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Abstract

I investigate the impact of the European Union Emissions Trading Scheme (EU ETS) on fuel

efficiency of fossil fuel power plants using administrative micro data on power plants in Germany

from 2003 to 2012. I find positive efficiency effects in fuel use, leading to a decrease in fuel input

of 0.4 percent for an increase in carbon cost of one Euro. A back-of-the-envelope calculation

suggests that the reduction in fuel use by fossil fuel power plants due to the introduction of the

EU ETS translates into reductions in annual carbon emissions within the German electricity sector

by around seven million tonnes in 2012. This represents about 2.4 percent of total annual carbon

emissions in the German electricity sector and exemplifies the potential magnitude of efficiency

improvements as a measure for reducing carbon emissions.
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1. Introduction

The energy sector is central to climate protection strategies in several countries including Ger-

many, where it accounts for around 40 percent of total annual carbon emissions. The Intergovern-

mental Panel on Climate Change (IPCC) states that “[d]ecarbonizing (i.e. reducing the carbon

intensity of) electricity generation is a key component of cost-effective mitigation strategies [...]”

(IPCC, 2014). Hence, understanding the effects of existing climate policies on the energy sector is

crucial for the further development of policies to achieve mitigation targets efficiently.

In this study, I investigate the impact of the European Union Emissions Trading Scheme (EU

ETS) on fuel efficiency of fossil fuel power plants in Germany. Furthermore, I analyse potential

effects on labour efficiency, investments in machinery and utilization of power plants. The EU

ETS is currently the largest cap-and-trade system for greenhouse gas emissions worldwide. It puts

a price on greenhouse gas emissions from regulated installations to achieve emission reductions

and to provide incentives for investments in low-carbon technologies. As the EU ETS covers

multiple sectors, emission reduction efforts within the energy sector will only be undertaken if

(marginal) abatement costs are relatively low compared to activities in other regulated sectors

and lower than the (expected) market price of emission allowances. Fuel switching, i.e. generating

electricity with fuels that are associated with lower (including zero) carbon emissions, is considered

as a major option to reduce the carbon intensity of electricity generation (e.g., see the review by

Hintermann et al., 2016). However, increasing fuel efficiency may also be an important measure

to simultaneously reduce cost and carbon emissions in the energy sector, as emissions are directly

linked to fuel use. Hence, studying the impact of the EU ETS on the efficiency of fossil fuel power

plants, i.e. choosing inputs to produce a certain output level at minimal cost, allows me to draw

conclusions not only on the effect of carbon pricing on the optimal input combination in electricity

generation, but also on fuel efficiency improvements as a measure to reduce carbon emissions in

the energy sector.

This study employs administrative annual plant-level data from the German statistical offices

on nearly all fossil fuel power plants in Germany from 2003 to 2012 (Research Data Centre of the

Statistical Offices Germany, 2016). The data encompasses on average about 85 percent of fossil

fuel electricity generation in Germany.1 Germany is particularly suitable for this study because of

the size of its energy sector within the EU2 and its electricity generation structure, consisting of

a variety of hard coal, lignite, nuclear, and natural gas power plants as well as renewable energy

installations.

1The remaining 15 percent is generated by power plants for which participation in the administrative survey is
not mandatory. For example, this includes power plants with less than 1 megawatt (MW) bottleneck capacity or
industrial power plants that generate electricity only for self-consumption.

2Carbon emissions of the German energy sector represent around 30 percent of the European Union’s (EU) carbon
emissions in the energy sector.
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I find positive efficiency effects in fuel use, but no statistically significant labour efficiency effect.

An increase in individual carbon cost of one Euro per megawatt hour (MWh) leads on average

to a reduction in fuel input by around 0.4 percent, holding the level of output fixed. To put this

figure into context, at an average European Emission Allowances (EUA) cost of around six Euro

per MWh of electricity and heat generation and assuming a linear effect, the introduction of the

EU ETS has lead to an increase in fuel efficiency of around 2.4 percent on average. The rather

small magnitude of this effect may be driven by two aspects. First, I also find a negative and

statistically significant effect of the EU ETS on utilization of carbon intensive power plants. Lower

utilization would be likely negatively associated with fuel efficiency. This exemplifies that the fuel

efficiency effect must be interpreted as an overall net effect. Second, this magnitude suggests that

rather small scale measures to improve fuel efficiency were implemented. This is consistent with

the finding that the effects on investments in machinery are either statistically insignificant or of

small magnitude as well as with existing case studies on the investment behaviour under the EU

ETS in the German power sector (Hoffmann, 2007; Rogge et al., 2011).

Following Fabrizio et al. (2007) and Gao and Van Biesebroeck (2014), I model the production

function in a Leontief fashion to take into account specific characteristics in the underlying pro-

duction technology for electricity generation. Assuming cost-minimizing behaviour, input demand

functions for fuel and labour are derived taking simultaneity of input and output choices into

account (e.g. Marschak and Andrews, 1944; Griliches and Mairesse, 1995; Olley and Pakes, 1996).

This framework is used to evaluate the impact of the EU ETS on fuel and labour efficiency.

The major identification challenge is that almost all fossil fuel power plants in Germany are subject

to this regulation, facing also the same carbon price. This prevents a comparison of treated and

untreated plants before and after the introduction of the EU ETS to uncover the causal effect of

this policy. However, the EU ETS affects fossil fuel power plants to a different extent depending

on emission factors of the fuel used, individual heat rates (ratio of fuel input to generation of

electricity and heat) and on the price of emission allowances. Thus, I make use of both cross-

sectional and time variation in treatment intensities, i.e. individual carbon cost for electricity and

heat generation of plants, to identify the effect of the EU ETS on fossil fuel power plants.3

Differences in actual measured heat rates are mainly determined by the state of technology

and actual utilization of plants. The technology is determined by investment decisions, i.e. at the

time of construction of the plant as well as retrofitting. Investment decisions are thereby based

on expectations about development of several different factors, which may include, among others,

the structure of the electricity generation sector, future demand and (fuel) cost relationships. The

utilization of plants is determined by the level of demand and the plant’s marginal cost compared

to other (available) plants as well as its maintenance periods. Given these considerations, ETS

intensities based on actual measured heat rates are very likely to be endogenous. This potential

3In the following text, I will use treatment intensity and ETS intensity interchangeably.
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issue is addressed by using a plant-specific measure of ex-ante exposure to carbon prices that relies

on actual individual heat rates achieved on average before the introduction of the EU ETS instead

of annual ETS intensities. Annual values based on this ETS Ex-Ante Exposure start from 0 Euro

per MWh electricity and heat generation (before the introduction of the EU ETS), with the 90th

percentile being 15 Euro per MWh for hard coal, 20 Euro per MWh for lignite, and 6 Euro per

MWh for natural gas power plants, respectively. Identification relies mainly on within fuel type

variation. Within fuel type variation derives from differences in actual achieved heat rates across

plants and EUA price changes over time. Thereby, variation across plants of the same fuel type

accounts for about 30 to 40 percent of differences in individual carbon cost, with the remaining

part resulting from changes over time.

This paper is related to the literature on productivity and efficiency effects from policies and

regulation in the electricity generation sector. These studies focus mainly on the effects of dereg-

ulation on productivity and efficiency (e.g. Knittel, 2002; Fabrizio et al., 2007; Craig and Savage,

2013; Gao and Van Biesebroeck, 2014). Overall, they find some efficiency gains at different stages

of deregulation, e.g. the switch from cost-of-service to incentive regulation (Knittel, 2002) and the

turn to competitive markets in the United States (Fabrizio et al., 2007; Craig and Savage, 2013;

Chan et al., 2017) as well as in China (Gao and Van Biesebroeck, 2014). This study differs from

these papers with respect to the nature of the influence. Deregulation alters the agents’ underlying

objective function, leading to efficiency changes. In the case of carbon pricing, the objective func-

tion remains the same, however, there are (at least) three possible channels through which fossil

fuel power plants are affected. First, a price on carbon emissions raises opportunity costs of low

heat rates and may therefore incentivize efficiency improvements. Linn et al. (2014) have illus-

trated this mechanism through the example of coal price changes. This reaction may also depend

on (differences in) electricity market regulation as pointed out by Fowlie (2010), who finds that

deregulated power plants choose less capital-intensive mitigation measures compared to regulated

or publicly owned plants in case of the US NOx Budget Program. Second, carbon pricing may in-

troduce an additional burden to producers by influencing optimal input combinations. This in turn

can lead to negative productivity effects (Gollop and Roberts, 1983) or to higher marginal and total

cost (Førsund and Granderson, 2013) as in the case of sulphur dioxide emission regulations. More

recently, Zhou and Huang (2016) investigate the effect of the Regional Greenhouse Gas Initiative

(RGGI) in the United States on the technical efficiency of power plants. Although they do not find

a direct effect of carbon pricing on technical efficiency of regulated power plants, they investigate

possible spillover effects on unregulated power plants and find a negative effect. Third, there is

evidence that fossil fuel power plants experienced windfall profits from free allocation of emission
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allowances and carbon cost pass-through under the EU ETS (e.g. Sijm et al., 2006). Modelling

results from Pahle et al. (2011) suggest that this could have an effect on investment.4

Which of these effects prevail and the size of the resulting net effect of carbon pricing on fuel

efficiency are ultimately empirical questions. To tackle these, I analyse the experiences made in an

actual introduction of carbon pricing, using administrative micro data on fossil fuel power plants.

Despite a relatively large literature of (ex ante) simulation studies, analyses based on aggregate

data, or qualitative studies, the empirical literature based on micro data investigating the effect of

the EU ETS in the energy sector is still scarce (McGuiness and Ellerman, 2008; Linden et al., 2013;

Chan et al., 2013; Yu, 2013).5 The small number is mainly due to two reasons: lack of detailed micro

data and issues in constructing a reasonable counterfactual situation (see e.g. Martin et al., 2016,

for a recent review). My paper contributes to this strand of literature addressing both challenges.

First, data before the introduction of the EU ETS, especially on fuel input and carbon emissions,

is often not available.6 The data set used in this analysis offers two years of data before the start

of the EU ETS in 2005. This allows me to observe power plants before the start of the treatment

and use actual measured pre-treatment heat rates in my identification strategy. Thus, it enables

me to better isolate the effects actually caused by the EU ETS from other influences.7 Second

and related to the first issue, this paper circumvents the problem of having almost no untreated

group of plants in the energy sector by using differences in plant’s (ex-ante) treatment intensity

for identification. Although this approach to identify effects of comprehensive policies (covering

almost all agents in an economy) is in general not new (e.g. Mian and Sufi, 2012), it has not been

applied to the energy sector and to the analysis of the EU ETS yet.

The paper is structured as follows: Institutional details on the EU ETS and fossil fuel power

plants in Germany are provided in Section 2. Section 3 outlines the empirical model and identifi-

cation strategy. The data is described in Section 4. Section 5 presents the results and Section 6

concludes.

2. The EU ETS and Fossil Power Plants

2.1. Institutional Background

In 1997, emission reduction targets for the EU were formulated within the Kyoto Protocol.

The EU decided to introduce a cap-and-trade system to achieve parts of its obligations (see e.g. in

the EU Green Paper published in March 2000). Within a cap-and-trade system, an overall cap on

4Windfall profits may be one reason for different results compared to Adair et al. (2014). They find that compliance
costs for air regulation crowds out investment in heat rates improvements.

5Additionally, there are studies that focus on a variety of sectors, including but not dealing explicitly with the energy
sector (e.g. Commins et al., 2011; Löfgren et al., 2013; Jaraite and Di Maria, 2016).

6Jaraite and Di Maria (2016), Petrick and Wagner (2014), Löschel et al. (2016) and Lutz (2016) are recent exceptions,
where the last three focus solely on the manufacturing sector.

7Although, it would have been desirable to include even more pre-treatment years, this data is not available.
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emissions for regulated entities is set and emission certificates of an equivalent amount are issued

(either by auctioning or free allocation). Regulated entities have to hand in emission certificates in

an amount corresponding to their individual annual emissions. Otherwise, they face a penalty for

non-compliance. Emission certificates can be traded on a secondary market. By trading emission

certificates, marginal abatement costs over regulated entities can be equalized. Thus, the market

price should reflect marginal abatement costs given the cap. The EU ETS was introduced in 2005,

following the adoption of the EU ETS Directive 2003/87/EC in October 2003. It covers almost

11,000 installations in the energy sector, energy-intensive industry as well as commercial aviation

(from 2013 on). Currently, around 45 percent of the EU’s greenhouse gas emissions are regulated

under this scheme. The EU ETS is divided into different trading phases. This study encompasses

Phase I (2005-2007) and Phase II (2008-2012).

The power sector has been included in the EU ETS from the beginning and fossil fuel power

plants are in general under regulation of the EU ETS if their rated thermal input is 20 megawatt

(MW) or larger. This applies to almost all fossil fuel power plants in Germany. Emission certifi-

cates in the first two phases were mainly allocated to power plants free of charge based on their

individual historical carbon emissions (“grandfathering”). Average carbon emissions from 2000 to

2002 determined free allocation for Phase I and from 2000 to 2005 for Phase II, respectively. With

the start of Phase III in 2013, in general, this grandfathering scheme ended for power plants.8

2.2. Power Plants in the EU ETS

In electricity generation, several technologies with different characteristics are employed. Given

that electricity cannot be stored economically on a large-scale, supply must always equal demand.

Since demand is rather inelastic in the short-run, but varies over time (e.g. hour of day and season),

supply has to adjust accordingly. This cannot be fulfilled by a single available technology at least-

cost, calling for a mix of several generation technologies with different fixed and variable costs. The

employed technologies also differ along other dimensions: in particular, the fuel that is used for

electricity generation, and heat rates, which are mainly determined by the underlying technology

and vintage.9 This has implications for the emission intensity of the electricity generation, which

varies over individual plants by heat rate and the fuel’s carbon content.

Traditionally, the German power generation sector relies heavily on coal. In the period from

2003 to 2012, hard coal and lignite together accounted for more than 45 percent of total generation,

8As of from 2013, power plants need to buy their emission certificates either at auctions or on the secondary market.
Eight countries (Bulgaria, Cyprus, Czech Republic, Estonia, Hungary, Lithuania, Poland and Romania) are allowed
to continue free allocation (by a decreasing amount) to power plants until 2019 under Article 10c of the EU ETS
Directive 2009/29/EC.

9For example, gas-fired power plants in Germany have an average efficiency rate - the inverse of heat rate, i.e. (gross)
electricity produced in energy units with one energy unit of fuel used - of around 50 percent, whereas hard coal fired
power plants achieve on average an efficiency rate of around 40 percent (UBA, 2013). But individual heat rates
vary among the specifically used technologies. For example, the efficiency rate for a gas-fired power plant is also
dependent on whether it is a gas turbine (with a typical efficiency rate of about 40 percent) or a combined cycle
gas turbine (CCGT), which additionally uses the waste heat and achieves efficiency rates up to 60 percent.
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with each contributing almost equally. In the course of the nuclear phase-out in Germany starting

in 2000, the share of nuclear generation in total electricity generation dropped from around 30

percent in the beginning of the 2000’s to 15 percent in 2012. Electricity generation from natural

gas-fired power plants from 2003 to 2012 varied from around 10 to 14 percent. This time period

also exhibited a rise in the share of electricity generated by renewable energy sources, starting

from eight percent in 2003 (which was mainly hydro power) to 24 percent in 2012, with wind (8

percent), biomass (6 percent) as well as hydro and solar photovoltaic (each 4 percent) contributing

the most.10

Generated electricity can be sold either at the wholesale market (day-ahead or forward) or via

bilateral trade agreements.11 The day-ahead wholesale market is widely regarded as a reference for

other products (e.g. forward wholesale contracts or bilateral agreements). In this market, plant

owners submit hourly supply curves with prices and quantities. The individual bids are aggregated

at the market level, with each plant being placed within a merit-order according to its bid. In a

uniform price auction, the market price is determined by the intersection of supply and demand.

The individual bidding behaviour12 and the question whether liberalized wholesale electricity

is a competitive or non-competitive market is under ongoing discussion. In a competitive market,

plants would act as price-takers, placing bids at their individual marginal cost and would only

want to produce electricity whenever the market price was higher than or equal to their marginal

cost. When plants do not behave competitively, they try to influence the market price (e.g. by

withholding capacity at a price that lies above or equal to their marginal cost). The popular non-

competitive models for electricity generation are Cournot (e.g. Bushnell et al., 2008) or Supply

Function Competition (e.g. Klemperer and Meyer, 1989; Green and Newbery, 1992). In Germany,

installed electricity generation capacity is concentrated to a certain degree: the four largest com-

panies had a share of 58 percent in the German-Austrian market in 2012 (Monopolkommission,

2013). This has raised concerns of potential non-competitive behaviour. The existing evidence of

market power in the German wholesale electricity market is, however, inconclusive and at least

suggests that behaviour is not stable over time. Müsgens (2006) compares wholesale prices with

marginal cost produced by a dispatch model and finds that prices are consistent with competition

from the early 2000 to 2001, but differ from marginal cost estimates from 2001 to 2003. Similarly,

Weigt and von Hirschhausen (2008) find market prices above competitive levels for 2002 to 2006.

However, Möst and Genoese (2009) do not find evidence for non-competitive behaviour for 2006

and neither do Graf and Wozabal (2013) for the period from 2007 to 2010.

10The data used in this paragraph stems from the German Federal Ministry for Economic Affairs and Energy (BMWi,
2016).

11This applies mainly for electricity generated by conventional power plants. Electricity from renewable energy
sources under regulation of the Renewable Energy Sources Act are mainly enjoying priority access to the grid and
are paid a fixed-price per generated unit of electricity (feed-in tariff) or a feed-in premium for a certain time period.

12In the case, in which actual production decisions are made on a higher level (e.g. company), plants do only have
to supply the amount of electricity that is called by the company.

6



With the introduction of the EU ETS, regulated power plants, which are mainly fossil fuel

power plants, are obliged to hand in emission certificates of an amount equivalent to their annual

carbon emissions. The emission certificates stem either from free allocation, auctioning, or can be

bought on the secondary market. The EU ETS is expected to impact fossil fuel power plants by

raising marginal production cost and generating windfall profits due to cost pass-through and free

allocation of emission certificates.13 Introducing a carbon price means that emission is now costly

for the plant (even if the emission certificate is allocated for free to the power plant, it represents an

opportunity cost) and thus, the carbon content in the fuel raises input costs for fuel. Dependent

on the emission intensity of the fuel used for electricity generation, this additional cost can be

significant as it is shown in Figure 1 based on data from BAFA (2015a; 2015b), UBA (2013) and

from the European Energy Exchange (EEX).
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Figure 1: Average Fuel and Carbon Cost in Power Generation

Notes: The black bars represent the average fuel cost to generate a megawatt hour electricity in each year from 2003 to 2012

of a hard coal power plant (left panel) and a natural gas power plant (right panel), respectively. The grey bars illustrate

analogously the average carbon cost. Own calculations based on data from BAFA (2015a; 2015b), UBA (2013) and EEX.

Under marginal cost pricing, emission costs are expected to be completely incorporated in the

power plants’ bids, leading to an emission cost pass-through onto the electricity price. However,

demand reactions and non-competitive behaviour could also lead to an incomplete pass-through

of emission costs. The empirical literature on cost pass-through of emission costs within the EU

ETS to wholesale electricity prices in Germany suggests that emission cost are almost completely

incorporated in the bids and passed onto the electricity price. An early study by Sijm et al.

(2008) finds incomplete pass-through rates. While these estimates depend on the relationship

between electricity prices and input prices, it is marginal input cost that matters for cost pass-

through, i.e. taking into account the marginal plant’s emission intensity in addition to carbon prices

13Another impact of the introduction of the EU ETS is the trading of emission certificates. However, since this is
mainly done at the company level (e.g. Heindl and Lutz, 2012) and the energy sector is in general experienced with
(commodity) trading, I abstract from this issue in the following.

7



(Hintermann, 2017; Fabra and Reguant, 2014). k Hintermann (2017) finds that in the period from

2010 to 2013, emission costs are on average (almost) completely passed through to the electricity

prices in Germany, with the extent differing by the level of aggregate demand. This is in line with

Fabra and Reguant (2014), who find almost complete pass-through in Spain from 2004 to 2006,

using detailed bid-level data. Zachmann and von Hirschhausen (2008) and Mokinski and Wölfing

(2014) find evidence for asymmetric cost pass-through in 2005 and 2006 to wholesale electricity

prices in Germany. This asymmetric pass-through ends, however, in early 2006 at the same time as

investigations of pricing behaviour by the German competition authority became public (Mokinski

and Wölfing, 2014).

The incorporation of carbon cost and the associated increase in marginal generation costs

affect power plants to a different extent potentially affecting operational decision (McGuiness and

Ellerman, 2008) and fuel substitution (Linden et al., 2013). For the first two years of the EU ETS,

McGuiness and Ellerman (2008) find a positive impact on the utilization of natural gas power

plants in the United Kingdom, whereas coal power plants experienced a lower level of utilization

consistent with the higher carbon costs that these plants have to bear. On the other hand, Linden

et al. (2013) find that fossil fuels even within a plant are replaced by wood in Sweden. However,

this may be a particularity of the Swedish electricity sector and is not (yet) a current practice

in the German electricity sector. Furthermore, it is unclear to which extent this reflects already

existing trends as pre-treatment years are not observed. Commins et al. (2011) observe lower total

factor productivity in the power sector compared to non-regulated sectors after the introduction

of the EU ETS.

The EU ETS might not only affect individual operational decisions but also investment deci-

sions. These include market entry, i.e. building a new power plant and deciding on size (capacity)

and technology (heat rate and fuel type), but also investments in existing plants. For example, heat

rate improvements may be incentivized by raising opportunity costs of inefficient fuel use, which

may be similar to coal price shocks as investigated by Linn et al. (2014). Seifert et al. (2016) find

potential for technical efficiency improvements for power plants in Germany. It has been pointed

out that the electricity sector incurred windfall profits due to cost pass-through and free allocation

(Sijm et al., 2006). Indeed, Chan et al. (2013) find an increase in revenues during 2005 to 2009

after the introduction of the EU ETS. These financial gains may themselves have an effect on in-

vestment decisions (Pahle et al., 2011). However, case studies on the investment behaviour within

the German power sector suggest that the influence of the EU ETS may be limited to small-scale

investments (e.g. Hoffmann, 2007; Rogge et al., 2011). Löfgren et al. (2013) do not find evidence for

an impact of the EU ETS on firm investments in manufacturing and the energy sector in Sweden.
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3. Empirical Model

3.1. Input Demand Functions in Power Generation

Productivity and efficiency in the power generation sector has received attention in the economic

literature before. When it comes to methodology, different approaches exist in the literature. These

differ in particular concerning short-run substitution possibilities between fuel use and other input

factors, such as capital and labour. On the one hand, this substitution can be included by using

a “flexible” functional form for the production function (e.g. Knittel, 2002). On the other hand,

Fabrizio et al. (2007) and Gao and Van Biesebroeck (2014) bring forward the idea of a Leontief

production function, assuming no substitution between fuel use and other input factors in the

short run. They argue that this is a suitable representation of the relationship between physical

inputs and outputs in electricity generation. Electricity cannot be stored economically to a large

extent, hence supply and demand have to meet at every point in time. This means that a plant’s

actual production might not always match its potential generation capacity, but depends on the

level of residual demand for the respective power plant. Residual demand for the individual plant

is determined by overall demand realizations and the structure of the merit-order at each point

in time. Fuel input depends on actual generation decisions, whereas labour and capital are pre-

determined and adjusted to so-called planned or probable output. This approach abstracts from the

question whether competitive or non-competitive behaviour prevails but relies on the assumption

of cost minimization, which should be independent of the (non-)price-taking behaviour in a “non-

regulated” environment (see e.g. Borenstein, 2000).

Given these arguments, I follow the approach of Fabrizio et al. (2007) and Gao and Van Biese-

broeck (2014) and assume a Leontief production function in electricity generation:

QA = min
[
QP (K,L) exp

(
ωA

)
, F (E,ϕ)

]
, (1)

where QA is actual and QP is planned or probable output, which is a function of labour input

L and capital input K.14 The difference between planned and actual output is determined by

a utilization shock ωA. In the second expression, actual output is determined by fuel input E

and an individual- and time-specific term ϕ, which captures for instance differences across plant

technologies or changes in technology over time. Integrating ϕ explicitly in the model is a deviation

from the function specified in Fabrizio et al. (2007) and Gao and Van Biesebroeck (2014) to illustrate

a potential margin for differences in fuel input across time and plants.

14Subscripts for plants and years are dropped for notational convenience within this subsection.
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Plants minimize cost to produce probable output QP by choosing labour L and capital in-

put K subject to a CES production function as in Gao and Van Biesebroeck (2014), as well as

acknowledging price of capital R and wage W :

Min
K,L

RK +W L

s.t. QP ≤ (αKρ + (1 − α)Lρ)
ν
ρ

(2)

Including capital input K and excluding non-fuel expenses as choice variables in the cost mini-

mization framework are other deviations from Fabrizio et al. (2007) and Gao and Van Biesebroeck

(2014). Whereas the first allows to investigate potentially the role of investments, the impact on

non-fuel expenses cannot be analysed as this data is not available.

Solving this problem leads to the following first order condition for labour input:

W = (1 − α) ν λ QP
ν−ρ
ν Lρ−1, (3)

where λ is the Lagrange multiplier, ν is a parameter related to returns to scale and 1/(1 − ρ) is

the elasticity of substitution. As actual output equals planned output times the utilization shock,

rearranging, substituting probable with actual output, and taking the natural logarithm, leads to

the following labour input demand function:

l = β0 + βq q + βk k + βw w + υl, (4)

where βq = (ν−ρ)/(ν (1−ρ)), βw = −1/(1−ρ) and υl is a residual capturing, among other things,

idiosyncratic productivity effects and individual utilization shocks.

As QP (K,L) exp
(
ωA

)
= F (E,ϕ) holds in the optimum, for the derivation of the fuel in-

put demand function, the second part of Equation 1 can be inverted and assuming a log-linear

relationship written in natural logarithms as:

e = F−1
(
qA, ϕ

)
= α0 + αq q + υe,

(5)

with υe being the residual of the fuel input demand function, analogously to the labour input

demand function. Furthermore, ϕ is also subsumed in this residual term.

3.2. ETS Intensity and Input Demand

This framework is used to evaluate the impact of the EU ETS on fuel efficiency of fossil fuel

power plants in Germany, i.e. the effect on fuel input given generation output under cost mini-

mization. Furthermore, this framework also allows me to investigate potential effects on labour

efficiency. Almost all fossil fuel power plants in Germany are subject to the EU ETS and face the
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same European-wide carbon price.15 This prevents a clear distinction between treated and un-

treated power plants before and after the introduction of the EU ETS. Despite this fact, the actual

exposure to the EU ETS differs by plant. Thus, I make use of differences in treatment intensity to

identify the effect of the EU ETS on fossil fuel power plants. Assignment of these intensities are,

however, not random but dependent on the plant’s emission factor, the individual heat rate and

the price of emission allowances. This highlights that not only cross-sectional differences between

plants exist, but also that intensities may vary over time due to changes in carbon prices and

individual heat rates. ETS intensity is thereby defined as:

TIit = PCO2,t × ηit × σk | k3 i, (6)

where TIit is the treatment or ETS intensity of plant i in period t, PCO2,t is the price of emission

allowances in period t in Euro per ton CO2, ηit is the heat rate of plant i in period t in MWh

thermal per MWh electric and σk is the emission factor of plant i in ton CO2 per MWh thermal,

varying with fuel type k. Thus, the ETS intensity is expressed in Euro per MWh electricity and

heat generation, varying over plants and years.

To investigate how input efficiency changes with the introduction of the EU ETS, the input

demand functions are augmented by the ETS intensity. Whereas fuel input is assumed to be

a flexible input factor and as such varies with current ETS intensity, labour input is assumed

to be pre-determined and adjusted with respect to probable output. Hence, expectations on ETS

intensity at the time may influence probable output and hence, may matter for labour input instead

of actual ETS intensity. Since expectations are not observable, I use the year-ahead forward prices

in the previous year as a proxy in the empirical model.16

Furthermore, to capture time-constant individual differences across plants as well as changes

over time in general market conditions (such as the rising share of renewable electricity and changes

in demand levels), I include individual and time fixed effects.

The EUA price may provide similar incentives as fuel price changes (see e.g. Linn et al., 2014,

for an example for coal prices). Thus, one might be worried that some potential fuel efficiency

improvements are actually due to changes in fuel prices and might be falsely attributed to the

introduction of the EU ETS. However, variation in fuel prices may be less pronounced than the

change in marginal cost by introduction of the EU ETS. Nonetheless, to address these concerns, I

include a measure of effective fuel prices (FP ) similar to the ETS intensity by multiplying heat rates

by the respective fuel prices for natural gas, hard coal and lignite in the fuel input demand equation.

15I do not observe which power plants are subject to EU ETS regulation since data on rated thermal input is not
available. The results are robust to a sample with a minimum capacity of 20 MW electric. This should exclude all
power plants that do not participate in the EU ETS.

16For the first year of the EU ETS, I have to make use of actual intensity as forward prices are not available. Results
are rather insensitive to using the same intensity measure as for the fuel input equation.
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Thus, the empirical model to be estimated for fuel e and labour l input demand, respectively,

becomes:

eit = α0 + αq qit + αETS TIit + αFP FPit + µi + µt + εit, (7)

lit = β0 + βq qit + βk kit + βw wit + βETS Et−1(TIt) + νi + νt + ζit. (8)

The main parameters of interest are αETS and βETS . An increase in carbon cost of one Euro per

MWh electricity and heat generation leads to a change in input demand by (αETS ∗ 100) percent

and (βETS∗100) percent, respectively, holding the level of output fixed. The assumption underlying

this approach is that the EU ETS’s impact is additive in the log-linear relationship and thus, leads

to a shift in the underlying technology, i.e. the relationship between fuel input and electricity

and heat output. Although this structure is the same as in Fabrizio et al. (2007) and Gao and

Van Biesebroeck (2014), the “implicit null hypothesis” (Fabrizio et al., 2007) is different: Whereas

the efficiency effects found in these studies stem from deviations from cost minimization behaviour

before deregulation, in this study, it is a change in the underlying technology, e.g. resulting from

changes in utilization, actual investments in technology, or other measures to improve fuel efficiency

in response to the EU ETS.

3.3. Identification Challenges and Empirical Strategy

To obtain valid estimates of the parameters for the EU ETS effect on fuel use (αETS) and

labour input (βETS), several challenges must be addressed. Due to simultaneous choice of inputs

and outputs, it has been pointed out that the parameter estimates in a production function suffer

from a simultaneity bias preventing identification (e.g. Marschak and Andrews, 1944; Griliches

and Mairesse, 1995). One reason could be idiosyncratic productivity shocks that may influence

input and output choice, but are in general unobserved by the econometrican (e.g. Olley and Pakes,

1996). These issues must also be confronted in an input demand function approach (Fabrizio et al.,

2007; Gao and Van Biesebroeck, 2014). Neglecting this simultaneity bias would lead to inconsistent

estimates of the respective parameters for output (αq and βq).

Furthermore, the assignment of different intensities is not random but depends on carbon prices,

emission factors, and individual heat rates. Whereas carbon prices and emission factors may be

exogenous to the individual plant17, its heat rate is likely to be endogenous as the underlying

technology is (at least in the long run) a choice variable and can be influenced by investment

decisions. A price on carbon emissions represents a cost shock to the individual plant that may

have a similar impact as a shock in fuel prices. For coal power plants, Linn et al. (2014) show

a positive relationship between the individual heat rate and the coal price. Thus, carbon pricing

may provide incentives to invest in heat rates. A further caveat stems from the fact that I do

17The latter may only be reasonable if there is no switching of the main fuel type. The number of reporting plants
within main fuel types is quite stable over time, which lends credibility to this assumption.

12



not observe maximum potential heat rates but only actual measured heat rates. Thus, a further

important issue is the simultaneous determination of utilization and the observable heat rate. The

introduction of the EU ETS and a positive carbon price might affect the plant’s place in the

merit-order and hence, its utilization which in turn has consequences for its actual attainable heat

rate.

I make use of two empirical strategies to confront these challenges and provide robust estimates

of the effect of the EU ETS. First, the potential endogeneity of output is addressed by an instru-

mental variable approach following Fabrizio et al. (2007) and Gao and Van Biesebroeck (2014). As

instrumental variables for output, Fabrizio et al. (2007) use state-level electricity consumption and

Gao and Van Biesebroeck (2014) use province-level value added and employment in their markets

under study (the United States and China, respectively). Given the structure of the German elec-

tricity market, using regional variation is not sufficient for identification.18 Therefore, I focus on

instruments that hint at the plant’s position in the merit-order. The instrumental variables should

explain the level of individual output but may not be correlated with idiosyncratic productivity

shocks. Therefore, potential instruments for output include twice lagged individual output and

output of other plants (competitors), who have a higher capacity factor.19

Competitor’s output may be potentially endogenous if defined as total output of all plants minus

production of this plant. In this case, output of plants with higher marginal cost would be included

in this measure, although those plant’s are likely to be affected by idiosyncratic productivity shocks

of the respective plant. However, if only the output of competitors with a higher capacity factor

is included, this variable may approximate the position in the merit-order and creates additional

variation across plants due to different capacity factors. In addition to that, it has been pointed

out that lagged individual values could be potential instruments in the context of production

function estimation (e.g. Aguirregabiria, 2009; Alonso-Borrego, 2010). This approach rests on the

implicit assumption of no serial correlation of productivity shocks. Transferring this assumption to

the input demand framework, lagged individual output might not be correlated with idiosyncratic

productivity shocks in the current year, but may hint at the plant’s general place in the merit-order

and thus, have explanatory power for current output.

Second, in order to tackle the potential endogeneity of individual heat rates in the ETS intensity

as well as in the effective fuel price variable, I construct a measure of ex-ante exposure that relies

on average actual achieved heat rates before the introduction of the EU ETS. Thus, ETS Ex-Ante

18Federal state level value added, gross domestic product and electricity consumption do not have enough explanatory
power to be used as an instrumental variable.

19Capacity factors are defined as the ratio of electricity generated by the plant to its generation potential, indicating
the plant’s utilization.
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Exposure (EAE) is defined as the product of the carbon price in period t, emission factor of fuel

type k and the average heat rate in 2003 and 2004 for plant i:

EAEit = Pt × ηi,2003−2004 × σk | k3 i.

For Fuel Price Ex-Ante Exposure (FP EAE) average individual heat rates in 2003 and 2004 are

multiplied by the respective fuel price. This approach is similar to the approach by Mian and

Sufi (2012) who also investigate a program that potentially affects the entire population (Cash

for Clunkers) and make use of different ex-ante intensities. The underlying assumption of this

approach is that plants do not adjust heat rates before the introduction of the EU ETS in response

to its announcement. The EU ETS Directive in October 2003 stated that EU Member States

decide on individual initial plant allocation of emission certificates. The German government

decided in March 2004 on its National Allocation Plan (NAP), opting for grandfathered emission

certificates based on individual emissions from 2000 to 2002 for the first trading phase from 2005

to 2007. Within the NAP, the total amount of emission certificates to be allocated free of charge

for the second trading phase starting in 2008 was already determined. However, it neither defined

whether the certificates would be grandfathered again nor which specific period would be used to

set allocations. In 2006, it was decided to use historical emissions from 2000 to 2005. One concern

could be that free allocation of emission certificates based on historical emissions could provide

incentives to plant owners to increase emissions before the introduction of the EU ETS in order to

increase the amount of grandfathered emission certificates. As electricity cannot be economically

stored to a large amount and supply and demand has to match at each point in time, anticipatory

effects could be expected to affect investments in heat rate improvements. As detailed heat rate

investment data is not available, individual plant investment in machinery in 2003 and 2004 is

used as a proxy. To observe investment behaviour before 2003, I make use of data on aggregated

investments in machinery in the German electricity generation sector from Destatis (2016). This

data is available for the Federal Republic of Germany from 1992 on.20 However, compared to the

sample of fossil fuel power plants at hand, the figures relate to the total electricity generation sector

including also non-fossil fuel power plants.

20Statistics that date back to the 1970’s are only available for the old West German states.
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Figure 2: Investment in Machinery - Energy and Water Industry and Within Sample

Notes: The solid line represents the annual values of the index of investment in machinery (2005 = 100) within the total

electricity generation sector from 1993 until 2014. The index is calculated based on data from Destatis (2016). The dashed

line shows the respective index for fossil fuel power plants in the sample and is calculated based on data from Research Data

Centre of the Statistical Offices Germany (2016).

In Figure 2, the annual investment in machinery in the sample varies more than annual ag-

gregate investment, but the direction of changes is approximately similar. In the aggregate data,

there is a reduction in investment until 2005, with a comparably rather stable period from 2000

until 2004. From 2005 on, investments in machinery increases. These aggregate figures are only

indicative as they might not solely be related to the introduction of the EU ETS, but may be

driven by other factors as well. For instance, Germany liberalized its electricity market in 1998.

Before 1998, power plants were subject to cost-plus regulation, which may have incentivized a high

investment level. This may be one explanation for the reduction in annual investment after this

date. Overall, the aggregate figures do not indicate large changes in investment behaviour in 2003

and 2004 compared to the previous years, and thus, do not lend support to anticipatory effects in

investments.

4. Data

The administrative annual plant-level data on nearly all fossil fuel power plants in Germany from

2003 to 2012 is derived from three different data sets provided by the German Statistical Offices

(Research Data Centre of the Statistical Offices Germany, 2016). The first two are combined in

the annual AFiD Panel Energy Plants and provide information on employment and investment of

energy plants. The third data set used is the monthly report on electricity generating plants with
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a capacity of more than one MW, providing information on capacity, (main) fuel type, electricity

and heat generation as well as fuel input. I only consider plants with their main activity being the

production of electricity as indicated by the respective NACE code.21 Furthermore, I restrict the

sample to fossil fuel power plants, i.e. plants with hard coal, lignite or natural gas as their main

fuel type. The data encompasses on average about 85 percent of fossil fuel electricity generation

in Germany. Labour input is defined as the annual sum of hours worked and wages as the average

labour cost per hour. Capital is approximated by available capacity of the plant in MW. I observe

inputs and outputs in physical units in the generation of electricity and heat. Thus, I can take into

account potential differences in qualities, especially in the energy content of the fuel used. Capacity

factor is calculated as the ratio of net electricity generation to available capacity multiplied by the

number of possible running hours.

The descriptive statistics offered in Table 1, Table 2 and Table 3 illustrate remarkable variation

across observations. Looking at statistics divided by fuel types suggests that a large part of this

variation originates from differences across the different fuel types. Hard coal and lignite power

plants are in general larger and invest more in machinery than natural gas power plants. As lignite

plants are supposed to be baseload plants, i.e. power plants that provide continuous supply over

the year, they are expected to have the highest capacity factor compared to hard coal and natural

gas. This is also reflected in the descriptive statistics. While hard coal and natural gas have

comparable average capacity factors, the variation within natural gas plants appears to be higher.

This may reflect the larger heterogeneity of technology used by natural gas plants, ranging from

rather simple gas turbines to combined-cycle plants.

21NACE is the “Statistical Classification of Economic Activities in the European Community” and similar to the
SIC (“Standard Industrial Classification”).
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2003

Variable N Mean S.D. p10 p25 p50 p75 p90

Total

Capacity (MW) 302 184.40 420.14 0.32 1.41 10.81 162.00 564.00

Labour (hours) 95 36,258.04 71,530.87 4,296.17 7,306.33 15,022.42 33,890.75 82,366.00

Fuel use (GJ) 302 870,854.92 2,428,282.50 1,627.67 6,081.67 54,837.04 615,411.00 2,217,797.10

Generation (MWh) 302 104,734.08 243,069.98 289.51 1,294.17 9,104.88 99,694.83 287,949.75

Investment Machinery (EUR) 119 4,438,072.10 9,181,449.40 69,030.00 721,744.00 1,841,129.00 4,497,496.00 12,001,078.00

Capacity Factor 301 0.51 0.34 0.17 0.33 0.50 0.65 0.78

Ex-Ante Exposure (EUR/MWh) 318 0.00 0.00 0.00 0.00 0.00 0.00 0.00

- Only Hard Coal Power Plants

Capacity (MW) 63 362.99 337.68 64.00 86.00 281.00 599.00 720.00

Labour (hours) 24 69,697.70 121,197.34 −a 17,810.88 26,751.96 64,424.96 −a

Fuel use (GJ) 63 1,665,744.30 1,506,800.80 268,894.08 556,595.42 1,345,180.50 2,554,185.70 3,379,462.50

Generation (MWh) 63 205,878.42 162,506.60 43,901.17 73,066.50 176,614.50 305,298.25 377,504.75

Investment Machinery (EUR) 24 9,348,755.00 17,412,229.00 −a 966,372.00 2,568,393.50 12,236,713.00 −a

Capacity Factor 62 0.56 0.21 0.34 0.43 0.56 0.66 0.75

Ex-Ante Exposure (EUR/MWh) 64 0.00 0.00 0.00 0.00 0.00 0.00 0.00

- Only Lignite Power Plants

Capacity (MW) 25 788.90 1,048.79 −a 33.50 151.00 1,585.00 −a

Labour (hours) 12 64,327.51 59,035.85 −a 11,199.58 47,726.12 111,460.33 −a

Fuel use (GJ) 25 5,031,284.10 6,536,988.20 −a 184,733.56 1,345,413.30 9,216,955.20 −a

Generation (MWh) 25 512,160.90 618,865.46 −a 26,221.25 167,679.92 1,102,554.60 −a

Investment Machinery (EUR) 17 4,824,437.70 6,318,219.50 −a 1,116,222.00 3,379,536.00 5,693,199.00 −a

Capacity Factor 25 0.67 0.25 −a 0.53 0.77 0.85 −a

Ex-Ante Exposure (EUR/MWh) 25 0.00 0.00 −a 0.00 0.00 0.00 −a

- Only Natural Gas Power Plants

Capacity (MW) 214 61.20 157.28 0.20 0.97 3.15 26.00 206.00

Labour (hours) 59 16,946.42 28,312.14 2,882.50 6,090.75 9,297.42 17,781.42 34,560.67

Fuel use (GJ) 214 150,813.98 342,843.17 1,064.33 2,975.75 14,365.83 90,567.58 465,250.33

Generation (MWh) 214 27,361.35 64,249.54 187.70 641.83 2,816.43 19,754.90 87,762.09

Investment Machinery (EUR) 78 2,842,884.90 4,494,614.40 15,011.00 627,081.00 1,572,887.00 2,498,540.00 6,120,308.00

Capacity Factor 214 0.47 0.37 0.12 0.29 0.45 0.62 0.76

Ex-Ante Exposure (EUR/MWh) 229 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a Values cannot be displayed due to confidentiality issues.

Table 1: Summary Statistics - Overall and Differentiated by Fuel Type in 2003
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2008

Variable N Mean S.D. p10 p25 p50 p75 p90

Total

Capacity (MW) 319 180.64 416.71 0.50 1.48 9.78 160.00 588.00

Labour (hours) 117 27,948.65 50,625.27 3,475.25 6,641.25 12,628.33 30,103.92 67,695.00

Fuel use (GJ) 319 783,544.24 2,276,184.30 2,254.00 7,317.33 37,352.17 500,656.68 1,858,684.80

Generation (MWh) 319 94,484.97 230,667.57 488.49 1,570.01 7,649.02 82,878.67 264,339.25

Investment Machinery (EUR) 193 7,945,467.40 38,988,220.00 0.00 20,690.00 572,376.00 2,740,192.00 9,265,957.00

Capacity Factor 319 0.60 0.77 0.18 0.34 0.50 0.67 0.83

Ex-Ante Exposure (EUR/MWh) 255 9.39 5.39 5.17 5.56 6.36 11.71 18.99

- Only Hard Coal Power Plants

Capacity (MW) 60 381.52 327.04 64.80 121.85 292.50 624.99 744.50

Labour (hours) 29 50,698.09 84,369.07 −a 16,296.58 22,148.58 42,651.00 −a

Fuel use (GJ) 60 1,541,409.70 1,358,710.20 275,291.80 482,984.42 1,225,356.50 2,361,021.70 3,165,604.30

Generation (MWh) 60 187,521.70 149,530.81 39,658.88 82,961.91 155,135.29 264,993.63 358,855.04

Investment Machinery (EUR) 43 11,903,911.00 37,644,157.00 52,508.00 234,000.00 1,523,775.00 7,806,793.00 25,036,000.00

Capacity Factor 60 0.50 0.13 0.34 0.42 0.50 0.59 0.66

Ex-Ante Exposur (EUR/MWh) 53 15.16 4.05 9.33 11.02 15.87 18.98 19.76

- Only Lignite Power Plants

Capacity (MW) 21 973.26 1,092.56 −a 67.00 732.73 1,787.00 −a

Labour (hours) 14 52,747.71 51,200.44 −a 10,135.08 31,676.92 86,349.67 −a

Fuel use (GJ) 21 5,796,111.60 6,520,650.40 −a 684,657.92 2,202,092.10 11,331,562.00 −a

Generation (MWh) 21 591,987.18 623,915.56 −a 60,450.73 253,646.25 1,175,961.10 −a

Investment Machinery (EUR) 13 59,595,672.00 125,900,000.00 −a 1,301,347.00 1,837,312.00 27,276,994.00 −a

Capacity Factor 21 0.68 0.21 −a 0.47 0.77 0.83 −a

Ex-Ante Exposure (EUR/MWh) 20 19.54 5.04 −a 17.76 20.00 23.31 −a

- Only Natural Gas Power Plants

Capacity (MW) 238 60.06 158.59 0.22 1.08 3.18 23.10 178.00

Labour (hours) 74 14,341.62 19,085.83 2,963.33 5,405.33 8,088.38 16,243.75 33,075.00

Fuel use (GJ) 238 150,200.36 359,875.40 1,632.17 5,454.08 14,351.70 90,147.83 424,056.33

Generation (MWh) 238 27,133.08 65,561.86 339.00 1,087.50 2,938.58 18,750.75 79,993.20

Investment Machinery (EUR) 137 1,801,921.80 3,298,937.10 0.00 0.00 370,880.00 1,857,690.00 5,661,971.00

Capacity Factor 238 0.62 0.89 0.16 0.30 0.49 0.67 0.85

Ex-Ante Exposure (EUR/MWh) 182 6.59 2.10 5.08 5.37 5.83 6.82 9.67

a Values cannot be displayed due to confidentiality issues.

Table 2: Summary Statistics - Overall and Differentiated by Fuel Type in 2008
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2012

Variable N Mean S.D. p10 p25 p50 p75 p90

Total

Capacity (MW) 300 218.95 495.55 0.38 1.42 12.95 227.50 683.00

Labour (hours) 106 26,819.04 39,793.99 2,974.50 6,705.67 12,085.04 23,613.08 80,713.25

Fuel use (GJ) 300 824,976.91 2,526,292.30 1,547.43 6,756.71 46,133.24 565,553.83 1,915,334.60

Generation (MWh) 300 99,590.01 258,932.28 335.29 1,401.21 8,312.75 93,976.92 266,181.34

Investment Machinery (EUR) 153 8,393,778.90 27,095,021.00 0.00 135,383.00 992,054.00 4,661,127.00 14,733,845.00

Capacity Factor 300 0.46 0.25 0.12 0.27 0.48 0.65 0.78

Ex-Ante Exposure (EUR/MWh) 215 3.11 1.77 1.67 1.81 2.14 3.91 6.16

- Only Hard Coal Power Plants

Capacity (MW) 61 419.21 328.53 78.00 140.00 342.72 661.00 812.00

Labour (hours) 25 36,531.61 35,123.06 −a 14,765.92 22,222.75 40,071.58 −a

Fuel use (GJ) 61 1,497,811.90 1,234,944.30 251,183.38 586,045.08 1,333,275.20 2,124,386.00 2,788,752.00

Generation (MWh) 61 180,805.23 137,137.19 43,667.83 82,594.58 144,117.75 258,738.83 325,759.75

Investment Machinery (EUR) 40 13,174,306.00 40,000,064.00 118,926.00 298,141.00 1,025,623.50 4,420,578.00 30,117,952.00

Capacity Factor 61 0.46 0.15 0.27 0.35 0.48 0.56 0.64

Ex-Ante Exposure (EUR/MWh) 50 4.98 1.25 3.19 3.76 5.22 6.10 6.37

- Only Lignite Power Plants

Capacity (MW) 17 1,267.65 1,336.75 −a 164.00 875.00 1,947.25 −a

Labour (hours) 10 69,912.66 46,068.75 −a 27,977.50 65,524.17 114,471.17 −a

Fuel use (GJ) 17 7,298,562.00 7,698,205.00 −a 1,264,260.50 4,690,982.90 11,773,368.00 −a

Generation (MWh) 17 755,217.11 756,285.26 −a 157,373.17 521,879.08 1,238,296.40 −a

Investment Machinery (EUR) 14 21,713,697.00 47,812,867.00 −a 314,229.00 1,196,638.50 13,256,311.00 −a

Capacity Factor 17 0.66 0.18 −a 0.55 0.67 0.77 −a

Ex-Ante Exposure (EUR/MWh) 15 6.44 1.75 −a 5.95 6.44 7.89 −a

- Only Natural Gas Power Plants

Capacity (MW) 222 83.62 243.95 0.120 1.17 4.29 39.80 211.00

Labour (hours) 71 17,329.60 35,905.32 2,814.500 5,397.67 8,762.25 14,924.50 34,416.67

Fuel use (GJ) 222 144,373.83 340,922.87 655.333 4,528.17 13,156.42 87,648.06 388,832.12

Generation (MWh) 222 27,068.43 63,442.97 111.611 807.88 2,427.30 16,109.82 83,466.08

Investment Machinery (EUR) 99 4,578,627.90 12,218,751.00 0.000 30,047.00 992,054.00 4,049,328.00 11,325,268.00

Capacity Factor 222 0.45 0.27 0.093 0.23 0.45 0.65 0.79

Ex-Ante Exposure (EUR/MWh) 150 2.15 0.70 1.647 1.75 1.89 2.22 3.16

a Values cannot be displayed due to confidentiality issues.

Table 3: Summary Statistics - Overall and Differentiated by Fuel Type in 2012

One drawback of this dataset is that only the main fuel type of the plant is observed, although

plants may consist of several generating units. In the following, I treat plants according to their

main fuel type under the assumption that the main fuel type has the determining influence on

the plant’s decisions. An additional challenge arises through the matching of different data sets,

i.e. the AFiD Panel Energy Plants and the monthly report on electricity generating plants. The

varying coverage of these data sets results in a large number of missing values for labour input. This

problem is not as severe in the fuel input demand equation since all variables for this equation are

part of the same survey. To overcome concerns that different findings for fuel and labour are driven

by differences in the two samples, I first checked to which extent the two samples are comparable.

The sample with information on labour input represents 60 percent of electricity production of

the full sample. It also differs along other dimensions. Plants with information on labour input

are on average larger (capacity as well as electricity and heat generation) and have a higher ETS
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Ex-Ante Exposure. Average heat rates are, however, rather similar compared to the full sample.

Given these differences, I re-estimate as a robustness check the fuel input demand equation only

for plants that are reporting in both data sets. In addition to that, it appears that there are some

inconsistencies in the reported values as some heat rates would imply efficiency rates (the inverse

of the heat rate) larger than 100 percent. This would violate the law of conservation of energy in

physics as this would imply more energy after the conversion of fuel into electricity. In order to

address this issue, I trim the data set based on heat rate values by the lower and upper 2.5 percent

in the reference specification.22

Furthermore, I complement the data set with information on the year of commissioning, stem-

ming from the German Federal Network Agency (BNetzA, 2014). As plants can consist of various

generating units, there can be different years of commissioning of units within one plant. I have

added the oldest, youngest, and a capacity-weighted average commissioning year to the data set as

a proxy for the plant’s vintage. The data from the Federal Network Agency encompasses all power

plants with a net capacity of larger than or equal to 10 MW. This means that especially smaller

power plants cannot be assigned a year of commissioning. The matching is done by the statistical

offices based on municipality codes, fuel types, and net capacity of the plants.

ETS Ex-Ante Exposure is calculated as indicated in Equation 3.3, using the volume-weighted

annual average of day-ahead daily settlement EUA prices calculated with data from the EEX,

emission factors based on the plant’s main fuel type from UBA (2013) as well as calculated actual

achieved heat rates based on fuel input and plant output in 2003 and 2004 from Research Data

Centre of the Statistical Offices Germany (2016). In the case of the Fuel Price Ex-Ante Exposure

for hard coal, natural gas and lignite, I use the respective individual average heat rates of plants

in 2003 and 2004 and multiply these values by the respective fuel price. For natural gas, I take the

volume-weighted annual cross border price for Germany provided by BAFA (2015b). The annual

fuel price for hard coal stems from BAFA (2015a). Given that there is no trade in lignite, I assume

constant fuel prices for lignite of 0,4 Euro per GJ following BMWi (2014).

22As a robustness check, I also use (a) the whole data set, (b) trimmed by the lower and upper 0.5 percent as well
as (c) dropping all observations with efficiency rates larger than 100 percent. All these robustness checks lead to
results that are consistent with the results in the reference specification.
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Figure 3: Distribution of Annual ETS Ex-Ante Exposure

Notes: This figure consists of four panels showing the distribution of annual ETS Ex-Ante Exposure divided into total (all

technologies pooled) and by main fuel type (hard coal, lignite and natural gas). Each box plot displays the 10th percentile

(bottom dashed line), first quartile (lower solid line), the median (middle solid line), the third quartile (upper solid line) and

the 90th percentile (top dashed line). The 10th and 90th percentile for annual Ex-Ante Exposure of lignite power plants cannot

be displayed due to confidentiality issues. Own calculation based on data from the Research Data Centre of the Statistical

Offices Germany (2016).

The lower solid line of the box in Figure 3 shows the first quartile of the ETS Ex-Ante Exposure,

whereas the middle solid line depicts the median and the upper solid line the third quartile. The

bottom dashed line depicts the 10th percentile, whereas the upper dashed line shows the 90th

percentile.23 The exposure measured in Euro per MWh electricity and heat generation varies

substantially over time, which is due to changes in emission certificate prices. Dividing the ETS

Ex-Ante Exposure by fuel type illustrates that the overall within year variation is not exclusively

due to differences in emission intensity of fuels, but also that the exposure varies across plants of

the same fuel type within a given year. This exemplifies the importance of differences in heat rates

of individual plants for the ex-ante exposure of plants to the EU ETS. In the empirical model, the

identification of the effect of the EU ETS on within plant variation in input demand derives mainly

from within fuel type variation in ETS Ex-Ante Exposure.

The within fuel type variation comes from two sources: changes in the EUA price over time and

variation in average actual measured heat rates in 2003 and 2004 across plants with the same main

fuel type. First, the EUA price varies over time ranging from more than 20 to less than 10 Euro

23Due to confidentiality issues, the minimum and maximum cannot be shown. Furthermore, the 10th and 90th
percentile for Ex-Ante Exposure of lignite power plants cannot be displayed.
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per ton CO2 as can be seen in Figure 4. In general, spot (day-ahead) and forward market prices

evolve in a similar fashion. The largest difference appears in 2007. The low spot price indicates the

lack of shortages of emission certificates at the end of the first trading period in 2007 as banking

of emission permits from Phase I to Phase II was not allowed.
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Figure 4: Development of EUA Spot and Forward Prices

Notes: The dashed line depicts the volume-weighted annual average of day-ahead (spot) daily settlement EUA prices in Euro

per ton CO2. The solid line shows the volume-weighted annual average of forward prices. Calculations are based on data from

the European Energy Exchange (EEX).

Second, Figure 5 depicts the distribution of average actual measured heat rates in 2003 and

2004 over the course of the sample period for all fossil fuel power plants (Total) and divided by

main fuel type. The lower solid line depicts the first quartile, the middle solid line the median and

the upper solid line the third quartile. The top dashed line illustrates the 90th percentile, while

the bottom dashed line shows the 10th percentile. The figure illustrates that even within fuel types

there is large variation in actual measured heat rates across power plants.
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Figure 5: Distribution of Average Actual Measured Heat Rates in 2003 and 2004

Notes: This figure shows the distribution of average actual measured heat rates in 2003 and 2004 pooled over the sample

period for all technologies (total) as well as for the three main fuel type categories (hard coal, lignite and natural gas). Each

box plot displays the 10th percentile (bottom dashed line), first quartile (lower solid line), the median (middle solid line), the

third quartile (upper solid line) and the 90th percentile (top dashed line). Own calculation based on data from Research Data

Centre of the Statistical Offices Germany (2016).

5. Results

5.1. Average Effects on Fuel and Labour Efficiency

The first two columns of Table 4 depict the estimates of parameter αETS in Equation 7, whereas

columns (3) and (4) present the parameter estimates of βETS in Equation 8, with ETS intensity

(TI) replaced by ETS Ex-Ante Exposure (EAE) and effective fuel prices (FP ) by Fuel Price

Ex-Ante Exposure (FP EAE), respectively. For each dependent variable, fuel input or labour

input, two different specifications are estimated. In columns (1) and (3) the twice-lagged variables

of electricity and heat generation are used as instrumental variables for plant output (L.q). The

models are estimated using forward orthogonal deviation transformations to account for individual

fixed effects (Arellano and Bover, 1995). In columns (2) and (4), the output of competitors with a

higher capacity factor is used as an instrument (C.q), and within transformations are employed to

address individual fixed effects. A set of year dummy variables are included in each specification

to control for time fixed effects.

The first stage F-Statistic is larger than the 10 percent Stock-Yogo critical values in the spec-

ifications with competitors’ output and thus, lending support to the relevance of the instrument.

The Arellano-Bond test and the Hansen test both hint at the validity of twice-lagged output as

instruments for individual output.
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Dependent Variable: (1) ln(fuel) (2) ln(fuel) (3) ln(labour) (4) ln(labour)

ETS Ex-Ante Exposure −0.0042∗∗∗ −0.0044∗∗∗ 0.0006 0.0016

(0.0010) (0.0010) (0.0020) (0.0019)

First Stage F-Statistic 28.53 32.48

Stock-Yogo critical values (10%) 16.38 16.38

Arellano-Bond test AR(1) p-value 0.009 0.046

Arellano-Bond test AR(2) p-value 0.722 0.362

Hansen test p-value 0.604 0.119

Number of instruments 36 1 36 1

Observations 2,246 2,569 868 994

Instruments L.q C.q L.q C.q

Time Fixed Effects + + + +

Individual Fixed Effects + + + +

Notes: In this table the coefficient of the ETS Ex-Ante Exposure obtained in a regression of fuel input

or labour input on ETS Ex-Ante Exposure, Fuel Price Ex-Ante Exposure, individual electricity and heat

generation, year and individual fixed effects is shown. In the models of labour input in column (3) and

(4), wages and available capacity (capital) are additional explanatory variables. Heat rate values are

trimmed at 2.5/97.5 percent level. The first and the third columns refer to two-step difference GMM

estimation using forward orthogonal deviation transformations. Standard errors are in parentheses and

clustered at the plant level. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 4: Average Effects - Fuel and Labour Input

The average effect in Table 4 for the effect on fuel efficiency is around -0.004. The effect is

statistically significant at all conventional levels of significance. In other words, an increase in

individual carbon cost of one Euro per MWh leads to a reduction in input demand by around 0.4

percent on average, holding the level of output fixed. To put this into the context of an average

ETS cost of around six Euro in this sample from 2005 to 2012 and assuming a linear relationship,

this translates into an increase in fuel efficiency by around 2.4 percent that can be attributed to

the introduction of the EU ETS.

Concerning the labour input demand equation, none of the parameter estimates for the ETS

Ex-Ante Exposure are statistically significant. Thus, there is no evidence that the introduction of

the EU ETS had an impact on labour efficiency on average.

Besides average effects over all plants, the size of the effects for individual plants may vary by

main fuel type, size or age. However, I find no evidence of heterogeneous effects with respect to

different fuel types and age categories for neither fuel nor labour efficiency. For larger power plants,

however, the fuel efficiency effects seem to be somewhat smaller.24 This could be an indication that

large power plants are maybe already quite efficient and that there are less small-scale measures

for improvements left that could be implemented.

24The corresponding results as well as the definition of the categories can be found in the appendix.
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5.2. Robustness Checks for Average Fuel Efficiency Results

I do various robustness checks for the fuel input demand equation to assess potential remaining

concerns and challenges with the estimation strategy and the underlying data.

Dependent Variable: ln(fuel) (1) (2) N

1. Forward prices −0.0042∗∗∗ −0.0044∗∗∗ 2,246 (1) / 2,569 (2)

(0.0011) (0.0013)

2. Labour demand sample −0.0034∗∗ −0.0032∗∗ 882 (1) / 1,003 (2)

(0.0009) (0.0015)

3. Sample until 2010 −0.0005 −0.0054∗∗∗ 1,831 (1) / 1,920 (2)

(0.0010) (0.0011)

4. Plants > 20 MW −0.0049∗∗∗ −0.0044∗∗∗ 1,143 (1) / 1,291 (2)

(0.0013) (0.0015)

5. Balanced sample −0.0022∗∗ −0.0032∗∗ 1,460 (1) / 1,626 (2)

(0.0009) (0.0009)

6. Single unit plants −0.0024 −0.0013 633 (1) / 727 (2)

(0.0024) (0.0010)

Explanatory Variable Ex-Ante Exposure Ex-Ante Exposure

Instruments L.q C.q

Time Fixed Effects + +

Individual Fixed Effects + +

Notes: In this table the coefficient of the ETS Ex-Ante Exposure obtained in a regression of fuel

input on ETS Ex-Ante Exposure, Fuel Price Ex-Ante Exposure, individual electricity and heat

generation, year and individual fixed effects is shown. Heat rate values are trimmed at 2.5/97.5

percent level. The first two columns refer to two-step difference GMM estimation using forward

orthogonal deviation transformations. Standard errors are in parentheses and clustered at the plant

level. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 5: Average Effects - Fuel Input - Robustness Checks

First, Figure 4 hints in general to a similar evolution of spot and forward prices except for the

drop in spot prices at the end of 2007, whereas the forward prices indicate that a higher price is

expected for the following years. However, expected carbon prices may be relevant for deciding to

improve fuel efficiency. Thus, I estimate the fuel input demand equation with an ETS Ex-Ante

Exposure based on forward prices as a proxy for expectations over future carbon prices instead of

spot prices, yielding nearly exact the same results.

Second, an analysis of sample differences between fuel and labour input demand equation reveals

that plants used for estimating the fuel demand equation are different from plants that report labour

data (as mentioned in the data section). In general, the plants reporting labour are larger in terms

of capacity and generation. With regard to different fuel types, a large share of natural gas plants

do not report labour information. The sample of plants with information on labour consistently

display a larger ETS Ex-Ante Exposure. Although, the sample with labour information represents

around 60 percent of fossil fuel electricity generation, one might be concerned that these differences
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in plant characteristics between the samples might be one reason for different findings across the

fuel and labour demand equation. Thus, I estimate the fuel demand equation only for plants that

also report labour data. The results are similar (statistically significant negative estimate for ETS

Ex-Ante Exposure) but of a somewhat lower magnitude.

Third, the energy industry in general but especially in Germany is undergoing significant

changes in recent years. One aspect is the increasing share of electricity generated by renew-

able energy technologies. These technologies may have a significant impact on the energy system

as a whole but also on individual plant efficiencies due to effects on ramping needs (see e.g. Graf

and Marcantonini, 2016). To investigate potential confounding effects I restrict the time period

up until 2010 before the large increases in renewable capacity, especially, wind and solar PV took

place. I find positive efficiency effects with a larger magnitude for the specification using competi-

tor output as an instrument, but no effect in the specification with twice lagged individual output

as instrument.

Fourth, almost all fossil fuel power plants in Germany are subject to the EU ETS. However, I

cannot identify the few plants that are not regulated under the EU ETS since rated thermal input

(the ETS exclusion criterion) cannot be observed in the data. Thus, I may treat some plants as

being regulated even though they are not. To assess the size of this potential bias, I estimate a

specification that only includes plants with an electric capacity of more than 20 MW. This threshold

should be large enough to exclude any unregulated plants. The findings hold also for these “larger”

plants, suggesting that the potential bias is small.

Fifth, the panel used in this analysis is unbalanced. This gives rise to a potential selection

problem, if plants that are least efficient exit the market in reaction to the introduction of the EU

ETS. However, given the structure of the surveys underlying the data used in this paper, plant exit

is unobservable. Plants can stop reporting or do not report in one period but continue in another

one due to changing reporting obligations. Especially plants around the threshold for reporting

duty may report in one period but not in another without leaving the market. As a robustness

check, I only use plants reporting in every time period, i.e. a balanced sample. The results remain

similar, but are lower in magnitude.

Sixth, an interesting case is the differentiation between single and multi generation unit plants.

Whereas the former can only improve the single generation unit to increase fuel efficiency, the

latter have an additional margin: the optimization among different generating units in response to

the EUA price may yield a different fuel efficiency for the overall plant. I check whether the results

of an increase in fuel efficiency still holds for single unit plants as a robustness check. I find that

the effects have a negative sign and are smaller in magnitude, but are not statistically significantly

different from zero any longer. On the one hand, this may underline the importance of having the

additional margin of internal optimization among multiple generation units. On the other hand,

single generating units differ from plants with multi generating units along other dimensions as

well. Plants with multiple generating units are on average larger in terms of capacity, generation
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and fuel input and invest more in machinery. However, the composition of power plants with

respect to the main fuel type is similar for single and multiple generating unit power plants.

5.3. Investment and Utilization

To investigate possible channels through which the identified effects work, I analyse two different

variables that may be affected by the introduction of the EU ETS, namely investment in machinery

and utilization (expressed as the capacity factor). I again use variation in ETS Ex-Ante Exposure

for identification and both equations include the Fuel Price Ex-Ante Exposure. Thus, the model

that I estimate is as follows:

Yit = γ0 + γETS EAEit + γFP (FP EAE)it + τi + τt + ψit, (9)

where Yit is investment in machinery or capacity factor, respectively, of plant i at time t.

Although observed investment in machinery may be more accurate to use than observed total

investment, it does not only contain actual investment in generation units but also includes expenses

for office and business equipment. Such expenditures may also be reflected in the investment data,

which is not as lumpy as might be expected and contains positive values for almost all observations.

To uncover actual investment in generation facilities, I distinguish between these different types of

investment by normalizing the investment amount by the plant’s individual capacity. The kernel

density estimate shown in Figure 6 reveals a bimodal empirical distribution of investments in

machinery normalized by the plant’s capacity in MW and transformed by the natural logarithm.
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Figure 6: Density of investments in machinery per MW capacity (log)

Notes: This figure shows the kernel density function of investments in machinery per MW capacity transformed by the natural

logarithm. Own calculation based on data from Research Data Centre of the Statistical Offices Germany (2016).
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Given this distribution, I assume that investment amounts up to 10 (which is around 22,026

Euro per MW and is approximately at the end of the first hump) are only minor investments,

which do not influence fuel efficiency. Consequently, I set investments in machinery that qualify as

such minor investments equal to zero within an additional specification (column 3 in Table 6).

Dependent Variables: (1) ln(Inv Machinery) (2) ln(Inv Machinery (large)) (3) Utilization

ETS Ex-Ante Exposure 0.0221 0.0288∗∗ −0.0053∗∗∗

(0.0185) (0.0129) (0.0020)

Observations 1,226 1,226 2,577

Time Fixed Effects + + +

Individual Fixed Effects + + +

Notes: In this table the coefficient of the ETS Ex-Ante Exposure obtained in a regression of investments

in machinery or utilization on ETS Ex-Ante Exposure spot, year and individual fixed effects as well

as on Fuel-Price Ex-Ante Exposure is shown. Heat rate values are trimmed at 2.5/97.5 percent level.

Standard errors are in parentheses and clustered at the plant level. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 6: ETS Effects on Investment in Machinery and on Utilization

As can be seen in Table 6, ETS Ex-Ante Exposure does not appear to have a statistically

significant effect on the level of investment in machinery or only a small positive effect of around

three percent on larger investments. ETS Ex-Ante Exposure leads to a reduction in the individ-

ual capacity factor (utilization). This is consistent with carbon intensive plants experiencing a

steeper increase in their generation cost compared to less carbon intensive plants. This increase

is apparently large enough to induce a change in the merit-order. This is in line with Cullen and

Mansur (2017), who find that low natural gas prices induced by “Shale Revolution” in the US lead

to emission reductions in the US electricity market and present evidence that this observation is

consistent with fuel switching from coal to natural gas power plants.

Overall, the findings suggest that the fuel efficiency effects stem mainly from shifts in utilization,

i.e. among plants in the merit order based on their carbon intensity, and within plant optimization.

Furthermore, there is (weak) evidence for a modest increase in investments into machinery, from

which fuel efficiency improvements may also originate.

6. Conclusion

Understanding the impacts on regulated entities is crucial for the assessment and the further

development of mitigation policies such as emission trading schemes. The introduction of the EU

ETS in 2005 marks the start of the largest cap-and-trade system for greenhouse gas emissions

worldwide. In this paper I use the introduction of this policy to contribute to the still scarce

empirical literature based on micro data on the effects of carbon pricing on power plants. Given

the high share of fuel-related cost in total cost in power generation, the introduction of a carbon

price may provide carbon intensive power plants an incentive to improve fuel efficiency. I investigate
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the impact of the EU ETS on fossil fuel power plants in Germany using administrative plant level

data. Thereby, I use variation in carbon cost induced by the introduction of the EU ETS in 2005

and the differential exposure of power plants to carbon prices for identification.

The estimated effects suggest that at average carbon cost of around six Euro per MWh elec-

tricity and heat generation, the EU ETS decreases fuel input by around 2.4 percent, while holding

output fixed. At an annual fuel input of 750 terawatt hour (TWh) and annual carbon emissions

of around 290 million tonnes in hard coal, lignite and natural gas power plants25, on average this

decrease in fuel input is equivalent to a reduction of around seven million tonnes in annual carbon

emissions, using the average emission intensity of fossil fuel use in Germany in 2012. The results

on fuel efficiency are robust to several specifications. However, one specification, using only single

unit generators, suggests that the effects might be driven by power plants with multiple generating

units. Nevertheless, it remains unclear whether this means that the effects are originating from

adjustments by within-plant optimization among different generation units or whether it is due to

(unobservable) structural differences between single and multi generation unit power plants.

Furthermore, given the rather small magnitude of effects, the results hint at the implementation

of small-scale and maybe less-capital intensive measures to improve fuel efficiency. This is in line

with the findings of either statistically insignificant or small positive effects on investments in

machinery. Another possible driver of fuel efficiency is the change in utilization. I find that the

ETS negatively impacts the capacity factor, i.e. carbon intensive plants produce less heat and

electricity in relation to their potential output compared to less carbon intensive plants. Thus, the

small effect should be interpreted as a positive net effect on fuel efficiency, exceeding the potential

counteracting negative fuel efficiency effect from decreased utilization of carbon intensive power

plants.

Given the empirical framework, I concentrate on the short term reaction to carbon prices. I

assume that within each period capital (and thereby investment) or labour cannot be substituted

for fuel input. The introduction of a carbon price leads to a change in relative input prices.

If short-run substitution between fuel and labour were important in this context, this should also

have impacted labour demand. Hence, the statistically insignificant effect of the EU ETS on labour

input lends support to the assumptions underlying the Leontief approach. The role of substitution

between capital and fuel use, e.g. by investing in newer technology to improve heat rates, may be a

more prominent driver for fuel efficiency gains in the long run. However, I do not find evidence that

the EU ETS has triggered large investments in machinery even seven years after its introduction.

For the years after 2012, carbon prices have remained low compared to prices in the period of

this study, making it even less likely that adequate incentives may have prevailed to invest in new

technology for fuel efficiency improvements.

25These calculations are based on data from UBA (2013).
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Appendix A Heterogeneous Effects on Fuel and Labour Efficiency

While there are three categories available for fuel types (i.e. hard coal, lignite and natural gas),

I define size and age categories to allow for non-linear effects. The categories are in line with the

empirical distribution and are divided as follows: small (<10 MW), medium (10 to <80 MW),

large (80 to <400 MW) and huge (≥400 MW) for the size as well as new (< 10 years), young (≥ 10

to < 20 years), medium (≥ 20 to < 40 years) and old (≥ 40 years) for age. The different categories

for fuel types and size classes are interacted with the variable of the ETS Ex-Ante Exposure,

respectively.

The effects of the EU ETS on fuel efficiency seems to be quite homogeneous with respect to the

main categories, expect for power plants larger than 80 MW (categories “large” and “huge”). For

these power plants, the fuel efficiency effect of the ETS Ex-Ante Exposure seems to be somewhat

lower in magnitude. As in the case of the average effect in almost all specifications the heterogeneous

effects of the ETS Ex-Ante Exposure on labour input is not statistically significant.

33



Dependent Variable: (1) ln(fuel) (2) ln(fuel) (3) ln(labour) (4) ln(labour)

ETS Ex-Ante Exposure −0.0145∗∗ −0.0208∗∗∗ 0.0031 0.0060

(0.0060) (0.0063) (0.0080) (0.0090)

ETS Ex-Ante Exposure X Medium 0.0026 0.0061 −0.0017 −0.0019

(0.0035) (0.0040) (0.0053) (0.0051)

ETS Ex-Ante Exposure X Large 0.0076∗∗ 0.0115∗∗∗ −0.0005 −0.0010

(0.0038) (0.0041) (0.0052) (0.0059)

ETS Ex-Ante Exposure X Huge 0.0071∗ 0.0109∗∗ −0.0007 −0.0032

(0.0042) (0.0044) (0.0055) (0.0060)

ETS Ex-Ante Exposure X Young 0.0001 0.0004 0.0033 0.0039∗∗

(0.0010) (0.0012) (0.0026) (0.0019)

ETS Ex-Ante Exposure X Medium 0.0008 0.0001 0.0023 0.0015

(0.0010) (0.0011) (0.0024) (0.0018)

ETS Ex-Ante Exposure X Old −0.0096 −0.0124 −0.0108 −0.01143

(0.0108) (0.0101) (0.0104) (0.0070)

ETS Ex-Ante Exposure X Lignite 0.0013 0.0023∗ −0.0003 −0.0006

(0.0012) (0.0013) (0.0032) (0.0026)

ETS Ex-Ante Exposure X Natural Gas −0.0008 −0.0088 0.0055 0.0049

(0.0034) (0.0032) (0.0041) (0.0040)

First Stage F-Statistic 28.31 33.52

Stock-Yogo critical values (10%) 16.38 16.38

Arellano-Bond test AR(1) p-value 0.007 0.067

Arellano-Bond test AR(2) p-value 0.822 0.297

Hansen test p-value 0.669 0.088

Number of instruments 55 1 56 1

Observations 2,246 2,569 868 994

Instruments L.q C.q L.q C.q

Time Fixed Effects + + + +

Individual Fixed Effects + + + +

Notes: In this table the coefficient of the ETS Ex-Ante Exposure and its interaction obtained in a regression

of fuel input or labour input on ETS Ex-Ante Exposure, Fuel Price Ex-Ante Exposure, individual electricity

and heat generation, year and individual fixed effects are shown. In the models of labour input in column

(3) and (4), wages and available capacity (capital) are additional explanatory variables. Heat rate values

are trimmed at 2.5/97.5 percent level. The first column refer to two-step difference GMM estimation using

forward orthogonal deviation transformations. Standard errors are in parentheses and clustered at the plant

level. Size categories are small (<10 MW), medium (10 - <80 MW), large (80 - <400 MW) and huge (400

MW and more). Age categories are new (<10 years), young (10 - <20 years), medium (20 - <40 years) and

old (40 years and more). * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 7: Heterogeneous Effects - Fuel
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