity of its
symmetric counterpart B → A. In contrast to association rules, class disjointness
axioms like A v ¬B are indeed symmetric and thus (A v ¬B) |= (B v ¬A)
holds. To prevent unexpected results, this has to be reflected in the generation of
axioms. Due to the symmetry of disjointness axioms, there are still two possible
rules which hint to the disjointness of classes A and B, the rules A → ¬B and
B → ¬A. If both rules were transferred into their corresponding class disjoint-
ness axioms, for each class pair there could be two axioms stating their disjoint-
ness with possibly different confidences. When applying a confidence threshold on

5.2. APPROACHES 61

these axioms, the disjointness axiom would be added to the ontology if one of the
confidence thresholds is sufficiently high. However, for certain cases, this would
lead to wrong results. One such case could occur when considering classes A and
B with A v B for which the cardinality of B is much greater than the cardinality
of A, e.g.,]A = 100 and]B = 1, 000, 000. Based on these numbers, we know
that

conf(A→ ¬B) =
999, 900

1, 000, 000
= 0.9999 (5.8)

and thus the assigned disjointness axiom could be chosen for the final ontology
based on this high confidence value. Obviously, this would render the resulting
ontology incoherent. The subsumption relation between A and B is only clearly
detectable for the inverse association rule

conf(B → ¬A) =
0

100
= 0 (5.9)

which excludes the corresponding disjointness axiom from the final ontology for
all reasonable thresholds. To prevent this kind of problems, we generate the dis-
jointness axioms according to the following rules:

1. only convert association rules A→ ¬B to disjointness axioms if the inverse
rule B → ¬A is also a discovered association rule and

2. assign the confidence value for the disjointness axiom as

conf(A v ¬B) = min(conf(A→ ¬B), conf(B → ¬A)) (5.10)

These additional rules prevent the generation of disjointness axioms for sub-
class relations as given in the example. If generated at all, disjointness axioms for
such association rules would not be included in the final ontology since either the
association rule directly leading to the disjointness axiom has a too low confidence
value or the final confidence value of the axiom is lowered by the corresponding
inverse association rule.

5.2.3 Negative Association Rule-based Approach

As described, standard association rule mining algorithms are not originally de-
veloped for being used for negative association rule mining. Nevertheless, the
mining of negative association rules is a use case which has many potential appli-
cations. Thus, there are some algorithms particularly concentrating on the mining
of negative association rules [5] including the algorithm proposed by Zhang and
Zhang [104]. In comparison to the approach described above, this method miti-
gates the need of materializing the complement classes and instead works directly
on the basic transaction database like the one shown in Table 5.4. The basic idea

62 CHAPTER 5. INDUCTIVE LEARNING OF DISJOINTNESS AXIOMS

behind this approach is to search the database for infrequent positive itemsets. Be-
cause of the sparsity of the original transaction database there is an almost expo-
nential number of such infrequent positive itemsets. To reach a well enough per-
formance for such an approach, pruning the search space is an important concern.
After generating infrequent itemsets, Zhang and Zhang prune those itemsets which
are not considered interesting given the minimum interest level. In this context, an
itemsets is called interesting if its support exceeds the expected level of support.
Based on the remaining negative itemsets, they define an approach to create all
possible negative association rules using the probability ratio of each association
rule as the corresponding confidence.

5.3 Evaluation

In this section, we describe the experiments performed on the created gold stan-
dard for the DBpedia ontology version 3.7 and the corresponding DBpedia dataset
version 3.7.

We extended the tool GoldMiner by Völker and Niepert [96] by implementing
the three inductive approaches introduced above. For these approaches, the first
part of the implementation consisted of querying the DBpedia SPARQL endpoint.
Depending on the employed approach, the next step was either to directly compute
the correlation between the instance assignments to pairs of retrieved classes for the
correlation-based approach or to write the transaction table into files for the asso-
ciation rule approaches. In the latter case, the file representations of the transaction
tables were then further processed for finding the relevant association rules. As an
implementation for usual association rule mining, we used the Apriori miner tool
by Borgelt and Kruse [19] in particular because of its high performance. Its output
contained the association rules found during the mining step and were then parsed
by our implementation to find the negative association rules from which we finally
derived class disjointness axioms. For negative association rule mining, we were
not able to find a publicly available implementation. Thus, we implemented the ap-
proach proposed by Zhang and Zhang [104] ourselves and used it for discovering
negative association rules and derive class disjointness axioms from.

For the Apriori association rule mining step, we applied an absolute support
threshold of 10 while not enforcing a confidence threshold since the application
of our symmetry handling rules led to the sole generation of high confidence ax-
ioms. When applying the negative association rule mining approach, we also used
an absolute support threshold and in addition a confidence threshold of 0.8 which
showed promising results in first pre-studies. On the correlation approach, we ap-
plied the threshold values 0.05 and 0.005 corresponding to negative correlations of
−0.05 and−0.005 respectively. Even if these values are both beneath the limits for
meaningful correlations, we nevertheless chose these after some first experiments
since the results were promising.

For the full evaluation based on our gold standard, we determined different

5.3. EVALUATION 63

sets of valid class disjointness axioms. The first one consisted of all class pairs
for which at least two annotators considered them as disjoint. In the following,
we call this gold standard dbpedia50. For the second gold standard, we only
included class pairs for which all annotators agreed in the disjointness. This gold
standard is referred to as dbpedia100. For both gold standards, we also included
only those non-disjointness statements for which the annotators agreed on the same
level as for the disjointness statements. Thus, dbpedia50 only marked a class pair
as disjoint if at least two annotators considered the classes to be non-disjoint while
dbpedia100 only contained those pairs for which all annotators agreed on the
non-disjointness. To evaluate the generated disjointness lists, we then used the set
of pairs which are either considered as disjoint or non-disjoint in the current gold
standard and left the other pairs out of the evaluation.

During the analysis presented in this section, we are particularly interested
in the precision of the learned disjointness axioms. Precision together with re-
call are measures typically used in the area of Machine Learning for assessing the
performance of two-class classification tasks regarding one of the classes. In this
case, these measures compare the result generated by machine learning approaches
against a manually created gold standard and provide an insight into both the cor-
rectness (precision) and the completeness (recall) of the result. Their definition is
based on sets:

• TP containing the true positive examples, i.e., all examples annotated as
positive in both gold standard and classification result,

• TN containing the true negatives examples which are annotated as negative
in both gold standard and classification result,

• FP containing the false positives which are examples classified as positive
but are annotated as negative in the gold standard and

• FN containing the false negatives being annotated as positive in the gold
standard but classified as negative.

Using these four sets, precision and recall are defined as given in Equations 5.11
and 5.12, respectively.

prec =
]TP

](TP + FP)
(5.11)

rec =
]TP

](TP + FN)
(5.12)

Obviously, it is a much simpler task to reach either a precision or recall value of
1.0 when not paying attention to the other measure. Thus, in many cases a certain
level of balance between precision and recall is desired. This is captured in the

64 CHAPTER 5. INDUCTIVE LEARNING OF DISJOINTNESS AXIOMS

so-called F-measure which combines precision and recall into a single measure. It
is defined as the harmonic mean of precision and recall as follows:

F1 =
2 · prec · rec

prec + rec
(5.13)

Another measure tightly connected with precision and recall is accuracy. It is
used to get an assessment for the overall performance of the classification consid-
ering both classes of the classification results and is defined as:

accuracy =
]TP +]TN

]TP +]TN +]FP +]FN
(5.14)

As an additional reference to compare the results to, we also provide the per-
formance of the majority baseline on the gold standard as well as the performance
baseline gained by setting all siblings as disjoint in Table 5.6. The latter baseline
employs the disjoint siblings assumption formulated by Schlobach [84].

Table 5.6: Performance of baselines

dbpedia50 dbpedia100
prec rec F1 prec rec F1

Majority 0.926 1.000 0.962 0.915 1.000 0.956
Disjoint Siblings 0.926 0.850 0.886 0.933 0.850 0.890

Table 5.7 lists the number of axioms generated by the different inductive ap-
proaches while Table 5.8 provides the results of evaluating these axioms on all
class pairs (Pall) against the gold standard. To properly compare them against the
materialized gold standard, we also materialized all implicit disjointness axioms
for the learning approaches and determined the evaluation measures on the mate-
rialized gold standard. In the tables, the basic association rule mining approach is
referenced by basic, the negative association rule mining shows as negative while
the correlation-based approach is given as corr followed by the employed threshold
value.

Table 5.7: Number of axioms generated by inductive approaches exceeding thresh-
old

axioms before materialization # axioms after materialization
basic 39,169 46,885
negative 76 24,973
corr0.005 5,015 40,549
corr0.05 235 27,753

One first finding of the experiments is the fact that all inductive approaches
outperform the baseline approaches with regard to precision although the baselines

5.3. EVALUATION 65

Table 5.8: Results of inductive approaches on Pall

dbpedia50 dbpedia100
prec rec F1 prec rec F1

basic 0.939 0.960 0.949 0.945 0.961 0.953
negative 1.000 0.536 0.698 1.000 0.542 0.703
corr0.005 0.959 0.843 0.897 0.963 0.847 0.901
corr0.05 0.991 0.589 0.739 0.992 0.594 0.743

already perform very well on the dataset. This can be attributed to the fact that
both baselines make assumptions which do not hold on parts of the ontology and
the dataset. For example, the disjoint siblings assumption is not valid for the classes
describing roles as explained during the evaluation of the gold standard. It is also
worth to point out that the increase in precision between the dbpedia50 and the
dbpedia100 gold standard that is visible for all approaches is due to leaving out
pairs for which the annotators were not able to find a full agreement.

Comparing the different inductive approaches, we see that the negative associ-
ation rule mining approach is leading with respect to precision. However, it falls
short in recall compared to the other methods. The correlation approaches are
better regarding the recall for both thresholds and the two gold standard variants.
These approaches have a slight disadvantage regarding precision nevertheless they
show a better F-measure than the negative association rule mining approach. The
basic association rule mining approach shows the best result in recall and leads with
respect to the F-measure even if not showing the best precision. This advantage re-
garding the overall result is in line with the results of our previous experiments
performed on DBpedia 3.5 [39] where the basic association rule mining approach
also showed the best combined result of the different inductive methods. Further-
more, the association rule mining approaches have the advantage of being more
extendable than the correlation-based ones. For example, considering not only ax-
ioms stating the disjointness of two atomic classes but axioms which include, e.g.,
unions of classes, the association rule mining approach can handle these scenarios
efficiently by just relying on the algorithmic efficiency of the underlying associa-
tion rule mining algorithm while the correlation-based methods have recompute all
relevant combinations of classes. Given these results and observations including
its considerably higher recall, we took the basic association rule mining approach
as a representative of the inductive methods for further experiments. We evaluated
this approach on the different sets of pairs to get a more detailed insight into the
performance on these sets. The results of this evaluation are provided in Table 5.9.
We see that the approach has problems telling disjoint and non-disjoint class pairs
apart for the direct siblings pairs. However, considering the results of the gold
standard creation, this lower performance on sibling class pairs is similar to the
drastically lower inter-annotator agreement achieved for those class pairs. This
leads to the conclusion that the decision regarding the disjointness of a class pair

66 CHAPTER 5. INDUCTIVE LEARNING OF DISJOINTNESS AXIOMS

Table 5.9: Results for the basic association rule mining approach. For the sake of
clarity, results for Pall provided again.

Pall Pdirect Pindirect

dbpedia50
prec 0.939 0.666 0.941
rec 0.960 0.743 0.960
F1 0.949 0.702 0.950

dbpedia100
prec 0.945 0.683 0.947
rec 0.961 0.739 0.961
F1 0.953 0.710 0.954

is indeed more complex for sibling classes than for arbitrary class pairs. Since the
number of direct sibling pairs is much more limited, it might be worth to manually
cross-check results of the mining approach to reach a better result when applying
inductive approaches in real-world use cases.

We compared the results of the basic association rule mining approach to the
supervised learning approach implemented in the LeDA framework. For this com-
parison, we used the most current version of the LeDA framework.4 As classifier,
we applied the ADTree [41] algorithm as implemented by the Weka toolkit [46]
which showed to perform well in previous experiments. The PROTON ontology
(PROTo ONtology)5 in combination with the gold standard created by Völker et
al. [98] served as training dataset. More specifically, we used the PROTON gold
standard which marked a class pair as disjoint if it was considered as disjoint by
the majority of the annotators which is similar to the method employed for our
dbpedia50 gold standard. The results of this evaluation are shown in Table 5.10.

Table 5.10: Results for LeDA on Pall.

All Lexical Logical Corpus

dbpedia50
prec 0.958 0.940 0.939 0.933
rec 0.248 0.955 0.001 0.975
F1 0.395 0.947 0.002 0.953

dbpedia100
prec 0.961 0.945 1.000 0.939
rec 0.247 0.957 0.001 0.975
F1 0.393 0.951 0.001 0.956

In these results, we see that there is only a minor difference in the performance
on the dbpedia50 and the dbpedia100 datasets. More interesting is the low per-
formance that the supervised approach achieves for certain feature choices. For the
complete and the logical-only feature sets, the recall is much lower than for the
other feature sets. Apparently, the logical features perform poorly on the dataset

4The latest version of LeDA is available from https://code.google.com/p/
leda-project/.

5http://www.ontotext.com/proton-ontology

https://code.google.com/p/leda-project/
https://code.google.com/p/leda-project/
http://www.ontotext.com/proton-ontology

5.3. EVALUATION 67

Table 5.11: Results for LeDA without ontology similarity feature

Pall Pdirect Pindirect

dbpedia50
prec 0.949 0.631 0.949
rec 0.945 0.603 0.945
F1 0.947 0.617 0.947

dbpedia100
prec 0.955 0.651 0.955
rec 0.946 0.606 0.946
F1 0.951 0.628 0.951

and also affect the overall performance when included into the complete feature set.
To gain further insight, we analyzed the logical feature setting further. This anal-
ysis revealed the problem to be a specific characteristic of the DBpedia ontology.
It contains direct subclass relations for all its classes to the top-level OWL class
owl:Thing. Due to these statements, the ontology distance features employed by
LeDA determined the same distance for almost all class pairs since the connection
using owl:Thing as intermediate concept led to the lowest possible distance. This
resulted in the ontology distance feature to provide close to no additional informa-
tion. On the other side, the ontology distance showed to be the feature exposing the
highest information gain in the PROTON ontology and thus the trained classifier
greatly relied on this feature. Consequently, the classifier performed poorly on the
largest part of the class pairs. To validate this finding, we excluded the ontology
distance feature from training as well as evaluation. This increased the results for
the logical features to a precision of 0.94 and a recall of 1.00 with an F-measure
of 0.97. The results when applying all remaining features on the different sets of
pairs are given in Table 5.11.

Compared to the inductive learning approach, we see that the supervised method
generates disjointness axioms at a slightly higher precision on the pairs of Pall. At
the same time the recall is lower which leads to a slightly better F-measure for the
inductive approach. On Pdirect the association rule mining approach shows minor
advantages for precision and performs considerably better with respect to recall.
For Pindirect the situation is similar to the Pall case. From these results, the induc-
tive approach seems to gain a better outcome in the more complex case of deciding
whether two direct sibling classes are disjoint or not while the supervised method
produces less wrong axioms when provided with arbitrary class pairs.

We had a closer look at the results to identify the main causes leading to
wrongly or not at all generated axioms for both methods. For the inductive ap-
proach we identified several main sources of such errors. The first one was the
existence of single-typed instances where the only additional types were the su-
perclasses of their directly assigned ones. Classes without any instances assigned
are the second problem since they are currently not treated separately from the
other classes and thus can end up in being disjoint to all other classes in the on-
tology. Since the annotators in many cases evaluated on the intended semantics

68 CHAPTER 5. INDUCTIVE LEARNING OF DISJOINTNESS AXIOMS

of a class they were able to correctly assess the disjointness while the association
rule mining approach did not have this possibility. One possible solution for this
problem would be to filter out such instance-less classes beforehand so that they
are not falsely defined to be disjoint to some other classes. This could be especially
done in use cases where the approach is applied without manual intervention since
instance-less classes are probably of less interest in these cases, e.g., since there
are no instances whose class assertions can be checked for this class. Thus, one
of the main advantages of the inductive approach also turns out to be one of its
weaknesses. Its sole reliance on the available instance data makes it directly appli-
cable to many datasets but at the same time shortcomings in these datasets lead to
observable errors in the generated axioms. One possible way of coping with this
kind of problems would be to include additional data sources. Such additional data
sources could, e.g., be other Linked Data datasets whose instances are linked to the
same set of classes as the original dataset or the inclusion of less structured sources
like textual data as done in the LeDA framework. However, while the first option at
least shows potential to be performed automatically, the second option would prob-
ably require more manual intervention and thus could reduce the self-sufficiency
of the inductive approach.

The supervised approach typically suffers from weaknesses related to the nat-
ural language components providing the foundation of many employed features.
During the evaluation of missing disjointness axioms, one typical problem was
caused by similar class labels. Different features used the similarity of class labels
as an indicator for classes not being disjoint. Such labels also led to class pairs
falsely not being classified as disjoint. For example, the close lexical relation be-
tween the labels of the classes Plant and Planet led to very low edit distance and
thus was a reason for not generating a disjointness axiom for this class pair. In other
cases, some features wrongly inferred a lexical hyponymy relation between the la-
bels which then prevented a disjointness axiom from being stated. An example for
this kind of error is the class pair Automobile and AutomobileEngine in which
the class labels share a head noun but are nonetheless disjoint. The lexical features
employed in the supervised approach only rely on a very coarse approach of word
sense disambiguation. In some cases this leads to wrongly assessing classes as sim-
ilar and thus non-disjoint. For example, the classes Station and RadioStation
were not classified as disjoint though the former class actually describes a public
transport station which is obviously disjoint to a radio station.

5.4 Conclusion

In this chapter, we introduced unsupervised, inductive methods for extending an
OWL ontology with learned class disjointness axioms. In contrast to previous
works which used supervised approaches, these methods only rely on the instance
data contained in a dataset for gaining information about the disjointness of differ-
ent class pairs.

5.4. CONCLUSION 69

For evaluating these approaches, we created a high-quality gold standard for
class disjointness in the DBpedia 3.7 ontology. We extensively described the
methodology applied for creating it and identified problems which made it hard
even for humans to correctly and coherently annotate the ontology like for the
Library class. Furthermore, based on the insights gained from the gold standard
creation, we showed that many problems found in the ontology could be caused by
the crowd-sourced creation approach which led to a mixture of different modeling
approaches in the ontology. One possibility to solve or at least limit such problems
could lie in providing a comprehensive guide for possible contributors to the ontol-
ogy which clearly states the most common problems and advises one standard way
of handling this problem. This would help to further standardize the modeling ap-
proach in the ontology which would finally lead to an ontology being more useful
for reasoning-based use cases. The problems identified in this work could be used
as a starting point for such a guideline.

Regarding the actual evaluation of learning approaches, our experiments showed
that inductive methods are indeed promising ways of discovering class disjoint-
ness in instance data. The inductive approaches each showed different advantages
which might qualify them depending on the specific use case. While the negative
association rule mining approach reached the highest precision for its generated
disjointness axioms but suffered from a low recall, the correlation-based method
was more balanced between precision and recall. Moreover, the correlation-based
approach does not require to retrieve all instance assignments from the dataset but
only those of classes for which additional insights are desired. Finally, the basic
association rule mining-based approach reached the highest recall value at the ex-
pense of a slightly lower precision than the other methods but in total delivered the
most balanced result which is also visible from the achieved F-measure value.

In a further evaluation, we compared the basic association rule mining method
to the state-of-the-art approach for learning class disjointness axioms implemented
by the LeDA framework. These experiments showed up different advantages and
shortcomings. The inductive approach, solely relying on the instance data of the
dataset, had problems generating correct disjointness axioms in cases where only
few or no instances at all were assigned to the relevant classes. However, this al-
lowed for learning disjointness axioms without any additional information or man-
ual intervention. In contrary, the supervised approach exhibited advantages for
sparsely populated classes and was more precise when deciding about the disjoint-
ness of arbitrary class pairs. Nonetheless, our experiments also showed a number
of shortcomings for the supervised method. Firstly, the problem of disambiguating
classes to real-world concepts based on their labels, which is implicitly required by
many employed features, demonstrated to introduce errors into the process. Sec-
ondly, its supervised nature posed additional challenges. Beside the requirement
for a training dataset, different characteristics of the training and the evaluation
dataset initially led to subpar results. To improve the results, the feature selection
had to be adapted to the specific datasets. In particular, this proves that the results
for the supervised learning approaches greatly rely on the similarity of the involved

70 CHAPTER 5. INDUCTIVE LEARNING OF DISJOINTNESS AXIOMS

datasets. In experiments not described here, we explored the application of transfer
learning to adapt the feature selection to better suit both datasets which helped to
improve the results. Nevertheless, even if transfer learning helps to diminish this
problem, the supervised approach still requires more external data and a training
dataset, making it more dependent on manual assistance.

All in all, we consider the proposed inductive methods and especially the basic
association rule mining-based one well-suited for providing a base disjointness-
enriched ontology. This ontology can be processed further automatically or could
be manually refined by human ontology engineers. It can also provide a basic
documentation of the typical usage of classes in the dataset.

Chapter 6

Inductive Learning of Property
Axioms

In the previous chapter, we presented work on inductively learning class disjoint-
ness for enriching inexpressive schemas. The goal of these approaches is to foster
more semantics in the growing Linked Data cloud and thus enable the application
of more approaches for cleaning the data and provide a more extensive insight into
the usage of classes and properties in the dataset. However, though class disjoint-
ness is already helpful and definitely an indispensable step on the way to more
helpful and flexible Linked Data, it is not the final destination. Class disjointness
only gives additional information about classes and their usage. Regarding the
properties in the dataset, additional information is only available via the indirec-
tion of using domain and range axioms. Additional property-centric axioms would
give more direct information about properties and their usage. This would not only
be helpful to detect data errors or document the dataset but also for pioneering the
usage of inference-enabled query answering. More knowledge on the characteris-
tics of properties enable additional possibilities for the user to retrieve data. Other
use cases are also available. For example, from additional knowledge about prop-
erties, it would be possible to support data engineers with proposals which property
to use for the current subject and which not. Work in this direction has been started
by Scheglmann et al. [83] who infer typical usages of the data to support program-
mers in working with RDF data or by the approaches introduced by Abedjan and
Naumann [1].

Since its release in 2009, the ontology language OWL 2 provides a great variety
of axioms on top of those already available in its predecessor OWL. Especially with
respect to property axioms, OWL 2 is considerably more powerful than before and
allows, e.g., to express the asymmetry of properties as well as their reflexivity or
irreflexivity. Furthermore, properties can be defined to be disjoint to other proper-
ties which means that between two instances there cannot hold both of the disjoint
properties at once. For instance, this can be useful to discover wrongly linked in-
stances in a dataset or for supporting data engineers by eliminating instances from

71

72 CHAPTER 6. INDUCTIVE LEARNING OF PROPERTY AXIOMS

the set of possible property objects.
Unfortunately, like most schemas do not contain disjointness axioms, they are

only sparsely populated by axioms other than class subsumption. Thus, many ax-
iom types available in OWL 2 are rarely used in ontology. However, even property-
centric constructs from OWL like domain or range restrictions are not always con-
tained in the ontology. As a result, the reliance on more advanced constructs in
applications is not yet worthwhile. On the other side, due to this limited applica-
tion support for advanced axioms, there is only very little incentive to add such
axioms to an ontology. Since the creation of highly expressive ontologies is a
time-consuming and complex task, we have a classical chicken-or-egg problem.

Given its large amounts of data and also its high coverage of different domains,
the Linked Data cloud gives reason to believe that more expressive schema for its
datasets could find faster adoption in applications than for many other datasets.
Due to its large datasets in terms of instance counts, it also qualifies as a dataset
for applying inductive methods to. Based on the approaches presented before,
namely the work by Völker and Niepert [96] and the previously presented work
on learning disjointness axioms, we already are able to learn large parts of axiom
types supported by the OWL 2 EL profile. In the following, we extend the approach
to support even more expressivity. However, since the large amounts of data in the
Linked Data cloud also pose a challenge to inference systems, we limit ourselves
to those axiom types available in the OWL 2 RL fragment which combines means
for deductive query answering and the ability to detect inconsistencies in the data.

This chapter is based on our work presented in 2012 [40]. We first report on the
extensions to the inductive approach for closing the gap between the EL fragment
of OWL 2 and the RL fragment in Section 6.1. Afterwards, in Section 6.2, we
report on the evaluation of our approaches and also object property transitivity
which was unevaluated before. We also give details on our experience from using
crowd-sourcing approaches for evaluating the results before finally concluding this
chapter in Section 6.3.

6.1 Approaches

The approaches which we present in the following, extend our previously proposed
association rule mining approaches towards supporting large parts of the OWL 2
RL fragment. As for the basic disjointness approach, we assume a Linked Data
dataset to be given which contains instance data. To simplify the following de-
scriptions, we assume the data to be provided by a triple store which supports the
retrieval of data by means of SPARQL queries. However, the approaches are not
limited to this kind of data access and adapting the methods to other accessing
methods is straightforward. This might especially be advantageous for improving
the performance of the data gathering step when creating transaction tables from
instance data.

6.1. APPROACHES 73

6.1.1 Terminology Acquisition

The overall process which finally leads to the desired axioms follows the same ba-
sic steps already proposed by Völker and Niepert and depicted in Figure 3.1. As
described before, we start with gathering information about classes, instances and
properties contained in the dataset. Through assigning unique identifiers to each of
these entities, we lay the foundation to create the required transaction tables later-
on. Furthermore, during the assembly of these identifier lists, we also introduce
unique identifiers for the complement of properties similar to what we did for class
complements in Chapter 5. We refer to these identifiers as property complement
identifiers. In addition, we generate identifiers which represent the inverse of a
property, i.e., for each object property p that gets an identifier assigned, we also
assign a unique identifier for the inverse p−1 which we refer to as inverse prop-
erty identifier. For inverse property identifiers, we also introduce identifiers for
their complement ¬p−1. Finally, the list of constructs which get unique identifiers
assigned is completed by some more complex ones:

• for each property r, we introduce a functionality identifier and an inverse
functionality identifier represented by tsub≤1(r) and tobj≤1(r), respectively

• for each property r, we introduce domain identifiers and range identifiers
which we depict by ∃r.> and ∃r−1.> as already known from the original
approach.

We will introduce the semantics of these identifiers in the course of this section.
Since we are especially looking into the generation of property axioms using the
approaches proposed in the following, special attention is payed to generate pos-
sible pairs of instances. Given the fact that typical Linked Data datasets contain
extremely large amounts of instances, the number of pairs of instances might be
prohibitively high. Thus, we limit ourselves to the generation of instance pairs
which have at least one property connecting them. The initial generation of in-
stance pairs can be performed without querying the actual dataset based on the set
of instances retrieved before. However, to check the existence of an arbitrary prop-
erty between both instances, we have to involve the server. To enable the query
engine to optimize the required query as much as possible, we do not use SPARQL
SELECT queries for this purpose but pose queries adhering to the pattern

ASK {<INSTANCE URI 1> ?p <INSTANCE URI 2>}

where INSTANCE URI 1 and INSTANCE URI 2 are replaced by the URIs of
the currently considered instances. This ASK query results in a boolean result and
the instance pair is only added to the set of relevant instance pairs if the query
raises a positive result meaning that there is at least one property connecting both
instances. After assigning each relevant instance pair a unique identifier, we end
up with a list as shown in Table 6.1.

74 CHAPTER 6. INDUCTIVE LEARNING OF PROPERTY AXIOMS

Table 6.1: Examples for instance pairs. The URI prefix
http://dbpedia.org/resource/ has been omitted for all instances.

Pair Instance 1 Instance 2
1 Pepsi Pepsi
2 Pepsi Coca-Cola
3 Coca-Cola Pepsi
4 Pepsi United_States

.

6.1.2 Creation of Transaction Tables

Based on this general terminology acquisition step, we then generate transaction
tables for each axiom type to generate which we describe in the following. For
axiom types that can be mined from the same transaction table, we give a joint
description. To avoid redundancy, we sometimes refer to a default transaction table
in the following when we mean a transaction table whose rows are representing
instance pairs and where each row contains a property identifier if the instance pair
is connected by the corresponding property in the dataset.

Object Property Symmetry, Asymmetry and Inverse

For supporting object property symmetry, asymmetry and inverse, we generate a
transaction table whose rows each represent an instance pair discovered during the
terminology acquisition as in the default transaction table. For each instance pair,
we execute the SPARQL query

SELECT DISTINCT ?p
WHERE {
<INSTANCE URI 1> ?p <INSTANCE URI 2>

}

which gives us all properties which are stated to hold between both instances.
Based on this set of properties, we assemble the table row by adding the prop-
erty identifier for each property contained in the set. Up to this step, the result
is the aforementioned default transaction table. In addition, we extend each row
with the property complement identifier for each known property not contained in
the query result set. Similar to adding class complement identifiers for learning
class disjointness, this is influenced by the open-world assumption as described in
Chapter 3. Finally, we also perform the query

SELECT DISTINCT ?p
WHERE {
<INSTANCE URI 2> ?p <INSTANCE URI 1>

}

and add the inverse property identifier for each property contained in the result.

6.1. APPROACHES 75

Table 6.2: Serialization of transaction table for object property symmetry. ×marks
all properties used between the given pair of instances.

r
e
l
a
t
e
d
[
2
0
]

o
r
i
g
i
n
[
2
2
]

r
e
l
a
t
e
d
−
[
2
1
]

o
r
i
g
i
n
−
[
2
3
]

(Pepsi, Pepsi) . . .
(Pepsi, Coca-Cola) × × . . .
(Coca-Cola, Pepsi) × × . . .
(Pepsi, United_States) × . . .
(United_States, Pepsi) × . . .
.

By ordering the instance pairs in a way that for all instance pairs (i1, i2) and
(i2, i1) occur consecutively, the second query would be posed either way and thus
does not lead to reduced performance.

For the example data given in Table 6.1, we would generate a transaction table
as shown in Table 6.2.

Object Property Functionality and Inverse Functionality

The transaction tables for mining property functionality and inverse functionality
axioms are not based on the default transaction table. Instead, the transaction tables
are created independently from the default set and moreover both axiom types get
own transaction tables which are similar to each other. The rows of the transaction
tables are formed by all single instances extracted from the dataset. For function-
ality, we add the functionality identifiers to the transaction if the instance is used
as most once in the subject position with the corresponding property. Similarly,
for inverse functionality the associated identifier is added if the instance is used at
most once in the object position with the corresponding property.

In addition to these identifiers, in the functionality table, we add the domain
identifier for a property r to the transaction if the current instance is actually used at
subject position of r. Likewise, for inverse functionality, we add the range identifier
if the instance is used at least once at object position of r.

Object Property Subsumption and Disjointness

The procedure for mining object property subsumption using statistical schema
induction has already been described by Völker and Niepert in their initial work
and we already described it in Section 3.3. The transaction table to use for this
purpose is the default transaction table without any additional items added. To

76 CHAPTER 6. INDUCTIVE LEARNING OF PROPERTY AXIOMS

extend this mining procedure into the direction of also detecting disjoint object
properties, we add property complement identifiers to the transactions. For each
instance pair, we add the property complement identifier ¬r if property r does not
known to hold between this instance pair.

Reflexive and Irreflexive Object Properties

Though OWL 2 RL does not support the definition of properties as reflexive or
irreflexive, we are aware that in some scenarios this type of axioms might be use-
ful. Therefore, we here provide the transaction table for reflexive and irreflexive
properties that again has rows representing instance pairs. For this purpose, we
introduce another identifier ta=b which is independent from specific properties and
instances and represents the equality of the instances contained in the correspond-
ing instance pair. This means that this identifier is added to the transactions (a, b)
for which a = b holds. Furthermore, for the detection of reflexive properties the
property identifiers are added to the transactions while for detecting irreflexive
properties, we add the property complement identifier. Transaction tables contain-
ing these items enable us to capture the relation between the properties holding
between two instances and their equality.

As a final wrap-up of the different transaction table types, we provide a sum-
mary of all detectable property axiom types and the corresponding transaction table
structure in the first two columns of Table 6.3. The last four rows of this table also
contain the property-related axiom types whose generation already has been pro-
posed by Völker and Niepert before. We added these as a central reference of all
property-centric axiom types supported by our inductive approaches.

6.1.3 Association Rule Mining and Axiom Generation

After creating the transaction tables for all desired types of axioms, the next step is
the actual detection of frequently occurring itemsets in the transactions and, based
on these, finally the deduction of association rules. As we did before, we apply
the Apriori algorithm for performing the necessary rule mining step, nevertheless,
since we treat this step as a black-box step, the actual algorithm employed for doing
frequent itemset discovery and association rule mining can be exchanged without
the need of further modifications of the approach.

For our example, this step could lead to the generation of association rules like:

related−[21]→ related[20](50, 100)

related[20]→ related−[21](50, 100)

After the mining step, we gather association rules which adhere to the patterns
given in the third column of Table 6.3 which each correspond to one specific axiom
type. For example, for object property symmetry, we try to observe patterns like
{p} ⇒ {p−1}, i.e., the first identifier is a normal property identifier and the second
one an inverse property identifier for the same property. Using the transformation

6.1. APPROACHES 77

Table 6.3: Summary of transaction table generation for property axioms. Each
row in the transaction table either corresponds to one instance a ∈ NI or a tuple
of instances (a, b) ∈ NI × NI . A concept item Ci is added to the transaction
if a ∈ CIi for the corresponding instance a. A property item ri is added to the
transaction if the corresponding property holds between the instance tuple, i.e.,
a ri b, the property complement item ¬ri is added if a ri b does not hold. r−1i is
added if b ri a, ¬r−1i if not b ri a. ta=b is contained in a transaction if a = b.
ri ◦ ri is contained in a transaction if a ri x and x ri b for an arbitrary instance
x ∈ NI . ∃r.> is added if the instance a is used as subject of r, ∃r−1.> if it is
used as object. The items tsub61

(r) and tobj61
(r) are added to a transaction if the

current instance a is used at most once as subject or object of the property r.

Axiom Type Transaction Table Row Association Rule
Sym(r) (a, b)→ r1, . . . , rn, r

−1
1 , . . . , r−1

n {r} ⇒ {r−1}
ri v ¬rj (a, b)→ r1, . . . , rn,¬r1, . . . ,¬rn {ri} ⇒ {¬rj}
Ref(r) (a, b)→ r1, . . . , rn, ta=b {ta=b} ⇒ {r}
Irr(r) (a, b)→ ¬r1, . . . ,¬rn, ta=b {ta=b} ⇒ {¬r}
Asy(r) (a, b)→ r1, . . . , rn,¬r−1

1 , . . . ,¬r−1
n {r} ⇒ {¬r−1}

ri v r−1
j (a, b)→ r1, . . . , rn, r

−1
1 , . . . , r−1

n {ri} ⇒ {r−1
j }

Fun(r) a→ ∃r1.>, . . . , ∃r1.>, tsub61
(r1), . . . , tsub61

(rn) {∃r1.>} ⇒ {tsub61
(r)}

InvFun(r) a→ ∃r−1
1 .>, . . . , ∃r−1

n .>, tobj61
(r1), . . . , tobj61

(rn) {∃r−1
1 .>} ⇒ {tobj61

(r)}
ri v rj (a, b)→ r1, . . . , rn {ri} ⇒ {rj}
r ◦ r v r (a, b)→ r1, . . . , rn, r1 ◦ r1, . . . , rn ◦ rn ri ◦ ri ⇒ ri
∃r.> v C a→ C1, . . . , Cl,∃r1.>, . . . , ∃rn.> {∃r.>} ⇒ {C}
∃r−1.> v C a→ C1, . . . , Cl,∃r−1

1 .>, . . . , ∃r−1
n .> {∃r−1.>} ⇒ {C}

78 CHAPTER 6. INDUCTIVE LEARNING OF PROPERTY AXIOMS

pattern, we generate OWL 2 axioms which are annotated with the confidence value
for the base association rule. The confidence value allows to filter the generated
axioms further before finally adding them into the overall result ontology.

If an association rule fits in a specific pattern and exceeds the confidence thresh-
old, the symmetry axiom matching this association rule is generated. For the as-
sociation rule pattern given above, the corresponding symmetry axiom would be
Sym(p) annotated with the confidence value of the association rule. In our ex-
ample, only the second association rule fits into the required pattern. Since the
confidence is 100, which is the maximum confidence given a representation in per-
cent, it would not be filtered out by any settings for confidence thresholds. The
resulting axiom is a symmetry axiom Sym(related) for the property related.

6.2 Evaluation

In this section, we describe the evaluation of the approaches for generating property-
related axioms. First of all, we give details on the settings under which we per-
formed the evaluation. Then, we present the results of the actual evaluation which
consisted of two parts: one evaluation conducted by ontology engineering experts
and another one performed by laymen via crowd-sourced tasks.

6.2.1 Settings

We extended our implementations already contained in the GoldMiner tool by the
additional learning approaches presented in the previous section. This implementa-
tion was applied to the DBpedia dataset in version 3.7 for generating the transaction
tables. Continuing the known pipeline structure, we used the Apriori implemen-
tation by Borgelt for finding association rules in the tables. Finally, we mined the
discovered association rules for the patterns defined in Table 6.3 and produced the
corresponding OWL 2 axioms.

We performed all experiments applying three different confidence thresholds,
namely 0.5, 0.75 and 1.0, to examine in how far higher confidence thresholds lead
to a higher degree of correct axioms. In contrast to our previous experiments on
learning class disjointness axioms, this time the support threshold was fixed at an
absolute value of 1 which actually means that we considered all association rules
without enforcing a certain support level. The reason behind this choice is that
the very specific patterns defined for producing a certain axiom type already led
to a low number of valid association rules to be produced. Thus, a lower support
threshold was used to raise the number of produced axioms.

As in our previous experiments, we discovered the terminology extraction and
the transaction table generation phase to be the most time-consuming tasks. Heav-
ily relying on the performance of the triple store providing the data and processing
the SPARQL queries, this step took up to several hours to complete. The size of
the final transaction tables was between 6 MB for the domain and range table and

6.2. EVALUATION 79

22 GB for the property disjointness table. Nevertheless, the execution of the as-
sociation rule mining phase on these datasets stayed in the magnitude of minutes.
For example, on a 17 million lines transaction table, this phase was completed in
20 minutes.

The numbers of axioms generated for the association rules are provided in Ta-
ble 6.4 for each type of axiom. In the following evaluation parts, we are concen-
trating on the axiom types supported by OWL 2 RL and newly introduced in this
work. Thus, characteristics like property subsumption and reflexivity have not been
generated.

Table 6.4: Total number of generated axioms for given confidence thresholds

minimum confidence 0.5 0.75 1.0
AsymmetricObjectProperty 435 410 384
DisjointObjectProperties 180,876 180,850 178,660
FunctionalObjectProperty 354 268 67
InverseObjectProperties 6 3 0
SymmetricObjectProperty 4 2 0
TransitiveObjectProperty 246 219 141
Total 181,921 181,752 179,252

In contrast to our evaluations on class disjointness, we did not create a complete
gold standard for all possible axiom types. This would have been unrealistic due
to the number of axiom types and the number of potentially valid axioms in the
ontology. Instead, we evaluated the axioms generated by our approaches for their
correctness.

6.2.2 Expert Evaluation

For the expert evaluation, we randomly chose a subset of 40 axioms per property
axiom type or all axioms if less than 40 were generated. Each of these axioms was
evaluated by three ontology engineers for correctness on a two-valued scale, con-
sisting of the categories correct and wrong. During the evaluation, the axioms were
presented to the experts in OWL 2 Functional Syntax. Additionally, for each axiom
type, we defined a natural language sentence expressing the semantics of the ax-
iom. For example, an asymmetry axiom for the property thirdDriverCountry

was given by the sentence

If A thirdDriverCountry B holds
then B thirdDriverCountry A must not hold

Furthermore, the annotators had access to the DBpedia page describing the relevant
object properties. These pages provided the comments and further information on
the object properties which could help the annotators to decide in more complex

80 CHAPTER 6. INDUCTIVE LEARNING OF PROPERTY AXIOMS

Table 6.5: Results of the expert-based evaluation for subsets of generated axioms
with confidence threshold 0.5. Listing the number of axioms evaluated by the
annotators (# eval), axioms rated as correct (# corr), accuracy (Acc.) and the inter-
annotator agreement by means of observed agreement and Fleiss’ κ.

Axiom Type # eval # corr Acc. Observed κ

AsymmetricObjectProperty 40 37 0.93 0.94 0.58
DisjointObjectProperties 40 39 0.98 0.99 -0.01
FunctionalObjectProperty 40 9 0.23 0.62 0.38
InverseObjectProperties 6 2 0.33 0.87 0.68
SymmetricObjectProperty 4 3 0.75 1.00 1.00
TransitiveObjectProperty 40 2 0.05 0.82 0.12
Total 170 92 0.54 0.85 0.73

cases. Finally, since in some cases the naming of the object property alone was
not enough to understand its meaning, the annotators had access to a subset of the
results of the SPARQL query

SELECT ?a ?b WHERE {?a <PROPERTY URI> ?b}

which provided insights into the actual usage of the property.
Based on the results of the expert evaluation, we computed the accuracy and the

inter-annotator agreement for the evaluated axioms. Due to the lack of a complete
gold standard, it was not possible in these experiments to determine the precision
and recall values.

The results of the expert evaluation are given in the Tables 6.5, 6.6 and 6.7.
Each table contains the results for a single confidence threshold and lists the num-
bers of evaluated and correct axioms, the accuracy of the learned axioms and the
inter-annotator agreement determined by means of observed agreement and also
using Fleiss’ κ. For the inter-annotator agreement, we again see the problem of
low chance-corrected agreement while the actual observed agreement is very high
or almost perfect as we already discovered in Chapter 5. Since the evaluation was
not split by axiom type but all axiom types were evaluated at once, it is improbable
that the annotators considered independent probability distributions for each axiom
type during the annotation as it would be assumed by computing Fleiss’ κ indepen-
dently for each axiom type. More probably, they had a combined distribution for
all axiom types which means that the more relevant κ value is the one provided in
the “Total” column.

Based on the expert-based evaluation, we can already draw a few conclusions.
First of all, it is noticeable that changes regarding the confidence values did not
have great influence on the accuracy of our results and thus the greater part of the
confidence values did not react considerably to changes to the confidence thresh-
olds. Accuracy values which were already high for lower thresholds only increased
slightly if at all. Therefore, being extracted by the approach seems to be a strong

6.2. EVALUATION 81

Table 6.6: Results of the expert-based evaluation for axiom subset with confidence
threshold 0.75

Axiom Type # eval # corr Acc. Observed κ

AsymmetricObjectProperty 24 22 0.92 0.93 -0.03
DisjointObjectProperties 40 39 0.98 0.98 -0.01
FunctionalObjectProperty 23 9 0.39 0.59 0.33
InverseObjectProperties 2 2 1.00 1.00 1.00
SymmetricObjectProperty 2 2 1.00 1.00 1.00
TransitiveObjectProperty 35 1 0.03 0.83 0.15
Total 126 75 0.60 0.86 0.72

Table 6.7: Results of the expert-based evaluation for axiom subset with confidence
threshold 1.0. No inverse or symmetric properties have been generated for this
threshold.

Axiom Type # eval # corr Acc. Observed κ

AsymmetricObjectProperty 21 19 0.90 0.92 -0.04
DisjointObjectProperties 40 39 0.97 0.98 -0.01
FunctionalObjectProperty 8 2 0.25 0.46 0.16
TransitiveObjectProperty 25 0 0.00 0.81 0.06
Total 94 60 0.64 0.87 0.72

evidence for correctness for the axiom types of object property asymmetry and
also object property disjointness. Also symmetric object property axioms were re-
liable when generated. The most unreliably generated axiom types according to
our evaluation were functional object properties as well as transitive object proper-
ties. For functional object properties, we also discovered the lowest of the achieved
inter-annotator agreements. This leads to the conclusion that the detection of this
axiom type not only causes problems in our approach but also it is more complex
for humans to recognize.

Nevertheless, an especially visible point is the extremely low accuracy for the
object property transitivity which cannot be attributed to an especially hard task
since the inter-annotator agreement was high. For further investigating this aspect,
we had a look at the generated axiom like the axiom assigning transitivity to the
property birthPlace which is obviously wrong. To examine the data on which
the axiom was discovered, we executed the SPARQL query

SELECT DISTINCT ?a ?b ?c
WHERE {

?a <http://dbpedia.org/ontology/birthPlace> ?b.
?b <http://dbpedia.org/ontology/birthPlace> ?c.
?a <http://dbpedia.org/ontology/birthPlace> ?c

}

82 CHAPTER 6. INDUCTIVE LEARNING OF PROPERTY AXIOMS

LIMIT 100

which gave us a list of instances connected by the birthPlace property ex-
hibiting the pattern of transitivity. For example, the result list contained the in-
stances Brian_Vandborg, Denmark and Peter_Snejbjerg being connected
as depicted in Figure 6.1.

Brian
Vandborg

Peter
Snejbjerg Denmark

birthPlace birthPlace

birthPlace

Figure 6.1: Graphical representation of triples leading to wrong transitive property
axioms.

Since the properties between those instances were verifiably included in DBpedia,
we traced this error further. A closer look at the Wikipedia article disclosed that
Brian Vandborg was born in Snejbjerg, Denmark. In this case, we could identify
two sources for the errors. First, the word Snejbjerg was linked incorrectly to the
person Peter Snejbjerg and, second, the DBpedia parser extracted Denmark as a
birthPlace on its own. Actually, in an RDF dataset, the reference to the city
alone provides enough information to unambiguously identify it and the additional
specification of the country is redundant.

We also identified more similar errors in DBpedia leading to many errors in
our learned transitivity axioms. Not all of these were traceable to a Wikipedia er-
ror which means that the DBpedia extractor itself introduced errors in the DBpedia
data. However, this illustrates that our learned axioms are helpful for discover-
ing errors in datasets. Errors in Wikipedia and DBpedia are also the reason for
our approach not to generate any irreflexivity axioms since many instances have
erroneous self-references.

6.2.3 Crowd-Sourced Evaluation

Due to the high effort of letting experts evaluate the generated axioms, the number
of checked results was limited for the expert-based evaluation. Thus, for comple-
menting the first results, we performed a more extensive study of our results by
means of crowd-sourcing.

The idea of crowd-sourcing is to divide a larger task into a large number of
smaller tasks, the so-called microtasks. These microtasks are distributed to a pool
of workers which can participate in the overall task by completing one or multiple
microtasks in exchange for a small payment per completed microtask. Finding the

6.2. EVALUATION 83

workers is done via services such as Amazon Mechanical Turk1 which provide a
platform for requesters to provide their microtasks, called Human Intelligence Task
(HIT) by Amazon, and workers to choose the tasks to work on. Since the workers
participating in the tasks are unknown to the requester one fundamental problem is
how to assure high-quality results. The incentive for completing the task being the
motivation of the workers, they might be tempted to just complete as many tasks
as possible without taking care of completing them well. Hence, quality assurance
is an important step when crowd-sourcing tasks and different approaches for doing
this have been proposed as summarized by Allahbakhsh et al. [4].

There also exist some services which specialized on providing quality-assurance
services for crowd-sourcing tasks like CrowdFlower2 which we chose for our fur-
ther evaluation. In the categorization of quality assurance methods made by Al-
lahbakhsh et al., CrowdFlower belongs to the Ground Truth category. Approaches
belonging to this category require a subset of the data annotated with gold standard
answers, called ground truth. To assess the reliability of the workers, tasks whose
answer is known from this gold standard are added to the tasks where the answer
is unknown. The reliability of workers can then be assessed from the deviation of
a worker’s answers from the gold standard answers and unreliable workers can be
excluded from further participating in tasks. Only providing the quality assurance
service, the actual searching of workers was delegated by CrowdFlower to Amazon
Mechanical Turk.

For providing a ground truth, we took the axioms for which all annotators
agreed on the correctness or non-correctness during the expert-based evaluation.
In addition to these ground truth axioms, we randomly chose generated axioms
from the different confidence levels to let them evaluate by the workers. Since we
could not expect the crowd workers to have knowledge about ontologies and the
semantics of the specific axioms, we hid the actual axioms from them and only
textual representations as shown in Figure 6.2 were presented to the workers. We
also provided a possibility to write additional explanations regarding the single
decisions.

Figure 6.2: Axiom evaluation task as presented to the crowd-evaluation partici-
pants

1http://www.mturk.com
2http://www.crowdflower.com/

http://www.mturk.com
http://www.crowdflower.com/

84 CHAPTER 6. INDUCTIVE LEARNING OF PROPERTY AXIOMS

This representation was accompanied by a description of the overall task which
was clarified by some examples for the evaluation tasks. Similar to the experts,
the crowd-evaluation participants had access to usage examples which were re-
trieved from the DBpedia dataset as described for the expert-based evaluation.
Each microtask given to the workers consisted of five different axioms. The ac-
tual combination of axioms in the microtasks was determined automatically by the
CrowdFlower system. Due to redundancy which was introduced during the quality
assurance measures by CrowdFlower, the number of workers for the single axioms
varied between three and ten workers.

The results of this part of the evaluation are presented in the Tables 6.8, 6.9
and 6.10 where each table contains the result for a certain confidence level. It is
important to note that the sets evaluated during the crowd-based and the expert-
based evaluation were disjoint except for the ground truth axioms occurring in the
tasks. Due to the low number of axioms generated for inverse object property and
object property symmetry axioms, this led to none of these axiom types being eval-
uated in this evaluation phase. Furthermore, the inter-annotator agreement based
on Fleiss’ κ could not be calculated because of the varying number of workers for
the different axioms. Thus, we grouped the axioms by the number of evaluations
and computed the observed agreement for each of these groups then we averaged
the observed agreements.

Table 6.8: Results of crowd-sourced evaluation for subsets of generated axioms
with confidence threshold 0.5. Axioms evaluated by experts are not contained in
the crowd evaluation, ’-’ shows that all generated axioms have been evaluated by
experts. “Mean Observed” is averaged observed agreement.

Axiom Type # eval # corr Acc. Mean Observed
AsymmetricObjectProperty 98 96 0.97 0.89
DisjointObjectProperties 261 258 0.99 0.92
FunctionalObjectProperty 175 48 0.27 0.50
InverseObjectProperties - - - -
SymmetricObjectProperty - - - -
TransitiveObjectProperty 159 32 0.20 0.52
Total 697 437 0.63 0.74

A major problem during the crowd-sourced evaluation was posed by the nam-
ing of the DBpedia properties since many of them were named confusingly and
thus it was hardly possible to deduce their correct usage only based on their name.
For example, the object property training was used in the dataset for connecting
athletes or sports teams to their training locations. Solely based on the property
name, many workers expected the property to be used for connecting trainer and
trainee, as we found out by analyzing the comments provided by some workers.

Having a look at the full results, we find them to be very similar to those gained

6.2. EVALUATION 85

Table 6.9: Results of crowd-sourced evaluation for axiom subset with confidence
threshold 0.75

Axiom Type # eval # corr Acc. Mean Observed
AsymmetricObjectProperty 93 92 0.99 0.89
InverseObjectProperties - - - -
DisjointObjectProperties 261 258 0.99 0.92
TransitiveObjectProperty 141 29 0.21 0.52
FunctionalObjectProperty 138 40 0.29 0.50
SymmetricObjectProperty - - - -
Total 633 419 0.66 0.74

Table 6.10: Results of crowd-sourced evaluation for axiom subset with confidence
threshold 1.0. No inverse or symmetric properties have been generated for this
threshold.

Axiom Type # eval # corr Acc. Mean Observed
AsymmetricObjectProperty 89 89 1.00 0.89
DisjointObjectProperties 259 256 0.99 0.92
TransitiveObjectProperty 88 19 0.22 0.52
FunctionalObjectProperty 26 9 0.35 0.50
Total 462 373 0.81 0.81

86 CHAPTER 6. INDUCTIVE LEARNING OF PROPERTY AXIOMS

by the expert-based evaluation. Thus, we are confident that results of the expert-
based evaluation not only hold for the evaluated subset but also for the whole set
of axioms. To further confirm this, we let an expert assess 190 axioms which were
previously only evaluated by crowd workers. The expert agreed on 80% of the
axioms with the assembled assessment of all crowd-workers.

6.3 Conclusions and Contributions

In this chapter, we presented additional inductive methods based on association
rule mining for learning axioms from instance data. Through this extension, we
are now able to generate or enrich ontologies up to the OWL 2 RL fragment of
the OWL 2 ontology language which combines both a comparably high expressiv-
ity and at the same time desirable computational properties. In our experiments,
we showed our methods to deliver promising results on the real-world dataset
DBpedia. Furthermore, our evaluation revealed two further points. First, though
the DBpedia ontology is created in a crowd-sourcing effort, it is not easy to un-
derstand for non-experts. Experts also have to go an additional mile to determine
the actual meaning of a property. This is especially caused by incoherent or mis-
leading naming of its entities which confirms further confirms similar findings of
Chapter 5. In our opinion, this again urges to create a guideline for naming and
modeling style which can be used by the ontology contributors as a reference. Sec-
ondly, we found evidence for the usefulness of learned axioms in a data debugging
scenario. As shown in the example of the wrong transitivity of the birthPlace
property, axioms help to find common errors in the data more rapidly because they
might overstate patterns what makes common data errors easier to spot. Given
these results, a two-stepped data debugging seems to be appropriate where the first
step consists of a short evaluation of the learned axioms for obviously erroneous
axioms which hint to a wide-spread data error. Afterwards, in a second step the re-
maining learned axioms can be used to find instances which do not adhere to these
axioms.

After all, our main contribution in this chapter is the extension of the previously
presented inductive approaches to support additional axioms from the OWL 2 RL
fragment which enables more expressive query answering and, as also demon-
strated during the evaluation of the approaches, gives more opportunities to detect
errors in the data.

Part II

Logical Debugging of Linked
Data

87

Chapter 7

Generating Incoherence
Explanations for Learned Axioms

As we showed in Part I, we are able to automatically learn a schema from a dataset
which captures the patterns contained in it. The evaluation of the generated axioms
against the manually created gold standards showed the axioms to be of acceptable
quality but there are still axioms considered wrong by the human annotators. Thus,
manually improving the ontology would increase its usability, especially as a docu-
mentation of the dataset and the vocabulary’s proper usage. To support a human in
this improvement process, the notion of incoherence as introduced in Section 2.1
can be used. Incoherence is often considered as a pointer to problems in ontologies
since unsatisfiable classes are rarely introduced on purpose. Furthermore, fixing
incoherence renders the ontology more suitable in reasoning scenarios since, e.g.,
for standard approaches it is not possible to infer usable knowledge about incoher-
ent classes since all incoherent classes (and properties) are treated as equivalent to
each other according to DL semantics. However, the mere detection of incoherent
classes is not enough. In fact, the sets of axioms leading to incoherent classes, most
commonly referred to as explanations or justifications, are of more interest since
the incoherent classes are only their symptoms. However, our experiments show
that tools for computing explanations struggle with learned ontologies. For exam-
ple, the well-known OWL reasoner Pellet [88], which is the only reasoner directly
supporting the generation of explanations for inferences made from an ontology,
showed to be unstable and slow when trying to compute all explanations for a given
inference on our learned ontologies. Hermit [44], being another well-known OWL
reasoner, does not support the explanation generation at all and combining it with
so-called black-box approaches for generating explanations turned out to perform
very poorly on ontologies learned by the methods described before. We attribute
this to the fact that learned ontologies commonly share some characteristics which
distinguish them from most manually built ontologies: redundancy and restricted
expressivity.

Redundancy is caused because many ontology learning approaches generate

88

89

logically redundant axioms. This leads to possibly having many different explana-
tions for a single defect. In contrast, manually created ontologies can be expected
to have much less redundant axioms since an ontology engineer would most likely
not state an axiom that is already apparent from the ontology multiple times. This
redundancy could be reduced by applying logical inference during the learning
process but this could potentially limit the learning approaches efficiency. Further-
more, removing learned axioms too early in the process could lead to the loss of
information, e.g., confidence values for redundant axioms could still be interesting
if the entailing axiom shows to be incorrect later-on.

Most learning approaches also generate axioms of a more restricted expres-
sivity than the actual ontology language is able to represent. While human engi-
neers are only limited by the possibilities of the underlying logics, the automatic
approaches usually only support specific types of axioms while other types are ex-
cluded. Furthermore, automatically learned axioms might follow certain patterns
thus not showing the full range of expressivity. For instance, ontologies learned
from textual contents are more likely to refer to named classes than to complex
class descriptions. When concentrating on learned ontologies where the expressiv-
ity restrictions are known beforehand, these can be exploited during the reasoning
process. Due to their applicability to general ontologies, reasoning systems like
Pellet [88] or Hermit [43] cannot rely on such assumptions and hence have to
employ various optimization techniques to improve the efficiency of the reasoning
process. For computing many or all explanations of an entailed consequence, many
of these techniques have to be disabled [88] which ultimately leads to performance
and stability issues.

In this chapter, we present a novel and robust approach which we developed
for computing explanations on learned ontologies as originally introduced and
evaluated in collaboration with Christian Meilicke, Johanna Völker and Mathias
Niepert [36]. The proof of completeness is mainly the work by Christian Meilicke,
nevertheless, we include some parts of it in the following for the sake of self-
containedness. Though this approach is applicable to both manually engineered
and automatically generated ontologies, it is specially optimized for the latter. In
particular, we concentrate on ontologies which contain subsumption and disjoint-
ness axioms between classes and properties, domain and range restrictions as well
as inverse properties. Our approach is based on a rule-based calculus which allows
us to detect unsatisfiable classes and properties caused by the supported axiom
types and to compute explanations for detected incoherences.

The remainder of this chapter is structured as follows. First, we give an overview
on related work in Section 7.1. Afterwards, in Section 7.2, we describe the ap-
proach implemented in TRex.1 In particular, we present the set of rules which is
used for inferring consequences from the already known axioms. In Section 7.3,
we report on the experiments which we performed and present the corresponding

1The implementation is publicly available at http://dfleischhacker.github.com/
trex-reasoner.

http://dfleischhacker.github.com/trex-reasoner
http://dfleischhacker.github.com/trex-reasoner

90 CHAPTER 7. GENERATING INCOHERENCE EXPLANATIONS

results. Finally, we summarize the results of this chapter, discuss them and give
some possibilities for future work in Section 7.4.

7.1 Related Work

The need for finding explanations for inferred axioms in ontologies and in partic-
ular for unsatisfiable classes in ontologies has been recognized early in the history
of the Semantic Web idea. An early way of generating explanations for unsatisfi-
able classes was proposed by Schlobach and Cornet [85] who call the process of
finding explanations axiom pinpointing. They extend the basic tableau algorithm
for the ALC description logic so that it can be used to deduce explanations for
unsatisfiabilities for the special case of so-called unfoldable TBoxes.

Kalyanpur et al. [58] proposed a different approach which extends the Pellet
OWL reasoner [88]. Pellet uses tableau algorithms to perform inference on the
given ontologies. By extending the tableau structure with a possibilities to trace
the dependencies of given inferences, Kalyanpur et al. enable the reasoner to not
only report unsatisfiable classes but to also provide a set of axioms that finally
led to the unsatisfiability. According to their experiments, this so-called glass-box
approach only leads to a negligible overhead in the reasoning process for typical
ontologies. Furthermore, they proposed a black-box approach that uses a reasoner
only for answering a limited set of questions, e.g., regarding the subsumption of
classes, and apart from that uses the ontology structure to isolate the actual causes
of unsatisfiabilities. Since this method only relies on posing basic queries to the
actual reasoning component, it is not bound to a specific reasoner. Both techniques
work efficiently on real-world ontologies, allowing the analysis of errors in such
ontologies, however, these methods are limited to compute only one explanation
for each entailment at a time. Thus, Kalyanpur et al. [56] later-on introduced a
two-phased black-box approach for effectively discovering all explanations for an
entailment which works by generating hitting sets based on the single explanations.
In addition to using black-box approach for both single explanation generation and
discovering all explanations, they also examined a more efficient hybrid method
using the glass-box variant for finding single explanations and processing those fur-
ther by means of the black-box approach. Their experiments on ontologies showed
both approaches to perform well. However, as we discovered in experiments on
different learned ontologies, neither the glass-box nor the black-box explanation
generation was able to efficiently determine all explanations for unsatisfiabilities.
This is most likely caused by the properties of learned ontologies being different
from manually created ones.

Further work on black-box algorithms has particularly been done on reduc-
ing the number of queries to pose to the reasoner which in turn leads to improved
performance of the determination of all explanations. Suntisrivaraporn et al. [89]
showed modularization applied to the considered ontology as a way of further im-
proving the performance of black-box methods. This was further extended by Du

7.2. APPROACH 91

et al. [33] providing more fine-grained modularization aspects. For learned ontolo-
gies sharing the special characteristics described above, these approaches do not
show many performance advantages since their entities are typically more tightly
connected.

Wu et al. [100] propose a method for computing all explanations in the OWL
pD* fragment. For this fragment, a full set of entailment rules is available and
employed by the authors to perform inference on the ontology while tracking the
roots of each entailment. To improve the performance and allow the application to
very large knowledge bases and ontologies, Wu et al. distribute their algorithm over
multiple machines using a MapReduce-framework. While our approach proposed
in this chapter is not distributed, it is nevertheless similar in thus far that we also
employ a rule-based calculus for inferring additional knowledge. Notably, this
distributed approach would not be directly applicable to our learned ontologies
since the OWL pD* fragment does not cover class disjointness.

7.2 Approach

In this section, we present our approach to computing explanations for unsatisfiable
classes and properties. As already mentioned, our approach is a consequence-
driven one which uses rules to deduce new consequences from the axioms already
contained in the knowledge base. In contrast to the consequence-based fragments
defined in the OWL 2 standard, the collection of rules included in the approach
presented in the following is highly influenced by the considered task of detecting
incoherences in learned ontologies. The aspect of having learned ontologies lets
us exactly define which axiom types have to be supported by the rules. Based
on this, we only consider axiom types that are supported by our approaches as
presented in Part I and also exclude any instance-based inference since the learning
approaches exclusively produce schema-level axioms. Furthermore, since our task
is the detection of incoherences, we only define rules for axiom types which can
cause incoherence. The exact OWL 2 fragment which is supported by our approach
is defined by the axiom types listed in the leftmost column of Table 7.1. Note that
all classes and properties that appear in Table 7.1 are named classes and properties.

To be able to distinguish between the axioms that hold in the ontology by means
of standard model-theoretic semantics and the entailments derived by applying our
rules, we use the first-order predicate symbol shown in the second column of Ta-
ble 7.1.

92 CHAPTER 7. GENERATING INCOHERENCE EXPLANATIONS

Table 7.1: Types of supported axioms.

Type of axiom First-order predicate symbol Description
A v B csub(A,B) Class Subsumption
P v Q psub(P,Q) Property Subsumption
A v ¬B cdis(A,B) Class Disjointness
P v ¬Q pdis(P,Q) Property Disjointness
∃P.> v A dom(P,A) Domain Restriction
> v ∀P.A range(P,A) Range Restriction
P−1 v Q psubinv(P,Q) Inverse Property Subsumption
P−1 v ¬Q pdisinv(P,Q) Inverse Property Disjointness

⇒ csub(A,A) (7.1)

cdis(A,B)⇒ cdis(B,A) (7.2)

csub(A,B), csub(B,C)⇒ csub(A,C) (7.3)

csub(A,B), cdis(B,C)⇒ cdis(A,C) (7.4)

⇒ psub(P, P) (7.5)

pdis(P,Q)⇒ pdis(Q,P) (7.6)

psub(P,Q), psub(Q,R)⇒ psub(P,R) (7.7)

psub(P,Q), pdis(Q,R)⇒ pdis(P,R) (7.8)

dom(P,A), csub(A,B)⇒ dom(P,B) (7.9)

ran(P,A), csub(A,B)⇒ ran(P,B) (7.10)

psub(P,Q), dom(Q,A)⇒ dom(P,A) (7.11)

psub(P,Q), ran(Q,A)⇒ ran(P,A) (7.12)

cdis(A,B), dom(P,A), dom(P,B)⇒ pdis(P, P) (7.13)

cdis(A,B), ran(P,A), ran(P,B)⇒ pdis(P, P) (7.14)

psubinv(P,Q), dom(Q,A)⇒ ran(P,A) (7.15)

psubinv(P,Q), ran(Q,A)⇒ dom(P,A) (7.16)

psubinv(P,Q), psubinv(Q,R)⇒ psub(P,R) (7.17)

psubinv(P,Q), psub(Q,R)⇒ psubinv(P,R) (7.18)

psub(P,Q), psubinv(Q,R)⇒ psubinv(P,R) (7.19)

pdisinv(P,Q), psub(R,Q)⇒ pdisinv(P,R) (7.20)

psubinv(P,Q), pdis(Q,R)⇒ pdisinv(P,R) (7.21)

psubinv(P,Q), pdisinv(Q,R)⇒ pdisinv(P,R) (7.22)

pdisinv(P,Q)⇒ pdisinv(Q,P) (7.23)

pdisinv(P, P)⇒ pdis(P, P) (7.24)

7.2. APPROACH 93

Given an ontology O, the actual entailment is performed based on rules (7.1)
to (7.24) as follows. First, we create an initial set of formulas that are equivalent to
the axioms stated in the ontologyO. Then, we iteratively extend the set of formulas
by applying the rules to the set of all stated and derived formulas until no further
formula can be derived. We refer to the resulting set of formulas as closure of O
or EO. Based on this closure, if cdis(A,A) ∈ EO or pdis(P, P) ∈ EO holds, we
can conclude that classA or property P , respectively, is unsatisfiable. If there is no
such class A and no such property P , O does not contain any unsatisfiable classes
and properties and, hence, O is coherent.

Given this set of rules, we have to check them regarding correctness and com-
pleteness. The correctness of each single rule follows directly from the standard
DL semantics. With respect to the way used to detect unsatisfiable classes, assume
that we derive a formula cdis(A,A) ∈ EO. This means that O |= A v ¬A and
hence also implies AI = ∅ for each interpretation I. The equivalent conclusion
also holds for properties. We conclude that our approach is sound regarding the
computation of entailments, and thus also with respect to detecting unsatisfiable
classes and properties.

Regarding the completeness of the rules, we resort to the following proposition
whose proof is available in a technical report [37].

Proposition 1. If O is incoherent, there exists a class A with cdis(A,A) ∈ EO or
a property P with pdis(P, P) ∈ EO.

Finally, we will argue that our reasoner is able to compute all explanations
for all unsatisfiable classes and properties. For this purpose, we first describe our
approach of computing explanations in more detail. As already mentioned above,
we apply the completion rules iteratively to derive new entailments. To reduce
the checking of possible candidates for deriving new formulas, we perform the
completions steps in an ordered way. In particular, we proceed as follows with
EO, E′O and E′′O, all three initialized as empty sets.

Class Subsumption We add all formulas csub(A,B) corresponding to stated ax-
ioms to E′O. Then, we add those formulas that are entailed by rule (7.1)
to E′O. Afterwards, we apply rule (7.3) on E′O until we cannot derive new
formulas. This deduces all transitive class subsumption relations. Since no
further csub(A,B) appears in the head of any other rule, we know that E′O
is csub-saturated.

Property Subsumption The first part of deducing property subsumption axioms
is very similar to those done for the class subsumption axioms before. First,
we add all formulas psub(A,B) and psubinv(A,B) corresponding to stated
axioms to E′′O and add those formulas that are entailed by rule (7.5) to E′′O.
Then, we apply rules (7.7), (7.17), (7.18), and (7.19) on E′′O until we cannot
derive new formulae. These rules are handling property subsumption tran-
sitivity but also the influence of inverse property statements with respect to

94 CHAPTER 7. GENERATING INCOHERENCE EXPLANATIONS

property subsumption. Since there appears no psub(P,Q) or psubinv(P,Q)
in the head of any other rule, we know that E′′O is psub- and psubinv-
saturated.

Domain and Range For domain and range axioms, we need both class-centric
axioms and property-centric axioms. Thus, we work on axioms in EO which
we set to EO = E′O ∪ E′′O. We add all formulas dom(P,A) and ran(P,B)
corresponding to stated axioms to EO. Then, we apply rules (7.9), (7.10),
(7.11), (7.12), (7.15), and (7.16) on EO until we cannot derive new formulas.
These rules propagate the domain and range restrictions along the property
hierarchy. Since no dom(P,A) or ran(P,B) appears in the head of any
other rule, we know that EO is dom- and ran-saturated.

Class Disjointness We add all formulas cdis(A,B) corresponding to stated ax-
ioms to EO. Afterwards, we apply rule (7.2) and (7.4) on EO until we
cannot derive new formulas. Since there appears no cdis(A,B) in the head
of any other rule, we know that EO is cdis-saturated.

Property Disjointness Again mirroring the class-based axioms, we add all for-
mulas pdis(P,A) and pdisinv(P,B) corresponding to stated axioms to EO.
Then, we apply all remaining rules until we cannot derive new formulas. EO
is now saturated with respect to all types of formulas.

7.2.1 Generation of Explanations

The process given above guarantees that we do not miss entailments. However, if
we stop the entailment process as soon as it is not possible to derive any new entail-
ment, it will not be possible to compute all explanations. This can happen because
there might be alternative ways to derive a single entailment. By terminating the
entailment process too early, these derivations would not have been discovered and
hence the corresponding explanations would still be missing. Thus, we have to use
a different criterion for moving from one step to the next and finally for terminating
the whole process. The idea is to continue with the next step (or to terminate) only
if there exists no α ∈ EO such that the explanation of α has been modified during
the last iteration.

Let now expl(α) denote the set of all explanations for a given formula α that
is added to EO during executing the process described above. For the sake of
simplicity, we only mention EO in the following, which might refer to EO, E′O or
E′′O depending on the current phase of the process. We have to distinguish between
two cases.

• α corresponds to a stated axiom in O. We set expl(α) = {{α}}.

• α is derived by one of the other rules. We set

expl(α) = expl(α) ∪ {{expl(β1), . . . , expl(βn)}}

7.2. APPROACH 95

where β1, . . . , βn refers to those formulas that triggered the rule.

Due to the recursive character of an explanation, expl(α) can be understood
as a disjunction of conjunctions, that might again be built from a disjunction of
conjunctions, and so forth. Thus, the approach, as it has been described so far,
constructs an or-and-tree of explanations. To reduce the overall complexity of the
resulting tree, we want to ensure that expl(α) is always stored as a disjunctive nor-
mal form (DNF), i.e., expl(α) is always a disjunction of conjunctive clauses. To
guarantee the explanations to be in DNF, we apply the distributivity law every time
we combine explanations. Afterwards, we minimize the resulting DNF by remov-
ing conjunctions that are supersets or duplicates of other conjunctions. Checking
for duplicates is important with respect to our termination criteria, because a DNF
to which we try to add a duplicate or a superset should not be counted as an expla-
nation that has been modified.

Now, we show that our approach computes all minimal incoherence preserving
subsets of an incoherent ontology O. Schlobach and Cornet [85] have defined a
MIPS M (minimal incoherence preserving sub-TBox) as a subset M ⊆ O such
that M is incoherent and each M ′ ⊂ M is coherent. An explanation of an un-
satisfiable class (or property) is called a MUPS (minimal unsatisfiability preserv-
ing sub-TBox) in the terminology of Schlobach and Cornet. Consequently, each
MUPS is a MIPS or a superset of a MIPS. We now use MIPS (O) to refer to the
set of all MIPS in an incoherent ontology O. Furthermore, let explu(O) refer to
the union of explanations for unsatisfiable classes or properties that are computed
by our approach, i.e.,

explu(O) =
⋃

cdis(A,A)∈EO∧
pdis(P,P)∈EO

expl(cdis(A,A)) ∪ expl(pdis(P, P))

We now show that MIPS (O) ⊆ explu(O). For that proof, we have to take into
account that our approach is monotonic in the sense that explu(O) ⊇ explu(O′)
if O ⊇ O′. This monotonicity directly follows from the fact that we only add
explanations when applying completion rules and we stop this application when no
additional explanation can be added. Thus, if O is a superset of O′ we will never
compute fewer explanations for O than for O′. Let us now apply our method to
each M ∈ MIPS (O). Each M is by definition an incoherent ontology. According
to Proposition 1, we will thus at least detect one unsatisfiable class or property for
M . Since the computation of the unsatisfiable class (or property) is, within our
approach, directly coupled to the computation of an explanation, we will always
compute an explanation with respect to M , i.e., explu(M) 6= {}. Since M is a
MIPS, there exists no incoherent subset M ′ of M . Thus, only the full MIPS can
serve as an explanation of the incoherence and so we end up with explu(M) = M .
Further, we know that M ⊆ O and thus we conclude, based on the monotonicity

96 CHAPTER 7. GENERATING INCOHERENCE EXPLANATIONS

of our approach, that explu(M) ⊆ explu(O). We conclude that

MIPS (O) =
⋃

M∈MIPS(O)

explu(M) ⊆ explu(O)

.
We have thus shown that our approach detects all explanations for unsatisfiable

classes and properties, as long as those explanations are not subsets of other expla-
nations. However, in the context of debugging applications, it is not important to
keep track of the explanations for which we did not yet prove that our approach can
detect them. When exploiting explanations in a debugging context, we would re-
solve all unsatisfiabilities discovered by the approach using the explanations. This
would also (implicitly) resolve all undiscovered unsatisfiability explanations.

7.2.2 Implementation

We implemented this approach in a prototype that is mainly based on a matrix rep-
resentation for each type of formula. We define, for example, a boolean matrix
for all formulas csub(X,Y), where X is associated to a row and Y is associated
to a column in the matrix. We first initialize the matrix with all axioms stated in
the ontology O. Then, we apply rule (7.1) adding entries to the diagonal of this
matrix. The set of entailments EO corresponds to the entries in our matrix repre-
sentation. Each cell (X,Y) in the matrix has also assigned a set of explanations
expl(csub(X,Y)). All other types of formulas are represented in a similar fash-
ion. For each type, we first initialize the associated matrix based on the content of
O and then apply the rules as described above to entail new entries and the corre-
sponding explanations. Finally, the diagonal in the matrices for the predicates cdis
and pdis refer to the set of unsatisfiable classes and properties as well as to their
corresponding explanations.

Note again, that we have developed the approach for debugging ontologies that
have been learned automatically. Such ontologies will typically contain subsump-
tion axioms between most pairs of classes that subsume each other, even though
most of these axioms can be derived from other axioms that have also been learned.
The same holds for disjointness axioms. Thus, we expect that most matrices for
learned ontologies are dense or not as sparse as matrix representations of carefully
modeled ontologies. In such a setting using a matrix representation is less critical
with respect to memory and runtime issues as it will be the case in other scenarios.

Finally, though the theoretical foundations presented above support it based on
the rules rules (7.15) to (7.24), we have not yet implemented support for inverse
properties in the current prototype. This is because the dataset that we used for
our experiments, contains only a small number of axioms that involved inverse
properties. Furthermore, inverse properties are more complex regarding runtime
efficiency and would lead to a considerable growth of the employed matrices which
would limit the overall performance given the current architecture of the approach.
Therefore, we decided to remove all inverse properties axioms from the datasets
that we used in the experiments presented in the following section.

7.3. EXPERIMENTS 97

7.3 Experiments

To show the feasibility of the overall approach and also to verify our implementa-
tion, we performed several experiments which we describe in the following.

7.3.1 Settings

In this chapter, we describe an approach which is focused on generating explana-
tions for learned ontologies. Thus, we performed the experiments on the ontologies
created by the learning process on the DBpedia ontology version 3.7 as described
in Chapter 5 and 6. Thus, the ontologies only contained the axioms of the DBpedia
ontology and in addition the axiom types supported by the learning approaches.
For analyzing the impact of different ontology sizes on the reasoning performance,
we created subsets of the full ontology. We first generated a base ontology by ran-
domly sampling 20% of the total number of axioms from the full ontology. Then,
we gradually added randomly selected and not yet contained axioms from the full
ontology. During the sampling process, we regularly took snapshots of the current
ontology. This resulted in a set of 11 ontologies O0 up to O10 so that for each
ontology we know Oi ⊂ Oi+1, i ∈ [0, 9]. The last snapshot, O10 is equivalent to
the full ontology O. An analysis of the ontologies’ complexity revealed that all of
the generated ontologies belong to the ALCH complexity class. Further statistics
regarding the ontologies can be found in Table 7.2.

Table 7.2: Statistics about ontologies used in experiments.

Ontology Axioms Classes Properties Unsat. Classes Unsat. Properties
O0 23,706 300 654 3 5
O1 32,814 304 673 6 7
O2 41,941 309 689 9 14
O3 51,056 316 702 15 29
O4 60,166 319 714 26 50
O5 69,271 321 724 32 82
O6 78,375 323 730 49 112
O7 87,468 324 736 63 162
O8 96,555 324 737 83 209
O9 105,642 324 742 132 336
O10 114,726 324 742 152 396

Towards the overall objective of fixing incoherences in ontologies, there arise
two basic use cases that we consider in the following. The first use case is the
detection of unsatisfiable classes and properties. Naturally, this is one of the first
steps in fixing the incoherences as it points out the actual problems in the ontology
to further look at. The second use case is about finding all explanations for unsat-
isfiabilities. Based on the results of the first use case, this explanation generation

98 CHAPTER 7. GENERATING INCOHERENCE EXPLANATIONS

step can be limited on the incoherent classes and properties instead of considering
the full ontology.

We compared TRex to the two state-of-the-art reasoners Pellet and Hermit.
While TRex fully supports both use cases, Hermit and Pellet are only able to han-
dle subsets. Regarding the first use case, Hermit2 provides direct programmatic
access to the set of unsatisfiable classes whilst retrieving unsatisfiable properties
is not directly possible. Instead, we resorted to retrieving all subproperties of
owl:bottomObjectProperty. Hermit does not provide support for gener-
ating explanations, so it is not suited for our second use case. The Pellet reasoner3

also supports direct retrieval of unsatisfiable classes. In contrast to Hermit, it nei-
ther supports direct access to unsatisfiable properties nor does it allow the retrieval
of subproperties of owl:bottomObjectProperty. Thus, we are not able to
directly retrieve unsatisfiable properties with Pellet without further modifications.

A feature which distinguishes Pellet from Hermit is the support for comput-
ing explanations. To have the possibility to compare our explanation results with
other explanations, we implemented a way of reducing the detection of unsatisfi-
able properties to the detection of unsatisfiable classes. For this purpose, we ex-
tended the ontologies with the axiomCP v ∃P.> for each object property P in the
ontology where CP is a fresh class introduced for the respective property. Based
on this, we know that CP is unsatisfiable iff P is unsatisfiable. In our experiments,
this variant of Pellet is referred to as PelletMod.

7.3.2 Results

The results of the first use case are depicted in Table 7.3.4 All reasoners discovered
the same number of unsatisfiabilities except for Pellet because of its inability to
detect unsatisfiable properties. Overall, Hermit is the fastest reasoner for retrieving
the set of all unsatisfiable classes and properties. In particular, Hermit provides the
best scalability in our experiments since the runtime behavior is second to none
of the other reasoners. The runtimes of Pellet and PelletMod increase much more
with respect to the ontology size. The runtimes of TRex are the highest for all
ontology sizes. TRex is designed to always determine explanations for all inferable
axioms. Pellet only computes explanations if those are explicitly requested for
specific axioms. Furthermore, TRex has higher initialization costs. However, as
also discoverable from the results, these initialization costs are hardly affected by
the growing number of axioms. Both characteristics of TRex can be explained
by the usage of matrices in the TRex implementation. The dimension of these
matrices are determined by the number of classes and properties in the ontology
and their initialization has to be done independently from the number of axioms.
Furthermore, since the number of classes and properties does only change to a low

2http://www.hermit-reasoner.com, Version 1.3.6
3http://clarkparsia.com/pellet, Version 2.3.0
4All experiments have been conducted on a Quad-core Intel Core i7 with 3.07GHz and 24GB

RAM. The results are averaged over 5 runs.

http://www.hermit-reasoner.com
http://clarkparsia.com/pellet

7.3. EXPERIMENTS 99

degree according to Table 7.2. Thus, the matrix sizes and their initialization costs
are almost the same over all considered ontologies. The actual number of axioms
has a lower influence on the runtime behavior.

Table 7.3: Runtimes in milliseconds for the detection of unsatisfiabilities.

Ontology Pellet PelletMod Hermit TRex
O0 392 411 450 6,630
O1 621 654 629 7,169
O2 910 997 720 7,839
O3 1,232 1,297 849 8,425
O4 1,485 1,854 1,916 9,889
O5 1,970 2,088 1,158 9,411
O6 2,419 2,617 1,295 9,572
O7 2,897 3,063 1,468 12,559
O8 3,460 3,585 1,549 10,124
O9 3,823 3,899 1,721 11,148
O10 4,327 4,439 1,864 12,006

For the second use case, we provide the results in Table 7.4. These results are
the runtimes for retrieving the explanations for each of the unsatisfiable classes
and properties found by the respective reasoner. Thus, the runtimes of Pellet only
include the explanation retrieval for unsatisfiable classes. For comparing the run-
times of Pellet and PelletMod to those of TRex, it is important that TRex runtimes
are measured for retrieving all explanations for each unsatisfiability in the ontol-
ogy while for Pellet and PelletMod only a single explanation per unsatisfiability
has been retrieved. The number of explanations as found by TRex is provided in the
right-most column. In contrast, Pellet generates one explanation for each unsatis-
fiable class while PelletMod generates one for each unsatisfiable class or property.
As already said in the motivation, the explanation generation facilities of Pellet, and
hence also Pellet, are highly unstable. While the retrieval of a single explanation
worked well, trying to retrieve multiple explanations for a single unsatisfiability
consistently led to errors for the ontologies in our experiments. When trying to
work around these problems, we observed extremely high runtimes severely limit-
ing the practical applicability of the systems. However, it remained unclear whether
those high runtimes were caused by the correct execution of the algorithm until the
problem occurred or by the problems themselves. For that reason, we omitted to
present these results, which would in any case be based on incomplete sets of ex-
planations, and resorted to single-explanation retrieval for Pellet and PelletMod.

As we see from the given table, the runtime of TRex for retrieving all ex-
planations for all unsatisfiabilities is increasing exponentially with the number of
axioms contained in the ontology while the other reasoners only suffer from an
approximately linear increase. However, this increase can be explained by means

100 CHAPTER 7. GENERATING INCOHERENCE EXPLANATIONS

Table 7.4: Runtimes in milliseconds for generating explanations for unsatisfiable
classes and properties. ”All Explanations” means all MIPS.

Single Explanation All Explanations
Pellet PelletMod TRex

Ontology Runtime # Expl. Runtime # Expl. Runtime # Expl.
O0 848 3 863 8 6,758 8
O1 1,317 6 1,365 13 7,594 13
O2 1,899 9 1,956 23 9,011 26
O3 2,463 15 2,693 44 9,892 54
O4 3,341 26 3,530 76 11,666 100
O5 4,070 32 4,322 114 11,732 158
O6 5,068 49 5,235 161 12,980 250
O7 5,979 63 6,309 225 17,495 386
O8 7,082 83 7,396 292 21,726 686
O9 7,805 132 8,228 468 44,966 2,031
O10 8,947 152 9,480 548 66,781 2,722

of the aforementioned difference in the number of explanations. Pellet and Pellet-
Mod only retrieve one explanation per unsatisfiability, which means that the total
number of explanations is linear to the number of unsatisfiable classes and proper-
ties. In contrast, the total number of explanations retrieved by TRex is not linearly
bound but instead growing exponentially in the number of axioms. This is also
depicted in Figure 7.1. In this figure, we plotted both the runtimes of TRex and
the number of computed explanations on the y-axis. Again, we observe a relatively
high initialization cost. However, at some point in time the runtimes of TRex seem
to grow linear in the number of computed explanations.

Explanation Completeness

Finally, we set up another experiment to obtain additional evidence for the com-
pleteness of the explanation component and the correctness of our implementation.
Furthermore, this experiment serves as a first show case for our objective to clean
incoherent ontologies using the explanations retrieved from the explanation com-
ponent. The experiment implements Algorithm 5 which uses the reasoning service
to get all explanations for the incoherence of an ontologyO. For each explanation,
it removes one randomly chosen axiom from the ontology and thus invalidates
this explanation. It continues resolving the other explanations by removing fur-
ther axioms but only if the current explanation has not been resolved by the axiom
removal for a previously processed explanation. All in all, the set of removed ax-
iomsH forms a randomly determined hitting set over all explanations in explu(O)
computed by TRex. Thus, assuming the correctness of the explanation generation,
the removal of all axioms in H from the ontology should always result in a co-

7.4. CONCLUSION 101

20,000 40,000 60,000 80,000 100,000 120,000
Number of Axioms

0

500

1,000

1,500

2,000

2,500

3,000
N

um
be

ro
fE

xp
la

na
tio

ns

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

M
ill

is
ec

on
ds

Explanations (Single)
Explanations (All)
Runtime (msec)

Figure 7.1: TRex explanation runtimes and the total number of retrieved explana-
tions

herent ontology. We ran the implementation of this algorithm 200 times on the
ontology O10. The computed hitting sets contained between 201 and 223 axioms.
To validate the results, we tested the resulting ontology for coherence using TRex
and Hermit. For each run, both reasoners did not find further unsatisfiable classes
or properties. Thus, in the tested cases, the explanation generation and reasoning
component implemented in TRex showed further evidence for its correctness.

Algorithm 5 Randomized greedy ontology debugging

function RANDOMIZEDGREEDYDEBUG(O, explu(O))
H ← {} . set for storing already removed axioms
for all e ∈ explu(O) do . e is an explanation, i.e., a set of axioms

if e ∩H = ∅ then
a← randomly chosen axiom from e
O ← O \ {a}
H ← H ∪ {a}

end if
end for

end function

7.4 Conclusion

In this chapter, we argued towards the usage of specialized reasoning facilities for
cases in which the full expressive power of ontology languages like OWL 2 is not

102 CHAPTER 7. GENERATING INCOHERENCE EXPLANATIONS

required. Though OWL 2 defines profiles which provide a subset of the full expres-
sivity while being more efficient to compute than full OWL 2, these subsets still
try to provide as many language constructs as possible. In particular, these profiles
are required to support general applications and thus cannot restrict themselves as
comprehensively as a specially fitted approach. For example, none of the OWL 2
profiles leaves out the support for instance-level inference which is not required if
the target datasets are known not to contain any instance informations. Though in
general, supporting unused constructs does not lead to considerable performance
limitation due to the highly optimized nature of reasoning tools, they could lead
into problems in cases where some or all optimizations have to be disabled. When
explanations for inferred axioms should be generated, it is not possible to work
with the full set of optimizations since these would hinder their proper computa-
tion. This leads to a highly increased runtime which even gets more drastic when
not only single explanations but all explanations for a given inferred axiom have to
be determined. This might also be one reason for most systems not supporting the
generation of explanations at all and furthermore for the problems the supporting
systems suffer from.

For the special use case of debugging and repairing learned ontologies, we
defined a set of entailment rules tailored after the capabilities of our inductive on-
tology learning approaches. These rules only support schema-level inference for
a subset of OWL 2 and also are limited to axiom types which can have influence
on the coherence of ontologies. Furthermore, we introduced an approach for deter-
mining the actual entailments based on these rules and, as an even more important
aspect, the generation of explanations for unsatisfiable classes and properties dis-
covered by means of these rules. We also theoretically showed that we are able
to determine all relevant explanations for ontologies falling into the supported ex-
pressivity range. Based on our prototypical implementation TRex, we showed the
practical feasibility of the idea and performed experiments providing further results
also with respect to the actual debugging of incoherent ontologies. Due to the way
of implementation chosen for TRex, we experienced higher runtimes for detecting
incoherences and generating single explanations in the ontology than state-of-the-
art systems. However, we also showed our system to be able to provide all explana-
tions for unsatisfiabilities while neither Pellet nor Hermit were able to do this. The
matrix representation for axioms used in our prototypical implementation might
also lead to performance problems when working on ontologies containing large
numbers of classes and properties. Nevertheless, this implementation detail was
chosen based on the specific characteristics of our use case in which the learned
ontologies can only contain a limited number of classes and properties since no
new entities are generated but merely their relations towards each other are deter-
mined in more detail. Another advantage of specifically crafted reasoning systems
is the increased influence on their internals which allows to more directly retrieve
information relevant for several use cases. For instance, the current implementation
also provides access to cycles in the inferred subsumption hierarchy. Subsumption
cycles are explanations for O |= A ≡ B where A ≡ B /∈ O. Such an equivalence

7.4. CONCLUSION 103

is not necessarily an undesired consequence, however, it might be worthwhile to
analyze the involved axioms. Now suppose that we want to compute subsumption
cycles for a highly incoherent ontology where most classes, including two classes
A and B, are incoherent. Due to that fact that A and B are subsumed by bottom,
we have O |= A ≡ B. The explanations for the unsatisfiability of A and B are
thus also responsible for the equivalence of A and B. This is not the case in our
approach, because ⊥ is not included in our formalization. Subsumption cycles de-
termined by means of our approach are thus not affected by unsatisfiabilities. This
might help to spot errors in the learned axioms. An example for this are ontol-
ogy learning systems which are able to learn subsumption and equivalence axioms
separately. In cases where the learned subsumption axioms imply an equivalence
but no equivalence axiom is learned, subsumption cycles can help to more closely
examine the cycles which might not be possible in highly incoherent ontologies
when using traditional reasoning systems.

Possible areas for improving the implementation particularly consist of chang-
ing the internal representation structure used in the reasoning system. The current
implementation’s matrix structure poses a limit onto the number of classes and
properties which can be processed in the system. Changing this implementation
detail could lead into improvements in scalability based on the number of enti-
ties in the ontology. Another possibility to optimize the current approach is the
representation of explanations. First experiments have been done to represent the
explanations as ordered binary decision diagrams, however, these did not yet turn
out to be successful.

All in all, the implementation of specialized systems seems to prove beneficial
if the restrictions on the expressivity compared to the standard OWL 2 profiles are
considerably high and thus allow to waive a greater part of the inference rules.
An additional benefit which might prove important for many applications is the
extended influence on internals of the approach compared to highly optimized,
general purpose systems.

Chapter 8

Repairing Incoherent Ontologies

Providing explanations of incoherences to an ontology engineer is a first step in
supporting him in improving the ontology. Nevertheless, for large ontologies hav-
ing a high degree of incoherence, many explanations can be found that have to be
fixed and it might be a high effort to get an overview on all these explanations to
finally determine the most suitable solution. Thus, an even larger degree of autom-
atized support is desirable.

For the special case of learned ontologies, we can take advantage of another
property for achieving this higher level of support. In many cases, the underlying
approaches employed in ontology learning do not directly generate binary decision
whether a given axiom holds but first collect evidences for the validity of the ax-
iom. These evidence collection results in a confidence value which is then used
to decide whether the axioms holds or not. Many learning approaches make the
confidence values, which they gathered internally, available in the final ontology
by means of annotations assigned to the corresponding axioms. Thus, when de-
bugging ontologies which contain confidence-annotated axioms, we not only have
the explanations for the incoherences but for each learned axiom, we also have an
assessment of the confidence in its validity. An obvious use of this additional in-
formation is to decide which axiom from an explanation should be removed from
the ontology based on this confidence measure.

In this chapter, we examine means of automatically repairing incoherent on-
tologies. All in all, we are arguing that a fully automatic repair of incoherent
ontologies is hardly possible as is the automatic learning of flawless ontologies.
However, by further looking into automatic repair approaches, we can get addi-
tional insights which later-on could help to find a balance between low manual
effort and high quality. Moreover, in some use cases it might be hardly or not at
all possible to provide manual guidance to automatic approaches, for example, be-
cause the effort to do so would be to high compared to the expected results. Thus,
it is also important to examine these fully automated approaches.

The remainder of this chapter is structured as follows. In the next section, we
elaborate on related work. We mainly cover work about debugging and repairing

104

8.1. RELATED WORK 105

ontologies generated by ontology learning approaches. Afterwards, in Section 8.2,
we present the four different approaches which we evaluate for making incoherent
ontologies coherent. This includes two approaches which apply greedy strategies
on the sets of explanations generated by reasoning tools. The two additional ap-
proaches employ the concept of Markov logic networks to find coherent axiom
subsets of the original ontology. We use the ontology reasoning tool TRex as pre-
sented in the previous chapter for generating explanations and apply the RockIt
tool by Nössner et al. [74] when working with Markov logic networks. The differ-
ent approaches are evaluated in Section 8.3 before we summarize and conclude in
Section 8.4.

8.1 Related Work

Given the central importance of ontologies for the Semantic Web in combination
with the potential complexity of modeling them, much work has been done on as-
suring their quality. During the ontology creation, modeling guidelines and frame-
works provide hints on how to depict specific real-world scenarios in an ontology
and further means to validate a given way of modeling. One instance of such an ap-
proach is the OntoClean approach [45] that introduces a number of meta-properties
borrowed from the field of philosophy. These meta-properties are assigned based
on the characteristics of entities that are relevant for placing them into specific
classes according to the specific way of conceptualization chosen for the ontol-
ogy. Based on these meta-properties, certain restrictions are defined regarding
when classes can be in a taxonomic relation. One example is the meta-property
of rigidity. A class being rigid means that it is essential to all its instances, i.e.,
the instances cannot stop being instances of this class in certain situations. An
anti-rigid class, however, can get more classes or lose classes depending on the
specific situation. Guarino and Welty provide the class Human as an example for
a rigid class while the class Student is considered to be anti-rigid. According to
the OntoClean constraints, anti-rigid classes can only subsume anti-rigid classes.
For example, if the anti-rigid class Student would subsume the rigid class Human,
an instance ceasing to be a student would violate the rigidity of Human. By defin-
ing additional meta-properties and constraints based on them, OntoClean provides
a way of formalizing ontological assumptions and for recognizing violations of
these assumptions introduced by the taxonomy. Adhering to such strict rules dur-
ing modeling helps to create ontologies that are of better overall quality. Obviously,
applying such strategies requires a deep understanding of the modeled domain and,
hence, is hardly applicable using automatic ontology generation approaches.

Other works take less formalized approaches but concentrate on suspicious
patterns or “bad smells” occurring in the ontology. Corcho et al. [30] introduce a
set of anti-pattern to recognize errors in ontologies they found to be common in
manually created ontologies. Furthermore, they provide a set of guidelines on how
to model complex facts in simpler constructs. The anti-patterns are categorized

106 CHAPTER 8. REPAIRING INCOHERENT ONTOLOGIES

into detectable logical anti-patterns which can be discovered by means of reasoning
and cognitive logical patterns that are possible modeling errors but not detectable
by a reasoner. For each anti-pattern, the authors also provide an alternative way
of modeling that expresses the assumed intended meaning of the discovered anti-
pattern. Based on these patterns, they propose an ontology debugging strategy that
detects occurrences of the anti-patterns or logical constructs for which modeling
guidelines exist and provides the defined alternative way of modeling. Roussey
and Zamazal [82] examine the usage of SPARQL queries for detecting occurrences
of anti-patterns in ontologies. They also address some basic transformations to
overcome differences in modeling that would otherwise hinder the detection of the
patterns and in addition provide a limited capability to perform basic inference.

The web-based OntOlogy Pitfall Scanner! (OOPS!) by Poveda-Villalón et
al. [78] targets in the same direction by providing automatic detection of com-
mon problems by means of patterns and best practices. The patterns employed in
OOPS! are sorted into different categories such as human understanding or logical
consistency. These pattern-based approaches are concentrating on typical errors
introduced by humans into manually modeled ontologies and some logical weak-
nesses recognizable either directly by patterns or with little support of a reasoning
tool. Due to this concentration on errors in typical human-made ontologies and a
subset of the logically recognizable problems, these approaches are not well-suited
for processing automatically generated ontologies. However, these methods could
be helpful when applied in a second step and used by a human ontology engineer
for improving learned ontologies.

Another type of approaches for debugging ontologies focuses on the quality of
ontologies on a logical level. For this purpose, consistency of the ontology is the
more obvious aspect since it is a requirement for most inference approaches being
applied to the ontology and inconsistencies point to modeling flaws either for a
specific instance or in the overall ontology’s logical model. Though not having
direct influence on the usability of the ontology for many use cases, coherence
is nonetheless considered a pointer to modeling problems. This is backed by the
assumption that unsatisfiable classes (or properties) are almost never introduced on
purpose into an ontology since they do not encode additional knowledge about the
modeled domain. By using inference techniques, they detect unsatisfiabilities in
the ontology and repair those in most cases by removing one of the axioms causing
the unsatisfiability. These axioms are identified by means of explanations (see
Chapter 7). Using the explanation-enabled Pellet reasoner [58], Kalyanpur et al.
generate explanations and provide them in their Swoop tool [57] to the ontology
engineer supporting the search for an appropriate fix. The RaDON tool by Ji et
al. [55] provides similar functionality to support human engineers. In addition, it
provides automatic repair for incoherent and inconsistent ontologies based on the
determined explanations by removing the axioms causing the unsatisfiability. For
handling incoherence, RaDON uses the kernel revision operator introduced by Qi
et al. [80] which concentrates on revising ontologies that are changing over time.
If a newly received axiom leads to incoherence, this is handled by removing an

8.2. APPROACHES 107

axiom from the original ontology. The axioms responsible for the unsatisfiability
are determined by the Pellet reasoner and then further processed using a hitting set
tree algorithm as also employed by Kalyanpur et al. [56]. Qi et al. examine three
different incision functions for finding the axiom to remove. For this purpose,
different criteria are used. One criterion is based on the number of occurrences of
an axiom in different MIPSs and only considers the most often occurring axioms
for removal. Two additional approaches also use confidence values that might be
available for automatically generated axioms. In a first step, the lowest confidence
axioms for each MIPS are determined and afterwards a hitting set of axioms to
remove is calculated. The first approach we are going to introduce later-on, is
comparable to this one, however we do not use the hitting set tree algorithm by
Reiter but rather rely on a greedy procedure which in theory produces less optimal
results but is more efficient. It is worth noting, that the algorithm by Qi et al. does
not produce minimum-cardinality hitting sets, either. Qi et al. also introduce a
more efficient method which only retrieves all MUPSs for each unsatisfiable class
instead of the full set of MIPSs at once. All confidence-based methods proposed
by Qi et al. only minimize over the lowest confidence axioms for each MIPS.
Thus, these methods would never consider that the removal of several axioms of
low confidence could be weighed up by the removal of a single slightly higher
confidence axiom. This is possible in the Markov logic-based methods that we
describe below since they are able to consider the number of axiom occurrences in
explanations and the confidence values of axioms at the same time.

8.2 Approaches

In this section, we present the different approaches that we examine in this chap-
ter for repairing incoherent ontologies. These approaches are all similar in that
they are heavily based on using the confidence measures available in the learned
ontologies when deciding which axiom to remove. We do this under the premise
that higher confidence values hint on a higher probability of an axiom being cor-
rect. For example, given the inductive approaches presented in the first part of this
work, this means that we tend to remove axioms to which fewer instances adhere
compared to one to which more instances adhere.

As foreshadowed in the introduction of this chapter, the approaches can be
roughly split into two categories. The first type of approaches is crafted after the ba-
sic structure of greedy algorithms. One of these greedy algorithms is a confidence-
based variant of Algorithm 5 that is commonly used for debugging ontologies and
thus serves as a baseline. The second greedy approach iteratively constructs the
full ontology instead of removing axioms from the full ontology. The algorithms
falling into the second category are using Markov logic networks (MLN). Here, the
first approach operates on pre-computed explanations for the unsatisfiabilities. It
tries to find a lowest-confidence set of axioms whose removal makes the ontology
coherent. The fourth approach is purely based on MLN and does not use explana-

108 CHAPTER 8. REPAIRING INCOHERENT ONTOLOGIES

tions generated by a reasoning system. Instead it implements the inference rules as
given in Chapter 7 directly in Markov logic.

For the first three approaches, we assume the set of all explanations of incoher-
ences to be given. In this work, we perform the explanation generation step using
the TRex system as described above.

8.2.1 Baseline Approach

The baseline approach is specified in Algorithm 6 and is similar to Algorithm 5. Its
basic idea bears on the characteristic of an explanation that it is the minimum set of
axioms which leads to the unsatisfiability. Thus, when removing an arbitrary axiom
contained in the explanation from the ontology, this specific unsatisfiability does
not exist any longer. While the previous algorithm used in Chapter 7 just removed
a randomly selected axiom, we now include the confidence value into the deci-
sion and always remove the axiom with the lowest confidence value. Since two
different explanations are not necessarily disjoint, an explanation can be already
solved when one of its axioms was removed during solving a previous explanation.
In these cases, no further actions are required. Thus, we keep track of all axioms
removed from the ontology and check for each explanation whether it has been
solved by an earlier removal. Obviously, this approach is neither optimal regard-
ing the total number of axiom removed from the ontology nor regarding the total
confidence value of all removed axioms. For instance, a single high confidence
axiom which participates in all explanations would never be removed as long as
all explanations contain at least one axiom with a lower confidence value. In the
following, we refer to this approach as A1.

Algorithm 6 Greedy ontology debugging

Require: O is a learned ontology, explu(O) is the set of explanations for all in-
coherences

function GREEDYDEBUG(O, explu(O))
H ← {} . set for storing already removed axioms
for all e ∈ explu(O) do . e is an explanation, i.e., a set of axioms

if e ∩H = ∅ then
a←axiom with lowest confidence value in e
O ← O \ {a}
H ← H ∪ {a}

end if
end for

end function

8.2. APPROACHES 109

8.2.2 Axiom Adding Approach

The second algorithm as described in Algorithm 7 differs from the previous one in
that it does not start with the full ontology but with the base ontology and enriches
it axiom by axiom. For this purpose, it iterates over all learned axioms and adds
them one by one starting with the highest confidence axiom and continuing with
lower confidence ones. After each axiom addition, the algorithm checks whether
the resulting ontology O′ fully contains the axioms of one explanation, i.e.,

∃e ∈ explu(O) : O′ ∩ e = e

If such an e exists, the current ontology is incoherent. Since the ontology was
coherent before, otherwise it would have contained one full explanation in the step
before, the incoherence is caused by the lastly added axiom. Thus, we remove this
axiom and the process continues with the axiom having the next lower confidence
score. By guaranteeing that no explanation is fully contained in the ontology, we
prevent the occurrence of all detected incoherences. In the further course of this
chapter, we refer to this approach as A2.

Algorithm 7 Axiom Adding

Require: O is a learned ontology, explu(O) is the set of explanations for all in-
coherences

function HITTINGSETDEBUG(O, explu(O))
H ← {} . set of removed axioms
L← learned axioms contained in O sorted by descending confidence
O′ ← O \ L . O′ is ontology without learned axioms
for all a ∈ L do
O′ ← O′ ∪ {a}
if ∃e ∈ explu(O) : e ⊆ O′ then
O′ ← O′ \ {a}
H ← H ∪ {a}

end if
end for

end function

After the termination of this algorithm, H contains a hitting set for the set of
explanations, i.e., H is a set of axioms so that ∀e ∈ explu(O) : e ∩H 6= ∅. It is
important to note that due to the greedy nature of the algorithm,H is a minimal but
not a minimum-cardinality hitting set. The same statements holds for the algorithm
proposed first where the set H also holds a hitting set after the execution of the
algorithm completed.

110 CHAPTER 8. REPAIRING INCOHERENT ONTOLOGIES

8.2.3 MAP Inference-Based Approach

In contrast to the two approaches presented before, this approach is not a greedy
one. Instead, it formulates the problem as a Markov logic network (MLN) whose
solution leads to a coherent ontology.

Markov logic networks were introduced by Richardson and Domingos [81].
They are a way of formulating uncertain logical knowledge based on Markov net-
works. For this purpose, Markov logic extends first order logic by allowing to
annotate formulas with weights. In contrast to pure description logic where all
formulas represent hard constraints and a world not satisfying all constraints is no
valid world, in Markov logic a world violating a constraint is not an impossible
world but merely less probable. The higher the weight associated to a formula
the less probable a world violating it. Because of this property, it is even possible
to have formulas in the knowledge base that contradict each other. Furthermore,
by adding infinite weights to formulas it is possible to set these formulas as hard
constraints that might not be violated.

More formally, a Markov logic network (MLN) is given by a set of pairs
(Fi, wi) where each Fi is a first-order logic formula and each wi a real number.
Together with a set of constants C the logic network can be used to determine a
ground Markov network. On this Markov network it is then possible to define the
probability distribution over possible worlds x by

P (X = x) =
1

Z
exp

(
F∑
i=1

wini(x)

)

with F being the number of formulas in the MLN and ni the number of true
groundings of Fi in x.

However, for our use case, we are more interested in the scenario to find the
most likely state of a world y given evidences e, i.e.,

arg maxyP (y|e)

which is also called maximum a-posteriori (MAP) inference. We use the Markov
logic query engine RockIt by Noessner et al. [74] for finding the maximum state of
the MLN. Thus, the MLN formulations given in the following are oriented towards
the syntax of RockIt. However, the syntax of other MLN inference engines is
similar and it should be possible to transfer the following models into their syntax
without much effort. The input for performing a MAP query is two-fold. First,
we need a so-called model which defines the schema which can later-on be used
for describing the actual data and also provides logical relationship between the
schema parts. The second part is the definition of ground values which contains
the actual data on which the query is performed and is expressed based on the
defined model.

In Figure 8.1, we show the basic model. This model first defines a predicate to
mark an axiom as active in Line 1. We consider an axiom as active if it is included

8.2. APPROACHES 111

in the final (coherent) ontology. To include the confidence values of the learned
axioms into the optimization process, we define the activeConf predicate in
Line 2 which assigns the corresponding confidence to an axiom. Line 3 and 4 are
used to represent single explanations. We cannot express predicates of arbitrary
length in a model but only predicates having a fixed length. Since the set of all ex-
planations can contain explanations made of different numbers of axioms, we have
to provide predicates for each explanation size. This is done by defining N -ary
predicates named conflictN for all N up to the size of the largest explanation.
In Figure 8.1, we assume a maximum explanation size of 2 and thus only support
explanations of length 1 by the predicate conflict1 and length 2 using the pred-
icate conflict2. Line 5 defines the optimization to be done over the confidence
values of all active axioms by only allowing to include a confidence value into the
final value if the corresponding axiom is set to active. Finally, to actually ensure
that unsatisfiabilities are resolved, Lines 6 and 7 state that for each explanation one
of its axioms must not be set to active. As for the explanation predicates, this has to
be done in one statement for each possible length of explanations. This approach
is identified by A3 in the remainder of this chapter.

1 active(axiom)
2 *activeConf(axiom, _float)
3 *conflict1(axiom)
4 *conflict2(axiom, axiom)
5 conf: active(x) v !activeConf(x, conf)
6 !conflict1(x0) v !active(x0).
7 !conflict2(x0,x1) v !active(x0) v !active(x1).

Figure 8.1: RockIt model for the MAP inference-based approach

Using this model as base, we generate the ground values for the MAP infer-
ence step. This is done based on the ontology and the set of explanations. In the
following steps, only those axioms are relevant which occur in at least one explana-
tion. To identify these axioms, we assign a unique integer value to each. All others
do not contribute into any unsatifiabilities on the ontology and we do not need to
remove these in any case. For each unlearned axiom, i.e., each axiom that was in
the ontology before the enrichment by means of ontology learning, an active state-
ment is introduced. Directly introducing the active statements makes this axiom a
hard constraint so that it cannot be treated as inactive during the MAP inference
process. We introduce one activeConf predicate for each learned axiom and its
confidence value. Each explanation gets represented by the conflict predicate
corresponding to its size containing the identifiers of all contained axioms. Using
this input data, RockIt determines a list of active predicates for all active ax-
ioms in the most probable world. We include all these active axioms into the base
ontology and, as we already described, get a coherent ontology.

112 CHAPTER 8. REPAIRING INCOHERENT ONTOLOGIES

8.2.4 Pure Markov Logic Approach

In the fourth approach, which we refer to as A4, we directly combine the entailment
rules as defined in Section 7.2 and Markov logic networks for repairing incoher-
ent ontologies. In particular, this allows us to determine the performance of an
approach which does not compute explanations before repairing the ontology but
directly works on the entailment rules to compute the maximum confidence, co-
herence ontology. Our approach is highly inspired by the work of Noessner and
Niepert [73] but instead of using inference rules for the logic EL, we implement
the rules for debugging learned schema-only ontologies in Markov logic. Since all
rules are represented by means of implication, this is easily possible.

The resulting model is provided in Appendix A. In contrast to the third ap-
proach, we cannot only work on the axioms without further knowledge of their
content. Rather, we express the connections between the entities of the ontology,
i.e., the classes and the properties contained in the ontology. This is done by pred-
icates for the different supported axiom types, each connecting a pair of classes, a
pair of properties or a property and a class. For instance, we define the binary pred-
icate csub for expressing a class subsumption relations between two classes and
a ran predicate for assigning a class as range of a property. To include confidence
values for learned axioms, we define ternary predicates which add the confidence
values in addition to the parameters of their binary counterparts. Both, binary and
ternary predicated, are connected by statements like

conf: csub(c1, c2) v !csubConf(c1, c2, conf)

to define that a given confidence values may only be considered if the correspond-
ing axiom actually holds.

The further parts of the model work on these axioms and define the entailments
based on the existence of specific axioms. They are direct translations of the pre-
viously given implication rules into their conjunctive normal form. The formulas
!cdis(c1,c1) and !pdis(p1,p1) are of special importance for the full ap-
proach since they disallow classes and properties to be disjoint to themselves and,
hence, ensure that coherent sets of axioms are generated.

For the ground values, this model is used as vocabulary and the axioms con-
tained in the ontology are expressed by the corresponding predicates, for unlearned
axioms by the binary predicates and for learned axioms by the ternary predicates
also including their confidence values.

Querying for the MAP state based on this model and the ground values then
again leads into a list of axioms which are active in a highest-confidence coherent
ontology.

8.3 Evaluation

For evaluating the four approaches introduced above, we experimentally compared
the four approaches regarding their runtime and also the complexity of ontologies

8.3. EVALUATION 113

to which the approaches are applicable. Both aspects are relevant since the size and
the complexity of automatically generated ontologies can pose challenges regard-
ing both dimensions. Considering that repairing approaches might have to assist
human ontology engineers in fixing problems in learned ontologies, another impor-
tant facet is the transparency of the performed repair steps. The more transparent
and thus traceable the reasons for the removal of certain axioms are, the easier a re-
pair approach can be integrated into an interactive scenario. For some experiment
runs, we also evaluated the sets of removed axioms regarding their correctness with
respect to human judgment. By doing this, we were able to get an insight into the
quality differences of the ontologies resulting from a manual repair to those done
by automatic means.

We first describe the setup under which we performed the experiments. After-
wards, we give details on their results.

8.3.1 Settings

For the evaluation, we worked on different ontologies all generated by means of
ontology learning approaches. The first ontology, which we refer to asA, is the on-
tology generated using the basic association rule mining-based approach described
in Chapter 5. Thus, this ontology is the DBpedia ontology version 3.7 enriched by
class disjointness axioms based on the corresponding DBpedia instance data. We
reuse this dataset since we have the high-quality gold standard available so that we
can use it for finding the actually wrong axioms and compare them to those deleted
by the repair approach. As a second dataset, we employ the one already used for
evaluation in Chapter 7. This dataset has a higher expressivity than the first dataset
since it not only contains learned class disjointness but also additional axiom types
as property disjointness or domain and range restrictions. To assess the influence
of an ontology’s size on the performance of the approaches, we keep the division
into eleven ontologies containing different numbers of axioms. In the following,
we call these 11 ontologies B0 to B10. Finally, we performed the experiments on
an ontology fully generated from a text corpus by the Text2Onto [28] tool. This
dataset was already used by Qi et al. [80] for their experiments. It is interesting for
our experiments since, in contrast to the enriched DBpedia ontologies, it is a fully
learned ontology which might differ considerably regarding its basic characteris-
tics. This ontology is called C in the following. Since we are only interested in
coherence, we ignore the instances contained in C. Table 8.1 summarizes the most
important characteristics of all ontologies.

On these datasets, we run the different approaches described in Section 8.2 and
compared them regarding their runtime and the number of axioms removed from
the ontology. Based on our class disjointness gold standard for the first dataset,
we computed the correctness of the axiom removals. For this purpose, we define
correctness as also used by Qi et al. as

correctly removed axioms
removed axioms

(8.1)

114 CHAPTER 8. REPAIRING INCOHERENT ONTOLOGIES

Table 8.1: Statistics about ontologies used in experiments.

Ontology Axioms Classes Properties Unsat. Classes Unsat. Properties
A 48,186 394 855 8 8
B0 23,706 300 654 3 5
B1 32,814 304 673 6 7
B2 41,941 309 689 9 14
B3 51,056 316 702 15 29
B4 60,166 319 714 26 50
B5 69,271 321 724 32 82
B6 78,375 323 730 49 112
B7 87,468 324 736 63 162
B8 96,555 324 737 83 209
B9 105,642 324 742 132 336
B10 114,726 324 742 152 396
C 22,416 9,827 548 3,992 455

Since we use the term “correctness” to refer to the correctness with respect to hu-
man judgment, this value does not have to be related to logical satisfiability. Rather,
a value of 1 would mean that only axioms were removed that a human ontology
engineer also considers to be erroneous. For the second DBpedia dataset, an on-
tology engineer inspected the list of axioms removed from one of the incoherent
ontologies regarding their correctness. Thus, we were able to compare the perfor-
mance of the approaches regarding the actual correctness of the resulting ontology.
For the third dataset, we decided not to do this kind of evaluation since the effort
for fully understanding the automatically generated ontology would have been too
high.

All experiments were performed on a system with an Intel Core i7 3.4GHz
with 32GB of RAM. As mentioned, for the Markov logic-based approaches, we
used the RockIt1 MAP query engine which in turn uses the ILP solver Gurobi.2

8.3.2 Results

Applied to the first ontology, the approaches using explanations for incoherences
performed similar, all of them removing the same 10 axioms from the ontology and
having similar runtimes of about 40 seconds. During the evaluation of the removed
axioms, the correctness turned out to be only at 0.4. Approach A4 run 12 seconds
and removed only 6 axioms with a correctness of 0.

We examined the low correctness value and the high overlap regarding removed
axioms and discovered that it comes from the fact that the debugged ontology has
one central point of incoherence which is centered around the disjointness of orga-

1https://code.google.com/p/rockit/, Version 0.3.228
2http://www.gurobi.com/, Version 5.6.0

https://code.google.com/p/rockit/
http://www.gurobi.com/

8.3. EVALUATION 115

nization and educational institution classes. For instance, the class Library is a
subclass of both Organisation and Building which are marked as disjoint
in the disjointness gold standard. Since the subclass axiom, which is the actual
cause of the overall problem, was contained in the base ontology, the approaches
were not allowed to remove it and tried to find a minimal set of axioms mitigat-
ing the problem. Seemingly, the approaches based on explanation generation were
not able to find a minimum cardinality set of axioms to remove since the Markov
logic-based method found a smaller set of axioms. The latter however did not re-
move any axioms whose removal was justified according to human assessment.
During its evaluation, one disadvantage of not computing explanations was dis-
covered. Fully based on Markov logic, there is almost no possibility to reconstruct
the reasons for the removal of certain axioms which makes human intervention
hardly possible whereas the access to explanations enables humans to better track
and understand the reasons for certain removals. In particular, this is relevant in
interactive ontology debugging scenarios.

For the second dataset, we manually assessed the removed axioms for ontology
B5. Since this ontology contains more different axioms and more potential inco-
herences thanA, there are much more variations in the number of removed axioms
and their correctness than for the first ontology. The results are given in Table 8.2.

Table 8.2: Results for approaches on ontology B5

Approach Runtime # Removed axioms # Correct axioms Correctness
A1 12,502 54 43 0.80
A2 15,029 46 40 0.87
A3 19,006 106 73 0.67
A4 23,864 98 75 0.77

The greedy approaches performed better regarding the number of removed ax-
ioms and the correctness. They only removed about half of the axioms the MLN-
based approaches remove. This was probably caused by some axioms with lower
confidence being removed by the MLN methods but again hard to track down be-
cause of the black box characteristics of the MLN approaches. For the smaller on-
tology, the greedy approaches were even better with respect to the runtime. How-
ever, the MLN-only method was more capable of handling an increasing number of
axioms as shown in Figure 8.2. The runtimes of the explanation-based approaches
increased more significantly than the the runtimes of the MLN-only approach. This
was caused by the increasing number and size of explanations and the time re-
quired for collecting them beforehand. Furthermore, the number of explanations
had a more drastic influence on approach A2 since its runtime is not linear in the
number of explanations in contrast to approach A1.

The performance advantage of the MLN-only approach was even more drasti-
cally shown by the experiments on the third ontology. Since the ontology contained
nearly 10,000 classes the explanation generation for all incoherences was not pos-

116 CHAPTER 8. REPAIRING INCOHERENT ONTOLOGIES

40000 60000 80000 100000
Number of axioms

0

20000

40000

60000

80000

100000

120000
R

un
tim

e
(m

se
c)

A1: Baseline
A2: Axiom Adding
A3: MLN + Explanations
A4: Pure MLN

Figure 8.2: Comparison of the runtime behavior of the different repair approaches

sible in reasonable time.3 However, this limitation was also caused by our TRex
implementation that is optimized for a lower number of classes. Because only
approach A4 does not depend on the explanation generation, it was the only one
applicable to this dataset. With a total runtime of about 32 seconds and a total
number of removed axioms of 3,097 it showed a performance suitable for most
practical use cases, especially when considering the high number of incoherent en-
tities in the ontology. This qualifies the approach for the usage on large ontologies
potentially containing many incoherences and for cases where no human interven-
tion is desired. Additionally, compared to the original results of Qi et al. [80],
the MLN-only approach was able to process the whole ontology at once instead
of having to add additional axioms in chunks, then checking and repairing the on-
tology and add another chunk of axioms. Our approach also had a lower runtime
than the one reported for the original approach. Interestingly, we removed more
axioms for reaching a coherent ontology. Both aspects could also be influenced by
the iterative addition of axioms.

8.4 Conclusion

In this chapter, we presented and compared four different approaches for repairing
incoherent ontologies. We focused on learned ontologies which exhibit common
characteristics. In particular, many learning approaches assign their internally gen-
erated confidence values to the learned axioms. The usage of these confidence

3We aborted the computation after one hour.

8.4. CONCLUSION 117

values helps to assess which axioms to remove and which to leave in the ontology.
Besides more traditional greedy repair approaches, we also evaluated two ap-

proaches using Markov logic networks. Notably, we adapted a Markov logic-based
approach using the schema-only entailment rules we developed before for finding
incoherences in learned ontologies. During the experiments, the explanation-based
approaches showed promising results, however, the explanation generation turned
out to be the major bottleneck especially for ontologies containing large numbers
of schema entities.

These shortcomings are not shared by the Markov logic-only approach which
does not rely on externally generated explanations. This approach showed promis-
ing results with respect to both runtime and scalability. However, the main problem
of avoiding the generation of explanations shows up when human engineers try to
find out the reasons for specific repair actions. Since only the actual removals are
available but no further information is given, it is hardly possible to assess how
reasonable a removal was from a human point of view. During the evaluation, re-
pairs performed based on the actual explanations of incoherences were much bet-
ter to trace back to their roots and to check regarding their validity. Moreover, the
approach that combined both generated explanations and Markov logic networks
also showed some aspects of this problem. Though the explanations were acces-
sible to human assessment, the actual removal decision was harder to understand
than for the greedy approaches. We suppose this to be caused by the fact that the
Markov logic approach tries to reach a globally optimal solution while the greedy
approaches prefer local solutions. The latter seems to be more easily understand-
able to humans which have difficulties to mimic the global view on the ontology
that is used by the algorithm. A more comprehensive study and discussion of this
effect seems to be of interest.

Combining these findings, we argue for the usage of greedy, explanation-based
repair approaches in cases where human engineers are expected to be involved in
the process. For very large ontologies and in cases where human consolidation is
unlikely, approaches as the pure Markov logic approach seem to be qualified.

Chapter 9

Schema-Based Error Detection

In the previous chapters, we gradually approached a full process of learning ex-
pressive ontologies for the purpose of using its logical information to detect errors
in Linked Data. This chapter now examines the actual error detection based on
the learned ontologies and reports on the manual evaluation of the gathered er-
ror detection results. For this purpose, we consider the ontology axioms to model
constraints that hold in the real world. Thus, violations of these axioms point to dis-
crepancies of the data with the real-world scenario and are potential data problems
that should be examined closer. In the context of using the logical schema to de-
tect errors, the amount of data contained in a typical Linked Data repository poses
some additional challenges. The currently available OWL reasoner are not able
to handle most Linked Data datasets due to their very large number of instances
contained in these datasets. Hence, letting a reasoner detect inconsistencies that
occur in the dataset when combined with the newly learned expressive schema is
not practically possible. There are two possible solutions for this problem. First,
a reasoner could be applied only to the schema for getting the implicit schema
knowledge which is then used to identify problematic parts in the Linked Data
dataset. However, the application of a reasoner could lead to an extremely high
amount of implicit knowledge. This large amount of information would lead into
performing many checks on the dataset and thus reduce the overall performance
of the detection step. Hence, in this work, we resort to a different variant. Instead
of using a reasoner for achieving full coverage of all derivable axioms, we use a
pattern-based approach. For each relevant schema axiom and also specific com-
binations of schema axioms, possible arrangements of triples are identified whose
existence shows a violation of this part of the schema and thus a potential problem
in the data. The dataset is then checked for occurrences of these identified patterns.
Since it is one of the most wide-spread and standardized means of accessing Linked
Data sources, SPARQL is often used for expressing the relevant patterns and, by
querying a SPARQL-enabled endpoint, can be used for finding triples showing the
potential violation. Compared to a reasoning-based method, the pattern-based de-
tection of errors might not be complete in a sense that it exhaustively detects all

118

9.1. RELATED WORK 119

violations in the dataset. However, this is made up by the direct applicability to
many endpoints and by the fact that only data violating a pattern has to be trans-
ferred from the endpoint. Furthermore, more complex patterns can to some degree
compensate for this at the expense of longer runtimes when evaluating the query.
For example, consider a schema containing the small dataset:

:Dog rdfs:subClassOf :Animal.
:Animal a rdfs:Class.
:Rex a :Dog.

According to the semantics of subclass relations, the instance Rex is both a Dog

and an Animal. Since this is not stated explicitly or materialized to the instance,
simple queries just asking for all instances of Animal would not return Rex. For
this specific case of type assertions inferable from the type hierarchy, a SPARQL
query like

SELECT ?instance WHERE {
?instance a ?cls.
?cls rdfs:subClassOf* ?relevantClass.

}

would return all instances assigned to the relevant class itself or to a class defined
to be one of its subclasses. In this case, the transitivity of the subclass relation is
handled by the property path feature introduced in SPARQL 1.1.1 As shown in this
example, it is possible to achieve a limited degree of inference by carefully crafting
the actual query. Nevertheless, this might lead to more complex and hence worse
performing queries which is why the inference has to be balanced against the query
performance.

In the following, we first provide an overview on other works using ontology
axioms for detecting errors in datasets and also on other approaches that allow
to detect logical errors in datasets. These approaches include both pattern-based
methods like described above and logics-based ways for error detection. Since
we rely on the RDFUnit tool to actually query the dataset for violations of the
schema axioms, we introduce the function of this tool in Section 9.2 and describe
the additional patterns we added to more effectively use the learned axioms for
error detection. Afterwards, Section 9.3 describes the settings of our experiments
and their results in these different settings. Here, we also give details on the actual
influence of the ontology’s coherence on the error detection performance. Finally,
we conclude this chapter by summing up the lessons learned regarding the usage
of learned ontologies for debugging Linked Data datasets.

9.1 Related Work

As already described in the introduction, there are two major ways of detecting er-
rors in data based on ontological knowledge. Most works that concentrate on gen-
eral data and ontology error detection rely on the usage of logical inference-based

1http://www.w3.org/TR/sparql11-query/#propertypaths

http://www.w3.org/TR/sparql11-query/#propertypaths

120 CHAPTER 9. SCHEMA-BASED ERROR DETECTION

methods. On the contrary, recent works dealing with error detection in Linked Data
show the tendency to employ pattern- or rule-based techniques that allow a more
efficient application to large datasets.

The inference-based approaches rely on reasoning systems to detect inconsis-
tencies caused by a conflict between the instance data and the ontological schema
of the dataset. This requires a schema expressive enough to actually cause incon-
sistencies in the dataset. In most cases, this means that the schema has to contain
at least some kind of negation such as disjointness. Furthermore, these approaches
are limited to smaller datasets. This is caused by the fact that most methods need
to generate explanations for discovered inconsistencies. As also seen in Chapter 7,
explanation generations suffers from poor performance as do reasoning systems
like Pellet [88] and Hermit [44] in general when applied to large datasets. This
limits the overall performance. However, for ontologies of limited size, the ontol-
ogy engineering tools Protégé and SWOOP provide support for detecting inconsis-
tencies not only in the terminological part of the ontology but also in the instance
data. Lehmann and Bühmann [65] proposed and implemented a complete work-
flow which enriches an ontology with subsumption or equivalence axioms learned
by the DL-Learner approach [64]. After adding new axioms, the resulting ontology
is checked for incoherence or inconsistencies. If there are any problems detected,
the user is asked to edit or delete the axioms contained in the explanation of the
unsatisfiability. To also support larger datasets, the explanations are only computed
on a subset of the full data that is determined based on the unsatisfiable class it-
self. They present examples of applying their workflow on a number of smaller
ontologies and also on the DBpedia dataset for which they are able to find some
wrong property assertions. In contrast to our experiments, which we present in
the following, the work by Lehmann and Bühmann more concentrates on keeping
the original data consistent with the newly learned axioms. They do not evaluate
how many actual data errors are detected. Furthermore, they only focus on learned
subsumption and equivalence and do not consider additional axiom types like class
disjointness that would be important for detecting errors in data.

Baclawski et al. [12] presented a way to check consistency of ontologies pro-
vided in different representation formalisms employing the Prolog language for
inference. Their implementation also allows to detect the cause of possible incon-
sistencies. However, they do not support OWL what makes this approach hardly
usable for typical Linked Data sources and, moreover, there is no information about
the performance of this approach which makes it hard to assess if it could be ap-
plied to large datasets.

As we already described in Chapter 3, OWL relies on the open-world assump-
tion which means that it is not possible to prove a fact as wrong based on a failure
to prove it to be correct. Though this is intended and reasonable for the distributed
knowledge representation scenario, it limits the usability in other scenarios. For
example, when a single organization is responsible and in control of the modeling
process, it might want to check the adherence to certain constraints like existence
of a specific property for all instances. To address this and inspired by works in

9.1. RELATED WORK 121

the area of deductive databases, Tao et al. [90] introduce an alternative semantics
for OWL in which axioms are interpreted as integrity constraints according to a
closed world semantics and hence can be used directly for checking the validity of
a dataset without relying on negation contained in the ontology. They also provide
a mapping of the possible constraints to a corresponding SPARQL query to test
for violations of the constraint so that SPARQL is sufficient to check all supported
constraints.

Following the same basic idea of detecting violations of constraints, additional
pattern-based approaches have been proposed. These mostly differ from the work
by Tao et al. in their support for different axiom types. Furthermore, the largest
part of these approaches has been developed with application in the field of Linked
Data in mind paying special attention to performance on large amounts of data.

Peron et al. [79] proposed a pattern-based approach for inconsistencies in RDF
datasets that concentrates on assignments. They search the dataset for conflicts
arising from property assignments. For example, the method considers it to be a
domain inconsistency if a subject instance of an object property does not belong to
the defined domain of the property. Equivalently, range inconsistencies are defined
in cases where the range of an object instance does not belong to the property’s
range. This comprehension of inconsistency is similar to the integrity constraint
semantics employed by Tao et al. For the detected problems, solutions are proposed
including the inference of new class assertions for the instance or using a less
specific class in the domain or range restriction. In addition, they introduced a way
of analyzing discovered problems by means of a histogram that is based on the
actual distribution of classes in the domain or range of a property. This analysis
allow to find a most specific, more general class that fixes a detected inconsistency.
Peron et al. evaluated their method on DBpedia 3.6 for finding errors in the data
by discussing several examples of commonly encountered errors.

The error detection method introduced by Töpper et al. [92] is also concentrat-
ing on detecting problems caused by property restrictions. They learn additional
domain and range restrictions for the ontology by determining the types most com-
monly used with in the corresponding position with a property. Similar to our work
presented in this chapter, Töpper et al. do not rely on an integrity constraint seman-
tics but instead enrich the ontology automatically with disjointness axioms that are
learned by means of a vector space model as already described when presenting
related work in Chapter 5. For detecting errors, they consider each property as-
sertion and check whether the class learned as domain or range is disjoint to the
class assigned to the subject or object instance, respectively. If such a conflict is
detected, they generate suggestions on how to fix the conflict, e.g., by removing the
learned disjointness axioms or fixing the actual data. All in all, this work is very
similar to the work we are presenting here. The main difference is that we also
evaluate based on additional axiom types like property disjointness not covered in
the work of Töpper et al. and that their approach is directly integrated into the
DBpedia extraction framework leading to a much higher coupling to DBpedia as
dataset.

122 CHAPTER 9. SCHEMA-BASED ERROR DETECTION

For detecting errors in instance data, Sheng et al. [87] exploited the subclass
relations defined from classes in the DBpedia ontology to classes from the UM-
BEL ontology. Since UMBEL defines disjointness relations between many of its
classes, the links from the DBpedia ontology allow to deduce disjointness axioms
holding for pairs of DBpedia ontology classes. This gathered disjointness is then
used to find inconsistencies in the DBpedia dataset by checking a set of patterns
like instances assigned to both classes of a disjoint class pair. However, for check-
ing property domain and range, the authors also employ an integrity constraint-like
approach where a difference between the stated class memberships of an instance
and the domain and range classes of a property already lead to a conflict. Fur-
thermore, only statistics on the number of discovered conflicts are presented but
no further evaluation of the correctness of the conflicting triples is performed, thus
missing an important point when considering actual data quality.

Very recently, Kontokostas et al. [59] proposed to automatize checking of
Linked Data by applying the concept of test cases from software development.
They argue that, in contrast to software testing, the advantage in the Linked Data
domain lies in the semantic information already formalized in schemas and on-
tologies. To exploit this knowledge, they introduce the concept of test-case auto
generators (TAG) that create test cases based on the occurrence of specific axiom
patterns in the ontology. For example, one TAG instantiates a test case for each
pair of disjoint classes so that the test case searches for instances assigned to both
classes which would point to a data problem. Another auto generator creates tests
for finding mismatches between the classes an instance is belonging to and the
domain and range restrictions of properties the instance is used with. Thus, this
is another example of applying the integrity constraint semantics. More domain-
specific test cases, which are not deducible from schema knowledge, can be created
manually. Since this manual creation of test cases can require much effort, Kon-
tokostas et al. suggest to collect manually created test cases for commonly used
vocabularies and provide them in a central test case library for reuse. The full
workflow is implemented in the RDFUnit tool. We are going to use it for our ex-
periments later in this chapter and, thus, describe the approach and the tool in more
detail in the next section. An evaluation of the test-based method is also performed
by the authors. Since the DBpedia ontology is only of low expressivity, it gets
enriched by means of the inductive ontology learning approaches as proposed by
Bühmann and Lehmann [22, 23]. This shows a high similarity to the experiments
that we perform in the following. However, the evaluation performed by Kon-
tokostas et al. is limited to the number of discovered test case violations without
assessing the correctness regarding the detection of actual errors.

A method that can hardly be assigned to the categories of being inference- or
pattern-based is presented by Paulheim [76]. It tries to detect wrong links existing
between datasets. For that purpose, each relevant link is represented by a multi-
dimensional feature vector determined from the types assigned to the resources
connected by the link or from properties used in conjunction with the resources.
Using multi-dimensional outlier detection approaches, Paulheim finds links that

9.2. APPROACH 123

form outliers in this vector space, i.e., the link between both resources is atypical
and thus suspicious to be wrong. In an evaluation, the links from the DBpedia
dataset to the Peel Session and the DBTropes datasets were checked with this ap-
proach applying different outlier detection approaches and the results turned out to
be promising. The disadvantage of this approach lies in the fact that the decisions
regarding which links are considered as wrong might be less understandable since
there is no intermediate step that formalizes the typical usage of certain properties.
In particular, the multi-dimensionality of the created feature vectors could hinder a
more fine-grained analysis of the problem.

For detecting errors in object properties, manual evaluation approaches like
used in the TripleCheckMate system [60] and evaluated by Acosta et al. [2] would
be also applicable in principle. However, these works are currently concentrating
on detection errors in datatype properties.

9.2 Approach

As already motivated in the introduction of this chapter, we resort to a pattern-based
approach for detecting conflicts between the learned ontological knowledge and the
axioms contained in the dataset. Since the RDFUnit system already provides the
required functionality for this purpose, we are building on it as a foundation for our
experiments. To give an understanding for the RDFUnit workflow, we introduce
the basic notions required for our application scenario in the following. Conse-
quently, where not stated differently, the main source for the overview is the initial
presentation of RDFUnit by Kontokostas et al. [59]. The RDFUnit framework tries
to transfer the concept of test cases from the area of software development over
to the domain of Linked Data. While test cases for software have to be manually
specified, testing Linked Data shows some advantages concerning the creation of
test cases regarding the logical structure. Since many Linked Data datasets use
properties and classes for which additional knowledge is available in an ontology,
this information can be exploited for test cases. Given a dataset, RDFUnit applies
so-called test-case auto generators (TAG) that create test cases based on certain
ontology axioms of patterns of axioms. For this purpose, a TAG consists of a de-
tection and an execution part. The former discovers the relevant axioms in the
ontology by means of SPARQL queries against the ontology structure. Based on
each result of the detection query, in the execution part, a test case is instantiated.
This test case itself also is a SPARQL query that gets applied to the dataset and
retrieves all data which is violating a test case. As an example, Kontokostas et
al. describe the generation of test cases based on class disjointness axioms. By
applying the detection query

SELECT DISTINCT ?T1 ?T2 WHERE {
?T1 owl:disjointWith ?T2.

}

124 CHAPTER 9. SCHEMA-BASED ERROR DETECTION

to the ontology, all disjoint class pairs are detected in the ontology. For each such
pair, a test case is generated according to the following pattern

SELECT DISTINCT ?s WHERE {
?s rdf:type %%T1%%.
?s rdf:type %%T2%%.

}

where the placeholders %%T1%% and %%T2%% get replaced by the URIs of the
disjoint classes. Hence, the resulting query retrieves all instances that are assigned
to two disjoint classes at the same time. The different violations of all test cases
are aggregated and displayed to enable a human knowledge engineer to check the
results and perform the required fixes to the data for improving its quality.

The default set of TAGs in RDFUnit also uses domain and range axioms for
generating test cases. However, these test cases are treating domain and range
according to constraint semantics and do not consider class disjointness. Thus,
actually correct links might show up as potential errors only based on the fact
that instances connected by means of a property do not have one of its domain or
range (sub-)classes assigned. Incorporating class disjointness into the domain- and
range-based detection thus can allow more fine-grained test cases.

For our experiments with learned disjointness, we defined additional TAGs that
do also consider class disjointness when creating test cases based on domain and
range axioms. We are shortly describing these patterns in the following.

DOMAINCLASS This generator detects properties p whose domain class is de-
fined to be disjoint to a class C. The resulting test case checks for instances
which are used as subject of p and at the same time are assigned to have type
C.

RANGECLASS This generator performs the same detection as the previous one
except for considering the classes defined as range of properties.

DOUBLEDOMAIN This generator creates test cases from properties p1 and p2
whose domain classes are defined to be disjoint. The test case detects in-
stances which are used as subject of both p1 and p2.

DOUBLERANGE Similar to the previous case but detecting properties p1 and p2
whose range classes are defined to be disjoint. Instances violate the resulting
test case if they are object to both properties at the same time.

DOMAINRANGE Finds properties p1 and p2 where the domain of p1 is set to be
disjoint from the range of p2. The resulting test case detects instances that
are at the same time subject of p1 and object to p2.

In addition to these patterns defined by us, we also use the following patterns
defined by Kontokostas et al.

9.3. EXPERIMENTS 125

OWLASYMMETRICPROP Detects properties that are set as asymmetric. The
resulting test case checks for instances a and b whether the property holds in
both directions.

OWLDISJP Detects pairs of properties that are defined to be disjoint. The re-
sulting test case checks for pairs of instances that are connected by both
properties at the same time.

OWLIRREFLEXIVE Detects properties that are set as irreflexive. The resulting
test case checks for instances that are connected to themselves by means of
such a property.

9.3 Experiments

We performed experiments in three different settings for assessing the possibili-
ties of using learned expressive schemas to detect logical errors in Linked Data
datasets. All experiments have been conducted on the DBpedia dataset in ver-
sion 3.7 with the RDFUnit tool for detecting potentially problematic data. Using
RDFUnit means that we had two main parameters: the ontology used to deduce the
test cases from and, in addition, the rules to actually deduce the test cases from the
schema information. For our experiments, we concentrated on the first parameter,
the ontologies, and only adapted the set of TAGs so that it best matched the on-
tologies for the given experiment. We selected the TAGs to use out of the default
set of generators provided with RDFUnit and our additionally defined generators
described in the previous section. For each experiment, we provide the set of acti-
vated rules in the corresponding descriptions.

Regarding the ontologies, we evaluated on those gained during the experiments
in Part I. As a first experiment, the gold standard ontology for class disjointness de-
scribed and created in Chapter 5 was used to generate test cases. This allowed us to
determine the performance of recognizing errors in data assuming the availability
of a manually created, high quality set of disjointness axioms. The second exper-
iment was performed on the ontology enriched with learned disjointness based in
the basic association rule mining algorithms proposed in Chapter 5. This exper-
iment enabled us to compare the differences between a manually created and a
learned schema regarding the error detection.

Besides the corresponding axioms themselves, when checking data by means
of class disjointness, domain and range restrictions are also of great importance
since they give possibilities to infer additional, implicit class assertions for the in-
stances in the dataset. Since in the first two experiments the ontology was only
enriched with class disjointness, the error detection had to rely on the already con-
tained domain and range axioms. In a third experiment, we examined in how far
the error detection result changes when we not only enrich an ontology by class
disjointness axioms but by almost all axiom types supported by the association

126 CHAPTER 9. SCHEMA-BASED ERROR DETECTION

rule mining-based approaches, including domain and range restrictions generated
by the methods proposed by Völker and Niepert [96].

It is important to note that, during this evaluation, we not only considered de-
tected violations on the instance level as error but also problems arising from the
schema information contained in the original DBpedia ontology. This has been
done because by providing a schema, the dataset commits itself to adhere to this
schema and thus allows data consumers to gain advantages from its availability.
In contrast, erroneous schema information can cause problems when the consumer
relies on its information to understand the data contained in the dataset or to infer
additional knowledge from the schema. Thus, we treat detecting of schema errors
at the same level of importance as detecting errors in the instance data.

9.3.1 Disjointness-Enriched Ontologies

For the ontology enriched with manually created class disjointness axioms and
the ontology enriched by automatic means, we performed equivalent steps during
the experiments. As gold standard ontology, we resorted to the dbpedia100 gold
standard described in Chapter 5. Hence, we only included disjointness axioms
for which all three annotators agreed on the disjointness of the two classes which
led to 36, 491 class pairs being disjoint. Regarding the evaluation of an ontology
enriched with learned disjointness, we used the ontology learned from the DBpedia
dataset at a confidence level of 0.95. This confidence level caused a total number
of 39, 135 class pairs to be disjoint. For each ontology, we performed one RDFUnit
run using the ontology as the schema to create test cases based on the TAGs listed
in Table 9.1. This table also provides the results of the error detection for both
experiments.

Table 9.1: Number of problems detected by test case type using the disjointness
enriched ontologies

Test case type Gold standard Learned
DOMAINCLASS 55, 557 83, 179
DOMAINRANGE 152, 194 202, 988
DOUBLEDOMAIN 122, 192 217, 525
DOUBLERANGE 375, 937 476, 657
RANGECLASS 101, 935 132, 928

These results show that the gold standard-based run detected considerably less
conflicts in the dataset which can be directly attributed to the higher number of
disjointness axioms contained in the ontology. However, since the ontology-level
modeling and the actual usage of ontology entities in the dataset are not always
guaranteed to coincide, these numbers on their own do not give an insight into
the actual error detection performance. To further examine in this direction, we
manually evaluated a sample of the detected problems regarding whether there

9.3. EXPERIMENTS 127

actually existed a data problem. This manual evaluation was performed on a set of
250 samples per ontology, assembled by randomly selecting 50 detected violations
for each test case type. According to the manual annotation of the results shown
in Table 9.2, for both approaches more than 60% of the detected errors showed
an actual problem in the data. The detection based on the manually engineered
disjointness axioms, performed better regarding its total correctness and also with
respect to all except for one test case types.

Table 9.2: Statistics on violations that correctly indicated quality issues.

Gold standard Learned
Test case type # % # %
DOMAINCLASS 29 58.0 26 52.0
DOMAINRANGE 36 72.0 36 72.0
DOUBLEDOMAIN 22 44.0 16 32.0
DOUBLERANGE 38 76.0 41 82.0
RANGECLASS 46 92.0 36 72.0
Total 171 68.4 155 62.0

For both experiments, the test case types which were heavily based on domain
restrictions performed the worst. This can be attributed to the way triples are cre-
ated in DBpedia. As described in Section 2.2.3, the largest part of the instances
contained in DBpedia is generated from infoboxes that are mapped to a type in
the ontology. A triple using an instance as subject can be only generated when
there is a field in the instance’s infobox template that is mapped to the property.
Thus, a triple being erroneous only because of a wrong subject instance cannot be
introduced in a single infobox but only during the creation of the infobox map-
ping. This greatly reduces the number of errors introduced by accidental links for
the test case types DOMAINCLASS and DOUBLEDOMAIN while we found the
accidental links to be one major error class for other test case types.

During the manual evaluation, we coarsely categorized the discovered prob-
lems for further analysis. The already mentioned category of errors that were
present on the instance data level, e.g., wrong links between instances or a wrongly
used property in a triple, was assigned to 81 violations for the gold standard-based
ontology and 72 violations discovered using the learned ontology. Most of these
errors were caused by name confusion, i.e., linking to an instance having a sim-
ilar name to the actually intended target, and extraction errors like extracting the
country part of a “City, Country” information as an object on its own.

Another commonly discovered error was caused by wrong declarations of do-
main or range restrictions in the ontology of which we discovered 88 using the gold
standard and 80 by means of the learned ontology. This shows the potential of not
only detecting instance-level errors but also schema-level errors. We again see that
error detection on the learned ontology performs slightly worse than on the gold
standard but not by a large margin.

128 CHAPTER 9. SCHEMA-BASED ERROR DETECTION

When we were more closely inspecting the violations that we did not label as
data errors during our evaluation, we also discovered an accumulation for certain
categories of errors. Interestingly, some of these problems were already discussed
during the creation of the gold standard. For example, the disjointness between
an Organisation and Building, like in the case of Library discussed in Sec-
tion 5.1, showed to cause a number of violations that we did not considered as
errors. However, the confusion between both classes might make it hard to actu-
ally handle the data in a consistent way. Thus, changes in the representation of such
cases might lead to more usable data. One possible way of modeling would be the
introduction of intermediate blank nodes representing the building and connecting
the organization to the address defined in its infobox. The creation of such inter-
mediate blank nodes could be triggered when introducing a property which cannot
be directly assigned to the current instance due to the disjointness of the instance’s
class and the property’s domain.

Another particularity of the ontology which led to several violations of dis-
jointness, both manually created and learned, is the property occupation. In
the ontology, this property is defined to have the domain Person and the range
PersonFunction for assigning persons to their activities. However, this property
is used in the dataset in many cases for describing an involvement in something
without further restriction on its type. For instance, it is not only used to assign
football players to American_Football but also to assign people an university
they are somehow related to. Because of the wide spectrum of usages of the prop-
erty occupation, stating a range of owl:Thing instead of a more specific one
would be more appropriate.

Finally, some violations were caused by wrong disjointness axioms contained
in the ontologies. As expected based on the results of the evaluation of the learned
axioms, there were many more of these created by the learning method (49 viola-
tions). In contrast, for the gold standard, only one disjointness axiom turned out to
be debatable. This axiom stated the disjointness between the classes Person and
Band. During the manual creation of the axioms, this disjointness was introduced
in view of a person not being a band himself but instead possibly being the only
member of a band. In the DBpedia dataset this view is not supported since the
properties with range Band are directly linking to single artists leading to four vi-
olations in total. Nevertheless, even for the learned disjointness, the greatest share
of the violations is caused by one disjointness axiom which could be easily re-
moved during data inspection in a more interactive workflow and thus would not
produce any more violations to manually check. This also holds for most of the
other violations occurring on the schema level. Fixing the cause of one of these
violations could be easily used for filtering out all other violations having the same
source and thus enable rapid fixing of errors combined with improving the overall
ontology model.

9.3. EXPERIMENTS 129

9.3.2 Property-Enriched Ontology

In the previous experiments, we saw that disjointness-enriched ontologies are capa-
ble of indicating several types of errors in a dataset, also including problems in the
existing ontology like wrong domain or range restrictions assigned to properties.
Thus, even for ontologies that already are more expressive regarding the contained
axioms, it might be fruitful to apply ontology learning approaches to enrich it even
further since this gives more possibilities to detect errors in the base axioms. Fur-
thermore, adding other types of axioms to the ontology could give extra chances
for finding problematic data.

To further examine the potential of enriching the ontology with more expressive
axioms for detecting errors, we performed a third experiment. For this experiment,
we used GoldMiner on the DBpedia 3.7 dataset and not only generated additional
class disjointness axioms but also performed enrichment as described in Chapter 6
and learned domain and range axioms as proposed by Völker and Niepert [96]
and described in Section 3.3. We again applied a confidence threshold of 0.95 to
all learned axioms. In addition to the class disjointness already learned before,
we also enriched the ontology by object property disjointness, domain and range
restrictions, asymmetric object property axioms and irreflexive object property ax-
ioms.

The detection of violations regarding the ontology axioms was again done by
RDFUnit. Since RDFUnit was not able to handle the full enriched ontology, we
reduced the number of axioms in the ontology as follows. First, we only included a
random sample containing 20% of the full set of learned class disjointness axioms.
Secondly, we filtered out all disjoint object property axioms having a confidence
value of 1.0 since this confidence value indicates that there are no violations in the
dataset which are detectable by the corresponding RDFUnit test case. Table 9.3
shows the activated TAGs along with the number of violations detected.

Table 9.3: Number of problems detected by test case type using the extensively
enriched ontology

Test case type Number of detected violations
DOMAINCLASS 30, 327
DOMAINRANGE 83, 840
DOUBLEDOMAIN 103, 922
DOUBLERANGE 211, 785
OWLASYMMETRICPROP 5, 115
OWLDISJP 109, 674
OWLIRREFLEXIVE 3, 886
RANGECLASS 28, 565

As for the class disjointness-enriched ontologies, we manually evaluated the vi-
olations regarding whether they are actual errors in the dataset or original ontology
or if they are caused by errors in the learned axioms. For each test case type, we

130 CHAPTER 9. SCHEMA-BASED ERROR DETECTION

randomly chose 50 violations and assessed them manually. The resulting correct-
ness values are given in Table 9.4. In particular, these results show an improvement
in accuracy when compared to the results on the experiment on the learned ontol-
ogy before. The accuracy for test cases based on a domain restriction decreased
which can be attributed to the same aspect as described for the disjointness-based
test cases and in addition a number of wrongly learned domain and range axioms
that amplified the problem further. For the range-based test case types, the ratio
of violations that actually pointed to quality issues in the data increased consider-
ably which shows the potential of employing additional enrichment steps on the
ontology for detecting errors in the data. Interestingly, only three out of 63 test
cases that did not point to actual data errors for the range-based test case types
were caused by wrongly learned domain and range axioms. Furthermore, two out
of three extra axiom types added for this experiment showed to perform very well
for this purpose. Both asymmetric and irreflexive properties axioms show to de-
liver a very good base for finding additional problems in the dataset. In particular,
these axioms allow to find wrong self-references for instances and also symmetric
relations between two instances which indicate errors in the data like symmetri-
cally used subsequentWork properties. The learned object property disjointness
axioms perform worst of all enriched axiom types. Apparently, the chosen confi-
dence level is not capable to select axioms well-suited for detecting errors. When
applying a confidence threshold of 0.99 to the property disjointness axioms, we
are able to increase the accuracy in error detection to 70%. It is important to note
that the performance for detecting errors is not directly coupled to the quality of
the property disjointness learning since we, as described above, removed all prop-
erty disjointness axioms with a confidence of 1.0 and kept all those with a lower
confidence.

As we did for the first two experiments, we also categorized the discovered
data errors. Our findings here confirmed the initial results. In total, 185 violations
were caused by wrong links between instances or wrongly used properties while 93
violations could be traced back to wrong domain and range axioms in the original
ontology. Again major problems were caused by the relation between organizations
and buildings or places as well as by the occupation which was used without any
restriction to its object’s type. The modeling of fictional characters turned out to
be another problem in the data though this seems to be an issue also hard to solve
in manual modeling since fictional characters cannot be guaranteed to follow any
rules that hold for instances of real persons.

To assess the influence of the enriched ontology’s coherence on the result, we
applied the Axiom Adding ontology debugging approach presented in Section 8.2.2
to the enriched ontology. We determined which violations detected by RDFUnit
would have been found beforehand by first applying ontology debugging. This was
done by comparing the list of axioms removed during debugging to those causing
violations in RDFUnit test cases. In total, the debugging approach removed 55
axioms to make the ontology coherent. As before, the set of removed axioms con-
tained a number of actually correct axioms like the disjointness between the classes

9.4. CONCLUSION 131

Table 9.4: Statistics on violations that correctly indicated quality issues.

Test case type Correctly detected errors %
DOMAINCLASS 21 42.00
DOMAINRANGE 34 68.00
DOUBLEDOMAIN 14 28.00
DOUBLERANGE 47 94.00
OWLASYMMETRICPROP 49 98.00
OWLDISJP 19 38.00
OWLIRREFLEXIVE 46 92.00
RANGECLASS 48 96.00

Total 278 69.50

College and University. This would have prevented some violations from oc-
curring which were caused by this disjointness, however, since colleges and uni-
versities are different from each other, this would have led to reducing the error de-
tection capabilities. The same holds for the disjointness between Organisation

and Person. Interestingly, five axioms that were removed for getting the ontology
coherent were related to the area of organizations and places. In the previous sec-
tion, we already described that the mixed modeling of both concepts in DBpedia
led to some violations which we counted as not pointing to data errors. Thus, a
prior application of ontology debugging methods would have led to improved ac-
curacy values in this area. However, the disjointness between both classes might
hold given a different way of modeling. This leads us to the conclusion that the
application of ontology debugging methods can help to improve the error detection
since it points to some problematic axioms before the actual test case generation.
Nevertheless, a manual supervision seems to be advised to prevent the debugging
step from removing correct axioms which later-on limit the detection accuracy.

9.4 Conclusion

In this chapter, we showed the potential of enriching ontologies with additional
axioms for detecting errors in a dataset. By applying the inductive ontology en-
richment methods proposed in the beginning of this work and additional statistical
schema induction approaches, we first added a large amount of new axioms to the
DBpedia ontology and then used these axioms for generating pattern-based test
cases checking for data that violated these axioms. We hand-annotated a sample of
the detected test case violations regarding the correctness of the data causing them
which enabled us to assess the accuracy of using schema axioms for detecting er-
rors. In addition to only using automatically generated axioms, we also used our
manually created gold standard of class disjointness to check for violations in the
dataset. This way we were able to show that learned axioms do not perform consid-
erably worse than manually compiled ones. During the evaluation, we discovered a

132 CHAPTER 9. SCHEMA-BASED ERROR DETECTION

number of shortcomings in the DBpedia ontology mostly related to the domain and
range axioms. Apart from that, we gained insights into some additional challenges
emerging when modeling the DBpedia ontology. For example, the representation
of fictional characters that are much less constrained than normal persons and thus
hard to fit into a common framework of axioms. We consider this another strength
of combining inductive ontology learning with error detection since it allows to get
new perceptions of the actual usage of the ontology entities in the data and thus
enables the human engineer to improve the ontology and possibly the data based
on usage patterns and actual demand.

Furthermore, through applying the test cases generated from the different ax-
iom types contained in the ontology, we were able to identify wrong links and
wrongly used properties in the dataset. Thus, not only improvements regarding the
ontology can be fostered by this way of error detection but also actually wrong
instance data can be found and corrected. If a test case violation turns out not to be
caused by an error in the data but by an error in the learned axioms, the reliance on
explicit axioms also shows advantages since the erroneous axiom can be marked
as such and other violations raised due to this axiom can be ignored. This allows
to reduce the manual effort for debugging the data.

All in all, we consider the approaches evaluated in this section well-suited for
detecting errors. Based on our results, a semi-automatic workflow is greatly rec-
ommended since it permits to guide the process by early-on identifying wrongly
learned axioms and, hence, improves the overall performance and also helps to
enhance the ontology beyond the automatic enrichment. Although automatically
debugging of the ontologies was able to sort out some axioms which wrongly led
to violations, it also tended to remove axioms important for finding errors in the
dataset. Thus, we also have to advise manual supervision for this step.

Part III

Detection of Numerical Errors in
Linked Data

133

Chapter 10

Preliminaries: Outlier Detection

There are many scenarios in which it is fruitful to detect irregularities in data. For
example, in physics experiments, measurement errors can cause such irregulari-
ties that should be detected and excluded from further processing to achieve more
precise results. But also in everyday life, such irregularities can be relevant. Trans-
action data for stolen credit cards often show irregularities since the illegitimate
possessors try to make as many high-profit transactions as possible in the short
time before the card loss is recognized. Recognizing irregular data points can then
trigger further actions like the removal of data points caused by measurement errors
or to blocking of the credit card to prevent further fraud.

The research in the direction of outlier detection, sometimes also called anomaly
detection, is focused on the development of methods for detecting such data points,
more specifically on “finding patterns in data that do not conform to expected be-
havior” as formulated by Chandola et al. [25]. These unexpected patterns are most
often referred to as anomalies or outliers. Since we employ outlier detection as an
underlying method in Chapter 11, we will give an overview on its basic notions
and ideas as well as on the methods for detecting outliers which we are going to
use. The main part of this overview is based on the aforementioned work by Chan-
dola et al. [25] which is the main resource throughout this section unless stated
otherwise.

The process of detecting outliers in a dataset can be coarsely divided into two
steps. First, knowledge about what qualifies outliers in the dataset has to be ac-
quired. Secondly, this knowledge has to be used to efficiently find the actual out-
liers in the dataset. Obviously, these two steps are not fully independent of each
other since the kind of knowledge gained during the first step greatly influences the
way of actually detecting the outliers.

Chandola et al. propose a multi-level categorization of outlier detection meth-
ods which we describe in the following.

The first dimension to categorize a method is the degree of supervision it needs.
As in machine learning, this supervision shows itself in the kind of data which is
available in addition to the input dataset in which the outliers should be detected.

134

135

The most effort is required for (fully) supervised methods. Such methods need la-
beled data in which for each datapoint there is an annotation that specifies whether
the datapoint is an outliers or a normal value. A second kind of methods are the
semi-supervised ones. These methods also require labeled data but only regarding
one class of labels, i.e., only the normal values or only the outlier values have to be
annotated. Consequently, this means that a dataset only containing normal values
or only containing outliers is a valid input for these methods. The third category
consists of unsupervised methods which do not get any data in addition to the input
dataset. Unsupervised methods have to infer the characteristics of normal values
and outlier values directly from the input dataset.

The second dimension reflects the type of outliers a method can detect. Type
I Outliers are individual data points which are outliers regarding the majority of
values in the dataset like the upper right point in Figure 10.1a. Type II Outliers are
similar to the first type but, in contrast to this, they are only outliers compared to the
other values in a specific context. Independently from the context, these outliers
would not necessarily show up as outliers. This case is depicted in Figure 10.1b in
which the white data point in the upper right is not detectable as outlier regarding
the whole dataset. Only when ignoring the grey data points and thus concentrating
on the white “context”, this point can be seen as an outlier. Finally, Type III Outliers
differ from the first two types in the fact that they are not only single outlying
values but they are a set of data points which together exhibit anomalous patterns
though the single data points might not qualify as outliers on their own. This type
is illustrated by Figure 10.1c where the major part of the data points follows a sine
function but the white points in between do not show this behavior.

The third categorization aspect is based on the type of output the methods pro-
vide. In the binary scenario, assessments are provided, i.e., for each datapoint it is
stated whether this point is an outlier or not. A more fine-grained assessment is de-
livered by scoring methods which assign each datapoint a numerical values which
states its degree of “outlierness”. By applying a threshold on the scores generated
by a scoring method, the output of these methods can be easily transformed into a
binary assessment.

In the following descriptions, we will concentrate on unsupervised methods
which are able to detect Type I and to some degree also Type II outliers in a dataset.
This is motivated by our later use case in which annotated data is not available and
Type III outliers are not to be expected. Regarding the output of the methods, we
prefer scoring methods which provide more flexibility in assessing outliers and
thus give more possibilities to choose between precision and recall in the detection
of outliers. However, as described above, the transition between scoring and binary
methods is not totally strict.

As already mentioned, unsupervised outlier detection methods can only rely on
the input dataset for telling outlier and normal data points apart. For this purpose,
all of these methods assume that the normal values are the majority in the dataset.

136 CHAPTER 10. PRELIMINARIES: OUTLIER DETECTION

(a) Type I Outlier (b) Type II Outlier

(c) Type III Outlier

Figure 10.1: Examples for different outlier types

10.1 Statistical Outlier Detection

One common method of performing outlier detection employs parametric statis-
tical methods. These methods assume that the expected behavior of the values
follows a specific probability distribution. When even assuming that the actual
underlying distribution is known in advance, the problem of determining its exact
characteristics is only a matter of finding the corresponding parameters to instanti-
ate the distribution. In cases where the input dataset is sufficiently large, its values
can be used as a sample on which the parameters are computed. For instance, given
values which are expected to follow a univariate (or one-dimensional) normal dis-
tribution, the sample mean µ and their standard deviation σ can be used to fully
instantiate the corresponding density function:

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2

Given this density function, it is possible to determine the probability of a
random value falling into a given interval. A simple outlier detection is based
on the fact that this knowledge also allows to specify the probability of a value
not to fall into a given interval. This interval is known as confidence interval.
For the normal distribution with parameters µ and σ, the interval is defined by
[µ− c ·σ, µ+ c ·σ] where c depends on the level of confidence, i.e., the probability
for a value to fall into the interval. Setting c = 3 leads to an interval in which more

10.2. NEAREST-NEIGHBOR-BASED OUTLIER DETECTION 137

than 99.7% of the normally distributed values fall while c = 2 defines an interval
with a confidence of 95.4%. An outlier detection approach based on this method
would mark values as outliers which do not belong to the confidence interval for a
given c. Obviously, the higher the choice for the value c, the higher the probability
that a value not in the interval is in fact an outlier value. This approach leads to a
binary classification of values into outlier and normal values but it is easily possible
to produce outlier scores using the actual probability distribution. For this purpose,
we can use the probability that a value v drawn from the distribution is greater or
equal to the currently considered value, i.e., P (X ≥ v) = 1 − P (X < v). Thus,
lower values point to a higher confidence that the value is an outlier. As a slightly
more efficient approach which does not include the actual distribution, it is also
possible to compute the smallest constant c so that v is included in the interval
[µ− c · σ, µ+ c · σ] by just using c = | vσ |. Obviously, higher c mean that v is less
probable and thus being more suspect of being an outlier.

The main advantage of these statistical methods is their simplicity and com-
putational efficiency. However, in practice, they expose certain weaknesses. For
instance, parametric approaches require a knowledge about the distribution de-
scribing the generation of the input values which might not be available in many
scenarios. This can be solved by using non-parametric approaches which, for ex-
ample, use histograms inferred from the input values to represent the distribution
or employ kernel density estimation to infer continuous probability distributions
based on the input values. Furthermore, when using parametric methods, the com-
putation of the parameters from the input data can be influenced by outliers con-
tained in the data. For example, outliers can lead to a mean value highly different
from the the mean of the normal data. This influence is less severe when the in-
put dataset is large and contains enough normal values but it might be nevertheless
noticeable depending on the strength of outlierness.

10.2 Nearest-Neighbor-Based Outlier Detection

Another category of outlier detection approaches is based on the assumption that
outliers can be identified by comparing their characteristics to those of their nearest
neighbors. Chandola et al. distinguish two kinds of such approaches. The first kind
considers a specified number of nearest neighbors of a data point and categorizes
this point as outlier if the distance to the neighbors is higher than a given threshold
or differs considerably from other points’ distances to their neighbors. According
to Chandola et al., these approaches perform well for detecting global outliers, i.e.,
outliers which can be detected from the full dataset. However, they perform poorly
when the dataset contains regions of different densities. This shortcoming is ad-
dressed by approaches which compute densities for regions of the dataset and use
these to assess whether a data point is an outlier. This problem is depicted in Fig-
ure 10.2. In this example, global outlier detection approaches would only detect p1
as an outlier since it has a high distance to all of its neighbors. However, p2 also

138 CHAPTER 10. PRELIMINARIES: OUTLIER DETECTION

C1

C2

p1

p2

Figure 10.2: Example in which global outlier detection approaches would not be
able to detect p2 as an outlier (equivalent to example by Breunig et al. [20])

shows a deviation from the behavior of all other points in the dataset since it has
a considerably higher distance to its neighbors compared to the points of C2. At
the same time, the distance to its neighbors from C2 is similar to the distance of
the points in C1 to each other. However, p2 does not actually belong to this recog-
nizable cluster of values. A more region-aware outlier detection method would be
able to detect p1 as well as p2 as outliers in this example.

Local Outlier Factor

One representative of this second category is the local outlier factor (LOF) method
proposed by Breunig et al. [20]. It adapts methods commonly known from density-
based clustering algorithms like DBSCAN [34]. As also done by Breunig et al.,
we denote the distance between two objects p and q by d(p, q) and write d(p, C)
for the minimum distance of an object p to an object q in a set C, i.e., d(p, C) =
min{d(p, q) | q ∈ C}. The full dataset is represented by D.

One of the base notions used in context of LOF is the so-called k-distance of
an object p.

Definition 11 (k-distance). For any positive integer k, the k-distance of an object
p is given by the distance d(p, q) between p and an object q for which

1.] {q′ ∈ D \ {p} | d(p, q′) ≤ d(p, q)} ≥ k and

2.] {q′ ∈ D \ {p} | d(p, q′) < d(p, q)} ≤ k − 1

holds. The k-distance of an object p is denoted by k -distance(p).

10.2. NEAREST-NEIGHBOR-BASED OUTLIER DETECTION 139

Thus, the k-distance of p is the minimum distance (condition 2) in which p has
at least k neighbors (condition 1). Based on this, the k-distance neighborhood of
an object p is defined.

Definition 12 (k-distance neighborhood). The k-distance neighborhood of an ob-
ject p is given by

Nk -distance(p)(p) = {q ∈ D \ {p} | d(p, q) ≤ k -distance(p)}

It contains all objects in D whose distance to p is not greater than the k-distance of
p. These objects are called k-nearest neighbors of p.

If D contains multiple values which have the same distance to p, this definition
implies that the cardinality of Nk -distance(p)(p) can be greater than k. As Breunig
et al., we shorten Nk -distance(p)(p) to Nk(p) if this does not lead to confusions.

These notions provide the basics to specify another central notion required for
defining the computation of an object’s LOF: the reachability distance of two ob-
jects p and q for a specified value k.

Definition 13 (Reachability distance). Let k be a natural number. The reachability
distance of an object p with respect to an object q is given by

reach-distk(p, q) = max{k -distance(p), d(p, q)}

This distance introduces a smoothing into the actual distance between both
objects. For large distances between p and q, the actual distance is used while
for smaller distances the k-distance of p is relevant. Since for objects more close
to p a higher fluctuation in the distance is expected, this leads to the mentioned
smoothing. In Example 4, we demonstrate the three introduced notions.

Example 4. Assume a 2-dimensional datasetD containing the following values as
also depicted in Figure 10.3.

p0 = (1, 1) p1 = (3, 4)

p2 = (4, 4) p3 = (4, 3)

p4 = (5, 3)

From these examples, we get the following k-distances for p0:

• 1-distance(p0) = d1 = 3.61

• 2-distance(p0) = d1, since this distance includes both p1 and p3

• 3-distance(p0) = d2 = 4.24

Furthermore, the corresponding k-distance neighborhoods are N1(p0) = {p1, p3},
N2(p0) = {p1, p3} and N3(p0) = {p1, p2, p3}. For later examples, we also
need the following 2-distance neighborhoods N2(p1) = {p2, p3} and N2(p3) =
{p2, p4}. Now, we can compute the reachability distances of which we give some
examples below.

140 CHAPTER 10. PRELIMINARIES: OUTLIER DETECTION

0 1 2 3 4 5 6
0

1

2

3

4

5

p0

p1 p2

p3 p4

d1 d2

d4

Figure 10.3: Plot of values used in the local outlier factor example.

• For k = 2: reach-dist(p0, p1) = max{d1, d(p0, p1)} = 3.61

• For k = 3: reach-dist(p0, p1) = max{d2, d(p0, p1)} = 4.24

For the actual computation, the values for k are fixed to a constant MinPts
which defines how many neighbor objects are used for the computation of the
reachability distance. Thus, MinPts defines the degree of smoothing to use for
the computations. This value is first employed in the definition of the so-called
local reachability density of an object p.

Definition 14 (Local reachability density). Given an object p and a value MinPts ,
the local reachability density of p is given by

lrdMinPts(p) =

∑

o∈NMinPts(p)

reach-distMinPts(p, o)

]NMinPts(p)

−1

This local reachability density is the inverse of the average of the reachability
distances of all MinPts-nearest neighbors of p. Thus, it gives an estimate of how
close the nearest neighbors of p are to their own nearest neighbors.

Definition 15 (Local outlier factor). Given MinPts , the local outlier factor of an
object p is defined as

LOFMinPts(p) =

∑
o∈NMinPts(p)

lrdMinPts(o)
lrdMinPts(p)

]NMinPts(p)

10.2. NEAREST-NEIGHBOR-BASED OUTLIER DETECTION 141

Due to its definition, the local outlier factor provides a value quantifying the
divergence of p’s distance to its neighbors to the distances of p’s neighbors to their
own neighbors. If this divergence is high, p lies in region of low density and is
isolated compared to its nearest neighbors. This identifies p as an outlier. If p is no
outlier, the divergence is very low which leads to a LOF close to or even less than
1.

Example 5. In this example, we continue with the datasetD as given in Example 4.
For all our considerations in this example, we set MinPts = 2. First, we determine
the LOF of p0 for which we need the local reachability densities of p0 and also of
its nearest neighbors p1 and p3.

lrdMinPts(p0) =

(
reach-dist2(p0, p1) + reach-dist2(p0, p3)

]N2(p0)

)−1
=

(
3.61 + 3.61

2

)−1
= 0.28

lrd2(p1) =

(
reach-dist2(p1, p2) + reach-dist2(p1, p3)

]N2(p1)

)−1
=

(√
2 +
√

2

2

)−1
= 0.71

lrd2(p3) =

(
reach-dist2(p3, p2) + reach-dist2(p3, p4)

]N2(p3)

)−1
=

(
1.0 + 1.0

2

)−1
= 1.00

Thus, we get a LOF value for p0 of

LOF2(p0) =

lrd2(p1)+lrd2(p3)
lrd2(p0)

]N2(p0)

=
0.71+1.00

0.28

2
= 3.08

For comparison, we also compute the LOF for p3 for which we know that
N2(p3) = {p2, p4}. In addition to the already known local reachability densi-
ties, we need those for p2 and p4 based on N2(p2) = {p1, p3, p4} and N2(p4) =
{p2, p3}. The resulting values are then used in the final computation of the LOF

142 CHAPTER 10. PRELIMINARIES: OUTLIER DETECTION

value.

lrd2(p2) =

(
reach-dist2(p2, p1) + reach-dist2(p2, p3)

]N2(p2)

)−1
=

(
1.0 + 1.0

2

)−1
= 1.00

lrd2(p4) =

(
reach-dist2(p4, p2) + reach-dist2(p4, p3)

]N2(p4)

)−1
=

(√
2 +
√

2

2

)−1
= 0.71

LOF2(p3) =

lrd2(p2)+lrd2(p4)
lrd2(p3)

]N2(p3)

=
1.00+0.71

1.00

2
= 0.85

Given the dataset, p0 would be intuitively considered as an outlier while p3 is a
normal value which belongs to a region with more other values. The results of the
outlier detection by means of LOF are in accordance with this intuition since the
score of p0 is much higher than the one of p3.

One weakness of the LOF approach is that there is no strict rule when to con-
sider an object to be an outlier since the score is influenced by the characteristics
of the full dataset. For example, in datasets which contain regions that greatly dif-
fer with respect to their densities, the computed LOF value will be higher even
for normal objects than in datasets whose regions are of similar density. There are
some approaches which try to compensate for this problem. The local outlier prob-
ability (LoOP) approach by Kriegel et al. [61] provides a value which gives the
probability for an object to be an outlier instead of an unbounded score. However,
this approach does not always simplify the identification of outliers considerably
since high differences in the densities of regions still lead to great differences in
the produced probabilities.

Chapter 11

Detecting Numerical Errors in
Linked Data

By using object properties between instances it is possible to model a great amount
of different information. Besides simple relations between two instances, e.g., a
city belonging to a country, more complex relations can be stated by means of
reification. However, object properties are limited to describe relations between
instances. This prevents expressing large parts of important information which
cannot be modeled between instances but only by assigning literal or textual data
to an instance. Data properties as defined in RDF and OWL provide means to
express such data. For instance, by using data properties it is possible to state the
name of a person as in the following triple

p:john foaf:name "John Doe"

or state the population count of a city

p:New_York p:population "19,651,127"

In many datasets, data properties are at least as important as object properties.
Depending on the context and the type of information contained in the dataset,
they might be even more relevant than the relations between instances.

For our data cleaning approaches as presented before, data properties pose a
special challenge. In principle, it is easily possible to transfer the basic learn-
ing algorithms to data properties. Domain and range restrictions could be learned
as usual based on the datatypes instead of class memberships. According to the
OWL 2 specifications, it is also possible to state disjointness between two data
properties, thus, disallowing an instance and a specific data value to be connected
by both data properties at the same time. In theory, a hierarchy of data properties
could be also defined. All this could be supported by the property axiom learning
algorithms as presented in Chapter 6 with minor modifications. This would not
give satisfying results since the restrictions posed for the properties either work on
the very coarse-grained level of datatypes or on the extremely fine grained level of

143

144 CHAPTER 11. DETECTING NUMERICAL ERRORS

individual data values. Both makes it hard to determine generally valid property
axioms which are at the same time restrictive enough to provide additional possi-
bilities of detecting erroneous data. Thus, to find errors in the data values of Linked
Data, a more in-depth analysis of the values by a specifically adapted approach is
required as already suggested in Chapter 3.

The fact that great amounts of Linked Data are automatically generated and
that these generation methods are error-prone, makes an automatized detection of
errors in data values desirable. During the extraction, many factors can lead to the
introduction of errors into the data. By just relying on manual data inspection, these
errors are hardly recognizable due to the large amount of data produced during the
extraction. For example, parsing errors that occur during the generation of Linked
Data out of semi-structured data sources might lead to erroneous Linked Data val-
ues. A typical case which can cause such parsing problems are different usages
of thousands delimiters. While people from English-speaking countries typically
use commas for delimiting thousands blocks (e.g., 1, 000) and periods for splitting
integer parts from the fractional parts of numbers, other European countries use a
period for splitting the thousands groups (e.g., 1.000) and commas to specify the
fractional part. Even knowledge about the expected usage of these delimiters can-
not always prevent parsing errors since especially crowd-maintained data sources
like Wikipedia cannot be guaranteed to be free from improper usages. Similar
problems can occur when the data is entered according to a wrong base unit, e.g.,
when the expected unit for a value is kilometers but the number is provided in
meters.

For detecting erroneous values in a dataset, the great amount of available data,
although it hinders the manual inspection of the values, can also be advantageous
for us. We can assume that most values are correct and can employ this for getting
insights into the behavior of correct values. Many data errors lead to data values
that have different characteristics compared to the correct values. For example,
a wrongly interpreted thousands delimiter leads to values in a different order of
magnitude which will most probably make this value suspicious when compared
to correct values. Thus, we can use information about the expected behavior of the
data to recognize erroneous data values.

As already explained in Section 10, outlier detection can help to detect values
which deviate from the expected behavior so much that they are suspicious of being
produced by a different mechanism. Considered in its entirety, the way of detecting
errors in Linked Data as we described it in the previous parts of this work can be
also considered to perform an outlier detection. In the ontology learning step,
we generate an ontology that adheres to the majority of the data contained in the
dataset. Small parts of the data that do not follow a certain axiom do not prevent this
axiom from getting learned. Instead, in the later error detection step, those parts
of the data are marked as potentially erroneous. Thus, when taking the definition
by Chandola et al. [25] that outlier detection is “finding patterns in data that do not
conform to expected behavior”, the learning step is the discovery of the expected
behavior for the complete dataset and the subsequent detection of data violating

11.1. RELATED WORK 145

the schema axioms can be considered the detection of not conforming behavior.
In this chapter, we propose and evaluate a method for detecting wrong numeri-

cal values in Linked Data using outlier detection approaches as originally published
as a joint work with Heiko Paulheim, Volha Bryl, Johanna Völker and Christian
Bizer [38]. This approach is based on the idea that values which are marked as
outliers during an outlier detection run are more likely wrong than those not de-
tected as outliers. First, we determine outliers regarding a single data repository,
e.g., on all values assigned by means of the population property. For this pur-
pose, we present a way of discovering data subpopulations induced by classes and
properties and apply outlier detection to these subpopulations. For example, on the
full dataset, the populations of continents would be outliers for the population
property values since their population values are larger than the predominant pop-
ulation values of cities or countries by several orders of magnitude.

This first step leaves us with a set of values which are suspicious since they
considerably differ from the other values for a specific property. However, such
outliers can also occur naturally, e.g., there are some cities which have a much
higher population count than cities usually have. Such cases are called natural
outliers. To prevent us from detecting such values as erroneous, we introduce a
second step. We exploit the owl:sameAs links of the instances for collecting
values for the same property from other repositories. This facet of our approach
uses one of the core concepts of Linked Data rarely used in other works: the links
between repositories. The additional values retrieved from other repositories are
then used to cross-check the original value. If the additional values agree with
the original one, we most probably discovered a natural outlier and thus should
not consider it as erroneous. In cases where the original value also is an outlier
regarding the other values, we found additional evidence for a data error.

In the following, we first give an overview on similar work on finding errors
in Linked Data. Afterwards, in Section 11.2, we describe our approach of using
outlier detection for detecting erroneous numerical values. This approach is eval-
uated with experiments on the DBpedia dataset in Section 11.3. In Section 11.4,
we conclude this chapter by analyzing the findings and give possible directions for
further work.

11.1 Related Work

Compared to the detection of errors on the logical level, the detection of errors in
the values of data properties is a relatively new field of research. The TripleCheck-
Mate tool by Kontokostas et al. [60] provides a framework for performing crowd-
sourced evaluations of Linked Data. Given a data source, it selects triples and
presents those to users for validation of correctness. Triples recognized as being
erroneous can be marked and the user is able to classify the specific type of error
according to an ontology of data quality dimensions and categories such as accu-
racy problems or consistency of representation, both being relevant for errors in

146 CHAPTER 11. DETECTING NUMERICAL ERRORS

data properties.
The possibilities of crowdsourcing the quality assessment for Linked Data

based on TripleCheckMate were evaluated by Acosta et al. [2]. In this evalua-
tion, they first organized a challenge for Linked Data experts to find and categorize
errors in the DBpedia dataset by using TripleCheckMate. Afterwards, discovered
errors of three selected categories were given to layman workers on the Amazon
Mechanical Turk platform to let them verify the expert assessment. To not over-
whelm the workers, Acosta et al. developed appropriate representations of the tasks
that hide the actual Linked Data. Both the results of the experts and those of the
laymen were evaluated against a gold standard for the relevant triples created by
the authors. The results of this evaluation depended on the considered type of error.
For wrongly extracted or missing values and for detecting wrong links, the crowd
workers showed a better performance than the experts. The experts performed bet-
ter for finding wrong datatypes assigned to data values. However, as the authors
also remark, the better performance of the layman workers might be caused by the
better evaluation interface. Nevertheless, the evaluation showed that crowdsourc-
ing to experts or laymen as a valid way of evaluating Linked Data quality as long
as the questions are preprocessed for the particular audience and the task does not
depend on specific knowledge as it is for the detection of wrong datatypes. These
results are to some degree similar to those that we got when evaluating ontology
axioms by means of crowdsourcing as presented in Chapter 6.

The previously described method relies on humans for assessing the actual
correctness of the data. Though this leads to high precision regarding the detected
errors, it also limits the scalability of the approach. This limitation is lifted in the
approach presented by Kontokostas et al. [59] that we already mentioned in Chap-
ter 9. Based on the idea of unit tests from software development, they not only use
schema axioms to check for errors like wrong linking of instances but also define
test cases on the level of data properties. Besides testing for correct datatypes used
with a specific property, RDFUnit allows comparing two literal values assigned
to the same resource or checking whether a single value is contained in a given
value range. This kind of test case can be used for detecting values which are only
suspicious in certain combinations, e.g., a death date that is earlier than the birth
data of the instance or detecting abnormal values like exceptional high heights of
humans. Compared to the schema-level test cases, the creation of datatype-based
tests needs more manual effort since they cannot be directly deduced from already
existing schema information. For reducing this initial effort, the authors propose to
compile test cases for commonly used vocabularies in a publicly available library
so that all users of the vocabulary can directly apply the corresponding test cases.
The manual creation of test cases helps to also catch semantic relations between
properties and obviously allows to include human knowledge into the error detec-
tion process. However, depending on the degree of vocabulary reuse, the manual
effort for setting up appropriate test cases might be high. Even the patterns con-
tained in the library should be manually checked for applicability since the actual
semantics of usage might differ between different datasets though using the same

11.1. RELATED WORK 147

vocabulary. In contrast to this work, our approach presented later-on in this chapter
tries to reduce the human involvement in the first phase to a minimum. This allows
the direct application of the error detection to unknown datasets. Though human
experts are still required for actually assessing the validity of detected possible er-
rors, our process can help to reduce the manual effort. This holds even more since
in many cases it might still be required to manually check the errors detected by
RDFUnit test cases. Furthermore, a combination of both methods might be inter-
esting. Using a more automatized approach like ours as first step could help to get
insights into the dataset that later can be used to formulate more appropriate test
cases.

Instead of relying on manually crafted rules or full manual evaluation, Wien-
and and Paulheim [99] introduced a method for automatically detecting erroneous
values in numerical Linked Data. They use outlier detection to find erroneous
numerical values assigned to instances. The authors evaluated different settings
regarding preprocessing the dataset and applying the actual outlier detection. Dur-
ing the preprocessing, the values got grouped by single instance types or clustered
by type vectors for reducing the number of wrongly recognized erroneous values.
Furthermore, different outlier detection methods were evaluated. For example, they
evaluated the interquartile range (IQR) method which considers values not lying in
a specified value range around the median as outliers. Another evaluated outlier
detection method relied on the so-called Kernel Density Estimation (KDE) that ap-
proximates a probability distribution and uses it for determining whether a value is
an outlier or not. In a pre-study, the clustering showed better results than the single
type preprocessing but suffered from very high runtimes. Furthermore, regarding
the outlier detection approach, the KDE-based approach showed a slightly higher
precision, however, it also had runtime issues. Thus, as the most well-balanced set-
ting, the single type clustering using the IQR method was considered by Wienand
and Paulheim for the final evaluation. This setting showed a precision of around
81% up to 89% depending on which values were included into the evaluation.
Based on the results, the authors performed an extensive evaluation of the differ-
ent errors types detected by their method. In the course of this evaluation, they
identified eleven structural errors in the DBpedia dataset including wrong parsing
of single numerical values and unit conversion problems. Our work presented in
the following builds on the same foundations as Wienand and Paulheim’s work.
However, we extend the approach in two important directions. First, we introduce
an alternative method of finding relevant subpopulations of the full dataset which
combines high performance with the possibility to detect more complexly defined
subpopulations. This is particularly important since runtime issues are the most
common issues leading to not using the best-performing approaches in the original
paper. Secondly, we propose a post-processing step that helps to reduce the number
of natural outliers being detected as erroneous values.

Another approach towards more automatic support for detecting errors in Linked
Data is proposed by Cherix et al. [26] with their CROCUS tool. Their idea is to rep-
resent each instance numerically and then apply the DBSCAN clustering algorithm

148 CHAPTER 11. DETECTING NUMERICAL ERRORS

for finding instances that are outliers regarding this representation. For the further
processing, the authors first retrieve the Symmetric Concise Bounded Description,
i.e., the graph reachable by traversing a given number of edges starting from the ac-
tual instance. Based on these triples, the authors apply different metrics to produce
the numerical representations. They count the occurrences of each property, the
count of each property with a specific range and, as a third metric, converting the
properties’ values to numeric ones by directly taking numerical values or determin-
ing the length of string values. The application of the DBSCAN algorithm clusters
the values. If a cluster has less than the specified number of values, all its values are
considered to be outliers which are then handed to humans for further evaluation.
Cherix et al. evaluated on the artificially generate LUBM dataset extended with
erroneous values and on a subset of DBpedia only containing information about
German universities. In both cases, their approach performed well with respect to
F-measure. In contrast to our approach presented later, their approach does not
consider an automatic restriction to reasonable subsets of instances for improving
the detection result. Instead, they manually limited their evaluation to instances
of the class University. Furthermore, they also do not address the problem of
natural outliers further which is one of our special focuses.

11.2 Approach

In the following, we describe our overall approach of detecting wrong values in a
Linked Data dataset. First, we shortly describe how we determine the properties to
check for wrong numerical values before we present the actual process of outlier
detection. As already mentioned above, applying outlier detection to the full set
of data values might not result in good results since the typical pattern for these
values might depend on the type of the corresponding object. We explain this
aspect further and introduce our way of determining subsets of data on which we
apply the outlier detection. Finally, we describe the actual detection of erroneous
values from the outlier detection results including the cross-checking using data
from alternative sources.

11.2.1 Dataset Inspection

In our approach, we assume no prior knowledge about the dataset. Thus, the first
application step is to gather additional information about it. These steps are most
easily performed when the data is provided by a SPARQL endpoint. However, it
is also possible to adapt the methods to other data provisioning methods such as
RDF data dumps or other query languages such as the Metaweb Query Language
(MQL) used in the Freebase dataset.

During the dataset inspection, we determine the number of instances contained
in the repository as well as the names of the properties that are used in the dataset.
For debugging, we are only interested in data properties used with numerical val-

11.2. APPROACH 149

ues. Because we cannot rely on having an OWL vocabulary which divides the
properties into object and data properties, we determine how often each property is
used with a numerical value in the object position.1 This is done using the SPARQL
query

SELECT ?p, COUNT(DISTINCT ?o) AS ?cnt
WHERE {?s ?p ?o. FILTER (isNumeric(?o))}
GROUP BY ?p

Based on these usage information, we can filter the properties to which we
apply the error detection approach. For instance, we can filter out all properties
that are only used with a single distinct numerical value since in this case no proper
error detection is possible anyways.

Finally, this process results in a set of properties which qualify for the applica-
tion of our error detection approach in the next steps.

11.2.2 Generation of Possible Constraints

In the further workflow, we process each of the considered properties separately. It
is important to note that the detection of wrong values is always done on the level
of pairs of an instance and a specific value assigned to this instance by means of the
property. This is required since a single instance might have several different values
assigned using the same property. For example, some cities might have multiple
ZIP codes which are assigned to its instance by a property like hasZipCode.

Considering all instance value pairs at once might mask potentially erroneous
values. For example, consider the property population which assigns the pop-
ulation count to a populated place like a village or a country. When we compare
the population counts of villages and countries, it is obvious that the biggest part
of countries has a much higher population count than villages. Thus, in a dataset
containing the population counts for both countries and villages, we can expect
two clusters of values. Figure 11.1 shows an example histogram of such a dataset.
The white bars mark values from villages while the grey bars represent those of
countries. Without taking the type information into account, the grey bars with
population counts of around 20, 000 do not raise any suspicion since there are
many village instances in this range. The suspicious country population counts
are masked by the village population counts. However, when only considering
the population counts of countries, these values are outliers because they deviate
greatly from most other countries’ values.

A similar problem could occur in the already mentioned case of having pop-
ulation counts of continents and countries in the same dataset. Since the number
of continents is very small compared the number of countries, the considerably
higher population counts of the continents would seem to be outliers considering
the whole dataset.

1In this context, we treat xsd:int and xsd:float as well as their subtypes as numerical
values.

150 CHAPTER 11. DETECTING NUMERICAL ERRORS

0k 20k 40k 60k 80k 100k 120k 140k

Population count

Figure 11.1: Histogram of population counts for villages (white) and countries
(grey). Some population counts of countries are masked by the population counts
of villages.

To handle these types of problems, we do not consider the whole dataset formed
by all instance-value pairs connected by a property but focus on subsets of the
full dataset. For generating these subsets, we take advantage of the additional
information assigned to instances in Linked Data datasets like the given types for
the instances and their properties. In the following, we define the different ways
of constraining the original dataset to produce the smaller, constrained subsets.
A constrained subset only retains the instance-value pairs for which the instance
fulfills the applied constraint.

• Class constraints: A class constraint on class C applied to an instance set
limits it to instances that belong to this class.

• Property constraints: A property constraint p limits the instances to those
connected to an arbitrary object (instance or data value) by means of p.

• Property value constraints: A property value constraint is defined by a prop-
erty p and a value v which can be either an instance or a data value. It limits
the instances to those which are connected to a value v by means of p.

Class constraints as also applied by [99] are the most obvious way of utiliz-
ing the class structure already contained in the dataset. They allow capturing the
masking for the population property described before.

This way of constraining the dataset reaches its limits for datasets that do
not contain a comprehensive class structure. As also shown by Paulheim and
Bizer [77], it is possible to deduce type statements for instances using informa-

11.2. APPROACH 151

tion about their usage of properties. The two property-based constraint types em-
ploy this fact and enable us to consider property information for compensating
incomplete class structures. For example, given a class Vehicle and a property
maximumAltitude, this property can compensate for a missing class assertion to
a class Aircraft and thus allow to detect, e.g., too high weight values for in-
stances that could be otherwise masked by other Vehicle instances such as ships.
The choice which properties to use as constraints is based on the property’s number
of usages in the current instance set.

If most instances show the same usage patterns regarding properties, even prop-
erty constraints are not able to provide sufficient information for differentiating
different types of instances. In this case, property value constraints might allow
further division of the full instance value set. In contrast to the property con-
straints, which only filter instances based on whether they are used with a specific
property or not, property value constraints restrict based on the usage of a spe-
cific property with a specific property value. For instance, consider an error detec-
tion run regarding the property averageTemperature on a set of city instances.
Since the average temperature of a city heavily depends on its location, it is hard
to recognize any suspicious temperature values by considering all cities at once.
Even if the city instances are connected to their respective countries by means of a
country property, using property constraints would not give any benefit since all
cities are subject of a country property. Nevertheless, by only looking at cities
which are connected to a specific country, like all cities in the United Arabian
Emirates (UAE), wrong temperature values can be detected. Because the average
temperature in the UAE is higher than the temperature in most other countries, too
low averageTemperature values assigned to a city in the UAE could be masked
by cities from other countries. Limiting the detection to cities from the UAE, the
low average temperature is suspicious and thus detectable as being erroneous.

Both property-based constraint types share the problem that they introduce a
high number of constraints since the number of properties is typically higher than
the number of classes contained in a dataset. This leads to a higher computational
effort for choosing the constraints when determining the usage counts for the single
properties. The effort is even higher for property-value constraints since in addition
to the usage counts for the properties, the actual values used with the properties
have to be inspected leading to a potentially much higher number of constraints.
Thus, it is advisable to use property-based constraints only when the usage of class
constraints does not allow sufficient restrictions of the instances.

11.2.3 Finding Subpopulations

Applying outlier detection to all of the potentially many subpopulations, which
can be defined on a dataset, is impractical especially because the runtime of outlier
detection algorithms heavily depends on the number of values they are applied on.
To reduce the numbers of outlier detection runs, we introduce an intermediate step
in which we determine the subpopulations to apply outlier detection on. During

152 CHAPTER 11. DETECTING NUMERICAL ERRORS

this exploration step, we examine the subpopulations generated by restricting the
instance value set using a constraint or a set of constraints.2 The exploration is
organized in a lattice-like structure as shown in Fig. 11.2. This lattice structure is
similar to the one used by Melo et al. [71]. Each node in the lattice is assigned a set

{ }

1000

{City}

600

{City,
∃isHeadquarterOf.>}

80

{City,
CitiesStartingWithT}

28

{City,
Country}

10

{Country}

193

{Continent}

7

{Continent,
PopulatedPlace}

7

Figure 11.2: Example for subpopulation lattice for property population. Num-
bers in the lower part of each node give the number of instances fulfilling the con-
straint set. Dashed nodes get pruned, the lower one for too low KL divergence, the
upper one for not reducing the instance set further.

of constraints which determines the instances considered at this node. Two nodes
are connected by an edge if the child node can be produced from the parent node by
adding exactly one single constraint to the parent’s constraint set. Furthermore, for
each node we determine the number of instance value pairs adhering to the assigned
constraints. The root node has the empty constraint set assigned and thus represents
all instances and corresponding values of the currently considered property. For
this set of instances, we compute a histogram which represents the distribution of
values in the subpopulation. Starting with the root node, our approach manages a
queue of all not yet extended nodes and thus extends the lattice in a breadth-first-
manner.

When processing a node from this queue, we create its child nodes, each having
an additional constraint compared to the parent node. The additional constraints
are those from the set of possible constraints which are not yet used in the parent
node. If a node for the resulting set of constraints already exists in the lattice,
we do not consider the new node further. Otherwise, we determine the instances

2In the following, we use the term “constraint” to refer to both a single constraint or a set of
constraints when this does not lead to confusion.

11.2. APPROACH 153

that adhere to this new set of constraints and compute the histogram of the value
distribution. Based on this value distribution, we enforce a set of pruning criteria
to keep the search space clean. This allows our approach to be independent from
any further knowledge about the constraints respectively the classes and properties
used in the constraints. In particular, we do not depend on a hierarchy specified
for the classes and properties which makes our approach applicable to virtually
all Linked Data datasets regardless of their schema’s existence and expressivity.
As a first pruning criterion, we consider the number of instances which adhere
to the set of constraints. If only a low number or maybe no instances at all are
valid for the current node, we prune the node and do not consider it further since
the set of constraints is too specific and outlier approaches would not be able to
detect any viable pattern.3 Another criterion is the instance reduction ratio, i.e.,
the change ration in the number of instances between the parent node and the new
node. If the additional constraint leads to a reduction of less than 1%, we prune the
new node. For instance, this case could occur when we add a class constraint on
PopulatedPlace to a constraint set which was previously also constrained on
Country.

Finally, we explicitly consider the change in the distribution of values between
the parent and the child node. For this purpose, we use the value histograms for
the subpopulation of the parent node and the subpopulation of the parent node
and compute the Kullback-Leibler (KL) divergence between the value distributions
represented by both histograms. The KL divergence is a measure for the difference
between two probability distributions introduced by Kullback and Leibler [62]. In
general, it is defined for two discrete probability distributions P and Q by

DKL(P ||Q) =
∑
i

P (i) ln
P (i)

Q(i)

where i iterates over all possible values in the distributions. If the divergence
computed between both histograms is lower than a given threshold value, we as-
sume the additional constraint to be independent from the previously applied con-
straints given the currently processed property, i.e., the actual distribution did not
change but only the number of instances. In these cases, an outlier detection run
on the new node would not yield additional insights and thus we prune nodes
which do not achieve a sufficiently high divergence from their parent nodes. For
example, this pruning could happen when adding a class constraint on a class
NamesStartingWithT to a constraint set for a property representing the pop-
ulation count. Assuming that the population counts of cities whose names start
with a T are distributed equivalently to those of all cities, the distribution and con-
sequently the KL divergence would not change considerably. Thus, the further
restriction cannot be expected to reduce the masking of erroneous values and prun-
ing the node prevents an additional outlier detection run which would not lead to
additional discoveries.

3In our experiments, a value of 5 was used.

154 CHAPTER 11. DETECTING NUMERICAL ERRORS

Each additional constraint reduces the number of instances further and hence
the sampling error gets higher with every additional constraint. We try to reduce
this effect by two additional modifications. First, we apply Laplace smoothing to
the value histograms by assuming one additional value occurrence for each bin
in the histograms. Secondly, we normalize the computation of KL divergence by
including the change ratio between the parent node and the child node. This leads
to the following modified formula used for computing the divergence between the
two nodes parent and child contained in the lattice. The number of instances for
a node n is represented by |n| while hparent as well as hchild are the histograms
representing the respective value distribution which each have B bins.

divergence(parent, child) =

∣∣∣∣∣ |child||parent|
·

B∑
i=1

ln

(
hparent(i)

hchild(i)

)
hparent(i)

∣∣∣∣∣ (11.1)

Even after pruning, a large number of potential subpopulations to further ex-
pand with additional constraints and to apply outlier detection on might exist.
Hence, we prioritize nodes that have a higher divergence to their parents in later
expansion steps in cases where too many nodes would have to be expanded other-
wise. This is in line with our supposition that a higher divergence shows a more
important change in the distribution of values and thus is more interesting for the
overall process. If a node is not pruned during the expansion of its parent node, it
is added to the expansion queue and processed in a later step of our breadth-first
processing.

11.2.4 Outlier Detection and Outlier Scores

After the lattice has been determined, we perform outlier detection on all unpruned
nodes of the lattice and store the resulting outlier scores together with the set of
constraints which led to the corresponding instance set. We use the Local Outlier
Factor method to determine outlier scores as described in Section 10.2. Compared
to other approaches of finding outliers, this method allows us to be independent
from any specific probability distribution of the values and thus does not limit our
approach to certain types of numerical values. Nevertheless, our overall approach
is not restricted to this choice of an outlier detection method since we do not rely on
any specifics of LOF apart from having a scoring instead of a binary classification
into outliers and non-outliers.

As soon as the outlier detection run is completed on the property, we have a
list of instance value combinations with a set of pairs, consisting of a constraint set
and an outlier score. Thus, the scores show the degrees of outlierness of the differ-
ent instance value combinations regarding various subpopulations. To get a single
assessment of a value’s correctness, we can apply different weighting approaches
to this list of scores. One possibility is to use the highest outlier score for each in-
stance. However, during our experiments, this weighting scheme showed to often
lead to wrong detections since in many cases an outlier score was chosen which was

11.2. APPROACH 155

generated before reaching a reasonably limited subpopulation. Also weighting ap-
proaches based on determining the average or the average outlier score weighted by
the number of constraints used for generating corresponding subpopulation showed
similar problems.

During our pre-studies, using a possibly existing hierarchy for the classes and
properties turned out to be more promising. By determining the number of super-
classes or superproperties for each class and property, respectively, in the constraint
set, we can get an assessment for its specificity. For each instance value pair, we
use the outlier score achieved for the subpopulation restricted by the most specific
constraint set. This approach favors more specific classes like City over classes
higher in the hierarchy like PopulatedPlace. To determine the specificness of
an entity, we use property paths as introduced by SPARQL 1.1 like in the following
query for a class by its IRI CLS

SELECT COUNT(DISTINCT ?i) AS ?cnt
WHERE {

<CLS> rdfs:subClassOf+ ?i
}

The more direct and indirect superclasses a specific class has, the higher we as-
sume its specificity. In cases where no hierarchy is defined, this leads to all classes
having the same specificity, making it still possible to use a different weighting
scheme as fallback.

Finally, the instance value pairs are ranked according to the outlier scores re-
sulting from the application of the weighting scheme.

11.2.5 Cross-checking for Natural Outliers

Given the ranked pairs, we have a list of instances and values ordered by their devi-
ation from typical behavior of other instance value pairs. However, as we described
before, outliers do not necessarily point to erroneous values but can be also caused
by values naturally showing deviation from the typical behavior. An example for
such an outlier is the island Honshu which is one of the main islands of Japan.
Being the main island of Japan, a large part of Japan’s population is living there
leading to a population count of 103, 000, 000.4 The three additional main islands
each have a population of around 5, 000, 000 to 14, 000, 000. However, Japan is an
island nation and in total consists of 6, 852 islands, the most of which only have
have population counts of several hundred to several thousands. Thus, the popula-
tion of an extremely high fraction of Japan’s islands is several magnitudes smaller
than the population of the main islands. Given the high number of lowly popu-
lated islands, an outlier detection approach applied to the island data would assign
a high outlier score to the main islands and, in particular, to Honshu. Hence, when
considering the raw outlier scores at this stage potentially leads to many natural
outliers falsely recognized as erroneous.

4According to http://en.wikipedia.org/w/index.php?title=Honshu&
oldid=618654743

http://en.wikipedia.org/w/index.php?title=Honshu&oldid=618654743
http://en.wikipedia.org/w/index.php?title=Honshu&oldid=618654743

156 CHAPTER 11. DETECTING NUMERICAL ERRORS

Base Dataset 2nd Dataset 3rd Dataset 4th Dataset

… …

Tskuen Island 485 - - -

Izena Island 1,764 1,591 1,783 -

Honshu 103,000,000 100,000,000 104,000,000 103,000,000

Kyushu 13,231,995 13,189,193 - 13,231,276

… …

Figure 11.3: Using two independent outlier approaches for the DBpedia property
populationTotal and the instance “Honshu” to improve the detection result.
Only considering the base dataset (vertical), the actually correct value is detected
as an outlier. The detection run on the values from different sources (horizontal)
confirms the value and thus prevents to mark the value as a wrong value.

To prevent this wrong detection, we introduce an additional cross-checking
step. This step exploits one of the core features of Linked Data: the possibility
to state links between the instances in different repositories. This is often used to
state equivalence of instances across different datasets by means of owl:sameAs
statements. Since both the Linked Data and the Semantic Web community encour-
age the reuse and interlinking of schema vocabulary, these statements enable us
to retrieve additional property values for the same instance. Even in cases where
additional datasets do not use the same vocabulary as the primary dataset, ontology
matching techniques as summarized by Euzenat and Shvaiko [35] can be used to
find properties equivalent to the currently considered property across the datasets.
Based on this idea, we follow the owl:sameAs links for the different instances
and gather additional values for the current property. Assuming that the original
property value for a certain instance is correct in the primary dataset and also in
all supplemental datasets, all values should be the same. Hence, we consider all
instance value pairs as natural outliers for which all datasets agree in the actual
value. Obviously, an exact match between the gathered values is hard to achieve
for many properties which fluctuate slightly based on the exact point of time they
were determined and also based on the source of the information. Thus, filtering
based on an exact match of the values is not necessarily sufficient to filter out nat-
ural outliers. To handle this problem, we perform another outlier detection run.
Instead of checking whether the considered value is an outlier against the set of
values assigned to other instances in the primary dataset, we check whether the
value is an outlier with respect to the gathered values for the same instance (or
those assigned to be equivalent) in the supplemental datasets. This introduces a
second dimension of outlier detection as illustrated in Figure 11.3.

Since we only intent to recognize slight deviations, a full-blown outlier detec-
tion approach is not required in this context. Rather, the deviations from rounding,
smaller dimension errors and imprecisions can be expected to be normally dis-

11.3. EXPERIMENTS 157

tributed around the correct value. Thus, we perform this outlier detection run using
the normal distribution-based approach described in Section 10.1. By adapting the
size of the confidence interval using the constant c, we are able to influence the sen-
sitivity of this cross-checking step. If a value from the base dataset is not detected
to be an outlier regarding the value from the supplemental dataset, we consider it to
be a natural outlier and remove it from the final list of erroneous value candidates.
Otherwise, we leave the value in as being a potential outlier.

It is evident, that this cross-checking step heavily depends on the availability
of additional data for the same instance in other datasets and only works as long
as this data is discoverable by means of equivalence links between the instances.
For the special case of the English DBpedia dataset and the corresponding ver-
sions in other languages, it has be shown by Bryl and Bizer [21] that the number
of instances described in multiple datasets is relatively low. However, even if the
additional data is sparse, the overall approach still profits from it. Our main in-
terest is finding additional information about natural outliers so that we can filter
those out from the list of potentially erroneous values. Filtering out values which
are no natural outliers or finding additional evidence that a value is an outlier is
not the first priority. We often can assume natural outlier objects to be more in-
teresting to humans than arbitrary “non-special” objects. Thus, we can reasonably
expect the natural outlier objects to be described in more different datasets than the
non-natural outlying objects which is to the best advantage of our cross-checking
approach.

11.3 Experiments

We carried out two experiments to assess the performance of our approach. First,
we applied the full approach to selected properties of the DBpedia dataset and man-
ually evaluated randomly chosen samples of the regarding their correctness. After-
wards, we performed a second experiment particularly for evaluating the availabil-
ity of additional data for the cross-checking step based on the Linked Data dataset
NELL.

11.3.1 Evaluation of Full Approach

To test the proposed approach, we performed experiments on the DBpedia 3.9
datasets. As described in Section 2.2.3, DBpedia is extracted from the data pro-
vided by the Wikipedia project. In this process, each sufficiently large language
version of Wikipedia is used to create a separate DBpedia dataset. This results in
a total number of 119 language version of DBpedia available in version 3.9 which
in combination contain 2.46 billion triples describing 12.6 million unique things.
The largest share of these is contributed by the English language version which
describes about 4 million instances using 470 million triples. The single language
versions are connected to each other by means of owl:sameAs links relating the

158 CHAPTER 11. DETECTING NUMERICAL ERRORS

instances that describe the same thing in the different languages. These links are
also called inter-language links in the DBpedia terminology.

The division into language editions and the availability of owl:sameAs links
between the single instances provides a good scenario for testing our error detection
approach. We implemented the approach as described in Section 11.2. For the
implementation of the actual outlier detection by means of the Local Outlier Factor
method, we resorted to the implementation made available for the RapidMiner
data mining toolkit5 by the RapidMiner Extension for Anomaly Detection.6 The
smoothing parameter k was set to 10 or the number of values in the currently
considered subpopulation if it contained less than 10 instance value pairs. During
the cross-checking step, we set the parameter c = 2.

For the number of bins used in the value histograms of the lattice, the usage
of 100 bins turned out to be a good compromise between runtime and precision of
the pruning approach. Higher number of bins lead to KL divergence values closer
to the actual distribution of the values due to the histogram’s higher resolution. At
the same time, higher values increase the runtime of the KL divergence compu-
tation itself and thus contradict to some degree the runtime saved later-on in the
outlier detection step. Values slightly higher than 100 increased the runtime with-
out leading to adequate improvement in the runtime of the actual outlier detection
and without clear increase in the final error detection.

The DBpedia instances are not only categorized by classes of the DBpedia
ontology but also according to classes of the YAGO ontology.7 In contrast to the
DBpedia classes, the YAGO classes are partly based on Wikipedia categories and
thus are much more fine-grained. For example, some instances are assigned to the
YAGO class CitiesAndTownsInAbruzzo while only being assigned to the class
City in the DBpedia ontology due to the lack of more detailed class structure.
Thus, using the YAGO class for generating subpopulations, we are able to achieve
a fine-grainedness similar to the one provided by property value constraints by just
relying on class constraints.

For the cross-checking step, we make use of the inter-language links from En-
glish DBpedia instances to those in other languages editions. Notably, the overlap
between the language editions is not high. In DBpedia 3.9, out of 2.7 million in-
stances in the 17 most populated DBpedia ontology classes, 60% are described
only in one language (predominantly English) and only 23% are described in three
or more languages. Furthermore, we only considered those 24 language editions
whose infobox properties were manually mapped to the DBpedia ontology by the
DBpedia community. In these datasets, the same property URIs are used across the
different languages, e.g., the DBpedia ontology property populationTotal is
used for the population property of a populated place in German or French editions
even if the original Wikipedia infoboxes use language-specific attribute names.

5http://rapidminer.com
6https://code.google.com/p/rapidminer-anomalydetection/
7http://www.mpi-inf.mpg.de/yago

http://rapidminer.com
https://code.google.com/p/rapidminer-anomalydetection/
http://www.mpi-inf.mpg.de/yago

11.3. EXPERIMENTS 159

To assess the performance of our approach for detecting erroneous values,
we evaluated its performance on three DBpedia ontology properties: height,
elevation and populationTotal. For each of these properties, we performed
a run of the error detection approach and then randomly sampled 100 instance
value pairs from the final ranked list where we introduced a bias towards higher
ranked pairs. To create this bias, we chose a pair with a probability proportional
to its outlier score, i.e., the probability of choosing a pair with a score of 2 was
twice as high as choosing a pair with score 1. We performed the sampling process
based on the ranked but not yet cross-checked list so that we had the possibility to
assess both the performance with and without cross-checking. The resulting pairs
were independently reviewed by three human annotators regarding the correctness
of the values. For determining the correctness of a value, a typical process of the
annotators was to first have a look at the current Wikipedia page describing the
instance. Additionally, the Wikipedia page in its version as of the time of the ex-
traction run was inspected. Using these two sources, it was possible in most cases
to recognize errors in the values which stemmed from parsing errors or vandalism.
If these inspections did not yet lead to the detection of an error, the most promising
non-English Wikipedia articles about the instance were consulted, e.g., the article
in the language most related to the instance. Finally, cited external sources were
consulted or the annotators tried to find reliable information on the Web using
search engines. If no proof for an error in the data was found, the instance-value
combination was marked as correct, otherwise as wrong.

We computed the inter-annotator agreement (IAA) between the three annota-
tors on the evaluated lists by means of Fleiss’ kappa. The results of the IAA anal-
ysis are shown in Table 11.1. Though being chance-corrected, these values show a
very high agreement for all three properties. We conducted an analysis of the few
disagreements which showed that the major part of the disagreements was caused
by an annotator not finding relevant external information to assess the correctness
of the value. The table also provides the numbers of correct instance value pairs for
each property. It is important to note that these values do not provide an unbiased
insight into the correctness of DBpedia but are overstating its incorrectness due to
the way we sampled the evaluated examples.

Table 11.1: Inter-annotator agreement observed for property samples and number
of correct instance-value combinations according to majority of annotators.

elevation height populationTotal

Observed agreement 0.987 0.960 0.960
Fleiss’ κ 0.968 0.916 0.917
correct 69 60 57

Based on the results of this manual evaluation, we plotted the distribution of
the wrong instance-value combinations and the actual value distribution not only
over the sampled values but over all values in the dataset. The resulting plots are

160 CHAPTER 11. DETECTING NUMERICAL ERRORS

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Property value ×104

100

101

102

103

104

105

#
 I

n
st

a
n

ce
s

in
 f

u
ll

 d
a
ta

se
t

(l
o
g

)

0

1

2

3

#
 W

ro
n

g
 i

n
st

a
n

ce
 v

a
lu

e
s

Figure 11.4: Distribution of all values in the instance value set for property
elevation in log-scale with values of erroneous values discovered during the
manual evaluation marked. Property value and instance count scale is restricted to
the given ranges.

shown in Figures 11.4, 11.5 and 11.6.
These plots allow us a further analysis of the erroneous values. For example, in

Figure 11.5, we recognize two accumulations of errors. The first one is located at
the lower bound of the value range. This one is caused by errors for entities of the
class Person using the wrong unit, e.g., instead of a correct value 1.98 m a value
of 1.98 cm was assigned. In addition to these, this spike also contains errors that
are not directly recognizable as errors since they fit the typical height of people.
The second spike is located around a value of 200 and also stems from the problem
of using wrong units, this time using meter instead of centimeter like 198 m instead
of 198 cm. In particular, this finding stresses the need for performing the outlier
detection on subpopulations instead of on the full datasets since values close to
200 in the full dataset not necessarily point to data errors. For other instance types
like buildings, a height value of 200 is totally possible and valid. The other two
properties show their erroneous values to be almost homogeneously distributed
over the value range and to be not only corner cases in the given ranges. Thus,
these outliers would not be detectable without considering subpopulations.

For actually evaluating the error detection, we determined its performance on
the manually annotated value lists before and after cross-checking. These evalua-
tion results were compared to two baseline approaches both also generating scores
quantifying the assessment how erroneous they are. The first baseline approach,
which we identify by “Baseline”, is computed by determining the median of all
values and then computing the absolute difference between this median and the cur-
rent instance’s value. The resulting value was used as a score regarding how wrong

11.3. EXPERIMENTS 161

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Property value ×103

100

101

102

103

#
 I

n
st

a
n

ce
s

in
 f

u
ll

 d
a
ta

se
t

(l
o
g

)

0
3
6
9
12
15
18
21
24
27
30

#
 W

ro
n

g
 i

n
st

a
n

ce
 v

a
lu

e
s

Figure 11.5: Distribution of all values in the instance value set for property height
in log-scale with values of erroneous values discovered during the manual evalu-
ation marked. Property value and instance count scale is restricted to the given
ranges.

0 1 2 3 4 5

Property value ×106

100

101

102

103

104

105

106

#
 I

n
st

a
n

ce
s

in
 f

u
ll

 d
a
ta

se
t

(l
o
g

)

0

1

2

#
 W

ro
n

g
 i

n
st

a
n

ce
 v

a
lu

e
s

Figure 11.6: Distribution of all values in the instance value set for property
populationTotal in log-scale with values of erroneous values discovered during
the manual evaluation marked. Property value and instance count scale is restricted
to the given ranges.

162 CHAPTER 11. DETECTING NUMERICAL ERRORS

the value is. The second baseline, referred to as “Multi-lingual baseline” in the
following, uses the multi-lingual data that is also employed for the cross-checking
step. For getting a score for a value v, we compute the expression |v−µ|/σ where
µ is the mean of the non-English values and σ their standard deviation. This is
similar to the normal distribution-based outlier detection approach. Thus, assum-
ing a normal distribution, 95% of all values should have a score less or equal to 2.
In cases, where the multi-lingual data only provides one or even zero non-English
value, we assign a score of 2 directly. This fall-back score models that values for
which we do not find any information are more likely to be erroneous than values
that got validated by similar values from other language’s values.

Using the scores produced by all four approaches, we ranked the instance value
samples according to their scores and starting with the highest. This mimics the
usage of the error detection as an information retrieval problem where it provides a
human with a ranked list of possibly wrong values based on which further manual
checking can be performed. By comparing the manually created gold standard
against the ranked lists, we determined the ranking of the erroneous values in the
lists. The results of this evaluation are given as receiver operating characteristic
(ROC) curves for each property in Figures 11.7, 11.8 and 11.9. The corresponding
area under the curve (AUC) values for each property and each approach are given
in Table 11.2.

Table 11.2: Area under the curve determined for the given samples and approaches

Approach elevation height populationTotal
Outlier Detection (OD) 0.872 0.888 0.876
Cross-Checked OD 0.861 0.891 0.941
Baseline 0.745 0.847 0.847
Multi-lingual Baseline 0.669 0.509 0.860

First of all, we see that the AUC values of the cross-checked outlier detection
approach are better than the baselines for all three properties. Furthermore, fil-
tering out values that supposedly are natural outliers by cross-checking improves
the AUC score for height and populationTotal. Only for elevation, the
cross-checking leads to a slight decrease on the AUC value. Closer examination of
this decrease showed this to be caused by a wrong value for elevation contained
not only in the English dataset but also in the multi-lingual data. This duplication
of wrong values could be caused by people copying values from one Wikipedia
language version over to a different language version without validating the ac-
tual value using external sources. However, during our evaluation, this was not a
frequent problem. Depending on the impact of such problems in larger scale, a pos-
sible solution would be to employ copy-detection approaches as those presented by
Dong et al. [32].

For the property height, the difference in AUC between the baseline methods
and our methods is considerably smaller than for the property populationTotal.

11.3. EXPERIMENTS 163

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
T

ru
e
 p

o
si

ti
ve

 r
a
te

Outlier Detection (OD)

Cross-checked OD

Baseline

Multi Lingual Baseline

Figure 11.7: Receiver operating characteristic (ROC) for values assigned by prop-
erty elevation

This is caused by a large number of Person instances in the dataset. In this spe-
cific case, the median value as used in the baseline approach is the height of a
(correct) person instance. Since the height property for persons follows a normal
distribution as also reported by Wienand and Paulheim [99], the median devia-
tion method works particularly well and returns low scores for person instances.
Though this leads to high scores for non-person instances, it gives a strong base-
line for our particular dataset. Another interesting detail is that the multi-lingual
baseline does not perform well. This is due to 86 instances not having enough
multi-lingual data to assess their correctness. The greatest part of these instances is
made up by instance of the Person class, in particular by athletes of sports mostly
famous in English-speaking countries like rugby and baseball. Those instances are
seemingly not exhaustively described in other languages. The same fact explains
why the cross-checking step hardly improved the already good results of the base
approach.

Finally, for the populationTotal property, the baseline performs well in
the first parts of the examples, where it even outperforms the basic outlier detec-
tion approach. However, since the baseline does not perform constantly well on the
data, the final AUC value for the outlier detection-based approach is higher. Both
the very good ROC curve as well as the AUC value for the multi-lingual baseline
show that we have more multi-lingual data available for populationTotal than
for the other properties. Nonetheless, for 60 values there is not enough information
for assessing the correctness. The high availability of data for the cross-checking
step is also visible from the high increase for the cross-checked approach which
makes it the clearly best performing approach on this dataset. This also demon-
strated the advantages of combining two orthogonal directions to reach a final de-

164 CHAPTER 11. DETECTING NUMERICAL ERRORS

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
ve

 r
a
te

Outlier Detection (OD)

Cross-checked OD

Baseline

Multi Lingual Baseline

Figure 11.8: Receiver operating characteristic (ROC) for values assigned by prop-
erty height

cision concerning the correctness of a value.
All in all, we see that the cross-checked method performs consistently well for

all three properties. It always produces better results than the baseline approaches.
In most cases, it is also better than the non-cross-checked approach showing that it
indeed prevents natural outliers from being detected as errors.

11.3.2 Availability of Cross-Checking Data

The cross-checking step relies on the availability of additional data for the same in-
stance reachable by following owl:sameAs links. For the English DBpedia dataset
and the other language editions of DBpedia, we already provided the number of in-
stances described in multiple datasets based on the work by Bryl and Bizer. In
this section, we describe an additional experiment to assess the availability of the
relevant data on a different Linked Data dataset. For this experiment, we chose the
NELL dataset [24] in its RDF version [105] as primary dataset. The NELL dataset
is produced by crawling the Web and extracting structured data from unstructured
data discovered during the crawling process. Due to this creation method, we can
assume that parsing errors and other difficulties result in some quality deficiencies
in the data. Thus, NELL would qualify as a dataset for applying our error detec-
tion methods. We let our approach run on the longitude and latitude values of the
NELL dataset. In particular, we retrieved the data to cross-check the values by
using the Wikipedia links contained in the NELL data for finding the correspond-
ing DBpedia instance. Besides the DBpedia values for longitude and latitude, we
used the owl:sameAs links assigned to the DBpedia instances to find further in-
stances in the Linked Data cloud which provided the desired values. We included

11.3. EXPERIMENTS 165

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
T

ru
e
 p

o
si

ti
ve

 r
a
te

Outlier Detection (OD)

Cross-checked OD

Baseline

Multi Lingual Baseline

Figure 11.9: Receiver operating characteristic (ROC) for values assigned by prop-
erty populationTotal

Table 11.3: Numbers of values found for different NELL instances

Number of values 1 (only NELL) 2 3 4 5 Total
Number of instances 6,187 5,043 3,144 6,471 13,100 33,946

the values we could retrieve from Freebase, GeoNames, YAGO and DBpedia. The
corresponding statistics are shown in Table 11.3.

We did not perform a larger scale evaluation on the results of the outlier detec-
tion. However, at first sight, only few values with a sufficiently high outlier score
showed up. An inspection of the some data values showed that there is close to no
deviation throughout the datasets. Almost all of the inspected values were correct
possibly because of the highly standardized value format for latitude and longitude
which leads to only few parsing errors. The small deviations of the values seem
to be caused by subjective decisions, e.g., where to exactly position the longitude-
latitude marker for the area of a county. Nevertheless, the latitude value with the
highest outlier score which was not filtered by the cross-checking showed to be a
data error. Being assigned to the NELL instance nell:county_grey_county,8

the latitude value was detected to be wrong also based on its outlierness for the
population of the class County. An inspection of the Wikipedia page assigned
by NELL showed that it should actually represent Grey County, Ontario, Canada9

whereas the coordinates provided by NELL are in the area of Greymouth, New

8The prefix nell: is used for the full namespace http://nell-ld.
telecom-st-etienne.fr/

9http://en.wikipedia.org/wiki/Grey_County

http://en.wikipedia.org/wiki/Grey_County

166 CHAPTER 11. DETECTING NUMERICAL ERRORS

Zealand which belongs to the Grey District.10 This hints to disambiguation prob-
lems. This result is in line with the findings of Paulheim [76] who also discov-
ered that NELL has problems with homonyms when linking data. In this special
case, the confusion could have been amplified by the near synonymy of district and
county. All in all, this use case demonstrates the availability of data from differ-
ent repositories and thus the applicability of cross-checking for improving wrong
value detection.

11.4 Conclusion

In this chapter, we showed an approach enabling us to detect erroneous numeri-
cal values in Linked Data. This approach complements our previously presented
schema-based methods by also allowing to find errors on a non-schema level. In
contrast to previous work, the method presented here does not rely on manually
crafted data correctness rules but uses the statistical methods developed in the area
of outlier detection for finding suspicious values in a potentially large amount of
data. This reduces the initial effort of the error detection drastically. Furthermore,
our work extends previous works on using outlier detection for finding wrong nu-
merical values in Linked Data in two ways. First, we pay more attention on effi-
ciently selecting subpopulations of the original set of values allowing us to detect
errors otherwise hidden. As a second addition, we propose a way of handling nat-
ural outliers. By following owl:sameAs links pointing to instances that describe
the same “thing” in other datasets, we are able to aggregate additional values for
the same property. Checking these additional values allows to filter out error can-
didates that are most probably natural outliers.

In our evaluation, we showed that our proposed approach constantly performs
better than the baseline approaches though those already deliver a strong perfor-
mance in ranking the values according to their probability of being erroneous. Pro-
viding such ranked lists to humans for manual approval of the error reduces the
effort for finding problems in Linked Data sets. If the error is approved during the
manual evaluation, it can either be fixed directly in the Linked Data source, in the
original data the dataset is extracted from or the extraction method can be fixed so
that similar errors are prevented in future extractions.

A major limitation of performing error detection based on outlier detection lies
in the fact that only those values can be detected as errors that are different from
the typical behavior of similar values. Thus, for example, detecting that an instance
of the class Person has assigned a height of 1.75 m instead of 1.85 m is virtu-
ally impossible using our current approach since the assigned value is no unusual
value for the height of a person. Furthermore, it is not possible to detect system-
atic errors in the dataset because to actually detect errors as outlier there has to be
a sufficiently high number of correct values so that the typical value pattern can
be determined reliably. If there are too many wrong values, as to be expected for

10http://en.wikipedia.org/wiki/Grey_District

http://en.wikipedia.org/wiki/Grey_District

11.4. CONCLUSION 167

systematic errors, these errors are as the correct behavior and only values deviating
from it are marked as erroneous. Since there is no intermediate materialization of
the detected, considered to be correct patterns, manual intervention into the outlier
detection-based error detection is not as straightforward. This again highlights the
advantage of the intermediate step of learning an ontology as done for the detec-
tion of logical errors. Possibly, both kinds of errors are detectable by considering
additional data from other datasets. However, as we also saw in our experiments,
the low number of instances described in multiple datasets might limit the applica-
bility of such an approach purely working on this parallel data. Another possibility
could be the inclusion of external data into the outlier detection process. Textual
data might be the most obvious choice given that it represents the by far largest
amount of data available. A major hindrance for including additional external data
into the error detection process is the need for extracting the actually relevant data
from the source data, e.g., the relevant numerical values from textual information.
To provide a large enough amount of data, this extraction should be done auto-
matically which again gives possibilities to introduce systematic errors that could
interfere with the outlier detection step later-on.

One direction for further research lies in the inclusion of human annotators
in the process. By assessing potential erroneous numerical values, training data
can be gained that in turn can be used to more accurately determine additional
suspicious values. To integrate this manually obtained data, two areas seem to be
suitable. First, the application order of constraints could be determined based on
previous results. For example, a subpopulation that performed well for another
property might also perform well for the current one. Secondly, it could help to
increase the accuracy of detecting wrong values when applying multiple outlier
detection approaches instead of only one. Then, the results of a previous manual
evaluation could be used to learn a proper weighting of the different single scores
to produce a more appropriate total result. In particular, this could help to improve
repeated runs.

By not only considering the raw values from a dataset but also allowing to
combine multiple values for an instance by means of algebraic operations like sub-
straction, additional types of errors could be recognized. For instance, the applica-
tion of outlier detection to the difference of birth and death date of a person could
help to identify errors in these dates. However, finding pairs for which such an
operation should be applied is a non-trivial task. It could get even more compli-
cated if not only considering combinations of values from the same instance but
also allowing combinations of values connected by property paths. The latter case
could help to identify errors hard to find when only considering a single instance,
e.g., person instances described to be married but having birth years several hun-
dred years apart. An alternative to applying algebraic operators to values could lie
in two-dimensional outlier detection. However, depending on the specific kind of
outlier detection approach employed for this, the amount of data required to get
reliable results can be dramatically higher than for the one-dimensional case.

Chapter 12

Conclusion

In this chapter, we are first summarizing the previously presented work. For this
purpose, we have a look at the research questions posed in the beginning of this
work and answer each of them together with a short overview of the chapter rele-
vant for the questions. Afterwards, we are giving the directions of possible future
work.

Research question (RQ1) was concerned with whether we can learn OWL ax-
ioms from instance data. In the first part of Chapter 3, we therefore considered
the prerequisites for doing so and finally concluded that it is possible for all OWL
axioms. However, we also came to the conclusion that the open-world assump-
tion on which OWL is based and the fact that OWL does not implement a unique
name assumption might introduce the possibility of learning wrong axioms. After-
wards, we concentrated on axioms which we considered useful for debugging pur-
poses. In Chapter 5, we therefore explored the possibilities of inductively learning
class disjointness axioms from instance data available in a Linked Data repository.
We compared three inductive approaches and a supervised disjointness learning
method which helped us to further substantiate our answer for (R1). It showed
that both, inductively learning and the supervised approach, have their strengths
but also their weaknesses in certain settings. In particular, learning disjointness
axioms from instance data showed generally promising results which did not de-
pend on characteristics of an external dataset. Instead, it only relied on the data
contained in the considered dataset which made it more self-contained and more
suited for automatic application to arbitrary datasets without manual intervention.
For the supervised approach, it turned out that differences in the characteristics of
training dataset and the dataset to learn on can have considerable influence on the
result unless specifically addressed by additional methods. Furthermore, the ex-
tensive analysis of the gold standard creation showed some problems humans had
when enriching an ontology with class disjointness and that the task of enriching
a given ontology with disjointness is a hard task even for humans. Afterwards, in
Chapter 6, we extended the association rule mining-based approach for learning
property-centric axioms which showed the possibility of learning axioms from in-

168

169

stance data for additional axiom types. An evaluation by experts complemented
by an evaluation by means of crowd-sourcing showed the approaches to be prac-
tically applicable and have a well enough accuracy in generating the respective
axioms from instance data. Furthermore, this evaluation showed that even wrongly
learned axioms might help since they depend on data that shows the wrong pattern
and thus can help to discover erroneous data.

While enriching ontologies with more expressive axioms, we learned that the
resulting ontologies often were incoherent. Repairing these unsatisfiabilities was
hindered by the fact that current reasoning tools were not able to reliably generate
the set of all explanations leading to the incoherent classes for an ontology like
those learned by our approaches. Thus, in Chapter 7, we implemented a rule-based
reasoning tool TRex for discovering incoherences in learned ontologies. Instead of
supporting the full range of expressivity, this tool focused on axioms supported by
our learning approaches. In particular, it did not include reasoning for instances but
only supported terminological axioms limited to those that might cause unsatisfi-
able classes. Experiments using this approach not only experimentally confirmed
its correctness but also showed its applicability to ontologies enriched inductively
by our aforementioned methods. TRex showed considerably longer runtimes than
common implementation of inference tools. However, this turned out to be explain-
able by the sheer number of explanations that were generated. Based on this tool,
we tackled research question (RQ2) on how to debug and repair incoherent learned
ontologies in Chapter 8. We described four ways of determining which axioms to
remove from the ontology to get it coherent. For all four approaches, the confi-
dence values of the learned axioms were considered for reaching the final decision,
thus, exploiting a special feature available for learned ontologies. Besides greedy
approaches, we also included Markov Logic-based approaches which showed a su-
perior performance. However, regarding the second part of the research question,
greedy approaches showed the best characteristics when including humans into the
final decision instead of repairing the ontology automatically. In particular, the
greedy approaches allowed for easier understanding of the proposed repair actions
due to their more local way of optimization. Thus, the proper way of repairing
incoherent ontologies especially depends on whether humans are included into the
process or not.

For answering research question (RQ3), we finally used the ontologies learned
by means of inductive approaches for detecting errors in the dataset. In Chapter 9,
we relied on patterns whose violation indicated a problem in either data, original
ontology or learned axioms. In contrast to other works, we not only reported on
the number of detected violations but also evaluated them so that we finally were
able to give an assessment on the number of actual errors that were detected using
this approach. Furthermore, we evaluated on both learned ontologies and on an
ontology manually enriched with class disjointness axioms. This allowed to find
out how much potential in detection is forfeited by relying on automatic enrich-
ment methods. It showed that the detection performance using learned axioms was
lower than using the gold standard, however, the difference was not high enough

170 CHAPTER 12. CONCLUSION

to advocate the additional manual effort. By including additional property-centric
axioms, the ratio of violations that actually pointed to an error in the data could
be increased to almost 70%. Furthermore, it showed that violations that did not
point to actual errors were caused by only a low number of different axioms whose
violations could be easily filtered out after a first identification in a more interac-
tive workflow. Wrongly learned axioms also helped to discover more widespread
problems in the instance data since each learned axiom is grounded in a frequent
pattern from the dataset and thus can help to identify commonly made mistakes
throughout the dataset. Hence, this further showed the potential of learning axioms
for getting new insights into datasets. Since the evaluation also indicated flaws in
the original ontology, not only the instance data can be improved by using learned
axioms for error detection but also the original ontology’s quality can raised by fix-
ing recognized shortcomings. This all helps us to answer research question (RQ3)
to such an extent that an ontology automatically enriched with expressive axioms
actually helps to debug Linked Data datasets. During the evaluation, we also in-
vestigated the influence of incoherence of the ontology on the results by comparing
the axioms participating in incoherences to those leading to violations not indicat-
ing actual errors. We saw that incoherence only influenced the detection to a small
degree and thus answered (RQ4). Nevertheless, we also saw that a prior exami-
nation of one of the proposed repair approaches would have directed our attention
to a disputable modeling decision. Fixing it would have reduced the number of
violations that we considered as not pointing to a data error and thus increased
the accuracy of the later error detection step. However, having a coherent ontology
does not show to be the first priority with respect to detecting errors in Linked Data.
This is particularly entailed by the fact that pattern-based approaches for finding
violations, which are best suited for application on the large number of instances
in Linked Data datasets, are more resilient to incoherences than full-grown rea-
soning approaches. Apart from this specific application, an ontology’s coherence
stays an important aspect since it helps to assure adequacy for more general usage
scenarios.

In Chapter 11, we proposed an approach which enabled us to efficiently find
errors in numerical values in Linked Data for addressing research question (RQ5).
Our approach is based on outlier detection methods and thus identifies those prop-
erty values as errors that do not share the typical behavior of other values for this
property. In contrast to other works relying on outlier detection for finding errors in
numerical values, we further extended this basic approach by efficiently discover-
ing subpopulations for which the application of outlier detection seems to be more
promising than on the full set of property values. Furthermore, we proposed to use
links in Linked Data datasets to find additional property values and employ them to
identify natural outliers which otherwise would be identified as errors even though
being correct. Our evaluation of this approach showed that it performs well for
indicating potentially wrong numerical values in a dataset and that the inclusion of
further values from linked datasets indeed reduces the number of values wrongly
recognized as erroneous.

12.1. FUTURE WORK 171

12.1 Future Work

Based on the experience we gained during our previously described work, we see
several directions for future work which we provide in the following. The overall
direction of this future work is to arrive at more pedantic Linked Data which ex-
ceeds the pure providing of data in a structured format and gives actual advantages
compared to simple, non-semantic programmatic interfaces.

One interesting path for further work seems to be the integration of the different
approaches proposed in this work. As we saw in Chapter 9, the application of
learned axioms for detecting errors in the data is a promising way of improving the
quality of Linked Data. This capability is not limited to the instance data contained
in Linked Data but also covers the ontology itself since it allows to get a better
understanding of the represented data. Thus, an interactive workflow that at the
same time allows to find errors in the dataset, to fix errors in the ontology and to
extend the ontology with even more axioms seems to be promising. In particular,
many decision that have to be made when checking the detected violations, directly
qualify for being expressed as ontology axioms. This way not only errors in Linked
Data would be resolved but also the ontology quality would be raised significantly
which finally is a step towards more semantic Linked Data and hence a step further
into the original idea of the Semantic Web. Such a workflow could be further
extended to not only provide its functionality to experts in ontologies and Linked
Data but also enabling laymen to participate in improving the actual semantics
of Linked Data and its ontologies. First crowd-sourcing experiments as done in
Chapter 6 showed that there is some potential in this direction.

Based on the detection of errors in Linked Data, the automatic proposal of
fixes for the discovered problems is another potential extension. As already done
in some related works, the most nearby idea is to give a list of general applicable
fixes when discovering errors caused by shortcomings of the ontology like general-
izing the domain or range restriction of certain properties. Including the confidence
scores of different generated axioms could give the opportunity to recognize more
appropriate fixes and thus help to more quickly find the correct decision. For er-
roneous numerical values, approaches like examined by Bryl and Bizer [21] could
be further extended and applied to generate proposals to fix the errors.

Given more expressive and more correct ontologies, a very interesting further
work would be to use these ontologies to produce Linked Data that more stringently
adheres to the defined terminological axioms. For example, a commonly discov-
ered problem during the evaluation on DBpedia was a team membership link from
an athlete to the city of his team because the actual team was not described in the
dataset. More expressive ontologies would specify that teams and cities are disjoint
as well as that a team membership should actually point to a team. In contrast to
the current ontology whose quality is too low in most facets, a higher quality ontol-
ogy could provide these information reliably. Considering these ontologies in the
actual creation process could help to prevent the generation of wrong data and thus
lead to better overall results. Instead of applying fixes at a later stage, this more in-

172 CHAPTER 12. CONCLUSION

tegrated approach could help to preserve more data. For example, the introduction
of intermediate blank nodes when a mismatch between disjointness axioms and a
domain restriction shows up could preserve the data and keep it consistent.

The approaches presented in the course of this work for detecting erroneous
Linked Data share one main limitation. They are not able to detect errors in the
data where the error does not show up as a discrepancy from the typical data be-
havior. Regarding numerical errors, values that fit perfectly into the distribution
of values do not arise any suspicion of being wrong and would thus not be high-
lighted by the outlier detection-based detection method. For link errors, the same
holds true when a link does point to an instance of an appropriate class, e.g., two
athletes are confused with each other. Arguably, these problems are much harder
to detect since the information relevant for their detection might not be available in
the dataset itself or other linked datasets. For finding such problems, the inclusion
of additional external data could be promising, like extracting additional informa-
tion from textual resources. However, this requires the processing of unstructured
data again and needs reliable methods to find mappings between textual entities and
the corresponding entities in the dataset. Such an extended error detection method
spans many research areas that are currently under much research themselves and
thus outreaches the scope of this work considerably.

Part IV

Appendix

173

Appendix A

MLN Model Based on Entailment
Rules

// hidden predicates *************************
// TRex rules in ML
csub(cls, cls)
cdis(cls, cls)
psub(prop, prop)
pdis(prop, prop)
dom(prop, cls)
ran(prop, cls)
psubinv(prop, prop)
pdisinv(prop, prop)

*csubConf(cls, cls, float_)

*cdisConf(cls, cls, float_)

*psubConf(prop, prop, float_)

*pdisConf(prop, prop, float_)

*domConf(prop, cls, float_)

*ranConf(prop, cls, float_)

*psubinvConf(prop, prop, float_)

*pdisinvConf(prop, prop, float_)

//***
conf: csub(c1, c2) v !csubConf(c1, c2, conf)
conf: cdis(c1, c2) v !cdisConf(c1, c2, conf)
conf: psub(p1, p2) v !psubConf(p1, p2, conf)
conf: pdis(p1, p2) v !pdisConf(p1, p2, conf)
conf: dom(p1, c1) v !domConf(p1, c1, conf)
conf: ran(p1, c1) v !ranConf(p1, c1, conf)
conf: psubinv(p1, p2) v !psubinvConf(p1, p2, conf)
conf: pdisinv(p1, p2) v !pdisinvConf(p1, p2, conf)
//***

!cdis(c1, c1).
!pdis(p1, p1).

174

175

csub(c1, c1).
!cdis(c1, c2) v cdis(c2, c1).
!csub(c1,c2) v !csub(c2,c3) v csub(c1, c3).
!csub(c1,c2) v !cdis(c2,c3) v cdis(c1, c3).

psub(p1,p1).
!pdis(p1, p2) v pdis(p2, p1).
!psub(p1,p2) v !psub(p2,p3) v psub(p1, p3).
!psub(p1,p2) v !pdis(p2,p3) v pdis(p1, p3).

!dom(p,a) v !csub(a,b) v dom(p,b).
!ran(p,a) v !csub(a,b) v ran(p,b).
!psub(p,q) v !dom(q,a) v dom(p,a).
!psub(p,q) v !ran(q,a) v ran(p,a).

// 13
!cdis(a,b) v !dom(p,a) v !dom(p,b) v pdis(p,p).
!cdis(a,b) v !ran(p,a) v !ran(p,b) v pdis(p,p).

//15
!psubinv(p,q) v !dom(q,a) v ran(p,a).
!psubinv(p,q) v !ran(q,a) v dom(p,a).
!psubinv(p,q) v !psubinv(q,r) v psub(p,r).
!psubinv(p,q) v !psub(q,r) v psubinv(p,r).

// 19
!psub(p,q) v !psubinv(q,r) v psubinv(p,r).
!pdisinv(p,q) v !psub(r,q) v pdisinv(p,r).
!psubinv(p,q) v !pdis(q,r) v pdisinv(p,r).

// 22
!psubinv(p,q) v !pdis(q,r) v pdisinv(p,r).
!pdisinv(p,q) v pdisinv(q,p).
!pdisinv(p,p) v pdis(p,p).

Bibliography

[1] Ziawasch Abedjan and Felix Naumann. Improving RDF data through asso-
ciation rule mining. Datenbank-Spektrum, 13(2):111–120, 2013.

[2] Maribel Acosta, Amrapali Zaveri, Elena Simperl, Dimitris Kontokostas,
Sören Auer, and Jens Lehmann. Crowdsourcing Linked Data quality as-
sessment. In Harith Alani, Lalana Kagal, Achille Fokoue, Paul Groth, Chris
Biemann, Josiane Xavier Parreira, Lora Aroyo, Natasha Noy, Chris Welty,
and Krzysztof Janowicz, editors, The Semantic Web – ISWC 2013: 12th
International Semantic Web Conference, volume 8219 of Lecture Notes in
Computer Science, pages 260–276. Springer, 2013.

[3] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining as-
sociation rules in large databases. In Proceedings of the 20th International
Conference on Very Large Data Bases (VLDB 1994), pages 487–499. Mor-
gan Kaufmann Publishers Inc., 1994.

[4] M. Allahbakhsh, B. Benatallah, A. Ignjatovic, H.R. Motahari-Nezhad,
E. Bertino, and S. Dustdar. Quality control in crowdsourcing systems: Is-
sues and directions. Internet Computing, IEEE, 17(2):76–81, 2013.

[5] Maria-Luiza Antonie and Osmar R. Zaïane. Mining positive and negative as-
sociation rules: An approach for confined rules. In Jean-François Boulicaut,
Floriana Esposito, Fosca Giannotti, and Dino Pedreschi, editors, Proceed-
ings of the 8th European Conference on Principles and Practice of Knowl-
edge Discovery in Databases (PKDD 2004), volume 3202 of Lecture Notes
in Computer Science, pages 27–38. Springer, 2004.

[6] Ron Artstein and Massimo Poesio. Inter-coder agreement for computational
linguistics. Computational Linguistics, 34(4):555–596, 2008.

[7] Sören Auer and Jens Lehmann. What have Innsbruck and Leipzig in com-
mon? extracting semantics from wiki content. In Enrico Franconi, Michael
Kifer, and Wolfgang May, editors, The Semantic Web: Research and Ap-
plications – ESWC 2007: 4th European Semantic Web Conference, volume
4519 of Lecture Notes in Computer Science, pages 503–517. Springer, 2007.

176

BIBLIOGRAPHY 177

[8] Franz Baader. Description logics. In Sergio Tessaris, Enrico Franconi,
Thomas Eiter, Claudio Gutierrez, Siegfried Handschuh, Marie-Christine
Rousset, and Renate A. Schmidt, editors, Reasoning Web. Semantic Tech-
nologies for Information Systems, volume 5689 of Lecture Notes in Com-
puter Science, pages 1–39. Springer, 2009.

[9] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider. The Description Logic Handbook: Theory,
Implementation and Applications. Cambridge University Press, New York,
NY, USA, 2nd edition, 2010.

[10] Franz Baader, Bernhard Ganter, Baris Sertkaya, and Ulrike Sattler. Com-
pleting description logic knowledge bases using formal concept analysis.
In Manuela M. Veloso, editor, Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI 2007), pages 230–235, 2007.

[11] Franz Baader and Werner Nutt. Basic description logics. In Franz Baader,
Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors, The Description Logic Handbook: Theory, Imple-
mentation, and Applications, pages 43–95, 2003.

[12] Kenneth Baclawski, Mieczyslaw M. Kokar, Richard Waldinger, and Paul A.
Kogut. Consistency checking of Semantic Web ontologies. In Ian Hor-
rocks and James Hendler, editors, The Semantic Web – ISWC 2002: First
International Semantic Web Conference, volume 2342 of Lecture Notes in
Computer Science, pages 454–459. Springer, 2002.

[13] David Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and Gavin
Carothers. RDF 1.1 Turtle – Terse RDF Triple Language. W3C Rec-
ommendation, 2014. Available at http://www.w3.org/TR/2014/
REC-turtle-20140225/.

[14] Tim Berners-Lee. Linked Data – design issues. Technical report, World
Wide Web Consortiom (W3C), 2006. Availbale at http://www.w3.
org/DesignIssues/LinkedData.html.

[15] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web.
Scientific American, 2001.

[16] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian
Becker, Richard Cyganiak, and Sebastian Hellmann. DBpedia - a crystal-
lization point for the web of data. Journal of Web Semantics, 7(3):154–165,
2009. The Web of Data.

[17] C. Böhm, F. Naumann, Z. Abedjan, D. Fenz, T. Grütze, D. Hefenbrock,
M. Pohl, and D. Sonnabend. Profiling linked open data with ProLOD. In
Workshops Proceedings of the 26th International Conference on Data Engi-
neering (ICDE 2010), pages 175–178, 2010.

http://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

178 BIBLIOGRAPHY

[18] Christian Borgelt. Frequent item set mining. Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery, 2(6):437–456, 2012.

[19] Christian Borgelt and Rudolf Kruse. Induction of association rules: Apriori
implementation. In Proceedings of the 15th Conference on Computational
Statistics (COMPSTAT), pages 395–400. Physica Verlag, 2002.

[20] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander.
LOF: Identifying density-based local outliers. Proceedings of the 2000 ACM
SIGMOD international conference on Management of data, 29(2):93–104,
2000.

[21] Volha Bryl and Christian Bizer. Learning conflict resolution strategies for
cross-language Wikipedia data fusion. In Chin-Wan Chung, Andrei Z.
Broder, Kyuseok Shim, and Torsten Suel, editors, Proceedings of the We-
bQuality Workshop at the 23rd International World Wide Web Conference
(WWW 2014), 2014.

[22] Lorenz Bühmann and Jens Lehmann. Universal OWL axiom enrichment
for large knowledge bases. In Annette ten Teije, Johanna Völker, Siegfried
Handschuh, Heiner Stuckenschmidt, Mathieu d’Acquin, Andriy Nikolov,
Nathalie Aussenac-Gilles, and Nathalie Hernandez, editors, Proceedings of
the 18th International Conference on Knowledge Engineering and Knowl-
edge Management (EKAW 2012), volume 7603 of Lecture Notes in Com-
puter Science, pages 57–71. Springer, 2012.

[23] Lorenz Bühmann and Jens Lehmann. Pattern based knowledge base en-
richment. In Harith Alani, Lalana Kagal, Achille Fokoue, Paul T. Groth,
Chris Biemann, Josiane Xavier Parreira, Lora Aroyo, Natasha F. Noy, Chris
Welty, and Krzysztof Janowicz, editors, The Semantic Web – ISWC 2013:
12th International Semantic Web Conference, volume 8218 of Lecture Notes
in Computer Science, pages 33–48. Springer, 2013.

[24] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam
R. Hruschka Jr., and Tom M. Mitchell. Toward an architecture for never-
ending language learning. In Proceedings of the 24th AAAI Conference on
Artificial Intelligence, 2010.

[25] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection:
A survey. ACM Computing Surveys, 41(3):1–58, 2009.

[26] Didier Cherix, Ricardo Usbeck, Andreas Both, and Jens Lehmann. Lessons
learned — the case of CROCUS: Cluster-based ontology data cleansing.
In Valentina Presutti, Eva Blomqvist, Raphael Troncy, Harald Sack, Ioan-
nis Papadakis, and Anna Tordai, editors, The Semantic Web: ESWC 2014
Satellite Events, Lecture Notes in Computer Science, pages 14–24. Springer,
2014.

BIBLIOGRAPHY 179

[27] Philipp Cimiano. Ontology Learning and Population from Text: Algorithms,
Evaluation and Applications. Springer, 1st edition, 2010.

[28] Philipp Cimiano and Johanna Völker. Text2Onto. In Andrés Montoyo,
Rafael Muńoz, and Elisabeth Métais, editors, Natural Language Process-
ing and Information Systems, volume 3513 of Lecture Notes in Computer
Science, pages 227–238. Springer, 2005.

[29] Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences. Rout-
ledge, 2nd edition, 1988.

[30] Óscar Corcho, Catherine Roussey, Luis Manuel Vilches Blázquez, and
Iván Pérez. Pattern-based OWL ontology debugging guidelines. In Eva
Blomqvist, Kurt Sandkuhl, François Scharffe, and Vojtech Svátek, editors,
Proceedings of the Workshop on Ontology Patterns (WOP 2009) , collocated
with the 8th International Semantic Web Conference (ISWC 2009). CEUR-
WS, 2009.

[31] Claudia d’Amato, Nicola Fanizzi, and Floriana Esposito. Inductive learning
for the Semantic Web: What does it buy? Semantic Web Journal, 1(1,2):53–
59, April 2010.

[32] Xin Luna Dong, Laure Berti-Equille, and Divesh Srivastava. Truth discov-
ery and copying detection in a dynamic world. Proceedings of the VLDB
Endowment, 2009.

[33] Jianfeng Du, Guilin Qi, and Qiu Ji. Goal-directed module extraction for
explaining OWL DL entailments. In Abraham Bernstein, David R. Karger,
Tom Heath, Lee Feigenbaum, Diana Maynard, Enrico Motta, and Krish-
naprasad Thirunarayan, editors, The Semantic Web – ISWC 2009: 8th Inter-
national Semantic Web Conference, volume 5823 of Lecture Notes in Com-
puter Science, pages 163–179. Springer, 2009.

[34] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases with
noise. In Evangelos Simoudis, Jiawei Han, and Usama Fayyad, editors, Pro-
ceedings of the Second International Confierence on Knowledge Discovery
and Data Mining. The AAAI Press, 1996.

[35] Jérôme Euzenat and Pavel Shvaiko. Ontology Matching, Second Edition.
Springer, 2013.

[36] Daniel Fleischhacker, Christian Meilicke, Johanna Völker, and Mathias
Niepert. Computing incoherence explanations for learned ontologies. In
Wolfgang Faber and Domenico Lembo, editors, Web Reasoning and Rule
Systems, volume 7994 of Lecture Notes in Computer Science, pages 80–94.
Springer, 2013.

180 BIBLIOGRAPHY

[37] Daniel Fleischhacker, Christian Meilicke, Johanna Völker, and Mathias
Niepert. Technical report: Computing incoherence explanations for learned
ontologies. Technical report, University of Mannheim, 2013.

[38] Daniel Fleischhacker, Heiko Paulheim, Volha Bryl, Johanna Völker, and
Christian Bizer. Detecting errors in numerical Linked Data using cross-
checked outlier detection. In Peter Mika, Tania Tudorache, Abraham Bern-
stein, Chris Welty, Craig Knoblock, Denny Vrandečić, Paul Groth, Natasha
Noy, Krzysztof Janowicz, and Carole Goble, editors, The Semantic Web –
ISWC 2014: 13th International Semantic Web Conference, volume 8796 of
Lecture Notes in Computer Science, pages 357–372. Springer, 2014.

[39] Daniel Fleischhacker and Johanna Völker. Inductive learning of disjointness
axioms. In Robert Meersman, Tharam Dillon, Pilar Herrero, Akhil Kumar,
Manfred Reichert, Li Qing, Beng-Chin Ooi, Ernesto Damiani, DouglasC.
Schmidt, Jules White, Manfred Hauswirth, Pascal Hitzler, and Mukesh Mo-
hania, editors, On the Move to Meaningful Internet Systems: OTM 2011 –
Confederated International Conferences: CoopIS, DOA-SVI, and ODBASE
2011, volume 7045 of Lecture Notes in Computer Science, pages 680–697.
Springer, 2011.

[40] Daniel Fleischhacker, Johanna Völker, and Heiner Stuckenschmidt. Min-
ing RDF data for property axioms. In Robert Meersman, Hervé Panetto,
Tharam Dillon, Stefanie Rinderle-Ma, Peter Dadam, Xiaofang Zhou, Siani
Pearson, Alois Ferscha, Sonia Bergamaschi, and Isabel F. Cruz, editors, On
the Move to Meaningful Internet Systems: OTM 2012 – Confederated Inter-
national Conferences: CoopIS, DOA-SVI, and ODBASE 2012, volume 7566
of Lecture Notes in Computer Science, pages 718–735. Springer, 2012.

[41] Yoav Freund and Llew Mason. The alternating decision tree learning al-
gorithm. In Proceedings of the 16th International Conference on Machine
Learning (ICML), pages 124–133, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc.

[42] Birte Glimm, Aidan Hogan, Markus Krötzsch, and Axel Polleres. OWL: yet
to arrive on the Web of Data? In Christian Bizer, Tom Heath, Tim Berners-
Lee, and Michael Hausenblas, editors, WWW 2012 Workshop on Linked
Data on the Web, volume 937 of CEUR Workshop Proceedings. CEUR-
WS.org, 2012.

[43] Birte Glimm, Ian Horrocks, Boris Motik, and Giorgos Stoilos. Optimising
ontology classification. In The Semantic Web – ISWC 2010: 9th Interna-
tional Semantic Web Conference, pages 225–240, 2010.

[44] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang.
HermiT: An OWL 2 reasoner. Journal of Automated Reasoning, 53(3):245–
269, 2014.

BIBLIOGRAPHY 181

[45] Nicola Guarino and Christopher A. Welty. An overview of OntoClean. In
Steffen Staab and Rudi Studer, editors, Handbook on Ontologies, Interna-
tional Handbooks on Information Systems, pages 201–220. Springer, 2009.

[46] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. The WEKA data mining software: An update.
SIGKDD Explorations, 11(1):10–18, 2009.

[47] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without
candidate generation. Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, 29(2):1–12, May 2000.

[48] Steve Harris and Andy Seaborne, editors. SPARQL 1.1 Query Language.
W3C Recommendation, 2013. Available at http://www.w3.org/TR/
sparql11-query/.

[49] Marti A. Hearst. Automatic acquisition of hyponyms from large text cor-
pora. In Proceedings of the 14th Conference on Computational Linguistics
(COLING 1992) - Volume 2, pages 539–545. Association for Computational
Linguistics, 1992.

[50] Sebastian Hellmann, Jens Lehmann, and Sören Auer. Learning of OWL
class descriptions on very large knowledge bases. International Journal on
Semantic Web and Information Systems, 5(2):25–48, 2009.

[51] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider,
and Sebastian Rudolph, editors. OWL 2 Web Ontology Language: Primer.
W3C Recommendation, 2012. Available at http://www.w3.org/TR/
owl2-primer/.

[52] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible
SROIQ. In Patrick Doherty, John Mylopoulos, and Christopher A. Welty,
editors, Proceedings of the 10th International Conference on Principles of
Knowledge Representation and Reasoning, pages 57–67, 2006.

[53] Ian Horrocks and Ulrike Sattler. Decidability of SHIQ with complex role
inclusion axioms. Journal of Artificial Intelligence, 160(1-2):79–104, 2004.

[54] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for
expressive description logics. In Harald Ganzinger, David McAllester, and
Andrei Voronkov, editors, Logic for Programming and Automated Reason-
ing, volume 1705 of Lecture Notes in Computer Science, pages 161–180.
Springer, 1999.

[55] Qiu Ji, Peter Haase, Guilin Qi, Pascal Hitzler, and Steffen Stadtmüller.
RaDON — repair and diagnosis in ontology networks. In Lora Aroyo, Paolo
Traverso, Fabio Ciravegna, Philipp Cimiano, Tom Heath, Eero Hyvönen,

http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/

182 BIBLIOGRAPHY

Riichiro Mizoguchi, Eyal Oren, Marta Sabou, and Elena Simperl, editors,
The Semantic Web: Research and Applications – ESWC 2009: 6th Euro-
pean Semantic Web Conference, volume 5554 of Lecture Notes in Computer
Science, pages 863–867. Springer, 2009.

[56] Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren Sirin. Find-
ing all justifications of OWL DL entailments. In The Semantic Web – ISWC
2007 + ASWC 2007: 6th International Semantic Web Conference and 2nd
Asian Semantic Web Conference, pages 267–280. Springer, 2007.

[57] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca Grau, and
James Hendler. Swoop: A web ontology editing browser. Journal of Web
Semantics, 4(2):144–153, 2006. Semantic Grid –The Convergence of Tech-
nologies.

[58] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James Hendler. Debug-
ging unsatisfiable classes in OWL ontologies. Journal of Web Semantics,
3(4):268–293, 2005.

[59] Dimitris Kontokostas, Patrick Westphal, Sören Auer, Sebastian Hellmann,
Jens Lehmann, Roland Cornelissen, and Amrapali Zaveri. Test-driven eval-
uation of Linked Data quality. In Proceedings of the 23rd International
Conference on World Wide Web (WWW 2014), pages 747–758. ACM, 2014.

[60] Dimitris Kontokostas, Amrapali Zaveri, Sören Auer, and Jens Lehmann.
Triplecheckmate: A tool for crowdsourcing the quality assessment of
Linked Data. In Pavel Klinov and Dmitry Mouromtsev, editors, Knowl-
edge Engineering and the Semantic Web, volume 394 of Communications
in Computer and Information Science, pages 265–272. Springer, 2013.

[61] Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. LoOP:
Local outlier probabilities. In Proceedings of the 18th ACM Conference on
Information and Knowledge Management (CIKM 2009), pages 1649–1652.
ACM, 2009.

[62] Solomon Kullback and Richard. A. Leibler. On information and sufficiency.
The Annals of Mathematical Statistics, 22(1):79–86, 1951.

[63] J. Richard Landis and Gary G. Koch. The measurement of observer agree-
ment for categorical data. Biometrics, 33(1):159—174, 1977.

[64] Jens Lehmann. Learning OWL Class Expressions, volume 6 of Studies on
the Semantic Web. AKA Heidelberg, 2010.

[65] Jens Lehmann and Lorenz Bühmann. ORE - a tool for repairing and enrich-
ing knowledge bases. In Peter F.F. Patel-Schneider, Yue Pan, Pascal Hitzler,
Peter Mika, Lei Zhang, Jeff Z. Pan, Ian Horrocks, and Birte Glimm, editors,

BIBLIOGRAPHY 183

The Semantic Web: ISWC 2010 – 9th International Semantic Web Confer-
ence, volume 6497 of Lecture Notes in Computer Science, pages 177–193.
Springer, 2010.

[66] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kon-
tokostas, Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick
van Kleef, Sören Auer, and Christian Bizer. DBpedia - A large-scale, mul-
tilingual knowledge base extracted from Wikipedia. Semantic Web Journal,
6(2):167–195, 2015.

[67] Vladimir Levenshtein. Binary codes capable of correcting deletions and
insertions and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[68] Alexander Maedche and Steffen Staab. Discovering conceptual relations
from text. In Werner Horn, editor, Proceedings of the 14th European Con-
ference on Artificial Intelligence (ECAI 2000), pages 321–325. IOS Press,
2000.

[69] Alexander Maedche and Steffen Staab. Ontology learning for the Semantic
Web. IEEE Intelligent Systems, 16(2):72–79, 2001.

[70] Deborah L. McGuinness and Frank van Harmelen, editors.
OWL Web Ontology Language Overview. W3C Recommenda-
tion, 2004. Available at http://www.w3.org/TR/2004/
REC-owl-features-20040210/.

[71] André Melo, Martin Theobald, and Johanna Völker. Correlation-based re-
finement of rules with numerical attributes. In William Eberle and Chutima
Boonthum-Denecke, editors, Proceedings of the 27th International Florida
Artificial Intelligence Research Society Conference (FLAIRS 2014). AAAI
Press, 2014.

[72] George A. Miller. Wordnet: A lexical database for english. Communications
of the ACM, 38(11):39–41, 1995.

[73] Jan Noessner and Mathias Niepert. ELOG: A probabilistic reasoner for
OWL EL. In Sebastian Rudolph and Claudio Gutierrez, editors, Proceedings
of the 5th International Conference on Web Reasoning and Rule Systems (RR
2011), pages 281–286. Springer, 2011.

[74] Jan Noessner, Mathias Niepert, and Heiner Stuckenschmidt. RockIt: Ex-
ploiting parallelism and symmetry for MAP inference in statistical relational
models. Proceedings of the 27th AAAI Conference on Artificial Intelligence,
2013.

[75] Heiko Paulheim. Browsing Linked Open Data with auto complete. In 10th
Semantic Web Challenge at the 11th International Semantic Web Conference
(ISWC 2012), 2012.

http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/

184 BIBLIOGRAPHY

[76] Heiko Paulheim. Identifying wrong links between datasets by multi-
dimensional outlier detection. In Patrick Lambrix, Guilin Qi, Matthew
Horridge, and Bijan Parsia, editors, Proceedings of the Third International
Workshop on Debugging Ontologies and Ontology Mappings (WoDOOM
2014) co-located with 11th Extended Semantic Web Conference (ESWC
2014), pages 27–38. CEUR-WS, 2014.

[77] Heiko Paulheim and Christian Bizer. Type inference on noisy RDF data.
In Harith Alani, Lalana Kagal, Achille Fokoue, Paul T. Groth, Chris Bie-
mann, Josiane Xavier Parreira, Lora Aroyo, Natasha F. Noy, Chris Welty,
and Krzysztof Janowicz, editors, The Semantic Web – ISWC 2013: 12th
International Semantic Web Conference, volume 8218 of Lecture Notes in
Computer Science, pages 510–525. Springer, 2013.

[78] María Poveda-Villalón, María del Carmen Suárez-Figueroa, and Asunción
Gómez-Pérez. Validating ontologies with OOPS! In Annette ten Teije,
Johanna Völker, Siegfried Handschuh, Heiner Stuckenschmidt, Mathieu
d’Aquin, Andriy Nikolov, Nathalie Aussenac-Gilles, and Nathalie Hernan-
dez, editors, Proceedings of the 18th International Conference on Knowl-
edge Engineering and Knowledge Management (EKAW 2012), pages 267–
281. Springer, 2012.

[79] Youen Péron, Frédéric Raimbault, Gildas Ménier, and Pierre-François
Marteau. On the detection of inconsistencies in RDF data sets and their cor-
rection at ontological level. Technical report, VALORIA - Laboratoire de
Recherche en Informatique et ses Applications de Vannes et Lorient, 2011.

[80] Guilin Qi, Peter Haase, Zhisheng Huang, Qiu Ji, Jeff Z. Pan, and Johanna
Völker. A kernel revision operator for terminologies - algorithms and evalu-
ation. In Amit P. Sheth, Steffen Staab, Mike Dean, Massimo Paolucci, Diana
Maynard, Timothy W. Finin, and Krishnaprasad Thirunarayan, editors, The
Semantic Web – ISWC 2008: 7th International Semantic Web Conference,
pages 419–434. Springer, 2008.

[81] Matthew Richardson and Pedro Domingos. Markov logic networks. Journal
of Machine Learning, 62(1-2):107–136, 2006.

[82] Catherine Roussey and Ondrej Zamazal. Antipattern detection: how to de-
bug an ontology without a reasoner. In Patrick Lambrix, Guilin Qi, Matthew
Horridge, and Bijan Parsia, editors, Proceedings of the Second International
Workshop on Debugging Ontologies and Ontology Mappings (WoDOOM
2013), pages 45–56. CEUR-WS, 2013.

[83] Stefan Scheglmann, Gerd Gröner, Steffen Staab, and Ralf Lämmel.
Incompleteness-aware programming with RDF data. In Evelyne Viegas,
Karin Breitman, and Judith Bishop, editors, Proceedings of the Workshop on

BIBLIOGRAPHY 185

Data Driven Functional Programming (DDFP 2013), pages 11–14. ACM,
2013.

[84] Stefan Schlobach. Debugging and semantic clarification by pinpointing. In
Asunción Gómez-Pérez and Jérôme Euzenat, editors, The Semantic Web:
Research and Applications – ESWC 2005: Second European Semantic Web
Conference, volume 3532 of Lecture Notes in Computer Science, pages
226–240. Springer, 2005.

[85] Stefan Schlobach and Ronald Cornet. Non-standard reasoning services for
the debugging of description logic terminologies. In Georg Gottlob and
Toby Walsh, editors, Proceedings of the 18th International Joint Conference
on Artificial Intelligence (IJCAI 2003), volume 18, pages 355–362, 2003.

[86] Guus Schreiber and Yves Raimond, editors. RDF 1.1 Primer. W3C
Recommendation, 2014. Available at http://www.w3.org/TR/
owl2-primer/.

[87] Zhaohua Sheng, Xin Wang, Hong Shi, and Zhiyong Feng. Checking and
handling inconsistency of DBpedia. In FuLee Wang, Jingsheng Lei, Zhiguo
Gong, and Xiangfeng Luo, editors, Proceedings of the International Confer-
ence on Web Information Systems and Mining (WISM 2012), volume 7529
of Lecture Notes in Computer Science, pages 480–488. Springer, 2012.

[88] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical OWL-DL reasoner. Journal of Web Seman-
tics, 5(2):51–53, 2007. Software Engineering and the Semantic Web.

[89] Boontawee Suntisrivaraporn, Guilin Qi, Qiu Ji, and Peter Haase. A
modularization-based approach to finding all justifications for OWL DL en-
tailments. In John Domingue and Chutiporn Anutariya, editors, The Seman-
tic Web – ASWC 2008: 3rd Asian Semantic Web Conference, volume 5367
of Lecture Notes in Computer Science, pages 1–15. Springer, 2008.

[90] Jiao Tao, Evren Sirin, Jie Bao, and Deborah L. McGuinness. Integrity con-
straints in OWL. In Maria Fox and David Poole, editors, Proceedings of the
24th AAAI Conference on Artificial Intelligence (AAAI 2010). AAAI Press,
2010.

[91] Wei-Guang Teng, Ming-Jyh Hsieh, and Ming-Syan Chen. On the mining
of substitution rules for statistically dependent items. In Proceedings of the
IEEE International Conference on Data Mining (ICDM 2002), pages 442–
449. IEEE Computer Society, 2002.

[92] Gerald Töpper, Magnus Knuth, and Harald Sack. DBpedia ontology en-
richment for inconsistency detection. In Valentina Presutti and Helena Sofia
Pinto, editors, Proceedings of the 8th International Conference on Semantic
Systems (I-SEMANTICS 2012), pages 33–40. ACM, 2012.

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/

186 BIBLIOGRAPHY

[93] Paola Velardi, Roberto Navigli, Alessandro Cucchiarelli, and Francesca
Neri. Evaluation of OntoLearn, a methodology for automatic learning of do-
main ontologies. In Paul Buitelaar, Philipp Cimiano, and Bernardo Magnini,
editors, Ontology Learning from Text: Methods, Evaluation and Applica-
tions, pages 92–106. IOS Press, 2005.

[94] Johanna Völker, Daniel Fleischhacker, and Heiner Stuckenschmidt. Auto-
matic acquisition of class disjointness. Journal of Web Semantics, 35:124–
139, 2015.

[95] Johanna Völker, Pascal Hitzler, and Philipp Cimiano. Acquisition of OWL
DL axioms from lexical resources. In Enrico Franconi, Michael Kifer, and
Wolfgang May, editors, The Semantic Web: Research and Applications –
ESWC 2007: 4th European Semantic Web Conference, volume 4519 of Lec-
ture Notes in Computer Science, pages 670–685. Springer, 2007.

[96] Johanna Völker and Mathias Niepert. Statistical schema induction. In
Grigoris Antoniou, Marko Grobelnik, Elena Simperl, Bijan Parsia, Dimitris
Plexousakis, Pieter Leenheer, and Jeff Pan, editors, The Semantic Web: Re-
search and Applications – ESWC 2011: 8th Extended Semantic Web Confer-
ence, volume 6643 of Lecture Notes in Computer Science, pages 124–138.
Springer, 2011.

[97] Johanna Völker and Sebastian Rudolph. Lexico-logical acquisition of OWL
DL axioms. In Raoul Medina and Sergei Obiedkov, editors, Proceedings
of the 6th International Conference on Formal Concept Analysis (ICFCA
2008), volume 4933 of Lecture Notes in Computer Science, pages 62–77.
Springer, 2008.

[98] Johanna Völker, Denny Vrandečić, York Sure, and Andreas Hotho. Learn-
ing disjointness. In Enrico Franconi, Michael Kifer, and Wolfgang May,
editors, The Semantic Web: Research and Applications – ESWC 2007: 4th
European Semantic Web Conference, volume 4519 of Lecture Notes in Com-
puter Science, pages 175–189. Springer, 2007.

[99] Dominik Wienand and Heiko Paulheim. Detecting incorrect numerical data
in dbpedia. In Valentina Presutti, Claudia d’Amato, Fabien Gandon, Math-
ieu d’Aquin, Steffen Staab, and Anna Tordai, editors, The Semantic Web:
Trends and Challenges – ESWC 2014: 11th Extended Semantic Web Confer-
ence, volume 8465 of Lecture Notes in Computer Science, pages 504–518.
Springer, 2014.

[100] Gang Wu, Guilin Qi, and Jianfeng Du. Finding all justifications of OWL
entailments using TMS and MapReduce. In Craig Macdonald, Iadh Ounis,
and Ian Ruthven, editors, Proceedings of the 20th ACM International Con-
ference on Information and Knowledge Management (CIKM 2011), pages
1425–1434. ACM, 2011.

BIBLIOGRAPHY 187

[101] Zhibiao Wu and Martha Palmer. Verbs semantics and lexical selection.
In Proceedings of the 32nd Annual Meeting on Association for Computa-
tional Linguistics (ACL 1994), pages 133–138. Association for Computa-
tional Linguistics, 1994.

[102] Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and
Wei Li. New algorithms for fast discovery of association rules. In David
Heckerman, Heikki Mannila, and Daryl Pregibon, editors, Proceedings of
the Third International Conference on Knowledge Discovery and Data Min-
ing (KDD 1997), pages 283–286. AAAI Press, 1997.

[103] Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo Pietrobon, Jens
Lehmann, and Sören Auer. Quality assessment for linked data: A survey.
Semantic Web Journal, 7(1):63–93, 2016.

[104] Chengqi Zhang and Shichao Zhang. Association Rule Mining: Models and
Algorithms. Springer, 2002.

[105] Antoine Zimmermann, Christophe Gravier, Julien Subercaze, and Quentin
Cruzille. Nell2RDF read the Web, and turn it into RDF. In Proceedings of
the 2nd International Workshop on Knowledge Discovery and Data Mining
Meets Linked Open Data, 2013.

	1 Introduction
	1.1 Research Questions
	1.2 Reader's Guide

	2 Foundations
	2.1 Description Logics and Ontologies
	2.2 RDF and Linked Data
	2.2.1 Resource Description Framework
	2.2.2 Linked Data
	2.2.3 DBpedia

	I Learning Expressive Schemas
	3 Preliminaries
	3.1 Learning from Instance Data
	3.2 Association Rule Mining
	3.2.1 Generating Association Rules
	3.2.2 Other Algorithms

	3.3 Statistical Schema Induction

	4 Related Work
	4.1 Ontology Learning
	4.2 Inductive Ontology Learning
	4.3 Learning Disjointness Axioms
	4.4 Profiling Linked Data Datasets

	5 Inductive Learning of Disjointness Axioms
	5.1 Class Disjointness Gold Standard
	5.1.1 Methodology
	5.1.2 Analysis

	5.2 Approaches
	5.2.1 Correlation-Based Approach
	5.2.2 Association Rule Mining-Based Approach
	5.2.3 Negative Association Rule-based Approach

	5.3 Evaluation
	5.4 Conclusion

	6 Inductive Learning of Property Axioms
	6.1 Approaches
	6.1.1 Terminology Acquisition
	6.1.2 Creation of Transaction Tables
	6.1.3 Association Rule Mining and Axiom Generation

	6.2 Evaluation
	6.2.1 Settings
	6.2.2 Expert Evaluation
	6.2.3 Crowd-Sourced Evaluation

	6.3 Conclusions and Contributions

	II Logical Debugging of Linked Data
	7 Generating Incoherence Explanations
	7.1 Related Work
	7.2 Approach
	7.2.1 Generation of Explanations
	7.2.2 Implementation

	7.3 Experiments
	7.3.1 Settings
	7.3.2 Results

	7.4 Conclusion

	8 Repairing Incoherent Ontologies
	8.1 Related Work
	8.2 Approaches
	8.2.1 Baseline Approach
	8.2.2 Axiom Adding Approach
	8.2.3 MAP Inference-Based Approach
	8.2.4 Pure Markov Logic Approach

	8.3 Evaluation
	8.3.1 Settings
	8.3.2 Results

	8.4 Conclusion

	9 Schema-Based Error Detection
	9.1 Related Work
	9.2 Approach
	9.3 Experiments
	9.3.1 Disjointness-Enriched Ontologies
	9.3.2 Property-Enriched Ontology

	9.4 Conclusion

	III Detection of Numerical Errors in Linked Data
	10 Preliminaries: Outlier Detection
	10.1 Statistical Outlier Detection
	10.2 Nearest-Neighbor-Based Outlier Detection

	11 Detecting Numerical Errors
	11.1 Related Work
	11.2 Approach
	11.2.1 Dataset Inspection
	11.2.2 Generation of Possible Constraints
	11.2.3 Finding Subpopulations
	11.2.4 Outlier Detection and Outlier Scores
	11.2.5 Cross-checking for Natural Outliers

	11.3 Experiments
	11.3.1 Evaluation of Full Approach
	11.3.2 Availability of Cross-Checking Data

	11.4 Conclusion

	12 Conclusion
	12.1 Future Work

	IV Appendix
	A MLN Model Based on Entailment Rules

