Recognizing grabbing actions from inertial and video sensor data in a warehouse scenario


Diete, Alexander ; Sztyler, Timo ; Weiland, Lydia ; Stuckenschmidt, Heiner


DOI: tba
Dokumenttyp: Konferenzveröffentlichung
Erscheinungsjahr: 2017
Buchtitel: Procedia Computer Science
Seitenbereich: tba
Veranstaltungstitel: The 14th International Conference on Mobile Systems and Pervasive Computing, MobiSPC 2017
Veranstaltungsort: Leuven, Belgium
Veranstaltungsdatum: July 24-26, 2017
Ort der Veröffentlichung: tba
Verlag: tba
ISBN: tba
Verwandte URLs: http://cs-conferences.acadiau.ca/mobispc-17/
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Praktische Informatik II (Stuckenschmidt 2009-)
Fachgebiet: 004 Informatik
Abstract: Modern industries are increasingly adapting to smart devices for aiding and improving their productivity and work flow. This includes logistics in warehouses where validation of correct items per order can be enhanced with mobile devices. Since handling incorrect orders is a big part of the costs of warehouse maintenance, reducing errors like missed or wrong items should be avoided. Thus, early identification of picking procedures and items picked is beneficial for reducing these errors. By using data glasses and a smartwatch we aim to reduce these errors while also enabling the picker to work hands-free. In this paper, we present an analysis of feature sets for classification of grabbing actions in the order picking process. For this purpose, we created a dataset containing inertial data and egocentric video from four participants performing picking tasks. As we previously worked with logistics companies, we modeled our test scenario close to real-world warehouse environments. Afterwards, we extracted features from the time and frequency domain for inertial data and color and descriptor features from the image data to learn grabbing actions. We were able to show that the combination of inertial and video data enables us to recognize grabbing actions in a picking scenario. We also show that the combination of different sensors improves the results, yielding an F-measure of 85.3% for recognizing grabbing actions.

Dieser Datensatz wurde noch nicht in die Unibibliographie aufgenommen, es ist eine Unveröffentlichte Publikation. Diese Publikation als "Jetzt erschienen" melden.




+ Zitationsbeispiel und Export

Diete, Alexander und Sztyler, Timo und Weiland, Lydia und Stuckenschmidt, Heiner (2017) Recognizing grabbing actions from inertial and video sensor data in a warehouse scenario. In: Procedia Computer Science 2017 tba [Konferenzveröffentlichung]



+ Suche Autoren in

+ Aufruf-Statistik

Aufrufe im letzten Jahr

Detailierte Angaben




Actions (login required)

Eintrag anzeigen Eintrag anzeigen