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Abstract

We develop a general model of the financial system that allows for the evaluation of bank
regulation. Our framework comprises the agents and institutions that have proved crucial
in the propagation of the subprime mortgage shock in the U.S. into a global financial crisis:
Commercial banks and investment banks, which can also be interpreted as shadow banks,
interact on wholesale debt markets. Beside a market for short term interbank loans and
long term bank bonds, other funding sources include insured customer deposits, uninsured
investor deposits and repos. While credit to the real sector is the principal asset of commer-
cial banks, investment banks specialize in trading securities, which may differ according to
risk, maturity and liquidity. As a first application of the model we implement the liquidity
coverage ratio (LCR) regulation and analyze its impact on bank balance sheets, interest
rates, the transmission of monetary policy and the stability of bank lending in the face of
shocks. We find that the LCR regulation reduces the supply of loans to the real sector, in-
creases the maturity and interest rate of long term wholesale debt, and strongly diminishes
the role of the overnight interbank market as a funding source. Our simulations suggest
that the transmission of changes to short term monetary policy rates is severely impaired
when the LCR regulation is binding. Furthermore, we find that a strong confidence shock
can lead to a protracted credit crunch under the liquidity regulation.
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1 Introduction

Starting in February 2007, increasing defaults in subprime mortgages in the U.S. shocked the fi-
nancial sector. By September 2008, the relatively small and local losses from subprime mortgages
had developed into a global financial crisis, which eventually threw many economies around the
world into recession. The channels through which the initial losses propagated were manifold,
but they were by no means unknown. The theory of fire sales introduced by Shleifer and Vishny
(1992), the financial accelerator model of Bernanke and Gertler (1989), the theory of bank runs
developed by Diamond and Dybvig (1983) and the financial contagion models introduced by
Allen and Gale (2000) arguably constitute a sufficient intellectual basis for understanding the
individual mechanisms that played out during the financial crisis. All of these contributions were
acknowledged as being seminal well before the dawn of the crisis. Hence, there was no lack of
basic understanding of mechanisms but of in-depth knowledge of the institutional structure of
the financial system, which includes the interdependencies and the interactions of the relevant
business models and individual agents. Over the past decade, a plethora of theoretical and em-
pirical studies has substantially advanced this knowledge on many fronts. However, a holistic
view of the financial system remains a challenge. This is not least due to the complexity that
ensues from the interplay of heterogeneous institutions such as traditional retail banks, whole-
sale funded banks, investment banks, hedge funds, money market funds, insurance companies
and pension funds. Institutions’ balance sheets are interconnected to form a dynamic network
that responds, for example, to financial stress, phase changes in the business cycle, monetary
policy and new regulation. It is thereby not only the structure of the network that is affected.
Shifts in agents’ behavior could preserve the individual links of the network but change the way
shocks propagate through the network. For example, it is of great significance for the stability
of the system whether lender-borrower relationships are formed through short-term or long-term
loans, or whether the assets that overlap between agents’ portfolios are more or less liquid. In
this regard, we believe that the way forward towards a better understanding of the financial
system as a whole will require a stronger focus on interactions in the financial sector. Taking
the interactions of agents into account will facilitate higher precision in the design and impact
assessment of new regulation. Furthermore, unintended side effects of regulation, which are often
the consequence of a system’s complexity, can be better anticipated.

In this paper, we develop an extensive agent-based model of the financial sector. The agent-
based approach is particularly well suited with regard to facilitating a holistic, but detailed view
on the financial system. By modeling the decentralized decision making process of heterogeneous
banks and by letting them interact on asset and funding markets, we allow for complex dynamics
to emerge. Thereby we avoid issues of mathematical tractability, which would pose limitations
to the scope of the model in a more standard partial equilibrium setting. Somewhat atypically,
the model is not designed with a specific question in mind, but rather as a general framework
that can be quickly adapted to address a variety of questions concerning, for example, financial
stability, expectation formation, asset pricing, monetary policy transmissions etc. In particular,
we will use the framework as a laboratory for policy evaluations. Thereby, the extensive scope
of the model allows us to implement existing regulation in unprecedented detail and to assess its
likely impact on several decision areas.

Our paper contributes to the existing literature in two domains. The first contribution is of
technical nature, i.e. we propose ways of modeling important features of the financial system.
The concepts we introduce allow for a rich bank balance sheet structure that includes assets of
differing maturity and liquidity as well as diverse debt forms such as short and long term secured
and unsecured funding instruments. We endow the agents of the model, which represent either
a commercial bank or an investment bank with sophisticated tools for managing their balance
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sheets. The portfolio and the capital structure choices are explicitly optimized and take into
account risk, return/cost and maturity. Interest rates and prices are endogenously computed
with a novel mechanism. The second contribution of the paper pertains to the application of
the model. We implement the liquidity coverage ratio (LCR) regulation in unprecedented detail
and assess its impact on balance sheets, interest rates, monetary policy and some aspects of
financial stability.1 The results we obtain from simulations confirm existing impact assessments
but also suggest novel impact channels. Specifically, we find that the LCR regulation will reduce
loans to the real sector, increase long term interest rates and drastically diminish the role of
the overnight interbank market as a source of funding. Concerning its impact on monetary
policy, our simulations suggest two opposing effects: While the transmission of changes to short
term policy rates is severely impaired when the LCR regulation is binding, the transmission of
changes to the volume of customer deposits as a consequence of monetary policy is likely to have
a slightly more pronounced effect on bank lending. In our analysis of financial stability, we focus
on commercial banks’ loan supply to the real sector. Emulating the loss of confidence banks
experienced after the collapse of Lehman Brothers in September 2008, we find that the LCR
regulation is unlikely to stabilize the loan supply. On the contrary, when the LCR regulation
is binding, a strong confidence shock can lead to a protracted credit crunch by destabilizing
the creditors of commercial banks. A solvency shock, on the other hand, is initially slightly
less detrimental when the LCR regulation is binding. However, generally lower profit rates for
commercial banks under the LCR regulation may lead to a slower recovery from the shock.

The rest of this paper is organized as follows: We proceed in Section 2 with a brief review
of the related literature. Section 3 introduces our model and derives the behavior of each agent
type in detail. In Section 4, we extend the model by the liquidity coverage ratio regulation.
Simulation results are presented in Section 5 and Section 6 concludes.

2 Related Literature

A general model of the financial system naturally relates to a large body of literature. First,
the empirical literature that sketches developments before and during the financial crisis serves
as a rough guide to our modeling choices with regard to the relevant agents and institutions.
We thereby assume that the financial crisis has revealed the relevant transmission channels of
financial stress that we intend to include in our model. Controlling these transmission channels
has also been the principal aim of the regulation that has been introduced as a response to the
crisis and whose assessment we want to facilitate with our model. More specifically, our choice
to include two types of bank business models is motivated by the fact that large broker dealer
banks (and investment banks) were at the core of the financial crisis. Their highly overlapping
portfolios2, central position in the interbank network3 and prevailing short term funding sources4

1An impact assessment of the LCR regulation is chosen as the first application of our framework because it
potentially affects all parts of banks’ balance sheets (asset composition, asset liquidity, funding structure and
maturity structure). Therefore, it is well suited to demonstrate the workings of our model and provides a good
overview of the types of analysis that can be conducted.

2Blei and Ergashev (2014) e.g. measure a buildup of systemic risk in the US due to asset commonality in
the run up of the financial crisis. The higher the overlap, the greater the spill-overs will be as a consequence of
fire sales. Theoretical and empirical studies have studied the existence and implications of fire sales in financial
markets (see e.g. Brunnermeier and Pedersen (2009) and Merrill et al. (2012), respectively).

3Craig and Von Peter (2014) e.g. find that being a large primary dealer or international bank in the German
interbank network raises the probability of being at the core of the interbank market.

4Adrian and Shin (2010) document that the short term funding, typically in the form of repos, induces a pro-
cyclical relationship between leverage growth and asset growth for large investment banks. Gorton and Metrick
(2012) argue that a run on repos was at the heart of the financial crisis.
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rendered them a catalyst for financial stress. Furthermore, the strong link between investment
banks and commercial banks through wholesale funding boosted spillovers into the real sector.5

Our paper is related to the strands of literature that study the theory of financial shock
propagation. Shocks can propagate directly through creditor-debtor relationships on the inter-
bank market or, in combination with fire sales, indirectly through overlapping portfolios.6 In
particular, the literature on interbank networks has flourished in the wake of the financial cri-
sis. Typically an interbank network is constructed on the computer in order to analyze the
transmission of an exogenous shock to one of the nodes in the network. The general network
structure, the size of shocks, the location of the shocked node in the network and the capital
structure of the banks linked within the interbank market have been found to be crucial for the
susceptibility of the banking system to systemic risk.7 However, most network models in the
literature comprise of a static structure in which banks do not actively manage their balance
sheets. Our paper, on the other hand, is more related to a small but burgeoning literature which
model banks as agents that can in one form or the other react to changing circumstances. The
behavior of agents thereby changes the dynamics of shock propagation. One of the first models
in this spirit is developed by Bluhm and Krahnen (2011). They study a system of three financial
institutions that are connected through direct interbank linkages and indirect linkages due to
overlapping portfolios. Prices are computed endogenously, which can lead to fire sale dynamics,
as institutions, which need to fulfill capital requirements, adjust their portfolios in response to
a shock. In Georg (2013), banks optimize their portfolio consisting of a risky asset and riskless
excess reserves. They fund their asset side with equity, deposits, interbank loans and central
bank loans. The volume of deposits and the return on the risky asset fluctuate randomly, which
triggers reactions from banks. The framework is employed in order to compare different network
structures with regard to their effect on stability. According to Georg (2013), contagion tends to
be less pronounced in scale-free interbank networks than in random and small-world networks. In
the agent-based model developed by Fischer and Riedler (2014), agents, which represent financial
institutions, optimize a portfolio consisting of a risky asset and cash. The price of the risky asset
is determined endogenously through market clearing and thus depends on the expectations of
agents. Depending on their past success, agents can follow either a fundamentalist or a chartist
strategy when forming expectations. Within this framework, it is shown that when leverage
is high and funding short term, overlapping portfolios become a major source of systemic risk.
Greenwood et al. (2015) construct a model of fire-sale spillovers that can be estimated with
balance sheet data. A bank in their model adjusts its balance sheet according to a specified rule
when it is hit by an adverse shock. The adjustment leads to price impacts, which may induce
other banks to react. Duarte and Eisenbach (2015) extend this framework in order to build a
systemic risk measure that can track vulnerabilities over time. They calibrate their model on
U.S. broker-dealers, using data from the tri-party repo market. The calibrated model documents
a buildup of systemic risk starting in the early 2000s. Furthermore, it can be inferred that during
the financial crisis an exogenous 1% decline in the prices of repo-financed assets would have led
to fire sales resulting in a 12% drop in broker-dealers’ equity. Halaj and Kok (2015) present an
agent-based model, in which the interbank network emerges endogenously from agents’ portfo-

5Wholesale funding has become an increasingly important funding source for commercial banks since the early
1990s (cf. Feldman and Schmidt, 2001). The consequences of this development were felt during the financial crisis
as interbank markets were severely disrupted (see e.g. Afonso et al., 2011). Ivashina and Scharfstein (2010) e.g.
find that banks that were more reliant on refinancing their loans to the real sector through wholesale debt rather
than deposits displayed a higher decline in lending.

6Seminal contributions to the literature on direct linkages include Allen and Gale (2000); Freixas et al. (2000);
Eisenberg and Noe (2001). Fire-sale-driven shock propagation is discussed e.g. in Shleifer and Vishny (1992);
Kiyotaki and Moore (1997); Brunnermeier and Pedersen (2009).

7For a survey of the literature see e.g. Chinazzi and Fagiolo (2013).
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lio optimization. Since regulation imposes constraints on the portfolio decisions of agents, the
authors can use their model in order to assess the impact of different regulatory measures on
the structure of the interbank market and the implied contagion risk. Their findings suggest
that while large exposure limits do have a pronounced effect on contagion risk, credit valuation
adjustments are less effective. Aldasoro et al. (2015) develop a network model in which banks
lend to each other in the interbank market and invest in non-liquid assets. While aggregate po-
sitions of interbank assets on balance sheets are the result of portfolio-optimization and market
clearing, specific interbank linkages are generated via matching algorithms. When testing the
impact of liquidity and capital requirements on their model, they find that although both types
of regulation effectively reduce systemic risk, capital requirements result to be less detrimental
to overall investment. Montagna and Kok (2016) develop an agent-based model, where agents
interact with each other through a multi-layered network model. The linkages of different layers
of the model thereby represent interbank relationships of different maturities as well as indirect
linkages through portfolio overlap. In their model, banks adjust their balance sheets only when
regulatory requirements are violated. The authors find that including the multiple layers of
linkages non-linearly amplifies the propagation of shocks.

A last strand of literature that needs mentioning concerns itself with the impact of the
liquidity coverage ratio regulation, which is the focus of the simulations in Section 5. The Basel
Committee issued a first version of the regulation in December 2010. After its endorsement
by the Group of Governors and Heads of Supervision, a revised final version of the LCR was
issued in January 2013. Taking into account that the regulation is still in its implementation
phase (in the EU it will be fully implemented in 2018), it is no surprise that papers discussing it
are scarce and existing impact assessments rather tentative. Nevertheless, some work has been
done concerning the regulation’s impact on banks’ balance sheets, its potential interaction with
monetary policy and its effect on financial stability. Cetina and Gleason (2015) provide a review
of the literature. When pertinent, we refer to the findings of individual papers in our discussion
of the simulation results.

3 The Model

The model, which is schematized in Figure 1, comprises three types of markets: asset markets,
funding markets and a banking market. The banking market is populated by heterogeneous
agents that can be classified as either commercial bank agents or investment bank agents. Inter-
actions between the two bank business models are confined to wholesale debt markets including
an interbank market, which features a stylized core-periphery structure.8 In our model, and
broadly in line with empirical evidence (see e.g. Craig and Von Peter, 2014), a few large invest-
ment bank agents at the core provide interbank loans to many small commercial bank agents
in the periphery of the banking market. A commercial bank agent follows a rather traditional
business model. It takes customer deposits and issues loans to the real sector. Besides using
deposits, commercial banks can finance their activities through equity and wholesale debt, which
comes in the form of short term overnight loans and long term bank bonds. An exogenous central
bank acts as a lender of last resort by providing limitless credit to commercial bank agents at
a relative expensive marginal lending rate. Investment bank agents, on the other hand, do not
issue loans to the real sector nor do they accept customer deposits. They provide loans to other

8A natural extension of the model is to combine agents in order to create bank holding company representa-
tions with realistic balance sheet structures that operate a combination of the commercial bank and investment
bank business model. Each entity of such a hybrid agent would act according to its own business model, while
profits, losses and information would be shared with all other entities organized under the same holding company.
Regulation would apply to the balance sheet at the holding company level instead of at the entity level.
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Figure 1: Model setup.

banks and specialize in trading on secondary asset markets. For funding they rely on equity, un-
secured (and therefore volatile) deposits from institutional investors, short sales and repurchase
agreements (repos), in which cash is provided in exchange for collateral by a central counter-
party. The investment bank agents in our model do not directly lend to each other. Nevertheless,
they are indirectly highly interconnected through overlapping portfolios. Given the features of
their business model, investment bank agents may also represent financial institutions that are
often classified as shadow banks (e.g. hedge funds, money market funds, structured investment
vehicles etc.).

3.1 Commercial Banks

Commercial banks in the model issue loans to the real sector, which they fund via equity and
different types of debt. Thereby, they profit from the spread between interest rates on loans and
refinancing costs. The balance sheet of commercial bank agent c ∈ {1, 2, ..., nC} at the end of
period t has the following structure

Assets Liabilities
Loans, Lc,t Deposits, Dc,t

Cash, Cc,t Short-term Debt, Ic,t
}

Wc,tLong-term Debt, Bc,t

Equity, Ec,t

with Wc,t denoting wholesale debt.
It is important to consider the timing of the commercial bank model in order to derive the

laws of motion for the balance sheet variables. Each period starts with the registration of defaults
on loans and changes to deposits. To simplify matters, we assume occur overnight, i.e. between
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the end of period t−1 and the beginning of period t. Agents furthermore pay and receive interest
payments as well as principal payments at the beginning of a period. The first decision entails
the appropriation of profits that have accrued overnight. They can either be retained or paid out
as dividends to shareholders. Decisions on the issuance of new loans and desired cash holdings
follow. Ultimately, agents raise funds on wholesale debt markets in order to equilibrate the asset
and liability side of their balance sheets.

The profit of commercial bank agent c that needs to be allocated in period t can be computed
from the difference between interest payments on loans and the last period’s funding costs:

Πc,t = Lc,t−1r
L
c,t − (Dc,t−1 +Wc,t−1)r

O
c,t−1, (3.1)

with rOc,t = (Dc,tr
D
c,t+Bc,tr̄

B
c,t+Ic,tr̄

I
c,t)/(Dc,t+Wc,t) being a composite measure of funding costs

comprising three components: the interest rate paid for deposits rDc,t, the average interest rate

paid for long term wholesale debt r̄Bc,t and the average interest rate paid for short term debt

r̄Ic,t, which besides interbank interest rates includes borrowing from the marginal lending facility

of the central bank. The effective return on loans rLc,t is a function of the charged interest rate

r̃Lc,t−1 and the stochastic process ρLc,t of loan default rates:

rLc,t = (1− ρLc,t)r̃
L
c,t−1 − ρLc,t (3.2)

Both r̃Lc,t and ρ
L
c,t are exogenous to our model.

The decision on the appropriation of profit follows a simple rule: We assume that commercial
bank agents have an exogenously defined equity target E∗

c and that they cannot raise new equity
from outside sources. As a consequence, any profits Πc,t that would lead to equity above the
target are paid out as dividends Divc,t:

9

Ec,t = min{E∗
c , Ec,t−1 +Πc,t}, (3.3)

Divc,t = max{0, Ec,t−1 +Πc,t − Ec,t}

The difference between profit and dividends is defined as the agent’s retained earnings, i.e.
∆Πc,t = Πc,t −Divc,t. According to the timing of the model explained above, retained earnings,
changes to deposits, incoming and outgoing debt payments change the cash holdings before any
asset side decisions are considered by commercial bank agents. Taking this into account, we
define an intermediate measure for cash holdings:

C′
c,t = Cc,t−1 +∆Πc,t +∆Dc,t + (1 − ρLc,t)(1 −mL)Lc,t−1 − (1 −mB)Bc,t−1 − Ic,t−1, (3.4)

with ∆Dc,t being a random change in customer deposits, (1−mL) being the constant repayment
rate for performing loans and (1−mB) being the constant repayment rate for long term wholesale
debt.10 The parameters {mL,mB} ∈ [0, 1] can be interpreted as a maturity parameter for loans
and long term debt respectively, with {mL,mB} = 0 meaning that debtors need to repay all
credit every period, while {mL,mB} = 1 implies that the principal of loans is never to be paid

9Our heuristic for the payout management of bank agents is supported by empirical evidence. Adrian et al.
(2015) e.g. find that financial institutions adjust payouts in order to achieve a desired path for equity. Furthermore,
in times of financial stress, which is at the focus of the analysis conducted with the model, it can be rather difficult
or undesirable to raise equity capital.

10In reality, loans to the real sector and long term wholesale debt typically do not exhibit constant repayment
rates. However, when interpreting Lc,t and Bc,t as portfolios of loans and debt contracts, the modeling choice
becomes more realistic.
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back. Taking into account that (1 − mL)m
t−1
L yields the fraction of the loan portfolio that

matures at date t, we can compute the average maturity of the loan portfolio as follows:

∫ ∞

1

(1 −mL)m
t−1
L tδt =

(mL − 1)(log(mL)− 1)

log(mL)2
. (3.5)

Due to regulatory or preference related reasons, it may be in the interest of commercial bank
agents to hold a certain amount of cash (liquid assets) at the end of period t. The law of motion
for cash holdings therefore encompasses the choice variable ∆Cc,t:

Cc,t = C′
c,t +∆Cc,t (3.6)

Likewise, the law of motion for loans to the real sector on a commercial bank agent’s balance
sheet contains a choice on how many new loans should be issued:

Lc,t = mLLc,t−1(1− ρLc,t) + ∆Lc,t (3.7)

While loans and cash positions depend on decisions ∆Lc,t and ∆Cc,t, equity follows a fixed
rule and deposits fluctuate randomly around their initial value Dc,0 (i.e. Dc,t = Dc,0 +∆Dc,t),
the change to the volume of wholesale debt ∆Wc,t is derived from the balance sheet identity:

Wc,t =Wc,t−1 +∆Wc,t = Lc,t + Cc,t − Ec,t −Dc,t (3.8)

Therefore, the funding decision a commercial bank agent faces concerns the composition of
wholesale debt rather than its volume. Specifically, each agent will have to choose the fraction
ac,t of wholesale debt to be borrowed in long term debt, i.e.

Bc,t = ac,tWc,t. (3.9)

The amount of short term funding is simply the difference between wholesale debt and long term
debt, i.e. Ic,t =Wc,t −Bc,t. Both short term and long term debt will be raised from investment
banks (agents i ∈ {1, 2, ..., nI}), or - in the case of a shortage of credit supply - from the central
bank’s (agent CB’s) marginal lending facility. For the sake of simplicity, we assume that funds
from the central bank as well as short term interbank debt need to be rolled over each period.
We can therefore define the total volume of short term debt as the sum of interbank short term
debt and funds from the central bank: Ic,t = Ic,CB,t +

∑nI

i=1 Ic,i,t.

3.1.1 Asset Side Management

In managing the asset side of their balance sheet, commercial bank agents follow a simple behav-
ioral rule: expand the balance sheet if risk management does not object and the expected return
on loans Ec,t[r

L] exceeds the expected marginal wholesale refinancing costs Ec,t[r
∆W ]. Ec,t[·]

denotes the expectations operator, with the subindices defining by whom and in what period
expectations are formed. Taking into account the two conditions of the asset side management
heuristic, the targeted volume of newly issued loans ∆L∗

c,t amounts to

∆L∗
c,t =

{

∆Lrisk
c,t if Ec,t[r

L] ≥ Ec,t[r
∆W ]

max(0, Ec,t +Dc,t −mLLc,t−1(1− ρLc,t)) if Ec,t[r
L] < Ec,t[r

∆W ].
(3.10)

Equation (3.10) introduces commercial bank agents’ risk management, with ∆Lrisk
c,t specifying

an upper limit for newly issued loans for which risk seems acceptable. The amount of loans on
the balance sheet will be bound by available equity and deposits if the cost of wholesale funding
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exceeds returns on loans. Thereby we assume that the cost for deposits are always lower than
the return on loans, i.e. rD < rL.

Commercial bank agents employ a value at risk approach to specify the risk-management-
bound ∆Lrisk

c,t for new loans. The bound seeks to ensure that the bank’s equity is sufficient
to absorb losses from defaults on loans and variations in refinancing costs. Technically, risk
management allows the issuance of new loans only until the bank’s total value at risk is equal
to its equity, i.e. ∆Lrisk

c,t = V aR−1
t (−Ec,t). A bank’s value at risk is computed as the sum of

the values at risk with confidence level xL from outstanding loans V aRout, prospective loans
V aRprosp and wholesale refinancing costs V aRref :

11

V aRt(∆L) = V aRout
t + V aRprosp

t (∆L) + V aRref
t (∆L,∆C) (3.11)

with

V aRout
t = E

c,t

[
F−1
out(x

L)
]
mLLt−1(1 − ρc,t), (3.12)

V aRprosp
t (∆L) = E

c,t

[
F−1
prosp(x

L)
]
∆L and (3.13)

V aRref
t (∆L,∆C) = E

c,t

[

F−1
ref (x

L)
]

Wc,t(∆L,∆C). (3.14)

F−1
out, F

−1
prosp and F−1

ref are the inverse cumulative distribution functions, or quantile functions, of
losses from outstanding loans, losses from prospective loans and refinancing costs, respectively.
The expected values of the respective quantile functions at point xL are computed through Monte
Carlo simulations described in Section 3.1.4. Although such simulations increase computation
time, they allow us to include realistic assumptions about the stochastic process of loan defaults
into the risk management of agents. An analytical derivation of the loss distribution under
realistic assumptions is often not possible.

In the context of our model, there is no intrinsic reason for commercial bank agents to hold
cash at the end of a period. In order to minimize their need for external funding, agents will target
a change in cash holdings equal in magnitude but opposite in sign to the current (intermediate)
cash holdings, i.e. ∆C∗

c,t = −C′
c,t. Nevertheless, there are two conditions under which cash

holdings at the end of a period will be positive instead of zero. First, regulatory requirements
such as a liquidity coverage ratio may impose a bound on cash holdings in dependence on the loan
portfolio and other balance sheet variables, i.e. ∆Creg

c,t (·) = Creg
c,t (·)−C′

c,t. Second, a commercial
bank agent may want to deleverage faster than the maturity structure of its debt permits. In
this case, proceeds from loans will be held in cash until they can be used to pay back long term
debt. Since the maturity of long term debt imposes a lower limit to the wholesale debt volume
(i.e. Wc,t−1 + ∆Wc,t ≥ mBBc,t−1), the deleveraging bound for changes in cash amounts to
∆Cdel

c,t (L) = mBBc,t−1 +Dc,t +Ec,t −C′
c,t −L. The constraints on cash are thus defined by two

lower bounds: ∆Cc,t ≥ {∆Creg
c,t ,∆C

del
c,t }. Unless the target ∆C∗

c,t is smaller than one of these
bounds, ∆Cc,t = ∆C∗

c,t. Otherwise, ∆Cc,t is set to the value of the violated bound. Lending is
constrained from above by a precautionary limit and by regulation: ∆Lc,t ≤ {∆Lprec

c,t ,∆Lreg
c,t }.

The precautionary limit ∆Lprec
c,t := (1 −mL)Lc,t−1 + Ec,t inhibits an excessively rapid build up

of the loan portfolio. In general, if Lreg
c,t (·) defines the maximum volume of loans permitted by

the regulator given the state of relevant balance sheet variables, the regulatory upper bound
amounts to ∆Lreg

c,t (·) = Lreg
c,t (·) −mLLc,t−1(1− ρc,t).

12

11For the sake of simplicity, we assume perfect positive correlation between the individual risks in Eq.(3.11) by
modeling the total value of risk as the unweighted sum of individual value of risks. V aR is therefore the upper
bound for the true value of risk.

12A regulatory upper bound on the issuance of new loans to the real sector may seem arbitrary. However, since
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3.1.2 Liability Side Management

The total volume of wholesale debt to be raised by a commercial bank agent is determined by
the asset side management and the law of motion specified in Eq. (3.8). The task of an agent’s
liability side management therefore boils down to the decision on what proportion ac,t ∈ [0, 1]
of its wholesale debt volume Wc,t should be borrowed in long term debt Bc,t = ac,tWc,t. Both,
the interest rate for new short term debt rIc,t and new long term debt rBc,t are endogenous to
our model. They are set each period by individual investment bank agents and a market maker,
respectively. The structural difference between the two forms of wholesale debt is defined by the
exogenously set maturity parameter mB. While short term debt is raised at the end of period
t − 1 from individual investment bank agents and needs to be fully repaid at the beginning of
period t, long term debt is issued (like a bond) at the end of period t − 1 and only a fraction
(1 −mB) of it matures at the beginning of period t. Hence, for commercial bank agent c the
cost for short term debt in period t is a weighted sum of interest rates determined in period t:

rIc,t =

∑nI

i=1 Ic,i,tr
I
i,c,t

∑nI

i=1 Ic,i,t
, (3.15)

with Ic,i,t denoting the volume of short term debt borrowed from investment bank agent i and
rIi,c,t being the interest rate charged by that investment bank agent. In the case of insufficient
supply of short term interbank debt, commercial bank agents will have to resort to borrowing
from the central bank, which offers limitless credit from its marginal lending facility at a relatively

expensive interest rate rCB
t . With Ic,CB,t = Ic,t −

∑nI

i=1 Ic,i,t being the demand for central bank
credit and aCB

c,t = Ic,CB,t/Ic,t being the fraction of short term debt borrowed from the central
bank, the average interest rate for short term debt amounts to

r̄Ic,t = (1− aCB
c,t )r

I
c,t + aCB

c,t r
CB
t . (3.16)

The average short term interest rate is potentially very volatile, since both the fraction of short
term debt borrowed from the central bank as well as the interest rate charged by investment
bank agents may change every period. The cost for long term debt at time t is typically less
volatile, since it is calculated as a weighted sum of past and current interest rates:

r̄Bc,t =
mBBc,t−1r̄

B
c,t−1 +∆Bc,tr

B
c,t

Bc,t

, (3.17)

with r̄Bc,t denoting the current average interest rate for long term debt and ∆Bc,t = Bc,t −
mBBc,t−1 being the newly borrowed long term funds. The maturity parameter mB adds persis-
tence to long term funding costs. We infer that if commercial bank agents are risk averse, and
we assume they are, there exists a trade-off between funding costs and funding stability from
which an optimal share a∗c,t of long term debt can be derived. We model this trade-off through
a mean-variance optimization of the expected interest rate surplus in the next period Sc,t+1 per
unit of outstanding loans this period:

a∗c,t = argmax
a

(Ec,t[St+1]− 0.5λc,tVarc,t(St+1)) , (3.18)

agents lack the ability to raise equity quickly, any capital requirements regulation can be translated into a limit
on the volume of assets on the balance sheet.
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with λc,t being a time-variant scaling factor13 and

Sc,t+1 = rLc,t+1 −
Wc,t

Lc,t

(
ac,tr̄

B
c,t+1 + (1− ac,t)r̄

I
c,t+1

)
. (3.19)

Since a∗c,t is a target ratio, we assume that it is calculated under the hypothetical premise that
the composition of wholesale debt can be freely chosen in period t and that all maturing debt
needs to refinanced in period t+1. In this case the average long term interest rate in period t+1
adds up to r̄Bc,t+1 = mBr

B
c,t + (1−mB)r

B
c,t+1. When covariance terms are neglected, the solution

to the maximization problem in Eq. (3.18) can be approximated with the following equation
(see Appendix B):

a∗c,t ≈
V̂arc,t(r̄

I , ψI)− Ec,t[r
B]−Ec,t[r̄

I ]
λc,t

Lc,t
Wc,t

V̂arc,t(r̄I , ψI) + (1−mB)2V̂arc,t(rB , ψB)
(3.20)

The operator V̂ar(x, ψ) denotes an exponentially weighted moving variance with memory param-
eter ψ. A detailed derivation of expected values and variances is given in Section 3.1.4. Three
factors may interfere with a commercial bank agent’s ability to reach its desired composition of
wholesale debt. First and foremost, the supply of long term debt poses an upper bound to the

desired composition, i.e. asupc,t =
∑nI

i=1(mBBc,t−1 + ∆Bi,c,t − BMM
c,t−1)/Wc,t, with ∆Bi,c,t being

the excess supply of long term funding from investment bank agent i to commercial bank agent
c and BMM

c,t−1 being the value of the market makers inventory of loans to that commercial bank.
Second, because only the maturing long term debt (1−mB)Bc,t−1 can be repaid or replaced by
other forms of debt, there will be a maturity induced lower bound amat

c,t = mBBc,t−1/Wc,t to the
proportion of wholesale debt borrowed in long term debt. Third, regulatory requirements may
impose a limit aregc,t to the amount of short term debt on a bank’s balance sheet. Therefore ac,t
has an upper and two lower bounds, i.e. asupc,t ≥ ac,t ≥ {aregc,t , a

mat
c,t }. If no bound is violated the

share of long term debt is set to the target rate a∗c,t. With the ratio of long term to short term

wholesale debt, the average rWc,t and marginal r∆W
c,t wholesale refinancing costs can be computed:

rWc,t = ac,tr̄
B
c,t + (1− ac,t)r̄

I
c,t (3.21)

r∆W
c,t = ac,tr

B
c,t + (1− ac,t)r̄

I
c,t (3.22)

Note that the marginal wholesale refinancing costs consider the current interest rate for long
term debt instead of the average interest rates currently paid for long term loans.

3.1.3 Raising short term interbank debt

Once the demand for short term interbank loans Ic,t is known to the commercial bank agent,
it needs to raise these funds on the interbank market. This involves two steps: First, offers
from the interbank market are collected and evaluated. Loan offers will be provided by all nI

investment bank agents and a central bank. The central bank acts as a lender of last resort ( i.e.
ICB,c,t = ∞) and ensures that sufficient funding is available to commercial bank agents. Second,
starting with the offer with the best valuation, agents engage in bilateral transactions until their

13In a mean-variance optimization setup, λ would typically be a risk aversion parameter. However, in our
context it makes sense to define λ as a variable scaling factor. This will allow us to calibrate the trade-off between
funding costs and funding stability along the lines of the following statement: if the probability that short term
funding costs exceed long term funding costs is smaller than x percent, then wholesale debt should be exclusively
short term.
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demand for short term interbank funding is completely satisfied. According to this procedure,
the loan received from investment bank i amounts to

Ic,i,t =







Ii,c,t if Ic,t − Ii,c,t −
∑

ι∈U Iι,c,t ≥ 0

Ic,t −
∑

ι∈U Iι,c,t if Ii,c,t > Ic,t −
∑

ι∈U Iι,c,t

0 else

(3.23)

with Ii,c,t (note the switched order of subindices) denoting the loan volume offered by investment
bank agent i and U := {ι|UC

ι,c,t > UC
i,c,t} being the set of offers with a higher valuation UC than

the offer from investment bank agent i. We assume that an offer is evaluated according to two
factors: the trust vc,i,t between commercial bank agent c and investment bank agent i and the
relative attractiveness uc,i,t of the interest rate. The two factors are evaluated jointly via a
Cobb-Douglas function

UC
c,i,t = vγvc,i,tu

γu
c,i,t, (3.24)

with the exponents γv and γu being the valuation elasticities of the two factors. The trust
component is motivated by relatively recent empirical evidence showing that the frequency of
past transactions between two parties is a good indicator for current links in the interbank market
(see e.g. Cocco et al., 2009; Finger and Lux, 2014; Craig et al., 2015). The variable

ξi,c,t =

{

1 if a transaction takes place

−1 if no transaction takes place

indicates whether a transaction between commercial bank agent c and investment bank agent i
has taken place in period t or not, while the variable

Ξc,i,t =







Ξmax if Ξc,i,t−1 +
ξi,c,t−1

Ξmax ≥ Ξmax

Ξmin if Ξc,i,t−1 +
ξi,c,t−1

Ξmax ≤ Ξmin

Ξc,i,t−1 +
ξi,c,t−1

Ξmax else

defines the aggregation mechanism for the transaction indicator. Within the range of permissible
values, trust vc,i,t ∈ [Ξmin/Ξmax, 1] increases when agents engage in a transaction and decreases
otherwise:

vc,i,t =
Ξc,i,t

Ξmax
(3.25)

The parameter Ξmax > 1 defines the stickiness with which trust increases or decreases. The
larger Ξmax, the more transactions are necessary before two agents completely trust each other.
The relative attractiveness of the interbank interest rate rIi,c,t demanded by investment bank
agent i for a loan to commercial bank agent c is straightforward. The closer the interest rate is
to the currently lowest demanded rate rlowc,t , the higher its attractiveness:

ui,c,t =
rlowc,t

rIi,c,t
(3.26)
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3.1.4 Expectation Formation

Commercial bank agents need to form expectations about all stochastic variables and processes.
This includes the effective return on loans, which with Equation (3.2) amounts to Ec,t[r

L] =
(1−Ec,t[ρ

L])r̃Lc,t−1−Ec,t[ρ
L]. For the sake of simplicity, we assume that commercial bank agents

know the exogenous stochastic process of the loan default rate ρLc,t and can compute its moments,

i.e. Ec,t[ρ
L] = µρL

c,t and
√

Varc,t(ρL) = σρL

c,t . Under this assumption, we can derive estimates of
the value at risk contributions (see Eq. (3.12) and (3.13)) of outstanding and prospective portfolio
losses. Specifically, agents obtain empirical loss-distributions by simulating nrisk evolutions of
their loan portfolio. In the l-th simulation by commercial bank agent c in period t, the relative
volume of outstanding loans Ľout evolves as follows:

Ľout
c,l,t+τ =

τ∏

x=1

(1− ρ̌Loutc,l,t+x)m
x
L, (3.27)

with ρ̌Lout being random values generated with the known stochastic process of the default rate
of outstanding loans. The corresponding loss rate Λout

c,l,t+T risk
in period T risk amounts to

Λout
c,l,t+T risk =

T risk∑

τ=1

(ρ̌Loutc,l,t+τ − (1− ρ̌Loutc,l,t+τ )r̃
Lout
c,l,t )Ľ

out
c,l,t+τ−1. (3.28)

Because loans in our model are never fully paid back we arbitrarily choose T risk = log(0.01)/ log(mL)
(the period in which 99% of loans have been repaid) as the simulation length. We furthermore
define Lout

c,t (l) as the l-th element of the ordered set of losses from the portfolio of outstanding

loans after T risk periods:

Lout
c,t := {Λout

c,1,t+T risk ,Λ
out
c,2,t+T risk , ...,Λ

out
c,nrisk,t+T risk}, (3.29)

with the elements of the set ordered ascendingly, i.e. Lout
c,t (l) ≤ Lout

c,t (l + 1). The estimates of
the quantile functions of losses from outstanding loans (losses from prospective loans are derived
analogously) at point xL can be expressed as

E
c,t
[F−1

out(x
L)] = Lout

c,t (x
Lnrisk) and E

c,t
[F−1

prosp(x
L)] = Lprosp

c,t (xLnrisk). (3.30)

Unlike the stochastic process generating loan defaults, wholesale refinancing costs are endoge-
nous to our model. For the sake of simplicity, the risk management of commercial bank agents
model wholesale refinancing costs in consecutive periods as i.i.d. normally distributed random
variables. This allows us to derive the expected value Ec,t[r

W
total] and variance Varc,t(r

W
total) of

the total wholesale refinancing costs of a loan portfolio analytically:

E
c,t
[rWtotal] =

∞∑

τ=0

mτ
LÊc,t[r

W , ψW ] =
Êc,t[r

W , ψW ]

1−mL

(3.31)

Var
c,t

(rWtotal) =

∞∑

τ=0

m2τ
L V̂arc,t(r

W , ψW ) =
V̂arc,t(r

W , ψW )

1−m2
L

. (3.32)

Note that by discounting wholesale cost with the maturity parameter of loansmL, we assume that
the need for wholesale funding and the volume of outstanding loans to the real sector decrease
at the same speed. This is a cautious assumption since loans are funded partly by customer
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deposits and equity. Given the quantile function of a normally distributed random variable, we
compute

E
c,t
[F−1

ref (x
L)] = E

c,t
[rWtotal] +

√

2Var
c,t

(rWtotal) inverf(2x
L − 1), (3.33)

with inverf(·) being the inverse of the error function. The operators Êt[x, ψ] := (1−ψ)Êt−1[x] +
ψxt in Eq. (3.31) and V̂art(x, ψ) := Êt

[
(x− Êt[x, ψ])

2, ψ
]
in Eq. (3.32) compute the exponen-

tially weighted moving average and variance of variable x respectively, with ψ being a memory
parameter determining the weight of the latest observation of x. By using exponentially weighted
moving averages and variances, we can control how quickly past events become irrelevant to
present decision making.

In the context of our model, it seems reasonable to assume that the current short term and
long term interest rates, which are endogenously determined, reflect all available information.
Therefore, commercial bank agents expect the future rate to be the current rate, i.e. Ec,t[r

B ] =
rBc,t and Ec,t[r

I ] = rIc,t. The expected value of the average short term interest paid r̄Ii,t takes
into account the possibility that a commercial bank agent’s demand for short term debt is not
completely met by investment bank agents. Since excess demand for short term debt will be
covered by the lender of last resort, the expected value of the average short term interest rate
amounts to:

E
c,t
[r̄I ] = (1− Ec,t[a

CB]) E
c,t
[rI ] + Ec,t[a

CB] E
c,t
[rCB], (3.34)

with aCB
c,t = Ic,CB,t/Ic,t being the fraction of short term debt borrowed from the central bank

at time t. Taking into account that the necessity for central bank funding may be erratic rather
than smooth, the expected value of aCB is modeled as an exponentially weighted moving average,
i.e. Ec,t[a

CB] := Êc,t[a
CB, ψI ]. The expectation for the marginal wholesale refinancing cost are

formed as follows:

E
c,t
[r∆W ] = E

c,t
[a] E

c,t
[rB ] + (1 − E

c,t
[a]) E

c,t
[r̄I ] (3.35)

Note that commercial bank agents need to form expectations about the ratio ac,t of wholesale
funding received in long term debt. This is due to the circular dependency between expected
marginal wholesale refinancing costs and ac,t.

14 In order to resolve this circular dependency,
the expected ratio of wholesale funding received in the form of long term debt is defined as the
ratio computed under the assumption that agents ignore the refinancing constraint in Eq. (3.10),
i.e. Ec,t[a] := ac,t|∆Lc,t=min{∆Lriskc,t ,∆L

prec
c,t ,∆L

reg
c,t }

. The assumption implies a temporal order of

events within the decision making process of a bank: First, a loan officer of the bank commu-
nicates the volume of loans she wants to issue in a given period. Second, the risk management
department checks whether the potential investment is acceptable in terms of risk. Third, the
funding department computes the associated funding costs. Fourth, the loan officer collects the
information from the respective departments, compares funding costs with the expected return
on the investment and decides whether the loan will be granted or not.

Each period maturing long term debt needs to be refinanced. Commercial bank agents there-
fore worry about the volatility of long term interest rates, which is computed as the exponentially
weighted moving variance:

V̂arc,t(r
B) = Êc,t

[
(rB − Êc,t[r

B , ψB])2, ψB
]
, (3.36)

14Via Eqs. (3.18), (3.10) and (3.35) it becomes clear that Ec,t[r∆W ] is needed to obtain ∆Lc,t, which is needed
to compute ac,t, which in turn is an input to Ec,t[r

∆W ].
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Assuming, for the sake of simplicity, a constant interest rate rCB of the central bank’s marginal
lending facility and that aCB

c,t and rIc,t are independent, the variance of the average short term
interest rate amounts to

V̂arc,t(r̄
I , ψI) = Êc,t

[
(r̄I − Êc,t[r̄

I , ψI ])2, ψI
]

= Êc,t

[
(aCB − Êc,t[a

CB, ψI ])2(rCB − rI)2, ψI
]
. (3.37)

3.2 Investment Banks

In the model, investment banks form expectations about the returns and risks of three different
kinds of assets: interbank loans, bank bonds and non-bank debt securities (nb-securities). The
maturity of nb-securities is specified by the parameter mS ∈ [0, 1]. While short term interbank
loans have a maturity of one day, only a fraction (1 −mB) of bank bonds mature each period.
In essence, bank bonds are tradable securitized long term loans to commercial bank agents.
The investment bank agents finance their portfolio with equity, investor deposits, short term
collateralized debt (repos) and by borrowing assets for the purpose of short selling. All nb-
securities can be used as collateral in a repo transaction and borrowed for the purpose of short
selling. The balance sheet of agent i ∈ {1, 2, ..., nI} at the end of period t has the following
structure:

Assets Liabilities

Nb-securities,
∑

s∈QSlong
QS

i,s,tP
S
s,t Repos,

∑nS

s=1 Ri,s,t

Short-term Interbank Loans,
∑nC

c=1 Ic,i,t Shorted Assets,
∑

s∈QSshort
|QS

i,s,t|PS
s,t

Bank bonds,
∑nC

c=1Q
B
i,c,tP

B
c,t Investor Deposits Di,t

Margin Account,
∑nS

s=1Mi,s,t Equity, Ei,t

Cash, Ci,t

We define QS
i,s,t ∈ R as the quantity of nb-security s held by agent i at time t and PS

s,t as its
current trading price. The quantity of an nb-security is negative when the asset is borrowed and
sold short. Because a borrowed asset qualifies as debt, short and long positions of nb-securities
need a different balance sheet treatment. Formally, QS

short := {s|QS
i,s,t < 0} defines the set of

nb-securities that are shorted by agent i at time t and QS
long := {s|QS

i,s,t ≥ 0} defines the set of
nb-securities to which that agent has a positive exposure at time t. Note that in order to avoid
that investment bank agents obtain unlimited funds through short sales, it is required that for
each asset sold short agents deposit cash into a margin account on their own balance sheet. This
is consistent with typical short selling regulation. Like nb-securities, bank bonds are described
by a quantity QB

i,c,t ≥ 0 and a price PB
c,t. The investor deposits Di,t, which can be used to fund

investments in nb-securities, overnight interbank loans and bank bonds, are conceptually different
from customer deposits in the commercial bank agent’s balance sheet. Since investor deposits
are not insured, increases and withdrawals are not random, but related to the profitability and
risk of the corresponding investment bank agent.

The timing of the investment bank model is divided into two steps: First, principal and
interest rate payments on interbank loans and securities are collected and the balance sheet is
evaluated at market prices. Profits and losses are registered and dividends are paid out. Second,
agents restructure their portfolio.

The balance sheet of investment bank agents evolves with the portfolio decisions described in
the next section. Analogous to the modeling of commercial banks, investment bank agents have
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an equity target E∗
i and cannot raise new equity. Therefore,

Ei,t = min{E∗
i , Ei,t−1 +Πi,t}. (3.38)

Profits Πi,t = ΠI
i,t + ΠB

i,t + ΠS
i,t − Fundi,t are generated through investments in short term

interbank loans, bank bonds and nb-securities; they are reduced by the funding costs:

ΠI
i,t =

∑

c∈S

Ic,i,t−1r
I
i,c,t−1 −

∑

c∈S−1

Ic,i,t−1 (3.39)

ΠB
i,t =

∑

c∈S

QB
i,c,t−1

(

Bc,t−1

QB
c,t−1

r̄Bc,t−1 + (1−mB)(
Bc,t−1

QB
c,t−1

− PB
c,t−1) +mB(P

B
c,t − PB

c,t−1)

)

−
∑

c∈S−1

QB
i,c,t−1P

B
c,t−1 (3.40)

ΠS
i,t =

nS∑

s=1

QS
i,s,t−1

(

V S
s,t

QS
s

r̄Ss,t−1 + (1 −mS)(
V S
s,t−1

QS
s

− PS
s,t−1) +mS(P

S
s,t − PS

s,t−1)

)

(3.41)

Fundi,t =r
D
t−1Di,t−1 + rRt−1Ri,s,t−1 + rMt−1Mi,s,t−1 (3.42)

with S := {c|Ec,t ≥ 0} and S−1 := {c|Ec,t < 0} defining the set of solvent and insolvent com-
mercial bank agents, respectively. The value of outstanding long term debt (Bc,t) on the balance
sheet of commercial bank agent c divided by the outstanding quantity of the corresponding bond
(QB

c,t) is used to calculate the interest payments and loan repayments per bond. Note that while

the total outstanding quantity of a bank bond QB is time dependent, the quantity QS is fixed.
This means that all maturing shares of nb-securities have to be reissued each period. V S defines
the nominal value of outstanding nb-securities and r̄S their nominal interest rate, both of which
are exogenous. Funding costs depend on rRt , r

M
t and rDt , which denote the interest rate for repo

transactions, short selling transactions and investor deposits, respectively.

3.2.1 Asset and Liability Management

Investment banks need to decide on the desired composition of their balance sheet each pe-
riod. Their decision is formulated as a weight vector ai,t which defines the desired value of
the balance sheet items as a multiple of the value of current equity Ei,t. The column vector
ai,t = (aSi,t, a

B
i,t, a

M
i,t, a

R
i,t, a

D
i,t, a

I
i,t, a

C
i,t)

′ contains four sub-vectors which comprise the individual

weights of nb-securities aSi,t = (aSi,1,t, ..., a
S
i,nS ,t

)′, bank bonds aBi,t = (aBi,1,t, ..., a
B
i,nC ,t

)′, margin ac-

count deposits aMi,t = (aMi,1,t, ..., a
M
i,nS ,t

)′, repo liabilities aRi,t = (aRi,1,t, ..., a
R
i,nS ,t

)′ as well as weights

for investor deposits aDi,t, a composite overnight interbank asset aIi,t and cash aCi,t. The optimal
weight for each balance sheet position is the solution to a mean-variance optimization problem
(the solution algorithm is described in Appendix C):

a∗i,t = argmax
a

a′Ei,t[r]− 0.5λia
′Σi,ta s.t. (3.43)
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aRi,s,t =

{

−(1− hRs,t)a
S
i,s,t if aSi,s,t ≥ 0 and hRs,t ≤ hDi,t

0 else
(3.44)

aMi,s,t =

{

−(1 + ks,t)a
S
i,s,t if aSi,s,t < 0

0 else
(3.45)

aDi,t = −(1− hDi,t)(a
I
i,t +

nC∑

c=1

aBi,c,t +
∑

s∈D

aSi,s,t) (3.46)

{aIi,t, aBi,c,t, aCi,t} ≥ 0 and a′1 = 1 (3.47)

with r = (rSi,t, r
B
i,t, r

M
i,t, r

R
i,t, r

D
i,t, r

I
i,t, r

C
i,t)

′ being a vector containing the returns of balance sheet
positions, λi being the risk aversion parameter of investment bank i, Σi,t being agent i’s estimate
of the N × N variance-covariance matrix of asset returns (N = 3nS + nC + 3) and 1 denoting
a N × 1 vector of ones. While the expected returns of nb-securities, bonds and the composite
interbank asset are defined in the next section, the expected returns of repos, margin accounts
and investor deposits specify the respective transaction costs. The variance and covariance terms
of the transaction costs are zero. The variables hRs,t and ks,t, which are derived in Section 3.3.2,
are the haircut and margin requirement on repo and short-selling transactions, respectively.
Section 3.3.3 explains how the funding provided by institutional investors in the form of deposits
translates into the haircut hDi,t.

15 The constraints in Eqs. (3.44) and (3.45) introduce the
interdependency of the nb-security weights and the corresponding repo, margin account and
investor deposit weights. We assume that investment bank agents, which can choose to fund
long positions either through repos or investor deposits, opt for the less restrictive debt form,
i.e. the smaller haircut. The weight for investor deposits, defined in Eq. (3.46), thus needs
to consider long positions in nb-securities for s ∈ D with D := {s|(aSi,s,t ≥ 0) ∧ (hRs,t > hDi,t)}.
Note that when investment bank agent i purchases an nb-security it automatically engages in a
repo transaction or debt relationship with an investor where it receives 1− hRs,t or 1− hDi,t times
the current value of asset s as a cash-loan from a central counterparty or institutional investors.
These automatic debt relationship may cause the liabilities side of balance sheets to be larger
than necessary. However, excess funding will be held in cash and will therefore not add any risk
to agents’ balance sheets. In a short selling transaction, the central counterparty will require
the agent to deposit 1 + ks,t times the current value of asset s in cash. This cash will be held
in a margin account on the investment bank agent’s own balance sheet. The constraints in Eq.
(3.47) make sure that interbank assets, bonds and cash cannot be shorted and that the budget
constraint is met.

From the vector of optimal weights a∗i,t we can derive the balance sheet positions of nb-

securities and their corresponding margin and repo accounts. The aspired quantity QS
i,s,t for the

asset s amounts to

QS
i,s,t =

aSi,s,tEi,t

PS
s,t

, (3.48)

15In general, the haircut hRs,t of a repo transaction is defined as the percentage difference between the value of
one unit of collateral (i.e. the price of nb-security s) and the loan received in exchange for the collateral. This
definition implies that the higher the haircut, the more equity capital is needed to finance the purchase of nb-
security s. In effect, the haircut puts a limit to an agent’s leverage: When the maximum volume Qmax

s Ps of asset
s is bought and repo-financed (i.e. Rmax = (1−hR)Qmax

s Ps), we can derive the maximum leverage possible with
haircut hR by considering the balance sheet identity Qmax

s Ps = E+Rmax
s : levmax = Rmax

s /E = 1/hR − 1. The
concept of the haircut is therefore useful beyond the context of a repo transaction. It can be used to introduce
capital requirements (both, in the form of risk weights and a leverage ratio) into the portfolio maximization
problem of investment bank agents.
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while demand for the asset is computed as follows: ∆QS
i,s,t = QS

i,s,t −mSQ
S
i,s,t−1, repos, margin

account positions and investor deposits are given by Ri,s,t = aRi,s,tEi,t, Mi,s,t = aMi,s,tEi,t and

Di,t = aDi,tEi,t, respectively. Cash holdings Ci,t are determined by two factors: They may result
from the portfolio maximization problem and they may accumulate due to failed transactions in
the interbank market and bond market. Therefore

Ci,t = aCi,tEi,t + aIi,tEi,t +

nC∑

c=1

aBi,c,tEi,t −
nC∑

c=1

(Ic,i,t +QB
i,c,tP

B
c,t). (3.49)

3.2.2 Interbank loans and bank bonds

From the weights vector aBi,t obtained by solving the portfolio optimization problem we compute
the volume of funds investment bank agent i wants to invest in a bond issued by commercial
bank agent c, i.e. Bi,c,t = aBi,c,tEi,t. The market maker (see Section 3.3.5), which sets the price
of bonds, will balance demand and supply when demand for outstanding bonds is insufficient. In

case of excess demand (i.e.
∑nI

i=1Bi,c,t > Bc,t), the available bonds are allocated to investment
bank agents proportional to their initial demand. The quantity of bonds on the balance sheet of
agent i is thus defined as follows:

QB
i,c,t =







Bi,c,t/P
B
c,t if

∑nI

i=1Bi,c,t ≤ Bc,t
Bi,c,t
PBc,t

Bc,t
∑

nI

i=1 Bi,c,t
else

(3.50)

The quantity of bonds investment bank agent i trades at time t is given by: ∆QB
i,c,t = QB

i,c,t −
mBQ

B
i,c,t−1.

The allocation of short term interbank funds to individual commercial bank agents is derived
by considering a combination of an evaluation function U I

i,c,t that discriminates between different
commercial bank agents and a discrete choice model that transform evaluations into choices.
First, the relevant factors are evaluated jointly with a Cobb-Douglas functions. These are the
trust vc,i,t between the two agents as computed in Eq. (3.25), the expected returns Ei,t[r

I
c ] and

the expected standard deviations of returns
√

Vari,t(rIc ). Specifically,

U I
i,c,t =







(
vc,i,t

max(vi,t)

)γvi ( Ei,t[r
I
c ]

max(Ei,t[rIc ])

)γr
exp

(
−
√

Vari,t(rIc )

max(
√

Vari,t(rIc ))

)γσ

if U I
i,c,t > Umin

0 else

(3.51)

with γvi, γr and γσ being the valuation elasticities of the trust, return and standard deviation
components, respectively. Because the expected return may also be negative γr ∈ N

+,odd must
be a positive and odd natural number. Note that by dividing by their respective maximums all
components of the Cobb-Douglas function can be maximally one. Furthermore, we introduce
a cut-off Umin in order to avoid that investment bank agents provide very small amounts of
interbank loans to commercial bank agents with a low valuation. Once commercial banks have
been evaluated, a discrete choice model is employed in order to compute the exact allocation of
funds from agent i to agent c:

aIi,c,t =

exp

(

gA
UIi,c,t

max(UIi,c,t)

)

∑nC

c=1 exp
(

gA
UIi,c,t

max(UIi,c,t)

) , (3.52)
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with gA ≥ 0 being a parameter determining how strongly investment bank agents discriminate
between the valuations of different commercial bank agents. When gA = 0 interbank loans are
distributed equally to commercial banks regardless of their valuation, while gA = ∞ implies that
only the agent with the highest valuation will be offered interbank loans.

By multiplying the allocation ratio with the composite interbank asset weight, we obtain the
demand for short term interbank loans, i.e. Ii,c,t = aIi,ta

I
i,c,tEi,t. Since investment banks compete

in the market for interbank loans, but are unable to observe the conditions of competing offers,
they will pay attention to the discrepancy ∆Ii,c,t between the supply and demand for interbank
loans.

∆Ii,c,t =







Ic,i,t − Ii,c,t if Ii,c,t ≥ Ic,i,t
Ic,CB,tU

C
c,i,t

∑

nI

i=1 UCc,i,t
if Ii,c,t < Ic,i,t

(3.53)

Note that while investment bank agent i can observe the excess supply of interbank loans, we
assume that it perceives the excess demand of commercial bank agent c proportionally to the
relative attractiveness UC

c,i,t/
∑
UC
c,i,t of its offer.

Offers made by an investment bank agent on the interbank market are binding, which implies
that excess supply of credit leads to non-interest-bearing cash holdings, while excess demand
suggests a foregone profit. It is therefore in the interest of investment bank agents to minimize
∆Ii,c,t by negotiating with commercial bank agents over the volume and interest rate of short
term interbank debt. We model these negotiations via an iterative algorithm that in essence
performs the task of a Walrasian auctioneer: The auctioneer posts an interest rate, checks loan
supply and demand at the posted rate, reacts to the discrepancy between supply and demand
by adjusting the interest via a logarithmic impact function and repeats the procedure.16 For the
sake of confining computational complexity, the auction is terminated prematurely. Instead of
continuing the auction until demand exactly matches supply, it is terminated after Φt iterations,
after which all transactions on the interbank market will take place. The logarithmic impact
function used to adjust interest rates has the following form:

log(rI
i,c,t+ φ

Φt

) = log(rI
i,c,t+φ−1

Φt

) + gI
∆I

i,c,t+φ−1
Φt

|I
c,i,t+φ−1

Φt

|+ |I
i,c,t+φ−1

Φt

| , (3.54)

with φ ∈ {1, 2, ...,Φt} being the iteration count and gI > 0 being a parameter determining the
intensity with which interest rate adjustments take place in dependence of the differences in
demand and supply on the interbank market. By dividing ∆Ii,c,t by the sum of absolute values
of loan demand and loan supply, we bound changes to the interest rate within one iteration. The
maximum percentage change of the interest rate in either direction is approximately the value
of the intensity parameter gI .

3.2.3 Expectation formation

Investment bank agents need to form expectations about return and variance of nb-securities,
bank bonds and short term interbank loans. The expected return of nb-security s is deduced

16During the iterative procedure, demand and supply for interbank loans are calculated with the same Equations
that determine the final demand and supply, but taking into account the currently negotiated interest rate. Also,
commercial bank agents act on the assumption that they can fully raise the desired funds from the investment
bank agents. In the auctions, commercial bank agents therefore ignore the cost of central bank funding in their
calculation of the target ratio of long term wholesale debt, i.e. E

c,t+
φ
Φ
[aCB ] = 0 and therefore E

c,t+
φ
Φ
[r̄I ] =

E
c,t+

φ
Φ

[rI ].
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by forecasting its default probability ΩS
s and its price PS

s . Taking into account the exogenously
given maturity mS and nominal interest rate r̄Ss,t, the expected return of asset s is computed as
follows:

E
i,t
[rSs ] = (1 − E

i,t
[ΩS

s ])

(

V S
s

PS
s,tQ

S
s

(r̄Ss,t + 1−mS) +
mS Ei,t[P

S
s ]

PS
s,t

− 1

)

− E
i,t
[ΩS

s ], (3.55)

with V S
s,t being the nominal value of the nb-security and QS

s the number of outstanding shares.
For the sake of simplicity, we assume that investment bank agents believe that prices adjust
immediately so that they incorporate all available information (i.e. Ei,t[P

S
s ] = PS

s,t) and that
the loss in case of a default is expected to be 100%. An investment bank agent’s assessment
of the true default probability ΩS

s,t is updated by evaluating fundamental news shocks ∆ΩS
s,t =

log(ΩS
s,t)− log(ΩS

s,t−1) and by identifying and correcting past valuation errors:

E
i,t

[
log(ΩS

s )
]
= E

i,t−1

[
log(ΩS

s )
]

︸ ︷︷ ︸

past valuation

+(∆ΩS
s,t + ǫSi,s,t)

︸ ︷︷ ︸

evaluation of news

+ θS
(

log(ΩS
s,t)− E

i,t−1

[
log(ΩS

s )
]
)

︸ ︷︷ ︸

past error correction

(3.56)

The stochastic error term ǫSi,s,t and the slow correction of past errors (i.e. θS < 1) cause forecasts
of the true default probability to differ. Disagreement about the true value of an asset is the
necessary condition for the emergence of a functioning asset market.

The estimated variance of an nb-security that is incorporated into the portfolio optimiza-
tion is computed from the risk that arises due to the expected probability of default and the
exponentially weighted moving average of an agent’s quadratic forecast error:

Var
i,t

(rSs ) =

(

1− E
i,t
[ΩS

s ]

)

Êi,t





(

V S
s,t

PS
s,tQ

S
s,t

(r̄Sc,t−1 + 1−mS) +
mSP

S
s,t

PS
s,t−1

− 1− E
i,t−1

[rSs ]

)2

, ψS





+ E
i,t
[ΩS

s ]

(

−1− E
i,t
[rSs ]

)2

(3.57)

The higher the historical discrepancy between agent i’s return expectation and the realized
return, the higher will be the agent’s perception of risk (variance). Estimates of covariances,
on the other hand, account for historical co-movements in assets and are important for the
purpose of building a diversified portfolio. We assume that all agents have the same estimates
of the covariance ˆCovt(r

S
s1, r

S
s2, ψ

S) between two assets, which is computed as an exponentially
weighted moving average from daily returns.

The expected return and variance of a short term interbank loan and a bond depend on the
expected default probability of the corresponding commercial bank agent. Taking into account
the exogenous loan default process ρLc,t, we can approximate the default probability of commercial
bank agents:

ΩC
c,t ≈ Pr{ρLc,tLc,t ≥ Ec,t} = F ρL

c,t

(
Ec,t

Lc,t

)

, (3.58)

with F ρL

c,t (·) defining the cumulative distribution function of the loan default rate. Since data on
equity Ec,t, loan volume Lc,t and the loan default rate distribution of commercial bank agents is
not readily available to investment banks on a daily basis, we model expectations of the default
probability analogous to that of nb-securities:

E
i,t
[log(ΩC

c )] = E
i,t−1

[log(ΩC
c )] +

(
∆ΩC

c,t + ǫΩi,c,t
)
+ θΩ

(

log(ΩC
c,t)− E

i,t−1
[log(ΩC

c )]

)

, (3.59)
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with ∆ΩC
c,t = log(ΩC

c,t)− log(ΩC
c,t−1) being the news shock, ǫΩi,c,t denoting the stochastic valuation

error and θΩ being the speed with which past valuation errors are corrected.
The derivation of expected return and variance of short term interbank loans and bank bonds

is similar to that of nb-securities:

E
i,t
[rIc ] =(1− E

i,t
[ΩC

c ])r
I
i,c,t − E

i,t
[ΩC

c ] and (3.60)

E
i,t
[rBc ] =(1− E

i,t
[ΩC

c ])

(

Bc,t

PB
c,tQ

B
c,t

(r̄Bc,t + 1−mB) +
mB Ei,t[P

B
c ]

PB
c,t

− 1

)

− E
i,t
[ΩC

c ]. (3.61)

Note that because short term interbank loans mature overnight and therefore cannot be traded,
they lack a price. As with nb-securities, we assume that investment bank agents expect tomor-
row’s bond price to equal the current price, i.e. Ei,t[P

B
c ] = PB

c,t. The variance components of
interbank loans and bonds are defined as follows:

Var
i,t

(rIc ) =

(

1− E
i,t
[ΩC

c ]

)(

rIi,c,t − E
i,t
[rIc ]

)2

+ E
i,t
[ΩC

c ]

(

−1− E
i,t
[rIc ]

)2

(3.62)

Var
i,t

(rBc ) =

(

1− E
i,t
[ΩC

c ]

)

Êi,t





(

Bc,t

PB
c,tQ

B
c,t

(r̄Bc,t−1 + 1−mB) +
mBP

B
c,t

PB
c,t−1

− 1− E
i,t−1

[rBc ]

)2

, ψB





+ E
i,t
[ΩC

c ]

(

−1− E
i,t
[rBc ]

)2

(3.63)

With the individual expected return and variance components for short term interbank loans,
we can compute the return and variance for the composite short term interbank asset:

E
i,t
[rI ] =

nC∑

c=1

aIi,c,t E
i,t
[rIc ] (3.64)

Var
i,t

(rI) =

nC∑

c=1

(aIi,c,t)
2 Var

i,t
(rIc ) (3.65)

The covariance ˆCovi,t(r
B
c , r

I , ψS) between the composite short term inberbank asset and bonds,

between nb-securities and the composite asset ˆCovi,t(r
I , rSs , ψ

S) as well as between nb-securities

and bonds ˆCovi,t(r
B
c , r

S
s , ψ

S) are computed as exponentially weighted moving averages of ob-
served returns.

3.3 Exogenous agents

Several exogenous agents help to close the model. These are a central counterparty for repo
transactions and short selling, an institutional investor, which provides deposits for investment
bank agents, a market maker, which sets the prices and interest rates as well as a lender of last
resort. Furthermore, we incorporate an agent labeled ”rest-of-world”, which trades on the same
asset markets as investment banks do.

3.3.1 Rest-of-world agent

The rest-of-world agent (row-agent) is included into the setup in order to keep the simulated
financial system from becoming artificially fragile and in order to introduce the concept of asset
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liquidity. In reality, when the usual buyers of specific assets (investment bank agents in our
context) are constrained, it falls to outside investors to absorb the excess supply of those assets.
The row-agent agent represents these outside investors, which could include e.g. pension funds,
insurance companies, unregulated financial institutions or individual investors. Because the row-
agent by assumption is not specialized in assessing and trading the assets in question, we assume
that it demands a higher return. This implies that the price of assets must drop below the mean
valuation of investment bank agents before the row-agent becomes active. The more reluctant
the row-agent is to buying an asset of a given risk/return profile, the less liquid that asset will
be.17

The demand of the row-agent for nb-securities and bank bonds is derived from a portfolio
optimization problem similar to that of investment bank agents:

a∗row,t = argmax
a

a′Erow,t[r]− 0.5λrowa
′Σrow,ta s.t. (3.66)

{aSrow,s,t, a
B
row,c,t, a

C
row,t} ≥ 0 and a′1 = 1, (3.67)

with arow,t = (aSrow,1,t, ..., a
S
row,nS,t

, aBrow,1,t, ..., a
B
row,nC,t

, aCrow,t)
′ being a weights vector defining

the desired value of individual nb-securities and bank bonds as a multiple of equity Erow,t. The
expected returns contained in the vector Erow,t[r] and the estimated variances and covariances
contained in the matrix Σrow,t are computed analogously to those of investment bank agents
as defined in Section 3.2.3. Expectations differ in two regards: first, because the row-agent
represents a group of investors, its expectations of the default probabilities ΩS

s,t and ΩC
c,t are set

to their respective true value. Second, we assume that the agent is willing to hold an asset to
maturity and therefore ignores the price volatility of assets, i.e. price changes disappear from
the variance estimates. In this context, it seems reasonable to assume that investors lacking the
experience of trading a specific asset will not hold that asset in their trading book, which might
be subject to mark-to-market accounting rules. They will rather identify the long term benefit
from holding an asset that is undervalued to maturity. For the sake of simplicity, we assume that
the row-agent cannot incur debt, which is implied by the constraint in Eq. (3.67). To ensure
that enough funds are available to eventually absorb assets in a fire sale spiral, we model equity
of the row-agent as a function of the difference between investment bank agents’ current equity
and equity target E∗:

Erow,t = max







xrow





nI∑

i=1

E∗
i − Ei,t





2

, Emin
row







, (3.68)

with Emin
row defining a fixed minimum equity of the row-agent and the parameter xrow > 0 setting

the aggressiveness with which row-equity is increased when investment bank agents make losses.18

The demand ∆QS
row,s,t for nb-security s can now be determined:

∆QS
row,s,t =

aSrow,s,tErow,t

PS
s,t

−mSQS
row,s,t−1, (3.69)

17Our concept of the row-agent strongly relates to the seminal discussion on asset liquidity and debt capacity in
Shleifer and Vishny (1992). It is also related to the empirical literature on price impacts in financial markets. See
for example Coval and Stafford (2007) or Jotikasthira et al. (2012) for estimates of price impact in stock markets
and Ellul et al. (2011) or Feldhuetter (2012) for estimates in bond markets.

18The function for Erow,t is rather ad hoc. It is motivated by the notion that when asset prices fall below
the respective values deemed fair by constrained investment bank agents, they will increasingly attract outside
investors. A greater number of outside investors will have more equity and hence capacity to absorb assets.
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with QS
row,s,t−1 denoting the quantity held by the row-agent in the last period. The demand for

bank bonds is calculated in the same manner.
The vector λrow contains a risk aversion parameter for each nb-security and bank bond.

The parameters are set orders of magnitude larger than the risk aversion of investment bank
agents. This ensures that the row-agent does not distort prices in normal times. By assigning an
individual risk aversion to each asset in the portfolio of the row-agent, we can make some assets
more liquid than others. The higher the specific risk aversion parameter of an asset is relative
to other assets, the larger must be the price drop before the row-agent absorbs that asset. Fire
sale dynamics of illiquid (higher risk aversion) assets therefore become more pronounced than
for liquid (lower risk aversion) assets.

3.3.2 Central counterparty

We assume, for the sake of simplicity, that the central counterparty is always willing to engage
in short selling and repo transactions with investment bank agents. The central counterparty
thereby manages its risk by setting the haircut and margin requirement for the corresponding
asset. The amount of cash the investor is willing to lend in a repo transaction depends on the
current price of the collateral PS

s,t and the haircut hs,t. Specifically, the central counterparty
chooses the haircut so that the probability of the collateral being worth less than the loan
provided does not exceed xR, i.e. Pr{PS

s,t+1 ≤ PS
s,t(1 − hs,t)} = Pr{rSs,t ≤ −hs,t} = xR. With

F−1
s denoting the quantile function of the return of asset s in the next period, the haircut is

computed as follows:
hs,t = −F−1

s (xR). (3.70)

The margin requirement ks,t can be computed analogously. Specifically, ks,t = F−1
s (1− xR),

which is equal to hs,t if the probability density function of the return of the corresponding asset
is symmetric around zero. As a compensation for its risk, the central counterparty will demand
a small fee of rRt and rMt for repo and short selling transactions, respectively.

3.3.3 Investor deposits

Unlike customer deposits, investor deposits are uninsured and therefore potentially very volatile.
The volume of funds investors are willing to lend depends on the profitability of the debtor agent
and the speed at which the investor can withdraw funds. The maturity parameter mD thereby
ensures that deposits cannot be withdrawn at once, but at a constant rate of 1−mD per period.
The higher the maturity parameter, the slower funds can be withdrawn. Without specifying the
return on deposits, we assume that it is proportional to the debtor agent’s return on assets πi,t.
Since investors only loose money if the debtor agent defaults, it seems sensible that investors
consider a default scenario when deciding on the volume of deposits. Specifically, investors
consider a predefined stress scenario of a daily negative return on assets ρDi,t, which eventually

leads to the default of the debtor agent.19 Under such a stress scenario the investor would try to
withdraw its funds as quickly as possible. Taking this into account, the initial investment D∗

i,t is

chosen in such a way that the funds Drisk
i not withdrawn at the time of bankruptcy are smaller

than a specified fraction αD = Drisk
i /D∗

i,t of the initial investment. The law of motion for equity
under the stress scenario is described by the following equation:

Ei,t+τ+1 = Ei,t+τ + (Ei,t+τ +D∗
i,tm

τ−1
D )ρDi,t (3.71)

19A stress scenario could e.g. be defined as a daily return on assets which is one standard deviation to the left
of the expected return on assets, with the expected value and variance or the return on assets being historical

estimates (ρDi,t = Êt[πi, ψ
D ]−

√

V̂art(πi, ψD)).
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Note that, for the sake of simplicity, we assume that investor deposits are the only form of debt
considered. From Eq. (3.71) it becomes clear that the higher the volume of investor deposits, the
faster the debtor will default under the specified stress scenario. We derive the decision of the
investor by determining first, how many periods T def it takes until the fraction of initial deposits
not yet withdrawn reaches αD; and second, what the initial volume of deposits must be so that
the debtor agent defaults after T def periods under the stress scenario. Specifically, from the law
of motion of investor deposits (Dt = mDDt−1) under the stress scenario (deposits are withdrawn
as fast as possible), we compute T def = 1+ log(αD)/ log(mD). By setting equity from Equation
(3.71) at period T def to zero, we can derive (see Appendix D) the initial volume of deposits:

D∗
i,t =

−Ei,t(1 + ρDi,t)

ρDi,t

1−

(

mD

1+ρD
i,t

)Tdef

1−
mD

1+ρD
i,t

(3.72)

Under the setting described above, D∗
i,t can be used to calculate the maximum leverage levmax

i,t =
D∗

i,t/Ei,t of investment bank agent i at time t. Any bound on leverage can be translated into

a haircut parameter. With levmax
i,t = 1/hDi,t − 1 we can derive hD

∗

i,t = Ei,t/(Ei,t + D∗
i,t). Since

investors cannot withdraw funds faster than they mature, the corresponding haircut has an upper
bound, i.e. hDi,t ≤ Ei,t−1/(Ei,t−1 +mDDi,t−1). On the other hand, we assume that investment
bank agents are able to buy back debt, i.e. reduce investor deposits regardless of their maturity.

3.3.4 Lender of last resort

The central bank acts as a lender of last resort by providing a marginal lending facility (discount
window) to commercial bank agents. We assume that agents consider the central bank as a
potential creditor in the interbank market.20 It is ranked along with other creditors via Eq.
(3.24) according to the same two factors as investment bank agents. Borrowing from the central
bank comes at a price. The marginal lending rate rCB

t is typically higher than interbank interest
rates, which implies that uc,CB,t ≪ 1. Furthermore, we assume that commercial bank agents fear
that making use of the marginal lending facility might tarnish their reputation.21 To account for
this the trust factor is set to its minimum, i.e. vc,CB,t = Ξmin/Ξmax.

3.3.5 Market maker

Market prices for nb-securities and bonds in our model evolve endogenously according to demand
and supply. In the literature, pricing mechanisms range from simple price impact functions, over
market clearing prices to sophisticated order book models (see e.g. Farmer and Joshi, 2002;
Arthur et al., 1996; Farmer et al., 2005, respectively). Since the derivation of demand for an
asset from the portfolio optimization problem of investment bank agents requires the agents’
knowledge of the prices at which they can trade, we choose to price assets via an exogenous
market maker. We assume that the market maker lacks information about the fundamentals of
nb-securities and bonds. In order to limit its exposure to the risky assets, the market maker
tries to learn the prices at which demand and supply for the respective assets are balanced. In
practice, learning about the true price is facilitated by the sequential process of trading and

20In practice, making use of the marginal lending facility requires a bank to post collateral in exchange for
central bank money. However, non-marketable assets (including bank loans) are also eligible as collateral if they
are rated above a certain threshold.

21This is consistent with the observation that even after the default of Lehman Brothers, only poorly performing
US banks accessed the discount window (see Afonso et al., 2011).
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constant adjustments of bid and ask prices. Since in the context of our model all trading occurs
simultaneously, we choose the incomplete Walrasian auction introduced in Section 3.2.2 as the
pricing mechanism.

In order to find the appropriate price of an nb-security, the market maker has to determine
the market interest rate first. As in Eq. (3.54) the interest rate results from Φt iterations of a
logarithmic impact function, which depends on the excess demand (normalized by the trading
volume) of the market maker, the investement bank agents and the row-agent:

log(rS
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Φt
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with φ ∈ {1, 2, ...,Φt} being the iteration count, gMMS > 0 being the intensity of interest rate

adjustments and QMMS
s,t = mSQ

MMS
s,t−1 + (1 −mS)Q

S
s −∑nI

i=1 ∆Q
S
i,s,t − ∆QS

row,s,t denoting the
market makers inventory. Note that the inventory of the market maker is increased by the
maturing nb-securities ((1 −mS)Q

S
s ) each period. This implies that the total number of shares

of nb-security s remains constant throughout the simulation. The market price of nb-securities
can be calculated by employing a present value approach of the flow of interest payments and
repayments discounted at the market interest rate rSs,t:

PS
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∞∑

τ=1

V S
s,t

QS
s
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mτ−1

S

(1 + rSs,t)
τ
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V S
c,t
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s

r̄Ss,t + 1−mS

rSs,t + 1−mS

(3.74)

The interest rate and the price of bank bonds are determined analogously to those of nb-
securities. The main difference is that the quantity of bonds is not constant but endogenously
determined. Furthermore, we assume that the inventory of bank bonds of the market maker
cannot be negative, i.e. short sales of bank bonds are not allowed. The bond interest rate is
updated as follows:
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with gMMB > 0 being the impact factor andQMMB
c,t = mBQ

MMB
c,t−1 +(∆Bc,t/P

B
c,t)−

∑nI

i=1 ∆Q
B
i,c,t+

∆QB
row,c,t denoting the inventory of the market maker. ∆Bc,t is the additional value of long term

loans the commercial bank agent c issued in period t and PB
c,t is the price for one unit of the

newly issued loan derived in Eq. (3.76). The price of a bank bond is again derived from the
present value approach:

PB
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(3.76)

25



In order to limit the number of iterations, but achieve a satisfactory balance of demand and
supply for interbank short term loans, bonds and nb-securities, we define the following stopping
criteria:

xI ≥median
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with zI , zS and zB defining the lowest iteration count for which the respective stopping criteria
is fulfilled. In essence, a satisfactory balance between demand and supply of short term loans,
nb-securities and bonds is achieved when the median or average of the relative discrepancy
between supply and demand does not exceed xI , xMMS and xMMB , respectively. Since all
prices and interest rates contained in the portfolio optimization problem of investment bank
agents need to be known simultaneously, the number of iterations Φt of the pricing mechanisms
of short term and long term interest rates as well as nb-security prices, is the same. Specifically,
Φt := max{zI, zS , zB}.

4 Modelling the Liquidity Coverage Ratio

The liquidity coverage ratio (LCR) is part of the Basel III framework and has been designed
in order to address the problem of insufficient liquidity in times of stress. Specifically, the
regulation requires banks to hold sufficient high quality liquid assets (HQLA) in order to meet
the expected net cash outflows over thirty days of stress. The stress scenario is thereby defined
by the regulator via fixed run-off rates for liabilities, inflow rates for assets that do not count as
HQLA and haircuts for assets that count as HQLA. The run-off rate and the inflow rate specify
how much of the liabilities and assets cannot be rolled over in times of stress, whereas the haircut
implies a potential loss in value of an HQLA in times of stress. The regulation that should be
fully implemented by 2019 (2018 in the European Union) requires that in normal times the ratio
of HQLA to net outflows is greater than or equal to one, i.e.

LCR =
HQLA

net outflows of 30 days
≥ 100% (4.1)

4.1 Commercial Banks

The only asset of a commercial bank agent that qualifies as a high quality liquid asset is cash.
Under the LCR, commercial bank agents need to hold the following amount of cash:
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CLCR
c,t =

{

0.25 · outflowsc,t if inflows > 0.75 outflows

outflowsc,t − inflowsc,t if inflows ≤ 0.75 outflows
(4.2)

Note that according to the LCR regulation, banks need to hold at least 25% of their outflows in
HQLA. The outflows a commercial bank needs to consider result from potential withdrawals from
customer deposits, bonds and short term interbank debt, which are quantified by the regulator
through the run-off rates wD = 0.03, wB = 1 and wI = 1, respectively:

outflowsc,t =w
DDc,t + wIIc,t(1 + r̄Ic,t) + wBBc,t

30∑
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mτ−1
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(
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1−mB
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)

︸ ︷︷ ︸

c2c,t

(4.3)

The inflows consider the expected interest payments and repayments of loans for which the
regulator has determined an inflow rate of wL = 0.5:

inflowsc,t = wL

30∑
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L Lc,t(1− E
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L]))30

1−mL(1− Ec,t[ρL])
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c3c,t

, (4.4)

In Eq. (4.3), we have rewritten short term debt Ic,t = Wc,t(1 − ac,t), long term debt Bc,t =

Wc,tac,t and average long term interest rates r̄Bc,t =
Bc,t−1mB r̄Bc,t−1+(Wc,tac,t−Bc,t−1mB)rBc,t

Wc,tac,t
as a

function of wholesale debt Wc,t and the long term debt ratio ac,t. It thereby becomes clear that
outflows are a function of the maturity structure of wholesale debt. With the balance sheet
identity from Eq. (3.8), we can now calculate the necessary volume of wholesale debt under the
LCR regulation:

Wc,t = Lc,t − Ec,t −Dc,t + CLCR
c,t

=

{
Lc,t−Ec,t−Dc,t(1−0.25wD)+0.25c1c,t

1−0.25((ac,t·c2c,t)+(1−ac,t)c0c,t)
if inflows > 0.75 outflows

Lc,t(1−c3c,t)−Ec,t−Dc,t(1−wD)+c1c,t
1−((ac,t·c2c,t)+(1−ac,t)c0c,t)

if inflows ≤ 0.75 outflows
(4.5)

Since under the LCR the necessary volume of wholesale debt is dependent on the composition
of wholesale debt, the optimal value of ac,t is no longer given by Eq. (3.20). When including
Eq. (4.5) into the calculation of the interest surplus of Eq. (3.19), the solution for the optimal
maturity structure becomes more complex and needs to be solved numerically.
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There are situations where it is sensible for a commercial bank agent not to comply with the
LCR regulation. Technically, when the denominator of Eq. (4.5) approaches zero or drops below
zero, the demand for wholesale debt becomes infinite. One unit of wholesale debt would require
one or even more units of HQLA. In such cases commercial banks are allowed to hold less liquid
assets than required by the LCR regulation. Furthermore, we allow agents to fall short of a
LCR of 100% when they are unable to obtain sufficient wholesale funding and have to access the
central bank’s marginal lending facility. The implementations of the LCR regulation in different
regions typically allow banks to be non-compliant under extraordinary circumstances. In such
situations, a plan detailing how and when compliance with the LCR can be restored would need
to be negotiated with the regulator.

4.2 Investment Banks

In our model nb-securities on investment bank agents’ balance sheets qualify as high quality
liquid assets for which a haircut wS

s needs to be applied. The possibility to count nb-security s
as a liquid asset, however, depends on whether the asset is used as collateral or not. Only if the
asset is not used as collateral in a repo-transaction will it add to the stock of liquid asset. For a
repo based on nb-security s, a run-off rate of wR

s applies. The simplest way of complying with
the LCR regulation entails choosing a funding structure for every investment decision that is
LCR-neutral. With other words, the purchased asset itself satisfies the HQLA requirement after
considering the expected outflows of its funding under stress. Given that an nb-security in our
model can be financed by repos or investor deposits, the fraction αR

i,s,t ∈ [0, 1] of repo-financing
of nb-security s can be computed as follows:
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Note that when an asset is used as collateral or adds to the stock of HQLA, no inflows from that
asset are considered under the LCR regulation.

While nb-securities qualify as HQLA, short term interbank debt as well as bonds issued by
commercial banks do not qualify as such. Funding investments in bank bonds and interbank
loans therefore require complementary purchases of HQLA or an increase in cash holdings. This
implies that the investor deposits needed to finance one unit of a bond from agent c will be xBi,c,t
times larger than the initial demand ((1 − hDi,t)a

B
i,c,t) specified in Eq. (3.46). Considering the

inflows and outflows connected to the purchase of a bond, the factor xBi,c,t ≥ 1 is chosen in order
to satisfy the following equation:
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, (4.7)
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with
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As the LCR regulation requires banks to hold at least 25% of their outflows in HQLA, xBi,c,t has

a lower bound xBmin
i,c,t that amounts to:

0.25xBmin
i,c,t aBi,c,t(1 − hDi,t)c4i,t = xBmin

i,c,t aBi,c,t(1− hDi,t)− aBi,c,t(1− hDi,t)

xBmin
i,c,t =

1

1− 0.25c4i,t
(4.8)

Analogously, we can calculate the factor xIi,t ≥ 1 and its lower bound xImin
i,t for the funding of

the composite short term interbank loan:
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with c6i,c,t = (1 − E
i,t
[ΩC

c ])(1 + rIi,c,t).

In order to integrate the LCR regulation into the portfolio optimization problem of investment
bank agents, we need to modify the constraints in Eq. (3.44) and (3.46) as follows:

aRi,s,t =

{

−(1− hRs,t)a
S
i,s,tα

R
i,s,t if aSi,s,t ≥ 0

0 else
(4.10)

aDi,t =− (1− hDi,t)


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aSi,s,t(1− αR
i,s,t)

)

, (4.11)

with D := {s|aSi,s,t ≥ 0}.
In general, the constraints make sure that investment decisions are LCR-neutral at all times.

They enforce a funding mix that leads investment bank agents to be compliant with the LCR
regulation. The optimal portfolio choice therefore becomes dependent on the run-off rates for
repos, the haircuts for individual nb-securities and the maturity of investor deposits.
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5 Simulations

The simulations presented in this paper are conducted with an uncalibrated model, which implies
that only qualitative inferences are feasible in the current setup.22 Nevertheless, the initialization
of the model is not entirely arbitrary. While in the following we only comment on very few
parameter choices, all parameters and initial values are reported in Tables 4 and 5 of the appendix.
We simulate the model with nC = 100 commercial bank agents, nI = 30 investment bank agents
and nS = 15 nb-securities.23 Nb-securities should not be interpreted as individual assets, but
rather as large portfolios of assets. We assume that investment bank agents, although fewer
in number, are larger than commercial bank agents in terms of balance sheet size (induced by
a larger equity target). Customer deposits are kept rather low (5 times the equity target) in
order to evoke a market for wholesale funding. This is consistent with the capital structure of
large commercial banks in reality. The fluctuations in customer deposits are set to represent
a rather calm economic environment. This also applies to the other two exogenous stochastic
processes: the default rates for loans to the real sector and default probabilities of nb-securities.
We thereby want to reproduce the seemingly stable financial system prior to the financial crisis.
Each simulation run lasts for T = 2000 periods, whereby we discard the first 750 periods in order
to reduce the impact of initial values. Each period represents a trading day and 250 periods a
trading year.

The rest of this section is divided into two parts: A brief discussion of heterogeneity is followed
by a more in-depth impact assessment of the liquidity coverage ratio regulation. Showing the
emergent heterogeneity in size, leverage, agent defaults, asset returns and interest rates conveys
an impression of the functioning of the model. A comparison between the emergent distributions
and real data can furthermore serve as a first - although tentative - validation instrument.
Our analysis of the liquidity coverage ratio regulation, will, on the other hand, focus on average
effects rather than on distributional ramifications. The impact on balance sheets, on the maturity
structure of wholesale debt, on monetary policy and stability will be assessed.

5.1 Heterogeneity and Distributions

Our model contains multiple sources of heterogeneity. The inclusion of two distinct bank business
models is the most apparent source, but heterogeneity can also be imposed by setting parameters
(e.g. equity targets, risk aversion, etc.) and initial values (e.g. initial balance sheet positions), or
produced by endogenous dynamics (size, leverage, portfolio composition, etc.). While the high
dimensionality of heterogeneity imposed through parameters and initial values will be useful when
calibrating the model to match micro data, we will focus on endogenous sources of heterogeneity
here.

Figure 2 shows the size and leverage distributions of commercial bank agents and investment
bank agents after 2000 periods. To obtain more representative distributions, simulations are
repeated 20 times with different initializations of the random number generator. The values for
size and leverage of the different simulation runs are displayed jointly. The size distributions of
the two agent types plotted in Figures 2(a) and 2(b) differ substantially. While the distribution
for commercial bank agents is skewed to the right, the opposite is true for investment bank
agents. The distributions thereby reflect the different business models of the agents. In essence,
the size distribution of commercial bank agents reflects the default rate of loans to the real sector,

22In general, the extent of the model allows for a relatively accurate mapping of model parameters to micro
data. The concepts and data needed for this endeavor will be the subject of a forthcoming paper.

23The number of agents and nb-securities seems low when compared to reality. However, taking into account,
for example, that in the EU the largest 5% of banks (approximately 140 institutions) held about 90% of total
banking assets in 2006, makes the choice appear more realistic.
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which we model with a log-normal distribution. Low default rates, which are the norm given
their log-normal distribution, make most commercial bank agents rather successful in reaching
their equity target. As in the current setup commercial bank agents do not differ regarding
their equity targets, loan characteristics, expectations and risk management, a right skewed size
distribution emerges naturally. More heterogeneity in the corresponding parameters will lead to
a more pronounced right tail of the distribution. However, the fact that the size distribution of
commercial banks in reality tends to be left-skewed, potentially indicates that some aspects of
commercial banks’ business models have been neglected in the model. Investment bank agents,
on the other hand, do not supply loans, which remain on balance sheet until maturity, but trade
large portfolios of assets. The emergent size distribution resembles a log-normal distribution,
which is consistent with reality (see e.g. Fischer and Riedler, 2014). Invoking Gibrat’s law,
Fischer and Riedler (2014) have argued that the size of balance sheets converges to log-normality
when agents primarily pursue trading activities.

The leverage distribution of commercial bank agents and investment bank agents is plotted
in Figure 2(c) and 2(d), respectively. Interestingly, while size and leverage distributions of
investment bank agents are rather similar, they seem mirror inverted for commercial bank agents.
This suggests that small commercial bank agents tend to have high leverage ratios, while small
investment bank agents have low leverage ratios on average. The reason for this can again be
ascribed to the different business models of the agent types. The business model of investment
bank agents allows them to expand and reduce their balance sheets quite quickly. When an agent
expects that it can make a profit at low risk, it will take on more debt to buy the corresponding
assets. When risk increases, the combination of short term funding and liquid assets allows
the investment bank agent to reduce its leverage ratio by shrinking its balance sheet. Adrian
and Shin (2010) have shown that this behavior is typical for investment banks in reality. On
the other hand, commercial bank agents in our model hold illiquid assets which they, at least
partially, finance with long term loans. When losses are incurred, the inability of a commercial
bank agent to deleverage immediately, will lead to a temporary surge in the leverage ratio. With
other words, while the relation between size and leverage of commercial bank agents is neutral
most of the time, it becomes negative when the agents are shocked.

Whenever a leveraged agent incurs a loss, its equity can fall below zero and bankrupt the
agent. Figure 3 plots the number of defaulting commercial bank agents per simulation run.
In order to obtain the distribution, we simulate 1000 times and count all default events that
occur each run between periods 750 and 2000 (5 trading years). The distribution is bell-shaped
with a mean of approximately 11 defaults in 5 years. While default events are common within a
simulation run, there is not one systemic event (a break down of the financial system) recorded in
1000 simulation runs. There are two main reasons for this. First, exogenous stochastic variables
such as the default rates for loans to the real sector or default probabilities for nb-securities do
not exhibit large macro shocks. The default rate of a commercial bank agent’s loan portfolio may
be high, but it is uncorrelated with the default rates of other agents. Second, unlike in many
agent-based models of financial markets, agents in our model do not form expectations of prices
or default probabilities by extrapolating past price movements.24 Extrapolative expectations,
which can lead to the emergence of bubbles and subsequent crashes, are known to be a source
of endogenous instability. Their omission implies that our current setup is better suited for an
analysis of average effects rather than extreme effects.

A key motivation for including different expectation formation processes into agent-based
models of financial markets has been to explain the stylized facts of financial asset return time

24See e.g. chartist-fundamentalist approaches to modeling financial markets such as Lux and Marchesi (2000);
Farmer and Joshi (2002); Westerhoff and Dieci (2006).
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(b) Size distribution of investment bank agents
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(c) Distribution of leverage for commercial bank
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Figure 2: Size and leverage distribution of bank agents.

series.25 Interestingly, our model does quite well at replicating these stylized facts although all
investment bank agents form expectations in the same manner (see Eq. 3.55). Figure 4(a) plots
the distribution of returns of an nb-security as well as a fitted Gaussian distribution. Clearly, the
measured return distribution is leptokurtic, i.e. has a higher probability mass in the tails than the
corresponding Gaussian probability density function. Figure 4(b) displays the autocorrelation
structure of both raw returns as well as the absolute value of returns. The autocorrelation
of the absolute values of returns is slowly decaying while raw returns are autocorrelated only
for a short period of time. The initial significant positive autocorrelation in raw returns is an
artifact of the pricing mechanism in our model. It allows for some degree of mis-pricing for the
sake of reducing computational complexity. Fat tails and clustered volatility are the result of
heterogeneous expectations. The degree to which agents disagree about the true value of an
asset (disagreement is modeled in Eq. 3.56) determines the difference in the portfolios agents
hold. Strong disagreement will decrease the portfolio overlap between agents and vice versa. In
general, when an agent is optimistic about the prospects of an asset, it will hold a relatively

25Financial return time series typically display fat tails (excess kurtosis), clustered volatility (persistence in the
amplitude of returns) and the absence of autocorrelation in raw returns (see e.g. Cont, 2001).
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Figure 3: Distribution of defaulting commercial bank agents per simulation run (5 years).

large share of that asset. Most of the time, a gradual updating of expectations will lead to trade
with a limited impact on prices. However, when an agent which is optimistic about the value of
a specific asset incurs unexpected losses (e.g. when a commercial bank debtor defaults), it will
start selling that asset into a market which maintains a more pessimistic valuation. The higher
the disagreement, the higher will be the price impact and hence excess kurtosis of returns. In
an interconnected system, the price drop of one asset also affects other assets. Further losses
are incurred to investment bank agents. As their capacity to hold assets declines, the rest of
the world agent (row-agent) steps in. The higher risk aversion of the row-agent26 increases the
volatility of the affected assets. Until investment bank agents recover and absorb the assets held
by the row-agent, volatility will remain elevated. As a result, higher disagreement also translates
into higher persistence of return amplitudes (volatility clustering).
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Figure 4: Return distribution and autocorrelation of returns of nb-security.

Emergent heterogeneity can also be observed in short term and long term wholesale debt

26The row-agent represents institutions and individual investors who lack the expertise to properly assess the
value of nb-securities. This lack of expertise makes them reluctant to hold these assets at the price investment
bank agents consider fair.
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interest rate distributions. Fundamentals, such as equity and risk as well as deviating assessments
of fundamentals, lead to differences in wholesale interest rates between commercial bank agents.
Because interest rates themselves influence the dynamics of balance sheet variables (e.g. equity
through lower or higher profit rates) they are both, a result and a source of heterogeneity. Figure
5 plots the emergent distributions of short term interbank rates, bank bond interest rates and the
wholesale funding cost. The short term rates represent the weighted averages of interest paid on
the interbank market, which includes agents’ access to the marginal lending facility. The upper
bound to short term interest rates is 5% per year, the rate at which commercial bank agents
can borrow from the central bank. In the current setup, the median (over all agents, time and
simulation runs) short term interest rate amounts to 1.42 % per year, which is 43 basis points
lower than the median interest rate of bank bonds (1.85% per year) with an average maturity of
10 months (mB = 0.995). Unlike short term interest rates, bank bond rates have no upper limit.
When a commercial bank agent is close to default, interest rates on outstanding bank bonds
will soar. To allow a better visual comparison of distributions, all bond interest rates higher
than 5% per year are pooled at 5%. This concerns about 1.5% of the total sample of bank bond
rates, with the maximum interest rate amounting to over 300% per year. The third distribution
in Figure 5 shows the actual wholesale funding costs paid by commercial bank agents. With
1.76% per year, median wholesale fundings costs lie between the median short term rate and the
median interest rate for bank bonds. Furthermore, the standard deviation of actual wholesale
fundings costs is notably lower than the standard deviation of its components. The reason for
this is that commercial bank agents try to minimize their funding costs by choosing a suitable
funding structure and preferably borrowing when interest rates are low.
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Figure 5: Interest rate distributions of wholesale debt.

5.2 Assessing the impact of the LCR regulation

In order to assess the impact of the liquidity coverage ratio (LCR) regulation, we compare
the results of simulations under two different setups: the benchmark setup without the liquidity
coverage ratio and the LCR setup that includes the extensions of the model introduced in Section
4. Simulations within each setup are repeated 20 times. While the random seeds for the stochastic
elements differ for the 20 simulation runs within one setup, they are identical across setups. This
facilitates the comparison of both setups and at the same time reduces the probability that the
documented results are due to chance.
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5.2.1 Impact on Balance Sheets

In Table 1 we report the ratios of balance sheet positions to total assets for commercial bank
agents with and without the LCR. The ratios document median values across time, agents and
simulation runs. In the column labeled ”change”, we report the difference between the balance
sheet positions under the two setups divided by the volume of total assets under the benchmark
setup. This allows for a comparison of levels in addition to a comparison of ratios. Beside
the level of customer deposits, which is exogenous to the model, all differences in levels are
highly significant. The standard deviations, reported in parenthesis, describe the variation of
the respective balance sheet ratios across simulation runs.

Table 1: Median balance sheet of a commercial bank agent with and without the liquidity
coverage ratio (LCR). The number in parentheses is the standard deviation in percent of total
assets.

without LCR with LCR change
[% total assets] [% total assets] [% to benchmark]

loans 99.52 96.99 -2.14
(0.06) (0.21)

cash 0.48 3.01 +540.71
(0.06) (0.21)

equity 5.23 5.17 -0.75
(0.02) (0.03)

deposits 30.46 30.33 0.00
(0.37) (0.44)

short term interbank 8.05 0.45 -94.41
(0.84) (0.13)

bonds 56.27 63.83 +13.92
(1.09) (0.56)

total assets 100.00 100.00 +0.41

The most striking impact of the LCR on balance sheet ratios is unsurprisingly the change in
the cash position, which represents the high quality liquid asset (HQLA) within our framework.
While commercial bank agents try to avoid cash holdings in the benchmark setup, they are
obliged to hold cash when complying with the LCR regulation. Although the relative change in
cash holdings is very large (over 540%), the median cash to total asset ratio under the LCR setup
is only slightly higher than three percent.27 Interestingly, the increase in HQLA (cash) leads to
a 2.14% decrease in the level of loans the median commercial bank provides to the real sector.28

This is not a trivial result, since the observed substitution effect could have been avoided by
a sufficiently large expansion of agents’ balance sheets. The observed increase in balance sheet
size (+0.41%) is not enough to avoid a reduction in loans when compared to the benchmark
setup. Balance sheets can be expanded by taking on more debt (i.e. a lower equity to total
assets ratio), which does not necessarily mean that risk increases under the LCR setup. Since
cash cannot loose value in our model, expanding the asset side with cash does not add any risk.

27In reality, there may be several reasons for commercial banks to hold liquid assets even without any liquidity
regulation. The provision of credit lines to households or firms, for example, would be a good reason to hold a
stock of HQLA on the balance sheet. Also, meeting reserve requirements will lead banks to hold HQLA.

28Impact assessments that rely on statistical relationships in historical data also suggest that the LCR regulation
will tend to decrease loan supply. Estimated impacts range from 3-5% (see Figure 3-7 in Office of Financial
Research, 2014).

35



On the liabilities side, however, the refinancing risk may increase when the expansion is financed
with wholesale debt, in particular short term wholesale debt. The negative change in the level
of equity (-0.75%) suggests that commercial bank agents have become less profitable under the
LCR regulation. This is due to higher wholesale funding costs, which are induced by a drastic
change in the funding structure of commercial bank agents under the LCR setup. The short
term interbank market almost completely breaks down and overnight debt is replaced by longer
term bank bonds, which increase by 13.92%. When the LCR is binding, it becomes impossible
to finance long term illiquid assets with overnight debt. Since buying HQLA with overnight
debt is not part of commercial bank agents’ business models, the interbank market breaks down.
The increased demand for long term wholesale funding leads to increasing funding costs (interest
rates of bank bonds increase by about 15 basis points) as documented in Table 3. In general,
we would assume that the LCR will shift demand towards funding sources with higher maturity
and thereby steepen the term structure of uninsured wholesale debt.29

Table 2: Median balance sheet of an investment bank agent with and without the liquidity
coverage ratio (LCR). The number in parentheses is the standard deviation in percent of total
assets.

without LCR with LCR change
[% total assets] [% total assets] [% to benchmark]

non-bank-securities 84.40 83.21 +0.12
(0.38) (0.43)

cash 3.50 4.71 +36.77
(0.18) (0.19)

bank bonds 10.20 11.46 +14.10
(0.27) (0.26)

interbank loans 3.96 0.00 -99.99
(0.14) (0.00)

margin account 0.60 0.61 +4.85
(0.05) (0.04)

equity 3.96 3.96 +1.56
(0.17) (0.15)

investor deposits 11.05 23.32 +114.35
(0.19) (0.19)

repos 84.39 72.10 -13.24
(0.38) (0.36)

short sales 0.60 0.61 +4.85
(0.05) (0.04)

total assets 100.00 100.00 +1.55

Table 2 compares the balance sheet ratios under the benchmark setup and the LCR setup
for the median investment bank agent.30 Through the interaction with commercial bank agents,

29Bech and Keister (2013) derive a similar conclusion with a different method. They introduce the LCR
regulation into a standard model of banks’ reserve management and find that the short end of the yield curve tends
to get steeper when banks are concerned about violating the LCR. Furthermore, statistical impact assessments of
the LCR regulation, summarized in Office of Financial Research (2014), predict increases in interest rates between
15 and 30 basis points.

30Investment bank agents in our model can represent the investment banking arm of a commercial bank, but
also an institution (e.g. a hedge fund, broker dealer, structured investment vehicle, etc.) that is part of the
shadow banking system and therefore not subject to normal financial regulation. In the following, we assume that
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investment bank agents decrease their short term interbank lending and increase their holdings
of bank bonds. The higher interest rate on bank bonds increases the profitability of the median
investment bank agent, which leads to a higher level of equity when compared to the benchmark
case. While the higher ratio of cash to total assets reduces the risk of the asset side, the shifting
from short term interbank loans to long term bank bonds increases risk. In sum, the unchanged
equity to total assets ratio suggests that the reallocation of assets has been risk neutral. The
increase in balance sheet size by 1.55%, which is due to the higher profitability of investment
bank agents has also led to an increase in nb-security holdings. This leads to a decrease in
the interest rate of nb-securities (see Table 3). Lower interest rates means higher prices, which
increases the fraction of agents that deem a specific nb-security to be overvalued. As a result,
the volume of short sales and correspondingly the volume of cash held in the margin account
increase.

Table 3: Median interest rates by category with and without the liquidity coverage ratio (LCR).
The number in parentheses is the standard deviation of interest rates across simulation runs in
percent.

without LCR with LCR change
[% per year] [% per year] [% to benchmark]

non-bank-securities 0.035 0.033 -5.714
(0.004) (0.003)

short term interbank 1.417 0.209 -81.779
(0.023) (0.012)

bank bonds 1.806 1.948 +7.290
(0.028) (0.033)

5.2.2 Impact on the Maturity of Wholesale Funding

The maturities of assets and liabilities are important inputs for calculating the liquidity coverage
ratio. All else being equal, shorter maturities of loans to the real sector would increase the
inflows and reduce the volume of HQLA required under the LCR regulation. Shorter maturities
of wholesale debt, on the other hand, would increase outflows and lead to a higher demand for
HQLA. It is therefore plausible that banks will consider changing the average maturity of their
assets and/or liabilities when the LCR regulation is active. Unlike the choice between overnight
interbank debt and long term wholesale debt (bank bonds), the average maturity mB of bank
bonds is exogenous to our model. In order to test whether commercial bank agents will be
inclined to choose a different maturity structure for their bank bonds, we compare simulation
results for different values of the maturity parameter mB under the benchmark setup and the
LCR setup. We assume that agents have an incentive to change their maturity structure if they
can profit from such a change.

In Figure 6, we show the relation between the return on assets (RoA) of commercial bank
agents and the average maturity31 of their long term wholesale funding (bonds). The solid lines
represent the median values over time, agents and simulation runs, while the shaded areas depict

the LCR applies for all investment bank agents. Qualitatively, most results remain valid when the LCR is only
applied to commercial bank agents. An exception is the shift in the investment bank funding structure towards
a higher ratio of investor deposits and a lower ratio of repo financing, which disappears when investment bank
agents do not need to comply with the LCR regulation.

31The average maturity in months is computed with Eq. (3.5); we assume that a month has 20 trading days.
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Figure 6: Commercial bank profit for different average maturities of bank bonds.

the variation (specifically, the 90% confidence interval) across simulation runs. The dashed line
marks the average maturity of loans, which is kept constant, and the Xs highlight the average
maturity for which the RoA is maximized. Figure 6 reveals three important findings: First,
commercial bank agents are on average always more profitable under the benchmark setup than
under the setup where the LCR is binding. Second, when the average maturity of bank bonds
is greater than the average maturity of loans (mB > mL), the spread between the RoAs of
the two setups remains more or less constant. The spread, however, widens dramatically when
mB < mL. Third, the optimal average maturity of bank bonds under the benchmark setup is
shorter than the average maturity of loans. The opposite is true under the LCR setup.

The third finding suggests that a commercial bank under the LCR regulation will have a
considerable incentive to make sure that its wholesale funding has on average a greater maturity
than the average maturity of its assets. This can be achieved either by increasing the maturity
of bank bonds or decreasing the maturity of loans to the real sector. In both cases, banks would
reduce the liquidity in the banking sector. Beside risk transformation, liquidity creation, which
is achieved when banks’ liabilities are more liquid than their assets, has been acknowledged as
an important role of banks in the context of economic growth at least since Adam Smith (see
Berger and Bouwman, 2009). Our model suggests that liquidity creation with wholesale debt
will become more difficult when banks need to comply with the LCR regulation.32

The first and second findings are explained by Figure 7: As illustrated in the left panel, bond
interest rates under the LCR setup are persistently higher than in the benchmark setup, which
explains the lower profitability of commercial bank agents.33 For mB ≥ mL bond interest rates

32Empirical evidence supports this model prediction. At least in the US, the funding structure of banks is
undergoing changes in line with our simulation results. Wholesale funding is becoming increasingly longer term,
while banks are increasing their volume of liquid assets and are providing fewer loans to the real sector (see e.g.
Buehler et al., 2013). In Europe, on the other hand, wholesale funding is becoming more short term. However,
the slow recovery after the financial and sovereign debt crises and ongoing financial fragility rather than liquidity
regulation are arguably dominating balance sheet dynamics in the EU.

33Note that the specific result that interest rates are higher under the LCR and the general result that interest
rates increase with increasing maturity are emergent phenomena of our model. These results are not explicitly
written into the model equations, but emerge through the interactions of agents in the market. The lower
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Figure 7: Cash and bond interest rates for different maturities.

increase with increasing average maturity of bonds under both setups. The upward-sloping yield
curve emerges due to risk considerations by investment bank agents. The longer the average
maturity, the smaller will be the received repayment per period. When repayments are spread
over a longer time horizon, it becomes more probable that the investor will suffer losses due to
a default event or a reassessment of default probabilities. Investment bank agents seek compen-
sation for this through higher interest rates. Expectations of lower or higher interest rates in
the future do not play a role in our current setup. When commercial bank agents under the
LCR setup choose an average maturity for their wholesale funding that is lower than the average
maturity of loans, interest rates start increasing with declining mB. A demand effect explains
this result. As illustrated in the right panel of Figure 7 commercial bank agents need to hold an
increasing volume of cash for very low average maturities of wholesale debt. Consequentially a
higher volume of wholesale debt is needed to fund the same amount of loans to the real sector.
This leads to higher interest rates. The increasing spread between the RoAs in Figure 6 for
mB < mL is thus partially explained by the higher interest rate for wholesale debt and partially
by the higher share of low-yielding HQLA on the balance sheets of commercial bank agents.

5.2.3 Impact on the Transmission of Monetary Policy

The setting of key interest rates by the central bank is an important tool of monetary policy.
In our model, monetary policy is conducted exclusively through the marginal lending rate rCB,
which specifies at which interest rate the central bank offers overnight credit to banks. Figure
8(a) shows how a sudden 1 percentage point change in the marginal lending rate (monetary policy
shock) leads to a change in the average volume of loans commercial bank agents provide to the
real sector. The lines track the percentage difference in the average loan supply of the median
simulation run between the unshocked and the shocked system. As expected, loosening monetary

profitability level under the LCR, on the other hand, is not a purely emergent phenomena. It is partly due to our
modeling choice of not allowing commercial bank agents to endogenously change the interest rate on loans to the
real sector. This makes the model prediction that profitability will suffer under liquidity regulation weaker than
the prediction that interest rates of long term wholesale debt will increase. Banks could restore their profitability
in the light of higher funding costs by increasing the interest rate they charge on loans. We refrain from allowing
such adjustments in the current setup because the real sector is not endogenous and can itself not react to changing
interest rates. Nevertheless, we assume that the decline in volume of loans provided to the real sector under the
LCR regulation (see Table 1) holds, since rising interest rates on loans would reduce the demand for loans.
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policy leads to an increase in the loans volume, while a tightening leads to a decline in loans to
the real sector. Note that it takes about two years before the average loan supply of commercial
bank agents stabilizes at a new level, which is approximately 2.5% higher or 1% lower than
the loan supply of the unshocked system. Although the monetary policy shocks take full effect
only after a substantial time span, changing the marginal lending rate proves to be an effective
tool under the benchmark setup. In contrast, a change in the marginal lending rate is largely
ineffective under the LCR setup, as illustrated in Figure 8(b). For the first half year after the
shock, there is on average no impact of the policy shock on the loan supply. Thereafter the loan
supply does deviate from the unshocked system. While the direction of the deviation is largely
consistent with the results from the benchmark setup, the size of the impact is economically
insignificant (note the scaling factor of 10−3) under the LCR setup.

0 0.5 1 1.5 2 2.5 3 3.5 4
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

time since shock [years]

d
iff
e
re
n
c
e
to

th
e
u
n
sh

o
ck

e
d
sy

st
e
m

[%
]

∆rCB = −1%

∆rCB = +1%

(a) impact on the benchmark setup

0 0.5 1 1.5 2 2.5 3 3.5 4

10
-3

-6

-4

-2

0

2

4

6

8

10

12

time since shock [years]

d
iff
e
re
n
c
e
to

th
e
u
n
sh

o
ck

e
d
sy

st
e
m

[%
]

∆rCB = −1%

∆rCB = +1%

(b) impact on the LCR setup

Figure 8: Change in the loan supply of commercial bank agents in response to a change in the
marginal lending rate.

In order to understand the transmission of changes to the marginal lending rate under the
benchmark setup and the apparent breakdown of the transmission channel under the LCR setup,
we simulate the two setups for different values of rCB. In Figure 9, we report the average values
(over time and agents) of crucial variables. Figure 9(a) confirms the results from the monetary
policy shock experiment above: As the marginal lending rate decreases, the average loan supply
of the average commercial bank agent increases. While the relationship is pronounced and convex
under the benchmark setup, it is rather weak and linear under the LCR setup. Figure 9(b) shows
why the transmission differs between the two setups. It illustrates how different values for rCB

change the composition of wholesale debt under the benchmark setup (the blue and yellow lines).
Low marginal lending rates go along with a higher fraction of overnight interbank debt and a
lower fraction of longer term bonds. On the other hand, no such restructuring of wholesale debt
can be observed under the LCR setup.

Because the marginal lending facility is an alternative to overnight interbank credit, the
interbank market is part of the transmission channel of monetary policy. Lower values for rCB

therefore have an impact on the overnight interbank interest rates. The yellow line in Figure
9(d) shows how short term interest rates decrease with decreasing rCB . The positive relationship
between the two competing short term refinancing instruments emerges through the interaction
of agents on the interbank market. Commercial bank agents are inclined to increase their share
of central bank funding as the marginal lending rate decreases. In order to compete with the
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central bank’s facility, investment bank agents need to cut short term interbank interest rates.
The transmission does not end here. Interest rates of longer term wholesale debt (the blue line
of Figure 9(d)) also adjust, because they compete with short term wholesale debt. In essence,
monetary policy is transmitted through a chain of competing funding instruments. Under the
benchmark setup, a lower rCB will decrease funding costs, which will free resources to expand
the loan supply of commercial banks. Under the LCR setup, on the other hand, the short term
interbank market breaks down. The first link in the chain of competing funding instruments
is broken, which interrupts the transmission channel of a monetary policy conducted through
changes in the marginal lending rate.34 What is left of the short term interbank market in the
LCR setup, does behave similarly to the benchmark setup as can be seen in Figure 9(c), but
the absolute volume is too small to keep the described transmission channel alive. Nevertheless,
we observe a weak reaction of loan supply (in Figure 9(a)) and bond interest rates (in Figure
9(d)) to changes in the marginal lending rate. The transmission in this case goes through the
expected default probability of commercial bank agents. Figure 9(e) plots the mean expectation
by investment bank agents of the default probability of commercial bank agents.35 Under both
setups, the expected default probability tends to increase with an increasing marginal lending
rate. The transmission channel works as follows: Consider a bank under stress that is partially
cut-off from wholesale funding markets. This bank will have to balance its balance sheet by
tapping into the marginal lending facility of the central bank, which functions as a lender of
last resort. The higher the marginal lending rate, the higher the probability that the bank will
remain stressed, since refinancing costs eat away at equity. Since deleveraging takes time, lower
levels of equity will result in higher default probabilities, which has an impact on bond interest
rates and loan supply. Figure 9(f) shows another point on the default probability distribution.
When looking at median values, a difference between the two setups becomes evident. While the
median expected default probability under the benchmark setup decreases with increasing rCB,
the opposite is true for the LCR setup. The median, in contrast to the mean, excludes stressed
agents with high default probabilities. The figure therefore implies that the typical commercial
bank agent under the benchmark setup will choose to increase the risk on its asset side when
monetary policy is decreasing interest rates. In our model, commercial bank agents increase
their risk by expanding their balance sheet (i.e. increase leverage). In reality, banks could, of
course, also shift into riskier assets. From the commercial bank agent’s perspective, a riskier asset
side, whether through higher leverage or high-risk investments, seems to be a sensible decision.
When interest rates are persistently low, the risk from changes to wholesale refinancing costs
will decrease and create risk-bearing capacity on the asset side. With other words, our model
implies a risk channel of monetary policy. Commercial bank agents become more vulnerable
to unexpected shocks to wholesale funding costs. This channel is not apparent under the LCR

34In our framework, the marginal lending facility is part of the interbank market (see Eq. 3.16). Because the
treatment of central bank loans and overnight interbank loans differs under the LCR regulation, this modeling
choice can be problematic. Specifically, while the run-off rate for overnight interbank loans is 100%, it is 0% for
central bank credit (national regulators may demand higher rates). Taking this into account, banks could very
well fund their required HQLA with short term central bank loans instead of long term wholesale debt. However,
it is unclear if such behavior could completely restore the transmission of monetary policy. If banks start relying
more on central bank credit to finance HQLAs (Rezende et al. (2016) find that this is the case for banks that
are subject to the LCR in the U.S.), it may become more difficult for the central bank to manage the amount
of liquidity in the banking system with conventional tools. On the other hand, if the central bank does not
reliably satisfy the increasing demand for central bank liquidity (the LCR was in part introduced to reduce the
dependence on the central bank), banks will, as our results suggest, seek to replace short term funding (including
borrowing from the central bank) with long term funding, breaking the link between central bank and wholesale
interest rates.

35The expected default probabilities only consider the risk on the asset side (see Eq. (3.58)). Refinancing risks
of commercial bank agents are neglected by investment bank agents.
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setup.
On a general note, we are well aware of the fact that monetary policy in reality is multidimen-

sional and includes more approaches than the setting of short term interest rates. Longer term
refinancing operations by the central bank, for example, will still be able to influence market
rates. Furthermore, the transmission channels of open market operations and unconventional
monetary policy are unlikely to be strongly affected by the LCR regulation. Nevertheless, the
simulations above are not invalid. They suggest that the transmission of a certain type of mon-
etary policy is likely to be suppressed when the LCR regulation is binding. Furthermore, much
of the impact of monetary policy depends on the interaction between the financial sector and
the real sector. These interactions are not included in our current framework. For example,
loose monetary policy is expected to stimulate consumption, while monetary tightening typically
drains customer deposits from the banking sector. It has recently been suggested by New York
Fed researchers that the LCR regulation could help to strengthen the so called bank lending
channel (see Choi and Velasquez, 2016). They argue that since wholesale debt has become a
common funding source for commercial banks, a monetary policy induced decrease in deposits
would quickly be replaced by wholesale funding, while an increase in deposits would lead to a
reduction in wholesale funding. The result of this behavior is a reduced effect of monetary policy
on bank lending. We can test their hypothesis of a more pronounced bank lending channel under
the LCR regulation by simulating a shock on deposits and by comparing the impact on loan
supply for our two setups. For the benchmark setup, Figure 10(a) shows the change in the loan
supply compared to the unshocked system for a 10% increase and decrease in customer deposits.
Clearly, the loan supply increases when customer deposits increase and vice versa. However,
without any compensation of the shock through wholesale debt, we would expect lending to in-
crease or decrease by approximately 3%, which is far higher than the observed change in average
loan supply.36 The fact that a bank lending channel is observed at all, is due to the different
characteristics of deposits and wholesale funding. Since deposits, at least within our framework,
constitute a cheaper and more stable source of funding than wholesale debt, increasing them
allows for a small balance sheet expansion, while a decrease in customer deposits leads to a slight
contraction of the balance sheet. In order to show the impact of the LCR on loan supply, Figure
10(b) plots the cumulative difference between the shock responses under both setups. At each
point in time, the cumulative difference states how much more or less loans (in percent) would
have been supplied in total under the LCR setup since the unexpected change in deposits.37

Figure 10(b) confirms the hypothesis of Choi and Velasquez (2016). The bank lending channel
is more pronounced under the LCR regulation. However, large impulses for the real economy
are not to be expected. At its best, i.e. in the first months after the shock, commercial bank
agents provide approximately 0.05% more or less loans under the LCR setup than under the
benchmark setup. In the longer run, the effect on the bank lending channel remains positive,
but loses intensity.

36As reported in Table 1, customer deposits make up approximately 30% of total assets or loans to the real
sector. Without any compensation, an increase or decrease of customer deposits by 10% should therefore increase
or decrease total assets by 3%, respectively.

37The cumulative difference CDt is computed as follows:

CDt =

(

∑t
τ=1 ∆L

LCR,s
τ LBench,u

τ

)

−
(

∑t
τ=1 ∆L

Bench,s
τ LBench,u

τ

)

∑t
τ=1 L

Bench,u
τ

,

with ∆LLCR,s
τ and ∆LBench,s

τ being the percentage difference of the average loan supply for the shocked LCR setup

and benchmark setup, respectively. LBench,u
τ denotes the average amount of loans supplied for the unshocked

benchmark setup. With such a calculation of the cumulative difference, we assume that the loan supply in the
unshocked case is equal for the benchmark setup and the LCR setup.
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Figure 9: The impact of different marginal lending rates on balance sheet variables, interest rates
and expected default probabilities
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Figures 10(c) and 10(d) illustrate the main mechanism through which the bank lending chan-
nel is strengthened under the LCR setup. It depicts the change in cash holdings in response
to the shock to customer deposits. The left panel shows the response in the benchmark setup.
When deposits increase, cash holdings shoot up, while they sharply decrease when deposits are
withdrawn. Since it takes some time for agents to cut back on wholesale funding in case of
increased deposits, the additional cash is gradually reduced. On the other hand, a sudden re-
duction in deposits will first deplete cash holdings until sufficient wholesale funds can be raised
for compensation. The impact of changes in cash on other balance sheet variables is, however,
very limited, since the cash to total assets ratio in the benchmark setup is on average lower
than 0.5% (see Table 1). Figure 10(d), which graphs the impact on cash under the LCR setup,
is more interesting. Here, a positive shock on deposits eventually leads to a reduction in cash
holdings, while a negative shock eventually increases cash. The reason for this dynamic lies in
the specification of the LCR. Customer deposits are assigned a run-off rate of 3% because they
are deemed a rather safe funding instrument by the regulator. Unsecured wholesale debt, on
the contrary, is deemed a very risky funding instrument. The regulator assumes that in times of
stress banks will not be able to refinance maturing unsecured wholesale debt, which translates
into a run off rate of 100%. Consequentially, the larger the proportion of assets funded by run-
prone wholesale debt, the more HQLA banks need to hold. As explained in Section 5.2.1, higher
volumes of HQLA will partially crowd out loans in the LCR setup. Lower required holdings
of HQLA, on the other hand, will add to a bank’s capacity to provide loans to the real sector.
Through this mechanism, the LCR regulation may indeed contribute to a strengthening of the
bank lending channel. However, taking into account our finding that the transmission of changes
to the marginal lending rate is markedly disturbed by the LCR regulation, it remains uncertain
whether monetary policy will become more or less effective in the future. In order to assess the
cumulative effect, it would be necessary to endogenize the real sector in our model. What our
analysis can nevertheless show, is how the nature of monetary policy transmission is expected to
change due to the introduction of liquidity regulation.
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Figure 10: The impact of a shock to the volume of customer deposits on loans to the real sector
and cash on commercial bank agents balance sheets.

5.2.4 Impact of a Confidence Shock

Our analysis so far has shown that a binding LCR regulation will pressure banks to make changes
to the structure of their balance sheet. The principal aim of the regulator is that these changes will
contribute to stabilizing the financial system. In order to filter out the impact of the regulation on
the stability of the system, we compare the dynamics that are triggered by a controlled shock in
the benchmark setup and the LCR setup.38 The focus of the following analysis lies on explaining

38Financial stability in the context of the LCR regulation does not feature prominently in the literature. One
exception is van den End and Kruidhof (2013), who argue for a flexible LCR requirement in order to mitigate
negative side effects such as fire sales during times of stress. Relatedly, many observers have raised concerns that
even though the regulator explicitly allows banks to temporarily fall below minimum requirements when stressed,
they may be reluctant to do so in reality (see e.g. Stein, 2013). Similar to the stigma associated with accessing
the discount window (see e.g. Armantier et al., 2015), banks may fear a loss of reputation when having to report
that their LCR falls short of 100%. In our model, commercial bank agents draw down their HQLA in times of
stress. Technically, whenever they fail to refinance wholesale debt and need liquidity assistance from the central
bank, they reduce their HQLA before accessing the marginal lending facility. There are no reputational costs
associated with this behavior.
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the impact of the LCR regulation on the stability of banks’ loan supply to the real sector.
The default of Lehman Brothers in September 2008 led to a surge in uncertainty about the

solvency of banks. We want to model a mutual loss of confidence in the banking sector by shocking
the expectations investment bank agents have about the default probabilities of commercial bank
agents. Specifically, we multiply the expectation Ei[Ω

C
c ] (see Eq. (3.59)) with a factor to obtain

the shocked expectation Esh
i [ΩC

c ], which lasts for 30 trading days before returning to its normal
level. The left panel of Figure 11 shows the impact of the shocks on the average loan portfolio
of commercial bank agents in the benchmark setup. Two intensities of the confidence shock are
plotted. The blue line graphs the percent difference between the shocked and unshocked system
when default probability expectations are doubled, while the red line draws that difference for
a tenfold increase in expected default probabilities. For both shock intensities, the loan supply
decreases immediately after the shock and starts to rise again after 30 days. However, the
decrease of loan supply as well as its subsequent recovery is steeper for the weaker shock than
for the stronger shock. Noteworthy is also the belly that the loan supply displays for the severer
shock, which lasts for approximately three years (from 0.5 to 3.5 years after the shock). It
implies that short lived but intense confidence crises in the financial sector can have a sustained
effect on the real economy. The implementation of the liquidity coverage ratio aggravates the
adverse effects of confidence shocks on the loan supply, as illustrated in Figure 11(b). While
the cumulative difference (computed as specified in Footnote 37) between the loan supply in the
benchmark setup and the LCR setup quickly becomes irrelevant for the weak confidence shock, it
is substantial for the larger shock. One year after the shock, commercial bank agents in the LCR
setup provided almost 15% less loans to the real sector than their counterparts in the benchmark
setup. The consequence is likely to be a severe recession.
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Figure 11: The impact of a confidence shock on the supply of loans to the real sector.

Although the temporary loss of confidence in the solvency of commercial bank agents triggers
the decline in loan supply, the stability of commercial bank agents is not compromised as a
consequence of the shock.39 Figure 12(a) shows that the extent to which commercial banks’
equity in the shocked benchmark scenario deviates from the unshocked system is rather small.
The deviation is explained by changing funding costs, depicted in Figure 12(c). Investment

39It is important to note that the lack of any feedback between the real sector and the financial sector is an
issue here. Typically, recessions are accompanied by a deterioration of credit quality, which would have an impact
on the solvency of commercial banks.
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bank agents react to their perception of higher default probabilities by increasing interest rates
of wholesale debt. Since short term debt needs to be rolled over quickly, higher interest rates
immediately show up in funding costs in the benchmark setup and cause the initial drop in
equity seen in Figure 12(a). Then, as commercial bank agents shrink their balance sheet by
reducing their loan supply, average funding costs temporarily decline, which increases profitability
and hence equity. After the shock is resolved and default probability expectations normalize,
investment bank agents reduce the interest rates on wholesale debt. However, for some months
they remain higher than they would have been without the shock (see bond prices in Figure
15(a)). In part, this is the case because unexpected events influence the risk assessment of
agents by raising their awareness about the potential faultiness of their expectations.40 The
increased cost for wholesale debt explains why approximately half a year after the shock the
equity level of commercial bank agents falls below the level measured in the unshocked system.
Note that because payment conditions for wholesale debt are defined for its entire duration,
average funding costs return to their normal (unshocked) level after three years, while bond
prices already normalize after approximately ten months.

Unlike its impact on loan supply, the LCR regulation has a positive effect on commercial
bank agents’ equity for the first one and a half years after the shock. Figure 12(b) graphs the
percentage point difference of the changes in equity capital with respect to the unshocked system
between the LCR setup and the benchmark setup. The differences in the two impacts of the
shock on equity can be explained by looking at the difference in changes to the funding costs
under the two setups, which is illustrated in Figure 12(d). A higher share of long term wholesale
debt under the LCR setup implies that less debt needs to be rolled over when interest rates
sharply increase in response to the confidence shock. Therefore, average funding costs rise less
quickly when commercial banks comply with the LCR regulation. This is despite the fact that
bond prices fall below their counterparts in the benchmark setup (see Figure 15(b)). However,
as soon as commercial bank agents stop deleveraging and start expanding their loan portfolios,
the higher bond interest rates increase overall funding costs. Consequentially, equity falls under
the level displayed in the benchmark setup.

40Technically, the increased prudence in response to a shock is introduced through the inclusion of past forecast
errors into investment bank agents’ expectations of variance (see Eq. (3.63). The parameter ψB thereby insures
that large misjudgments remain in memory for some time.
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(d) difference in impact on funding costs between the
LCR setup and the benchmark setup

Figure 12: The impact of a confidence shock on commercial bank agents’ equity and average
funding costs.

Commercial bank agents’ equity levels and funding costs apparently do not explain the detri-
mental effect the liquidity coverage ratio regulation has on the loan supply to the real sector. The
dynamics of equity of investment bank agents are more instructive. If investment bank agents’
balance sheets remain unconstrained during the shock, we would expect that the symmetry of
the confidence shock (i.e. the initial increase in expected default probability is fully reversed
after 30 periods) will lead to short lived implications of the shock. Any initial detrimental effect
should be followed by a beneficial effect of similar magnitude as expectations of commercial bank
agents’ default probabilities normalize. Indeed, this is what we find under the benchmark setup.
Figure 13(a) plots the impact of the confidence shocks on investment bank equity under the
benchmark setup. When expectations of commercial bank agents’ default probability increases,
investment bank agents suffer valuation losses. In case of the large shock, equity decreases by
almost 25% at first, but starts to recover immediately with increasing bond prices (see Figure
15(a)). As confidence is restored after 30 days, equity reaches a level that is only slightly below
the level measured in the benchmark setup without the shock. After approximately four months
any trace of the confidence shock disappears. Although the recovery of investment bank agents’
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equity under the large confidence shock is rather swift, there is a noticeable relation between the
speed of the recovery and the shock size. This relation is more salient under the LCR setup.
Figure 13(b) shows that while the impact of the small shock on equity appears very similar
under both setups (it is slightly worse under the LCR setup), the impacts of the large shock
have a different quality in the two setups. Under the LCR setup, the initial drop in equity is
about 25 percentage points deeper and the resolution of the shock after 30 days lifts equity to a
level that is still almost 30 percent below its unshocked counterpart. It takes more than a year
before equity reaches and then surpasses the level measured under the LCR setup without the
confidence shock. The stronger initial decline in equity can be explained by a stronger decline
in bond prices, which drop on average approximately 8 percentage points below their counter-
parts in the benchmark setup (see Figure 15(b)). However, bond prices alone do not explain the
qualitative difference in the impact on equity between the two setups. In particular, it needs
to be explained why the symmetry between the initial detrimental effect of the shock and the
subsequent beneficial effect of its resolution is broken.
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Figure 13: The impact of a confidence shock on the equity of investment bank agents.

Figure 14(a) plots the average balance sheet size of investment bank agents in response to the
confidence shock in the benchmark setup. Due to the initial negative valuation effect, investment
bank agents start deleveraging, which leads to the observed contraction of balance sheets. The
negative and positive peaks mark the first and last period of the shock, respectively. They are
caused by overreactions of agents due to a temporary mispricing of assets. Nevertheless, the size
of investment bank agents’ balance sheets quickly recovers. Figure 14(b) shows, on the other
hand, that when banks comply with the LCR regulation the average size of balance sheets is first
halved when the shock hits and then further decimated as the shock is resolved after 30 periods.
While the first contraction of balance sheet size is a deliberate reaction to the decline in equity,
the second seems counterintuitive. When expectations about commercial bank agents’ default
probabilities normalize, the positive valuation effect induced by rising bond prices raises equity
and should thereby contribute to a normalization of balance sheet size. However, the fact that
investment bank agents have sold most of their portfolio in the wake of the shock dilutes the
positive valuation effect from rising bond prices. At the same time, the price changes induced
by both the shock and its resolution increase the volatility of investment bank agents’ earnings,
which raises concerns among investors and leads them to withdraw their deposits, as illustrated
in Figure 14(d). The low level of funding at the time when the confidence shock is resolved
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furthermore has a peculiar effect on the prices of nb-securities. While they increase sharply after
30 days under the benchmark setup, they drop in the LCR setup (see Figure 15(c) and 15(d)).
The reason for this can be derived from the portfolio optimization of investment bank agents.
Specifically, when the confidence shock is resolved, bank bonds become undervalued. As a result,
investment bank agents shift their scarce funding out of nb-securities and into bank bonds, which
leads to the drop in nb-security prices. The valuation effect of this price drop further dilutes the
positive valuation effect of rising bond prices. Our analysis suggests that the larger the confidence
shock, the higher the asymmetry between the initial adverse effect of the shock on investment
bank agents and the ensuing beneficial effect when the shock is resolved. The circumstances that
explain this growing asymmetry are accelerating investor deposit withdrawals, i.e. constrained
balance sheets, and an increasing dilution of positive valuation effects.
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(d) impact on investor deposits in the LCR setup

Figure 14: The impact of a confidence shock on investment bank agents’ balance sheet size and
on the volume of investor deposits.

50



0 2 4 6 8 10 12 14 16 18

-12

-10

-8

-6

-4

-2

0

2

time since shock [months]

d
iff
e
re
n
c
e
to

th
e
u
n
sh

o
ck

e
d
sy

st
e
m

[%
]

E
sh
i [ΩCc ] = 2 · Ei[Ω

C
c ]

E
sh
i [ΩCc ] = 10 · Ei[Ω

C
c ]

(a) impact on bond prices in the benchmark setup
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(b) difference in impact on bond prices between the
LCR setup and the benchmark setup
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(d) impact on nb-security prices in the LCR setup

Figure 15: The impact of a confidence shock on average bank bond prices and average nb-security
prices.

Under the LCR setup and large enough confidence shocks, the asymmetry becomes increas-
ingly destabilizing, at least with regard to commercial bank agents’ loan supply to the real sector.
The mechanism behind this destabilizing effect of the liquidity regulation is simple: The LCR
incentivizes commercial bank agents to increase the maturity of their wholesale funding. The
increased maturity makes investment bank agents’ bond holdings more prone to valuation effects,
i.e. it increases risk. When shocks to commercial bank agents’ perceived solvency are within the
range of what investment bank agents expect, the demanded higher interest rate compensates
for the additional risk. The described asymmetry, however, causes unexpectedly strong adverse
shocks to have a lasting impact on investment bank agents’ equity and balance sheet size. The
consequential decline in the supply of cheap wholesale funding after the shock causes the subdued
loan supply to the real sector. With other words, by increasing the funding stability of commer-
cial bank agents through the LCR regulation, the regulator deepens the contagion channel. The
longer the maturity of tradable wholesale debt, the more immediate will be the transfer of stress
between different bank business models.

Before ending our analysis, we want to point out an interesting regularity that arises when
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(a) impact on cash in the benchmark setup
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(b) impact on cash in the LCR setup

Figure 16: The impact of a confidence shock on commercial bank agents’ cash holdings.

implementing the confidence shocks. Under both the benchmark setup and the LCR setup, cash
holdings increase as a consequence of the shock. This seems counterintuitive, as the regulator
explicitly allows banks to deviate from a LCR of 100% in times of stress in order to compensate
withdrawals of wholesale funding by selling high quality liquid assets. Figure 16 shows how
cash starts rising immediately after a shock hits.41 While the resolution of the shock after 30
periods leads to a quick normalization of cash holdings in case of the small confidence shocks, the
large confidence shocks have a more sustained effect on cash holdings. The effect is interesting
because it mimics increasing liquidity buffers at the onset of the financial crisis in 2007 (see e.g.
Acharya and Merrouche, 2012; De Haan and van den End, 2013). While the literature provides
several different explanations for the observed liquidity hoarding that range from precautionary
to predatory motives (see Gale and Yorulmazer, 2013; Acharya et al., 2012, , respectively), in our
model, the growth of cash holdings is an indirect and rather trivial consequence of deleveraging
activities. Specifically, when wholesale funding costs sore in response to the confidence shock,
commercial bank agents start shrinking their balance sheets. Maturing loans are not renewed,
while inflows are used to pay back wholesale debt. Because loan portfolios can be reduced faster
than wholesale debt, cash accumulates until it can be used to pay back wholesale debt.42 Note
that the system wide increase in liquidity is only plausible under two related conditions: first, the
confidence shock affects the banking system as a whole and second, short term money markets
are disturbed. These conditions are fulfilled, both in reality during the financial crisis 2007-2009
and when we shock our artificial financial system. If the shock would be idiosyncratic and money
markets fully functional, excess liquidity would not accumulate on balance sheets, but would be
issued as short term wholesale debt.

41The very large percentage differences in cash holdings relative to the unshocked system, especially under the
benchmark setup, are due to very low initial average cash holdings.

42It seems reasonable to assume that in reality loan portfolios can shrink faster than wholesale debt. This
can be the case even when the average maturity of wholesale debt is shorter than the average maturity of loans.
The necessary condition for this to happen in our model is given by the following relation: (1 − mL)Lc,t >
(1 − mB)Bc,t + Ic,t. The fact that commercial banks finance a considerable part of their loan portfolio with
deposits and overnight interbank debt is only a small fraction of wholesale debt makes the fulfillment of the
condition plausible.
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5.2.5 Impact of a Solvency Shock

Our analysis suggests that the banking system under the LCR regulation will amplify the adverse
effects of a confidence shock, especially a large one. However, there are plenty of other shocks
that could hit the banking sector, for which the LCR regulation could prove to be beneficial.
In the following, we take a look at the impact of a solvency shock on the financial system.
Specifically, we manipulate the exogenous loan default rate ρLc,tshock at time t = tshock by adding

a factor ∆ρLc,tshock . The shock lasts for exactly one period after which loan default rates return
to their normal levels. Again we show the impact of two different shock sizes. In the following
figures, the blue lines graph the impact of a one time increase in the loan default rate by one
percentage point, while the red lines show the dynamics of a two percentage point increase.
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Figure 17: The impact of a solvency shock on the supply of loans to the real sector.

Figure 17 shows the impact (relative to the unshocked system) of the shocks on the loan
supply of commercial bank agents under the benchmark setup. Note that the reductions in
loan supply are more than ten times larger than the initial shocks. This is the case because
the drop in equity induced by the shock leads to a surge in leverage, which is unacceptable to
the risk management of agents. The recovery sets in only after the consequential deleveraging
process has been completed. Unsurprisingly, the length of the recovery is positively related to
the size of the shock. While it takes the system about 9 months to recover from the 1% shock,
the length of the recovery doubles for the 2% shock. The comparison of the solvency shocks’
impact on loan supply under the benchmark setup and the LCR setup, depicted in Figure 17(b),
has two distinctive features. During the first couple of months, the cumulative (computed as
detailed in Footnote 37) loan supply is larger when the LCR is implemented. After some time,
the cumulative loan supply in the LCR setup falls below that of the benchmark setup and then
approaches the zero-line as time progresses. It is important to notice that for both shocks, the
difference between the two setups is rather small. For example, assuming that the loan portfolios
prior to the shock are equally large under both setups, the cumulative loan supply half a year
after the larger shock is merely 0.5% higher in the LCR setup than in the benchmark setup.
After approximately 14 months, on the other hand, commercial bank agents under the LCR
setup have provided about 0.5% fewer loans to the real sector than under the benchmark setup.
Four years after the larger shock, the cumulative difference in loan supply between both setups
has been reduced to an economically rather insignificant negative 0.05%.
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The explanation for the difference in impact of the solvency shocks between the two setups
can be traced back to two phenomena. The initial positive impact can be ascribed to the higher
funding stability that the LCR regulation evokes. Figure 18 shows that while average funding
costs change substantially in response to the shock, the difference in the responses between the
two setups is large only in the immediate aftermath of the shocks. Because short term funding
is curtailed by the LCR regulation, commercial bank agents do not roll over overnight interbank
debt at higher interest rates, which is beneficial to equity and slightly reduces deleveraging
pressure. The dynamics of equity reveal the phenomena that eventually leads to the overall
detrimental (albeit minor) impact of the LCR regulation on loan supply. Figure 19(a) plots the
impact of the solvency shocks on equity under the benchmark setup. Equity drops sharply at first
and then slowly recovers as time progresses. The difference in impacts between the LCR setup
and the benchmark setup, shown in Figure 19(b), is positive at first, but quickly turns negative.
The initial beneficial effect can be traced back to the higher funding stability under the LCR,
while the subsequent detrimental effect on equity implies a slower recovery when commercial
bank agents comply with the LCR regulation. Equity recovers at a slower pace because the LCR
reduces the profitability of commercial bank agents by increasing average wholesale funding
(see Figure 6 and Table 3). As we already mentioned in Section 5.2.2, a reduction in banks’
profitability due to the LCR regulation is not entirely an emergent phenomenon in our model.
In order to maintain a constant profit rate, banks could, and probably would, increase interest
rates on loans in response to rising funding costs. Under these circumstances, the loan supply
could recover at equal rates in the two setups, which would lead to a stabilizing effect of the
LCR regulation on loan supply. On the other hand, higher interest rates on loans are likely to
reduce loan demand.
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Figure 18: The impact of a solvency shock on the average funding costs of commercial bank
agents.
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Figure 19: The impact of a solvency shock on commercial bank agents’ equity.

6 Conclusion

We have developed a model of the financial system that can be used as a test bed for banking
regulation. The framework comprises the agents and institutions that have proved crucial in the
propagation of the subprime mortgage shock in the U.S. into a global financial crisis. Specifically,
we have modeled two agent types that represent commercial banks on one side and investment
banks and shadow banks on the other side. The agents of the model interact on wholesale debt
markets. Beside a market for short term interbank loans and long term bank bonds, other funding
sources include insured customer deposits, uninsured investor deposits, secured short term debt
in the form of repos as well as the possibility to borrow securities for the purpose of short selling.
Credit to the real sector is the principal asset of commercial bank agents, while investment bank
agents specialize in trading securities, which may differ according to risk, maturity and liquidity.
We endow agents with sophisticated tools to manage the asset and liability side of their balance
sheet. Based on their expectations, agents try to behave optimally. Therefore they can quickly
adapt to changing circumstances, which may arise endogenously or are enforced exogenously.

We employ the framework to assess the impact of the liquidity coverage ratio regulation on
balance sheets, interest rates, monetary policy transmission and some aspects of financial stabil-
ity. Our findings confirm existing impact assessments in that they suggest that the regulation
will lead to a lower supply of bank loans to the real sector, higher interest rates and a shift
towards longer term wholesale funding. When the LCR regulation is the binding constraint on
balance sheets, a sharp decline in the role of the short term interbank market as a funding source
disturbs the transmission of monetary policy. In particular, changes to short term central bank
interest rates will be less effective in stimulating or curtailing the supply of loans to the real
sector. On the other hand, we find that the lending channel of monetary policy through changes
in customer deposits will be slightly more pronounced under the LCR regulation. Furthermore,
we evaluate the impact of a confidence shock and a solvency shock on the loan supply to the
real sector. A large and unexpected shock to confidence, which we model with a temporary
increase in perceived default probability of commercial bank agents, leads to a severe credit
crunch under the LCR regulation. While the regulation has a stabilizing effect on commercial
banks, it decreases the stability of investment banks, who are the creditors of commercial banks
in wholesale debt markets. A sustained decline in the supply of wholesale funding in response

55



to the confidence shock is ultimately responsible for the credit crunch. In contrast, the LCR
regulation does alleviate the immediate adverse consequences of a solvency shock on the loan
supply. However, the positive effect is rather modest and short lived. Lower average profit rates
of commercial bank agents lead to a slower recovery and eventually to a detrimental impact of
the LCR regulation on loan supply.
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A Initialization

Random

variable

Description Distribution Parameters

Commercial Banks

∆Dc,t Change in customer deposits Normal µ∆D
c,t = 0, σ∆D

c,t = 0.001

ρLc,t Loan default rate Lognormal Ec,t[ρ
L] = 0.04

250 ,Varc,t(ρ
L) = ( 0.4

250 )
2

rWc,t Refinancing costs in commercial
banks’ value at risk calculation

Normal Endogenous

Investment Banks

ǫπi,j,t Stochastic error term in forecasts
of long-term profit rates

Normal µǫπ

i,j,t =
0.05
250 , σ

ǫπ

i,j,t =
0.1
250

ǫΩi,c,t Stochastic valuation error of
commercial banks’ default prob-
abilities

Normal µǫΩ

i,c,t =
0.05
250 , σ

ǫΩ

i,c,t =
0.1
250

rSj,t Stock returns in calculation of
repo haircuts and margin re-
quirements

Normal Endogenous

Table 4: Distribution assumptions

60



Category Symbol Description Value

General Simulation Parameters

nC Number of commercial banks 100

nI Number of investment banks 30

nS Number of stocks 15

T Simulation Periods 2000

Commercial Banks

General Parameters E∗

c Equity target 0.3

Asset Side Management

r̃Lc,t Interest on loans 0.07
250

mL Maturity of loans 0.995

xL Confidence level in value at risk calculations 0.995

Liability Side Management
rDc,t Interest paid on deposits 0.001

250

mB Maturity of long-term debt 0.995

Raising short-term debt

γv Elasticity of trust between the banks 0

γu Elasticity of relative attractiveness of the interest rate 1

Ξmin Lower bound for aggregation mechanism transaction in-
dicator Ξ

1

Ξmax Upper bound for aggregation mechanism transaction in-
dicator Ξ

20

Expectation Formation

ψI Memory parameter in calculation of Êc,t[a
CB ] 0.1

ψB Memory parameter in calculation of V̂arc,t(r
B ) 0.1

ψW Memory parameter in calculation of

Êc,t[r
W
total

], V̂arc,t(r
W
total

)

0.01

Investment Banks

General Parameters E∗

i Equity target 4

Asset and Liabilities Management
λi Risk aversion 20

ms Maturity nb-securities 0.995

Short-term Interbank Loans and Bonds

γvi Valuation elasticity of trust component 0

γr Valuation elasticity of return component 1

γσ Valuation elasticity of standard deviation component 5

gA Discrimination factor in calculation of aIi,c,t 5

gI Interbank interest rate intensity 0.1

Expectation Formation

θS Error correction in calculation of E[log(ωSs,t)] 0.1

θΩ Error correction in calculation of E[log(ΩCc,t)] 0.01

ψS Memory parameter in calculation of Var(rSs ),

ˆCov(rSs1, r
S
s2), ˆCov(rBc , r

I ), ˆCov(rSs , r
I ), ˆCov(rBc , r

S
s )

0.1

ψB Memory parameter in calculation of Var(rBc ) 0.01

Exogenous Agents

Rest-of-world agent
λrow Vector of asset specific risk aversion parameters Nb-assets 1-5: 50.000, 10.000 else

Eminrow Minimum equity 1000

xrow Aggressiveness factor 10

Central counterparty

xR Probability in calculation of haircuts and margin require-
ments

0.01

rM Margin rate 0

rR Repo rate 0

Investor deposits mD Maturity of investor deposits 0.99

αD Fraction of outstanding investor deposits at time of de-
fault

0.01

Lender of last resort rCB Marginal Lending Rate 0.05
250

Market Maker

gMMS Price impact factor nb-securities 0.1

gMMB Price impact factor bank bonds 0.1

xI Stopping limit interbank 0.1

xMMS Stopping limit nb-securities 0.1

xMMB Stopping limit bank bonds 0.1

Table 5: Benchmark Simulation Parameters
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B Commercial Bank Agents’ Maturity Structure of Wholesale Debt

The mean-variance optimization problem of Section 3.2.1 is

max
a

E
c,t
[S]− 0.5λc,tVar

c,t
(S), (B.1)

with

E
c,t
[S] = E

c,t
[rL]− Wc,t

Lc,t

(

ac,t E
c,t
[r̄B ] + (1− ac,t) E

c,t
[r̄I ])

)

(B.2)

Var
c,t

(S) = Var
c,t

(rL) + (ac,t
Wc,t

Lc,t

)2 Var
c,t

(r̄B) + ((1 − ac,t)
Wc,t

Lc,t

)2 Var
c,t

(r̄I ) (B.3)

+ 2

(

−ac,t
Wc,t

Lc,t

Cov
c,t

(rL, r̄B)− (1− ac,t)
Wc,t

Lc,t

Cov
c,t

(rL, r̄I) (B.4)

+ ac,t(1 − ac,t)(
Wc,t

Lc,t

)2 Cov
c,t

(r̄B , r̄I)

)

(B.5)

Differentiating Eq. (B.1) with respect to a yields

∂Uc,t

∂ac,t
= −Wc,t

Lc,t

(

E
c,t
[r̄B ]− E

c,t
[r̄I ]

)

− 0.5λc

(

2ac,t(
Wc,t

Lc,t

)2 Var
c,t

(r̄B)− 2(1− ac,t)(
Wc,t

Lc,t

)2 Var
c,t

(r̄I)

)

−λc
(

−Wc,t

Lc,t

Cov
c,t

(rL, r̄B) +
Wc,t

Lc,t

Cov
c,t

(rL, r̄I) + (1− 2ac,t)(
Wc,t

Lc,t

)2 Cov
c,t

(r̄B , r̄I)

)

(B.6)

After setting Eq. (B.6) to 0 and rearranging, one obtains

a∗c,t =
− Lc,t

Wc,t

Ec,t[r̄
B]−Ec,t[r̄

I ]
λc

+
Lc,t
Wc,t

(
Covc,t(r

L, r̄B)− Covc,t(r
L, r̄I)− Covc,t(r̄

B , r̄I)
)
+Varc,t(r̄

I)

Varc,t(r̄B) + Varc,t(r̄I)− 2
Lc,t
Wc,t

Covc,t(r̄B , r̄I)

(B.7)
Replacing Ec,t[r̄

B ] with Ec,t[mBr
B
c,t+(1−mB)r

B
c,t+1] = Ec,t[r

B ] and setting the covariance terms
to zero yields

a∗c,t =
Varc,t(r̄

I )− Lc,t
Wc,t

Ec,t[r
B ]−Ec,t[r̄

I ]
λc

Varc,t(r̄I) + (1−mB)2 Varc,t(rB)
(B.8)

With

E
c,t
[rI ] = E

c,t
[rI ] = rIc,t (B.9)

E
c,t
[r̄I ] = (1− E

c,t
[aCB, ψI ]) E

c,t
[rI ] + E

c,t
[aCB, ψI ]rCB

t (B.10)

E
c,t
[aCB

t ] = E
c,t
[aCB] (B.11)

Var
c,t

(x) : = V̂arc,t(x, ψ), (B.12)

Eq. (B.8) can be rewritten as

a∗c,t =
V̂arc,t(r̄

I , ψI)− Lc,t
Wc,t

Ec,t[r
B ]−Ec,t[r̄

I ]
λc

V̂arc,t(r̄I , ψI) + (1−mB)2V̂arc,t(rB , ψB)
(B.13)
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C Portfolio Optimization of Investment Bank Agents

We solve the mean-variance optimization problem

a∗i,t = argmax
a

a′Ei,t[r]− 0.5λia
′Σi,ta s.t. (C.1)

aRi,j,t =

{

−(1− hRj,t)a
S
i,j,t if aSi,j,t ≥ 0 and hRj,t ≤ hDt

0 else
(C.2)

aMi,j,t =

{

−(1 + kj,t)a
S
i,j,t if aSi,j,t < 0

0 else
(C.3)

aDi,t = −(1− hDj,t)(a
I
i,t + aBi,t +

∑

j∈D

aSi,j,t) (C.4)

{aIi,t, aBi,t, aCi,t} ≥ 0 and a′1 = 1 (C.5)

via an iterative process. In order to save computation time, we rewrite the problem given in
Eq. (C.1)-(C.5) by integrating constraints (C.2)-(C.4) into the budget constraint and adjusting
expected returns by associated financing costs. The rewritten problem only features nb-securities,
the two types of interbank loans and cash, reducing the size of the weight vector from 3nS+nC+3
to nS + nC + 2. We define â = (aS , aI , aB, aC)′ as the vector of asset weights and Ei,t [̂r] =
(r̂Si,t, r̂

I
i,t, r̂

B
i,t, r

C)′ as the vector of adjusted returns. The individual components of the latter are

r̂Si,j,t =







Ei,t[r
S
j ]− rRj,t if (Ei,t[r

S
j ] ≥ 0) and hRj,t ≤ hDi,t

Ei,t[r
S
j ]− rDi,t if (Ei,t[r

S
j ] ≥ 0) and hRj,t > hDi,t

Ei,t[r
S
j ]− rMj,t if (Ei,t[r

S
j ] < 0)

(C.6)

r̂Ii,t = E
i,t
[rI ]− rDi,t (C.7)

r̂Bi,c,t = E
i,t
[rBc ]− rDi,t, (C.8)

The vector ωi,t = (ωS , ωI , ωB, ωC) captures haircuts and margin requirements in the budget
constraint. The individual components of ωi,t are

ωS
j,t =







hRj,t if Ei,t[r
S
j ] ≥ 0 and hRj,t ≤ hDi,t

hDi,t if Ei,t[r
S
j ] ≥ 0 and hRj,t > hDi,t

−kj,t if Ei,t[r
S
j ] < 0

, (C.9)

ωI
i,t = hDi,t (C.10)

ωB
i,c,t = hDi,t (C.11)

ωC = 1, (C.12)

(C.13)

The problem can now be restated as

a∗i,t = argmax
a

a′Ei,t [̂r]− 0.5λia
′Σi,ta s.t. ωi,ta = 1. (C.14)

The vector a∗i,t is derived from the first order conditions in matrix form

λiΣa+ µω′
i,t = r̂i,t (C.15)

ωi,ta = 1, (C.16)

63



where µ is the Lagrange multiplier. With V :=

{
Σi,t ω′

i,t

ωi,t 0

}

, ã := (â, µ
λi
)′ and y := (

r̂i,t

λi
, 1)′

and after rearranging, one obtains
ã∗ = V−1y. (C.17)

The iterative process works as follows: We first solve for the weights vector ã∗ that maximizes
the problem stated in Eq. (C.14). We then check whether the resulting weights violate any of
following asset-specific conditions

aSj ≥ 0 and E
i,t
[rSj ] ≥ 0 (C.18)

aSj < 0 and E
i,t
[rSj ] < 0 (C.19)

aI ≥ 0 (C.20)

aBc ≥ 0 (C.21)

aC ≥ 0 (C.22)

(C.23)

and set them to zero if this is the case. We repeat these two steps until the current weights vector
equals that of the last iteration. Finally, to ensure optimality, we check whether the resulting
vector satisfies the Kuhn-Tucker conditions.

D Supply of Investor Deposits

Starting from the law of motion for equity under the stress scenario, one arrives at a representa-
tion for Ei,t+τ that is dependent on the initial values for equity and deposits and the parameters
ρDi,t and mD:

Ei,t+1 = (1 + ρDi,t)Ei,t + ρDi,tDi,t (D.1)

Et+2 = (1 + ρDi,t)Ei,t+1 + ρDi,tDi,t+1 (D.2)

= (1 + ρDi,t)((1 + ρDi,t)Ei,t + ρDi,tDi,t) + ρDi,tmDDi,t (D.3)

= (1 + ρDi,t)
2Ei,t + (1 + ρDi,t)ρ

D
i,tDi,t + ρDi,tmDDi,t (D.4)

Et+3 = (1 + ρDi,t)((1 + ρDi,t)
2Ei,t + (1 + ρDi,t)ρ

D
i,tDi,t + ρDi,tmDDi,t) + ρDi,tm

2
DDi,t (D.5)

= (1 + ρDi,t)
3Ei,t + (1 + ρDi,t)

2ρDi,tDi,t + (1 + ρDi,t)ρ
D
i,tmDDi,t + ρDi,tm

2
DDi,t (D.6)

... (D.7)

Ei,t+τ = (1 + ρDi,t)
τEi,t + ρDi,tDi,t

τ−1∑

x=0

(mD)x(1 + ρDi,t)
τ−1−x (D.8)

= (1 + ρDi,t)
τEi,t + ρDi,tDi,t(1 + ρDi,t)

τ−1
τ−1∑

x=0

(

mD

1 + ρDi,t

)x

(D.9)

Given that mD

1+ρDi,t
6= 1, the geometric series in Eq. (D.9) can be rewritten and we obtain

Ei,t+τ = (1 + ρDi,t)
τEi,t + ρDi,tDi,t(1 + ρDi,t)

τ−1






1−
(

mD

1+ρDi,t

)τ

1−
(

mD

1+ρDi,t

)




 . (D.10)
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If mD

1+ρDi,t
= 1, Eq. (D.9) can be rewritten as

Ei,t+τ = (1 + ρDi,t)
τEi,t + ρDi,tDi,t(1 + ρDi,t)

τ−1τ (D.11)

By replacing τ with T def , setting Ei,t+Tdef = 0 and rearranging, one arrives at the solution

D∗
i,t =







−(1+ρDi,t)Et

ρDi,t













1−





mD

1+ρD
i,t





Tdef

1−





mD

1+ρD
i,t

















if mD

1+ρDi,t
6= 1

−(1+ρDi,t)Et

ρDi,tT
Def if mD

1+ρDi,t
= 1

(D.12)
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