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Risk pooling involves the possibility of embedding a risk considered to be transferred to an 

insurance company in a collective of independent and identically distributed risks. We 

consider mutual insurers and stock insurance companies as well as alternative possibilities 

for setting the premium. Making standard assumptions with respect to the utility function and 

the distribution of claims, we are able to demonstrate that pooling risks on the side of the 

insurance company is beneficial for the potential policyholder in terms of expected utility. 
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Considering a sequence of independent and identically distributed (IID) replications of a 

gamble that is initially rejected, Samuelson (1963) famously demonstrates the “fallacy of 

large numbers” in a situation involving the summation of risks. As Ross (1999, p. 324) 

remarks, “Samuelson points out that the law of large numbers applies to averages and not to 

sums”. Samuelson (1963) also notes that a situation that involves summing risks corresponds 

to an insurance company pooling many risks together. Finally, Samuelson (1963) emphasizes 

that it is not sufficient to merely consider the probability of loss (which is typically 

decreasing when the number of IID risks increases). Instead, it is the expected utility of 

wealth that is central to the evaluation.  

In this paper, we examine the position of a potential buyer of an insurance contract instead 

of the position of an insurance company. Using only standard assumptions, we are able to 

demonstrate that risk pooling (on the side of the insurance company) is beneficial for the 

(potential) insured in terms of expected utility. 

Embedding a risk in a collective consisting of n IID risks means that a single risk has a 

share of 1/n of the collective risk. Thus, it is indeed the law of large numbers (LLN) that is 

central to this effect1. We conclude that pooling risks is fundamental to the decision of 

purchasing insurance because it favorably affects the utility position of potential insurance 

buyers (policyholders), and we denote this phenomenon the “utility-improving effect of risk 

pooling”. 

Pooling risks together is considered the essence of insurance, and numerous papers2 have 

analyzed the effects of risk pooling3. However, research on the effects of risk pooling is 

typically performed from the perspective of the insurance company, i.e., the supply side. 

Only recently have Gatzert and Schmeiser (2012) raised the question of whether risk pooling 

is also beneficial for policyholders, i.e., the demand side. However, they limit their analysis 

to a basic case (normally distributed claims, exponential utility function, mutual insurance) 

and do not perform a systematic analysis of the subject4. To the best of our knowledge, there 

are no further studies on the relevance of risk pooling from the perspective of potential 

                                                           
1 By contrast, when analyzing the summation of risks, it is the central limit theorem or (more generally) the 
theory of large deviations - see, e.g., Brockett (1983) and Hammarlid (2005) - that are central to the analysis. 
2 For an excellent review of the corresponding literature, cf. Gatzert and Schmeiser (2012). 
3 However, these papers - in conformity with the common requirements of external regulation - are typically 
based on analyses of the probability of loss (probability of insolvency) and not on expected utility theory. 
4 In addition, they do not apply the probabilistic techniques of the present paper. 
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buyers of insurance. Neither in the theory of insurance demand5 nor in the wider field of 

insurance economics6 has this aspect of risk pooling attracted attention.  

Related to the literature that addresses the effects of risk pooling from the perspective of 

the insurer is the strand of literature7 that analyzes sequences of gambles in the tradition of 

Samuelson. However, the latter addresses a scenario (summation of risks instead of averages 

of risks; the default call, which is considered in section III, is not taken into account; nor is 

the legal form of the insurance company or the premium calculation principle applied) that 

differs from that analyzed in the present paper.  

 

I.   The Basic Decision Situation  

 

We consider a decision maker that possesses an initial (t = 0) amount of wealth W0. The 

potential accumulated claim X ≥ 0 in t = 1 from a certain type of insurance is the basic 

random variable considered. If we assume a risk-free interest rate of r = 0 (interest is ignored) 

and that the decision maker does not buy insurance protection, the resulting end-of-period 

wealth (t = 1) is8 

(1)   WNI = W0 - X. 

The alternative is to buy insurance protection for an individual premium9 π (π ≤ W0). To 

simplify10 the scenario, we assume that full coverage is available so that we do not have to 

make a distinction between the original claim and the indemnity. We assume that the risk X 

can be embedded in an IID collective of size n, i.e., in a homogeneous collective consisting of 

n independent risks11 Xi (i = 1,…, n), Xi ~ (IID)X. With respect to X, we assume that the 

parameters of the distribution of X are known12 and that the expected value E(X) is finite13. 

                                                           
5 See the recent review of Schlesinger (2013).  
6 See, for example, the Handbook of Insurance edited by Dionne (2013). 
7 Most notably, Diamond (1984), Nielsen (1985), Lippman and Mamer (1988), Hellwig (1995), Ross (1999) 
and Hammarlid (2005). 
8 We therefore ignore any additional insurable or non-insurable risks of the decision maker, particularly 
background risk - see Schlesinger (2013, pp. 180 ff.) - as well as any additional income (labor income, 
investment income, and/or pension claims). 
9 Understood as the total premium (including expenses and the profit margin), in contrast with the pure risk 
premium (premium for the risk transfer). 
10 This assumption is not a restriction. Defining Y = h(X) as the insured part of the original risk X, the 
corresponding analysis must be based on Y. 
11 To keep the notation simple, we assume that the original risk X now corresponds to one of the risks Xi. 
12 Thus, we ignore parameter uncertainty. 
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In addition, we make the simplifying assumption that the IID-collective is the total collective 

of the insurance company because in this situation, the risk capital as well as the losses and 

gains of the company can be uniquely attributed to that collective.  

The resulting end-of-period wealth (t = 1) in the case of purchasing insurance protection is 

WI(n). This position depends on additional factors (the legal form of the insurance company 

and the applied premium principle), and its concrete specification therefore has to be 

postponed.  

The evaluation of the alternative wealth positions is performed in an expected utility 

framework; i.e., depending on the utility function, u(x), we have 

(2a)   ΦNI := Φ(WNI) = E[u(WNI)], 

and  

(2b)   ΦI(n) : = Φ(WI(n)) = E[u(WI(n))]. 

According to (2b), the expected utility of the insured position depends, in particular, on the 

size of the IID collective in which the risk X is embedded.  

With respect to the utility function, we initially make only standard assumptions. We 

assume that the utility function is strictly increasing and strictly concave. These assumptions 

ensure the continuity14 of the utility function and the existence of the inverse function u-1, 

which again is strictly increasing. In addition, we make the normalization u(0) = 0. Moreover, 

as any concave function is dominated from above by an affine function, the existence of E(X) 

ensures the existence of E[u(X)] in the sense of Klenke (2014, Definition 4.7), i.e., as an 

extended real number in the domain [-∞, ∞). This property carries over to the quantities 

E[u(WNI)] and E[u(WI(n))] introduced in (2). 

With respect to the utility effects of pooling risks, we consider two versions. The first 

(“strong”) version requires that the expected utility of the corresponding wealth position be 

strictly increasing in the size of the collective. The second (“weak”) version does not require 

the effects to be strictly monotone.  

In the strong version, we require the following two conditions for a utility-improving effect 

of risk pooling:  
                                                                                                                                                                                     
13 As X ≥ 0, we also have 𝐸(|𝑋|) < ∞; i.e., X is absolutely integrable. Combined with the IID assumption, 
this ensures the validity of the strong LLN.  
14 In case the domain of u(x) is an interval that is closed on the left, we have to postulate continuity separately 
for this left end point.   
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(3a)   ΦI(2) > ΦNI 

(3b)   ΦI(n+1) > ΦI(n) for all n ≥ 2.  

Condition (3a) indicates that merely embedding the risk in an IID collective of size two 

already leads to an improvement in expected utility, and that purchasing insurance will be 

preferred. In addition, we require that the improvement in expected utility strictly increases 

with the size of the collective.  

In the weak version, purchasing insurance, i.e., embedding the risk in an IID collective, is 

beneficial for the decision maker if there exists a size n0 of the collective with  

(4a)   ΦI(n) > ΦNI      for all n ≥ n0. 

Stating (4a) alternatively in terms of the certainty equivalent, we require CEI(n) > CENI, 

where CEI(n) ≔ u-1(ΦI (n)) and CENI ≔ u-1(ΦNI). Condition (4a) is obviously fulfilled if we 

are able to demonstrate that limn→∞ ΦI(n) > ΦNI or, equivalently, limn→∞ CEI(n) > CENI. 

A utility-improving effect from increasing the size of the collective holds in the weak 

version if for all n ≥ n0, there is a collective size kn > n with  

(4b)   ΦI(k) ≥  ΦI(n)     for all k ≥ kn . 

The existence of a limit limn→∞ ΦI(n) > ΦNI or, equivalently, a limit limn→∞ CEI(n) > CENI 

obviously ensures the fulfillment of condition (4b) as well.  

Condition (4a) indicates that for a given risk X and a given utility function u(x) there exists 

an IID collective Xi ~ (IID)X of a minimum size n0, such that transferring the risk to the 

insurer will always be beneficial to a decision maker with utility function u. Condition (4b) 

indicates that embedding the risk in a (sufficiently) larger collective leads to an additional 

improvement in expected utility.  

In both versions, the possibility of embedding a risk (considered to be transferred to an 

insurance company) in an IID collective ensures that purchasing insurance is (at least 

ultimately) utility improving.  
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II. Pure Mutual Insurance 

 

In the case of pure mutual insurance, the policyholders are also the owners of the insurance 

company. Thus, policyholders have to participate in the company’s profits and losses. To 

simplify the analysis, we assume that the insurance company is able to distribute possible 

profits and losses completely15. With a homogeneous collective, it is natural to assume that 

every policyholder will have an equal share of the profits and/or the losses of the collective16. 

We let Sn ≔ X1 + … + Xn denote the accumulated claim of the IID collective and 

S�n := Sn/n represent the average accumulated claim per insured. If we assume that all 

members of the homogeneous collective are charged an identical individual premium π, the 

wealth position of the decision maker - whose risk is embedded in an IID collective of size n 

- is given by 

(5)   WI(n) = W0 - π + (n π - Sn)/n = W0 - S�n. 

In the case of pure mutual insurance, therefore, we have a special situation in which the 

wealth position of the insured is (under the specified assumptions) completely independent of 

the charged individual premium π. Because the policyholders have to take an equal share in 

all profits and losses, the amount of the premium becomes irrelevant. 

We are now able to formulate our central result regarding the utility-improving effects of 

risk pooling in the case of pure mutual insurance. 

THEOREM 1: The wealth position (5) in the case of pure mutual insurance fulfills the 

requirements (3) of a utility-improving effect of risk pooling for all potential buyers of 

insurance with a utility function that is strictly increasing and strictly concave.  

This result is important not only from the perspective of the legal form of the insurance 

company. Modern insurance is rooted in mutual insurance, and the essence of mutual 

insurance is the notion that re-distributing risk in a collective is more beneficial than 

assuming the risk alone. Theorem 1 offers a utility-based justification of this classical notion. 

The proof of Theorem 1 is given in the appendix. In the following, we sketch the main lines 

of the argument. The idea of Theorem 1 is to show that the wealth position WNI is “riskier” 

than WI(2) and that the positions WI(n) are in each case also “riskier” than the positions 

                                                           
15 Thus, we ignore taxes on profits as well as the possibility of increasing the reserves of the company.   
16 Thus, we exclude the possibility that the insurance company is taking out a loan to finance the losses.  
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WI(n+1). Here, “riskier” is understood as one of the equivalent versions (to be specific: Z = 

Y + “Noise”) of the concept of “increasing risk” according to Rothschild and Stiglitz (1970). 

Defining Z = WI(n) and Y = WI(n+1), we obtain ε = S�n+1 - S�n as the relevant noise quantity. 

Verifying the condition E(ε|Y) = 0 requires the evaluation of the quantities E(S�n|S�n+1). For 

this, we exploit the result that the sequence {S�n} is a backwards martingale17 (also known as 

a reverse martingale). 

Finally, we illustrate18 the results of Theorem 1 by assuming normally distributed IID risks 

Xi, i.e., X~N(μ, σ2), and an exponential utility function, which is consistent with using the 

preference functional (a > 0) 

(6)   Φ(X) = E(X) - a Var(X).  

We have ΦNI = Φ(W0 - X) = E(W0 - X) - a Var(W0 - X), and therefore, on one hand, we 

obtain 

(7)   ΦNI = W0 - μ - a σ2. 

On the other hand, we have S�n ~ N(μ, σ2/n) and ΦI(n) = E(W0 - S�n) - a Var(W0 - S�n) and 

obtain  

(8)   ΦI(n) = W0 -  μ - a σ2/n. 

Obviously, the relations ΦI(2) > ΦNI and ΦI(n + 1) > ΦI(n) for all n ≥ 2 are valid in this 

situation, which confirms the results of Theorem 1 in one special case (the combination of a 

distributional assumption, on the one hand, with an assumption regarding the utility function, 

on the other hand).   

 

III. Stock Insurance Company 

A.  Basic Considerations 

 

We consider an insurance company with an initial (t = 0) risk capital of amount C. The 

insurance company will become (technically) insolvent if Sn > n π + C; i.e., the accumulated 

                                                           
17  For this result, see, for example, Klenke (2014, section 12.2). 
18  This illustration corresponds to the basic case that is considered in Gatzert and Schmeiser (2012). 
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claim amount of the collective exceeds the sum of the accumulated premiums and the risk 

capital at hand.  

As a consequence of insolvency, the resulting loss amount Ln = max(Sn- n π - C, 0) must be 

borne by the collective of the insured. Given this situation, we analyze two basic issues. First, 

we analyze the behavior of the relative loss19 L�n = Ln/n, i.e., the average loss per member of 

the IID collective. We have 

(9)   L�n = max(S�n - π - C/n, 0). 

From the perspective of a single insured, the quantity -L�n is of relevance, because the 

relative loss reduces the wealth position. This quantity can be regarded as a short position in a 

call option (a “default call”). Transferring the risk to a stock insurance company implies that 

(per capita) the policyholder takes a short position in this default call. The call option is 

defined relative to the average loss variable S�n and has an exercise price of amount π+ C/n. 

As there exists no market in which average loss variables (and also absolute loss variables) 

are traded and as it is not possible to generate the option on the basis of a self-financing 

dynamic trading strategy, we do not consider using arbitrage-free valuation techniques to 

price the option. Consistent with our general valuation approach, we value the call using 

expected utility theory. 

In a second step, we consider the indemnity of the policyholder in case of (technical) 

insolvency. In this case, we have to adjust the position of policyholder i in proportion to the 

amount of his loss Xi. The resulting wealth position20 is now21 WI(n) = W0 - π - Ln⋅(Xi Sn⁄ ) 

or, equivalently, 

(10)   WI(n) = W0 - π - L�n⋅(Xi S�n⁄ ). 

We have ∑  Ln⋅(Xi Sn⁄ ) = Ln
n
i=1 ; i.e., on the level of the collective, we correctly obtain the 

loss Ln that results from the insolvency of the insurance company. 

                                                           
19  Simultaneously, this equals the loss, which every policyholder must bear in the case of pure mutual 
insurance. 
20 Obviously, there exists no elementary method to evaluate this position. Thus, we must resort to more 
fundamental probabilistic arguments. 
21 We define Xi/Sn = 0 in the case of Xi = 0. In the case of Xi > 0, we have Sn > 0, so there is no problem with 
the term Xi/Sn. 
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To simplify the following considerations, we additionally assume22 X ≤ M< ∞ in this 

section, which indicates that the individual accumulated claim cannot be arbitrarily high. 

From the perspective of a practical application, this assumption is not problematic. 

This additional assumption is motivated by the fact that the proofs of the following 

theorems require the interchangeability of integration (calculating the expected value) and 

almost sure convergence. This requirement is assured by Lebesgue´s dominated convergence 

theorem23, which requires, in turn, the existence of an integrable dominating function. 

However, a strictly concave utility function u cannot be bounded from below over an infinite 

domain. To avoid complex restrictions24 on the behavior of the utility function and/or the 

claim distribution in the left tail, the assumption of a finite domain of X must be made from 

the outset25. In addition, it must be ensured that the utility function only takes finite values at 

the endpoints of the domains of the wealth positions WNI, WI(n) and L�n. As becomes 

apparent from the proofs of the theorems in the Appendix, it is, for example, sufficient to 

assume u(W0) < ∞ and u(-M) > -∞. In addition, these assumptions ensure that the positions in 

(2), i.e., the expected utility of the wealth positions, assume finite values.  

While we need to introduce an additional requirement for the risk variable X in this section, 

the requirements with respect to the utility function u(x) can be weakened. All wealth 

positions analyzed in this section, i.e. WNI , WI(n) and L�n, have a domain of definition which 

is either identical to the interval (-∞,W0] or to a subset of this interval. Thus, it is sufficient to 

restrict the requirements of strict monotonicity and strict concavity of u(x) to the domain      

(-∞,W0]. Outside this domain the utility function may have an arbitrary shape. For instance, 

the utility function may be of the Friedman/Savage type, combining risk aversion on the 

domain (-∞,W0] and risk seeking on the domain (W0, ∞). 

In the remaining sections, we analyze the utility-improving effects of risk pooling by 

assuming two common alternative basic possibilities of setting the premium. 

 

 

                                                           
22 Concurrently, this is a standard assumption in the theory of insurance demand; see Schlesinger (2013, p. 
168).  
23 See, for example, Klenke (2014, Corollary 6.26). 
24 See, for instance, Lippman and Mamer (1988), who analyze sequences of gambles in the tradition of 
Samuelson. 
25 Such an assumption is quite common. Föllmer and Schied (2011, p. 70 resp. p. 77), for example, make this 
assumption when analyzing the optimality of alternative insurance contracts resp. sequences of gambles.  
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B.  Insurance Premiums Independent of the Size of the Collective 

 

We first consider the case in which the individual insurance premium π is independent of 

the size n of the IID collective of policyholders. We disaggregate the individual premium in 

the form π = μ + l, where l denotes the loading to the net risk premium μ = E(X), making the 

standard assumption l ≥ 0. Loading l consists of a safety loading, on the one hand, and a 

loading for expenses, on the other.  

As our first result, we obtain: 

THEOREM 2: Considering a stock insurance company and an individual premium 

π  ≥ E(X), which is independent of the size of the IID collective insured, we obtain 

E�u�-L�n�� → 0 for n → ∞ under the assumptions specified26. 

Thus, on a per capita basis, the value (in expected utility terms) of the short position in the 

default call, i.e., the “disutility” implied by the potential default of the insurance company, 

converges to zero when the size of the IID collective grows beyond all limits. If the risk to be 

transferred to the insurance company can be embedded in an IID collective of sufficient size, 

the possibility of the default of the insurance company (on average) is no longer relevant to 

the decision to purchase insurance. 

The proof of Theorem 2 is presented in the appendix. In the following, we present the main 

lines of argument. From the strong LLN, we first have limn→∞ S�n = μ almost surely (a.s.). 

Applying continuity arguments, we then obtain -L�n → 0 a.s. and therefore also 

u�-L�n�→ u(0)= 0 a.s. In the next step, we have to show the relation E�u�-L�n��→ E[u(0)] . 

This step, however, is not trivial because it is well known that almost sure convergence does 

not imply27,28 convergence in expectation (resp. L1-convergence). To prove the necessary 

convergence relation, we identify a dominating function that enables us to use Lebesgue´s 

dominated convergence theorem. The appendix contains additional details. 

We now evaluate the wealth position (10). For the original position of the decision maker 

(no purchase of insurance protection), we have Φ(WNI) = E[u (W0- X)]. In case of risk 

                                                           
26 Analyzing the proof of Theorem 2, we de facto only require that the utility function is increasing and 
continuous. 
27 See, for instance, Klenke (2014, Remark 6.11). 
28 Regarding the sequence {S�n}, L1-convergence is ensured, as {S�n} is a backwards martingale and therefore 
uniformly integrable. However, this does not necessarily translate to the sequence {u(-L�n)}. 
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aversion29, we obtain CENI =  u-1[Φ(WNI)] < E(WNI) = W0 - E(X) = W0 - μ for the safety 

equivalent. Therefore, we have  

(11)   CENI < W0- μ. 

For a given risk X and a given utility function u(x) we therefore define the quantity 

Δ ≔  |W0 - μ - CENI| > 0. 

THEOREM 3: We consider an individual premium π  ≥ E(X), which is independent of the 

size of the IID collective insured. Under the assumptions specified, the wealth position (10) in 

the case of a stock insurance company fulfills the requirements (4) for a utility-improving 

effect of risk pooling if l < ∆.  

The proof of Theorem 3 is presented in the appendix and follows the lines of the proof of 

Theorem 2. The additional requirement  l < Δ can now be explained as follows. From the 

proof of Theorem 3, we obtain limn→∞ ΦI(n) = u(W0 - π) in the first step. To fulfil relation 

(4a), we must additionally establish u(W0 - π) > ΦNI or equivalently W0 - π > CENI. For a 

risk-averse policyholder, we have W0 - μ > CENI, as previously discussed. The additional 

requirement l < Δ now ensures that we also have W0 - π > CENI. 

The requirement l < Δ implies a restriction with respect to the amount of the premium, π, 

charged. Only if this restriction is valid does the possibility of pooling risk on the side of the 

insurance company remain beneficial for the potential buyer of insurance protection. An 

additional increase in the individual premium reduces the probability of insolvency and 

favorably influences the value of the default call max (S�n - π - C/n, 0). However, with respect 

to the total utility of the position (10), this effect is overcompensated by the negative effect of 

a higher premium π, which indicates that the pooling of risks is no longer beneficial in the 

case in which the insurance premium is “too high”.   

A case of special interest is l = 0 (zero loading); i.e., the premium corresponds to the 

expected claim amount (actuarially fair premium), π = μ. In this case30, the probability of 

insolvency of the insurance company is P(Sn > n μ) = P[(Sn - n μ)/(σ/√n) > 0). From the 

Central Limit Theorem, we obtain that this probability converges to (N denotes the 

distribution function of the standard normal distribution) 1 - N(0) = ½ for n → ∞. Therefore, 
                                                           
29 According to our assumptions, the utility function u(x) is strictly concave. Assuming that the random 
variable X is not degenerated (not a constant quantity), we employ Jensen´s inequality to ensure that the 
safety equivalent is strictly less than the expected value.  
30 Making the additional simplifying assumption C = 0. 
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the probability of insolvency does not converge to zero for IID collectives growing in size 

beyond all limits but “stabilizes” near ½.  

Intuitively, we may conjecture that this result is relevant for the evaluation of the wealth 

positions (9) and (10) of the potential buyer of insurance protection, because the preceding 

result may have an influence on the value of the default call 

L�n = max(S�n - π, 0) = max(Sn - n µ, 0)/n. However, Theorem 2 and Theorem 3 (for l = 0, the 

condition l < ∆ is obviously valid) demonstrate that this conjecture is not true when the 

wealth positions are evaluated using expected utility. This result clearly shows that the 

probability of insolvency of the insurance company, on the one hand, and the expected utility 

of the wealth positions (9) and (10) of the (potential) policyholder, on the other hand, do not 

exhibit a direct relation.   

We now present an illustration of the preceding results, again assuming the setting 

considered in the illustration of Theorem 1 in section II (normally distributed risks and 

exponential utility function). As the evaluation of the wealth position (10) in the form of a 

closed formula is not possible even in this most basic case, we confine ourselves to 

evaluating position (9). 

To simplify the analysis31, we assume that the premium is actuarially fair, π = μ; i.e., the 

premium corresponds to the net risk premium (expected claim amount) and, in addition, a 

risk capital of amount zero, i.e., C = 0. According to section 2 of the online appendix, we 

obtain  

(12a)   E(L�n) = n(0) σ/√n, 

(12b)   Var(L�n) = [0.5 - n(0)2] σ2/n  

in this case, where n(x) denotes the density function of the standard normal distribution. We 

have n(0) ≈ 0.4 and [0.5 - n(0)2] ≈ 0.341. 

Obviously, we have limn→∞ E (L�n) = 0 and lim
n→∞

Var(L�n) = 0. In addition, E(L�n) and Var(L�n) 

are strictly decreasing with n, which confirms the conclusion of Theorem 2 for this special 

case; as with E�u(-L�n)� = a Var(L�n) - E(L�n), we obtain limn→∞ E[u(-L�n)] = 0. In addition, this 

                                                           
31 The evaluation of the term max (S�n - π - C/n, 0) in (9) requires the calculation of partial moments, which is 
undertaken in the online appendix. In the general case, the calculation leads to rather complicated results. For 
this reason, we confine the presentation to a basic case.  
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result confirms the preceding general analysis, according to which in the case π = μ as well, 

there is a utility-improving effect of risk pooling for the potential buyer of insurance. 

At the same time, this result shows that the assumption of a finite domain of X can be 

dispensed with in special constellations. This is particularly the case when X is normally 

distributed, as expected utility then ultimately only depends on the expected value and the 

variance of the quantity to be evaluated. 

 

C. Insurance Premiums Dependent on the Size of the Collective 

 

Smith and Kane (1994) and Gatzert and Schmeiser (2012) distinguish between two effects 

of pooling risks. In case B, the probability of insolvency is decreasing (in the limit to a value 

of zero) when the individual premium is fixed. In case A, the probability of insolvency is 

fixed at a tolerated level, and the resulting premium is decreasing (in the limit to the expected 

claim amount; i.e., the loading converges to zero) with the increasing size of the insured IID 

collective. In case A the risk-pooling effect of case B is “passed through” to the policyholders 

in the form of a premium reduction as long as the required safety level is ensured. The 

constellation of case B is analyzed in section III.B. In the present section, we analyze a 

situation corresponding to case A. 

In case A, risk pooling leads to premiums that are subadditive. A utility theoretic analog is 

considered in Diamond (1984, pp. 405 ff.)32. According to Diamond, summing independent 

risks provides diversification when the premium per risk decreases. 

In insurance mathematics, the property of subadditivity is regarded essential for calculating 

premiums33. Shaun Wang et al. (1997), therefore, employ an axiomatic approach to 

characterizing insurance premiums in a competitive market setting. Their approach leads to a 

price functional of the Choquet type, which in turn implies subadditive premiums. 

                                                           
32 Additional arguments with respect to this link to subadditivity are provided by Denuit et al. (2011, p. 243 
f.). 
33 Analogously, the requirement of subadditivity is one of the central axioms for a coherent risk measure 
(which relates to risk capital instead of risk premiums) in the prominent axiomatization presented by Artzner 
et al. (1999). 
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Subadditive premiums have been criticized34 for not being consistent with the fundamental 

principle of no arbitrage, because this principle implies linear price functionals. However, 

this criticism is valid only for markets without frictions and is no longer valid for markets 

with frictions (such as transaction costs35 or trading). De Waegenaere et al. (2003) 

demonstrate that Choquet pricing is consistent with general equilibrium in the case of 

insurance markets36 with frictions.  

Consistent with the preceding discussion, in the following, we consider an individual 

premium of the form   

(13a)   π = μ + l(n), 

where l(n) ≥ 0 is a loading (per risk) that depends on the size of the IID collective37. In 

addition, we are demanding 

(13b)                          limn→∞ l(n) = 0.  

In contrast to section III.B, the individual premium now depends on the size of the collective, 

i.e., π = π(n). 

First, we note that the result of Theorem 2 also holds in the case in which the premium 

depends on the size of the collective. The disutility of the short position in a default call 

resulting from a possible insolvency of the stock insurance company converges to zero with 

an increasing size of the collective of insured. The proof of this statement completely 

parallels the proof of Theorem 2. In addition, we have the following:  

THEOREM 4: We consider an individual premium of the form (13) that is dependent on 

the size of the IID collective insured. Under the assumptions specified, the wealth position 

(10) in the case of a stock insurance company fulfills the requirements (4) of a utility-

improving effect of risk pooling.  

The proof of Theorem 4 is presented in the appendix and follows the lines of the proof of 

Theorem 3. However, contrary to Theorem 3, no additional restrictions with respect to 

loading l are necessary. Demanding l(n) → 0 is already sufficient to ensure the fulfillment of 

the requirements in (4).  
                                                           
34 See, for example, Gatzert and Schmeiser (2012, p. 188, p. 190). Borch (1982, p. 1295) previously stated the 
following: "If a competitive market is in equilibrium, values must be additive…".  
35 Gollier (2013, p. 118) reports that transaction costs in the case of insurance markets are approximately 30% 
of the premium, which is significantly larger than in the case of financial markets. 
36 A corresponding result for financial markets is obtained by Chateauneuf et al. (1996). 
37 This loading, for example, consists of a declining safety loading per insured, on the one hand (see, also, the 
following example), and regressive operating costs, on the other hand.  
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The result of Theorem 4 in our view is fundamental to the understanding of the beneficial 

aspects of risk pooling for the (potential) policyholders. Embedding the risk to be transferred 

in an IID collective that is large enough and charging a premium of the form (13) will always 

be preferable to not insuring the risk! 

We end our discussion with an illustrative example, again confining ourselves to the 

evaluation of the wealth position (9). We consider an IID collective of normally distributed 

risks in connection with the preference functional (6). To simplify the analysis, we assume C 

= 0 and ignore expenses. We now fix the level α (0 < α < 0,5) of the probability of 

insolvency, i.e., P(Sn > nπ(n)) = α. Per definition, the quantity nπ(n) must be identical to the 

(1-α)-quantile of the distribution of Sn. Because Sn is normally distributed, we therefore 

obtain the condition nπ(n) = E(Sn) + N1-α σ(Sn)  = nμ + N1-ασ√n, where N1-α denotes the 

(1-α)-quantile of the standard normal distribution, which implies that the structure of the 

(individual) safety loading has the form 

(14)   l(n) = N1-ασ/√n. 

Thus, the safety loading exhibits an inverse proportional relationship to the square root of 

the size of the collective.  

Charging the premium π(n) = μ + l(n), we obtain38 

(15a)   E(L�n) =  h1(α) σ/√n , 

(15b)   Var(L�n) = h2(α) σ2/n. 

The functions  h1(α) > 0 and h2(α) > 0 are strictly positive and depend only on the probability 

level α but do not depend on the size of the collective. This finding confirms the conclusion 

of Theorem 2 for this special case; because E�u(-L�n)� = a Var(L�n) - E(L�n), we obtain 

limn→∞ E[u(-L�n)] = 0. 

 

 

 

 

                                                           
38 As in the example from section III.B, the evaluation of position (9) requires the calculation of partial 
moments. The calculations are contained in the online appendix.  
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IV. Concluding Remarks 

 

In this paper, we have analyzed the relevance of risk pooling on the side of the insurance 

company for potential buyers of an insurance contract. Risk pooling involves the possibility 

of embedding a risk that is considered to be transferred to an insurance company in a 

collective of independent and identically distributed risks (an “IID collective”). We 

distinguish the case of a pure mutual insurer from the case of a stock insurance company. In 

the latter, the policyholder is formally exposed to a short position in a “default call”; i.e., the 

policyholder has to include the effects of the insurance company’s potential insolvency in his 

evaluation. In addition, the alternative basic possibilities of setting the premium (independent 

of or dependent on the size of the collective) are considered. 

We assume that a potential customer of the insurance company evaluates his alternative 

wealth positions based on expected utility. On the basis of the strong law of large numbers 

and elementary probabilistic arguments, we are then able to demonstrate - making only 

standard assumptions with respect to the utility function and the claim distribution - that the 

pooling of risks on the side of the insurer is beneficial for the (potential) policyholder. In 

addition, sufficiently increasing the size of the IID collective leads to a further increase in 

utility.  

Thus, we conclude that the possibility of risk pooling is essential to the decision to 

purchase insurance because it favorably affects the utility position of the potential buyer of 

insurance.  

The utility-based analysis of embedding a risk that is considered to be transferred to an 

insurance company in a collective of risks demonstrates that insurance contracts exhibit 

significant differences compared to other financial products. This finding confirms the view39 

that “producing” insurance is based on a “production law” (i.e., pooling risks) sui generis.  

 

 

 

 
                                                           
39 See, for example, Gatzert and Schmeiser (2012, p. 184). 
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Appendix: Proofs 

 

Theorem 1: 

We exploit the fact that the sequence {S�n; n ≥ 1} is a backwards martingale (reverse 

martingale)40. From the foregoing, one can deduce41 the validity of the following relation 

(n ≥ 1) 

(A.1)                E(S�n|Sn+1) = S�n+1, 

which is central to our proof. Because the information sets generated by {Sn+1} and {S�n+1} 

are identical, we also have E(S�n|S�n+1) = S�n+1 for (n ≥ 1). 

We now define Z ≔ W0 - S�n and Y ≔ W0 - S�n+1. We then have Z = Y + ε with 

ε = S�n+1 - S�n. From E(S�n+1|S�n+1) = S�n+1 and (A.1), it follows that E(ε|W0 - S�n+1) = E(ε|S�n+1) 

= E(S�n+1|S�n+1) - E(S�n|S�n+1) = S�n+1 -  S�n+1 = 0.  

Therefore, for all n ≥ 1,  W0 - S�n is "riskier" than W0 - S�n+1 in the sense of the definition of 

Rothschild and (1970), i.e., W0 - S�n = (W0 - S�n+1) + "Noise". Thus, we have 

E[u (W0 - S�n+1)] ≥ E[u (W0 - S�n)] for all risk-averse decision makers, which corresponds to 

requirements (3).  

Theorem 2:  

We proceed from π = μ + l with l ≥ 0. The functions f(x) = max(x,0), g(x) = min(x,0) and 

u(x) are continuous. Thus, from  S�n→ μ almost surely (a.s.) and C/n → 0 (surely), we obtain 

-L�n = - max�S�n - μ - l - C n⁄ , 0� = min�μ + l + C n⁄  - S�n, 0�→ min(l,0)  = 0 a.s. and, 

therefore, also u(-L�n) → 0 a.s. With 0 ≤ X ≤ M, we have 0 ≤  S�n ≤ M, and therefore, we obtain 

- M < min�π + C n⁄  - S�n,0� ≤ 0. Altogether, given our assumptions, we obtain 

|u(-L�n)| ≤ |u(-M)| < ∞ . Thus, we have identified a dominating function for |u(-L�n)|. The 

dominating function |u(-M)| is constant and therefore (absolutely) integrable. Thus, we can 

                                                           
40 See, for example, Klenke (2014, Chapter 12.2). 
41 See Föllmer and Schied (2011, relation (2.20)). 
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apply Lebesgue´s dominated convergence theorem42 and obtain 

limn→∞ E[u(-L�n)] = E[ limn→∞ u(-L�n)] = 0. 

Theorem 3: 

We follow the lines of the proof of Theorem 2. From S�n → μ a.s. and L�n → 0 a.s., we 

obtain WI(n)→W0 - π a.s., where WI(n) = W0 - π - (L�n S�n⁄ )Xi. Therefore, we also 

obtain  u(WI(n))→ u(W0 - π) a.s. In addition, we have - M < WI(n) ≤ W0 - π < W0 and 

therefore  u(-M) ≤ u(WI(n)) ≤ u(W0). Overall, we obtain on the basis of our assumptions that 

|u(WI(n))| ≤ max�u(W0),|u(-M)|� < ∞. Thus, we have found a dominating integrable 

function, and therefore, we can apply Lebesgue´s dominated convergence theorem, so we are 

able to conclude that E[u(WI(n))]→E�u�W0 - π�� = u(W0 - π). 

Theorem 4:  

We proceed from π(n) = μ + l(n) with l(n) ≥ 0. The result L�n→0 a.s. of Theorem 2 holds as 

well in the case of L�n = max (S�n - π(n) - C/n,0). From condition (13b), i.e. limn→∞ l(n) = 0,     

we thus obtain WI(n)→W0 - μ a.s., in which WI(n) = W0 - π(n) - (L�n S�n⁄ )Xi, and therefore, 

altogether u(WI(n))→u(W0 - μ) a.s. With respect to |u(WI(n))|, we obtain the same 

dominating function as in Theorem 3. Thus, we finally obtain E[u(WI(n))] → u(W0 - μ). 
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For Online Publication 

 

O.  Calculations for the Examples 

 

O.1 Partial Moments of the Normal Distribution 

Using the results of Winkler et al. (1972) on partial moments, we generally obtain the 

following for Y ~ N(μ, σ2): 

(O.1a)   XEz(Y) = σ n(m) - (z - μ) N(-m)      

(O.1b)   XVz(Y) =  σ2N(-m) + (z - μ)2N(-m) - σ(z - μ) n(m), 

in which m = (z - μ)/σ. The quantities N(x) resp. n(x) denote the distribution function resp. 

the density function of the standard normal distribution, and the quantities XEz =  E[max(X - 

z, 0)]  resp. XVz  = E[max(X - z, 0)2] stand for the excess expectation resp. the excess 

variance with regard to a target quantity z. 

For L�n = max(S�n- π, 0), we therefore have with S�n ~ N(μ, σ2/n), z = π, σ = σ/√n and 

m=mn = √n (z - μ)/σ  

(O.2a)   E(L�n) = XEπ(S�n) = σ n(mn)/√n - (z - μ)N(-mn) 

In addition, we obtain 

(O.3a)   E �L�n
2� = XVπ(S�n) = σ2

n N(-mn) + (z - μ)2N(-mn) - σ
√n (z - μ) n(mn) 

and therefore 

   Var(L�n) = σ2

n [N(-mn) - n(mn)2] 

(O.3b)                      - σ
√n (z - μ) n(mn)[1 - 2N(-mn)]  

            + (z - μ)2N(mn)N(-mn). 

 

O.2 Actuarially Fair Premium 

In this case, we have π = μ, z - μ = 0, mn = 0, N(mn) N(-mn) = N(0) = 0.5 and 

n(mn) = n(0) = 1/√2π ≈ 0.3989. Therefore, we obtain 

(O.4a)   E(L�n) = σ n(0)/√n ≈ 0.3989 σ/√n 
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(O.4b)   Var(L�n) = σ2

n [0.5 - n(0)2] ≈ 0.341⋅ σ2

n . 

 

O.3 Safety Loading (14) 

We have z = π = μ + N1-ασ/√n, z - μ = N1-ασ/√n, mn = N1-α, N(mn) = N(N1-α) = 1 - α and               

N(-mn) = α. We therefore obtain 

(O.5a)   E(L�n) =  σ
√n [n(N1-α) + (1 - α)N1-α] 

resp.  

(O.5b)   E(L�n)= h1(α) σ/√n , 

using the auxiliary quantity 

(O.5c)   h1(α) ≔ n(N1-α) + (1 - α) N1-α. 

Obviously, we have  h1(α) > 0 for α < 0.5.  

In addition, we have 

(O.6a) 
                       Var(L�n) = σ2

n [α - n2(N1-α) - N1-α n(N1-α)(1 - 2α)  

                                              + N1-α
2 α(1 - α)] , 

resp.  

(O.6b)   Var(L�n) = h2(α) σ2/n , 

using the auxiliary quantity 

(O.6c)   h2(α) ≔ N1-α
2 α(1 - α) + α - n2(N1-α) - N1-α n(N1-α)(1 - 2α).  

Again, we have h2(α) > 0 for 0 < α < 0.5 (which is confirmed by a plot of the function).     
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