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ABSTRACT

The moduli space of marked singularities was introduced by Claus Hertling in 2010 and
parameterizes µ-homotopic isolated hypersurface singularities equipped with certain mark-
ings. This moduli space can be understood either as a global µ-constant stratum or as a
Teichmüller space of singularities. The additional marking allows one to formulate the con-
jecture on the analytic behavior of singularities within a distinguished µ-homotopy class
in terms of Torelli(-type) problems in a very efficient way. In the monograph at hand
these Torelli problems are solved for many different types of singularities. The proofs use
such diverse concepts as Z-lattice computations, Fuchsian groups and the Gauss-Manin
connection. In particular, the monograph contains proofs of the Torelli problems for all
singularities of modality zero, one and two. This closes some long-standing gaps.

ZUSAMMENFASSUNG

Der Modulraum markierter Singularitäten, der im Jahr 2010 erstmals von Claus Hertling
betrachtet wurde, parametrisiert µ-homotope isolierte Hyperflächensingularitäten, die mit
bestimmten Markierungen versehen sind. Dieser Modulraum kann einerseits als globales
µ-konstant-Stratum, andererseits als Teichmüller-Raum für Singularitäten aufgefasst wer-
den. Die zusätzliche Markierung erlaubt es, die Frage nach dem analytischen Verhalten der
Singularitäten innerhalb einer bestimmten µ-Homotopieklasse, effizient als Torelli Prob-
lem zu formulieren. In der vorliegenden Monographie werden diese Torelli Probleme für
eine Vielzahl unterschiedlicher Typen von Singularitäten gelöst. Dabei werden so unter-
schiedliche Konzepte wie ganzzahlige Gitterberechnungen, Fuchssche Gruppen und der
Gauss-Manin Zusammenhang verwendet. Insbesondere enthält die Monographie Torelli
Resultate für alle Singularitäten von Modalität null, eins und zwei. Dies schließt einige seit
langem bekannte Lücken.
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1
INTRODUCTION

Isolated hypersurface singularities (short: singularities) are holomorphic function germs
f :
(
Cn+1, 0

)
→ (C, 0) with a finite Milnor number µ. The Milnor number is a topological

invariant of a singularity1. So loosely speaking in a family of singularities with constant
Milnor number the singularities are “topologically the same”.
Now in the seminal two-volumed book [AGV85]+[AGV88] of Arnold, Gusein-Zade and
Varchenko the question is raised which properties in a family of singularities with constant
Milnor number can still vary. They conjectured that the singularities in all such fami-
lies are determined by certain analytic invariants, the so-called Picard-Fuchs singularities
PFS (f). However Claus Hertling gave an example in his doctoral thesis [He93] which
shows that Picard-Fuchs singularities in general do not globally classify all singularities in
a family of singularities with constant Milnor number. This phenomenon can appear as
soon as singularities of modality > 0 are involved. Therefore, he introduced new analytic
invariants which use all of the information on the position of the Brieskorn lattice H ′′0 (f)

in the Gauss-Manin connection and showed in [He93], [He95] and [He98] that they classify
all simple singularities, all unimodal singularities, all semiquasihomogeneous singularities
with weights

(
1
3 , 1

3 , 1
3 , 1

3

)
, all Brieskorn-Pham singularities with coprime exponents and

almost all bimodal singularities. This classification works if and only if some period map
LBL, like the one in the classical Torelli Theorem for Riemann surfaces, is injective. So
this question can be referred to as the Torelli Conjecture for hypersurface singularities
(see Section 2.4 for the precise statement). Up to the present day no type of singularity is
known where this conjecture fails.
To prove the Torelli Conjecture for hypersurface singularities for certain types of singulari-
ties Hertling made an enormous effort. He did very detailed computations with eigenspace
parts of certain differential forms inside the Gauss-Manin connection. Some people consider
these computations as “very cumbersome and difficult” (see [Ku98, p. 180]). Moreover for
the bimodal series singularities they were published only partly at first (cf. [He95, p. 391]).
So one aim of this thesis is it to make these old computations more accessible and visible
in the literature.

Later a more conceptual approach to the aforementioned question was carried out in
[He11]. There the singularities come equipped with markings and a sort of Teichmüller
space for singularities is established. This space Mmar

µ is then locally isomorphic to the
µ-constant stratum Sµ and has an analogue GZ of a mapping class group acting properly
discontinously on it. Now the problem can be formulated in terms of the period maps
as a Torelli problem more cleverly (see Section 3.2). This yields a stronger classification
conjecture, namely the strong global Torelli Conjecture for hypersurface singularities. It

1 Note that all the objects mentioned in this introduction will be defined properly in the upcoming chapters
of the thesis.
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2 introduction

was proved in [He11] for the simple singularities, the Brieskorn-Pham singularities with
coprime exponents and some exceptional singularities.

Now in the monograph at hand we look at the old computations concerning the Gauss-
Manin connection and use this information to prove the strong global Torelli Conjecture
for all types of singularities of modality ≤ 2. The main new ingredient to achieve this is
precise knowledge about the group GZ. The group GZ contains Z-lattice automorphisms
on the Milnor lattice which respect a certain bilinear form. So a priori it is not easy to
compute the group GZ. Here, we can bypass this obstacle in the following way. At first we
split up the Milnor lattice into smaller parts in the sense of Orlik’s Conjecture from 1972
(see Section A.2), then we compute groups of automorphism on these smaller parts and
later we put everything together again to determine GZ or a sufficiently large subgroup of
GZ. All necessary computations are included.

All in all, the main results of the monograph at hand are:

• We verify the strong global Torelli Conjecture for hypersurface singularities for all
the simple elliptic, hyperbolic, the remaining exceptional uni- and bimodal, the quad-
rangle and the bimodal series singularities (see Sections 4.2, 4.3, 4.4 and 4.5).

• We show (as a by-product) that also for singularities of types Z1,14k, S1,10k and S]1,10k
with k ∈ N the Torelli Conjecture for hypersurface singularities is true. This was
unclear for a long time (cf. Remark 4.4.6).

• We falsify Conjecture 3.2 (a) from [He11], i.e. we show that the moduli space Mmar
µ

is not connected in general (see Section 4.4).

• We verify Orlik’s Conjecture for several types of singularities where it applies (e.g.
see Section 4.6).

• We compare Mmar
µ with the classical Teichmüller space for Riemann surfaces and

argue that they do not have so much in common (see Section 3.3).

• We summarize the state of the art of the Torelli Conjectures mentioned above and
discuss some ideas for future research in Sections 4.6 and 4.7.

1.1 plan of thesis

This thesis consists of four chapters and an extensive appendix with several sections each.
Chapter 1 provides a very rough idea of what the thesis is about and names the most
important supporters of the thesis project. Chapter 2 introduces the basic notions, such as
the Milnor lattice, the Brieskorn lattice, the Gauss-Manin connection and µ-constant fami-
lies of singularities. Moreover it states the Torelli Conjecture for hypersurface singularities
mentioned above. Chapter 3 explains the moduli space of marked singularities Mmar

µ and
the strong global Torelli Conjecture. Finally, Chapter 4 elucidates the proofs of the strong
global Torelli Conjecture for all types of singularities up to modality two. A more detailed
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description of its contents is given at the beginning of each chapter.
The Appendix A consists of three sections. The first one discusses Newton nondegener-
ate and semiquasihomogeneous singularities. This is important as many of the uni- and
bimodal singularities are quasihomogeneous, semiquasihomogeneous and/or Newton non-
degenerate. The second one discusses Orlik’s Conjecture and contains a collection of tech-
niques which are useful to control the automorphisms on some smaller parts of the Milnor
lattice. The last one discusses infinite Fuchsian groups which arise as subgroups of groups
GL(2; Z [ζ]) where ζ is a root of unity. This is needed for the quadrangle singularities in
particular. So a good understanding of the material in the appendix is essential for the
understanding of the results of the thesis.
Note that most of the results of this thesis appeared beforehand in the articles [GH17]

and [GH18]. Those articles were written during my time as a doctoral student at the
University of Mannheim. All of them are already published or currently in press. More
specifically, the book chapter [GH17] contains material of the Sections 4.2, 4.3 and A.2
and the article [GH18] contains material of the Sections 4.4, 4.5, A.1, A.2 and A.3.

1.2 acknowledgements

First and foremost, I would like to thank my advisor Professor Claus Hertling for his con-
stant support and valuable suggestions at all stages of this thesis project. I want to thank
Professor Wolfgang K. Seiler and Professor Wolfgang Ebeling for serving as the second
advisor and the referee, respectively.

Above that, I want to thank Sven Balnojan, Alexey Basalaev, Richard Haas, Alexander
Kalinin, Fabian Klos and Dimitri Schwab for creating a supportive research environment.
In particular, I am grateful for the warm welcome Alexander Kalinin and Dimitri Schwab
provided me when I was an incoming doctoral student, a.k.a. "the outta-town-boy".

Special thanks go to my parents to whom this thesis is also dedicated. Aside from my
parents, I received financial support from the JSPS Postdoctoral Fellowship for Research
in Japan ID No. PE17702, the DAAD and BMBF as part of the IPID4all program and
the DFG grant He2287/4-1 (SISYPH).

Lastly, I gratefully acknowledge ideational support of the German Academic Scholar-
ship Foundation (Studienstiftung) and the Bronnbach Scholarship of the University of
Mannheim and the Association of Arts and Culture of the German Economy. The events
organized by the German Academic Scholarship Foundation were of particular importance
to me, because there I met the gorgeous Sibylle.





2
BAS IC NOTIONS ON ISOLATED HYPERSURFACE
S INGULARIT IES

In this chapter we recall many important definitions on isolated hypersurface singularities.
We start in Section 2.1 with the classical definition of the Milnor fibration of a singularity
and present several results on the topology of isolated hypersurface singularities. The
material presented in Section 2.1 is standard textbook material and can be found in almost
all books on hypersurface singularities. We recommend [Eb07]. In Section 2.2 we briefly
discuss the Gauss-Manin connection and Brieskorn lattice for singularities. In Section 2.3
we generalize all objects studied before to µ-constant families of singularities. We end up
this chapter by stating the Torelli Conjectures for singularities of Claus Hertling in Section
2.4. The definitions and further details on these notions can be found in more specialized
textbooks, like [Ku98] or [He02-2].

2.1 the topology of isolated hypersurface singularities

2.1.1 Milnor fibration

The notion "singularity" is ubiquitous throughout mathematics. In this thesis by the term
singularity or more precisely by isolated hypersurface singularity we refer to a holomorphic
function germ f :

(
Cn+1, 0

)
→ (C, 0) with an isolated singularity at zero. This means that

for every representative f : U → C of the germ, where U ⊆ Cn+1 is a suitable neighborhood
of zero, zero is an isolated point in the set {x ∈ U | ∂f∂x0

(x) = . . . = ∂f
∂xn

(x) = 0}. A classical
equivalent formulation for a singularity being isolated is that its Milnor number

µ := µ (f) := dimCOCn+1,0/
〈
∂f

∂x0
, . . . , ∂f

∂xn

〉
(1)

is finite. The ideal
〈
∂f
∂x0

, . . . , ∂f
∂xn

〉
is called Jacobi ideal and the complex vector space

OCn+1,0/
〈
∂f
∂x0

, . . . , ∂f
∂xn

〉
is called Jacobi algebra. The Milnor number is a topological in-

variant of an isolated hypersurface singularity. Aside from the definition as the complex
vector space dimension of the Jacobi algebra, it can be also defined purely topologically
via the Milnor fibration.

A Milnor fibration for f can be constructed as described in the following. The situation
is visualized in Figure 1. We choose ε > 0 in such a way that f is defined on the ball
B2n+2
ε := {x ∈ Cn+1 | |x| < ε} around zero and f−1 (0) is transversal to ∂B2n+2

ε̃
for

all ε̃ ≤ ε. Moreover, we choose δ > 0 such that f−1 (τ ) is transversal to ∂B2n+2
ε for all

τ ∈ Tδ := {τ ∈ C | |τ | < δ}. We define the punctured disk T ′δ := Tδ \ {0} and the sets
X (ε, δ) := B2n+2

ε ∩ f−1 (Tδ) as well as X ′ (ε, δ) := X (ε, δ) \ f−1 (0). Then f : X ′ (ε, δ)→

5



6 basic notions on isolated hypersurface singularities

T ′δ is a locally trivial C∞-fibration with fibers Xτ := f−1 (τ ) for τ ∈ T ′δ. This is the Milnor
fibration, which can be understood as a good representative of the germ. The fibers Xτ

Figure 1: Milnor fibration for a singularity

of the Milnor fibration are homotopy equivalent to a bouquet of µ n-spheres (see [Mi68,
Theorem 7.2]). If u : T∞ → T ′δ is the universal covering and X∞ := X ′ (ε, δ)×T ′

δ
T∞, then

for all τ ∈ T∞ the natural inclusion Xu(τ ) ↪→ X∞ is a homotopy equivalence. So by taking
the middle homology1 with integer coefficients we obtain a Z-lattice

Ml (f) := Hn (X∞, Z) ∼= Hn (Xτ , Z) ∼= Zµ (2)

for any τ ∈ T ′δ. The lattice Ml (f) is called Milnor lattice and will be of great importance
for the rest of this thesis. Besides the classical Milnor lattice also the space Ml (f)C :=
Ml (f)⊗Z C will appear in what follows.
The Milnor fibration defines a (geometric) monodromy diffeomorphism via parallel trans-

lation along the path γ : [0, 1]→ Tδ, t 7→ δe2πit. The induced monodromy on the homology
then gives a quasiunipotent monodromy automorphism Mh : Ml (f) → Ml (f). This is
the (Picard-Lefschetz) monodromy. In the following the semisimple part of the monodromy
Mh is denoted as Ms, the unipotent part as Mu and the nilpotent part as N := logMu.

The most significant properties of the Picard-Lefschetz monodromy follow from the
Monodromy Theorem of Brieskorn and Grothendieck stated below. Here we present the
Monodromy Theorem together with some supplement of van Doorn and Steenbrink.

1 For n = 0 we have to take the reduced (!) homology.
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Theorem 2.1.1 (Monodromy Theorem, see [Br70] for parts (a)-(c) and [vDS89] for part
(d)). For the monodromy Mh of a singularity as above the following is true.

(a) The eigenvalues of Mh are roots of unity.

(b) The size of the blocks in the Jordan normal form (= Jordan blocks) of Mh is at
most (n+ 1)× (n+ 1).

(c) The size of the Jordan blocks of Mh for the eigenvalue 1 is at most n× n.

(d) If there exists a Jordan block of (maximal) size (n+ 1)× (n+ 1), then there exists
also a Jordan block of size n× n for the eigenvalue 1.

Often it is important to study certain “parts” of the Milnor lattice. Here, for some
element λ ∈Ml (f) we will write

Ml (f)λ := ker (Mh − λ id)µ : Ml (f)C →Ml (f)C , (3)

Ml (f) 6=λ :=
⊕
λ′ 6=λ

Ml (f)λ′ . (4)

The Milnor lattice comes equipped with two important bilinear forms. The first one is
the (−1)n-symmetric intersection form I : Ml (f)×Ml (f) → Z, which is given by the
intersection numbers of the homology. The second one is the Seifert form L : Ml (f)×
Ml (f)→ Z. It is unimodular and its precise construction can be found in [AGV88, Section
I.2.3]. The three objects Mh, I and L are related via the following formulas from [AGV88,
Section I.2.3]

L (Mha, b) = (−1)n+1 L (b, a) , (5)

I (a, b) =−L (a, b) + (−1)n+1 L (b, a) . (6)

The two formulas above imply I (a, b) = L ((Mh − id)a, b). Hence, the eigenspace with
eigenvalue 1 of Mh is the radical Rad(I) ⊆ Ml (f) of I. Note that for n = 1, i.e.
f :
(
C2, 0

)
→ (C, 0), the radical Rad(I) is a Z-lattice of rank r− 1 where r is the number

of branches of f =
∏r
j=1 fj (see [Ka96]). Generators of this lattice are given by any subset

of cardinality r − 1 of the classes {l1, . . . , lr}, where lj ∈ Ml (f) is obtained by pushing
the (correctly oriented) cycle ∂B2n+2

ε̃
∩ f−1

j (0) from the boundary of the fiber f−1 (0) to
the boundary of the fiber Xτ .

Since we want to achieve results which are independent of coordinate changes we will
formulate many statements up to so-called right equivalence. It is the finest meaning-
ful equivalence relation among isolated hypersurface singularities. Two singularities f :(
Cn+1, 0

)
→ (C, 0) and g :

(
Cn+1, 0

)
→ (C, 0) are right equivalent (write f ∼R g) if there

exists a biholomorphic map germ ϕ :
(
Cn+1, 0

)
→
(
Cn+1, 0

)
with f = ϕ ◦ g. For sake of

brevity we denote the group of biholomorphic map germs by R.
Since the early days of singularity theory singularities are related to deformation pro-

cesses. This is in particular related to the view of René Thom on the subject. He also
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coined the term unfolding of a singularity. For us an unfolding of a singularity f is a holo-
morphic function germ F :

(
Cn+1 ×M , 0

)
→ (C, 0) such that F |(Cn+1×{0},0) = f . Here

(M , 0) denotes the germ of a manifold. There are certain special unfoldings which give rise
to all other unfoldings. This will be subject of the next definition.

Definition 2.1.2. An unfolding F :
(
Cn+1 ×M , 0

)
→ (C, 0) is versal if it induces any

unfolding G :
(
Cn+1 ×M ′, 0

)
→ (C, 0), that means morphisms ϕ : (M ′, 0) → (M , 0) and

Φ :
(
Cn+1 ×M ′, 0

)
→

(
Cn+1 ×M , 0

)
with prM ◦Φ = ϕ ◦ prM ′ and Φ|(Cn+1×{0},0) = id

exist. Furthermore, a versal unfolding is called semiuniversal if dim (M , 0) is minimal.

Note that semiuniversal unfoldings exist (see [AGV85] or [Ma68]).
Finally we define the modality of a singularity. It is the maximum dimension of the set of
orbits of the group R of germs of biholomorphic coordinate transformations in a neighbor-
hood of the orbit of the singularity. Singularities of modality zero, one and two are called
simple, unimodal and bimodal singularities, respectively. We write mod (f) for the modal-
ity of f . There exists a famous list of polynomial representatives, so-called normal forms,
of all singularities (modulo right equivalence) of modality at most two. This list [Ar76] is
due to Vladimir Arnold (see also [Ar74] and [AGV85]) and will be of significant importance
for what follows. Namely large parts of this monograph are concerned with working along
that list and showing conjectures for all singularities on it. The easiest so-called type of a
singularity is the type A1. It consists of simple singularities of Milnor number µ = 1 that
are right equivalent to the normal form x2

0.

2.1.2 Distinguished bases and Coxeter-Dynkin diagrams

Another classical notion associated to isolated hypersurface singularities is that of distin-
guished bases. To give the definition we choose a “good” representative F of the semiu-
niversal unfolding of f and a generic parameter t ∈ M . Then Ft : Xt → Tδ with Tδ ⊆ C

as above and some Xt ⊆ Cn+1 is a morsification of f . It has µ singularities of type A1

and µ pairwise different corresponding critical values u1, . . . ,uµ ∈ Tδ. Now we fix a value
τ ∈ (Tδ ∩R>0) \ {u1, . . . ,uµ} and choose a path γi from ui to τ for each i = 1, . . . ,µ, such
that the paths intersect only at τ and arrive at τ in clockwise order. Lastly, shift from the
singularity above each value ui along γi to the Milnor fiber and call the image δi. Then
the (δ1, . . . , δµ) are special Z-bases of the Milnor lattice, the so-called distinguished bases.
The elements of such a basis are called vanishing cycles. A distinguished basis is usually
encoded in terms of Stokes matrices and Coxeter-Dynkin diagrams. A Stokes matrix asso-
ciated to a distinguished basis (δ1, . . . , δµ) is an upper triangular µ× µ matrix with ones
on the diagonal and entries Si,j := (−1)n(n+1)/2 · I (δi, δj) for i < j. The Coxeter-Dynkin
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diagram of a distinguished basis (resp. its Stokes matrix S = (Si,j)i,j=1,...,µ) is a graph
with vertices 1, . . . ,µ, where two vertices i and j are connected via

no edge, if Si,j = 0,

|Si,j | edges, if Si,j < 0,

Si,j dotted edges, if Si,j > 0.

(7)

Coxeter-Dynkin diagrams of several singularities had been computed explicitly. Most
notably by Norbert A’Campo, Wolfgang Ebeling, Andrei Gabrielov and Sabir Gusein-
Zade (e.g. see [Eb83], [Eb07] and [Ga74-2]). Below some first examples of Coxeter-Dynkin
diagrams are given.

Example 2.1.3. (i) The Coxeter-Dynkin diagram of a singularity of type A1 is a
graph consisting of just one vertex.

(ii) Singularities of type E3,0 have Milnor number µ = 16 and modality two. The
graph shown in Figure 2 is a Coxeter-Dynkin diagram for them (cf. [He93, Kapitel
3 b)]).

Figure 2: Coxeter-Dynkin diagram for (singularities of type) E3,0

Many more Coxeter-Dynkin diagrams can be found in Chapter 4 of the monograph at
hand. We close this subsection by describing how to compute the mondromy, the intersec-
tion form and the Seifert form from a given Coxeter-Dynkin diagram resp. Stokes matrix.
First of all, the Picard-Lefschetz transformation onMl(f) of a vanishing cycle δ is sδ(b) :=
b− (−1)n(n+1)/2 · I (δ, b) · δ. Then the monodromy Mh is

Mh = sδ1 ◦ . . . ◦ sδµ (8)

for any distinguished basis δ = (δ1, . . . , δµ). The matrices of the monodromy, Seifert form
and intersection form with respect to a distinguished basis are given by formulas from
[AGV88, Section I.2.3], namely by

Mh (δ) =δ · (−1)n+1 · S−1ST , (9)

I
(
δT , δ

)
= (−1)n(n+1)/2 ·

(
S + (−1)n · ST

)
, (10)

L
(
δT , δ

)
= (−1)(n+1)(n+2)/2 · ST . (11)

These formulas show that the Seifert form L determines the intersection form I and
the monodromy Mh. Hence every automorphism on the Milnor lattice, which respects the
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Seifert form, also respects the monodromy and the intersection form. The group of all au-
tomorphisms which respect the Seifert form will be denoted as GZ (f) := Aut (Ml (f) ,L).
It is of particular importance in the main part of this thesis.
Finally, there is a nondegenerate bilinear form S : Hn (X∞, Q)×Hn (X∞, Q)→ Q which
is invariant under the monodromy and determined by the Stokes matrix and the mon-
odromy (see [He02-2, Section 10.6] for a precise definition). It is called the polarizing form
and it will be important in the next section.

2.1.3 Stabilization and the Thom-Sebastiani result

In the following we often prove results only for a fixed number of variables n+ 1 — for
example for curve singularities (n = 1) or surface singularities (n = 2). The general results
follow then via the process of stabilization. This will be elucidated in this subsection.
For a given function germ f :

(
Cn+1, 0

)
→ (C, 0) in the variables x0, . . . ,xn the function

germ f + x2
n+1 for an extra variable xn+1 is called the stabilization2 of f . A function germ

and its stabilization have very similar topological properties. In particular, the Stokes
matrix remains the same under stabilization and it holds

GZ (f) = GZ

(
f + x2

n+1

)
. (12)

Those properties follow from the more general framework of Thom and Sebastiani below
(see [AGV88, Section I.2.7]). Namely, aside from just adding one singularity of type A1, it is
also interesting to add other singularities. In particular, for singularities f = f (x0, . . . ,xn) :(
Cn+1, 0

)
→ (C, 0) and g = g (y0, . . . , ym) :

(
Cm+1, 0

)
→ (C, 0) there is an isomorphism

Φ : Ml (f + g)→Ml (f)⊗Ml (g) (13)

with Mh (f + g) ∼= Mh (f) ⊗Mh (g) for f + g := f (x0, . . . ,xn) + g (xn+1, . . . ,xm+n+1).
The result of Thom and Sebastiani had been extended to Seifert forms by Deligne and to
distinguished bases by Gabrielov (see [AGV88, Section I.2.7]). It holds

L (f + g) ∼= (−1)(n+1)(m+1) ·L (f)⊗L (g) , and

S (f + g) ∼= S (f)⊗ S (g) (14)

for appropriate distinguished bases. In the following we will refer to all those kind of state-
ments as the Thom-Sebastiani result.
Finally, we have the famous Splitting Lemma (cf. [He11, Section 2]). Note that the multi-
plicity of a singularity f , write mult(f), is mult (f) := max

(
k | f ∈ mk

)
where m ⊆ OCn+1,0

is the maximal ideal.

2 Sometimes authors prefer to call this suspension instead, e.g. see [He11].
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Theorem 2.1.4 (Splitting Lemma). Let f1, f2 ∈ m2 ⊆ OCn+1,0 be isolated hypersurface
singularities. Then it is

mult (f1) = 2⇔ f1 ∼R g1 (x0, . . . ,xn−1) + x2
n for some g1 ∈ m2 ⊆ OCn,0, (15)

f1 ∼R f2 ⇔ f1 + x2
n+1 ∼R f2 + x2

n+1. (16)

2.2 gauss-manin connection and brieskorn lattice

The Gauss-Manin connection for isolated hypersurface singularities was described first in
[Br70]. Inside the Gauss-Manin connection we have the so-called Brieskorn lattice, which
is the central building block of the invariants we will define later. So a good understand-
ing of the Gauss-Manin connection is essential for what follows. Our presentation here is
similar to [He99, Section 4] and [HS99, Section 2]. It builds on results of Greuel, Hertling,
Malgrange, K. Saito, M. Saito, Varchenko and others.

We consider the cohomology bundle Hn :=
⋃
τ∈T ′

δ
Hn (Xτ , C). It is a flat complex vec-

tor bundle. The µ-dimensional vector space of global flat multivalued sections in Hn

can be identified with Hn (X∞, C). It comes equipped with a Z-lattice Hn (X∞, Z) ⊆
Hn (X∞, C) and a monodromy which we denote (by abuse of notation) also by Mh. Let
A ∈ Hn (X∞, C)λ and α ∈ Q with e−2πiα = λ, where Hn (X∞, C)λ is defined analogous
to (3). Then

s (A,α) (τ ) := τα · exp
(

log τ · −N2πi

)
A (τ ) (17)

is a unique holomorphic section in Hn. Now let Hn be the sheaf of germs of holomorphic
sections in Hn. Then there is a differential operator ∂τ : (i∗Hn)0 → (i∗Hn)0 induced
by the covariant derivative, where i : T ′δ → Tδ denotes an inclusion and the lower index
0 denotes stalks resp. germs at 0. Furthermore, there is a C{τ}[τ−1]-vector space G0 of
dimension µ which is invariant under ∂τ . It is called the Gauss-Manin connection. The
Gauss-Manin connection is solely determined through the complex monodromy. The Gauss-
Manin connection is

G0 =
⊕

−1<α≤0
C{τ}[τ−1]Cα, (18)

where Cα := ker (τ∂τ − α)n+1 ⊆ G0 is a complex vector space. It admits a decreasing
V •-filtration, the Kashiwara-Malgrange filtration, with

V α :=V αG0 :=
∑
α≤β

C{τ}Cβ =
⊕

α≤β<α+1
C{τ}Cβ, (19)

V >α :=V >αG0 :=
∑
α<β

C{τ}Cβ =
⊕

α<β≤α+1
C{τ}Cβ. (20)
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Note that V α and V >α are free C{τ}-modules of rank µ with V α/V >α ∼= Cα. Lastly, there
is an isomorphism ψα : Hn (X∞, C)λ → Cα,A 7→ s (A,α)0.

Let ω ∈ Ωn+1
Cn+1 be a holomorphic (n+ 1)-form. Then the Gelfand-Leray form ω

df |Xτ gives
a holomorphic section s [ω] (τ ) in the cohomology bundle Hn via

s [ω] (τ ) :=
[
ω

df
|Xτ
]
∈ Hn (Xτ , C) for τ ∈ T ′δ. (21)

The germ s [ω]0 ∈ (i∗Hn)0 of such a holomorphic section is in G0. Thus in the sense of (18)
each germ s [ω]0 is an infinite sum of uniquely determined eigenspace parts s (ω,α) ∈ Cα

with respect to τ∂τ , i.e.

s [ω]0 =
∑
α>−1

s (ω,α) . (22)

The order of ω ∈ Ωn+1
Cn+1,0 is α (s [ω]) := α (ω) := min (α | s (ω,α) 6= 0) and the eigenspace

part s (ω,α (ω)) is the principal part of s [ω]0.

According to the work of Malgrange [Ma74, Lemma 4.5], the growth towards 0 of the
sections s [ω] (τ ) is bounded, i.e. we even have s [ω]0 ∈ V >−1. So there is a well-defined
map

Ωn+1
Cn+1,0 → V >−1,ω 7→ s [ω]0 . (23)

The kernel of this map is df ∧ dΩn−1
Cn+1,0 (see [Ma74]).

Definition 2.2.1. We define the Brieskorn lattice as

H ′′0 (f) :=Ωn+1
Cn+1,0/df ∧ dΩn−1

Cn+1,0. (24)

The Brieskorn lattice and the fine analytic information which it carries were studied first
in [Br70]. Here we will think of it as a subset of V >−1 (via the map (23)). By the Leray
Residue Theorem (cf. [Br70]) the inverse elements of H ′′0 (f) ⊆ V >−1 satisfy

∂−1
τ s [dη]0 = s [df ∧ η]0 for η ∈ Ωn+1

Cn+1,0. (25)

Now to justify the name Brieskorn “lattice” (cf. [SaM89]) we have to look at the equations

τ · s [ω]0 =s [f · ω]0 , (26)

C{τ}
[
τ−1

]
·H ′′0 (f) =G0. (27)

They show that H ′′0 (f) is a free C{τ}-module of rank µ. To justify the use of the symbol
H ′′0 (f) it is necessary to know that Brieskorn also studied the object

H ′0 (f) :=df ∧ dΩn
Cn+1,0/df ∧Ωn−1

Cn+1,0. (28)
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They are connected via the formulas (cf. (25))

∂−1
τ H ′′0 (f) = H ′0 (f) , (29)

H ′′0 (f) /H ′0 (f) = Ωn+1
Cn+1,0/df ∧Ωn

Cn+1,0, (30)

dimH ′′0 (f) /H ′0 (f) = µ. (31)

So the Brieskorn lattice H ′′0 (f) can be also considered as a free C{{∂−1
τ }}-module of rank

µ. The same holds for V >−1.
We can define a ∂−1

τ -sesquilinear pairing Kf on V >−1 via the polarizing form S (cf. Subsec-
tion 2.1.2). Restricted to the Brieskorn lattice it coincides with the restriction of K. Saito’s
higher residue pairing to the Brieskorn lattice. The properties of Kf are summarized in
the following proposition.

Proposition 2.2.2. There is a unique pairing

Kf : V >−1 × V >−1 → C{{∂−1
τ }} (32)

with the properties in (i)–(iv). Let A ∈ Hn (X∞, C)e−2πiα and B ∈ Hn (X∞, C)e−2πiβ .

(i) For α, β ∈ (−1, 0) with α+ β = −1 it is

Kf (s(A,α), s(B,β)) = 1
(2πi)nS(A,B) · ∂−1

τ . (33)

(ii) For α = β = 0 it is

Kf (s(A,α), s(B,β)) = −1
(2πi)n+1S(A,B) · ∂−2

τ . (34)

(iii) For α,β ∈ R>−1 with α+ β /∈ Z it is

Kf : Cα ×Cβ → 0. (35)

(iv) For a, b ∈ V >−1 it is

∂−1
τ ·Kf (a, b) = Kf (∂

−1
τ a, b) = Kf (a,−∂−1

τ b). (36)

It satisfies also (for α,β ∈ R>−1)

Kf : Cα ×Cβ → C · ∂−α−β−2
τ if α+ β ∈ Z, (37)

Kf (τa, b)−Kf (a, τb) = [τ ,Kf (a, b)] for a, b ∈ V >−1, (38)

where [τ , ∂−kτ ] = k∂−k−1
τ . If one writes Kf (a, b) = ∑

k≥1K
(−k)
f (a, b) ·∂−kτ with K(k)

f (a, b) ∈
C, then K(−k)

f is (−1)k+n+1-symmetric.
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α α+ 1 α+ 2 α+ 3

∂−1
τ ∂−1

τ ∂−1
τ

d (α) d (α)

d (α+ 1)
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Figure 3: Spectral data (schematic)
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Figure 4: Spectral data of U24

In what follows information on the position of the Brieskorn lattice inside the Gauss-
Manin connection will be crucial. Some of this information is captured by the so-called
spectrum. It consists of a tuple of µ rational numbers with multiplicities d (α), where

d (α) := dimV α ∩H ′′0 (f) /V >α︸ ︷︷ ︸
=:GrαV H′′0 (f )

−dimV α ∩ ∂−1
τ H ′′0 (f) /V >α. (39)

Those rational numbers are called spectral numbers. For spectral numbers (α1, . . . ,αµ) the
eigenvalues of the monodromy of the respective singularity are e−2πiαi for i = 1, . . . µ.
Moreover, the spectral numbers satisfy the symmetry relation d (α) = d (n− 1− α). The
structure of the spectral numbers and the spaces Cα can be visualized in pictures like
Figure 3.
Here the total number of bars above a value α, α+ 1, α+ 2 or α+ 3 gives the dimension

of the eigenspace space Cα, Cα+1, Cα+2 or Cα+3, respectively. The number of shaded
bars above a value α, α+ 1, α+ 2 or α+ 3 is the respective multiplicity d (α), d (α+ 1),
d (α+ 2) or d (α+ 3). Finally, the number of shaded and black bars above a value α, α+ 1,
α+ 2 or α+ 3 is the dimension of the space GrαV H ′′0 (f), Grα+1

V H ′′0 (f), Grα+2
V H ′′0 (f) or

Grα+3
V H ′′0 (f), respectively. An example of such a picture associated to a true isolated

hypersurface singularity is given in the example below.

Example 2.2.3. The Brieskorn-Pham singularity3 x3 + y3 + z7 has the spectral numbers
(α1, . . . ,α24) =

(
− 4

21 ,− 1
21 , 2

21 , 1
7 , 1

7 , 5
21 , 2

7 , 2
7 , 8

21 , 3
7 , 3

7 , 10
21 , 11

21 , 4
7 , 4

7 , 13
21 , 5

7 , 5
7 , 16

21 , 6
7 , 6

7 , 19
21 , 22

21 , 25
21

)
.

Those numbers can be computed easily via the library gmssing.lib of the computer algebra
system SINGULAR, see [Sch01] and [DGPS16]. Knowing the spectral numbers we can draw
the picture in Figure 4. It contains all eigenspaces Cα between −4

21 and 5
21 . The singularity

x3 + y3 + z7 will be studied in more detail in Section 4.6.

3 A Brieskorn-Pham singularity is a singularity of the form xp0
0 + xp1

1 + . . . + xpn
n .
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Note that Steenbrink’s Hodge filtration is given via the relation

F pStH
n (X∞, C)λ = ψ−1

α

(
∂n−pτ Grn−p+αV H ′′0 (f)

)
(40)

with α ∈ (−1, 0]. Originally, Steenbrink defined the Hodge filtration F •St via the Hironaka
resolution of singularities (see [St77]). Later, Varchenko [Va80] constructed a closely related
Hodge filtration F •V a from the Brieskorn lattice H ′′0 (f). Scherk and Steenbrink and also M.
Saito modified this construction to obtain F •St (see [SchS85] and [SaM89]).
Now let V >∞(f) be the space of germs of sections that have moderate growth at 0.

Then in [He99] a classifying space DPMHS (f) for polarized mixed Hodge structures and
a classifying space DBL (f) for C{τ}-lattices in V >∞(f) was constructed. More precisely,
DPMHS (f) is a classifying space for Ms-invariant Hodge filtrations F • on Hn (X∞, C)

with weight filtration W• on Hn (X∞, Q) such that (H∞6=1,H∞6=1,Z,F •,W•,−N ,S) and
(H∞1 ,H∞1,Z,F •,W•,−N ,S) are polarized mixed Hodge structures of weight n and n+ 1,
respectively, with the same Hodge numbers as F •St. DBL (f) is the classifying space for
Brieskorn lattices given by

DBL (f) := {L0 ⊆ V >−1 | L0 is a free C{τ}-module of rank µ,

L0 is a free C{{∂−1
τ }}-module of rank µ,

The filtration F • on H∞C (f0) defined by (40)

with L0 instead of H ′′0 (f0) is in DPMHS (f),

Kf (L0,L0) ⊆ ∂−n−1
τ ·C{{∂−1

τ }}} (41)

According to the conditions imposed on the elements ofDBL (f) they aremarked Brieskorn(-
like) lattices. The structure of the spaces DPMHS (f) and DBL (f) is described in the next
proposition.

Proposition 2.2.4 ([He99, Sections 2 and 5]). Fix a singularity f(x0, . . . ,xn).

(a) DPMHS (f) is a real homogeneous space and a complex manifold. The group
GZ(f) acts properly discontinuously4 on DPMHS (f).

(b) DBL (f) is a complex manifold and a locally trivial bundle over DPMHS (f). The
fibers have a natural C∗-action with negative weights and are affine algebraic man-
ifolds. Moreover they are isomorphic to CNBL for some NBL ∈ Z≥0. The group
GZ (f) acts properly discontinuously on DBL (f).

(c) The two spaces DPMHS(f) and DPMHS(f + x2
n+1) and the two spaces DBL(f)

and DBL(f + x2
n+1) are canonically isomorphic.

Note that part (c) of Proposition 2.2.4 does not come from [He99], but it can be deduced
easily from [BH18, Theorem 4.7]. In the following we will employDBL (f) as a sort of Siegel
upper half-space for singularities.

4 Loosely speaking, this means that each point in DP MHS (f) has a neighborhood with the property that
all “non-trivial” elements of GZ (f) move this neighborhood outside itself.
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2.3 µ-constant families of isolated hypersurface singularities

In this thesis we usually do not consider a single singularity, but rather families of singu-
larities. One such family is the semiuniversal unfolding, which already appeared in Section
2.1. Additionally the following "smaller" family is of particular interest.

Definition 2.3.1. A holomorphic µ-constant family of singularities consists of a number
µ ∈ Z≥1, a complex manifold T , an open neighborhood X ⊆ Cn+1 × T of {0} × T and a
holomorphic function F : X → C such that Ft := F |Xt with Xt := X ∩Cn+1×{t} for any
t ∈ T has an isolated singularity at 0 with Milnor number µ.

The properties of a µ-constant family of singularities are discussed now. Loosely speaking,
the topological properties of singularities inside a µ-constant family stay the same while
the analytic properties vary. This is made precise in Theorem 2.3.2. Details on the proof of
this rather classical theorem can be found in [AGV88], [Ku98], [He93, Kapitel 2], [He11],
[Va80-2] and [Va82]. In particular, parts (a) and (b) of Theorem 2.3.2 can be found in
[He11, Theorem 2.2], part (c) can be found in [Ku98] and part (d) originates from [Va82].
Yet a proof of this theorem will be omitted here.

Theorem 2.3.2. Consider a holomorphic µ-constant family as in Definition 2.3.1. Then
the following statements are true.

(a) The Milnor lattices (Ml(Ft),L) with Seifert forms for parameters t ∈ T are locally
canonically isomorphic. They glue to a local system ⋃

t∈T Ml(Ft) of free Z-modules
of rank µ.

(b) Therefore also the spaces Cα(Ft), V >∞
τ (Ft), V α

τ (Ft) are locally canonically iso-
morphic and glue to local systems.

(c) But the Brieskorn lattices H ′′0 (Ft) ⊆ V >−1
τ (Ft) vary holomorphically. For ω ∈

Ωn+1
X/T it is s[ω]0(t) := s[ω|Xt ]0 ∈ H ′′0 (Ft). Let ξ be a holomorphic vector field on T .

Its canonical lifts to C× T (with coordinate τ on C) and X are also denoted ξ. The
covariant derivative of s[ω]0(t) by ξ is

ξ s[ω]0(t) = s[Lieξ ω]0(t) + (−∂τ )s[ξ(F ) · ω]0(t). (42)

(d) All germs Ft have the same spectrum.

2.4 torelli problems for singularities

The question on how singularities inside a µ-constant family can vary modulo right equiva-
lence is very classical. It appears already in [AGV88, Part III] and is sometimes referred to
as Varchenko’s conjecture (cf. [Ku98, p. 174]). Varchenko tried to answer this question via
introducing certain invariants, the so-called Picard-Fuchs singularities, that vary continu-
ously with the right equivalence class inside a µ-constant family. However it turned out that
the Picard-Fuchs singularities do not determine the right equivalence class in the whole
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µ-constant family if exceptional unimodal singularities are involved. An example where
the Picard-Fuchs singularities fail for a singularity of type E12 can be found in [He93, Satz
3.9 c)] or [Ku98, Part III]. That is why Claus Hertling introduced refined versions5 of the
Picard-Fuchs singularities. The refined invariants are constructed along the same lines as
the invariants in the famous Torelli Theorem for compact Riemann surfaces, see Theorem
2.4.1. This is what we will explain next.

Let f be an isolated hypersurface singularity. Furthermore, let ω1, . . . ,ωµ be a C{τ}-basis
of H ′′0 (f) and δ1, . . . , δµ be a basis of Ml (f). Then a period matrix I := (Ik,j)k,j=1,...,µ

of f is given by Ik,j :=
(∫
δk(τ )

ωj/df
)
where

∫
δk(τ )

ωj/df =
∫
∂(δk)

wj
f−τ . The Picard-Fuchs

singularity PFS (f) of f is the equivalence class of period matrices of f modulo base
change. This means modulo the equivalence relation

I ′ ∼ I :⇔ ∃B ∈ GL (µ; C{τ}) ,U ∈ GL (µ; Z) with I ′ = BIU (43)

for period matrices I and I ′ of f . The invariant PFS (f) has the weakness mentioned
above. Therefore we want to refine it now. We use the Riemannian pair of matrices in the
classical Torelli theorem for compact Riemann surfaces as a model for proper invariants.

Theorem 2.4.1 (Torelli Theorem, see [To13] and [He95, Section (3.1)]). Let X be a Rie-
mann surface of genus g. Moreover let ω1, . . . ,ωg be a basis of H0 (X, Ω1) and δ1, . . . , δ2g

be a basis of H1 (X, Z). Then the Riemann surface X is uniquely determined by the
equivalence class modulo base change of the Riemannian pair of matrices (A,C) where
C :=

(∫
δj
ωi
)
and A := (δi ◦ δj).

So in analogy to the classical Torelli Theorem 2.4.1 we consider pairs of matrices in the
case of singularities as well. The first refined invariant SBG (f) is then the equivalence
class (I, I) of the period matrix I and the intersection form I modulo the equivalence
relation

(I, I) ∼ (I ′, I ′) :⇔∃B ∈ GL (µ; C{τ}) ,U ∈ GL (µ; Z) with I ′ = BIU

and I ′ = UT IU . (44)

The second refined invariant LBL (f) is the equivalence class (I,L) of the period matrix
I and the Seifert form L modulo the equivalence relation

(I,L) ∼ (I ′,L′) :⇔∃B ∈ GL (µ; C{τ}) ,U ∈ GL (µ; Z) with I ′ = BIU

and L′ = UTLU . (45)

The Seifert form determines the intersection form as explained earlier in Subsection 2.1.2.
Thus, the invariant SBG (f) is finer than PFS (f) but possibly coarser than LBL (f). In
contrast to PFS (f) the invariants SBG (f) and LBL (f) are both fine enough to deal
with all exceptional unimodal singularities. Currently there is no tangible example known
where the invariant SBG (f) fails in the same way as PFS (f) does for singularities of

5 Note that some authors call these refined invariants the Hertling invariants, e.g. see [Ku98].
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type E12. Nevertheless we avoid working with SBG (f) here and consider the invariant
LBL (f) right away.
There is a second way to construct LBL (f). Namely, as the isomorphism class of the
triple (Ml (f) ,L,H ′′0 (f)). Both constructions yield equivalent invariants by [He95, (3.4)
Proposition]. Since DBL/GZ can be also thought of as the set of isomorphism classes for
such tuples (e.g. cf. [He98, p. 180]), it is LBL (f) ∈ DBL/GZ.

Conjecture 2.4.2 (Torelli Conjecture (for hypersurface singularities)). The invariant
LBL (f) of a hypersurface singularity f determines the right equivalence class of f .

This conjecture was formulated first in [He93, Kapitel 2 d)]. It holds for all simple, uni-
modal and bimodal singularities.

In algebraic geometry one usually wants to study and classify objects in terms of a
moduli space. Such a moduli space of singularities Mµ (f) is constructed in [He02-2, Part
2]. Set-theoretically it is

Mµ (f) := {g in the µ-homotopy class of f}/ ∼R . (46)

Moreover it is locally isomorphic to the µ-constant stratum modulo some finite group and
from the µ-constant stratum it also inherits a canonical complex structure (see [He02-2,
Section 13.3]). Recall that the µ-constant stratum of a singularity is the analytic variety

Sµ := {t ∈M |Ft has only one singularity x0 and Ft (x0) = 0}, (47)

where M is the base space of a semiuniversal unfolding. The dimension of the µ-constant
stratum Sµ is the modality by [Ga74]. Now we can reformulate the Torelli Conjecture 2.4.2
in a more abstract, but equivalent (!), version.

Conjecture 2.4.3 (Torelli Conjecture (for hypersurface singularities)). The period map

LBL : Mµ (f)→ DBL/GZ, [g] 7→ LBL (g) (48)

is injective.

We will see a sharpening (with the help of markings of singularities) of this conjecture
in the next chapter.



3
THE MODUL I SPACE OF MARKED S INGULARIT IES

As mentioned earlier the moduli space of singularities Mµ (f) is locally isomorphic to the
µ-constant stratum modulo some finite group. However it is desirable to get rid of this
finite group and to construct a moduli space which is locally isomorphic to the µ-constant
stratum only. That is why Claus Hertling introduced in [He11] the notion of a marking of
a singularity. This allows him to construct a moduli space Mmar

µ (f0) which is everywhere
locally isomorphic to the µ-constant stratum and, hence, can be seen as a global µ-constant
stratum (see Definition 3.1.3). Now in Section 3.1 we recall the construction of this moduli
space Mmar

µ (f0). Note that the idea of the construction of this moduli space is closely
related to that of Teichmüller space for compact Riemann surfaces. In Section 3.2 we
state the Torelli Conjectures forMmar

µ (f0) from [He11]. Finally in Section 3.3 we compare
Mmar
µ (f0) with the Teichmüller space.

3.1 markings of singularities

The construction of the moduli space of marked singularities is inspired by Teichmüller
theory for (marked) compact Riemann surfaces. So it is crucial to assign markings also
to singularities (see Definition 3.1.1). Note that as in classical Teichmüller theory it is
necessary to choose some sort of base point. Here this is the reference singularity.

Definition 3.1.1 ([He11, Definition 4.1]). Let f0 be an arbitrary but fixed singularity, the
reference singularity.

(a) A strongly marked singularity is a couple (f , ρ) where f is a singularity, such
that there is a µ-constant family which contains f and f0, and

ρ : (Ml (f) ,L)→ (Ml (f0) ,L)

is an isomorphism.

(b) Two strongly marked singularities (f , ρ) and (g, τ ) are called right equivalent
(write: (f , ρ) ∼R (g, τ )), if f and g are right equivalent in the unmarked sense with
f = g ◦ ϕ and ρ = τ ◦ ϕhom where ϕhom : (Ml (f) ,L) → (Ml (g) ,L) is the induced
isomorphism.

(c) A marked singularity is a couple (f ,±ρ) where f is a singularity, such that there
is a µ-constant family which contains f and f0, and

ρ : (Ml (f) ,L)→ (Ml (f0) ,L)

is an isomorphism. In particular, we refer to the morphism ρ as the marking of the
marked singularity (f ,±ρ).

19
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(d) Two marked singularities (f ,±ρ) and (g,±τ ) are called right equivalent (write:
(f ,±ρ) ∼R (g,±τ )), if f and g are right equivalent in the unmarked sense with
f = g ◦ ϕ and ρ = ±τ ◦ ϕhom where ϕhom : (Ml (f) ,L) → (Ml (g) ,L) is the
induced isomorphism.

At first sight the sign ambiguity of the marking in the notion of a marked singularity
seems to be very peculiar. However, it is not known in general (but conjectured (!)) whether
all µ-homotopy families of singularities satisfy one of the following two properties:

Any singularity in the µ-homotopy class of f0 has multiplicity ≥ 3, (49)

Any singularity in the µ-homotopy class of f0 has multiplicity 2. (50)

For µ-homotopy families where neither of the two properties (resp. assumptions) hold, the
notion of strongly marked singularities behaves badly (see [He11, Remarks 4.2] for further
details). Luckily, for all families of singularities studied in this thesis one of the assumptions
is correct. If assumption (49) is true we have the following conjecture in addition.

Conjecture 3.1.2 ([He11, Conjecture 3.2 (b)]). If the µ-homotopy class of f0 satisfies
assumption (49), then − id /∈ Gsmar(f0).

Now we start with defining the moduli space of marked singularities and giving some of
its most important properties.

Definition 3.1.3 ([He11, Theorem 4.3]). Let f0 be a fixed reference singularity. We define
the sets:

M smar
µ (f0) :={strongly marked (f , ρ) | f in the µ-homotopy class of f0}/ ∼R, (51)

Mmar
µ (f0) :={marked (f ,±ρ) | f in the µ-homotopy class of f0}/ ∼R . (52)

(a) Mmar
µ (f0) carries a natural canonical complex structure. It can be constructed

with the underlying reduced complex structure as an analytic geometric quotient1.

(b) The germ
(
Mmar
µ (f0) , [(f ,±ρ)]

)
with its canonical complex structure is isomor-

phic to the µ-constant stratum of f with its canonical complex structure (see [He02-2,
Chapter 12] for the definition of that).

(c) For any ψ ∈ GZ(f0) we obtain an automorphism

ψmar : Mmar
µ (f0)→Mmar

µ (f0) , [(f ,±ρ)] 7→ [(f ,±ψ ◦ ρ)]. (53)

There is a group action from the left

GZ (f0)×Mmar
µ (f0)→Mmar

µ (f0) , (ψ, [(f ,±ρ)]) 7→ ψmar ([(f ,±ρ)]) . (54)

(d) The action of GZ (f0) on Mmar
µ (f0) is properly discontinuous. The quotient

Mmar
µ (f0) /GZ (f0) is the moduli space Mµ for right equivalence classes in the µ-

1 See [Pu07, Section 1.2] for the definition of an analytic geometric quotient.
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homotopy class of f0 with its canonical complex structure. In particular, [(f1,±ρ1)]

and [(f2,±ρ2)] are in one GZ (f0)-orbit if and only if f1 and f2 are right equivalent.

In [He11] it was conjectured that the moduli Mmar
µ (f0) space is connected (see [He11,

Conjecture 3.2]). However the results in this thesis show that this is not true for certain
subseries of bimodal series singularities (see Section 4.4). So in general Mmar

µ (f0) consists
of different connected components. We denote the connected component ofMmar

µ (f0) and
M smar
µ (f0) that contains the reference singularity as Mmar

µ (f0)
0 and M smar

µ (f0)
0, respec-

tively. The following theorem gives a good characterization of the connected components
of the moduli space of marked singularities.

Theorem 3.1.4 ([He11, Theorem 4.4 (a),(b),(e)]). We are in the situation as above.

(a) The map

GZ(f0)/Gmar(f0) → {topological components of Mmar
µ }

ψ ·Gmar(f0) 7→ (the component ψmar((Mmar
µ )0))

is a bijection.

(b) If assumption (49) or (50) holds then (a) is also true for M smar
µ and Gsmar(f0).

(c) − id ∈ GZ(f0) acts trivially on Mmar
µ (f0). Suppose that assumption (50) holds

and that f0 = g0(x0, . . . ,xn−1) + x2
n. Then − id acts trivially on M smar

µ (f0) and

M smar
µ (f0) =M

mar
µ (f0) =Mmar

µ (g0), (55)

Gsmar(f0) =G
mar(f0) = Gmar(g0). (56)

Suppose additionally that assumption (49) holds for g0 (instead of f0). Then {± id}
acts freely on M smar

µ (g0), and the quotient map

M smar
µ (g0)

/{± id}−→ Mmar
µ (g0), [(f , ρ)] 7→ [(f ,±ρ)]

is a double covering.

Besides the moduli space Mmar
µ (f0) Claus Hertling also introduced in [He11] certain

subgroups of GZ (f0). Namely, the groups

Gsmar (f0) :={ψ ∈ GZ (f0) | ψ maps M smar
µ (f0)

0 to itself}, (57)

Gmar (f0) :={ψ ∈ GZ (f0) | ψ maps Mmar
µ (f0)

0 to itself}, (58)

GsmarR (f0) :={ϕhom |ϕ ∈ R with f0 ◦ϕ = f0}, (59)

GmarR (f0) :={±ψ |ψ ∈ GsmarR (f0)}. (60)

The group Gmar (f0) is called the µ-constant monodromy group of f . It holds GsmarR (f0) ⊆
Gsmar (f0) ⊆ Gmar (f0). In fact, Gmar (f0) was originally constructed in [He11] as the
subgroup of elements of GZ (f0) that can be realized as transversal monodromies of some
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µ-constant families modulo (±1) (cf. [GH17, Section 5]). This characterization of Gmar (f0)

will be important for us later on. Finally we will also need the group

Gsmar,genR (f0) :=
⋂

[(f ,ρ)]∈Msmar
µ

ρ−1 ◦GsmarR (f) ◦ ρ. (61)

Aside from the Picard-Lefschetz monodromy a second form of monodromy will play an
important role in the study of µ-constant families of isolated hypersurface singularities.
It is the monodromy MT of the homology bundle. For reasons of clarity we refer to it as
transversal monodromy. Note that in the literature this is also sometimes called horizontal
monodromy (e.g. see [Ku98, Section III.5.2]). The next lemma makes precise what we mean
by that.

Lemma 3.1.5. Let T be the parameter space of a µ-constant family as in Definition 2.3.1.
The transversal monodromy MT of it is the representation π1(T , t0) → GZ (Ft0) which
comes from the local system ⋃

t∈T Ml(Ft).
If its image is in Gsmar,genR (Ft0), then there is a natural map T →M smar

µ (Ft0).

Proof. The trivial strong marking + id for Ft0 induces strong markings of other singular-
ities Ft along any path. Now two paths, which meet at some point t, might not induce
the same strong marking of Ft. However the two markings differ only by an element of
GsmarR (Ft). Hence, they induce the same right equivalence class of a marked singularity.

The following theorem amasses known results from [He11] on the µ-constant monodromy
groups and so-called jets. Recall that the 1-jet of a function germ f ∈ OCn+1,0 is the
class j1f ∈ OCn+1,0/m2 and the 1-jet of a coordinate change ϕ = (ϕ0, . . . ,ϕn) ∈ R is
j1ϕ = (j1ϕ0, . . . , j1ϕn).

Proposition 3.1.6. Consider the data in Definition 3.1.3. We define the group Rf :=
{ϕ ∈ R | f ◦ ϕ = f} and the quotient of jet spaces Rf := j1Rf/

(
j1Rf

)0
. Then the

following statements hold.

(a) If mult(f) ≥ 3 then j1Rf = Rf .

(b) The homomorphism ()hom : Rf → GZ (f) factors through Rf . Its image is
(Rf )hom = GsmarR (f) ⊆ GZ (f).

(c) The homomorphism ()hom : Rf → GsmarR (f) is an isomorphism.

(d) We have the equivalence

− id /∈ GsmarR (f)⇔ mult(f) ≥ 3. (62)

This is equivalent to the following statement: GmarR (f) = GsmarR (f) if mult(f) = 2,
and GmarR (f) = GsmarR (f)× {± id} if mult(f) ≥ 3.

(e) It holds GmarR (f) = GmarR (f + x2
n+1).

(f) Mh ∈ Gsmar(f). If f is quasihomogeneous, then Mh ∈ GsmarR (f).
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(g) For any [(f , ρ)] ∈M smar
µ we have

StabGZ
([(f , ρ)]) = ρ ◦GsmarR (f) ◦ ρ−1, (63)

StabGZ
([(f ,±ρ)]) = ρ ◦GmarR (f) ◦ ρ−1. (64)

For reasons of brevity we omit (f0) in Mmar
µ (f0), GZ (f0), Gmar(f0), DBL (f0), etc.,

when the reference singularity is clear from the context.

3.2 torelli problems for marked singularities

Classically, there already exists a Torelli result for marked singularities. Namely, the in-
finitesimal (!) Torelli result which is due to M. Saito [SaM91]. We present it here in a
strengthened version which is due to Hertling [He02-2]. Note that it is formulated originally
for the µ-constant stratum. However the results of the previous section make it possible
to state it immediately also for the moduli space of marked singularities Mmar

µ (f0).

Theorem 3.2.1 ([He02-2, Theorem 12.8]). Let f0 be an arbitrary but fixed reference sin-
gularity. Then the following statements are true.

(a) There is a natural holomorphic period map

BL : Mmar
µ (f0)→ DBL(f0). (65)

It is GZ-equivariant.

(b) It is an immersion, here the reduced complex structure on Mmar
µ (f0) is considered.

Now we want to have also a global marked Torelli result analogous to the classical Torelli
Theorem. The following conjecture makes this precise. It collects the conjectures [He11,
Conjecture 5.3], [He02-2, Conjecture 13.12] and [He93, Kapitel 2 d)].

Conjecture 3.2.2. Fix a reference singularity f0.

(a) The period map BL : Mmar
µ → DBL is injective.

(b) The period map LBL : Mµ :=Mmar
µ /GZ → DBL/GZ is injective.

(c) For any singularity f in the µ-homotopy class of f0 and any marking ρ it holds

StabGZ
([(f ,±ρ)]) = StabGZ

(BL ([(f ,±ρ)])) . (66)

Note that the inclusion StabGZ
([(f ,±ρ)]) ⊆ StabGZ

(BL ([(f ,±ρ)])) and the finite-
ness of both groups are clear.

Note that part (b) of Conjecture 3.2.2 is equivalent to Conjecture 2.4.2 resp. 2.4.3 in
Chapter 2. Moreover by [He11, Lemma 5.5] part (a) of Conjecture 3.2.2 holds if and only
if (b) and (c) hold. So Conjecture 2.4.2 (a) is a strengthened version of the “old” Torelli
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Conjecture 2.4.2 resp. 2.4.3. Note that we will call Conjecture 2.4.2 (a) the strong global
Torelli Conjecture 2.4.2 (a) in what follows. Finally, it is shown below that the Torelli
Conjectures are also stable under stabilization. So it is sufficient to prove them only for a
fixed number of variables n.

Proposition 3.2.3. Consider the µ-homotopy class of some arbitrary but fixed reference
singularity f0(x0, . . . ,xn) which satisfies assumption (49) and such that for any m ≥ 1
the µ-homotopy class of f0 +

∑n+m
j=n+1 x

2
j satisfies assumption (50). Let m ≥ 1. Then the

strong global Torelli Conjecture 3.2.2 (a) holds for f0 if any only if it holds for the reference
singularity f0 +

∑n+m
j=n+1 x

2
j .

Proof. According to Theorem 3.1.4 (c) the moduli spaces of marked singularitiesMmar
µ (f0)

and Mmar
µ

(
f0 +

∑n+m
j=n+1 x

2
j

)
are canonically isomorphic. Moreover by Proposition 2.2.4

(c) the classifying spaces DBL (f0) and DBL

(
f0 +

∑n+m
j=n+1 x

2
j

)
are canonically isomorphic,

too. So it remains to see that these isomorphisms are compatible with the period maps
BL for f0 and f0 +

∑n+m
j=n+1 x

2
j . This follows via applying [BH18, Theorem 4.7] for the

TEZP-structure of a stabilization.

In order to prove the Torelli conjectures in the Sections 4.4 and 4.5 we make use of
Proposition 3.2.3. In the other sections of Chapter 4 we sometimes make additional cal-
culations for curve singularities. In particular, in cases where this seems easier than using
abstract arguments.

3.3 comparison of moduli space of marked singularities and teich-
müller space

The previously studied analogies between the moduli space of marked singularities and the
Teichmüller space for compact Riemann surfaces lead naturally to the question, if there
are more similarities between both objects. In this section we look at several properties of
the Teichmüller space and compare them with the moduli space of marked singularities.
Here our basic reference for Teichmüller theory is the excellent book [FM12]. All in all, it
turns out that many properties of the Teichmüller space and the mapping class group do
not translate to Mmar

µ and GZ. Some of this follows from older results in [He11] and some
of this relates to new results in Chapter 4 of this thesis. In any case, it was never stated
explicitly before.

First of all, we note that the Teichmüller space is contractible (see [FM12, Theorem 10.6]).
However, the moduli space of marked singularitiesMmar

µ is not contractible in general. This
was presumed for quite some time and now verified as Mmar

µ
∼= (H \ {discrete set})×C

for singularities of type E3,0 where H denotes the complex upper half-plane (see [He11,
Remarks 8.5. (iii)] and Section 4.5 for the details). The next natural thing to ask is now, if
the moduli space of marked singularities Mmar

µ is at least connected. This is also not true,
because for singularities of type E3,18 the space Mmar

µ consists of infinitely many copies of
C∗ ×C. This is shown in Section 4.4.
Now we will consider the mapping class group of the Teichmüller space and its counterpart
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the group GZ. We know already from Definition 3.1.3 (d) that GZ acts properly discontin-
uously on the space Mmar

µ . This fits exactly to the Teichmüller theory picture (see [FM12,
Theorem 12.2] for the Theorem of Fricke). Moreover, the mapping class group has trivial
center except for Riemann surfaces of genus 0 and 1 (see [FM12, Theorem 3.10]). Recall
that the center of a group is the subgroup of it consisting of those elements that commute
with every element of the group. Now by [He11, Theorem 8.3] the group GZ is a finite
cyclic group for singularities of type Al. All its elements commute with one another. This
means in particular that the center of GZ is the cyclic group itself and becomes arbitrarily
large as l grows.
Lastly, the mapping class group of the Teichmüller space is also the group of biholomor-
phisms on the Teichmüller space (except for Riemann surfaces of genus 0, 1 and 2). Clas-
sically this is a corollary of Royden’s Theorem (see [FM12, Chapter 12]). For singularities
this is false, because the group of biholomorphisms on C is Aut (C) = {z 7→ az + b | a ∈
C∗, b ∈ C} and the automorphism group for singularities of type Z12 is a finite cyclic group
acting on Mmar

µ
∼= C (see Section 4.3).

The situation is summarized in Table 1.

Property of the Teichmüller space Analogous property for Mmar
µ

Contractibility Not true
Connectedness Not true
Mapping class group acts properly discontinuously Yes, true
Mapping class group has (almost always) trivial center Not true
Royden’s Theorem holds Not true

Table 1: Moduli space of marked singularities vs. Teichmüller space





4
TORELL I RESULTS FOR µ - CONSTANT FAMIL IES OF
S INGULARIT IES

In this chapter, which is the longest chapter of this monograph, we will see proofs of the
Conjectures 3.2.2, 3.1.2 and A.2.2 for many types of isolated hypersurface singularities.
Above all we will prove the strong global Torelli Conjecture 3.2.2 (a) for all types of
singularities on Arnold’s famous list [Ar76] of singularities of modality ≤ 2. The chapter
comprises the seven Sections 4.1–4.7. Each of the Sections 4.1–4.6 deals with a certain class
of types of isolated hypersurface singularities. Furthermore, each of the Sections 4.2–4.5
is divided into two smaller subsections. The first one computes (a large enough subgroup
of) GZ for singularities of the respective types. The second one puts this new piece of
information together with the computations inside the Gauss-Manin connection and proves
the Torelli Conjectures for the respective types. Finally, Section 4.7 summarizes the results
of this chapter and the current state of the art of the Torelli results for µ-constant families
of isolated hypersurface singularities.
All this relies heavily on the proofs of the Torelli Conjecture 2.4.2 from [He93] (resp.

[He95]) and the already existing proofs of the strong global Torelli Conjecture 3.2.2 for
the simple and some of the exceptional unimodal and bimodal singularities from [He11].
Of course the Torelli Conjectures are formulated in terms of period maps. So a good
understanding of the (often multivalued) period map LBL and T → DBL ( f 0 ) , where
T is the parameter space of a well chosen family of normal forms, is crucial. Most of
the computations involving the Gauss-Manin connection and the period maps LBL had
been carried out already in [He93] (resp. [He95]). The most important new ingredient to
obtain the marked Torelli results from the older results is the precise calculation of the
automorphism group GZ on the Milnor lattice. Here, in order to compute GZ our strategy
is as follows. At first we split up the Milnor lattice into certain parts B 1 , B 2 and B 3 in the
sense of Orlik’s Conjecture A.2.2, then we compute groups of automorphisms that respect
the Seifert form on these smaller parts and, lastly, we put all the parts together again. In
several cases we will not gain a complete description of GZ , but at least a good control of
its action on M mar

µ ( f 0 ) and DBL ( f 0 ) . This is sufficient to prove Torelli results. Note
that important details on Z-lattices in general and Orlik’s Conjecture A.2.2 in particular
can be found in Section A.2.
Unfortunately, almost all types have their own characteristic difficulties to deal with. For

example for some specific types of bimodal series singularities we have to consider Fuchsian
groups. This makes the proofs quite lengthy. That is also why we decided to shift some of
the most technical parts of those proofs to the Appendix (see in particular Sections A.2
and A.3).
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4.1 simple singularities

The simple singularities are the singularities of modality zero. They are right equivalent
to one element of the two infinite series of types A k for k ≥ 1 or D k for k ≥ 4 or to
the three exceptional types E 6 , E 7 or E 8 . The types together with the respective Milnor
number µ and spectral numbers are given in Table 2. All this data is classical material and
can be found everywhere in the literature (e.g. see [AGV85, Section 15.1] for the normal
forms and [Ku98, (8.8.1) Table] for the spectral numbers).

Type normal form µ spectral numbers
Ak for k ≥ 1 xk+1 k

(
−1 + i

k+1

)
with i = 1, 2, . . . , k

Dk for k ≥ 4 x2y+ yk−1 k 0 and
(

2i−k+2
2(k−1)

)
with i = 0, . . . , k− 2

E6 x3 + y4 6
(
i

12

)
with i = −5,−2,−1, 1, 2, 5

E7 x3 + xy3 7
(
i

18

)
with i = −8,−4,−2, 0, 2, 4, 8

E8 x3 + y5 8
(
i

30

)
with i = −14,−8,−4,−2, 2, 4, 8, 14

Table 2: Facts about simple singularities

The Torelli problems for the simple singularities are rather easy, but not as simple as one
might excpect. They were solved in [He11, Section 8] for marked simple singularities. For
the sake of completeness we summarize these results here.

First of all, we notice that the difference of the largest and the smallest spectral number
is less than one in all of the cases above. Thus the Brieskorn lattice is just H ′′0 = V α1

where α1 is the smallest spectral number. That means the Brieskorn lattice is completely
determined by the spectral numbers and, hence, the classifying space of Brieskorn lattices
is just a point DBL = {pt} for any type of simple singularity. Now with some further effort,
one obtains the following theorem.

Theorem 4.1.1. We consider singularities of multiplicity at least three. Then for simple
singularities of type D4 the group GZ is {±Mk

h | k ∈ Z}×Sym (3), for singularities of types
D2k with k ≥ 3 the group GZ is {±Mk

h | k ∈ Z}× Sym (2) and for all other types of simple
singularities it is {±Mk

h | k ∈ Z}. In all cases the period map BL : Mmar
µ → DBL = {pt}

is an isomorphism, i.e. the strong global Torelli Conjecture 3.2.2 (a) is true.

Proof. See [He11, Theorem 8.3+Theorem 8.4].

4.2 simple elliptic and hyperbolic singularities

Aside from the simple singularities the simple elliptic and hyperbolic singularities are
the most popular types of isolated hypersurface singularities. The simple elliptic and
the hyperbolic singularities are both 1-parameter families of singularities. For each triple
(p, q, r) ∈ Z3

≥2 with p ≥ q ≥ r and κ := 1
p +

1
q +

1
r we have a certain type of singularity,
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denoted as Tpqr. Normal forms for t ∈ (C \ {0}) with the respective Milnor number are
given in Table 3 (e.g. cf. [AGV85, Section 15.1]).

Type normal form µ

Tpqr xp + yq + zr + t · xyz p+ q+ r− 1

Table 3: Facts about simple elliptic and hyperbolic singularities

The hyperbolic types are those with κ < 1 and the simple elliptic are those with κ = 1.
Note that the only triples (p, q, r) ∈ Z3

≥2 with p ≥ q ≥ r and κ = 1 are (3, 3, 3), (4, 4, 2)
and (6, 3, 2). So there are only three different types of simple elliptic singularities, namely
Ẽ6 := T333, Ẽ7 := T442 and Ẽ8 := T632.
The simple elliptic types have some deep connections with elliptic curves. For example
there is also a Legendre normal form with parameter t ∈ (C \ {0, 1}) for each of the three
types of simple elliptic singularities (see Table 4).

Type normal form µ

Ẽ6 y (y− x) (y− tx)− xz2 8
Ẽ7 yx (y− x) (y− tx) + z2 9
Ẽ8 y

(
y− x2) (y− tx2)+ z2 10

Table 4: Legendre normal forms of the simple elliptic singularities

These Legendre normal forms have the advantage that they do contain representatives
of all right equivalence classes. They originate from [SaK74, Satz 1.9 iii)]. For the normal
forms in Table 3 this is not the case for Ẽ7 := T442 (see [SaK74, 1.11, Bemerkung ii)]). We
will work with both normal forms of the simple elliptic singularities in the following. We
set T := C \ {0} for κ < 1 and T := C \ {0, 1} for κ = 1.

4.2.1 The group GZ for simple elliptic and hyperbolic singularities

A Coxeter-Dynkin diagram for the singularities of type Tpqr (with κ ≤ 1) is displayed in
Figure 5. This Coxeter-Dynkin diagram originates from [Ga74-2].
We choose a distinguished basis δ = (δ1, . . . , δµ) with this Coxeter-Dynkin diagram.

Then the monodromy matrixMM withMh(δ) = δ ·MM can be calculated via the formulas
in Chapter 2 — either via (8) or via (9). In [He93, Kapitel 3a)] MM was calculated via
(8). It is (here all not specified entries are 0)

MM =


M1 M8

M2 M9

M3 M10

M5 M6 M7 M4


(67)
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µ

µ− 1
p− 1 p+ q µ− 2

p

p+ q− 2

1 p+ q− 1

Figure 5: Coxeter-Dynkin diagram for Tpqr

with the following blocks,

M1 =


0 −1

1 . . . −1
. . . 0 −1

1 −1


∈M((p− 1)× (p− 1), Z),

M2 ∈ M((q− 1)× (q− 1), Z) and

M3 ∈ M((r− 1)× (r− 1), Z) are defined analogously,

M4 =

 3 2

−2 −1

 ,

and M5, M6, M7, M8, M9, M10 are of suitable sizes with all entries except the following
being 0,

(M5)1,1 = (M6)1,1 = (M7)1,1 = −1, (M5)2,1 = (M6)2,1 = (M7)2,1 = 1,

(M8)1,1 = (M8)1,2 = (M9)1,1 = (M9)1,2 = (M10)1,1 = (M10)1,2 = 1.

The characteristic polynomial of the monodromy is

pch =
tp − 1
t− 1 ·

tq − 1
t− 1 ·

tr − 1
t− 1 (t− 1)2 . (68)

Now we will use this data to determine the group GZ. This computation results in an
explicit characterization of GZ in the case of κ < 1 and an almost explicit characterization
in the case of κ = 1. Here the crucial step is to gain a good control of the automorphisms
on each of the two eigenspacesMl (f)1 = ker ((Mh − id)µ) andMl (f) 6=1 =

⊕
λ 6=1Ml (f)λ

with Ml (f)λ = ker ((Mh − λ id)µ) resp. lattices Ml (f)1,Z := Ml (f)1 ∩Ml (f) and
Ml (f) 6=1,Z :=Ml (f) 6=1 ∩Ml (f).
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Theorem 4.2.1. Consider a surface singularity f of type Tpqr with Milnor lattice Ml(f),
monodromy Mh, intersection form I and Seifert form L. We set χ := lcm (p, q, r) ∈ Z.

(a) Then dimMl(f)1 = 2, rank Rad(I) = 1 if κ < 1 and = 2 if κ = 1. Choose a
Z-basis b1, b2 of Ml(f)1,Z with b1 ∈ Rad(I) and L(b1, b2) ≤ 0. Then

L(b1, b2) = −χ and Mhb2 = b2 + χ(κ− 1) · b1. (69)

(b) The restriction map GZ → Aut(Ml(f)1,Z,L) is surjective. Moreover it holds

Aut(Ml(f)1,Z,L) = {b 7→ b ·A |A ∈ SL(2; Z)} (70)
∼= SL(2; Z) if κ = 1,

Aut(Ml(f)1,Z,L) = {±T kaut | k ∈ Z} if κ < 1, (71)

where b := (b1, b2) and Taut ∈ Aut(Ml(f)1,Z) is the automorphism with Taut(b1) = b1

and Taut(b2) = b2 + b1.

(c) The group GZ for κ < 1 and the subgroup {g ∈ GZ | g(b1) = ±b1} ⊆ GZ for κ = 1
will be described explicitly below — except for the part U2. There is a monodromy
invariant decomposition

Ml(f) 6=1 =Ml
(1)
C ⊕Ml

(2)
C ⊕Ml

(3)
C (72)

such that the characteristic polynomial of Mh|Ml(j) is

tp − 1
t− 1 , tq − 1

t− 1 , tr − 1
t− 1 for j = 1, 2, 3 (73)

and such that the following holds.

GZ for κ < 1

{g ∈ GZ | g(b1) = ±b1} for κ = 1

 = (U1 oU2)× {± id}, (74)

where U1 is the infinite subgroup of GZ

U1 = {T δaut × (Mh|Ml
(1)
C

)α × (Mh|Ml
(2)
C

)β × (Mh|Ml
(3)
C

)γ | (75)

(δ,α,β, γ) ∈ Z×Zp ×Zq ×Zr with α

p
+
β

q
+
γ

r
≡ δ

χ
mod 1}

and where U2 is a finite subgroup of GZ with

U2


= {id} if p > q > r,
∼= Sym (2) if p = q > r or p > q = r,
∼= Sym (3) if p = q = r.

(76)

which consists of certain automorphisms which act trivially on Ml(f)1 and which
permute those of the subspaces Ml

(j)
C which have equal dimension.
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Proof. (a) At first, we set

b̃1 := δµ−1 − δµ, (77)

b̃2 := χ ·

p−1∑
i=1

p− i
p

δi +
q−1∑
i=1

q− i
q

δp−1+i +
r−1∑
i=1

r− i
r

δp+q−2+i + δµ−1

 . (78)

Then we compute

Mh(b̃1) = b̃1, Mh(b̃2) = b̃2 + χ(κ− 1) · b̃1. (79)

With (9) we obtain
L(b̃1, b̃1) L(b̃1, b̃2)

L(b̃2, b̃1) L(b̃2, b̃2)

 =

0 −χ

χ χ2

2 (κ− 1)

 . (80)

By (79), b̃1, b̃2 is a Q-basis of Ml(f)1,Q and Mh is on Ml(f)1 semisimple if κ = 1 and it
has a 2× 2 Jordan block if κ < 1. Moreover from the coefficients we see that b̃1, b̃2 is also a
Z-basis of Ml(f)1,Z. Here it is important that the coefficients of b̃2 have greatest common
divisor 1. As the equations (69) hold for b̃1, b̃2, they hold for any basis b1, b2 as in (a).

(b) For κ = 1 the Seifert form L on Ml(f)1,Z is up to the factor χ the standard
symplectic form (see (80)). Therefore (70) holds. If κ < 1 then (71) holds because of (80).
The restriction map GZ → Aut(Ml(f)1,Z) contains Taut. This follows from (74) (whose

proof below does not use this fact), because obviously there are (δ,α,β, γ) as in (75) with
δ = 1. This shows (b) in the case κ < 1.
For κ = 1 the surjectivity of the map GZ → Aut(Ml(f)1,Z,L) follows from [Ku98,

III.2.6].

(c) We will prove (c) for the special choice b̃1, b̃2. Then (c) holds for any b1, b2 as in (a)
because by the surjectivity of the map GZ → Aut(Ml(f)1,Z,L), an element g ∈ GZ with
g(b̃1) = b1, g(b̃2) = b2 exists. We define

Ml
[1]
Z := Z · b̃1 ⊕

p−1⊕
i=1

Z · δi, Ml
[1]
C :=Ml

[1]
Z ⊗Z C, (81)

Ml
(1)
C := Ml

[1]
C ∩Ml(f) 6=1, (82)

and analogously Ml
[2]
Z ,Ml

[2]
C ,Ml

(2)
C and Ml

[3]
Z ,Ml

[3]
C ,Ml

(3)
C .

Looking carefully at the matrix MM yields

Mh : δ1 + b̃1 7→ δ2 7→ . . . 7→ δp−1 7→ −(δ1 + . . .+ δp−1) 7→ δ1 + b̃1. (83)

Therefore Ml
[1]
Z is a cyclic Mh-module with characteristic polynomial tp − 1, and Ml

[1]
C =

Cb̃1 ⊕Ml
(1)
C , and Mh on Ml

(1)
C has the characteristic polynomial (tp − 1)/(t − 1). So

Lemma A.2.3 applies and shows

Aut(Ml
[1]
Z ,L) = {±(Mh|Ml

[1]
Z

)α |α ∈ {0, 1, . . . , p− 1}}. (84)
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Finally,Mh, I and L are well-defined on the quotient latticeMl
[1]
Z /Z · b̃1, and (Ml

[1]
Z /Z ·

b̃1,−I) is a root lattice of type Ap−1. The last statement follows immediately from the part
of the Coxeter-Dynkin diagram which corresponds to δ1, . . . , δp−1.
Ml

[2]
Z and Ml

[3]
Z have the same properties as Ml

[1]
Z , with q respectively r instead of p.

Now it is clear that
Ml(f) 6=1 =Ml

(1)
C ⊕Ml

(2)
C ⊕Ml

(3)
C .

The Z-lattice

Ml
[1]
Z +Ml

[2]
Z +Ml

[3]
Z = Z · b̃1 ⊕

µ−2⊕
i=1

Z · δi = (C · b̃1 ⊕Ml(f) 6=1) ∩Ml(f)

is a primitive sublattice of Ml(f) of rank µ− 1. Any g ∈ GZ with g(b̃1) = ±b̃1 maps it
to itself, because it maps Cb̃1 and Ml(f) 6=1 and Ml(f) to themselves. g maps also the
quotient lattice

(Ml
[1]
Z +Ml

[2]
Z +Ml

[3]
Z )/Z · b̃1 =Ml

[1]
Z /Z · b̃1 ⊕Ml

[2]
Z /Z · b̃1 ⊕Ml

[3]
Z /Z · b̃1

to itself. But this is together with −I an orthogonal sum of lattices of types Ap−1, Aq−1

and Ar−1. Therefore g can only permute the summands, and only those summands of equal
rank.
If p = q, a special element σ12 ∈ GZ is given by

σ12(δi) = δp−1+i, σ12(δp−1+i) = δi for 1 ≤ i ≤ p− 1,

σ12(δj) = δj for p+ q− 2 ≤ j ≤ µ.

That σ12 ∈ GZ follows immediately from the symmetry of the Coxeter-Dynkin diagram.
Similarly σ23 ∈ GZ is defined if q = r. In any case, these elements generate a subgroup
U2 ⊆ GZ with the properties in (c).
Therefore, starting with an arbitrary element g̃ ∈ GZ if κ < 1 respectively g̃ ∈ {g ∈

GZ | g(b̃1) = ±b̃1} if κ = 1, we can compose it with ± id and an element of U2, and
we obtain an element g ∈ GZ with g(b̃1) = b̃1 and g(Ml

[j]
Z ) = Ml

[j]
Z for j = 1, 2, 3.

Then it is g|
Ml

[1]
Z

= (Mh|Ml
[1]
Z

)α for a unique α ∈ {0, 1, . . . , p− 1}, and similarly with β ∈

{0, 1, . . . , q− 1} and γ ∈ {0, 1, . . . , r− 1} forMl
[2]
Z andMl

[3]
Z . We also have g(b̃2) = b̃2 + δb̃1

for some δ ∈ Z. Now we calculate, while observing (83),

Mh

p−1∑
i=1

p− i
p

δi

 =

p−1∑
i=1

p− i
p

δi

− (δ1 + b̃1) +
1
p
b̃1, (85)

Mα
h

p−1∑
i=1

p− i
p

δi

 =

p−1∑
i=1

p− i
p

δi

−(b̃1 +
α∑
i=1

δi

)
+
α

p
b̃1. (86)

The definition (78) of b̃2 shows

−δµ−1 = − 1
χ
b̃2 +

p−1∑
i=1

p− i
p

δi +
q−1∑
i=1

q− i
q

δp−1+i +
r−1∑
i=1

r− i
r

δp+q−2+i (87)
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and (86) gives then

g(−δµ−1) = −δµ−1 +

(−δ
χ

+
α

p
+
β

q
+
γ

r

)
· b̃1 (88)

−
(
b̃1 +

α∑
i=1

δi

)
−

b̃1 +
p−1+β∑
i=p

δi

−
b̃1 +

p+q−2+γ∑
i=p+q−1

δi

 .

Therefore it is

α

p
+
β

q
+
γ

r
≡ δ

χ
mod 1 (89)

and g = T δaut × (Mh|Ml
(1)
C

)α × (Mh|Ml
(2)
C

)β × (Mh|Ml
(3)
C

)γ .

Thus g ∈ U1, so GZ ⊆ (U1 oU2)× {± id}.
Vice versa, we have to show U1 ⊆ GZ. Fix a g ∈ U1. It respects the decomposition

Ml(f)C =Ml(f)1 ⊕Ml
(1)
C ⊕Ml

(2)
C ⊕Ml

(3)
C .

This is a left and right orthogonal decomposition with respect to the Seifert form L. The
restriction of g to each of the four blocks respects L there, so g ∈ Aut(Ml(f)C,L). It
restricts on Ml

[1]
C to Mα

h , so it maps the lattice Ml
[1]
Z to itself, and analogously the lattices

Ml
[2]
Z andMl

[3]
Z , thus also the sumMl

[1]
Z +Ml

[2]
Z +Ml

[3]
Z . This sum is a primitive sublattice

of Ml(f) of rank µ− 1 with

Ml(f) =
(
Ml

[1]
Z +Ml

[2]
Z +Ml

[3]
Z

)
⊕Z · δµ−1.

The calculation above of g(−δµ−1) shows g(δµ−1) ∈ Ml(f) and g(δµ−1) ≡ δµ−1 modulo
the sublattice. Therefore it is g ∈ GZ.

Now we are ready to prove the strong global Torelli Conjecture. This will be done in the
next section. An application of Theorem 4.2.1, aside from Torelli problems, can be found
in [GH17, Section 8].

4.2.2 Torelli Conjectures for simple elliptic and hyperbolic singularities

For almost all simple, unimodal and bimodal singularities there exist older Torelli results
from [He93] and [He95]. So we can make use of them here. In particular for simple elliptic
and hyperbolic singularities there are two Torelli results from [He93], which we will apply
in order to prove the next theorem.

Theorem 4.2.2. (a) For the simple elliptic singularities and the hyperbolic singu-
larities in any number of variables, the space Mmar

µ of right equivalence classes of
marked singularities is

Mmar
µ
∼= T univ :=


C if κ < 1

H if κ = 1
, (90)



4.2 simple elliptic and hyperbolic singularities 35

so it is connected, and thus Gmar = GZ. The period map BL : Mmar
µ → DBL is an

isomorphism, so the strong global Torelli Conjecture 3.2.2 (a) is true.

(b) Now consider the singularities of type Tpqr as curve singularities if r = 2 and as
surface singularities if r ≥ 3. Then

GZ = Gmar = Gsmar × {± id}, equivalently: − id /∈ Gsmar. (91)

The subgroup of Gsmar, which acts trivially on Mmar
µ , is the kernel of the surjective

map

Gsmar → Aut(Ml(f0)1,Z,L)/{± id}. (92)

It is equal to ρ ◦ (Rf )hom ◦ ρ−1 for a generic [(f ,±ρ)] ∈Mmar
µ . Its size is 54, 16 and

6 for T333, T442 and T632.

Proof. We start and choose a marked reference singularity [(f0,±ρ)] with parameter in
T univ. Then immediately all singularities with a parameter in T univ become marked sin-
gularities, because T univ is simply connected. Hence, we have a period map T univ → DBL

that is well-defined. The Torelli result from [He93, Kapitel 3] tells us that this map is an
isomorphism. In particular this means that the marked Brieskorn lattices of the marked
singularities in T univ are all different. Thus the marked singularities with parameters in
T univ are all not right equivalent and we have an embedding T univ ↪→Mmar

µ (f0)
0.

On the other hand, we have the immersion BL : Mmar
µ (f0)

0 → DBL (see Theorem 3.2.1).
It restricts to the isomorphism T univ → DBL and, hence, it must hold T univ =Mmar

µ (f0)
0.

So in order to prove part (a) it remains to show that Mmar
µ (f0) is connected, i.e. GZ =

Gmar. This will be done via the characterization of GZ coming from Theorem 4.2.1.
Therefore, we have to consider DBL and the action of GZ on it. It is

DBL
∼=


{V ⊆Ml (f0)1 | dimV = 1,V 6= ker(Mh − id)} , if κ < 1,

one component of {V ⊆Ml (f0)1 | dimV = 1,V 6= V } , if κ = 1.
(93)

In both cases the group Aut
(
Ml (f0)1,Z ,L

)
/{± id} acts faithfully on DBL. Furthermore,

in both cases we know that the period map

T univ/ ∼R→ DBL/ Aut
(
Ml (f0)1,Z ,L

)
(94)

is an isomorphism by [He93, Kapitel 3]. Using both isomorphism we obtain

(
Mmar
µ (f0)

)0
/Gmar ∼= T univ/ ∼R→ DBL/ Aut

(
Ml (f0)1,Z ,L

)
, (95)

and the surjectivity of Gmar → Aut
(
Ml (f0)1,Z ,L

)
. Note that this shows part (b) of

Theorem 4.2.1, too.
By the isomorphism theorem it is now sufficient to show that the kernels of the surjective
maps GZ → Aut

(
Ml (f0)1,Z ,L

)
and Gmar → Aut

(
Ml (f0)1,Z ,L

)
coincide. Then also
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the groups Gmar and GZ coincide and part (a) of the theorem follows. The kernel of
GZ → Aut

(
Ml (f0)1,Z ,L

)
was already determined in Theorem 4.2.1. It contains exactly

those elements from (U1 oU2)× {± id} in (74) with δ = 0. So it holds

ker
(
GZ → Aut

(
Ml (f0)1,Z ,L

))
∼=
(
{(α,β, γ) ∈ Zp ×Zq ×Zr |

α

p
+
β

q
+
γ

r
≡ 0 mod 1}oU2

)
× {± id}. (96)

On the other hand the kernel of the map Gmar → Aut
(
Ml (f0)1,Z ,L

)
can be determined

as the subgroup of Gmar which acts trivially on Mmar
µ (f0)

0. In other words, it is the
isotropy group in Gmar of a generic point [(f ,±ρ)] ∈Mmar

µ (f0)
0. By Proposition 3.1.6 (g)

this means it is

ρ ◦GmarR (f) ◦ ρ−1 = ρ ◦ {±ϕhom |ϕ ∈ Rf} ◦ ρ−1. (97)

For generic f we can now use the normal forms from Table 3 (also for κ = 1). So it
is f = xp + yq + zr + t · xyz. Now we define coordinate changes that generate a finite
subgroup of S ⊆ Rf . Those coordinate changes are

ϕα,β,γ : (x, y, z) 7→ (e2πiα/px, e2πiβ/qy, e2πiγ/rz) (98)

with α

p
+
β

q
+
γ

r
≡ 0 mod 1,

ϕ1,2 : (x, y, z) 7→ (y,x, z) if p = q,

ϕ2,3 : (x, y, z) 7→ (x, z, y) if q = r,

ϕminus : (x, y, z) 7→ (x, y,−z − txy) if r = 2.

The map ϕminus has order 2 and commutes with the other coordinate changes. Note here
that q = r = 2 is impossible, because of κ ≤ 1. The group S is then (in an abstract sense)
isomorphic to U0

1 oU2 if r ≥ 3 and to (U0
1 oU2)× {± id} if r = 2. The map to 1-jets of

coordinate changes is injective,

S
∼=−→ j1S ⊆ j1Rf ⊆ j1R. (99)

Now we have to treat the cases r ≥ 3 and r = 2 separately.
The case r ≥ 3: Then j1Rf is finite and isomorphic to Rf , the map

()hom : Rf → GZ(f) = ρ−1 ◦GZ ◦ ρ

is injective, and the image GsmarR (f) does not contain − id by Theorem 3.1.6. Therefore
then S ∼= (S)hom ⊆ GZ(f) and − id /∈ (S)hom. Thus the group (S)hom ×{± id} is isomor-
phic to (U0

1 oU2)× {± id}. Now it is clear that the group in (97) is at least as big as the
group in (96). But it cannot be bigger. So they are of equal size. This implies Gmar = GZ.
The case r = 2: We claim that the map S → (S)hom is injective. If this is true then

(S)hom ∼= (U0
1 o U2)× {± id}, and this is of equal size as the group in (96). Then again
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the group in (97) is at least as big as the group in (96), but it cannot be bigger. So they
are of equal size. This implies Gmar = GZ.
It is enough to prove the claim. For this we consider the curve singularity

g := xp + yq − 1
4 tx

2y2. (100)

Then

g+ z2 = f ◦ψ with ψ(x, y, z) = (x, y, z − 1
2 txy),

Rg+z2
= ψ−1 ◦Rf ◦ψ, (101)

ψ−1 ◦ϕα,β,γ ◦ψ = ϕα,β,γ ,

ψ−1 ◦ϕ1,2 ◦ψ = ϕ1,2, if p = q,

ψ−1 ◦ϕminus ◦ψ = ((x, y, z) 7→ (x, y,−z)).

(q = r = 2 is impossible because of κ ≤ 1). The subgroup

Scurve := {ϕα,β,γ ◦ (ϕminus)−γ | (α,β, γ) ∈ U0
1 }oU2 (102)

has index 2 in S, its conjugate ψ−1 ◦ Scurve ◦ψ restricts to Rg, and it maps injectively to
j1Rg ∼= Rg. According to Theorem 3.1.6 (c) the map Scurve → (Scurve)hom is injective,
and − id is not in the image. But (ϕminus)hom = − id. This proves the claim.

(b) According to Theorem 3.1.4 (c), the projectionM smar
µ →Mmar

µ is a twofold covering
and − id exchanges the two sheets of this covering. Because of Mmar

µ = C if κ < 1
and Mmar

µ = H if κ = 1, M smar
µ has two components. Therefore − id /∈ Gsmar and

GZ = Gmar = Gsmar × {± id}. The statements right before and after (92) were already
proved and used in the proof of part (a) above.
The group ρ ◦ (Rf )hom ◦ ρ−1 for a generic [(f , ρ)] ∈ Mmar

µ has size 54, 16 and 6 for
T333,T442 and T632, because it is isomorphic to an index 2 subgroup of the group in (96),
and that group has 108, 32 and 12 elements in the cases T333,T442 and T632.

4.3 exceptional unimodal and bimodal singularities

The exceptional unimodal and bimodal singularities are far less exceptional than their
name suggests. In many respects they can be seen as rather generic (especially when
compared to the simple elliptic singularities). Normal forms and the Milnor numbers µ of
the 14+14 families of exceptional unimodal and bimodal singularities are given in Table
5. Here it is t ∈ C and (t1, t2) ∈ C2. Those normal forms can be found for example in
[AGV85, Section 15.1].

Here we will treat just 6 out of the 28 quasihomogeneous exceptional unimodal and bimodal
singularities. Namely we will consider the families of singularities of types Z12, Q12, U12,
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Type normal form µ

E12 x3 + y7 + txy5 12
E13 x3 + xy5 + ty8 13
E14 x3 + y8 + txy6 14
E18 x3 + y10 + (t1 + t2y) xy7 18
E19 x3 + xy7 + (t1 + t2y) y11 19
E20 x3 + y11 + (t1 + t2y) xy8 20
Z11 x3y+ y5 + txy4 11
Z12 x3y+ xy4 + tx2y3 12
Z13 x3y+ y6 + txy5 13
Z17 x3y+ y8 + (t1 + t2y) xy6 17
Z18 x3y+ xy6 + (t1 + t2y) y9 18
Z19 x3y+ y9 + (t1 + t2y) xy7 19
Q10 x3 + y4 + yz2 + txy3 10
Q11 x3 + y2z + xz3 + tz5 11
Q12 x3 + y5 + yz2 + txy4 12
Q16 x3 + y7 + yz2 + (t1 + t2y) xy5 16
Q17 x3 + yz2 + xy5 + (t1 + t2y) y8 17
Q18 x3 + yz2 + y8 + (t1 + t2y) xy6 18
W12 x4 + y5 + tx2y3 12
W13 x4 + xy4 + ty6 13
W17 x4 + xy5 + (t1 + t2y) y7 17
W18 x4 + y7 + (t1 + t2y) x2y4 18
S11 x4 + y2z + xz2 + tx3z 11
S12 x2y+ y2z + xz3 + tz5 12
S16 x2z + yz2 + xy4 + (t1 + t2y) y6 16
S17 x2z + yz2 + y6 + (t1 + t2y) y4z 17
U12 x3y+ y3 + z4 + txyz2 12
U16 x3y+ xz2 + y5 + (t1 + t2y) x2y2 16

Table 5: Exceptional singularities

Z18, Q16, U16. For the other 22 types the automorphism group GZ is just {±Mk
h | k ∈ Z}

and the proof of the Torelli result in the marked case was already given in 2011 by Claus
Hertling (see [He11, Section 8]). The automorphism group GZ for the types Z12, Q12, U12,
Z18, Q16, U16 will be computed in the upcoming subsection and will turn out to be slightly
more complicated.

4.3.1 The group GZ for exceptional singularities

The Coxeter-Dynkin diagrams of the exceptional singularities at stake are displayed in
Figure 6, Figure 7 and Figure 8. Figure 6 shows the Coxeter-Dynkin diagram for singu-
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p

p+q-1 1µ-3 2

µ-1

µ

p-1

µ-2

p+q-2

Figure 6: Coxeter-Dynkin diagram for Z12, Q12 resp. U12

6

9 168 15

17

1

2

14 13 11

18
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4
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Figure 7: Coxeter-Dynkin diagram for Z18

larities of type Z12, Q12 and U12 where the triple (p, q, r) is (2, 4, 6), (3, 3, 6) and (4, 4, 4),
respectively.
The Coxeter-Dynkin diagram for singularities of type Z18 is shown in Figure 7 and the

Coxeter-Dynkin diagram for singularities of type Q16 in Figure 8.
With the Coxeter-Dynkin diagrams we can easily compute the Seifert form L, the in-

tersection form I and the monodromy Mh via the formulas in Chapter 2. On top of that
for the (Brieskorn-Pham) singularity U16 we can write down immediately the monodromy,
which is

Mh = SΦ3 ⊗ SΦ3 ⊗ SΦ5 (103)
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4

5 610 11

7

2

3

12 13 15

8

9

1

14 16

Figure 8: Coxeter-Dynkin diagram for Q16

(cf. [He93, Kapitel 3 a)]). The n-th cyclotomic polynomial is denoted as Φn and SΦ3 and SΦ5

are the companion matrices1 for the respective cyclotomic polynomials. The characteristic
polynomial of the monodromy will be denoted as pch again.
Moreover we can decompose Milnor lattices of the six types of singularities into the sum
of cyclic monodromy modules, the Orlik blocks (see Section A.2 for details). We obtain

Ml (f) =
deg p1−1⊕
i=0

Z ·M i
h (a1)⊕

deg p2−1⊕
i=0

Z ·M i
h (a2) (104)

where a1 and a2 are generators and p1 and p2 are polynomials with pch = p1 · p2 as
specified in Table 6. This means that Orlik’s Conjecture A.2.2 is true for all those types of
singularities. Note that the Coxeter-Dynkin diagrams above are taken from [He93, Kapitel
3] — except the one for Z18, which comes from [Eb83, Table 2 + Figure 4]. Furthermore,
also the data in Table 6 is taken from [He93, Kapitel 3]. Yet in [He93] no explicit generators
for the types Z12 and Z18 are given. There the author deduces the existence of the Orlik
blocks from an abstract result in [MW86] (cf. Section A.2).

Now with the decomposition of the Milnor lattice into Orlik blocks we can compute the
group GZ via applying Lemma A.2.3 to the blocks. We prove the main theorem of this
subsection.

1 For us the companion matrix of a polynomial p(x) = agxg + ag−1xg−1 + . . . + a1x + a0 is the quadratic

matrix Sp :=



0 0 . . . 0 −a0

1 0 . . . 0 −a1

0 1
. . .

... −a2
...

. . . . . . 0
...

0 . . . 0 1 −ag−1


.
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Type pch p1 p2 a1 a2

Z12 Φ22Φ2
2 Φ22Φ2 Φ2 δ2 δ1 − δ2 − δ4

Q12 Φ15Φ2
3 Φ15Φ3 Φ3 δ6 δ5 + δ8 − δ1

U12 Φ12Φ6Φ2
4Φ2

2 Φ12Φ6Φ4Φ2 Φ4Φ2 δ8 δ4 − δ7

Z18 Φ34Φ2
2 Φ34Φ2 Φ2 δ7 δ6 − δ7 − δ9

Q16 Φ21Φ2
3 Φ21Φ3 Φ3 δ4 δ4 − δ5

U16 Φ15Φ2
5 Φ15Φ5 Φ5 δ1 δ1 + δ5 + δ13

Table 6: Characteristic polynomials of the exceptional singularities

Theorem 4.3.1. For the three 1-parameter families of exceptional unimodal singularities
of types Z12, Q12, U12 and the three 2-parameter families of exceptional bimodal singulari-
ties of types Z18, Q16, U16 the automorphism group is GZ = {±Mk

h | k ∈ Z} ×U with

Z12 Q12 U12 Z18 Q16 U16

U ∼= {id} Sym (2) Sym (3) {id} Sym (2) Sym (3)
. (105)

Proof. We set

Ml (f) =
deg p1−1⊕
i=0

Z ·M i
h (a1)⊕

deg p2−1⊕
i=0

Z ·M i
h (a2) =: B1 ⊕B2 (106)

and

B3 := ker
(
p2 (Mh) : Ml (f)C →Ml (f)C

)
∩Ml (f) . (107)

The spaceB3 is then a primitive rank 2 deg p2 sublattice of the Milnor lattice. It is generated
by the primitive sublattices B1∩B3 andB2 of rank deg p2 ofB3. Now consider some g ∈ GZ

with g|B3 = ± (Mh|B3)
k for some k ∈ Z. This restricts to an automorphism of B1, because

of B2 ⊆ B3 and

(B1)C = ker
(
p1
p2

(Mh)

)
⊕ (B1 ∩B3)C . (108)

So we are able to apply Lemma A.2.3 and obtain g|B1 = ± (Mh|B1)
l for some l ∈ Z. Now

g|B3 = ± (Mh|B3)
k implies k ≡ l mod lcm(m : Φm|p2) and, thus, g = ± (Mh)

l. It holds

{g ∈ GZ | g|B3 = ± (Mh|B3)
k for some k ∈ Z} = {± (Mh)

k | k ∈ Z}. (109)

Additionally we can use Lemma A.2.7. In part (c) of this lemma all possible automorphisms
on B3 were computed. It holds

Aut (B3,L) = {± (Mh|B3)
k |k ∈ Z} ×U , (110)

where U is as in (105). In part (d) it was shown that the map GZ → Aut (B3,L) ∼=
{± (Mh|B3)

k |k ∈ Z} ×U is surjective. Now with the information about the kernel of this
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surjective map from (109) we can deduce the claim via the fundamental homomorphism
theorem.

4.3.2 Torelli Conjectures for exceptional singularities

The Torelli results for the exceptional singularities are in a sense the “litmus test” for
the period maps LBL resp. BL. For the types of singularities studied in Sections 4.1 and
4.2 already the Picard-Fuchs singularities are sufficient to determine the right equivalence
class inside a µ-constant family. So this is the first time where we actually need the period
maps LBL resp. BL.
We will prove now the injectivity of BL for the six families of exceptional unimodal and
bimodal singularities that we considered in Subsection 4.3.1. In so doing we again build on
the Torelli results for LBL in [He93]. However in contrast to the proof of Theorem 4.2.2
we only need one Torelli result from [He93] here.

Theorem 4.3.2. (a) For the 6 families of exceptional unimodal and bimodal singu-
larities of types Z12,Q12,U12,Z18,Q16 and U16 in any number of variables, the space
Mmar
µ is Mmar

µ
∼= T := Cmod(f0), so it is connected, and thus Gmar = GZ. Moreover,

the period map BL : Mmar
µ → DBL is an isomorphism and, thus, the strong global

Torelli Conjecture 3.2.2 (a) is true.

(b) Now consider the singularities of type Z12 and Z18 as curve singularities and
the singularities of types Q12,U12,Q16 and U16 as surface singularities. Then their
multiplicities are ≥ 3. It holds

GZ = Gmar = Gsmar × {± id}, equivalently: − id /∈ Gsmar. (111)

Proof. (a) We choose as a reference singularity the quasihomogeneous singularity in T with
the marking ± id, i.e. [(f0,± id)]. Then all elements elements in T become marked singu-
larities, because T is simply connected. So we have a well-defined period map T → DBL.
Now the Torelli result from [He93, Kapitel 3+Kapitel 4] says that this period map is an
isomorphism. So all marked Brieskorn lattices of the marked singularities with parameter
in T are different. Moreover, this means that all the marked singularities with parameter
in T are different. We have an embedding T ↪→Mmar

µ (f0)
0.

Furthermore, there is the immersive period map BL : Mmar
µ (f0)

0 → DBL according to
Theorem 3.2.1. This restricts to the isomorphism T → DBL and we have T =Mmar

µ (f0)
0.

So it rests to show that Gmar = GZ in order to prove part (a). Since if this is true,
T =Mmar

µ (f0)
0 =Mmar

µ is connected and BL : Mmar
µ → DBL is an isomorphism.

Therefore we consider the weight(s) of the parameter(s) t for singularities of modality 1
and t1 and t2 for singularities of modality 2. They equip T =Mmar

µ with a good C∗-action.
It commutes with the action of GZ. This yields

Gmar = StabGZ
([(f0,± id)]) =Prop. 3.1.6 (g) G

mar
R (f0) . (112)
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Moreover, we know that GsmarR (f0)× {± id} = GmarR (f0) by Proposition 3.1.6 (d). Luck-
ily, as f0 is a quasihomogeneous singularity of degree ≥ 3, the group GsmarR (f0) can be
calculated easily via StabGw(f0). Namely, by Theorem 3.1.6 (c) and Theorem A.1.5 it is
StabGw(f0)

∼=−→ GsmarR (f0). It suffices to show that StabGw(f0) has half as many elements
as the group GZ. We postpone its proof for a moment. If it holds, then

GZ = Gmar = GmarR (f0) = GsmarR (f0)× {± id} (113)

follows, and part (a) of the theorem holds. For part (b), the same arguments as in the proof
of Theorem 4.2.2 (b) apply: M smar

µ is a twofold covering of Mmar
µ , and the two sheets are

exchanged by the action of − id. Since T = Cmod(f0), we can conclude that M smar
µ has two

components and − id /∈ M smar
µ .

In Theorem 4.3.1 it was shown that GZ is GZ = {±Mk
h | k ∈ Z}×U with U as in Table

(105). Now we compare it with StabGw(f0). It is sufficient to find enough elements such
that the resulting group has half as many elements as GZ.
The cases Z12 and Z18: Then

ϕ1 : (x, y) 7→ (e2πiwxx, e2πiwyy) satisfies (ϕ1)hom =Mh. (114)

Here the quasihomogeneous weights (wx,wy) of the coordinates x and y are
(

3
11 , 2

11

)
for Z12

and
(

5
17 , 2

17

)
for Z18. This is already sufficient. Here it is Gsmar = GsmarR = {Mk

h | k ∈ Z}.
The cases Q12, Q16, U12, U16: Here it is convenient to make use of the decomposition of

the singularity f0 into a sum of an Al singularity g0 in one variable and a D2m singularity
h0 in two variables. In all four cases the weight system w′ of the Al singularity and the
weight system w′′ of the D2m singularity have denominators l+ 1 and 2m− 1 with gcd(l+
1, 2m− 1) = 1. Therefore it is

StabGw(f0) = StabGw′ (g0)× StabGw′′ (h0) (115)

∼= Zl+1 ×

 Z2m−1 × Sym(2) if m ≥ 3

Z3 × Sym(3) if m = 2.

In all four cases this group has half as many elements as GZ.

Those were the hard cases among the exceptional unimodal and bimodal singularities.
All in all, we can state the following.

Theorem 4.3.3. For all families of exceptional unimodal and bimodal singularities it is
Gmar = GZ. So Mmar

µ
∼= Cmod(f0) is connected. Moreover, the period map BL : Mmar

µ →
DBL is injective and the strong global Torelli Conjecture 3.2.2 (a) is true.

Proof. Combining [He11, Theorem 8.3] and Theorem 4.3.2 yields the claim.

4.4 bimodal series singularities

The eight infinite series of bimodal singularities E3,p, Z1,p, Q2,p, U1,p, W1,p, W ]
1,p, S1,p and

S]1,p from Arnold’s list (see [AGV85, Section 15.1.2]), i.e. the singularities with Kodaira
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types I∗p (2,−,−,−) for p ∈ Z>0, are mysterious ever since. Nevertheless they also have to
be considered in order to get Torelli results for all bimodal singularities. We have collected
information on the types of the bimodal series singularities. In fact, Table 7 shows certain
normal forms of the singularities with (t1, t2) ∈ T := (C \ {0})×C and the Milnor number
µ. For some series we have to distinguish between the terms of odd number p and the terms
of even number p. Therefore we use the number q ∈ Z≥0. The data as it appears here is
taken from [He95, Table 6.2].

Type normal form µ

E3,p x3 + x2y3 + (t1 + t2y) y9+p + z2 16 + p

Z1,p x3y+ x2y3 + (t1 + t2y) y7+p + z2 15 + p

Q2,p x3 + yz2 + x2y2 + (t1 + t2y) y6+p 14 + p

U1,2q x3 + xz2 + xy3 + (t1 + t2y) y3+qz 14 + 2q
U1,2q−1 x3 + xz2 + xy3 + (t1 + t2y) y1+qz2 14 + 2q− 1
W1,p x4 + x2y3 + (t1 + t2y) y6+p + z2 15 + p

W ]
1,2q

(
x2 + y3)2 + (t1 + t2y) x2y3+q + z2 15 + 2q

W ]
1,2q−1

(
x2 + y3)2 + (t1 + t2y) xy4+q + z2 15 + 2q− 1

S1,p x2z + yz2 + x2y2 + (t1 + t2y) y5+p 14 + p

S]1,2q x2z + yz2 + y3z + (t1 + t2y) x2y2+q 14 + 2q
S]1,2q−1 x2z + yz2 + y3z + (t1 + t2y) xy3+q 14 + 2q− 1

Table 7: Facts about the bimodal series singularities

Note that all normal forms in Table 7 except the normal forms for W ]
1,p are Newton

nondegenerate (cf. Definition A.1.1). Luckily, the normal form fp(x, y, z̃) for W ]
1,p can

be easily made Newton nondegenerate as well. The respective coordinate change is z̃ =

z + i(x2 + y3) and this then yields

fp(x, y, z + i(x2 + y3)) = z2 + 2ix2z + 2iy3z (116)

+

 (t1 + t2y)xy4+q if p = 2q− 1,

(t1 + t2y)x2y3+q if p = 2q.

In the following we will work with the normal forms in Table 7, unless stated otherwise.
Moreover for each 2-parameter family of singularities in Table 7 we choose f0 := f(1,0) as
reference singularity.

4.4.1 The group GZ for bimodal series singularities

Now we list the Coxeter-Dynkin diagrams for all of the eight bimodal series. For each of
the eight series of surface singularities, a distinguished basis δ1, . . . , δµ with the Coxeter-
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Dynkin diagram in the corresponding figures is given. The distinguished basis is the one
in [Eb81, Tabelle 6 + Abbildung 16], with a small change in the cases W1,1 and S1,1

2.

3

4 58

11+q resp. 12+q

6

1

2

7

910+q resp. 11+q 15+p

Figure 9: Coxeter-Dynkin diagram for W ]
1,2q−1 resp. W ]

1,2q

3

4 59

11+q resp. 12+q

6

1

2

14+p

7

8

10+q resp. 11+q

Figure 10: Coxeter-Dynkin diagram for S ]1,2q−1 resp. S ]1,2q

In contrast to the previous section there is in general no decomposition of the full Milnor
lattice of bimodal series singularities into Orlik blocks. Counterexamples are for example
given by the Milnor lattices of singularities of types E3,p where p ≡ 0 mod 6 (cf. [He93,
p. 172]). However we can find a decomposition of a certain index rI = [Ml(f) :

⊕
j≥1Bj ],

where Bj are Orlik blocks. This will be done in the next theorem. Note that the proof of
part (c) of this theorem makes use of Lemma A.2.5 and results in Section A.3. Hence, it
makes sense to recall this first.

2 In [Eb81] another numbering of the Coxeter-Dynkin diagram for W1,1 and S1,1 is suggested. I am grateful to
Wolfgang Ebeling who provided information on how to transform the numbering in [Eb81] to the numbering
we chose in Figure 15 and Figure 16 for W1,1 and S1,1.
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3

4 510 12+q

6

1

2

13+q 14+p

7

8

1111+q

9

Figure 11: Coxeter-Dynkin diagram for U1,p

3

4 58 9

6

1

2

10 11 12 13 14

7

16+p

Figure 12: Coxeter-Dynkin diagram for E3,p

Theorem 4.4.1. For any surface singularity f in any of the eight bimodal series, the
following holds.

(a) For all series except Z1,p, there are Orlik blocks B1,B2 ⊆ Ml(f), and for the
series Z1,p, there are Orlik blocks B1,B2,B3 ⊆ Ml(f) with the following properties.
The characteristic polynomial pBj of the monodromy on Bj is bj. The sum ∑

j≥1Bj

is a direct sum ⊕
j≥1Bj, and it is a sublattice of Ml(f) of full rank µ and of index

rI . Define

B̃1 :=

 B1 for all series except Z1,p,

B1 ⊕B3 for the series Z1,p.
(117)

Then it holds

L(B̃1,B2) = 0 = L(B2, B̃1) for all series, (118)

GZ = Aut(
⊕
j≥1

Bj ,L) for all series except S1,10. (119)
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3

4 589 10

6

1

2

11 12 13 14 15

7

15+p

Figure 13: Coxeter-Dynkin diagram for Z1,p

3

4 59 10

6

1

2

11 12 13 14

7

8

14+p

Figure 14: Coxeter-Dynkin diagram for Q2,p

In the case S1,10, a substitute for (119) is

g ∈ GZ with g((B1)Φ10) = (B1)Φ10 ⇒ g(Bj) = Bj for j = 1, 2. (120)

(b) It is Φm 6 | b2 ⇐⇒ m 6 | p. In that case it holds

GZ = {(±Mk1
h |B̃1

)× (±Mk2
h |B2) | k1, k2 ∈ Z}. (121)

(c) In the case of the subseries with m|p, the eigenspace Ml(f)ζ ⊆ Ml(f)C is 2-
dimensional. The Hermitian form hζ on it according to Lemma A.2.6 (a) with
hζ(a, b) :=

√
−ζ · L(a, b) for a, b ∈ Ml(f)ζ is nondegenerate and indefinite, so

Proj(Ml(f)ζ) ∼= P 1C contains the half-plane

Hζ := {C · a | a ∈Ml(f)ζ with hζ(a, a) < 0} ⊆ Proj(Ml(f)ζ). (122)

Therefore the group Aut(Ml(f)ζ ,hζ)/S1 · id is isomorphic to PSL(R; 2). The homo-
morphism

Ψ : GZ → Aut(Ml(f)ζ ,hζ)/S1 · id, g 7→ g|Ml(f )ζ mod S1 · id, (123)



48 torelli results for µ-constant families of singularities

3

4 58 12

6

1

2

13 14

7

910

16

15+p

11 15

Figure 15: Coxeter-Dynkin diagram for W1,p

is well-defined. The image of the homomorphism Ψ(GZ) is an infinite Fuchsian group
acting on the half-plane Hζ . The kernel is

ker Ψ = {±Mk
h | k ∈ Z}. (124)

Before we start with the actual (very long) proof, we summarize the key idea of its longest
part, i.e. the proof of part (a). So in this section (and Section 4.5) we work most times with
two Orlik blocks B1 and B2 such that B1 +B2 = B1 ⊕B2. This direct sum is then either
equal to Ml (f) or has index 2 in Ml (f) and it holds L(B1,B2) = L(B2,B1) = 0. For all
bimodal series singularities (especially for those with [Ml (f) : B1⊕B2] = 2) except S1,10

and Z1,0, we will show

Aut(Ml (f) ,L) = Aut(B1 ⊕B2,L). (125)

This (often) works as follows.
In several cases, there exists an element γ5 ∈ (B1)Φ2 \ {0} which is mapped to itself
(modulo sign) by all elements in Aut(Ml (f) ,L) ∪Aut(B1 ⊕B2,L) and which fulfills

B1 ⊕B2 = {a ∈ Aut(Ml (f) |L(a, γ5) ∈ 2Z}. (126)

Then any element g ∈ Aut(Ml (f) ,L) maps B1 ⊕B2 to itself. Thus we obtain the first
inclusion Aut(Ml (f) ,L) ⊆ Aut(B1 ⊕ B2,L). Now if this inclusion "⊆" holds, we can
conclude that Aut(Ml (f) ,L) is either equal to Aut(B1⊕B2,L) or to a subgroup of index
2 in Aut(B1⊕B2,L) via the argument in [GH18, Remarks 2.6 (iv)]. Note that, in general
it is difficult to see that Aut(Ml (f) ,L) is really equal to Aut(B1 ⊕B2,L) and not just
a subgroup of index 2 in Aut(B1 ⊕B2,L). Hence, in the following, we need a different
strategy to show equality in (125) (cf. Proof of Theorem 4.4.1).
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3

4 59 12

6

1

2

13 14

7

8

1011

15

14+p

Figure 16: Coxeter-Dynkin diagram for S1,p

Proof of Theorem 4.4.1. The Orlik blocks Bj ⊆ Ml(f) are chosen by choosing the gener-
ating lattice vectors βj with

Bj :=
∑
i≥0

Z ·M i
h(βj). (127)

The generators βj are given in (128).

Type β1 β2 β3

W ]
1,p δ3 δ8 −

S]1,p δ8 δ9 −

U1,p δ8 δ10 −

E3,p δ3 δ10 −

Z1,p δ8 δ11 δ3 − δ4 − δ9

Q2,p δ8 δ11 −

W1,p δ3 + δ9 + δ11 δ16 −

S1,p −δ8 + δ13 δ15 −

(128)

Now the action of the powers of the monodromy on the generators

βj 7→Mh(βj) 7→M2
h(βj) 7→ . . . 7→M

deg bj
h (βj). (129)

is computed and the characteristic polynomials bj of Mh on the Bj are determined. More-
over we show that Bj is a primitive sublattice of Ml(f), that ∑j≥1Bj =

⊕
j≥1Bj is a

direct sum and that it is a sublattice of full rank and of index rI in Ml(f). This data is
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summarized in Table 8.

Type b1 b2 b3 m rI

W ]
1,p Φ12 (t12+p − 1)/Φ1 - 12 1

S]1,p Φ10Φ2 (t10+p − 1)/Φ1 - 10 1
U1,p Φ9 (t9+p − 1)/Φ1 - 9 1
E3,p Φ18Φ2 t9+p + 1 - 18 2
Z1,p Φ14Φ2 t7+p + 1 Φ2 14 2
Q2,p Φ12Φ4Φ3 t6+p + 1 - 12 2
W1,p Φ12Φ6Φ3Φ2 t6+p + 1 - 12 2
S1,p Φ10Φ5Φ2 t5+p + 1 - 10 2

Table 8: Characteristic polynomials of the bimodal series singularities

For the series W ]
1,p we obtain the monodromy action on the respective generators βj as

follows:

δ3 7→ −δ1 − δ3 − δ6 + δ7 7→ δ1 + δ2 − δ4 − δ5 − δ6

7→ −δ1 7→ δ1 + δ2 − δ3 − δ4 − δ5 − δ6, (130)

δ8 7→ δ9 7→ . . . 7→ δ11+q 7→ −δ4 − δ8 − δ9 − . . .− δ11+q

7→ −δ2 + δ4 + δ6 − δ7 7→ −δ12+q 7→ −δ13+q 7→ . . . 7→ −δ15+p

7→ δ5 + δ12+q + . . .+ δ15+p 7→ δ2 − δ5 − δ6 + δ7 7→ δ8. (131)

Thus the characteristic polynomial of Mh on Bj is bj , and the blocks are

B1 = 〈δ3, δ1, δ6 − δ7, δ2 − δ4 − δ5 − δ6〉, (132)

B2 = 〈δ8, δ9, . . . , δ15+p; δ4, δ5,−δ2 + δ6 − δ7〉. (133)

This shows that B1 and B2 are primitive sublattices with B1 +B2 = B1 ⊕B2 = Ml (f),
i.e. rI = 1.

For the series S]1,p the monodromy acts on the generators as follows:

δ8 7→ −δ3 − δ8 7→ δ1 + δ3 + δ6 − δ7

7→ −δ1 − δ2 + δ3 + δ4 + δ5 + δ6 + δ8

7→ −δ3 − δ6 + δ7 7→ −δ8, (134)

δ9 7→ δ10 7→ . . . 7→ δ11+q 7→ −δ4 − δ9 − δ10 − . . .− δ11+q

7→ −δ2 + δ4 + δ6 − δ7 7→ −δ12+q 7→ −δ13+q 7→ . . . 7→ −δ14+p

7→ δ5 + δ12+q + . . .+ δ14+p 7→ δ2 − δ5 − δ6 + δ7 7→ δ9. (135)
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Thus the characteristic polynomial of Mh on Bj is bj , and the blocks are

B1 = 〈δ8, δ3, δ6 − δ7, δ1,−δ2 + δ4 + δ5 + δ6〉, (136)

B2 = 〈δ9, δ10, . . . , δ14+p; δ4, δ5,−δ2 + δ6 − δ7〉. (137)

This shows that B1 and B2 are primitive sublattices with B1 +B2 = B1 ⊕B2 = Ml (f)

and rI = 1.

For the series U1,p the monodromy action on the generators is:

δ8 7→ δ9 7→ −δ3 − δ8 − δ9 7→ δ1 + δ3 + δ6 − δ7

7→ −δ1 − δ2 + δ3 + δ4 + δ5 + δ6 + δ8

7→ −δ6 + δ7 + δ8 + δ9 7→ −δ1 − δ3 − δ6 + δ7 − δ8, (138)

δ10 7→ δ11 7→ . . . 7→ δ11+q 7→ −δ4 − δ10 − δ11 − . . .− δ11+q

7→ −δ2 + δ4 + δ6 − δ7 7→ −δ12+q 7→ −δ13+q 7→ . . . 7→ −δ14+p

7→ δ5 + δ12+q + . . .+ δ14+p 7→ δ2 − δ5 − δ6 + δ7 7→ δ10. (139)

Thus the characteristic polynomial of Mh on Bj is bj , and the blocks are

B1 = 〈δ1, δ3, δ8, δ9, δ6 − δ7,−δ2 + δ4 + δ5 + δ6〉, (140)

B2 = 〈δ10, δ11, . . . , δ14+p; δ4, δ5,−δ2 + δ6 − δ7〉. (141)

Again B1 and B2 are primitive sublattices with B1 +B2 = B1⊕B2 =Ml (f) and rI = 1.

For the series E3,p the monodromy acts as follows:

δ3 7→ −δ1 − δ3 − δ6 + δ7 7→ −δ4 − δ5 − δ6

7→ δ2 − δ3 − δ4 − δ5 − δ6 − δ8 − δ9 7→ −δ5 − δ7

7→ δ2 − δ3 − δ4 − δ5 − δ6 − δ9 7→ −δ4 − δ5 − δ7 − δ8

7→ δ1 + δ2 − δ3 − δ5 − δ7 − δ9 7→ δ3 + δ6 − δ7

7→ −δ3, (142)

δ10 7→ δ11 7→ . . . 7→ δ16+p 7→ −δ5 −
16+p∑
i=9

δi

7→ −δ2 + δ5 + δ6 − δ7 7→ −δ10. (143)

Thus the characteristic polynomial of Mh on Bj is bj , and the blocks are

B1 = 〈δ1, δ3, δ4, δ8, δ6 − δ7, δ5 + δ6, δ2 − δ9〉, (144)

B2 = 〈δ10, δ11, . . . , δ16+p, δ5 + δ9, δ2 − δ6 + δ7 + δ9〉. (145)

This shows that B1 and B2 are primitive sublattices with B1 +B2 = B1⊕B2. Furthermore
B1 ⊕B2 ⊇ {2δ2} and B1 +B2 + Z · δ2 =Ml(f). This shows [Ml(f) : B1 ⊕B2] = 2 = rI .
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For the series Z1,p the monodromy action is as follows:

δ8 7→ δ9 7→ −δ4 − δ8 − δ9 7→ δ1 + δ4 + δ6 − δ7

7→ δ3 + δ4 + δ5 + δ6 + δ8

7→ −δ1 − δ2 + δ4 + δ5 + δ7 + δ8 + δ9 + δ10

7→ −δ4 − δ6 + δ7 7→ −δ8, (146)

δ11 7→ δ12 7→ . . . 7→ δ15+p 7→ −δ5 −
15+p∑
i=10

δi

7→ −δ2 + δ5 + δ6 − δ7 7→ −δ11, (147)

δ3 − δ4 − δ9 7→ −δ3 + δ4 + δ9. (148)

Thus the characteristic polynomial of Mh on Bj is bj , and the blocks are

B1 = 〈δ8, δ9, δ4, δ1, δ6 − δ7, δ3 + δ5 + δ6,

−δ2 + δ5 + δ7 + δ10〉, (149)

B2 = 〈δ11, δ12, . . . , δ15+p; δ5 + δ10,−δ2 + δ5 + δ6 − δ7〉, (150)

B3 = 〈δ3 − δ4 − δ9〉. (151)

This shows that B1,B2 and B3 are primitive sublattices with B1 +B2 +B3 = B1⊕B2⊕B3.
Furthermore B1 ⊕ B2 ⊕ B3 ⊇ {2δ5} and B1 + B2 + B3 + Z · δ5 = Ml(f). This shows
[Ml(f) : B1 ⊕B2 ⊕B3] = 2 = rI .

For the series Q2,p the monodromy action on the generators is as follows:

δ8 7→ −δ3 − δ8 7→ δ1 + δ3 + δ6 − δ7 7→ δ3 + δ4 + δ5 + δ6 + δ8

7→ −δ1 − δ2 + δ4 + δ5 + δ7 + δ9 + δ10 7→ −δ4 − δ6 + δ7

7→ −δ9 7→ δ4 + δ9 7→ −δ1 − δ4 − δ6 + δ7, (152)

δ11 7→ δ12 7→ . . . 7→ δ14+p 7→ −δ5 −
14+p∑
i=10

δi

7→ −δ2 + δ5 + δ6 − δ7 7→ −δ11. (153)

Thus the characteristic polynomial of Mh on Bj is bj , and the blocks are

B1 = 〈δ8, δ3, δ9, δ4, δ1, δ6 − δ7,

δ5 + δ6,−δ2 + δ5 + δ7 + δ10〉, (154)

B2 = 〈δ11, δ12, . . . , δ14+p; δ5 + δ10,−δ2 + δ5 + δ6 − δ7〉. (155)

This shows that B1 and B2 are primitive sublattices with B1 +B2 = B1⊕B2. Furthermore
B1 ⊕B2 ⊇ {2δ5} and B1 +B2 + Z · δ5 =Ml(f). This shows [Ml(f) : B1 ⊕B2] = 2 = rI .
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For the series W1,p the monodromy action on the generators is as follows:

δ3 + δ9 + δ11 7→ −δ1 − δ3 − δ4 − δ6 + δ7 − δ8 − δ9 − δ11

7→ δ1 − δ5 − δ7 + δ11

7→ −δ1 − δ4 − δ8 − δ9 − δ10 − δ11 − δ12

7→ δ1 − δ3 − δ5 − δ7 − δ13

7→ δ3 + δ6 − δ7 − δ12 − δ14

7→ −δ3 − δ13 − δ15

7→ δ1 + δ3 + δ5 + δ6 − δ7 + δ12 + δ13 + δ15

7→ −δ1 + δ4 + δ7 − δ15

7→ δ1 + δ5 + δ8 + δ12 + δ13 + δ14 + δ15 (156)

7→ −δ1 + δ3 + δ4 + δ7 + δ9

7→ −δ3 − δ6 + δ7 + δ8 + δ10

7→ δ3 + δ9 + δ11,

δ16 7→ δ17 7→ . . . 7→ δ14+p 7→ δ15+p

7→ −δ1 − δ2 −
15+p∑
i=16

δi

7→ −δ3 − δ4 − δ5 − δ6 − δ8 − δ12

7→ −δ4 − δ5 − δ7 − δ8 − δ9 − δ12 − δ13

7→ −δ3 − δ4 − δ5 − δ7 − δ8 − δ9 − δ10 − δ12 − δ13 − δ14

7→ δ1 − δ4 − δ5 + δ6 − 2δ7 −
15∑
i=8

δi

7→ −δ2 + δ4 + δ5 + 2δ6 − 2δ7 (157)

7→ −δ16.

Thus the characteristic polynomial ofMh on Bj is bj . Here the blocks B1 and B2 are gener-
ated by the first deg b1 respectively deg b2 of the elements above. Here B1 +B2 = B1⊕B2

and [Ml(f) : B1 ⊕B2] = 2 = rI follow by the calculation of the determinant which ex-
presses these generators of B1 and B2 in the distinguished basis δ1, . . . , δµ. Then it also
follows that B1 and B2 are primitive sublattices.
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For the series S1,p the monodromy action is as follows:

−δ8 + δ13 7→ δ3 + δ8 + δ14

7→ −δ1 − δ3 − δ5 − δ6 + δ7 − δ12 − δ13 − δ14

7→ δ1 − δ3 − δ4 − δ7 − δ8

7→ δ3 + δ6 − δ7 − δ9

7→ δ8 − δ10

7→ −δ3 − δ8 − δ11

7→ δ1 + δ3 + δ4 + δ6 − δ7 + δ9 + δ10 + δ11

7→ −δ1 + δ3 + δ5 + δ7 + δ8

7→ −δ3 − δ6 + δ7 + δ12 (158)

7→ −δ8 + δ13,

δ15 7→ δ16 7→ . . . 7→ δ14+p 7→ −δ1 − δ2 −
14+p∑
i=15

δi

7→ −δ3 − δ4 − δ5 − δ6 − δ9 − δ12

7→ −δ3 − δ4 − δ5 − δ7 − δ8 − δ9 − δ10 − δ12 − δ13

7→ δ1 − δ4 − δ5 + δ6 − 2δ7 −
∑

j∈{9,10,11,12,13,14}
δj

7→ −δ2 + δ4 + δ5 + 2δ6 − 2δ7 7→ −δ15. (159)

Thus the characteristic polynomial of Mh on Bj is bj . Here the blocks B1 and B2 are
generated by the first deg b1 respectively deg b2 of the elements above. Here B1 + B2 =

B1 ⊕B2 and [Ml(f) : B1 ⊕B2] = 2 = rI follow by the calculation of the determinant
which expresses these generators of B1 and B2 in the distinguished basis δ1, . . . , δµ. Then
it also follows that B1 and B2 are primitive sublattices.
Now with the nice generators for B̃1 and B2 as given above, we can show the left and right
L-orthogonality of B̃1 and B2 in (118). First of all, we see that δµ is a cyclic generator
for B2 in all eight series. The generators of B̃1 yield B̃1 ⊆

⊕µ−2
j=1 Z · δj for all cases except

W1,1 and S1,1. This together with L(δi, δµ) = 0 for i < µ show L(B̃1, δµ) = 0 and, thus,
L(B̃1,B2) = 0. Looking carefully at the Coxeter-Dynkin diagrams we see that L(δµ, δi) = 0
for i ≤ µ− 2 for all cases except W1,1 and S1,1, thus L(δµ, B̃1) = 0 and L(B2, B̃1) = 0.
However, in the cases W1,1 and S1,1 L(B1, δµ) = 0 = L(δµ,B1) and, hence, L(B1,B2) =

0 = L(B2,B1) hold also.
The substitute of (119) for S1,10 is (120). It will be shown at the very end of this proof

as some sort of a special case. So in order to prove part (a), it remains to show (119). This
is trivial for the three series with rI = 1. It will be shown for the series Q2,p and for the
subseries W1,6s−3 with s ∈ Z≥1) of the series W1,p also at the very end of this proof.
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For the other cases we have to study smaller Orlik blocks. In particular, for the series
S]1,p, E3,p, Z1,p, W1,p and S1,p it is Φ2|b1. In these cases we can define

γ1 := v(β1,−1) :=
b1
Φ2

(Mh)(β1) (160)

and compute L(γ1, γ1) =
b1
Φ2

(−1) ·L(γ1,β1) via (478). The results are listed in (161).

Type γ1 L(γ1, γ1)

S]1,p Φ10(Mh)(δ8) = 2δ1 + δ2 − δ4 − δ5 − δ6 + δ8 5

E3,p Φ18(Mh)(δ3) = −δ2 + 2δ3 + δ6 − δ7 + δ9 6

Z1,p Φ14(Mh)(δ8)

= δ2 + δ3 − 3δ4 − δ6 + δ7 − 3δ9 − δ10 21

W1,p (Φ12Φ6Φ3)(Mh)(δ3 + δ9 + δ11)

= δ4 − δ5 + δ9 + δ11 − δ13 − δ15 6

S1,p (Φ10Φ5)(Mh)(−δ8 + δ13)

= −2δ1 + δ7 − δ8 − δ9 − δ11 − δ12 − δ14 10

(161)

In the case of the series Z1,p we set additionally γ3 := β3 and compute

L(γ3, γ3) = 3, L(γ1, γ3) = L(γ3, γ1) = 7. (162)

Now in certain subseries of the series S]1,p, E3,p, Z1,p, W1,p and S1,p it is also Φ2|b2 (see
(163) for details).

Type Condition for Φ2|b2 L(γ2, γ2)

S]1,p p ≡ 0(2) 5 + p
2

E3,p p ≡ 0(2) 18 + 2p

Z1,p p ≡ 0(2) 14 + 2p

W1,p p ≡ 1(2) 12 + 2p

S1,p p ≡ 0(2) 10 + 2p

(163)

Hence, in these cases we can also define

γ2 := v(β2,−1) :=
b2
Φ2

(Mh)(β2) (164)
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and compute L(γ2, γ2) =
b2
Φ2

(−1) ·L(γ2,β2) (cf. (478)). The results are listed in (165).

Type γ2

S]1,p −δ2 + δ4 + δ5 + δ6 − δ7 +
∑2+p/4
j=1 (δ7+2j + δ10+ p

2+2j)

−δ4 + δ5 +
∑(6+p)/4
j=1 (−δ8+2j + δ11+ p

2+2j)

E3,p −δ2 + 2δ5 + δ6 − δ7 + δ9 + 2∑4+p/2
j=1 δ8+2j

Z1,p −δ2 + 2δ5 + δ6 − δ7 + δ10 + 2∑3+p/2
j=1 δ9+2j

W1,p −2δ3 + δ4 + δ5 + δ9 + δ11 + δ13 + δ15 + 2∑(1+p)/2
j=1 δ14+2j

S1,p 2(−δ1 − δ2 + δ4 + δ5 + δ6)− δ7 − δ8

+δ9 + δ11 + δ12 + δ14 − 2∑p/2
j=1 δ14+2j

(165)

Note that in (165) the first line for S]1,p is the case p ≡ 0(4), the second line is the case
p ≡ 2(4).

In the subseries of E3,p,W1,p and S1,p with Φ2|b2 we see

γ̃2 :=
1
2 (γ1 + γ2)

!
∈Ml(f). (166)

In the subseries of Z1,p with Φ2|b2 we see

γ̃2 :=
1
2 (γ1 + γ2 − 3γ3)

!
∈Ml(f). (167)

Together with [Ml(f) : B1 ⊕B2] = 2 for these subseries, this shows

Ml(f)Φ2 = Zγ1 ⊕Zγ̃2 for E3,2q,W1,2q−1,S1,2q, (168)

Ml(f)Φ2 = Z(γ1 − 2γ3)⊕Zγ̃2 ⊕Zγ3 for Z1,2q. (169)

For S]1,2q the Orlik decomposition Ml(f) = B1 ⊕B2 gives a decomposition Ml(f)Φ2 =

Zγ1⊕Zγ2. The matrices of L for these bases of Ml(f)Φ2 in the aforementioned cases are:

S]1,2q E3,2q Z1,2q5 0

0 5 + q

 6 3

3 6 + q




5 2 1

2 5 + q −1

1 −1 3


W1,2q−1 S1,2q6 3

3 4 + q

 10 5

5 5 + q


(170)
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All these matrices are positive definite. Moreover, the corresponding quadratic forms

(x1 x2)(matrix)

x1

x2

 respectively (x1 x2 x3)(matrix)


x1

x2

x3

 are

5x2
1 + (5 + q)x2

2 for S]1,2q

3x2
1 + 3(x1 + x2)

2 + (3 + q)x2
2 for E3,2q

(2x1 + x2)
2 + (x1 + x3)

2 + (x2 − x3)
2 + (3 + q)x2

2 + x2
3 for Z1,2q (171)

3x2
1 + 3(x1 + x2)

2 + (1 + q)x2
2 for W1,2q−1

5x2
1 + 5(x1 + x2)

2 + qx2
2 for S1,2q

This shows

{a ∈Ml(f)Φ2 |L(a, a) = L(γ1, γ1)} = {±γ1}. (172)

for W1,2q−1 with q 6= 2, for S1,2q with q 6= 5, and for all S]1,2q and E3,2q. It shows for Z1,2q

{a ∈Ml(f)Φ2 |L(a, a) = 3} = {±γ3}, (173)

{a ∈Ml(f)Φ2 |L(a, a) = 5} = {±(γ1 − 2γ3)}. (174)

All this implies

Aut(Ml(f)Φ2 ,L) = {± id |Zγ1} × {± id |Zγ2} for S]1,2q,

for E3,2q, for S1,2q with q 6= 5,

and for W1,2q−1 with q 6= 2, (175)

Aut(Ml(f)Φ2 ,L) = {± id |Zγ1⊕Zγ3} × {± id |Zγ2} for Z1,2q. (176)

Now we consider the cases S]1,2q−1, E3,2q−1, Z1,2q−1,W1,2q and S1,2q−1 with Φ2 6 | b2. Here
it is

Ml(f)Φ2 = (B̃1)Φ2 and Aut(Ml(f)Φ2 ,L) = {± id}. (177)

We define

γ4 :=

 γ1 for E3,p,W1,p,S1,p

γ1 − 3γ3 for Z1,p.
(178)

Then for E3,p, W1,p with p 6= 3, S1,p with p 6= 10 and Z1,p it holds

g(γ4) = ±γ4 for g ∈ GZ, (179)

and for E3,p, W1,p (including p = 3), S1,p (including p = 10) and Z1,p it holds

B̃1 ⊕B2 = {a ∈Ml(f) |L(a, γ4) ≡ 0(2)}. (180)
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Here ⊆ (180) follows from L(B2, γ4) = 0 and L(β1, γ4) ≡ 0(2) and in the case of Z1,p

L(β3, γ4) = 4. Now = in (180) follows from L(Ml(f), γ4) = Z and [Ml(f) : B̃1⊕B2] = 2.
Together (179) and (180) show that any g ∈ GZ respects B̃1 ⊕B2, so

GZ ⊆ Aut(B̃1 ⊕B2,L) (181)

for E3,p, W1,p with p 6= 3, S1,p with p 6= 10 and Z1,p. We claim that (179) and thus (181)
hold also for W1,3. That will be proved at the very end of this proof as a special case.

Now it remains to show Aut(B̃1 ⊕ B2,L) ⊆ GZ for the series E3,p, Z1,p, W1,p, S1,p.
Therefore we will extend the definition of γ̃2 in such a way to the cases with Φ2 6 |b2

that (B̃1 ⊕ B2) + Z · γ̃2 = Ml(f). Furthermore, we will show that g(γ̃2) ∈ Ml(f) for
any g ∈ Aut(B̃1 ⊕ B2,L). This then implies Aut(B̃1 ⊕ B2,L) ⊆ GZ. But the proof of
g(γ̃2) ∈Ml(f) requires a better control of Aut(B̃1 ⊕B2,L).
Consider again all eight series and define

b4 :=
gcd(b1, b2)

gcd(b1, b2, Φm)
= gcd( b1

Φm
, b2) ∈ Z[t]. (182)

Then it is

b4 =



1 for W ]
1,p,S

]
1,2q−1,U1,p,E3,2q−1,Z1,2q−1,

Q2,p with p 6≡ 0(4),W1,2q,S1,2q−1,

Φ2 for S]1,2q,E3,2q,Z1,2q,W1,2q−1 with q 6≡ 2(3),S1,2q,

Φ4 for Q2,4s,

Φ6Φ2 for W1,6s−3.

(183)

We claim that in all cases except S1,10, any g ∈ GZ ∪Aut(B̃1 ⊕B2,L) maps (B̃1)b4 to
(B̃1)b4 and (B2)b4 to (B2)b4 . In the cases with b4 = 1 there is nothing to show as then
(B̃1)b4 = {0} = (B2)b4 . In the cases Q2,p with p ≡ 0(4) and W1,6s−3, this will be shown at
the very end of the proof as some special case.
In all other cases b4 = Φ2 and (B2)b4 = Z · γ2 and

(B̃1)b4 =

 Z · (γ1 − 2γ3)⊕Z · γ3 for Z1,2q,

Z · γ1 else.
(184)

Since (B̃1 ⊕B2)Φ2 ⊆Ml(f)Φ2 , the equations (172), (173) and (174) hold also with (B̃1 ⊕
B2)Φ2 instead of Ml(f)Φ2 . They characterize (B̃1)Φ2 within Ml(f)Φ2 and within (B̃1 ⊕
B2)Φ2 . Thus any g ∈ GZ ∪Aut(B̃1 ⊕B2,L) maps (B̃1)Φ2 to itself, and then it maps also
the L-orthogonal sublattice (B2)Φ2 to itself.
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For all eight series except S1,10, this implies the following. For any automorphism g ∈
GZ ∪Aut(B̃1 ⊕B2,L) it is

g : B̃1 → B̃1 and B2 → B2 if m 6 | p, (185)

g : (B̃1)b1/Φm → (B̃1)b1/Φm

g : (B2)b2/Φm → (B2)b2/Φm

 if m|p and the

type is not S1,10.
(186)

Now we want to apply Lemma A.2.3 to the Orlik blocks at stake. One checks easily that
all assumptions of the lemma are satisfied. Therefore

Aut(B̃1 ⊕B2,L) (187)

= {±Mk
h |B̃1

| k ∈ Z} × {±Mk
h |B2 | k ∈ Z} if m 6 | p,

and if m| p and the type is not S1,10, then Aut(B̃1 ⊕B2,L) projects to a subgroup of

Aut((B̃1)b1/Φm ,L)×Aut((B2)b2/Φm ,L) (188)

= {±Mk
h |(B̃1)b1/Φm

| k ∈ Z} × {±Mk
h |(B2)b2/Φm

| k ∈ Z}.

The group Aut(B̃1⊕B2,L) form 6 |p is generated by the automorphismsMh, − id,Mh|B̃1
×

id |B2 and (− id |
B̃1
)× id |B2 , and analogously for the group in (188) if m| p.

Now we extend the definition of γ2. For E3,2q−1, Z1,2q−1 and S1,2q−1 define it as follows:

γ2 := δ2 − δ6 + δ7 + δ9 for E3,2q−1, (189)

γ2 := δ2 − δ6 + δ7 + δ10 for Z1,2q−1,

γ2 := 2(−δ1 − δ2 +
∑

j∈{4,5,6}
δj)− δ7 − δ8 +

∑
j∈{9,11,12,14}

δj for S1,2q−1.

The equations (144), (149) and (159) show that γ2 ∈ B2. For W1,2q (so p = 2q) define

γ2 := (tp(t+ 1)Φ12 +
p−1∑
j=0

tj)(Mh)(δ16) (190)

= (tp(1 + t− t2 − t3 + t4 + t5) +
p−1∑
j=0

tj)(Mh)(δ16)

= −2δ2 + 2δ6 − 2δ7 + δ4 + δ5 + δ9 − δ11 + δ13 − δ15.

We observe that in the case 12|p, Φ12 divides ∑p−1
j=0 t

j so that then γ2 ∈ Φ12(Mh)(B2) =

(B2)b2/Φ12 . In all four cases it holds 1
2 (γ4 + γ2) ∈Ml(f).
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Now for the series E3,p, Z1,p, W1,p and S1,p it is

γ4 ∈ (B1)Φ2 ,

 γ2 ∈ B2 if m 6 | p,

γ2 ∈ (B2)b2/Φm if m| p,
(191)

γ̃2 :=
1
2 (γ4 + γ2)

!
∈Ml(f), (192)

Ml(f) = (B̃1 ⊕B2) + Zγ̃2, (193)

(Mh|B̃1
× id |B2)(γ̃2) = ((− id |

B̃1
)× id |B2)(γ̃2)

=
1
2 (−γ4 + γ2) = −γ4 + γ̃2 ∈Ml(f). (194)

Therefore any g ∈ Aut(B̃1⊕B2,L) maps γ̃2 to an element of Ml(f). Thus it maps Ml(f)

toMl(f), thus g ∈ GZ. This finishes the proof of (119) and of part (a) for all series except
Q2,p and W1,6s−3 and S1,10. All those cases are treated at the very end of the proof as
special cases.
(b) This part follows immediately from (119) and (187). Note that at the very end of

the proof of part (c) we will show (119) and (187) also for the series Q2,p and W1,6s−3.

(c) In this part we consider the eight subseries with m|p. We write p = m · r with
r ∈ Z≥1. Recall that for ζ = e2πi/m the ring Z[ζ] is a principal ideal domain (cf. [He93,
Kapitel 3]). Here ξ denotes any primitive m-th unit root.

We can apply formula (483) from Lemma A.2.5 (b) with Λ = Ml(f), Λ(1) = B̃1 ⊕B2

and p = Φm. This gives

Ml(f)Φm = (B̃1 ⊕B2)Φm = (B1 ⊕B2)Φm = (B1)Φm ⊕ (B2)Φm . (195)

Therefore the space

Ml(f)ξ,Z[ζ] := Ml(f)ξ ∩Ml(f)Z[ζ] (196)

is a free Z[ζ]-module of rank 2 with basis v1,ξ, v2,ξ with

vj,ξ := v(βj , ξ) =
bj
t− ξ

(Mh)(βj) for j = 1, 2 (197)

(see (477) for the notion v(βj , ξ)). It holds vj,ξ = vj,ξ.
Now we start the proof. It will comprise four steps. Step 1 calculates the values of the

Hermitian form hξ according to Lemma A.2.6 on a suitable Z[ζ]-basis ofMl(f)ξ,Z[ζ]. Step
2 analyzes what this implies for automorphisms of the pair (Ml(f)ξ,Z[ζ],L) and thus gives
a first approximation of Ψ(GZ). Step 3 uses (120) for S1,10 and (186) for all other singu-
larities and the Orlik block structure of the blocks Bj to control the action of g ∈ GZ on
all eigenspaces simultaneously. It will prove (124). Step 4 combines the Steps 2 and 3 with
results from Section A.3 and shows that Ψ(GZ) is some infinite Fuchsian group.
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Step 1: The form

hξ : Ml(f)ξ ×Ml(f)ξ → C, (a, b) 7→
√
−ξ ·L(a, b)

is Hermitian according to Lemma A.2.6. In this step it will be calculated with respect to
the Z[ζ]-basis v1,ξ, v2,ξ of Ml(f)ξ,Z[ζ]. For i 6= j

hξ(vi,ξ, vj,ξ) =
√
−ξ ·L(vi,ξ, vj,ξ) = 0 (198)

because of (118). L(vj,ξ, vj,ξ) will be calculated with (478),

L(vj,ξ, vj,ξ) =
bj

t− ξ
(ξ) ·L( bj

t− ξ
(Mh)(βj),βj), (199)

first for j = 2, then for j = 1.
We calculate for all eight subseries:

k 0 1 2 · · · deg b2 − 1 deg b2

L(Mk
h (β2),β2) 1 −1 0 · · · 0 0 if rI = 1, −1 if rI ≥ 2

For the three subseries with rI = 1, i.e. W ]
1,12r, S

]
1,10r, U1,9r, it is

b2
t− ξ

=
tm+p − 1
(t− ξ) ·Φ1

= Φ−1
1 ·

m+p−1∑
j=0

ξm+p−1−j · tj , (200)

b2

t− ξ
(ξ) = (ξ − 1)−1 · (m+ p) · ξ = m(1 + r)(ξ − 1)−1 · ξ, (201)

L(
b2
t− ξ

(Mh)(β2),β2) = (ξ − 1)−1 · ξ · (1− ξ) = ξ
2, (202)

hξ(v2,ξ, v2,ξ) = m(1 + r) · (1− ξ)−1 ·
√
−ξ > 0. (203)

For the five subseries with rI = 2 it is

b2
t− ξ

=
tm/2+p + 1

t− ξ
=

m/2+p−1∑
j=0

ξm/2+p−1−j · tj , (204)

b2

t− ξ
(ξ) = (

m

2 + p)(−ξ) = m

2 (1 + 2r)(−ξ), (205)

L(
b2
t− ξ

(Mh)(β2),β2) = −ξ(1− ξ), (206)

hξ(v2,ξ, v2,ξ) =
m

2 (1 + 2r) · (1− ξ) ·
√
−ξ > 0. (207)



62 torelli results for µ-constant families of singularities

Now we turn to hξ(v1,ξ, v1,ξ). We compute for all eight series

k 0 1 2 3 4 5 6 7 8 9 10 11

L(Mk
h (β1),β1) for W ]

1,p 1 −1 1 0 0 1

L(Mk
h (β1),β1) for S]1,p 1 −1 0 1 0

L(Mk
h (β1),β1) for U1,p 1 −1 0 0 1 0 −1 0 0

L(Mk
h (β1),β1) for E3,p 1 −1 1 0 1 0 1 0 1

L(Mk
h (β1),β1) for Z1,p 1 −1 0 0 1 0 0

L(Mk
h (β1),β1) for Q2,p 1 −1 0 1 0 0 0 0 0 0 −1 0

L(Mk
h (β1),β1) for W1,p 3 −3 2 −1 0 1 −1 1 −1 0 1 −2

L(Mk
h (β1),β1) for S1,p 2 −2 0 1 0 −1 1 0 −1 0

and

for W ]
1,p

b1
t− ξ

=
Φ12
t− ξ

= t3 + ξt2 + (ξ2 − 1)t+ (ξ3 − ξ),

for S]1,p
b1
t− ξ

=
Φ10Φ2
t− ξ

=
t5 + 1
t− ξ

= t4 + ξt3 + ξ2t2 + ξ3t+ ξ4,

for U1,p
b1
t− ξ

=
Φ9
t− ξ

=
t6 + t3 + 1
t− ξ

= t5 + ξt4 + ξ2t3 + (ξ3 + 1)t2 + (ξ4 + ξ)t+ (ξ5 + ξ2),

for E3,p
b1
t− ξ

=
Φ18Φ2
t− ξ

=
t7 + t6 − t4 − t3 + t+ 1

t− ξ
= t6 + (ξ + 1)t5

+(ξ2 + ξ)t4 + (ξ6 + ξ2)t3 + (ξ7 + ξ6)t2 + (ξ8 + ξ7)t+ ξ8,

for Z1,p
b1
t− ξ

=
t7 + 1
t− ξ

= t6 + ξt5 + ξ2t4 + ξ3t3 + ξ4t2 + ξ5t+ ξ6,

for Q2,p
b1
t− ξ

=
Φ12Φ4Φ3
t− ξ

=
t8 + t7 + t6 + t2 + t+ 1

t− ξ
= t7 + (ξ + 1)t6 + (ξ2 + ξ + 1)t5 + (ξ3 + ξ2 + ξ)t4

+(ξ4 + ξ3 + ξ2)t3 + (ξ5 + ξ4 + ξ3)t2 + (ξ5 + ξ4)t+ ξ5,

for W1,p
b1
t− ξ

=
Φ12Φ6Φ3Φ2

t− ξ
=
t9 + t8 + t5 + t4 + t+ 1

t− ξ
= t8 + (ξ + 1)t7 + (ξ2 + ξ)t6 + (ξ3 + ξ2)t5 + (ξ3 + ξ2)t4

+(ξ3 + ξ2)t3 + (ξ4 + ξ3)t2 + (ξ5 + ξ4)t+ ξ5,

for S1,p
b1
t− ξ

=
Φ10Φ5Φ2
t− ξ

=

∑9
j=0 t

j

t− ξ
= t8 + (ξ + 1)t7 + (ξ2 + ξ + 1)t6 + (ξ3 + ξ2 + ξ + 1)t5

+(ξ4 + ξ3 + ξ2 + ξ + 1)t4 + (ξ4 + ξ3 + ξ2 + ξ)t3

+(ξ4 + ξ3 + ξ2)t2 + (ξ4 + ξ3)t+ ξ4.
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This table and this list give the following values.

b1
t−ξ (ξ) L( b1

t−ξ (Mh)(β1),β1)

W ]
1,p 4ξ3 − 2ξ = −2(ξ + ξ)ξ2 ξ3(1− ξ)

S]1,p 5ξ4
= −5ξ −ξ(ξ2 + ξ

2 − 1)

U1,p 6ξ5
+ 3ξ2

= 3ξ(ξ3 − 1) −ξ6(ξ2 + ξ
2
)

E3,p 3(ξ6
+ ξ

5
+ ξ

9
+ ξ

8
) = −3(ξ + 1)(ξ3 + 1) ξ2(ξ + ξ)(ξ2 + ξ

2
)

Z1,p 7ξ6
= −7ξ ξ2(ξ4 + ξ

4
+ 1)

Q2,p 6(ξ7
+ ξ

6
+ ξ

5
) = −6(ξ + ξ + 1) ξ2(ξ + 1) = (1− ξ)−1

W1,p 4(ξ8
+ ξ

7
+ ξ

6
+ ξ

5
) = 4ξ7

(1 + ξ)(ξ + xi) ξ3(ξ − 1)(ξ − 1)

S1,p 5(ξ8
+ ξ

7
+ ξ

6
+ ξ

5
+ ξ

4
) −1 + ξ + ξ2 − 2ξ3 + ξ4

According to hξ(v1,ξ, v1,ξ) =
√
−ξ · L(v1,ξ, v1,ξ) and (199) we obtain the following values

(see (208)). Note that in order to compute the values in (208) by hand it may be helpful
to have some basic information on the rings Z[ζ] available. For example such information
can be found in the proof of [He93, Lemma 3.8] for Z[ζ] = Z[e

2πi
18 ] and in [GH18, Lemma

2.11] for all cases at stake.

hξ(v1,ξ, v1,ξ)

W ]
1,p (−2)(ξ + ξ) · (1− ξ)

√
−ξ

S]1,p 5(ξ2 + ξ
2
)(ξ2 + ξ

2 − 1) · (1− ξ)−1√−ξ

U1,p 3(ξ4 + ξ
4
+ 1) · (1− ξ)

√
−ξ

E3,p (−3)(1 + ξ)(1 + ξ)(ξ + ξ − 1) · (1− ξ)−1√−ξ

Z1,p (−7)(ξ2 + ξ
2
) · (1− ξ)

√
−ξ

Q2,p (−6)(ξ + ξ + 1) · (1− ξ)−1√−ξ

W1,p (−4)(ξ + ξ) · (1− ξ)
√
−ξ

S1,p (−10)(ξ2 + ξ
2
) · (1− ξ)

√
−ξ

(208)

Here we observe that as in (203) and (207) it holds (1− ξ)
√
−ξ > 0 and (1− ξ)−1√−ξ > 0.

In each of the eight cases we find

hξ(v1,ξ, v1,ξ) > 0 for ξ 6∈ {ζ, ζ}, (209)

hξ(v1,ξ, v1,ξ) < 0 for ξ ∈ {ζ, ζ}, (210)

and

L(v1,ξ,β1) = L(
b1
t− ξ

(Mh)(β1),β1) ∈ Z[ζ]∗. (211)

Step 2: We define for each of the eight series

b5 :=
b1

Φm
∈ Z[t] unitary. (212)
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Then we obtain

series W ]
1,p S]1,p U1,p E3,p Z1,p Q2,p W1,p S1,p

b5 1 Φ2 1 Φ2 Φ2 Φ4Φ3 Φ6Φ3Φ2 Φ5Φ2

and

b5(ξ)/b5(ξ) ∈ {±ξk | k ∈ Z}. (213)

Define for each of the eight subseries with m|p

b6 :=
b2

Φm
∈ Z[t] unitary (214)

and

w(ξ) := −hξ(v2,ξ, v2,ξ)

hξ(v1,ξ, v1,ξ)
= −

b2
t−ξ (ξ) ·L(v2,ξ,β2)

b1
t−ξ (ξ) ·L(v1,ξ,β1)

= −b6
b5
(ξ) · L(v2,ξ,β2)

L(v1,ξ,β1)
. (215)

Then

b5(ξ)w(ξ) = b6(ξ) ·
L(v2,ξ,β2)

L(v1,ξ,β1)
∈ Z[ζ]. (216)

It is in Z[ζ] because of (211). The w(ξ) are as follows.

w(ξ)

W ]
1,p (1 + r)(+6)[(1− ξ)(1− ξ)(ξ + ξ)]−1

S]1,p (1 + r)(−2)[(ξ2 + ξ
2
)(ξ2 + ξ

2 − 1)]−1

U1,p (1 + r)(−3)[(1− ξ)(1− ξ)(ξ4 + ξ
4
+ 1)]−1

E3,p (1 + 2r)(+3)(1− ξ)(1− ξ)[(1 + ξ)(1 + ξ)(ξ + ξ − 1)]−1

Z1,p (1 + 2r)(+1)[ξ2 + ξ
2
]−1

Q2,p (1 + 2r)(+1)(1− ξ)(1− ξ)[ξ + ξ + 1]−1

W1,p (1 + 2r)(+ 3
2 )[ξ + ξ]−1

S1,p (1 + 2r)(+ 1
2 )[ξ

2 + ξ
2
]−1

(217)

The inequalities (203), (207), (209) and (210) give

w(ξ)

 < 0 for ξ 6∈ {ζ, ζ},

> 0 for ξ ∈ {ζ, ζ}.
(218)
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Using the basis v1,ξ,v2,ξ of Ml(f)ξ,Z[ζ], the automorphism group Aut(Ml((f)ξ,Z[ζ],hξ)
can be identified via the isomorphism A(ξ) 7→ g given by

g(v1,ξ, v2,ξ) = (v1,ξ, v2,ξ) ·A(ξ). (219)

with the matrix group

{A(ξ) ∈ GL(2; Z[ζ]) |

−1 0

0 w(ξ)

 = A(ξ)T ·

−1 0

0 w(ξ)

 ·A(ξ)}. (220)

The inequalities (218) and Theorem A.3.4 say that the matrix group in the case of
ξ = ζ projects to an infinite Fuchsian group. Furthermore, Theorem A.3.4 tells us that the
elements of the matrix group for any ξ can be represented by triples (a(ξ), c(ξ), δ(ξ)) ∈
Z[ζ]2 × {±ζk | k ∈ Z} with

a(ξ)a(ξ)− 1 = w(ξ) · c(ξ)c(ξ), (221)

where

A(ξ) =

a(ξ) w(ξ) · c(ξ) · δ(ξ)

c(ξ) a(ξ) · δ(ξ)

 . (222)

This gives a first approximation of Ψ(GZ). It took into account only the eigenspace
Ml(f)ξ,Z[ζ] and the pairing hξ which L and complex conjugation induce on it.

Step 3: Now (124) will be shown. Therefore, we will employ Lemma A.2.3 and (120)
for S1,10 and (188) for all other singularities.

We start and show that the assumptions of Lemma A.2.3 are fulfilled. Let g ∈ ker Ψ ⊆
GZ, i.e. g|Ml(f )ζ ∈ C∗ · id. Then g|Ml(f )ξ ∈ C∗ · id for all ξ with Φm(ξ) = 0. Thus we have

g((Bj)Φm) = (Bj)Φm for j = 1, 2. (223)

For S1,10 the equalities g(Bj) = Bj with j = 1, 2 follow from (120). For all other
singularities g(Bj) = Bj with j = 1, 2 follows with (188) (and (177) for B3 in the case
Z1,14r).
Now we are ready to apply Lemma A.2.3 to the Orlik blocks B1 and B2. One checks

easily that all hypotheses are satisfied. In the case Z1,14r B3 is glued to B1 by (177).
Therefore in all cases we obtain

g = (ε1 ·Mk1
h )|B1 × (ε2 ·Mk2

h )|B2 (224)

for some ε1, ε2 ∈ {±1} and k1, k2 ∈ Z. Now we consider

g̃ := ε2 ·M−k2
h ◦ g. (225)
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It satisfies

g̃|B1 = ε1ε2 ·Mk1−k2
h |B1 , g̃|B2 = id, g̃|Ml(f )ξ

∈ C∗ · id,

thus g̃|Ml(f )ξ = id, g̃|Ml(f )Φm
= id . (226)

Comparing this with Table 7 shows

g̃ = id or g̃ = −M
m
2 (1+2r)
h for the series Q2,p, W1,p, S1,p,

g̃ = id for the other series in Table 7.

In any case, g̃ and g are in {±Mk
h | k ∈ Z} and, thus, it is ker Ψ = {±Mk

h | k ∈ Z}.

Step 4: By Step 2, the image Ψ(GZ) is a subgroup of an infinite Fuchsian group and
therefore itself a Fuchsian group. It rests to show that it is an infinite group. By Step 3,
the kernel of Ψ : GZ → Ψ(GZ) is {±Mk

h | k ∈ Z}, so it is finite. Therefore it rests to show
that GZ is infinite. We will see that the subgroup of elements g ∈ GZ with

g = id on any eigenspace Ml(f)λ with Φm(λ) 6= 0,

i.e. g = id on (B̃1)b5 and on (B2)b6 . (227)

is infinite.
Consider an element g ∈ GZ with (227). For all singularities except S1,10 (119) holds.

For S1,10 (227) implies g(γ4) = ±γ4, and then (181) gives g ∈ Aut(B1 ⊕B2,L). In the
case of the series Z1,14r, the element g maps B1⊕B2 to itself because (B1⊕B2)C contains
ker Φm(Mh). In any case, Lemma A.2.4 applies with k = 2, Λ(1) = B1, Λ(2) = B2,
e(1) = β1, e(2) = β2 and p0 = Φm. By (481) there are unique polynomials pij ∈ Z[t]<deg bi
for i = 1, 2 with

g(βj) = p1j(Mh)(β1) + p2j(Mh)(β2) (228)

and

p11 = 1 + b5 · q11, p12 = b5 · q12,

p21 = b6 · q21, p22 = 1 + b6 · q22
(229)

for suitable polynomials qij ∈ Z[t]<ϕ(m).
We know that g restricts to an automorphism of the pair (B1 ⊕B2)Φm ,L). By (482),

the matrix A(ξ) from (219) in Step 2 takes the form

A(ξ) =

1 + b5(ξ)q11(ξ) b6(ξ)q12(ξ)

b5(ξ)q21(ξ) 1 + b6(ξ)q22(ξ)

 . (230)

By Step 2, this matrix A(ξ) satisfies (221) and (222).
Vice versa, all polynomials qij ∈ Z[t]<ϕ(m) for i = 1, 2 such that the matrix in (230)

satisfies (221) and (222), give rise to an element g ∈ GZ with (227) via (229) and (228).
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So it remains to show that there are infinitely many polynomials qij ∈ Z[t]<ϕ(m) such
that the matrix in (230) satisfies (221) and (222) and that q12(ξ) 6= 0 and q21(ξ) 6= 0. We
start by defining

w0(ξ) := w(ξ)b5(ξ)b5(ξ) ∈ Z[ζ] ∩R (231)

and asking for infinitely many solutions a(ξ), f(ξ) ∈ Z[ζ] ∩R of the Pell equation

a(ξ)2 − 1 = w0(ξ) · f(ξ)2 (232)

with the additional condition

w0(ξ) | a(ξ)− 1. (233)

Such solutions must exist according to Lemma A.3.5. They give rise to the elements

q11(ξ) :=
a(ξ)− 1
b5(ξ)

, q12(ξ) := f(ξ) · w(ξ)b5(ξ)

b6(ξ)
, (234)

q21(ξ) := f(ξ), q22(ξ) :=
a(ξ)− 1
b6(ξ)

. (235)

In the situation above it is

b6(ξ) |w(ξ)b5(ξ) |w0(ξ) | a(ξ)− 1,

(cf. (211), (213) and (216)). These elements come from unique polynomials qij ∈ Z[t]<ϕ(m),
whereas the polynomials satisfy all the desired properties. So there are infinitely many poly-
nomials and, hence, GZ contains infinitely many elements. This finishes the proof of the
theorem except for the parts, which we explicitly omitted. They will be proved now.

First of all, the proof of (119) for Q2,p was postponed and has to be given now. Recall
the definition (182) of b4 and recall that b4 = Φ4 for Q2,4s and b4 = 1 for the other Q2,p.
We proceed by proving the following three claims:

(i) In the case Q2,4s and for any g ∈ GZ ∪Aut(B1 ⊕B2,L)

g : (B1)b4 → (B1)b4 and (B2)b4 → (B2)b4 . (236)

(ii) In the case Q2,p there is an element γ4 ∈ (B1)Φ4 with

B1 ⊕B2 = {a ∈Ml(f) |L(a, γ4) ≡ 0(2)} (237)

= {a ∈Ml(f) |L(a,Mh(γ4)) ≡ 0(2)},

g(γ4) ∈ {±γ4,±Mh(γ4)} for any g ∈ GZ. (238)
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(iii) In the case Q2,p there is an element γ5 ∈Ml(f) with

B1 +B2 + Z · γ5 =Ml(f) (239)

and g(γ5) ∈Ml(f) for any g ∈ Aut(B1 ⊕B2,L). (240)

For all Q2,p we set

γ1 :=
b1
Φ4

(Mh)(β1) = (Φ12Φ3)(Mh)(δ8)

= (t6 + t5 − t3 + t+ 1)(Mh)(δ8)

= −2δ3 − 2δ4 − δ5 − 2δ6 + δ7 − δ8 − δ9. (241)

We easily see that it is M2
h(γ1) = −γ1. Now (B1)Φ4 is an Orlik block with cyclic generator

γ1 (cf. Section A.2). Hence, it is (B1)Φ4 = Z · γ1 ⊕Z ·Mh(γ1). We compute

Mh(γ1) = 2δ1 + δ2 − δ5 + δ6 − 2δ7 − δ8 − δ9 − δ10. (242)

For Q2,4s we define

γ2 :=
b2
Φ4

(Mh)(β2) =
t6+4s + 1
t2 + 1 (Mh)(δ11)

= (t4+4s − t2+4s + t4s − . . .− t2 + 1)(Mh)(δ11)

= −δ5 − δ10 + (−1)
2+2s∑
j=1

δ10+2j + (−2)
1+s∑
j=1

δ9+4j . (243)

It holdsM2
h(γ2) = −γ2. Now (B2)Φ4 is an Orlik block with cyclic generator γ2 (cf. Section

A.2). Thus we obtain (B2)Φ4 = Z · γ2 ⊕Z ·Mh(γ2). We can compute

Mh(γ2) = −δ2 + δ5 + δ6 − δ7 +
2+2s∑
j=1

(−1)j+1δ10+2j . (244)

For Q2,4s we define

γ3 :=
1
2 (γ1 +Mh(γ1) + γ2 +Mh(γ2)) (245)

and we conclude that

γ3 = δ1 −
∑

j∈{3,4,5,7,8,9,10}
δj −

1+s∑
j=1

(δ9+4j + δ10+4j)
!
∈Ml(f). (246)

Together with [Ml(f) : B1 ⊕ B2] = 2 this shows (239). In particular, γ1, Mh(γ1), γ3,
Mh(γ3) is a Z-basis of Ml(f)Φ4 . Now we want to calculate the matrices of L with respect
to the basis γ1,Mh(γ1), γ2,Mh(γ2) of (B1⊕B2)Φ4 and the basis γ1,Mh(γ1), γ3,Mh(γ3) of
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Ml(f)Φ4 . Note that we need to calculate only the values L(γ1, γ1) and L(γ2, γ2), because
of (118) and the following identities for any a ∈Ml(f)Φ4 :

L(a,Mh(a)) = L(Mh(a),M2
h(a)) = −L(Mh(a), a)

= L(a, a) = L(Mh(a),Mh(a)).
(247)

Using M2
h(γj) = −γj and calculations similar to (478), we obtain

L(γ1, γ1) = L(
b1
Φ4

(−M−1
h )(γ1), δ8) = 3 ·L(Mh(γ1), δ8) = 3, (248)

L(γ2, γ2) = L(
b2
Φ4

(M−1
h )(γ2), δ11)

= (3 + 2s) ·L(γ2, δ11) = 3 + 2s, (249)

All in all, we obtain

L(


γ1

Mh(γ1)

γ2

Mh(γ2)


,


γ1

Mh(γ1)

γ2

Mh(γ2)



T

) =


3 3 0 0

−3 3 0 0

0 0 3 + 2s 3 + 2s

0 0 −(3 + 2s) 3 + 2s


(250)

and

L(


γ1

Mh(γ1)

γ3

Mh(γ3)


,


γ1

Mh(γ1)

γ3

Mh(γ3)



T

) =


3 3 3 0

−3 3 0 3

0 3 3 + s 3 + s

−3 0 −(3 + s) 3 + s


. (251)

The quadratic form associated to the last matrix is

3
2 ·
[
(x1 + x3)

2 + (x1 − x4)
2 + (x2 + x3)

2 + (x2 + x4)
2
]
+ s · (x2

3 + x2
4). (252)

This shows (most importantly for Q2,4s — but in fact for all Q2,p)

{a ∈Ml(f)Φ4 |L(a, a) = 3} = {±γ1,±Mh(γ1)}, (253)

and because of (B1 ⊕B2)Φ4 ⊆Ml(f)Φ4

{a ∈ (B1 ⊕B2)Φ4 |L(a, a) = 3} = {±γ1,±Mh(γ1)}, (254)

This implies that any g ∈ GZ ∪Aut(B1 ⊕B2,L) maps the set {±γ1,±Mh(γ1)} to itself
and thus (B1)Φ4 to itself and thus the L-orthogonal sublattice (B2)Φ4 to itself. This shows
(236) and gives (i).
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Now define for all Q2,p

γ4 := γ1 +Mh(γ1) (255)

= 2δ1 + δ2 − 2δ3 − 2δ4 − 2δ5 − δ6 − δ7 − 2δ8 − 2δ9 − δ10.

We can observe that

Mh(γ4) = −γ1 +Mh(γ1) (256)

= −2γ1 + γ4. (257)

(253) and (256) imply (238). (257) implies the second equality in (237). We compute

L(δ8, γ4) = 0. (258)

This shows L(δ8,Mh(γ4)) ≡ 0(2) (in fact, it is = −2). The Mh-invariance of L and the
fact that δ8 is a cyclic generator of the Orlik block B1 give B1 ⊆ {a ∈ Ml(f) |L(a, γ4) ≡
0(2)}. As (118) implies L(B2, γ4) = 0, so B1 ⊕B2 ⊆ {a ∈ Ml(f) |L(a, γ4) ≡ 0(2)}. Now
rI = 2 and for example L(δ2, γ4) = −1 6≡ 0(2) show (237) and (ii). Now (ii) implies
GZ ⊆ Aut(B1 ⊕B2,L).

Finally, (iii) implies now Aut(B1 ⊕B2,L) ⊆ GZ, but (iii) has still to be proved.
We continue as in the final part of the proof of part (a) for the other series. The claim in (i)

holds and Lemma A.2.3 can be applied. Therefore (187) and (188) hold for Q2,p. The group
Aut(B1 ⊕B2,L) for 12 6 |p is generated by Mh,− id,Mh|B1 × id |B2 and (− id)|B1 × id |B2 ,
and analogously for the group in (188) if 12|p.

For Q2,4s we define γ5 := γ3. It satisfies (239). If 12|4s, it is in (B1)b1/Φm + (B3)b2/Φm .
Thus we can work with the group in (188). If 12 6 |4s, we work with the group in (187). In
both cases γ5 satisfies (240), because of

(Mh|B1 × id |B2)(γ5) = γ5 −Mh(γ1) ∈Ml(f), (259)

((− id)|B1 × id |B2)(γ5) = γ5 − (γ1 +Mh(γ1)) ∈Ml(f). (260)

For the other Q2,p, we choose the following rather simple γ5, namely

γ5 := δ10 =
1
2 (−δ2 + δ6 − δ7 + δ10)−

1
2 (−δ2 + δ6 − δ7 − δ10), (261)

with −δ2 + δ6 − δ7 + δ10 ∈ B1, −δ2 + δ6 − δ7 − δ10 ∈ B2.

Then (239) holds. Moreover it is

(Mh|B1 × id |B2)(γ5) = δ1 + δ2 ∈Ml(f), (262)

((− id)|B1 × id |B2)(γ5) = δ2 − δ6 + δ7 ∈Ml(f). (263)

In any case (239), (240) and (iii) hold. Thus Aut(B1⊕B2,L) ⊆ GZ, and (119) follows for
Q2,p.
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Secondly, the proof of (119) forW1,6s−3 was postponed and has to be given now. Luckily,
the majority of the arguments was already given in the proof of part (a). It remains to
show the following two statements:

(i) Equation (179) holds for W1,3.

(ii) In the case W1,6s−3, any g ∈ GZ ∪Aut(B1 ⊕B2,L) maps (B1)b4 and (B2)b4 to
itself.

For the rest of this proof we consider W6s−3 only. Here it holds b4 = Φ6Φ2. We set

%1 :=
b1

Φ6Φ2
(Mh)(β1) = (Φ12Φ3)(Mh)(δ3 + δ9 + δ11) (264)

= Φ3(Mh)(δ9 − δ13) = δ9 + δ10 + δ11 − δ13 − δ14 − δ15,

%2 :=
b2

Φ6Φ2
(Mh)(β2) =

t6+p + 1
t3 + 1 (Mh)(δ16) (265)

= (t3+p − tp + . . .− t3 + 1)(Mh)(δ16)

= δ1 + δ2 −
∑

j∈{3,4,5,7,8,9,10,12,13,14}
δj +

p∑
j=1

δ15+j +
p/3−1∑
j=0

(−1)jδ16+3j .

We have cyclic generators %1 and %2 of the Orlik blocks (B1)Φ6Φ2 and (B2)Φ6Φ2 (cf. Section
A.2). Thus %i, Mh(%i) and M2

h(%i) give a Z-basis of (Bi)Φ6Φ2 . We compute

Mh(%1) = −δ4 − δ8 − δ9 + δ5 + δ12 + δ13, (266)

M2
h(%1) = −δ8 − δ9 − δ10 + δ12 + δ13 + δ14, (267)

Mh(%2) = δ1 + δ3 + 2δ6 − 2δ7 −
∑

j=9,10,11,13,14,15
δj +

p/3−1∑
j=0

(−1)jδ17+3j , (268)

M2
h(%2) = −δ2 + 2δ4 + 2δ5 + 2δ6 − δ7 + δ8 + δ9 + δ12 + δ13 +

p/3−1∑
j=0

(−1)jδ18+3j .(269)

Furthermore, we have to calculate the 6× 6 matrix of values of L for the Z-basis %1,
Mh(%1), M2

h(%1), %2, Mh(%2), M2
h(%2) of (B1 ⊕ B2)Φ6Φ2 . Since (118) holds, it is block

diagonal with two 3× 3 blocks. This makes life easy. Since L is Mh-invariant and because
of the identities for any a ∈Ml(f)Φ6Φ2 we obtain

L(Mh(a), a) = −L(a, a), L(M2
h(a), a) = −L(a,Mh(a)),

L(a,M2
h(a)) = L(Mh(a),M3

h(a)) = −L(Mh(a), a) = L(a, a),
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and each 3× 3 matrix is determined by two values. The matrices are

L(M i
h(%1),M j

h(%1))i,j=0,1,2 =


2 2 2

−2 2 2

−2 −2 2

 , (270)

L(M i
h(%2),M j

h(%2))i,j=0,1,2 =


1 + 2s 0 1 + 2s

−1− 2s 1 + 2s 0

0 −1− 2s 1 + 2s

 . (271)

Now recall the definition γ̃2 := 1
2 (γ1 + γ2) in (166) and recall that

Ml(f)Φ2 = Zγ1 ⊕Zγ̃2
2:1
⊇ Zγ1 ⊕Zγ2 = (B1 ⊕B2)Φ2 . (272)

Thus it holds also

Ml(f)Φ6Φ2 = 〈%1,Mh(%1),M2
h(%1), %2,Mh(%2), γ̃2〉

2:1
⊇ (B1 ⊕B2)Φ6Φ2 , (273)

where

γ̃2 =
1
2 (γ1 + γ2) =

1
2 (%1 −Mh(%1) +M2

h(%1) + %2 −Mh(%2) +M2
h(%2)).

The matrix of L for the Z-basis %1, Mh(%1), M2
h(%1), %2, Mh(%2), γ̃2 of Ml(f)Φ6Φ2 is



2 2 2 0 0 1

−2 2 2 0 0 −1

−2 −2 2 0 0 1

0 0 0 1 + 2s 0 1 + 2s

0 0 0 −1− 2s 1 + 2s −1− 2s

1 −1 1 1 + 2s −1− 2s 3 + 3s


. (274)

The respective quadratic form (x1 . . . x6)(matrix)


x1
...

x6

 is

1
2
[
(2x1 + x6)

2 + (2x2 − x6)
2 + (2x3 + x6)

2
]

(275)

+
1
2 (1 + 2s)

[
(x4 − x5 + x6)

2 + (x4 + x6)
2 + (x5 − x6)

2
]

.

We see that

{a ∈Ml(f)Φ6Φ2 |L(a, a) = 2} = {±M j
h(%1) | j = 0, 1, 2}, (276)
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and also that

{a ∈ (B1 ⊕B2)Φ6Φ2 |L(a, a) = 2} = {±M j
h(%1) | j = 0, 1, 2}. (277)

Thus any g ∈ GZ ∪ Aut(B1 ⊕B2,L) maps %1 to an element of {±M j
h(%1) | j = 0, 1, 2}.

These are cyclic generators of the Orlik block (B1)Φ6Φ2 . Thus any g ∈ GZ ∪Aut(B1 ⊕
B2,L) maps (B1)Φ6Φ2 to itself. As the Orlik block (B2)Φ6Φ2 is the L-orthogonal sublattice
within Ml(f)Φ6Φ2 , such a g maps also (B2)Φ6Φ2 to itself. This shows (ii) above. Especially
such a g maps (B1)Φ2 to itself and its generator γ4 = γ1 to ±γ4. This shows (i) above.

Lastly, the proof of (120) for S1,10 was postponed and has to be given now. From now
on only S1,10 is considered. (170) shows that (Ml(f)Φ2 ,L) is an A2-lattice with roots
{±γ1,±γ̃2,±(γ̃2− γ1)} (see [BH16, Section 2] for some details on such lattices). Note that
here γ1 generates (B1)Φ2 . We will show that (B1)Φ10 and ±γ1 satisfy the following special
relationship:

[
((B1)Φ10 + Z · a)Q ∩Ml(f) : ((B1)Φ10 + Z · a)

]
=

 5 if a = ±γ1,

1 if a ∈ {±γ̃2,±(γ̃2 − γ1)}.
(278)

If a = ±γ1, then we have

((B1)Φ10 + Z · a)Q ∩Ml(f) = (B1)Φ10Φ2 =
4⊕
j=0

Z · (tjΦ5)(Mh)(β1),

(B1)Φ10 + Z · a = (B1)Φ10 + (B1)Φ2

=
3⊕
j=0

Z · (tjΦ2Φ5)(Mh)(β1)⊕Z · (Φ10Φ5)(Mh)(β1),

so the respective index is 4⊕
j=0

Z · tj :
3⊕
j=0

Z · tjΦ2 ⊕Z ·Φ10

 = 5.

Now recall that (B1)Φ10 is a primitive sublattice of Ml(f) and that

B1 ⊆
14⊕
j=1

Z · δj , so (B1)Φ10 ⊆
14⊕
j=1

Z · δj .

We observe that

γ̃2 ≡ γ̃2 − γ1 ≡ −
24∑
j=15

δj mod
14∑
j=1

Z · δj .

Since the sum −∑24
j=15 δj in γ̃2 and in γ̃2 − γ1, the sublattices (B1)Φ10 ⊕ Z · γ̃2 and

(B1)Φ10 ⊕Z · (γ̃2 − γ1) are primitive in Ml(f). This means their index above is 1. So
this shows (278). Now (120) follows easily. In fact, consider an element g ∈ GZ with
g((B1)Φ10) = (B1)Φ10 . It must map γ1 to some root of the A2-lattice (Ml(f)Φ10 ,L). By
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(278) the image must be±γ1 and, hence, so g((B1)Φ2) = (B1)Φ2 . Therefore g((B1)Φ10Φ2) =

(B1)Φ10Φ2 and by its L-orthogonality it is also g((B2)Φ10Φ2) = (B2)Φ10Φ2 .
For S1,10 it is b1 = Φ10Φ5Φ2 and b2 = Φ30Φ10Φ6Φ2. Thus, the eigenspaces with eigen-

values different from the roots of Φ10Φ2 are one-dimensional and are either in (B1)C or in
(B2)C. This implies (120) for S1,10.
Now everything is proved.

4.4.2 Torelli Conjectures for bimodal series singularities

Now we want to prove the strong global Torelli Conjecture 3.2.2 (a) for the bimodal series
singularities. Therefore we have to make a couple of preparations. In particular, we need
the covering map

cT : T cov → T , (τ1, t2) 7→ (τm2
1 , t2). (279)

with covering space T cov := (C \ {0})×C, where

m2 := m+ rI · p (280)

with m, p and rI as in Table 8. Moreover, we need to compute the classifying space DBL

and the period map T → DBL. This was done partially already in [He93]. However we will
compute it here again for practical reasons.
We set

α1 :=
−1
m

< β1 :=
−1
m2

< 0 < α2 :=
1
m2

< β2 :=
1
m

. (281)

Recall that here ζ := e2πi/m and ψα : Hn (X∞, C) → Cα is an isomorphism, where for
each 2-parameter family in Table 7 Mmar

µ , (Mmar
µ )0, GZ, Gmar, Ml, Hn (X∞, C) and Cα

denotes the respective object for the reference singularity f0. By Table 8 it is

dimCβ1 = dimCα2 = 1, (282)

dimCα1 = dimCβ2 =

 1 if m 6 |p,

2 if m|p.

Thus we have to distinguish between the two cases m 6 |p and m|p. Now we define a space
Dsub
BL ⊆ DBL, which will contain the image of T under the period map. In the case m 6 |p

the space is the 2-dimensional space

Dsub
BL := {C · (v1 + v2 + v4) | v1 ∈ Cα1 \ {0}, v2 ∈ Cβ1 \ {0}, v4 ∈ Cβ2}

= {C · (v0
1 + ρ1v

0
2 + ρ2v

0
4) | (ρ1, ρ2) ∈ (C \ {0})×C} (283)

for some generators v0
1, v0

2, v0
4 of Cα1 ,Cβ1 ,Cβ2

∼= (C \ {0})×C.
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In the case m|p the polarizing form S defines an indefinite Hermitian form ((a, b) 7→
S(a, b)) on Hn (X∞, C). This follows from the respective statement for hζ on Mlζ in
Theorem 4.4.1, Lemma A.2.5 (b) and from the relation between the Seifert form L and
polarizing form S (see Subsection (2.1.2)). Thus we get the half-plane

H(Cα1) := {C · v | v ∈ Cα1 with S(ψ−1
α1 (v),ψ

−1
α1 (v)) < 0} ⊆ Proj(Cα). (284)

In the case with m|p we have the 3-dimensional space

Dsub
BL := {C · (v1 + v2 + v4) | v1 ∈ Cα1 \ {0} with [C · v1] ∈ H(Cα1),

v2 ∈ Cβ1 \ {0}, v4 ∈ C ·ψβ2(ψ
−1
α1 (v1)) ⊆ Cβ2} (285)

∼= H(Cα1)× (C \ {0})×C.

Finally, we denote by MT ∈ GZ the transversal monodromy, i.e. the monodromy of
the homology bundle ⋃(t1,t2)∈T Ml(f(t1,t2)) → T along the cycle {(e2πis, 0) | s ∈ [0, 1]}
(cf. Lemma 3.1.5). The properties of the spaces Dsub

BL and the transversal monodromy are
described in the next theorem.

Theorem 4.4.2. (a) Dsub
BL embeds canonically into DBL.

(b) For suitable generators v0
1 ∈ Cα1 \ {0}, v0

2 ∈ Cβ1 \ {0} and v0
4 := ψβ2(ψ

−1
α1 (v

0
1)) ∈

Cβ2 \ {0}, the multivalued period map BLT : T → DBL has its image in Dsub
BL and

takes the form

(t1, t2) 7→ C ·
(
v0

1 + t1/m2
1 · v0

2 +

(
t2
t1

+ r(t1)

)
v0

4

)
(286)

with

r(t1) =



0 in the cases (rI = 1 & p ≥ 3),

the cases (rI = 2 & p ≥ 2)

and the case U1,2,

cT · t1 in the cases (rI = 2 & p = 1)

and the cases W ]
1,2 and S]1,2,

cT · t21 in the cases (rI = 1 & p = 1),

(287)

for a suitable constant cT ∈ C. In the cases with m|p, the transversal monodromy
MT has on Cα1 the eigenvalues 1 and ζ, and C · v0

1 is the eigenspace with eigenvalue
1. The class [C · v0

1 ] is in H(Cα1).

(c) The induced period map BLT cov : T cov → Dsub
BL is an isomorphism if m 6 |p and an

isomorphism to the fiber above [C · v0
1 ] ∈ H(Cα1) of the projection Dsub

BL → H(Cα1)

if m|p.

(d) In the case of the subseries U1,9r, Gmar contains an element g3 such that Ψ(g3)

is elliptic of order 18 (for all subseries with p = m · r, Ψ(MT ) is elliptic of order m,
for U1,9r m = 9).
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(e) f(t1,t2) and f(t̃1,t̃2) are right equivalent

⇐⇒



∃ k ∈ Z with (t̃1, t̃2) = (ζrIpk · t1, ζ(rIp+2)k · t2)

for all 8 series except U1,2q,

∃ k ∈ Z and ε ∈ {±1} with

(t̃1, t̃2) = (εζrIpk · t1, εζ(rIp+2)k · t2) for U1,2q.

(288)

Note that the parts (a), (b) and (d) of Theorem 4.4.2 will be proved after Theorem
4.4.4.

Proof of Theorem 4.4.2 (c) and (e): (c) This follows immediately from (286).

(e) First we prove “⇐”. Therefore we give explicit coordinate changes here. Looking at
the normal forms in Table 7 one case after the other we see that

f(t1,t2)(x · ζ
ς1·k, y · ζς2·k, z · ζς3·k) = f(t1·ζrIpk,t2·ζ(rIp+2)k)(x, y, z). (289)

Here k ∈ Z and (ς1, ς2, ς3) are as in (290).

ς1 ς2 ς3

W ]
1,p and W1,p 3 2 0

S]1,p and S1,p 3 2 4

U1,p 3 2 3

E3,p 6 2 0

Z1,0 4 2 0

Q2,p 4 2 5

(290)

In the case U1,2q we have additionally

f(t1,t2)(x, y,−z) = f(−t1,−t2)(x, y, z). (291)

Altogether this shows “⇐”.
Now we show “⇒”. In order to do so, let f(t1,t2) and f(t̃1,t̃2) be right equivalent. Then

BLT (t1, t2) andBLT (t̃1, t̃2) are isomorphic, so a g ∈ GZ with g(BLT (t1, t2)) = BLT (t̃1, t̃2)
exists. We claim that v0

1, v0
2 and v0

4 are eigenvectors of g with some eigenvalues λ1,λ2 and
λ1. For v0

2 this is trivial as dimCβ1 = 1, for v0
1 in the case m 6 |p also. In the case m|p, it

follows for v0
1 from (286). For v0

4 use v0
4 = ψβ2(ψ

−1
α1 (v

0
1)). We claim also that

λ1 ∈ Eiw(ζ), λ2 ∈ Eiw(e2πi/m2). (292)

Recall that Eiw(ζ) = {±ζk | k ∈ Z} (cf. Section A.3). For λ2 (292) is a consequence of
the following three facts and of [He93, Lemma 3.4 a)+c)].

(i) The 1-dimensional eigenspaceMle2πi/m2 is already defined over Q(e2πi/m2). There-
fore λ2 ∈ Q(e2πi/m2).
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(ii) |λ2| = 1 because L pairs Mle2πi/m2 and Mle−2πi/m2 .

(iii) λ2 is an algebraic integer because g ∈ GZ.

If m 6 |p, the same reasoning applies also to λ1. Suppose for a moment m|p.
By part (b), the transversal monodromy MT acts on Cα1 and on Hn (X∞, C)ζ with

eigenvalues 1 and ζ, and the 1-dimensional eigenspaces with eigenvalue 1 are C · v0
1 and C ·

ψ−1
α1 (v

0
1). Therefore C ·ψ−1

α1 (v
0
1) is already defined over Q(ζ), i.e. C ·ψ−1

α1 (v
0
1)∩Hn (X∞, Q)

is a 1-dimensional Q(ζ)-vector space. This implies (i) λ1 ∈ Q(ζ). Moreover, (ii) holds as
v0

1 ∈ H(Cα1). Finally, (iii) is trivial. So by [He93, Lemma 3.4 a)+c)] we can conclude that
λ1 ∈ Eiw(ζ). Now (292) follows in all cases.

The equality g(BLT (t1, t2)) = BLT (t̃1, t̃2) becomes

C ·
(
λ1 · v0

1 + λ2 · t1/m2
1 · v0

2 + λ1

(
t2
t1

+ r(t1)

)
· v0

4

)
= C ·

(
v0

1 + t̃1
1/m2 · v0

2 +

(
t̃2

t̃1
+ r(t̃1)

)
· v0

4

)
,

so t̃1
1/m2 = λ2λ1 · t1/m2

1 , t̃2

t̃1
+ r(t̃1) = λ1

2
(
t2
t1

+ r(t1)

)
,

so t̃1 = λm2
2 λ1

m2 · t1,

and t̃2 = λ1
2 · t̃1
t1
· t2 + t̃1 · (λ1

2 · r(t1)− r(t̃1)). (293)

Because of (292), we can write λ1 and λ2 as follows:

λ1 λ2

All cases with m ≡ 0(2), m2 ≡ 0(2) ζ
k

e2πil/m2

The cases W ]
1,2q−1 and S]1,2q−1 ε2 · ζ

k
ε2 · e2πil/m2

The cases U1,2q−1 ε1 · ζ
k

e2πil/m2

The cases U1,2q ε1 · ζ
k

ε2 · e2πil/m2

(294)

Here k, l ∈ Z and ε1, ε2 ∈ {±1}. It is esay to check that (293) boils down to

t̃1 = ζrIpk · t1, t̃2 = ζ(rIp+2)k · t2, (295)

in all cases except U1,2q. In the cases U1,2q, it boils down to

t̃1 = ε1ε2 · ζpk · t1, t̃2 = ε1ε2 · ζ(p+2)k. (296)

This settles “⇒” and finishes the proof of Theorem 4.4.2 (e).

Now we describe the space DBL for the bimodal series singularities.

Lemma 4.4.3. Consider a family of bimodal series singularities.

(a) The spectral numbers α1, . . . ,αµ with α1 ≤ . . . ≤ αµ satisfy

α1 =
−1
m

< α2 =
1
m2

< α3 ≤ . . . ≤ αµ−2 < αµ−1 = 1− 1
m2

< αµ = 1 + 1
m

(297)
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α1 = −1
m

β1 = −1
m2

α4α3 β2 = 1
m

α2 = 1
m2

0

Figure 17: Spectral data for the bimodal series singularities (rI = 1)

α1 = −1
m

β1 = −1
m2

α4α3 β2 = 1
m

α2 = 1
m2

0

Figure 18: Spectral data for the bimodal series singularities (rI = 2)

and are uniquely determined by this and the characteristic polynomial ∏j≥1 bj of the
monodromy with bj as in given Table 8.

(b) Recall from (281) that β1 = −1
m2

= −α2 and β2 = 1
m = −α1. Then

dimCα1 =

 1 if m 6 |p,

2 if m|p,
(298)

dimCβ =


1 for β ∈ (α1,β2) ∩ 1

m2
(Z \ {0}) if rI = 1,

and for β ∈ (α1,β2) ∩ ( 1
m2

+ 2
m2

Z) if rI = 2,

0 for other β ∈ (α1,β2).

(299)

The following two pictures illustrate this for 2m < p < 3m. The first one shows the
situation for rI = 1, the second one for rI = 2.

(c) Denote by (∗) the condition

(∗) : β ∈ (α1, 0) with Cβ 6= {0} (then dimCβ = 1).

If m 6 |p the classfying space DBL in [He99] is

DBL = {C · (v1 +
∑
β:(∗)

v(β) + v2) | v1 ∈ Cα1 − {0}, v(β) ∈ Cβ, v2 ∈ Cβ2} (300)

∼= CNBL with NBL := |{β : (∗)}|+ 1.

In (284) the half-plane H(Cα1) was defined for m|p. If m|p then DBL is

DBL = {C · (v1 +
∑
β:(∗)

v(β) + v2) | (301)

v1 ∈ Cα1 − {0} with [C · v1] ∈ H(Cα1),

v(β) ∈ Cβ, v2 ∈ C ·ψβ2(ψ
−1
α1 (v1)) ⊆ Cβ2}

∼= H(Cα1)×CNBL with NBL := |{β : (∗)}|+ 1.
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Proof. (a) The spectral numbers of the bimodal series singularities can be found in [AGV88,
Subsection 13.3.4]. The rest of part (a) is clear.

(b) Here we have to show the two equations (298) and (299). We start with (298). It
can be already found in [He95, p. 391]. But it also follows easily from dimCα1 = dimMlζ

and Φm 6 |b2 ⇐⇒ m 6 |p. Equation (299) can be deduced from the values of bj in Table 8.

(c) We want to compute the spaces DBL. So let L0 ∈ DBL. Then by the spectral data
given in part (a) we obtain

L0 = C · σ1 ⊕L0 ∩
⊕

β:α2≤β≤β2

Cβ ⊕ V >β2 (302)

where β with Cβ 6= {0} and

α(σ1) = α1, σ1 ∈ Cα1 ⊕
⊕
β:(∗)

Cβ ⊕Cβ2 . (303)

Since the spaces Cβ are one-dimensional for β with α2 ≤ β < β2 and Cβ 6= {0}, they are
generated by the principal part of a section in L0. The space Cβ2 has dimension dimCβ2 = 1
and is not generated by the principal part of a section in L0 in the case m 6 |p. If m|p then
dimCβ2 = 2 and we have a one-dimensional subspace {v ∈ Cβ2 |K(−2)

f (v, s(σ1,α1)) =

0} ⊆ Cβ2 . It is in L0, because then β2 is a spectral number with multiplicity 1. The
principal part s(σ1,α1) must be compatible with a polarized Hodge structure of weight 2
on Hn (X∞, C)ζ ⊕Hn (X∞, C)ζ (cf. Section 2.2). This results in [C · s(σ1,α1)] ∈ H(Cα1).
In particular, it holds

Cβ2 = C ·ψβ2(ψ
−1
α1 s(σ1,α1))⊕ {v ∈ Cβ2 |K(−2)

f (v, s(σ1,α1)) = 0}, (304)

and σ1 can be chosen with

α(σ1) = α1, σ1 ∈ Cα1 ⊕
⊕
β:(∗)

Cβ ⊕C ·ψβ2(ψ
−1
α1 s(σ1,α1)). (305)

Now for all m we have unique characterization (up to rescaling) of σ1. For m 6 |p it is
uniquely determined by (303) and for m|p it is uniquely determined by (305). It can be
chosen freely with (303) respectively with (305) and [C · s(σ1,α1)] ∈ H(Cα1). The condi-
tion K(−2)

f (L0,L0) = 0 on DBL implies that L0 ∩
⊕

α2≤β≤β2 C
β is uniquely determined by

σ1. So also the whole of L0 is uniquely determined by σ1. All in all, DBL is as stated in
(300) and (301).
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Theorem 4.4.4. Consider the normal form in (116) for W ]
1,p and the normal forms in

Table 7 for the other seven series. Once again it is ω0 := dxdydz. Define

b1 := s(ω0,α1)(1, 0) ∈ Cα1 ,

b2 := s(ω0,β1)(1, 0) ∈ Cβ1 ,

b3 := s(yω0,α2)(1, 0) ∈ Cα2 ,

b4 := s(yω0,β2)(1, 0) ∈ Cβ2 .

If m|p, choose b5 ∈ Cβ2 with C · b5 = {v ∈ Cβ2 |K(−2)
f (b1, v) = 0}.

(a) All bj are nonzero and K
(−2)
f (b1 + b2, b3 + b4) = 0. If m|p then it is Cβ2 =

C · b4 ⊕C · b5.

(b) We write t = (t1, t2). Then it is

α(s[ω0]0(t)) = α1, (306)

s(ω0,α1)(t) = b1, (307)

s(ω0,β)(t) = 0 for α1 < β < β1, (308)

s(ω0,β1)(t) = t1/m2
1 · b2, (309)

s(ω0,α2)(t) =
t2
t1
· −1
m2
· t−1/m2

1 · b3 + s(ω,α2)(t1, 0), (310)

s(ω0,β2)(t)

 = s(ω0,β2)(t1, 0) if m 6 |p,

∈ s(ω0,β2)(t1, 0) + C · b5 if m|p,
(311)

with

s(ω0,α2)(t1, 0) s(ω0,β2)(t1, 0)

(rI = 2 & p ≥ 2) or (rI = 1 & p ≥ 3) or U1,2 0 0

W ]
1,1,S]1,1,U1,1 c1 · t2−1/m2

1 · b3 c2 · t21 · b4

W ]
1,2,S]1,2,E3,1,Z1,1,Q2,1,W1,1,S1,1 c1 · t1−1/m2

1 · b3 c2 · t1 · b4

(312)

for some values c1, c2 ∈ C. Here α(s[ω]0(t)) = min(α | s(ω,α)(t) 6= 0) is again the
order (see Section 2.2). Finally it is

α(s[yω0]0(t) = α2, (313)

s(yω0,α2)(t) = t−1/m2
1 · b3, (314)

s(yω0,β2)(t)

 = b4 if m 6 |p or t2 = 0,

∈ b4 + C · b5 if m|p,
(315)

s(σ,β2)(t)

 = 0 if m 6 |p

∈ C · b5 if m|p
(316)

for σ ∈ H ′′0 (ft) with α(σ) > α2.
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(c) For the five series with rI = 2 (cf. Table 8) and for b ∈ Z≥0 it holds

α(s[yb+1ω0]0(t)) = α2 +
2b
m2

=
2b+ 1
m2

, (317)

s(yb+1ω0, 2b+ 1
m2

)(t) = t
−(2b+1)/m2
1 · s(yb+1ω0, 2b+ 1

m2
)(1, 0). (318)

In particular, if p = mr then it is 2r+1
m2

= 1
m = β2, b5 can be chosen as b5 =

s(yr+1ω0,β2)(1, 0), and

s(yr+1ω0,β2)(t) = t−1/m
1 · b5. (319)

(d) For the three subseries W ]
1,12r,S

]
1,10r,U1,9r (i.e. the subseries with rI = 1 and

m|p), b5 can be chosen such that b5 and ω in (322) satisfy

α(s[ω]0(t)) = β2 =
1
m

, (320)

s(ω,β2 + 1)(t) = t−1/m
1 · b5. (321)

ω

W ]
1,12+24r,S

]
1,10+20r xyrω0

U1,9+18r yrzω0

W ]
1,24r,S

]
1,20r,U1,18r yr+1ω0

(322)

Proof. (a) First of all, we notice that ν (ω0)− 1 = α1 < s (f) and ν (yω0)− 1 = α2 < s (f)

(cf. Section A.1). With Corollary A.1.3 this already shows (306) and (307). Hence, it holds
b1 6= 0 and b3 6= 0 . The proof that b2 6= 0 will be postponed. For b4 6= 0 we need (308),
which will be shown below. With (308) and K−2

f (H ′′0 (ft) ,H ′′0 (ft)) = 0 we can conclude
that

0 = K−2
f (s [ω0]0 (1, 0), s [yω0]0 (1, 0)) = K−2

f (b1 + b2, b3 + b4) . (323)

Since it is K−2
f (b2, b3) 6= 0, equation (323) yields K−2

f (b1, b4) 6= 0 and b4 6= 0. Further-
more, this shows Cβ2 = C · b4 ⊕C · b5 if m|p.

(b)–(d) We do the proof here only for the series E3,p. The other cases are similar3. Note
that, for the series W ]

1,p, S
]
1,p and U1,p more case discussions are necessary. For E3,p we

have two compact faces σ1 and σ2 of the Newton polyhedron (cf. [He93, Kapitel 4 d)]).
We have corresponding linear forms lσ1 and lσ2 in the sense of Section A.1. Such linear
forms are encoded by the triples (lσj (x), lσj (y), lσj (z)) with j = 1, 2. For E3,p the triples

3 Some helpful data for the other series can be found in [GH18, (9.37)]
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are 1
18 (6, 2, 9) and 1

2(9+p) (6+ p, 2, 9+ p). The value s(f) of Corollary A.1.3 is 4
9 . This gives

us the following two relations:

f =
1
3xfx +

1
9yfy +

1
2zfz −

p

9 t1y
9+p − p+ 1

9 t2y
10+p, (324)

f =
6 + p

2(9 + p)
xfx +

2
2(9 + p)

yfy +
1
2zfz −

p

2(9 + p)
x3 − 1

9 + p
t2y

10+p. (325)

Via these two relations and (25) we obtain two values for ∂ττs[xaybω0]0(t), namely

∂ττs[x
aybω0]0(t)

= lσ1(a+ 1, b+ 1, 1) · s[xaybω0]0(t) (326)

−p9 t1∂τs[x
ayb+9+pω0]0(t)−

p+ 1
9 t2∂τs[x

ayb+10+pω0]0(t),

= lσ2(a+ 1, b+ 1, 1) · s[xaybω0]0(t) (327)

− p

2(9 + p)
∂τs[x

a+3ybω0]0(t) −
1

9 + p
t2∂τs[x

ayb+10+pω0]0(t).

Now for any β with dimCβ 6= 0 this yields

(β + 1− lσ1(a+ 1, b+ 1, 1))s(xaybω0,β)(t)

= −p9 t1∂τs(x
ayb+9+pω0,β + 1)(t)

−p+ 1
9 t2∂τs(x

ayb+10+pω0,β + 1)(t), (328)

(β + 1− lσ2(a+ 1, b+ 1, 1))s(xaybω0,β)(t)

= − p

2(9 + p)
∂τs(x

a+3ybω0,β + 1)(t

− 1
9 + p

t2∂τs(x
ayb+10+pω0,β + 1)(t). (329)

Furthermore, by Theorem 2.3.2 (c) we can “replace” τ with t1 and t2 as follows:

∂t1s[x
aybω0]0(t) = (−∂τ )s[xayb+9+pω0]0(t), (330)

∂t2s[x
aybω0]0(t) = (−∂τ )s[xayb+10+pω0]0(t)

= ∂t1s[x
ayb+1ω0]0(t). (331)

All in all, the equations (328)–(331) give(
p

9 t1∂t1 +
p+ 1

9 t2∂t2 − (β + 1) + lσ1(a+ 1, b+ 1, 1)
)
s(xaybω0,β)(t) = 0, (332)( 1

9 + p
t2∂t2 − (β + 1) + lσ2(a+ 1, b+ 1, 1)

)
s(xaybω0,β)(t)

=
p

2(9 + p)
∂τs(x

a+3ybω0,β + 1)(t). (333)

Plugging in t2 = 0 in (332) yields

s(xaybω0,β)(t1, 0) = t
9
p
(β+1−lσ1 (a+1,b+1,1))

1 · s(xaybω0,β)(1, 0). (334)
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The following eight equations are special cases of (334). They are:

s(ω0,α1)(t1, 0) = b1, (335)

s(ω0,β1)(t1, 0) = t1/m2
1 · b2, (336)

s(ω0,α2)(t1, 0) = t−1/m2+1/p
1 · s(ω0,α2)(1, 0), (337)

s(ω0,β2)(t1, 0) = t1/p
1 · s(ω0,β2)(1, 0), (338)

s(yb+1ω0, 2b+ 1
m2

)(t1, 0) = t
−(2b+1)/m2
1 · s(yb+1ω0, 2b+ 1

m2
)(1, 0), (339)

s(yω0,α2)(t1, 0) = t−α2
1 · b3 = t−1/m2

1 · b3, (340)

s(yω0,β2)(t1, 0) = b4, (341)

s(yr+1ω0,β2)(t1, 0) = t−1/m2
1 · s(yr+1ω0,β2)(1, 0) if p = 18r. (342)

Now we formulate a claim. It will be useful later on.
Claim: Fix some b ∈ Z≥0. Then the following three statements on the Newton order are
claimed to be true.

(i) ν(yb+1ω0) = α2 +
b

9+p = 2b+1
m2

.

(ii) Any (n+ 1)-form df ∧ dη which contains yb+1ω0 as a summand, contains a sum-
mand g · ω0, where g is a monomial (times a nonzero scalar) with ν(g · ω0) ≤
ν(yb+1ω0).

(iii) ν(yb+1ω0) =
2b+1
m2

.

Proof of the Claim: Statement (i) is trivial and statement (iii) follows from (i) and (ii).
So it is enough to prove (ii).
(ii) The only monomial differential (n− 1)-forms η such that df ∧ dη contains fy · yc · ω0

are η1 = −xycdz and η2 = yczdx. For them it is

df ∧ dη1 = fy · yc · ω0 − fx · c · xyc−1 · ω0,

df ∧ dη2 = fy · yc · ω0 − fz · c · yc−1z · ω0.

These (n+ 1)-forms contain (3− 2c)x2yc+2ω0 respectively 3x2yc+2ω0, and

ν(x2yc+2ω0) ≤ ν(yc+8+pω0).

This finishes the proof of the claim.

With the claim at hand and Theorem A.1.2 it follows

α(s[yb+1ω0]0(t)) =
2b+ 1
m2

, (343)

s(yb+1ω0, 2b+ 1
m2

)(t) 6= 0. (344)
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In particular, it holds b3 6= 0. For p = 18r it is also s(yr+1ω0,β2)(t) 6= 0. In this case the
equality

K
(−2)
f (s[ω0]0(1, 0), s[yr+1ω0]0(1, 0)) = 0

then gives K(−2)
f (b1, s(yr+1ω0,β2)(1, 0)) = 0. For that reason we can choose b5 as b5 =

s(yr+1ω0,β2)(1, 0) if p = 18r.
Finally, the sections s(yb+1ω0, 2b+1

m2
)(t) are independent of t2 because (331) gives

∂t2s(y
b+1ω0, 2b+ 1

m2
)(t) = ∂t1s(y

b+2ω0, 2b+ 1
m2

)(t) = 0.

So part (c) is proved, i.e. (314) and (317)–(319) are true.
Another thing that follows from (331) is

∂t2s[ω0]0(t) = ∂t1s[yω0]0(t), (345)

so s(ω0,β)(t) = s(ω0,β)(t1, 0) for α1 ≤ β < α2.

With (335) and (328) and (344) we can conclude

s(ω0,β)(t1, 0) =


b1 if β = α1,
−p

9(β−α1)
t1∂τs(y9+pω0,β + 1)(t1, 0) = 0 if α1 < β < β1,

−p
9(β1−α1)

t1∂τs(y9+pω0,β1 + 1)(t1, 0) 6= 0 if β = β1.

This gives b2 6= 0 and, thus, the finishes the proof of part (a). Moreover, via (335) and
(336) we obtain (307)–(309).

By part (a) we know already that b4 6= 0. This now yields (315) and (316). It rests to
show (310)–(312). We start with (310) and (311). With (345), (314) and (315) we obtain

∂t2s(ω0,α2)(t) = ∂t1s(yω0,α2)(t) = ∂t1(t
−1/m2
1 · b3),

∂t2s(ω0,β2)(t) = ∂t1s(yω0,β2)(t)

 = 0 if m 6 |p,

∈ C · b5 if m|p,

which gives the desired two statements (310) and (311).
For (312) we note that the sections

s(yω0,α2)(t1, 0) = t−1/m2
1 · b3,

s(yω0,β2)(t1, 0) = b4,

and in the case m|p s(yr+1ω0,β2)(t1, 0) = t−1/m
1 · b5

are univalued nowhere vanishing sections generating the two bundles ⋃t1∈T Cα2(t1, 0) and⋃
t1∈T C

β2(t1, 0). But also s(ω0,α2)(t1, 0) and s(ω0,β2)(t1, 0) are univalued sections in
these bundles. In contrast to the sections above they are everywhere vanishing for p ≥ 2
by (337) and (338). For p = 1 they give the statement for E3,1 in the last line of (312).
This settles the parts (b) and (c) for the series E3,p.
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Finally, we are able to formulate the main theorem of this subsection. Besides the Torelli
Conjectures, part (e) is the most surprising part of this theorem.

Theorem 4.4.5. Consider a family of bimodal series singularities.

(a) The transversal monodromy satisfies Mm2
T = id. Therefore the pull back to T cov

with cT of the family of singularities over T has trivial transversal monodromy. Thus
the strong marking + id for f(1,0) induces a well defined strong marking for each
singularity of this family over T cov. This gives a map T cov → (M smar

µ )0 and a map
T cov → (Mmar

µ )0.

(b) The maps from (a) are isomorphisms and − id /∈ Gsmar, where Gsmar is the
group for the singularities of multiplicity ≥ 3, namely the curve singularities W ]

1,p,
E3,p, Z1,p, W1,p and the surface singularities S]1,p, U1,p, Q2,p, S1,p. In particular, this
means Conjecture 3.1.2 is true.

(c) The period map BL : Mmar
µ → DBL is an embedding, i.e. the strong global Torelli

Conjecture 3.2.2 (a) is true.

(d) If p 6≡ 0 mod m then Gmar = GZ.

(e) If p ≡ 0 mod m then GZ % Gmar with |Gmar| = |{g ∈ GZ | g(Mlζ,1) =Mlζ,1}| <
∞ and |GZ| =∞. Here MT has on the 2-dimensional C-vector space Mlζ the eigen-
values 1 and ζ and Mlζ,1 is the 1-dimensional eigenspace of MT on Mlζ with eigen-
value 1. Ψ(GZ) is an infinite Fuchsian group by Theorem 4.4.1 (c). Ψ(Gmar) is the
finite subgroup of elliptic elements which fix the point [Mlζ,1] ∈ Hζ (cf. Theorem
4.4.1 (c)). Finally, Mmar

µ consists of infinitely many copies of T cov.

Proof. (a) Everything is clear except the statements on the transversal monodromy. This
will be proved later.

(b) We consider the following maps:

T cov //

∼=
��

(M smar
µ )0

BL

��
Dsub
BL
� � // DBL

(346)

Since T cov ↪→ Dsub
BL ↪→ DBL is an embedding, T cov → (M smar

µ )0 is an embedding as well.
Note that both spaces T cov and (M smar

µ )0 are locally µ-constant strata of semiuniversal
unfoldings and, hence, they are smooth of dimension 2. The space Dsub

BL is almost closed
in DBL. The closure of Dsub

BL consists of itself and the space

{C · (v1 + v4) | v1 and v4 as in (283) resp. (285)}. (347)

In any case it is v2 = 0. No element g ∈ GZ maps a point of the space in (347) to a point
of Dsub

BL. The covering space T cov contains representatives of any right equivalence class in
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the µ-homotopy family. Therefore the image of (M smar
µ )0 in DBL cannot be bigger than

Dsub
BL. Thus it is T cov ∼= (M smar

µ )0.
In the case of singularities of multiplicity 2, M smar

µ
∼=Mmar

µ holds anyway by Theorem
3.1.4 (c). Then also (M smar

µ )0 ∼= (Mmar
µ )0 holds.

Consider the case of singularities of multiplicity ≥ 3. Then − id ∈ GZ acts nontriv-
ially on M smar

µ by Theorem 3.1.4 (c). Furthermore, it acts trivially on DBL. The map
(M smar

µ )0 → DBL is an embedding. So − id ∈ GZ does not act on (M smar
µ )0 and, hence,

− id /∈ Gsmar. Finally, this shows that (M smar
µ )0 → (Mmar

µ )0 is an isomorphism by Theo-
rem 3.1.4 (c).

(c) for m 6 |p and (d): By the discussion above we have the map (Mmar
µ )0 ∼=−→ T cov

∼=−→
Dsub
BL ↪→ DBL. This map is an embedding. Now the fact GZ = Gmar would imply Mmar

µ =

(Mmar
µ )0 and, hence, would verify the strong global Torelli Conjecture 3.2.2. So it remains

to prove GZ = Gmar.
Let g1 ∈ GZ. This element acts on Dsub

BL. According to the proof of Theorem 4.4.2 (e)
the map

(Mmar
µ )0/Gmar → Dsub

BL/GZ (348)

is an isomorphism. Thus there is an element g2 ∈ Gmar which acts in the same way on
Dsub
BL as g1. We set g3 := g1 ◦ g−1

2 . This element acts trivially on Dsub
BL. It has eigenvalues

λ1, λ2 and λ1 on Cα1 ,Cβ1 and Cβ2 . Therefore

C(v1 + v2 + v4) = C(λ1 · v1 + λ2 · v2 + λ1 · v4) for any C(v1 + v2 + v4) ∈ Dsub
BL,

thus λ2λ1 = 1, λ1
2
= id, so λ1 = λ2 ∈ {±1},

and g3 = λ1 · id on Mlζ ⊕Mle2πi/m2 . (349)

By Theorem 4.4.1 (b) we know how the group GZ looks like. It contains very few au-
tomorphisms g3 with (349). By (121) and Table 8 show that the group {g ∈ GZ | g =

± id on Mlζ ⊕Mle2πi/m2} is as follows:

{± id} in the cases W ]
1,2q−1,S]1,2q−1,U1,2q,E3,p,Z1,p, (350)

{± id,±(id |B1 × (−Mm2/2
h )|B2)} in the cases W ]

1,2q,S
]
1,2q,U1,2q−1,

{± id,±((−Mm/2
h )|B1 × id |B2)} in the cases Q2,p,W1,p,S1,p.

Now we can formulate a claim. This claim then shows g3 ∈ GmarR and g1 ∈ Gmar and,
hence, that GZ = Gmar.
Claim:

{g ∈ GZ | g = ± id on Mlζ ⊕Mle2πi/m2} = GmarR . (351)

The inclusion "⊇" in (351) holds, because any element of GmarR = GmarR (f(1,0)) acts on
Dsub
BL with BLT (1, 0) as fixed point and the proof of Theorem 4.4.2 (e) shows that it acts

then trivially on Dsub
BL.
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We know that the group GmarR contains the two elements ± id. In order to prove equality
in (351) for the cases in the second and third line of (350), it is sufficient to show that
GmarR contains more elements than those two. It is equivalent to show that GsmarR (f) for
a generic singularity f with multiplicity ≥ 3 contains one other element than + id. The
following table lists coordinate changes which give such an element.

W ]
1,2q (x, y) 7→ (−x, y)

S]1,2q (x, y, z) 7→ (−x, y, z)

U1,2q−1 (x, y, z) 7→ (x, y,−z)

Q2,p (x, y, z) 7→ (x, y,−z)

W1,p (x, y) 7→ (−x, y)

S1,p (x, y, z) 7→ (−x, y, z)

(352)

This proves the claim and finishes the proof of part (c) for m 6 |p and part (d).

(c) for m|p and (e): First we will show the characterization

Gmar = {g ∈ GZ | g(Mlζ,1) =Mlζ,1}. (353)

We know that Ψ(MT ) is an elliptic element with fixed point [Mlζ,1] ∈ Hζ and angle
2π
m = arg( ζ1 ). Moreover, all elements of Gmar (including MT ) act on H(Cα1) as elliptic
elements with fixed point [C · v0

1 ], because all elements in Gmar act on (Mmar
µ )0 and on

its image BLT cov ((Mmar
µ )0) ⊆ Dsub

BL. Therefore all elements of Gmar act on Hζ as elliptic
elements with fixed point [Mlζ,1]. This shows "⊆" in (353).
Now we will show "⊇" in (353). So let g1 ∈ {g ∈ GZ | g(Mlζ,1) = Mlζ,1}. It has an

eigenvalue λ1 on Mlζ,1 and an eigenvalue λ2 on the other eigenspace within Mlζ (which
is the hζ-orthogonal subspace of Mlζ). By (292) it is λ1 and λ2 ∈ Eiw(ζ). Thus Ψ(g1) is
an elliptic element with fixed point [Mlζ,1] ∈ Hζ and angle arg λ2

λ1
.

In all cases except possibly U1,9r, the product g2 = g1 ◦Mk
T for a suitable k ∈ Z acts

trivially on Hζ . In the cases U1,9r, the product g2 = g1 ◦ gk3 for g3 ∈ Gmar as in Theorem
4.4.2 (d) acts trivially on Hζ as well.

Now (124) from Theorem 4.4.1 (c) applies to g2 and shows g2 ∈ {±Mk
h | k ∈ Z}. Hence

it holds g2 ∈ Gmar and g1 ∈ Gmar. This shows "⊇" in (353) and in total we have equality
in (353).
Hence, Ψ(Gmar) and Gmar are finite. Moreover, by Theorem 4.4.1 (c) the groups Ψ(GZ)

and GZ are infinite. Therefore we have the surprising fact that GZ % Gmar. Furthermore,
now by Theorem 3.1.4 (a) Mmar

µ must consist of infinitely many copies of (Mmar
µ )0.

Note that, if two different copies would have intersecting images inDBL under the period
map BL, the images would coincide and there would be a copy different from (Mmar

µ )0

with the same image in DBL as (Mmar
µ )0. An element g3 ∈ GZ which maps (Mmar

µ )0 to
this copy would be in {g ∈ GZ | g(Mlζ,1) =Mlζ,1} \Gmar = ∅. This is a contradiction. All
in all, then BL : Mmar

µ → Dsub
BL is an embedding. The proof of the remaining statement
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on MT in part (e) will be postponend to the very end of this proof.

Now we want to proof the properties of the transversal monodromyMT that we omitted
above. According to Theorem 4.4.4, the following sections in the bundles ⋃t1∈T Cβ(t1, 0)
for β as in (354) are univalued nowhere vanishing sections that generate the respective
bundle (in the case β = α1 only if m 6 |p).

section b1 t1/m2
1 · b2 t−1/m2

1 · b3 b4 t−1/m
1 · b5 if m|p

β α1 β1 α2 β2 β2

eigenvalue of MT on C · bj 1 e−2πi/m2 e2πi/m2 1 e2πi/m

(354)

Therefore b1 and b4 are univalued, and b2 and b3 (and b5 if m|p) are multivalued flat
sections with eigenvalues of MT as specified above. Hence, we can already see that Mm2

T is
the identity on all the spaces Cα1 , Cβ1 , Cα2 , Cβ2 , Mlζ and Mle2πi/m2 . We will show that
it is the identity on all of Ml.
Firstly, we consider the case m 6 |p. Then by (350) Mm2

T is in

{id} in the cases W ]
1,2q−1,S]1,2q−1,U1,2q,E3,p,Z1,p, (355)

{id, id |B1 × (−Mm2/2
h )|B2} in the cases W ]

1,2q,S
]
1,2q,U1,2q−1,

{id, (−Mm/2
h )|B1 × id |B2} in the cases Q2,p,W1,p,S1,p.

On the other hand, in the cases in the second and third line of (355),m2 = m+ rIp is even,
and MT itself is in GZ which is given by (121) in Theorem 4.4.1. So it holds Mm2

T = id
also in the second and third line of (355).
Secondly, we consider the case m|p, i.e. p = mr. By Theorem 4.4.1 and more precisely

by (124) Mm2
T = ε ·Mk

h for some ε ∈ {±1} and some k ∈ Z. Then ε · ζk = 1 and
ε · e2πik/m2 = 1. If ε = 1, then the two conditions boil down to m|k and m2|k. Thus is is
m2|k and Mm2

T = id. If ε = −1, we will arrive at a contradiction as specified below. So
the two conditions require that m and m2 are both even.
For each eigenvalue λ of Mh on Ml with dimMlλ = 1, an eigenvector in Mlλ,Z[λ] exists.

Then MT has an eigenvalue in Eiw(λ) on this eigenvector, and Mm2
T has the eigenvalue 1

on this eigenvector. Here m2 even is used. Therefore Mm2
T = id on Mlλ for each

λ ∈ {ζ, e2πi/m2} ∪ {λ̃ | dimMl
λ̃
= 1}.

Comparing this with Table 8 we see that some k ∈ Z with −λk = 1 for all these λ exists.
This gives a contradiction. The case ε = −1 is impossible. Thus Mm2

T = id is proved in all
cases (cf. Theorem 4.4.5 (a)).
Finally, we will prove that MT has the eigenvalues 1 and ζ on Mlζ and on Cα1 to finish

part the proof of part (e). A priori by (354) MT has on Cβ2 and on Hn (X∞, C)e−2πiβ2 =

Hn (X∞, C)ζ the eigenvalues 1 and ζ. As Mlζ is dual to Hn (X∞, C)ζ and Hn (X∞, C)ζ
is complex conjugate to Hn (X∞, C)ζ , Mt has on Mlζ , Hn (X∞, C)ζ = Hn (X∞, C)e−2πiα1

and Cα1 the eigenvalues 1 and ζ.
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Remark 4.4.6. Theorem 4.4.5 shows that the Torelli Conjecture 3.2.2 (b) holds also for
the three subseries Z1,14k, S1,10k and S]1,10k with k ∈ N. Hence the limitation in [He95,
Theorem on p. 360] can be dropped.

With Theorem 4.4.4 and the latest results onMT we can now prove the remaining parts
of Theorem 4.4.2.

Proof of Theorem 4.4.2 (a), (b) and (d): (a) This follows immediately from the respective
definition of Dsub

BL (see (283) or (285)) together with Lemma 4.4.3 (c).

(b) All of this follows by carefully looking at the results and the proof of Theorem 4.4.4.
Note that the part with the eigenvalues of MT on Cα1 was already shown above in the
proof of Theorem 4.4.5. Here let us consider suitable v0

1 = b1, v0
2 = b2 and v0

4 ∈ C∗ · b4.
Then the section in the brackets on the right hand side of (286) is

s[ω0]0(t) +

 1
m

t2
t1

+


0

−c1 · t21
−c1 · t1


 · s[yω0]0(t) mod

⊕
α2<β<β2

Cβ ⊕C · b5 ⊕ V >β2 . (356)

Here we have three different cases in {. . .}. They correspond to the three lines in (312).
Note that, the linear combination is chosen such that it has no part in Cα2 . This section
together with the fact K(−2)

f (H ′′0 (ft),H ′′0 (ft)) = 0 determine H ′′0 (ft). The remaining parts
of part (b) follow by the values in (354). In fact, MT has on v0

1 = b4 the eigenvalue 1.

(c) We have to consider the subseries of type U1,9r. Here we will treat the cases U1,9+18r

and U1,18r separately. Let

ϕ : (C3, 0)→ (C3, 0), (x, y, z) 7→ (x, y,−z). (357)

be a coordinate change.
Case U1,9+18r: It is ϕ ∈ Gsmar,genR ⊆ Gsmar and

ϕ∗(ω0) = −ω0, ϕ∗(yrzω0) = yrzω0. (358)

Now compare (307) and (322). The coordinate change ϕ induces an automorphism (ϕ)coh

on Cα1 and Cβ2 with

(ϕ)coh(b1) = −b1, (ϕ)coh(b4) = −b4, (ϕ)coh(b5) = b5. (359)

Thus g3 = −MT ◦ (ϕ)hom ∈ Gmar is the desired element.
Case U1,18r: By (322) and (354) we obtain (cf. (358)) the identities

ϕ∗(ω0) = −ω0, ,ϕ∗(yr+1ω0) = −yr+1ω0. (360)
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Now by (291) (ϕ)coh is an isomorphism

H ′′0 (f(t1,0))→ H ′′0 (f(−t1,0)), Cβ2(t1, 0)→ Cβ2(−t1, 0).

The composition

(− id) ◦ (math. pos. flat shift from Cβ2(−t1, 0) to Cβ2(t1, 0)) ◦ (ϕ)coh

acts on Cβ2(t1, 0) and has because of (345) the eigenvectors b4 and b5 with the eigenvalues
1 and eπi/9. The situation looks as follows:

b4 t−1/9
1 b5 Cβ2(t1, 0)

↓ ↓ (ϕ)coh ↓

−b4 −(e−πit1)−1/9b5 Cβ2(−t1, 0)

↓ ↓ shift ↓

−b4 −eπi/9t−1/9
1 b5 Cβ2(t1, 0)

↓ ↓ − id ↓

b4 eπi/9t−1/9
1 b5 Cβ2(t1, 0)

The corresponding composition

(− id) ◦ (math. pos. flat shift from Ml(f(−t1,0)) to Ml(f(t1,0))) ◦ (ϕ)hom

is in Gmar and can be chosen as the desired element g3.

4.5 quadrangle singularities

In this section we consider the singularities of types E3,0, Z1,0, Q2,0, U1,0, W1,0 and S1,0

from [AGV85, Section 15.1.2], i.e. the singularities with Kodaira types I∗0 (2,−,−,−). They
are commonly referred to as quadrangle singularities, because they correspond to certain
quadrangles in the hyperbolic plane just as the simple elliptic singularities correspond to
triangles. Note that some authors also use the term quadrilateral singularities instead of
quadrangle singularities (e.g. see [Ur93]).
The names of the types E3,0, Z1,0, Q2,0, U1,0, W1,0 and S1,0 are not given accidentally. In
fact, the quadrangle singularities can be considered as the special 0-th members of the
eight bimodal series from Section 4.4, with the two series W1,p and W ]

1,p for W1,0 and the
two series S1,p and S]1,p for S1,0.
Here we work with different normal forms than the ones in [AGV85, Section 15.1.2]. They
are given in Table 9 with (t1, t2) ∈ T (5) := (C \ {0, 1}) × C and originate from [GH18,
Section 10].

Those normal forms f(t1,t2) contain representatives of each right equivalence class. Addi-
tionally Table 10 lists weights (wx,wy,wz) such that f(t1,0) with the normal form as above
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Type normal form µ

E3,0 x(x− y3)(x− t1y3) + t2x
2y4 + z2 16

Z1,0 xy(x− y2)(x− t1y2) + t2x
2y4 + z2 15

Q2,0 x(x− y2)(x− t1y2) + yz2 + t2xz
2 14

U1,0 xz(x− z) + y3(x− t1z) + t2y
4z 14

W1,0 x4 + (4t1 − 2)x2y3 + y6 + t2x
2y4 + z2 15

S1,0 x2z + y3z + yz2 + t1x
2y2 + t2x

2y3 14

Table 9: Facts about the quadrangle singularities

is quasihomogeneous of weighted degree 1 and two numbers m0 and m∞. In this sense
the quadrangle singularities have semiquasihomogeneous normal forms. We set m1 := m0.
Note that it holds wy = 2

m < wx ≤ wz.

(wx,wy,wz) m0 m∞

W1,0 ( 1
4 , 1

6 , 1
2 ) 12 6

S1,0 ( 3
10 , 2

10 , 4
10 ) 10 5

U1,0 ( 1
3 , 2

9 , 1
3 ) 9 9

E3,0 ( 1
3 , 1

9 , 1
2 ) 9 9

Z1,0 ( 2
7 , 1

7 , 1
2 ) 7 7

Q2,0 ( 1
3 , 1

6 , 5
12 ) 6 6

Table 10: Facts about the quadrangle singularities, part 2

Besides the parameter space T (5) we need seven more spaces T (1), T (2), T (3), T (4), T (6),
T (7) and T (8) here. The situation is summarized in (361) and (362), where c(2) and c(6)

are branched and c(1) and c(5) unbranched coverings.

T (3)

c(1)
��

⊆ T (4) := H

c(2)
��

T (1) := C \ {0, 1} ⊆ T (2) := P 1C

(361)

T (7) := T (3) ×C

c(5) :=c(1)×id
��

⊆ T (8) := T (4) ×C

c(6) :=c(2)×id
��

T (5) = T (1) ×C ⊆ T (6) := T (2) ×C

(362)

To define c(2), c(2) and T (3) in the situation above, we have to consider a triangle group
Γ ⊆ PGL(2; R) of type ( 1

m0
, 1
m1

, 1
m∞

). The quotient H/Γ is then an orbifold with three
orbifold points of orders m0, m1 and m∞. They are the images of the elliptic fixed points
of Γ on T (4) of orders m0, m1 and m∞. It is T (4)/Γ ∼= P 1C in the sense of manifolds. Now
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we choose coordinates on T (4)/Γ such that 0 and 1 are orbifold points of order m0 = m1

and ∞ is an orbifold point of order m∞. Then we denote by

c(2) : T (4) → T (2) (363)

the quotient map. It is a branched covering. Finally, we define T (3) and c(1) as

T (3) := T (4) \ (c(2))−1({0, 1,∞}),

and c(1) := c(2)|T (4) : T (3) → T (1). (364)

Note that the map c(1) is again a covering.
We denote by G3 and G2 ⊆ G3 the following groups of automorphisms of T (2) = P 1C:

G3 := {t1 7→ t1, 1− t1, 1
t1

, t1
t1−1 , 1

1−t1 , t1−1
t1
} ∼= Sym (3) as a group,

G2 := {t1 7→ t1, 1− t1} ∼= Sym (2) as a group.
(365)

They also act on T (1) = C \ {0, 1} and give symmetries on the quasihomogeneous part
of the parameter space T (5) of the normal forms. This will be made explicit in the next
proposition.

Proposition 4.5.1. Consider a bimodal family of quadrangle surface singularities as in
Table 9. A function

κ : G2 × T (1) → C∗ for W1,0,S1,0, (366)

κ : G3 × T (1) → C∗ for U1,0,E3,0,Z1,0,Q2,0,

with the following properties exists.

f(t1,t2) ∼R f(t̃1,t̃2) ⇐⇒ ∃ g ∈

 G2 for W1,0,S1,0,

G3 for U1,0,E3,0,Z1,0,Q2,0,
with t̃1 = g(t1), t̃2

m∞ = κ(g, t1) · tm∞2 , (367)

κ(id, t1) = 1, (368)

κ(g2g1, t1) = κ(g1, t1) · κ(g2, g1(t1)). (369)

The values κ(g, t1) for generators g of the group are listed in (370).

W1,0 S1,0 U1,0 E3,0 Z1,0 Q2,0

t1 7→ 1− t1 1 −1 1
(

1−t1
t1

)18 (
1−t1
t1

)14
−1

t1 7→ t−1
1 − − −t−3

1 t−12
1 t−10

1 t31

(370)

Proof. The equations (368)–(370) are consistent (to check this is nontrivial only for E3,0

and Z1,0) and define a unique function κ as in (366).
We will show now that this function satisfies “⇐” in (367). We postpone the proof of “⇒”
in (367) to the very end of this section.
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“⇐”: The equality

f(t1,t2)(x · e
2πiwx , y · e2πiwy , z · e2πiwz ) = f(t1,t2·e2πi2/m) (371)

gives “⇐” in (367) for g = id and κ(id, t1) = 1 (for U1,0 m = m∞ = 9, in the other
cases m∞ = m

2 ). Now we list coordinate changes (x, y, z) 7→ ϕ(1)(x, y, z) and (x, y, z) 7→
ϕ(2)(x, y, z) with

f(t1,t2)(ϕ
(1)(x, y, z)) = f(1−t1,0) + t2 · p(1)(t1,x, y, z)

for all 6 cases, (372)

f(t1,t2)(ϕ
(2)(x, y, z)) = f(t−1

1 ,0)(x, y, z) + t2 · p(2)(t1,x, y, z)

for U1,0,E3,0,Z1,0,Q2,0 (373)

for certain quasihomogeneous polynomials p(1) and p(2) in the three variables x, y, z with
degw p(1) = degw p(2) = 1 + 2

m .

ϕ(1)(x, y, z) ϕ(2)(x, y, z)

W1,0 (x,−y, z) −

S1,0 (ix, y,−z − y2) −

U1,0 (−x+ z,−y, z) (−z, t−1/3
1 y,−x)

E3,0 (x− y3,−y, z) (x, t−1/3
1 y, z)

Z1,0 (e−2πi/14(x− y2), i · e−2πi/28y, z) (t1/7
1 x, t−3/7

1 y, z)

Q2,0 (x− y2, iy, e−2πi/8z) (x, t−1/2
1 y, t1/4

1 z)

(374)

One can calculate p(1) and p(2) easily. We set p>1 :=
∂f(t1,t2)
∂t2

. The proof of [AGV85, 12.6
Lemma] implies here

f(t̃1,0) + t2 · p̃ ∼R f(t̃1,t̃2)

where t2 · p̃ ≡ t̃2 · p>1 mod (Jacobi ideal of f(t̃1,0)). (375)

Here p̃ is a monomial of weighted degree 1 + 2
m . All such monomials are given in (376).

W1,0 S1,0 U1,0 E3,0 Z1,0 Q2,0

p̃ x2y4 x2yz x2yz x3y x3y2 x2y3

y7 y4z xyz2 xy7 xy6 x3y

x2yz y2z2 xy4 y10 y8 xy5

y4z y6 x3y yz2 x4 y7

yz2 x4 yz3 yz2 y2z2

z3

(376)

Now with (376) we find t̃2 with (375) for p̃ = p(1) and for p̃ = p(2). Then we can easily
verify (370).
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4.5.1 The group GZ for quadrangle singularities

The Coxeter-Dynkin diagrams of the quadrangle singularities can be obtained from the
ones in Subsection 4.4.1 (so from the ones in [Eb81, Tabelle 6 + Abbildung 16]). Note that
the diagrams for W ]

1,p and W1,p specialize both to the same diagram for W1,0. However
only the description of the action of the monodromy on the distinguished basis for W ]

1,p
in Subsection 4.4.1 specializes to W1,0. The description of the monodromy action for W1,p

does not, because in this case δ2 maps to 2δ1 + 2δ2 + δ8 + δ12 + δ16 under Mh and δ16 does
not exist for W1,0. Hence, we work with the specialization to p = 0 of the formulas for
W ]

1,p in Subsection 4.4.1.
The same argument applies to S1,0, too. Thus we work with the specialization to p = 0 of
the formulas for S]1,p in Subsection 4.4.1.
In particular, Table 11 below specializes Table 8 to the case p = 0.

Type p1 p2 p3 m rI

E3,0 Φ18Φ2 Φ18Φ6Φ2 - 18 2
Z1,0 Φ14Φ2 Φ14Φ2 Φ2 14 2
Q2,0 Φ12Φ4Φ3 Φ12Φ4 - 12 2
U1,0 Φ9 Φ9Φ3 - 9 1
W1,0 Φ12 Φ12Φ6Φ4Φ3Φ2 - 12 1
S1,0 Φ10Φ2 Φ10Φ5Φ2 - 10 1

Table 11: Characteristic polynomials of the quadrangle singularities

Theorem 4.5.2. For any surface singularity f in any of the six families of quadrangle
singularities, the following holds.

(a) For all families except Z1,0, there are Orlik blocks B1,B2 ⊆Ml(f), and for Z1,0,
there are Orlik blocks B1,B2,B3 ⊆Ml(f) with the following properties. The charac-
teristic polynomial pBj of the monodromy on Bj is bj. The sum ∑

j≥1Bj is a direct
sum ⊕

j≥1Bj, and it is a sublattice of Ml(f) of full rank µ and of index rI . Define

B̃1 :=

 B1 for all cases except Z1,0,

B1 ⊕B3 for Z1,0.
(377)

Then it holds

L(B̃1,B2) = 0 = L(B2, B̃1), (378)

g ∈ GZ with g((B1)Φm) = (B1)Φm ⇒ g(Bj) = Bj for j ≥ 1. (379)



4.5 quadrangle singularities 95

(b) The eigenspace Ml(f)ζ ⊆ Ml(f)C is 2-dimensional. The Hermitian form hζ on
it from Lemma A.2.5 (a) with hζ(a, b) :=

√
−ζ ·L(a, b) for a, b ∈ Ml(f)ζ is nonde-

generate and indefinite, so Proj (Ml(f)ζ) ∼= P 1C contains the half-plane

Hζ := {C · a | a ∈Ml(f)ζ with hζ(a, a) < 0} ⊆ Proj(Ml(f)ζ). (380)

Therefore the group Aut(Ml(f)ζ ,hζ)/S1 · id is isomorphic to PSL(2; R). The homo-
morphism

Ψ : GZ → Aut(Ml(f)ζ ,hζ)/S1 · id, g 7→ g|Ml(f )ζ mod S1 · id, (381)

is well-defined. The image of the homomorphism Ψ(GZ) is an infinite Fuchsian group
acting on the half-plane Hζ . It is a triangle group of the same type as in Theorem
A.3.6, i.e. of the types:

W1,0 S1,0 E3,0 & U1,0 Z1,0 Q2,0

(2, 12, 12) (2, 10, 10) (2, 3, 18) (2, 3, 14) (2, 3, 12)
(382)

The kernel of the homomorphism is

ker Ψ = {±Mk
h | k ∈ Z}. (383)

Proof. (a) We define the Orlik blocks B1 and B2 (and B3 for Z1,0) as in the proof of
Theorem 4.4.1. Of course now it is p = 0. By the arguments of the proof of Theorem 4.4.1,
the sum∑

j≥1Bj is again a direct sum⊕
j≥1Bj . Moreover it is again a sublattice ofMl(f)

of full rank µ and index rI and equation (378) holds.

So for part (a), it remains to show (379). In the cases W1,0 and U1,0 this is trivial as
rI = 1 and b1 = Φm and B1 and B2 are L-orthogonal. In the other cases, i.e. S1,0, E3,0,
Z1,0 and Q2,0, the proof works along the same lines as the proof of (120) for S1,10. This
will be made explicit now. We treat S1,0, E3,0 and Z1,0 first and then we consider Q2,0.

Note that many formulas in the proof of part (a) of Theorem 4.4.1 specialize to the
cases S1,0, E3,0 and Z1,0. Most notably, (127)–(129), (160)–(171), (173), (178) and (180)
translate naturally. The quadratic forms in (171) give the following sets of "small" vectors
(cf. (172) and (174)):

{a ∈Ml(f)Φ2 |L(a, a) = 5} = {±γ1,±γ2} for S1,0, (384)

{a ∈Ml(f)Φ2 |L(a, a) = 6} = {±γ1,±γ̃2,±(γ̃2 − γ1)} for E3,0,

{a ∈Ml(f)Φ2 |L(a, a) = 5} = {±(γ1 − 3γ2),±γ̃2,±(γ̃2 − γ2)} for Z1,0.

In each of the cases the first element (up to sign) of each of these three sets generates (B1)Φ2 .
We claim that (B1)Φm and this first element satisfy the following special relationship. For
a in any of these three sets define

r(a) := [((B1)Φm + Z · a)Q ∩Ml(f) : ((B1)Φm + Z · a)] ∈ Z≥1. (385)
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Then we claim:

S1,0 E3,0 Z1,0

a r(a) ±γ1 5 ±γ1 3 ±(γ1 − 2γ3) 7

a r(a) ±γ2 1 ±γ̃2,±(γ̃2 − γ1) 1 ±γ̃2,±(γ̃2 − γ2) 1

(386)

The proof is the same as the proof of (278) for S1,10. Here we use that for any unitary
polynomial p(t) ∈ Z[t] it holdsdeg p⊕

j=0
Z · tj :

deg p−1⊕
j=0

Z · tjΦ2 ⊕Z · p(t)

 = |p(−1)|, (387)

and by [He93, Lemma 3.5] it holds

Φ10(−1) = 5, Φ18(−1) = 3, Φ14(−1) = 7. (388)

Furthermore, we use

B1 ⊆
m1∑
j=1

Z · δj with m1 := 8, 9, 10 for S1,0,E3,0,Z1,0 (389)

and that the elements in the second line of (386) are modulo ∑m1
j=1 Z · δj of the forms:

S1,0 : γ2 ≡ δ9 + δ11 + δ12 + δ14, (390)

E3,0 : γ̃2 ≡ δ10 + δ12 + δ14 + δ16, γ̃2 − γ1 ≡ γ̃2,

Z1,0 : γ̃2 ≡ δ11 + δ13 + δ15, γ̃2 − γ2 ≡ −γ̃2.

Therefore (B1)Φm + Z · a is primitive in Ml(f) for those elements a and, thus, r(a) = 1.
The derivation of (379) from (386) and (384) for S1,0, E3,0 and Z1,0 works along the

same lines as the derivation of (120) from (278) for S1,10.
The only additional argument concerns B3 = Z ·γ3 in the case Z1,0. By (173) any g ∈ GZ

maps B3 to itself. Since L(γ1 − 2γ3, γ3) = 1 6= 0, B3 and (B1)Φ2 are glued together. That
means, if g = ε · id on (B1)Φ2 for some ε ∈ {±1}, then g = ε · id on B3.

Now we come to Q2,0. The formulas (152)–(155), (237)–(238), (241)–(252), (255)–(258)
are also valid for p = 0 respectively s = 0. The quadratic form in (252) now gives the
following variant of (253):

A := {γ1, γ3, γ1 − γ3 +Mh(γ3), γ1 −Mh(γ1) +Mh(γ3)}, (391)

{b ∈Ml(f)Φ4 |L(b, b) = 3} =
⋃
a∈A
{±a,±Mh(a)}. (392)

There are 16 elements which come in 4 sets of 4 elements such that each set isMh-invariant.
Recall that M2

h = − id on Ml(f)Φ4 . The set {±γ1,±Mh(γ1)} generates (B1)Φ4 . We claim
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that (B1)Φ12 and this set satisfy the following special relationship. For a ∈ A define the
index

r(a) :=
[
((B1)Φ12 + Z · a+ Z ·Mh(a))Q ∩Ml(f) (393)

: ((B1)Φ12 + Z · a+ Z ·Mh(a))
]
∈ Z≥1.

Then we claim that the index is

r(a) =


9 for a = γ1,

1 for a ∈ {γ3, γ1 −Mh(γ1) +Mh(γ3)},

1 or 2 for a = γ1 − γ3 +Mh(γ3).

(394)

So r(γ1) = 9 holds because of

((B1)Φ12 + Z · γ1 + Z ·Mh(γ1))Q ∩Ml(f) (395)

= (B1)Φ12Φ4 =
5⊕
j=0

Z · (tjΦ3)(Mh)(β1),

(B1)Φ12 + Z · γ1 + Z ·Mh(γ1) (396)

=
3⊕
j=0

Z · (tjΦ4Φ3)(Mh)(β1)⊕
1⊕
j=0

Z · (tjΦ12Φ3)(Mh)(β1),

and, thus, it is

r(γ1) =

 5⊕
j=0

Z · tj :
3⊕
j=0

Z · tjΦ4 ⊕
1⊕
j=0

Z · tjΦ12

 = 3 · 3. (397)

For a ∈ A \ {γ1}, r(a) ∈ {1, 2} holds because of

B1 ⊆
10∑
j=1

Z · δj , (398)

and because the elements a andMh(a) for a ∈ A \ {γ1} are modulo∑10
j=1 Z · δj of the form

γ1 ≡ −δ13 − δ14, (399)

Mh(γ1) ≡ δ12 + δ13,

γ1 − γ3 +Mh(γ3) ≡ δ12 + 2δ13 + δ14,

Mh(γ1 − γ3 +Mh(γ3)) ≡ −δ12 + δ14,

γ1 −Mh(γ1) +Mh(γ3) ≡ δ12 + δ13,

Mh(γ1 −Mh(γ1) +Mh(γ3)) ≡ δ13 + δ14.

The derivation of (379) for Q2,0 from (392) and (394) is a simple variant of the derivation
of (120) from (278) for S1,10 at the very end of the proof of Theorem 4.4.1. Namely, consider
an element g ∈ GZ with g((B1)Φ12) = (B1)Φ12 . By (392) it maps the set {±γ1,±Mh(γ1)}
to one of the four sets on the right hand side of (392). Moreover by (394) the image must
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α1 α2 αµαµ−1

1/20 1

Figure 19: Spectral data for the quadrangle singularities

be the set {±γ1,±Mh(γ1)} itself. As this set generates (B1)Φ4 , g maps (B1)Φ4 to itself.
Then g maps the sets (B1)Φ12Φ4 , B1 = (B1)Φ12Φ4Φ3 and B2 = (B2)Φ12Φ4 to themselves.
This finishes the proof of part (a).

(b) All the formulas and arguments in the proof of part (c) of Theorem 4.4.1 for the
cases W ]

1,12r,S
]
1,10r,U1,9r,E3,18r,Z1,14r and Q2,12r translate to r = 0.

In Step 3 (379) is used instead of (119), just as (120) for S1,10. Therefore Ψ(GZ) is an
infinite Fuchsian group of type as in (382). By (217), (525) and Theorem A.3.6, Ψ(GZ) is
a subgroup of a triangle group of the same type as in Theorem A.3.6, for each case. Lastly,
the proof of Theorem 4.5.6 will show that it is the full triangle group.

4.5.2 Torelli Conjectures for quadrangle singularities

Here we choose f0 := f(i,0) as reference singularity for each 2-parameter family in Table 9.
The spectral data for the singularities is given below. Moreover the classifying space DBL

for the quadrangle singularities is computed.

Lemma 4.5.3. Consider a bimodal family of quadrangle surface singularities with normal
form as in Table 9.

(a) The spectral numbers α1, . . . ,αµ with α1 ≤ . . . ≤ αµ satisfy

α1 =
−1
m

< α2 =
1
m
< α3 ≤ . . . ≤ αµ−2 < αµ−1 = 1− 1

m
< αµ = 1 + 1

m
, (400)

dimCα1 = dimCα2 = 2. (401)

Figure 19 illustrates the spectral data.

We also have

V α1(f(t1,t2)) ⊇ H ′′0 (f(t1,t2) ⊇ V
>α2(f(t1,t2)), (402)

H ′′0 (f(t1,t2)) = C · (s(ω0,α1)(t1, t2) + s(ω0,α2)(t1, t2))
+ C · s(yω0,α2)(t1, t2) + V >α2(f(t1,t2)). (403)

(b) The polarizing form S defines an indefinite form ((a, b) 7→ S(a, b)) on the space
Hn (X∞, C)ζ . We get the half-plane

H(Cα1) := {C · v | v ∈ Cα1 with S(ψ−1
α1 (v),ψ

−1
α1 (v)) < 0} ⊆ Proj(Cα1). (404)
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(c) The classifying space for Brieskorn lattices is

DBL = {C · (v1 + v2) | v1 ∈ Cα1 − {0} with [C · v1] ∈ H(Cα1),

v2 ∈ C ·ψα2(ψ
−1
α1 (v1)) ⊆ Cα2} (405)

∼= H(Cα1)×C.

Proof. (a) The spectral numbers can be found in [AGV88, 13.3.4, p. 389]. With the spectral
numbers at hand (401) and (402) are obvious. Moreover, the form of the Brieskorn lattice
given in (403) follows from Proposition A.1.4 and degw(ω0) = α1 + 1, degw(yω0) = α2 + 1
and degw(xiyjzkω0) > α2 + 1 for any other monomial xiyjzk, because wy < wx ≤ wz.

(b) This follows as in Subsection 4.4.2. In particular, look right before Theorem 4.4.2.

(c) This follows as in Lemma 4.4.3 (c) in the case m|p.

Now we can compute the period map T (5) → DBL. Note that this period map was
already computed in [He93, Kapitel 4 b)]. For reasons of self-consistency of this writing
we do this computation again here.

Theorem 4.5.4. Consider a bimodal family of quadrangle surface singularities with nor-
mal form as in Table 9.

(a) The section s(ω0,α1)(t1, t2) = s(ω0,α1)(t1, 0) = s[ω0](t1, 0) is independent of t2
and satisfies the hypergeometric differential equation

0 =
(
t1(1− t1)∂2

t1 + (c− (a+ b+ 1)t1)∂t1 − ab
)
s[ω0](t1, 0) (406)

with (1− c, c− a− b, a− b) = ( 1
m0

, 1
m1

, 1
m∞

).

(b) The multivalued period map

BLT (1) : T (1) → H(Cα1), t1 7→ C · s[ω0](t1, 0), (407)

lifts to a univalued period map

BLT (3) : T (3) → H(Cα1) (408)

which is an open embedding and extends to an isomorphism

BLT (4) : T (4) → H(Cα1). (409)

(c) We have

s(ω0,α2)(t1, t2) = t2 · (−∂τ )s[p>1ω0](t1, 0), (410)

Cα2 = C · s[yω0](t1, 0)⊕C · ∂τs[p>1ω0](t1, 0). (411)



100 torelli results for µ-constant families of singularities

(d) The multivalued period map

BLT (5) : T (5) → DBL (412)

is locally in T (1) and H(Cα1) an isomorphism of line bundles and lifts to an open
embedding of line bundles

BLT (7) : T (7) → DBL. (413)

(e) In the case of S1,0 it holds

∂t1s[xω0](t1, 0) = 2t1 − 1
5t1(1− t1)

· s[xω0](t1, 0). (414)

Proof. (a) Here we just describe the calculations that are necessary to prove (406). Note
that, f(t1,0) and ∂t1f(t1,0) are quasihomogeneous of weighted degree 1. Now list all mono-
mials d1, . . . , dl in x, y, z which turn up in f2

(t1,0), f(t1,0) · ∂t1f(t1,0) and (∂t1f(t1,0))
2, find

l − 2 independent linear combinations of d1ω0, . . . , dlω0 in df(t1,0) ∧ dΩ1
C3 and determine

an equation

p1 · (∂t1f(t1,0))
2 · ω0 + p2 · f(t1,0) · ∂t1f(t1,0) · ω0 + p3 · f2

(t1,0) · ω0

≡ 0 mod df(t1,0) ∧ dΩ1
C3 (415)

with p1, p2, p3 ∈ Q[t1]. Then we obtain the hypergeometric equation(
p1∂

2
t1 − (α1 + 2)p2∂t1 + (α1 + 2)(α1 + 1)p3

)
s[ω0](t1, 0). (416)

Note that by stabilization it is sufficient to work in the cases W1,0, E3,0, Z1,0 with the
curve singularities (see Proposition 3.2.3). There the number l of monomials is l = 5. In
the other cases we need surfaces singularities and there it is l = 9.

(b) The period map BLT (1) is not constant because s[ω0](t1, 0) and ∂t1s[ω0](t1, 0) =

(−∂τ )s[∂t1f(t1,0) · ω0](t1, 0) are linearly independent. This follows from the fact that the
derivative ∂t1f(t1,0) is not in the Jacobi ideal. Therefore the multivalued coefficient functions
f1(t1) and f2(t1) with

s[ω0](t1, 0) = f1(t1) · v0
1 + f2(t1) · v0

2 (417)

for an arbitrary basis v0
1, v0

2 of Cα1 are linearly independent scalar solutions of the same
hypergeometric differential equation. Their quotient

(
t1 7→ f1(t1)

f2(t1)

)
is a Schwarzian function

[Fo51, Sections 113+114], which maps the closure of the upper half-plane to a hyperbolic
triangle with angles π

m0
, π
m1

, π
m∞

. The vertices are the images of 0, 1, ∞. Hence, the mul-
tivalued map BLT (1) : T (1) → H(Cα1) is an inverse of the quotient map c(1) : T (3) → T (1).
This shows (408) and (409).
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(c) It is s(ω0,α2)(t1, 0) = 0 because of Proposition A.1.4 (a). Furthermore, it holds

∂t2s(ω0,α2)(t1, t2) = (−∂τ )s(p>1ω0,α2 + 1)(t1, t2)

= (−∂τ )s[p>1ω0](t1, 0)

thus s(ω0,α2)(t1, t2) = t2 · (−∂τ )s[p>1ω0](t1, 0)

≡ t2 · v2 mod C · s[yω0](t1, 0) (418)

with a suitable v2 ∈ ψ−1
α2 (ψα1(s[ω0](t1, 0))) \ {0}.

Here v2 6= 0 follows from (411) which is a consequence of the fact that p>1 is not in the
Jacobi ideal of f(t1,0).

(d) This follows from (408) and part (c).

(e) To prove this part we have to do calculations which are similar to the ones in part
(a) — but simpler. In fact, it is

∂t1s[xω0](t1, 0) = (−∂τ )s[∂t1f(t1,0) · xω0](t1, 0) = (−∂τ )s[x3y2ω0](t1, 0)
(∗)
=

2t1 − 1
6t1(t1 − 1) (−∂τ )s[f(t1,0) · xω0](t1, 0)

=
2t1 − 1

6t1(t1 − 1) (−∂ττ )s[xω0](t1, 0)

=
2t1 − 1

6t1(t1 − 1) (−
6
5 )s[xω0](t1, 0)

=
2t1 − 1

5t1(1− t1)
s[xω0](t1, 0).

For (∗)
= one has to find 3 relations in df(t1,0) ∧ dΩ1

C3 between the monomial differential forms
x3y2ω0,xy3zω0,xyz2ω0 and x3zω0 in f(t1,0) · xω0 and x3y2ω0.

The last step before we come to the main theorem of this subsection is the following
result on the transversal monodromy. In order to proof this result we will use (383) from
Theorem 4.5.2.

Theorem 4.5.5. Consider a bimodal family of quadrangle surface singularities with nor-
mal form as given in Table 9. The pull back to T (3) with c(1) of the homology group⋃
t1∈T (1) Ml(f(t1,0)) → T (1) comes equipped with a monodromy representation of the form

π(3) : π1(T (3), τ (3)) → GZ (with c(1)(τ (3)) = i). It is called the transversal monodromy
group.

(a) In (419) the local monodromies around the elliptic fixed points in (c(2))−1(0),
(c(2))−1(1) and (c(2))−1(∞) are given.

W1,0 S1,0 U1,0 E3,0 Z1,0 Q2,0

(c(2))−1({0, 1}) id id id id id id

(c(2))−1(∞) id M5
h id id id M6

h

(419)



102 torelli results for µ-constant families of singularities

Therefore im(π(3)) = {id} for W1,0, U1,0, E3,0, Z1,0, and im(π(3)) = {id,Mm∞
h } for

S1,0 and Q2,0.

(b) We have:

{g ∈ GZ | g acts trivially on DBL} = {g ∈ GZ | g = ± id on Mlζ} (420)

= {± id,±Mm∞
h }

=

 {± id} for U1,0,E3,0,Z1,0

{± id,±Mm∞
h } for W1,0,S1,0,Q2,0.

(c) We consider the group Gsmar,genR (cf. (61)) for the singularities of multiplicity ≥ 3,
i.e. the curve singularities W1,0, E3,0, Z1,0 and the surface singularities S1,0, U1,0,
Q2,0. It is

Gsmar,genR =

 {id} for U1,0,E3,0,Z1,0,

{id,Mm∞
h } for W1,0,S1,0,Q2,0.

(421)

Proof. We start with the proof of part (b).
(b) Suppose that g ∈ GZ acts trivially on DBL. Then it acts trivially also on H(Cα1),
i.e. g = λ · id on Mlζ for some λ ∈ C∗. It is C · (v1 + v2) = C · (λv1 + λv2) and, thus,
λ = λ ∈ {±1}. This together with formula (383) and the set of eigenvalues of Mh gives
(420).

(a) The (Papperitz-)Riemann symbol


0 1 ∞

0 0 a z

1− c c− a− b b

 (422)

encodes the local behaviour near 0, 1 and ∞ of scalar solutions of the hypergeometric
equation. Locally suitable solutions have the following form (h.o.t. = higher order terms):

near 0 : t01 + h.o.t. and t1−c1 + h.o.t.,

near 1 : (t1 − 1)0 + h.o.t. and (t1 − 1)c−a−b + h.o.t.,

near ∞ : t−a1 + h.o.t. and t−b1 + h.o.t.

(423)

Especially, the local monodromy of the space of solutions has the eigenvalues

around 0 : 1 and e2πi(1−c),

around 1 : 1 and e2πi(c−a−b),

around ∞ : e−2πia and e−2πib.

(424)
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In our situation, i.e. (1− c, c− a− b, a− b) = ( 1
m0

, 1
m1

, 1
m∞

), we obtain

W1,0 S1,0 U1,0 E3,0 Z1,0 Q2,0

a 1
2

1
2

4
9

4
9

3
7

5
12

b 1
3

3
10

1
3

1
3

2
7

1
4

c 11
12

9
10

8
9

8
9

6
7

5
6

(425)

The branched covering c(2) : T (4) → T (2) has at the elliptic fixed points the orders m0,
m1, m∞. Therefore the local monodromies of the pull back to T (3) of the solutions on
T (1) = C \ {0, 1} ⊆ T (2) = P 1C become + id except around the elliptic fixed points in
(c(2))−1(∞) in the cases S1,0 and Q2,0 where they become − id.

The same holds for the restrictions to Mlζ of the local monodromies in π(3).
With (383) we obtain (419) for U1,0, E3,0, Z1,0 and the following approximation of (419)

for W1,0,S1,0,Q2,0.

W1,0 S1,0 Q2,0

(c(2))−1({0, 1}) id or −M6
h id or −M5

h id or −M6
h

(c(2))−1(∞) id or −M6
h − id or M5

h − id or M6
h

(426)

Now we show that several entries in (426) cannot occur by case-by-case analysis to end up
with (419).

The caseW1,0: Here, the sublatticeMl−1,Z has rank 1. Hence, the local transversal mon-
odromies of the homology bundle on T (1) around 0, 1 and ∞ have on Ml−1,Z eigenvalues
in {±1}. The branched covering T (4) → T (2) is at the elliptic fixed points of even order.
Thus the map π(3) restricts to the trivial monodromy on Ml−1,Z. This excludes −M6

h in
(426).

The case S1,0: The local transversal monodromies of the homology bundle on T (1) around
0, 1 and ∞ have on Mle−2πi/5 eigenvalues in Eiw(ζ). The branched covering is at the
elliptic fixed points in (c(2))−1({0, 1}) of order 10. Thus the local monodromies of π(3)

around points in (c(2))−1({0, 1}) are trivial on Mle−2πi/5 . This excludes −M5
h in the first

line of (426). The branched covering is at the elliptic fixed points in (c(2))−1(∞) of order
5. Now via Theorem 4.5.4 (e) we obtain near ∞

s[xω0](t1, 0) = (t−2/5
1 + h.o.t.) · (a flat multivalued section). (427)

Therefore also the local monodromy of π(3) around points in (c(2))−1(∞) is trivial. This
excludes − id in the second line of (426).

The case Q2,0: The local transversal monodromies of the homology bundle on T (1)

around 0, 1 and ∞ have on Mle−2πi/3 eigenvalues in Eiw(e2πi/6). The branched cover-
ing T (4) → T (2) is at the elliptic fixed points of order 6. Thus π(3) restricts to the trivial
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monodromy on Mle−2πi/3 . This excludes −M6
h in the first line and − id in the second line

of (426).

(c) By Proposition 3.1.6 (d) it is− id /∈ Gsmar,genR . Furthermore, the groupGsmar,genR fixes
BL([f ,±ρ]) for any [f ,±ρ] ∈Mmar

µ . Since T (7) → DBL is an open embedding, Gsmar,genR
fixes DBL. By part (b) Gsmar,genR = {id} for U1,0, E3,0, Z1,0, and Gsmar,genR = {id} or
{id,Mm∞

h } or {id,−Mm∞
h } for W1,0,S1,0,Q2,0. The coordinate changes ϕ of the curve

singularities W1,0 and the surface singularities S1,0 and Q2,0 in (428) give a nontrivial
element of Gsmar,genR .

W1,0 S1,0 Q2,0

(x, y) 7→ (−x, y) (x, y, z) 7→ (−x, y, z) (x, y, z) 7→ (x, y,−z)
(428)

The coordinate change ϕ maps ω0 to −ω0 and s[ω0](t1, 0) to −s[ω0](t1, 0). Therefore
(ϕ)hom|Mlζ = − id and (ϕ)hom =Mm∞

h (and not −Mm∞
h ). This shows (420) for W1,0, S1,0

and Q2,0.

Now we are ready to prove the main theorem of this subsection. We will need many
results from all over this chapter. Note that the proof will also close the gaps that are left
in the proof of Theorem 4.5.2.

Theorem 4.5.6. Consider a bimodal family of quadrangle surface singularities with nor-
mal form as given in Table 9.

(a) There are canonical isomorphisms

T (7) → (M smar
µ )0 → (Mmar

µ )0. (429)

(b) − id /∈ Gsmar, where Gsmar is the group for the singularities of multiplicity ≥ 3,
namely the curve singularities W1,0,E3,0,Z1,0 and the surface singularities S1,0, U1,0,
Q2,0. So Conjecture 3.1.2 is true.

(c) It is GZ = Gmar, i.e. Mmar
µ = (Mmar

µ )0.

(d) The period map BL : Mmar
µ → DBL is an embedding. So the strong global Torelli

Conjecture 3.2.2 (a) is true.

Proof. According to Theorem 4.5.5 (a)+(c) the transversal monodromy representation π(7)

of the pull back to T (7) with c(5) of the homology bundle ⋃(t1,t2)∈T (5) Ml(f(t1,t2)) → T (5)

is trivial in the cases W1,0, U1,0, E3,0, Z1,0 and has image in Gsmar,genR = {id,Mm∞
h } in

the cases S1,0 and Q2,0. Thus, the strong marking + id on f(i,0) induces for each f(t1,t2)

two strong markings in the same right equivalence class in the cases S1,0 and Q2,0 and one
strong marking in the other cases. In any case, we obtain a map T (7) → (M smar

µ )0.
Composed with the period map we get an open embedding T (7) → (M smar

µ )0 → DBL

by Theorem 4.5.4. Moreover, we know that (M smar
µ )0 → DBL is even an immersion (cf.

Theorem 3.2.1) and that all three spaces above are 2-dimensional manifolds. So T (7) →
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(M smar
µ )0 and (M smar

µ )0 → DBL are open embeddings, too. For the moment we postpone
the proof that the map T (7) → (M smar

µ )0 is an isomorphism.
Part (b) follows now easily. We consider the case of singularities of multiplicity ≥ 3. For

singularities of multiplicity 2, M smar
µ = Mmar

µ and (M smar
µ )0 = (Mmar

µ )0 hold anyways.
For singularities of multiplicity ≥ 3, − id ∈ GZ acts trivially on DBL. But it acts non-
trivially on M smar

µ by Theorem 3.1.4 (c). The map (M smar
µ )0 → DBL is an embedding.

Therefore − id ∈ GZ does not act on (M smar
µ )0. Hence, it is − id /∈ Gsmar. This shows part

(b). In this case (M smar
µ )0 ∼= (Mmar

µ )0 according to Theorem 3.1.4 (c).
The map c(2) : T (4) = H → T (2) = P 1C is the branched covering from an action of a

triangle group Γ of type ( 1
m0

, 1
m1

, 1
m∞

) on H. The triangle group Γ is a normal subgroup
of index 2 of a triangle group Γqh of type (2, 2m, 2m) with Γqh/Γ = G2 for W1,0 and
S1,0. It is a normal subgroup of index 6 of a triangle group Γqh of type (2, 3, 2m) with
Γqh/Γ = G3 for U1,0, E3,0, Z1,0 and Q2,0. Figure 20 shows the two hyperbolic triangles
associated to Γ and Γqh. The symbols [0], [1], [∞], [ 1

2 ], [2], [−1], [e2πi/6] at special points
indicate the images of these points under c(2).

Figure 20: Hyperbolic triangles

Since the group Γqh maps the set of elliptic fixed points (c(2))−1({0, 1,∞}) = T (4) \T (3)

of Γ to itself, it acts on T (3). The orbits of Γqh in T (3) are contained in the right equivalence
classes of quasihomogeneous singularities by the (already proved) implication “⇐” in (367)
in Proposition 4.5.1. By the embedding T (3) → H(Cα1) in Theorem 4.5.4, Γqh acts also
on H(Cα1), and the orbits are contained in the orbits of Ψ(Gmar), because the orbits of
Gmar on (Mmar

µ )0 are the right equivalence classes in (Mmar
µ )0.

Now we compare the actions of Γqh and Ψ(Gmar) onH(Cα1). Γqh acts as a triangle group
of type (2, 2m, 2m) respectively (2, 3, 2m), and Ψ(Gmar) acts by Theorem 4.5.2 (b) as a
subgroup of a triangle group of the same type. Moreover, the orbits of Γqh are contained
in the orbits of Ψ(Gmar). Therefore the actions must coincide and Ψ(Gmar) = Ψ(GZ) is a
triangle group of the types as given in (382). This gives the surjectivity in Theorem 4.5.2
and finishes the proof of Theorem 4.5.2.
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It also shows that Gmar acts on T (3). Since T (3) contains representatives of the right
equivalence classes of all quasihomogeneous singularities in the given µ-homotopy family,
the marked quasihomogeneous singularities in (Mmar

µ )0 must all be in T (3). This shows
that the open embedding T (7) → (Mmar

µ )0 is an isomorphism.
Lastly, we prove GZ = Gmar. In order to do so we consider an element g1 ∈ GZ. Since

it holds Ψ(Gmar) = Ψ(GZ), we can multiply it with an element g2 ∈ Gmar such that
g3 = g1g2 satisfies Ψ(g3) = id. Now by (383) it is g3 ∈ {±Mk

h | k ∈ Z} ⊆ Gmar. This
proves GZ = Gmar and, hence, Mmar

µ = (Mmar
µ )0 holds. Now as BL : (Mmar

µ )0 → DBL

is an embedding, BL : Mmar
µ → DBL is an embedding, too. This completes the proof of

Theorem 4.5.6.

Lastly, we have to finish the proof of Proposition 4.5.1.

Proof of “⇒” in (367). By the discussion above the group GZ acts as Γqh on H(Cα1) and,
hence, as G2 respectively G3 on T (1). This already shows “⇒” in (367) for the quasiho-
mogeneous singularities. Note that this is proved also in [Bi92, Satz 1.5.2] with a different
sort of argument.
Now an element g ∈ GZ which acts trivially on T (3) is in {±Mk

h | k ∈ Z} and restricts
to λ · id on Mlζ for some λ ∈ Eiw(ζ). We observe that

g : C · (v1 + v2) 7→ C(λ · v1 + λ · v2) = C · (v1 + λ
2 · v2).

Thus it acts on the fibers of the projection DBL → H(Cα1) by multiplication with λ2, and
it acts in the same way on the fibers of the projection T (7) → T (3). But it is (λ2

)m∞ = 1.
This then shows “⇒” in (367) for all quadrangle singularities.

4.6 beyond singularities of modality 2 — the type U24

After we proved the Torelli Conjectures for all simple, unimodal and bimodal singulari-
ties in the previous sections, it is natural to ask what happens for singularities of higher
modality. Here some partial results are available. They were achieved by concrete calcu-
lations, just as the results for the singularities of modality less than or equal to two. In
particular, we know that Brieskorn-Pham singularities with pairwise coprime exponents
and semiquasihomogeneous singularities with weights

(
1
3 , 1

3 , 1
3 , 1

3

)
fulfill the Torelli Con-

jectures (see [He98]). The current state of the art is summarized in Table 14.
Until now there is no general method to attack these problems. But even without a com-
plete general understanding it is possible to consider a certain type of singularity and prove
the conjectures by hand. Here we do this exemplarily for the quasihomogeneous polynomial
f = x3 + y3 + z7, which defines an isolated hypersurface singularity of Milnor number
µ = 24 and multiplicity three. This singularity is of type U24, of modality five and quasi-
homogeneous of weighted degree one with weights

(
1
3 , 1

3 , 1
7

)
. Especially, it is not of any

of the types studied earlier in this thesis. It turns up as some kind of standard example of
a quasihomogeneous singularity in several articles, e.g. see [Ba03, Example 7] or [GHP97,
Example 2.8]. This is also the reason why we choose it here.
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The Coxeter-Dynkin diagram for this singularity can be found in [Ga74-2, Figure 8] and
looks as shown in Figure 21.

Figure 21: Coxeter-Dynkin diagram for x3 + y3 + z7

This encodes its Seifert form. From this Seifert form we can compute the monodromy
operator Mh on the Milnor lattice via the formulas in Chapter 2. This then yields

Mh =



 0 1

−1 −1

⊗
 0 1

−1 −1

⊗



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−1 −1 −1 −1 −1 −1





T

.

The characteristic polynomial of this monodromy matrix is pch = Φ2
7Φ21. We set p2 :=

Φ7 and pmin := Φ7Φ21. Then we can compute thatMl (f) =
⊕17

i=0 Z ·M i
h (δ12)⊕

⊕5
i=0 Z ·

M i
h (δ12 − δ18) =: B1⊕B2 and that the monodromy with respect to this new basis has the

form

MM =

Spmin

Sp2

 .

Recall that Sp2 and Spmin are the companion matrices for the polynomials p2 and pmin. In
other words that means that Orlik’s Conjecture A.2.2 is true for this singularity.
Now as Orlik’s Conjecture is true here we can employ the lattice theory from Appendix
A.2 to compute the group GZ. Note that this proof is similar to the case of singularities
of type U16.

Proposition 4.6.1. For f0 = x3 + y3 + z7 we have the following two equalities

{g ∈ GZ|g|B3 = ±(Mh|B3)
k} ={±Mk

h |k ∈ Z}, (430)

Aut (B3,L) ={±(Mh|B3)
k|k ∈ Z} × Sym(3), (431)

where B3 := ker (Φ7 : Ml(f)C →Ml(f)C) ∩Ml(f).
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Proof. Note that B3 is a primitive sublattice of Ml (f) of rank 12. The lattices B1 ∩B3

and B2 are Mh-invariant primitive sublattices of B3 of rank 6. Together they generate B3.
It holds

(B1)C = ker(Φ21(Mh))⊕ (B1 ∩B3)C. (432)

Now every automorphism g ∈ GZ with g|B3 = ±(Mh|B3)
k for some k ∈ Z restricts to

an automorphism of B1, because of B2 ⊆ B3 and equation (432). So we are able to apply
Lemma A.2.3 to the cyclic block B1. This then yields g|B1 = ±(Mh|B1)

l for some l ∈ Z.
Since g|B3 = ±(Mh|B3)

k, it has to be k ≡ l mod lcm(m : Φm|Φ7). So the automorphism
g which acts on B3 like some power of the monodromy is just g = ±Mk

h . In other words
it holds

{g ∈ GZ | g|B3 = ±(Mh|B3)
k} = {±Mk

h | k ∈ Z}. (433)

So it remains to the determine the group Aut (B3,L). Therefore, we use a trick and do
the computations with the quasihomogeneous polynomial x3 + xy2 + z7, which is right
equivalent to x3 + y3 + z7. This new polynomial is the sum of singularities in different
variables of types D4 and A6. So we are in the situation of Lemma A.2.7 (c) and we can
apply it with l = 6 and m = 2. This yields

Aut (B3,L) = {±(Mh|B3)
k | k ∈ Z} × Sym(3). (434)

Now we have to prove the Torelli Conjecture for the singularity at question. The singu-
larity has a semiuniversal unfolding. This semiuniversal unfolding can be restricted to the
µ-constant stratum T− := C5 and we obtain

F
(µ)
t (x, y, z) = f (x, y, z) + t1xyz

5 + t2yz
5 + t3xz

5 + t4xyz
4 + t5xyz

3 (435)

with t := (t1, t2, t3, t4, t5) ∈ T− (cf. [GHP97, Example 2.8]). Note that this family con-
tains all right equivalence classes of semiquasihomogeneous singularities with principal
part f (x, y, z).

Theorem 4.6.2. For f0 = x3 + y3 + z7 it holds

Gsmar (f0)× {± id} = Gmar (f0) = GZ
∼= {±Mk

h | k ∈ Z} × Sym(3), (436)

i.e. the respective moduli space Mmar
µ

∼= T− = C5 of marked singularities is connected.
So the statement and the conjecture are both true here. Moreover the period map BL :
Mmar
µ → DBL(f0) is injective, so the strong global Torelli Conjecture 3.2.2 (a) is true.

Proof. We choose the quasihomogeneous singularity f0 = x3 + y3 + z7 with trivial marking
± id in T− as reference singularity. Then all elements of T− become marked singularities,
because T− is simply connected. So the period map T− → DBL, t 7→ H ′′0

(
F

(µ)
t (x, y, z)

)
is

well-defined. The singularities F (µ)
t (x, y, z) with parameters t in T− \ {0} are semiquasiho-
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mogeneous and only f0 is quasihomogeneous. The spectral numbers and the structure of
the spaces Cα are described in Example 2.2.3. Thus the period map is

T− → H ′′0

(
F

(µ)
t (x, y, z)

)
⊆ DBL, t 7→ H ′′0

(
F

(µ)
t (x, y, z)

)
⊆

⊕
−4
21 ≤α≤

4
21

Cα ⊕ V >(α24−1)

(437)

The classifying space DBL is of dimension 6. An element in it is uniquely determined by
the sections s

(
ω0, −3

21

)
(t), s

(
ω0, −2

21

)
(t), s

(
ω0, 1

21

)
(t), s

(
ω0, 4

21

)
(t) and s

(
zω0, 1

21

)
(t),

where ω0 := dxdydz. Using Proposition A.1.4 we obtain the following representations of
these sections

s

(
ω0, −3

21

)
(t) =t2b1 + t3b2, (438)

s

(
ω0, −2

21

)
(t) = (t5 + polynomial w/ complex coeff. in t2 and t3) b3, (439)

s

(
ω0, 1

21

)
(t) = (t4 + polynomial w/ complex coeff. in t5, t2 and t3) b4, (440)

s

(
ω0, 4

21

)
(t) = (t1 + polynomial w/ complex coeff. in t4, t5, t2 and t3) b5, (441)

s

(
zω0, 1

21

)
(t) = (polynomial w/ complex coeff. in t5, t2 and t3) b4, (442)

where

b1 =− ∂τs
[
yz5ω0

]
(0) ∈ C

−3
21 , (443)

b2 =− ∂τs
[
xz5ω0

]
(0) ∈ C

−3
21 , (444)

b3 =− ∂τs
[
xyz3ω0

]
(0) ∈ C

−2
21 , (445)

b4 =− ∂τs
[
xyz4ω0

]
(0) ∈ C

1
21 , (446)

b5 =− ∂τs
[
xyz5ω0

]
(0) ∈ C

4
21 . (447)

Now it is easy to see that two elements (t1, t2, t3, t4, t5) ,
(
t̃1, t̃2, t̃3, t̃4, t̃5

)
∈ T− with the

same image under the period map must have t2 = t̃2 and t3 = t̃3 by (438). Plug-
ging this into the equations (439), (440), (441) succeedingly we obtain (t1, t2, t3, t4, t5) =(
t̃1, t̃2, t̃3, t̃4, t̃5

)
. So the map T− → DBL is injective. Thus, the marked Brieskorn lattices

of the marked singularities in T− are all different and the marked singularities are all not
right equivalent. So this yields an embedding T− ↪→

(
Mmar
µ

)0
. On the other hand, we have

the immersion BL :
(
Mmar
µ

)0
→ DBL (see Theorem 3.2.1). All in all, the situation looks

as follows

T−
� � //

∼=
��

(Mmar
µ )0

BL

��
Dsub
BL
� � // DBL

(448)
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where Dsub
BL ⊆ DBL is the image of T− under the period map T− → DBL. It rests to show

that
(
Mmar
µ

)0
=Mmar

µ , i.e. Gmar (f0) = GZ.
First of all we notice that there is a good C∗-action on T− given by

c ∗ (t1, t2, t3, t4, t5) =
(
c−24t1, c−3t2, c−3t3, c−15t4, c−6t5

)
(449)

with c ∈ C∗. It commutes with the action of GZ. This yields

Gmar = StabGZ
([(f0,± id)]) =Prop. 3.1.6 (g) G

mar
R (f0)

=Prop. 3.1.6 (d) G
smar
R (f0)× {± id}

∼=Prop. 3.1.6 (c)+Thm. A.1.5 StabGw (f0)× {± id}. (450)

The stabilizer group StabGw (f0) contains exactly 126 elements by [Ba03, Example 7]4 and,
thus, Gmar contains 2 · 126 elements. So it suffices to show that GZ contains at most those
2 · 126 elements.
Therefore, we consider the canonical map GZ → Aut (B3,L). The kernel of this map is

ker (GZ → Aut (B3,L)) =Prop. 4.6.1 {±Mk
h | ± (Mh|B3)

k = id} = {id,M7
h ,M14

h }.
(451)

Thus, the cardinality of the kernel is |ker (GZ → Aut (B3,L))| = 3. In total we obtain

2 · 126 = |Gmar| ≤ |GZ| =3 · |im (GZ → Aut (B3,L))| (452)

≤3 · |Aut (B3,L)| =Prop. 4.6.1 3 · 14 · 6 = 2 · 126. (453)

So it is im (GZ → Aut (B3,L)) = Aut (B3,L), Gmar = GZ = {±Mk
h | k ∈ Z} × Sym(3)

and
(
Mmar
µ

)0
=Mmar

µ .

I believe that the methodology used above can be easily adapted to treat all singularities
of the form x3 + y3 + zl where l is not divisible by 3. Those are singularities in the Up-
series of Arnold. So the Torelli Conjectures 3.2.2 (a) and 3.2.2 (b) should be true for the
respective infinite subseries of the Up-series as well.

4.7 overview and outlook

In this chapter we have seen (among other things) proofs of the Torelli results for all types
of singularities on Arnold’s list [Ar76] of singularities of modality ≤ 2. Above that we have
considered the case U24. In particular, we know now that the Torelli Conjectures 3.2.2 (a)
and 3.2.2 (b) and the Conjectures 3.2.2 (c) and 3.1.2 are true in all aforementioned cases.
This closes some long-standing gaps as described in Remark 4.4.6. Note that, it was shown
en passant that Orlik’s Conjecture A.2.2 is true in the cases where it applies. A general
understanding of the analytic behavior of singularities inside some µ-constant family is
still lacking and no general proof that the period maps LBL and BL are injective is in

4 Note that there is a misprint in [GHP97, Example 2.8]. Namely, the true size of the stabilizer group in
[Ba03] differs by a factor of 7 from the size given in [GHP97].
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sight. However I am sure that the framework with the moduli space of marked singularities
Mmar
µ is the most promising in order to answer these questions. What is especially surpris-

ing is that Mmar
µ is not connected in general (in contrast to Conjecture [He11, Conjecture

3.2 (a)]) and that GZ is rather small. The latter means that (Ml (f) ,L) is rigid, i.e. the
condition on automorphisms to respect L is a rather strong condition.

We list all data which is currently available in the literature. This includes in particu-
lar the results on Brieskorn-Pham singularities with pairwise coprime exponents and the
results on semiquasihomogeneous singularities with weights

(
1
3 , 1

3 , 1
3 , 1

3

)
from [He98]. Note

that for Brieskorn-Pham singularities with pairwise coprime exponents the strong global
Torelli Conjecture 3.2.2 (a) is also true (see [He11, Remarks 8.5]). We start with the clas-
sifying space DBL. The number NBL ∈ Z≥0 in Table 12 depends on the type of the
singularity, but it is always strictly smaller than 1

4µ
2 (cf. Section 2.2). In many cases the

exact numerical value of NBL can be found in the respective sections of Chapter 4.

Singularity family DBL

Simple sing. {pt}
Simple elliptic sing. Ẽ6, Ẽ7, Ẽ8 H

Hyperbolic sing. Tp,q,r C

Exceptional unimodal sing. C

Exceptional bimodal sing. C2

Quadrangle sing. H×C

Generic bimodal series, e.g. E3,p with 18 6 |p CNBL

Bimodal subseries, e.g. E3,p with 18|p H×CNBL

Brieskorn-Pham sing. with coprime exponents CNBL

Semiquasihom. sing. with weights
(

1
3 , 1

3 , 1
3 , 1

3

)
{z ∈ C4| |z| < 1} ×C

U24, i.e. x3 + y3 + z7 C6

Table 12: Overview of the results for DBL

Now we list the groups GZ/{±Mk
h | k ∈ Z} (cf. Table 13). This group (resp. the group

GZ) was not computed in [He98], because there the proof of the Torelli result used some
special classical result on cubics in three-dimensional projective space P 3C instead. Now
we make a quick ad-hoc computation to gain at least some information on the group GZ

for semiquasihomogeneous singularities f with weights
(

1
3 , 1

3 , 1
3 , 1

3

)
and to show that GZ

is again "small" and (Ml (f) ,L) is rigid in this case.

Proposition 4.7.1. For semiquasihomogeneous singularities with weights
(

1
3 , 1

3 , 1
3 , 1

3

)
Or-

lik’s Conjecture A.2.2 is true and the lattice (Ml (f) ,L) is “somewhat rigid”.

Proof. For such singularities the Stokes matrix S is given as

S := S
(
x3

0 + x3
1 + x3

2 + x3
3

)
= S

(
x3

0

)
⊗ S

(
x3

1

)
⊗ S

(
x3

2

)
⊗ S

(
x3

3

)
. (454)
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From this Stokes matrix we can compute the monodromy operator Mh on the Milnor
lattice via the formulas in Chapter 2. The characteristic polynomial of the monodromy is
pch = Φ6

1Φ5
3. We can compute that

Ml (f) =
2⊕
i=0

Z ·M i
h (δ4)⊕

2⊕
i=0

Z ·M i
h (δ1)⊕

2⊕
i=0

Z ·M i
h (δ8)

⊕
2⊕
i=0

Z ·M i
h (δ11)⊕

2⊕
i=0

Z ·M i
h (δ14)⊕Z · (δ6 − δ7 − δ10 + δ11) (455)

is a decomposition of the Milnor lattice and that the monodromy with respect to this new
basis has the form

MM =



SΦ3Φ1

SΦ3Φ1

SΦ3Φ1

SΦ3Φ1

SΦ3Φ1

SΦ1


. (456)

This exactly says that Orlik’s Conjecture A.2.2 is true. To prove the remaining bit of
claim, we consider the space Ml (f)1. It is 6-dimensional (cf. [He98, Section 5]). The
respective latticeMl (f)1,Z is generated by the vectors γ1 := δ4 +Mh (δ4)+M2

h (δ4), γ2 :=
δ1 +Mh (δ1) +M2

h (δ1), γ3 := δ8 +Mh (δ8) +M2
h (δ8), γ̃4 := δ11 +Mh (δ11) +M2

h (δ11),
γ5 := δ14 +Mh (δ14) +M2

h (δ14), γ6 := δ6 − δ7 − δ10 + δ11. We then do a base change
γ4 := 4γ̃4 − 3γ6. Then the Seifert form with respect to those elements looks as follows

L(


γ1

γ2
...

γ6


,


γ1

γ2
...

γ6



T

) =



−6 −3 3 0 0 0

−3 −6 3 −12 3 0

3 3 −6 0 0 0

0 −12 0 −60 0 0

0 3 0 0 −6 0

0 0 0 0 0 −4


. (457)

Note that this matrix is negative definite. Now we can easily see that each automorphism
on the Milnor lattice which respects L must map the following set of “big vectors” to itself:

{a ∈Ml(f)1 |L(a, a) = −4} = {±γ6} = {± (δ6 − δ7 − δ10 + δ11)}. (458)

Since γ is a generator of the Orlik block Z · (δ6 − δ7 − δ10 + δ11), this means that every
g ∈ GZ acts like the identity (up to sign) on this block. This gives some rigidity for
(Ml (f) ,L).
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Singularity family GZ/{±Mk
h | k ∈ Z}

Simple sing. {id} or Sym (2) or Sym (3)
Simple elliptic sing. Ẽ6, Ẽ7, Ẽ8 a finite extension of SL(2; Z)

Hyperbolic sing. Tp,q,r a finite group
Exceptional unimodal sing. {id} or Sym (2) or Sym (3)
Exceptional bimodal sing. {id} or Sym (2) or Sym (3)
Quadrangle sing. a triangle group
Generic bimodal series, e.g. E3,p with 18 6 |p a cyclic finite group
Bimodal subseries, e.g. E3,p with 18|p an infinite Fuchsian group
Brieskorn-Pham sing. with coprime exponents {id}
Semiquasihom. sing. with weights

(
1
3 , 1

3 , 1
3 , 1

3

)
?

U24, i.e. x3 + y3 + z7 Sym (3)

Table 13: Overview of the results for GZ

Now we give descriptions of the moduli space of marked singularities Mmar
µ (f0) for all

different types of reference singularities f0 that were computed so far (in this monograph
and beyond).

Singularity family Isom. class of Mmar
µ (f0)

Simple sing. {pt}
Simple elliptic sing. Ẽ6, Ẽ7, Ẽ8 H

Hyperbolic sing. Tp,q,r C

Exceptional unimodal sing. C

Exceptional bimodal sing. C2

Quadrangle sing. (H \ {discrete set})×C

Generic bimodal series, e.g. E3,p with 18 6 |p C∗ ×C

Bimodal subseries, e.g. E3,p with 18|p ∞-many copies of C∗ ×C

Brieskorn-Pham sing. with coprime exponents C mod (f )

Semiquasihom. sing. with weights
(

1
3 , 1

3 , 1
3 , 1

3

)
?

U24, i.e. x3 + y3 + z7 C5

Table 14: Overview of the results for Mmar
µ (f0)

Finally, it is worth mentioning that there are ideas to study families of singularities
that are not µ-constant and to formulate Torelli Conjectures in those cases as well. Such
a family is for example given by functions that have a certain number µ of critical values
that are all singularities of type A1. This is the semisimple case. More precisely, in the
unfinished and unpublished manuscript [GH18-2] the moduli spaceMmar

µ is thickened to a
µ-dimensional F-manifold Mmar which is locally at each point of Mmar

µ the base space of
a semiuniversal unfolding. Torelli Conjectures for all the µ-homotopy strata of multigerms
of singularities in Mmar

µ are formulated. Of course, this new Torelli Conjectures must be
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again verified. In the semisimple case this follows from a classical result of Looijenga and
Deligne for the simple singularities and for the simple elliptic singularities it was done by
Hertling and Roucairol (see [HR18] for further information). The general cases for other
strata and other types of singularities are widely open. So this gives a fruitful area for
future research on Torelli problems for isolated hypersurface singularities.
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A
APPENDIX

a.1 newton nondegenerate and semiquasihomogeneous singulari-
ties

Many of the singularities studied in this thesis have a nondegenerate Newton polytope
and/or are (semi)quasihomogeneous. Hence, it makes sense to summarize some of the
properties of those singularities in this section. We start with Newton nondegenerate sin-
gularities and set ω0 := dx0 . . . dxn.

a.1.0.1 Newton nondegenerate singularities

Consider a singularity given as f =
∑
i∈Zn+1

≥0
aix

i. Then we have the following sets

supp (f) :={i ∈ Zn+1
≥0 | ai 6= 0}, (459)

Γ+ (f) :=convex hull of

 ⋃
i∈supp(f )

(
i+ Rn+1

≥0

) ⊆ Rn+1, (460)

Γcom (f) :={σ |σ is a compact face of Γ+ (f)}, (461)

Γcom,n (f) :={σ ∈ Γcom (f) | dim σ = n} (462)

and the linear function lσ : Rn+1 → R with σ ⊆ l−1
σ (1) for σ ∈ Γcom,n (f). Here we

refer to Γ+ (f) as the Newton polyhedron of f . Finally we have the Newton order ν :
C{x0,x1, . . . ,xn} → Q≥0 ∪ {∞} given by

ν

(∑
i

bix
i

)
:= min{lσ(i) | all i with bi 6= 0, all σ ∈ Γcom,n (f)}. (463)

This can be extended to a Newton order ν : Ωn+1
Cn+1,0 → Q≥0 ∪ {∞} on the sheaf of n+ 1-

forms via

ν

((∑
i

bix
i

)
· ω0

)
:= ν

((∑
i

bix
i

)
· x0 . . . xn

)
(464)

and to a Newton order ν : H ′′0 (f)→ Q≥0 ∪ {∞} on the Brieskorn lattice via

ν := max{ν (η) | η ≡ ω mod df ∧ dΩn−1
Cn+1,0}. (465)

Now we can define the main property of this subsection. Here we follow the notations
and definitions of Kouchnirenko (see [Ko76]). Note that we will use multiindex notation
for i = (i0, i1, . . . , in) throughout this section.
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Definition A.1.1. For f as above we set fσ :=
∑
i∈σ aix

i. Then f is called Newton
nondegenerate if for each σ ∈ Γcom (f) the Jacobi ideal of fσ has no zero in (C∗)n+1. It is
called convenient if it contains for each index j ∈ {0, . . . ,n} a monomial xmjj with mj ≥ 2.

For convenient and Newton nondegenerate singularities we have the following character-
ization of the order of a form via its Newton order.

Theorem A.1.2 ([SaM88]). Let f be a convenient and Newton nondegenerate singularity.
Then for any ω ∈ Ωn+1

Cn+1,0 the order is α (ω) = ν (ω)− 1.

From this theorem it is possible to deduce the following corollary.

Corollary A.1.3 ([He93, Satz 1.10]). Let f be a convenient and Newton nondegenerate
singularity. We define the index set I (f) as

I (f) := {i ∈ Zn+1
≥0 | ν

(
xi · ω0

)
− 1 < s (f)} (466)

where s (f) := min{ν
(
∂f
∂xj
· ω0

)
− 1 | j ∈ {0, . . . ,n}} > 0.

Then it holds

(a) α
(
xi · ω0

)
= ν

(
xi · ω0

)
− 1 for each i ∈ I (f),

(b) the numbers α
(
xiω0

)
for i ∈ I (f) are the spectral numbers in the open interval

(−1, s (f)),

(c) for some g :=
∑
i bix

i it is

α (g · ω0) =


min{α

(
xi · ω0

)
| i ∈ I (f) , bi 6= 0} , if an i ∈ I (f) with bi 6= 0 exists,

≥ s (f) , otherwise.

We have similar characterizations of the order for so-called semiquasihomogeneous sin-
gularities. This will be subject of the next subsection.

a.1.0.2 Semiquasihomogeneous singularities

A singularity f is called semiquasihomogeneous with weights w1, . . . ,wn ∈ Q>0 if

f =
∑

i∈Zn+1
≥0

aix
i with degw xi ≥ 1 for all i with ai 6= 0, (467)

and its principal part fqh :=
∑
i:degw xi=1 aix

i has an isolated singularity at 0. Moreover
f is called quasihomogeneous (of weighted degree one) if it is semiquasihomogeneous and
fqh = f . For any singularity f that is semiquasihomogeneous but not quasihomogeneous,
the 1-parameter family fqh + t · (f − fqh) with t := (t1, . . . , tl) is a µ-constant family (see
[AGV85, Chapter 12]). We use the multiindex notations tk := tk1

1 + . . . tkll , |k| := k1 + . . .+

kl and k! := k1! . . . kl! for k := (k1, . . . , kl) ∈ Zl
≥0. Then the following characterization of

the order holds.

Proposition A.1.4. Let f be a singularity.
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(a) If f is quasihomogeneous with weights (w0, . . . ,wn) and ω = xiω0 is a monomial
differential form, then either s [ω]0 = 0 or α (ω) = degw

(
xix0 . . . xn

)
− 1 and s[ω]0 =

s (ω,α(ω)).

(b) If f is semiquasihomogeneous with weights (w0, . . . ,wn), but not quasihomoge-
neous, and ω = xiω0 is a monomial differential form, then

α (ω) ≥degw
(
xix0 . . . xn

)
− 1, (468)

s [ω]0 (0) =s
(
ω, degw

(
xix0 . . . xn

)
− 1

)
(t) , (469)

s (ω,α) (t) =
∑
|k|≥0

1
k!
· tk · (−∂τ )|k| s

(
(f − fqh)k · ω,α+ |k|

)
(t) . (470)

Note that the last expression is polynomial in t, because α
(
(f − fqh)k · ω

)
> α+ |k|

for |k| >> 0.

We omit a proper proof of Proposition A.1.4 here. However some arguments can be
found in [GH18, Section 7]. Finally we present an older result on the calculation of Rf in
the case of quasihomogeneous singularities.

Theorem A.1.5 ([He02-2, Theorem 13.11]). Let f ∈ C [x0, . . . ,xn] be a quasihomogeneous
singularity with weights w0, . . . ,wn ∈

(
0, 1

2

]
. Assume that w0 ≤ . . . ≤ wn−1 <

1
2 . Then it

holds

Rf ∼= StabGw (f) (471)

where Gw is the algebraic group of quasihomogeneous coordinate changes, i.e. the automor-
phisms on C [x0, . . . ,xn] that respect the grading by the weights w0, . . . ,wn.

a.2 lattices

The main results of this monograph rely on extensive computations in integer lattices. In
this subsection we summarize many important properties of these lattices.
Here a (Z-)lattice is a free Z-module of rank µ ∈ Z>0. It will usually come equipped with

one (or more) bilinear forms. We call such a bilinear form unimodular if the determinant of
the bilinear form has absolute value one with respect to a basis of the lattice. Furthermore,
we call it symmetric if the matrix representation of the bilinear form is symmetric with
respect to a basis of the lattice.
Now let Λ be a Z-lattice of rank µ and L : Λ×Λ → Z be a unimodular bilinear form.
We have a unique automorphism Mh : Λ→ Λ given by

L (Mh (a) , b) = −L (b, a) (472)

for a, b ∈ Λ. This then immediately implies that the bilinear form L is Mh-invariant, i.e.
L (Mh (a) ,Mh (b)) = L (a, b) for all a, b ∈ Λ. As the notation suggests L will be the Seifert
form and Mh will be the monodromy of an isolated hypersurface singularity in the main
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part of the thesis. So we assume that Mh is semisimple and its eigenvalues are roots of
unity. According to Theorem 2.1.1 the eigenvalues of the monodromy of isolated hypersur-
face singularities are always roots of unity.
For quasihomogeneous singularities and their Milnor lattices we have the following con-
jecture, which is due to the American mathematician Peter Orlik. Loosely speaking it
says that the Milnor lattice is a sum of certain cyclic monodromy modules with certain
characteristic polynomials pΛ(j) . Here we define for any subring R ⊆ C the tensor product
ΛR := Λ⊗Z R. Moreover, for any monodromy invariant subspace V ⊆ ΛC we denote by
E(V ) ⊆ S1 the set of eigenvalues of Mh on V and by pV its characteristic polynomial. For
λ ∈ E(V ) we write Vλ := ker(Mh − λ id : V → V ) ⊆ V . For any monodromy invariant
sublattice Λ(1) ⊆ Λ we write E(Λ(1)) := E(Λ(1)

C ) and pΛ(1) := p
Λ(1)

C

and Λ(1)
λ := (Λ(1)

C )λ.
For any product p ∈ Z[t] of cyclotomic polynomials with p|pΛ(1) we write

Λ(1)
C,p :=

⊕
λ: p(λ)=0

Λ(1)
λ and Λ(1)

p := Λ(1)
C,p ∩Λ(1). (473)

Then Λ(1)
p is a primitive1 and monodromy invariant sublattice of Λ(1). Now the specific

cyclic monodromy modules, which are important for the conjecture, are defined next.

Definition A.2.1. Let (Λ,L,Mh) be as above. An Orlik block is a primitive and mon-
odromy invariant sublattice Λ(1) ⊆ Λ with Λ(1) % {0} and with a cyclic generator, i.e. a
lattice vector e(1) ∈ Λ(1) with

Λ(1) =

deg p
Λ(1)−1⊕
j=0

Z ·M j
h(e

(1)). (474)

Now we can formulate Orlik’s Conjecture from 1972.

Conjecture A.2.2 ([Or72, Conjecture 3.1]). Let (Λ,Mh) be the Milnor lattice with mon-
odromy of a quasihomogeneous singularity. Let k := max(dim Λλ |λ ∈ E(Λ)). Then a de-
composition Λ =

⊕k
j=1 Λ(k) into Orlik blocks Λ(1), . . . , Λ(k) with pΛ(j+1) |pΛ(j) for 0 ≤ j < k

exists. The pΛ(1) , . . . , pΛ(k) are unique. They are

pΛ(j) =
∏

λ∈E(Λ): dim Λλ≥j
(t− λ) for j = 1, . . . , k. (475)

Although Orlik’s Conjecture is rather old, it is not very well understood. There are
proofs of Orlik’s Conjecture for quasihomogeneous cycle type singularities, see [Co82],
and quasihomogeneous curve singularities, see [MW86]. But both proofs are not very well
documented and it is unclear if they are completely correct. At least in the cases that we
are considering in the main part of this monograph, i.e. quasihomogeneous singularities
with modality ≤ 2, there Orlik’s Conjecture is known to be true by [He93].

One of the working horses in the computation of lattice automorphism groups is the
lemma below. It can be considered as an analogue of a number theoretic result of Kronecker

1 A sublattice Λ(1) of Λ is called primitive if Λ/Λ(1) has no torsion. For any sublattice Λ(2) ⊆ Λ there is a
unique primitive sublattice Λ(3) with Λ(3)

Q
= Λ(2)

Q
. It is Λ(3) = Λ(2)

Q
∩Λ and it satisfies [Λ(3) : Λ(2)] <∞.
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(see [Co07, Proposition 3.3.9] for an up-to-date reference). It originates from [He11], but
similar arguments can be already found in [He98, Chapter 6].

Lemma A.2.3 ([He11, Lemma 8.2]). Suppose that Λ is a single Orlik block. For an
eigenvalue of the monodromy we denote ord (λ) := min{k ∈ N |λk = 1} and set Ord :=
{ord (λ) , |λ eigenvalue of Mh} ⊆ Z≥1. We assume for the set Ord ⊆ Z≥1 that there are
four sequences (mi)i=1,...,|Ord |, (j(i))i=2,...,|Ord |, (pi)i=2,...,|Ord |, (ki)i=2,...,|Ord | of numbers
in Z≥1 and two numbers i1, i2 ∈ Z≥1 with i1 ≤ i2 ≤ |Ord | and with the properties:

• Ord = {m1, . . . ,m|Ord |},

• pi is a prime number, pi = 2 for i1 + 1 ≤ i ≤ i2, pi ≥ 3 else,

• j(i) = i− 1 for i1 + 1 ≤ i ≤ i2, j(i) < i else,

• mi = mj(i)/p
ki
i .

Then it holds
Aut(Λ,Mh,L) = {±Mk

h | k ∈ Z}.

Note that, for an Orlik block Λ(1) ⊆ Λ with cyclic generator e(1) and pΛ(1) = p1 · p2

where deg p1 ≥ 1 and deg p2 ≥ 1 the sublattice Λ(1)
p1 is also an Orlik block. It is generated

by the cyclic generator

e(2) := p2(Mh)(e
(1)). (476)

Moreover, if λ ∈ E(Λ(1)) is an eigenvalue of the monodromy on Λ(1), then there is an
eigenvector eigenvector as follows

v(e(1),λ) :=
pΛ(1)

t− λ
(Mh)(e

(1)). (477)

It holds

L(v(e(1),λ), v(e(1),λ)) = L(v(e(1),λ), pΛ(1)

t− λ
(Mh)(e

(1)))

= L(
pΛ(1)

t− λ
(M−1

h )v(e(1),λ), e(1))

=
pΛ(1)

t− λ
(λ) ·L(v(e(1),λ), e(1))

=
pΛ(1)

t− λ
(λ) ·L(

pΛ(1)

t− λ
(Mh)(e

(1)), e(1)). (478)

This allows us to formulate the following lemma. In contrast to Lemma A.2.3 it will not
need L — but only Mh.

Lemma A.2.4. Let (Λ,Mh) be as above. Let Λ(1), . . . , Λ(k) ⊆ Λ be Orlik blocks with
cyclic generators e(1), . . . , e(k) and with

Λ(1) + . . .+ Λ(k) = Λ(1) ⊕ . . .⊕Λ(k).
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Consider an element g ∈ Aut(Λ(1) ⊕ . . .⊕Λ(k),Mh). Then there are unique polynomials
pij ∈ Z[t]<rank Λ(j) for i, j = 1, . . . , k with

g(e(j)) =
k∑
i=1

pij(Mh)(e
(i)). (479)

Suppose now that p0 ∈ Z[t] divides gcd(pΛ(1) , . . . , pΛ(k)) and that

g = id on Λ(j)
p

Λ(j)/p0
for any j, (480)

so that g acts nontrivial only on (Λ(1) ⊕ . . .⊕Λ(k))p0. Then

pij = δij +
pΛ(i)

p0
· qij (481)

for suitable polynomials qij ∈ Z[t]<deg p0. Suppose furthermore that a unit root ξ satisfies
p0(ξ) = 0. Then g with respect to the eigenvectors v(e(1), ξ) ∈ Λ(1)

ξ , . . . , v(e(k), ξ) ∈ Λ(k)
ξ

(defined in (477)) is given by

g(v(e(j), ξ)) =
k∑
i=1

(δij +
pΛ(j)

p0
· qij)(ξ) · v(e(i), ξ) (482)

Proof. It is sufficient to prove the part after (479). Everything else is trivial. Suppose that
p0 and g are as stated above. By assumption it holds

g(e(j))− e(j) ∈ (Λ(1) ⊕ . . .⊕Λ(k))p0 ⊆
k⊕
i=1

Λ(i)
C,p0

=
k⊕
i=1

pΛ(i)

p0
(Mh)(Λ

(i)
C ).

Thus it is pij − δij ∈
p

Λ(i)

p0
·C[t] and even more pij − δij ∈

p
Λ(i)

p0
·Z[t]<deg p0 .

Now the following calculation proves (482).

g(v(e(j), ξ)) = g

(
pΛ(j)

t− ξ
(Mh)(e

(j))

)
=
pΛ(j)

t− ξ
(Mh)

(
g(e(j))

)
=

pΛ(j)

t− ξ
(Mh)

(
k∑
i=1

(
δij +

pΛ(i)

p0
· qij

)
(Mh)(e

(i))

)

=
k∑
i=1

((
δij +

pΛ(i)

p0
· qij

)
·
pΛ(j)

t− ξ

)
(Mh)(e

(i))

=
k∑
i=1

(
δij +

pΛ(j)

p0
· qij

)
(Mh)(v(e

(i), ξ))

=
k∑
i=1

(
δij +

pΛ(j)

p0
· qij

)
(ξ) · v(e(i), ξ).

The next two lemmas will be useful for many of the quadrangle and bimodal series
singularities. There it is Λ(1) =Ml (f) and Λ = B̃1 ⊕B2 (cf. with Section 4.4 and 4.5 for
the notations).
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Lemma A.2.5. (a) Let p = ∏
i∈I Φmi be a product of cyclotomic polynomials. Then

p(1) ≡ 1(2) if and only if all mi ∈ Z≥1 \ {2k | k ∈ Z≥0}.

(b) Let (Λ,L,Mh) be as above. Let Λ(1) ⊆ Λ be an Mh-invariant sublattice with
[Λ : Λ(1)] = 2. Write

pΛ = p1 · p2 with pj =
∏
m∈Jj

Φm

and J1 ⊆ Z≥1 \ {2k | k ∈ Z≥0}, J2 ⊆ {2k | k ∈ Z≥0}.

Then J2 6= ∅, p2 6= 1, and

Λp = Λ(1)
p for any p with p|p1, (483)

[Λp : Λ(1)
p ] = 2 for any p with p2|p. (484)

Proof. (a) Everbody knows that Φ2k(t) = t2
k−1

+ 1 for k ≥ 1 and

t2
k·q − 1 = (t2

k − 1)(t2k(q−1) + t2
k(q−2) + . . .+ t2

k
+ 1). (485)

Now for odd q > 1, the second factor has at t = 1 the odd value q. Therefore Φm(1) ≡ 1(2)
for any m with 2k|m|2k · q and 2k 6= m with q odd.

(b) For an arbitrary element γ ∈ Λ \Λ(1) it holds

Λ \Λ(1) = γ + Λ(1).

This set is Mh-invariant, because Λ(1) is Mh-invariant. Thus for any integer k ∈ Z≥1 it is
Mk
h (γ) ∈ Λ \Λ(1). By part (a) it is p1(1) ≡ 1(2). So we have p1(Mh)(γ) ∈ Λ \Λ(1) and,

thus,

p1(Mh)(Λ \Λ(1)) ⊆ Λ \Λ(1).

On the other hand it is

p1(Mh)(Λp1) = {0} ⊆ Λ(1), thus Λp1 ⊆ Λ(1) and, thus, it holds (483).

p1(Mh)(Λ) ⊆ Λp2 , thus Λp2 ∩ (Λ \Λ(1)) 6= ∅ and, thus, it holds (484).

A square root on the set S1 \ {−1} is given via
√
e2πiα := eπiα for α ∈ (−1

2 , 1
2 ).

Lemma A.2.6. (a) Let λ ∈ E(Λ) \{1}. Then the sesquilinear2 form hλ : Λλ×Λλ →
C with

hλ(a, b) :=
√
−λ ·L(a, b) (486)

2 This means linear in the first coordinate and semilinear in the other one.



128 appendix

is Hermitian, i.e. hλ(b, a) = hλ(a, b). Especially,
√
−λ ·L(a, a) ∈ R. Together, these

forms define a Hermitian form h :=
⊕

λ∈E(Λ)\{1} hλ.

(b) Let V ⊆ ΛC be a monodromy invariant subspace with 1 /∈ E(V ). The following
two properties are equivalent.

(α) h|V is positive definite.

(β) The Hermitian form on V defined by (a, b) 7→ L(a, b) + L(b, a) is positive defi-
nite.

Proof. (a) Let a, b ∈ Vλ. Then we compute

hλ(b, a) =
√
−λ ·L(b, a) = −

√
−λ ·L(Mh(a), b) = −

√
−λ · λ ·L(a, b)

=
√
−λ ·L(a, b) =

√
−λ ·L(a, b) = hλ(a, b).

So hλ(a, b) is Hermitian and the rest of part (a) follows straight away.

(b) Let λ ∈ E(V ) and a, b ∈ V . We observe that
√
−λ+

√
−λ > 0. Now we obtain

L(a, b) + L(b, a) = L(a, b) + L(b, a)

=
√
−λ · hλ(a, b) +

√
−λ · hλ(b, a)

= (
√
−λ+

√
−λ) · hλ(a, b).

Thus the form given by L(a, b) + L(b, a) is positive definite if and only if hλ(a, b) is.

Finally we present a lemma which will be useful for some of the exceptional unimodal
and bimodal singularities, as well as singularities of type U24. It can be seen as a natural
continuation of Lemma A.2.3 (cf. [GH17, Remark 4.3]). Note that it is stated slightly
different than in [GH17, Lemma 4.2] here.

Lemma A.2.7. (a) Let VZ be a Z-lattice of rank 2 with a Z-lattice b = (b1, b2) and
a symmetric pairing LZ of the form 2 −1

−1 m


for some m ∈ Z>1. Moreover let ξ := e

2πi
l with l ∈ {3, 4, 5, 6} if m = 2 and ξ := e

2πi
l

with l ∈ {3, 4} if m ≥ 3. We define VC := VZ ⊗Z C, VZ[ξ] := VZ ⊗Z Z[ξ] ⊆ VC, and
extend LZ sesquilinearly to VC. Then for m = 2

{r ∈ VZ[ξ] |LC (r, r) = 2} = {±ξk | k ∈ Z} × {r ∈ VZ |LZ (r, r) = 2} (487)

and for m ≥ 3

{r ∈ VZ[ξ] |LC (r, r) = m, r /∈ Z[ξ]b1}

={±ξk | k ∈ Z} × {r ∈ VZ |LZ (r, r) = m, r /∈ Zb1}. (488)
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(b) In the situation of (a) we have

Aut
(
VZ[ξ],LC

)
= {±ξk | k ∈ Z} ·Aut (VZ,LZ) (489)

and

Aut (VZ,LZ) ∼={±

1 0

0 1

 ,±

−1 1

0 1

}
∼={± id} × Sym (2) for m ≥ 3, (490)

Aut (VZ,LZ) ∼=Aut (root lattice of type A2)

∼={± id} × Sym (3) for m = 2. (491)

(c) In the situation of the proof of Theorem 4.3.1 and Proposition 4.6.1 it is

Aut (B3,L) = {± (Mh|B3)
k | k ∈ Z} ×U , (492)

where U is Sym (3) for U24 or as in (105).

(d) In the situation of the proof of Theorem 4.3.1 the map GZ → Aut (B3,L) is
surjective.

Proof. (a) Let r = r1b1 + r2b2 with r1, r2 ∈ Z [ξ]. We obtain

LC(r, r) = 2|r1|2 − (r1r2 + r1r2) +m|r2|2

= |r1|2 + |r1 − r2|2 + (m− 1)|r2|2. (493)

At first we consider the case l ∈ {3, 4, 6}. In this case3 it is Z [ξ] ∩R = Z. So the three
absolute values in (493) are non-negative integer. The sum of these absolute values is 2 if
and only if

|r1| = 1, r2 = 0 in the cases m ≥ 3, (494)

(|r1| , |r2|) ∈ {(1, 0), (0, 1), (1, 1)}

and in the last case r1 = r2

 in the case m = 2. (495)

In the case m ≥ 3 and in the case of an r /∈ Z [ξ] b1, the sum of the three absolute values
in (493) is m if and only if

(r1 = 0, |r2| = 1) or (r1 = r2, |r1| = 1). (496)

Together with the number theoretic result Z [ξ]∩S1 = {±ξk | k ∈ Z} of Kronecker, which
was mentioned earlier, this shows part (a) for l ∈ {3, 4}.
It remains to consider the case (m, l) = (2, 5). In that case we write

r1 = r10 + r11ξ + r12ξ
2 + r13ξ

3, r2 = r20 + r21ξ + r22ξ
2 + r23ξ

3

3 Note that it holds Z

[
e

2πi
3

]
= Z

[
e

2πi
6

]
, e.g. see [He93, Kapitel 3 a)].
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with rij ∈ Z. Now we can compute

LC(r, r) = 2|r1|2 + 2|r2|2 − (r1r2 + r1r2)

= 2

 3∑
j=0

r2
1j + (ξ + ξ4)

3∑
j=1

r1jr1,j−1 + (ξ2 + ξ3)
∑

j−k≥2
r1jr1k


+ 2

 3∑
j=0

r2
2j + (ξ + ξ4)

3∑
j=1

r2jr2,j−1 + (ξ2 + ξ3)
∑

j−k≥2
r2jr2k


−

2
3∑
j=0

r1jr2j + (ξ + ξ4)
3∑
j=1

(r1jr2,j−1 + r1,j−1r2j)

+ (ξ2 + ξ3)
∑

j−k≥2
(r1jr2k + r1kr2j)


= A1 +A2 ·

√
5

2 with integers A1,A2 ∈ Z.

In particular it holds

A1 =
1
4

3∑
j=0

[
r2

1j + r2
2j + (r1j − r2j)

2
]

+
1
4
∑
j<k

[
(r1j − r1k − r2j + r2k)

2 + (r1j − r1k)
2 + (r2j − r2k)

2
]

. (497)

There are the following 8-tuples (r10, . . . , r23) ∈ Z8 for which (497) takes the value 2:

±e1, . . . ,±e8,±(e1 + e5),±(e2 + e6),±(e3 + e7),±(e4 + e8), (498)

±(1, 1, 1, 1, 0, 0, 0, 0),±(0, 0, 0, 0, 1, 1, 1, 1),±(1, 1, 1, 1, 1, 1, 1, 1).

Here ej = (δij)i=1,...,8 for j = 1, . . . , 8 denotes the standard basis of Z8. Moreover observe
that 1 + ξ + ξ2 + ξ3 = −ξ4 and

{r ∈ VZ |LZ(r, r) = 2} = {±b1,±b2,±(b1 + b2)}.

The tuples (r10, . . . , r23) in (498) give precisely the elements r = r1b1 + r2b2 on the right
hand side of (487). This finishs the proof of part (a) also for (m, l) = (2, 5).

(b) Let g be an element in Aut
(
VZ[ξ],LC

)
. Then g maps the sets (487) and (488) to

themselves. The basis elements b1 and b2 are mapped to two elements in these sets with
LC (g (b1) , g (b2)) = LZ (b1, b2) = −1. Therefore g is up to a factor in {±ξ | k ∈ Z} an
element of Aut (VZ,LZ) and, thus, (489) holds. Now in the case of m ≥ 3 it is

{r ∈ VZ |LZ (r, r) = 2} ={±b1}, (499)

{r ∈ VZ |LZ (r, r) = m} ={±b2,± (b1 + b2)}. (500)
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So choosing the matrix representation with respect to b1 and b2 yields (490). The case
m = 2 is very well known, e.g. see [BH16, Theorem 2.3]. It holds (491).

(c) First of all, we consider the singularities of types Z12 and Z18. Those types appear
already as curve singularities (n = 1), see Section 4.3. Now by [Ka96] any automorphism
on (Rad (I) ,L) maps the set {l1, . . . , lr} from Section 2.1 to itself. Here {l1, l2} is a set of
generators of Rad (I) = ker (M curve

h − id) and the respective Seifert form is

L|Rad(I) =



−4 1

1 −3

 for Z12,

−6 1

1 −3

 for Z18.

(501)

Hence the automorphisms on (Rad (I) ,L) map the generators l1 and l2 to themselves
(modulo sign) and it is Aut (Rad (I) ,L) = {± id}. Through stabilization Rad(I) be-
comes B3 and the Seifert form L changes just the sign (cf. Section 2.1.3). Hence, it holds
Aut (B3,L) = {± id}. With Mh|B3 = − id and U = {id} for Z12 and Z18 this yields (c) in
these cases.
Now we consider the remaining cases Q12, Q16, U12, U16 and U24. The normal forms of these
quasihomogeneous (surface) singularities are sums of singularities in different variables of
types Al and D2m with (l, 2m) as in (502) (cf. Section 4.3 and Section 4.6).

Q12 Q16 U12 U16 U24

(l, 2m) (2, 6) (2, 8) (3, 4) (4, 4) (6, 4)

A2 ⊗D6 A2 ⊗D8 A3 ⊗D4 A4 ⊗D4 A6 ⊗D4

(502)

The singularity Al (in one variable) has the characteristic polynomial pAlch = (tl+1 −
1)/(t− 1), the singularity D2m (as a curve singularity) has the characteristic polynomial
pD2m
ch = (t2m−1 − 1)Φ1. This can be computed for example from the spectral numbers

given in Table 2. The Thom-Sebastiani result (cf. Section 2.1.3) applies with

(Ml(f),L) ∼= (Ml(Al),LAl)⊗ (Ml(D2m),LD2m), (503)

Mh
∼= MAl

h ⊗M
D2m
h ,

and it follows

p2 = pAlch ,

(B3,L) ∼= (Ml(Al),LAl)⊗ (Ml(D2m)1,Z,LD2m), (504)

Mh|B3
∼= MAl

h ⊗ id .
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Now we will consider automorphisms on (Ml(D2m)1,Z,LD2m). There exists a Z-basis
b = (b1, b2) (coming from the set {l1, l2, l3} as above) of Ml(D2m)1,Z with

LD2m(b
T , b) =

−2 1

1 −m

 . (505)

So it is easy to see that the cardinality is |Aut (Ml(D2m)1,Z,LD2m)| = 12 for m = 2 and
|Aut (Ml(D2m)1,Z,LD2m)| = 4 form ≥ 3. The pairings L and LAl ⊗LD2m will be extended
sesquilinearly from the Z-lattices to the C-vector spaces.

The Z-lattice Ml(Al) is a cyclic monodromy module. Choose a generator e of it. Then
Ml(Al) ⊗Ml(D2m)1,Z is a sum of two cyclic monodromy modules, and generators are
e⊗ b1 and e⊗ b2. For any automorphism g of (Ml(Al)⊗Ml(D2m)1,Z,MAl

h ⊗ id) there are
unique polynomials g1, g2, g3, g4 ∈ Z[t] of degree ≤ deg p2 − 1 such that

g(v⊗ b1)

g(v⊗ b2)

 =

g1(M
Al
h )(v)⊗ b1 + g3(M

Al
h )(v)⊗ b2

g2(M
Al
h )(v)⊗ b1 + g4(M

Al
h )(v)⊗ b2

 (506)

for any v ∈Ml(Al).
Now choose any eigenvalue ξ of MAl

h . Then Z[ξ] is a principal ideal domain. The space
ker(MAl

h − ξ id) ∩Ml(Al)Z[ξ] is a free Z[ξ]-module of rank 1. Choose a generating vector
v. This choice gives an isomorphism from this space to Z[ξ]. The spaces

ker(Mh − ξ id) ∩Ml(f)Z[ξ]
∼= (ker(MAl

h − ξ id) ∩Ml(Al)Z[ξ])⊗Ml(D2m)1,Z[ξ]

are free Z[ξ]-modules of rank 2. The space on the right hand side has the Z[ξ]-basis
(v⊗ b1, v⊗ b2) =: v⊗ b. Now (506) becomes

g(v⊗ b) = v⊗ b ·

g1(ξ) g2(ξ)

g3(ξ) g4(ξ)

 . (507)

The pairing satisfies

(LAl ⊗LD2m)(v⊗ b) = LAl(v, v) ·

−2 1

1 −m

 , (508)

where LAl(v, v) ∈ Z[ξ] ∩R>0. This space with this pairing is up to a scalar isomorphic
to a pair (VZ[ξ],LC) considered in the parts (a) and (b). Therefore by part (b), its group
of automorphisms is isomorphic to {±ξk | k ∈ Z} · Aut(VZ,LZ). Thus any element of
Aut(B3,L) restricts on ker(Mh − ξ id) ∩Ml(f)Z[ξ] to such an automorphism. In all cases
except U12 the characteristic polynomial p2 is irreducible. Namely, it is Φ3 for Q12 and
Q16, Φ5 for U16 and Φ7 for U24. So all its zeros ξ are conjugate and we obtain

Aut (B3,L) ∼={± (Mh|B3)
k | k ∈ Z} ·Aut (VZ,LZ)

∼={± (Mh|B3)
k | k ∈ Z} ×U . (509)
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This proves part (c) in those cases.
It remains to consider the case U12. Here the polynomial is pA3

ch = p2 = Φ4Φ2 and, thus,
it is reducible. Now consider an automorphism g of

(Ml(Al)⊗Ml(D2m)1,Z,LAl ⊗LD2m).

It is determined by the polynomials g1, g2, g3, g4 ∈ Z[t] in (506). For ξ = i and for
ξ = −1 it gives an automorphism of Z[ξ]v ⊗ b1 ⊕Z[ξ]v ⊗ b2 which is given by a matrixg1(ξ) g2(ξ)

g3(ξ) g4(ξ)

 which is by part (b) in

{±ξk | k ∈ Z} ·

±
1 0

0 1

 ,±

0 −1

1 −1

 ,±

−1 1

−1 0

 , (510)

±

0 1

1 0

 ,±

−1 0

−1 1

 ,±

1 −1

0 −1

 .

By multiplying g with a suitable automorphism we can suppose that the matrix for ξ = i

is the identity matrix. Theng1 g2

g3 g4

 =

1 + (t2 + 1)g̃1 (t2 + 1)g̃2

(t2 + 1)g̃3 1 + (t2 + 1)g̃4

 ,

for some g̃1, g̃2, g̃3, g̃4 ∈ Z[t], so
g1(−1) g2(−1)

g3(−1) g4(−1)

 =

1 + 2g̃1(−1) 2g̃2(−1)

2g̃3(−1) 1 + 2g̃4(−1)

 .

The only two possibilities are ±

1 0

0 1

. In the case of a minus sign g ◦ ((MAl
h )2⊗ idD2m) =

− id, in the case of a plus sign g = id. This finishes the proof of (c) also for singularities
of type U12.

(d) In Subsection 4.3.2 we compute the subgroup Gmar of GZ. It holds

Gmar = {± (Mh)
k | k ∈ Z} ×U . (511)

Thus we can conclude that GZ ⊇ {± (Mh)
k | k ∈ Z} × U and that the map GZ →

Aut (B3,L) ∼= {± (Mh|B3)
k | k ∈ Z} ×U is surjectiv.

a.3 fuchsian groups

Fuchsian groups, which are named after the German mathematician Lazarus Immanuel
Fuchs, are certain groups of fractional linear transformations. For us Fuchsian groups will
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be important because the group GZ (f) for quadrangle or bimodal series singularities f
is a finite extension of a group belonging to this class (see Section 4.4 and 4.5). In order
to make this monograph self-consistent we will recall the necessary parts of the theory
of Fuchsian groups in the following. A nicely written outline on the rich theory of these
groups is given in [Mi89, Chapter 1].
A fractional linear transformation is a rational function z 7→ az+b

cz+d in one complex vari-

able z for

a b

c d

 ∈ GL (2; C). This can be extended to an automorphism of the Riemann

sphere P 1C := Ĉ := C ∪ {∞}. The group of such automorphisms is the projective linear
group PGL (2; C). The non-identity elements of this group are of one of three different
types. Namely, they are parabolic, if they have exactly one fixed point in Ĉ, elliptic or
hyperbolic, otherwise. Besides fixed points also limit points will be studied.

Definition A.3.1. Let Γ be a subgroup of GL (2; C). A point z ∈ Ĉ is a limit point for
the action of Γ if there is a point w ∈ Ĉ and a sequence of distinct elements g1, g2, . . . ∈ Γ
with gi (w)→ z. The set of all limit points of Γ is called its limit set. We denote the limit
set as L(Γ).

Note that the fixed points of the parabolic elements of the group Γ are contained in the
limit set L(Γ).

Definition A.3.2. Let C ⊆ Ĉ be the so-called principal circle4. Then a discrete subgroup
Γ of GL (2; C) (resp. PGL (2; C)) is called Fuchsian, if it maps C to itself. The group is
called a Fuchsian group of the first kind if L (Γ) = C, and of the second kind otherwise.

A very important class of Fuchsian groups are the so-called arithmetic Fuchsian groups.
A Fuchsian group is arithmetic if it is commensurable to a group derived from a quaternion
algebra (see [Sh71] for a precise definition). The Fuchsian groups that appear in the main
part of this monograph are all arithmetic Fuchsian groups and of a certain form, which
will be specified below. The upcoming results will build upon Dirichlet’s Unit Theorem,
which we recall in A.3.3.

Theorem A.3.3 (Dirichlet’s Unit Theorem, see [BS66, Ch. 2, 3.1 Theorem 1] for part
(a) and [BS66, Ch. 2, 4.3 Theorem 5] for part (b)). Let K be an algebraic number field of
degree n = s+ 2t over Q with s real embeddings σj : K → R, j = 1, . . . , s, and 2t complex
embeddings σj : K → C, j = s+ 1, . . . ,n, with σs+t+j = σs+j for j = 1, . . . , t.

(a) Define σ := (σ1, . . . ,σs+t) : K → Rs×Ct ∼= Rn. Any Q-basis of the number field
K maps to an R-basis of Rn. Thus the image under σ of any order O ⊆ K is a
lattice of rank n in Rn.

(b) Let O ⊆ K be an order. One can choose r = s+ t− 1 units a1, . . . , ar ∈ O∗ such
that any unit has a unique representation ξ · ak1

1 · . . . · akrr with k1, . . . , kr ∈ Z and ξ
a root of 1 in O.

4 See [Le64, Section IV 7].
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Theorem A.3.4. Let m ∈ Z≥3, ζ := e2πi/m, p1 := ζ + ζ, and w = w(ζ) ∈ Q(ζ) with

w(ζ) > 0 (thus w(ζ) = w(ζ) ∈ Q(p1)), (512)

w(ξ) < 0 for any primitive m-th unit root ξ /∈ {ζ, ζ}. (513)

Then the matrix group

Γ := {A ∈ GL(2; Z[ζ]) |

−1 0

0 w

 = AT

−1 0

0 w

A} (514)

is an arithmetic Fuchsian group. It preserves the circle

C = {z ∈ C | |z|2 = w}. (515)

The map

{(a, c, δ) ∈ Z[ζ]2 ×Eiw(ζ) | |a|2 − 1 = w · |c|2} → Γ

(a, c, δ) 7→

a wcδ

c aδ

 (516)

is a bijection. Here it is Eiw(ζ) = {±ζk | k ∈ Z} (cf. [He93, Lemma 3.4]).

Proof. We consider a matrix A :=

a b

c d

 ∈ GL(2; Z[ζ]). By definition the matrix A is

in Γ if and only−1 0

0 w

 =

a c

b d

−1 0

0 w

a b

c d

 =

−aa+wcc −ba+wdc

−ab+wcd −bb+wdd

 . (517)

The determinant δ := det (A) = ad− bc is a unit in Z[ζ] and it has absolute value one. In
particular, this means that δ ∈ Eiw(ζ) by [He93, Lemma 3.4 c)]. Using the definition of δ
and the equations from (517) we obtain the relations

aδ =a (ad− bc) = (wcc+ 1) d− (wdc) d = d, (518)

wcδ =wc (ad− bc) = (ab) a− (aa− 1) b = b. (519)

This settles the bijection in (516).
Now as the map in (516) is bijective we can work with its starting domain. We see that
the defining equation

|a (ζ) |2 − 1 = w (ζ) · |c (ζ) |2 (520)
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of this starting domain is a Pell (like) equation for a, c,w (ζ) ∈ Z [p1]. From this equation
we get the following inequalities

0 ≤|c (ζ) |2 = (w (ζ))−1 · (|a (ζ) |2 − 1),

1 ≤|a (ζ) | (521)

and for any primitive m-th unit root ξ /∈ {ζ, ζ} it holds

0 ≤|c (ξ) |2 = (−w (ξ))−1 · (1− |a (ξ) |2) < (−w (ξ))−1 ,

|a (ξ) | ≤1. (522)

The matrix

−1 0

0 w

 defines an indefinite Hermitian form with isotropic vectors

z
1


for z ∈ C. As A ∈ Γ respects this Hermitian form, it maps the isotropic vectors

z
1

 to

other isotropic vectors. So the matrix A ∈ Γ, which was chosen arbitrarily, maps the circle

C ∼= {

z
1

 | z ∈ C} ⊆ Ĉ to itself. It remains to prove that Γ is arithmetic and a discrete

group. We start with the latter. This means we have to show that the set

P1 := {a ∈ Z [ζ] | ∃c ∈ Z [ζ] with |a|2 − 1 = w · |c|2} (523)

intersects each compact set K ⊆ C in a finite set. By Theorem A.3.3 there is an embedding
σ =

(
σ1, . . . ,σϕ(n)

)
: Q (ζ) → Rϕ(n) where ϕ (n) denotes the number of positive integers

up to n that are relatively prime to n. It maps Z [ζ] to a lattice. Moreover it maps P1 ∩K
to a subset of

σ (Z [ζ]) ∩
(
K × {z ∈ C | |z| ≤ 1}

ϕ(n)
2 −1

)
(524)

as (522) holds. This is a finite set. Hence P1 ∩K is finite and Γ is a Fuchsian group. Finally
Γ is an arithmetic Fuchsian group, because it is a Fuchsian group of the first kind and we
have [Ta75, Theorem 2]. That it is a Fuchsian group of the first kind follows with some
work by comparing the data above with the data in [Sh71, Section 9.2].

As mentioned earlier, the groups from Theorem A.3.4 turn up in Theorem 4.5.2 as
quotients of the groups GZ for the quadrangle singularities. There the first six of the eight
elements w(ζ) in (217) in the case r = 0 will be used. Note that, via some straightforward
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computation in the principal ideal domains Z [ζ] and Z [p1] the first six of the eight
elements w(ζ) in (217) with r = 0 can be written as follows.

W1,0 : w(ζ) =
6

(2− p1)p1
=

1
(2− p1)(2 + p1)

· 2p1(p1 + 2).

S1,0 : w(ζ) =
−2

(−p3)(−p3 − 1) = 1 · 2p3
1.

U1,0 : w(ζ) =
−3

(2 + p7)(1− p1)
= 1 · p1(p1 + 2).

E3,0 : w(ζ) =
3(2− p1)

(p1 + 2)(p1 − 1) = (2− p1)
2 · p1(p1 + 2).

Z1,0 : w(ζ) =
1
−p5

= 1 · (−p5)
−1 = 1 · (p1 − 1).

Q2,0 : w(ζ) =
2− p1
p1 + 1 = (2− p1) ·

1
p1 + 1. (525)

Here, in the case U1,0 we use m = 18 instead of m = 9. So above it is ζ = e2πi/18 for
E3,0 and U1,0. It is p3 := ζ3 + ζ

3 for m = 10, 14, p5 := ζ5 + ζ
5 for m = 12, 14, 18 and

p7 := ζ7 + ζ
7 for m = 18.

The groups from Theorem A.3.4 contain infinitely many elements — as the next lemma
shows. Note that this lemma can be seen as a special case of [Sch06, Theorem 3].

Lemma A.3.5. Let m, ζ, p1 and w be as above. Then the set

P2 := {(a, c) ∈ Z [p1] | a2 − 1 = w · c2} (526)

contains infinitely many elements. In particular, if w ∈ Z [p1] the set P2 contains pairs
(a, c) with w| (a− 1).

Proof. Without loss of generality we assume that w ∈ Z [p1].5 We will construct infinitely
many units in Z [

√
w, p1]

∗ \Z [p1]
∗ and then, building on that, infinitely many elements

in P2.
According to (512) and (513) the algebraic number field Q (

√
w, p1) has degree ϕ (m)

over Q, two real embeddings and ϕ (m)− 2 complex embeddings. Now by Dirichlet’s Unit
Theorem A.3.3 the unit group Z [

√
w, p1]

∗ of Z [
√
w, p1] in Q (

√
w, p1) contains a free

Abelian group of rank 2 + ϕ(m)−2
2 − 1 = ϕ(m)

2 . However the unit group Z [p1]
∗ contains

only a free Abelian group of rank ϕ(m)
2 − 1. Thus there are infinitely many units a1 +√

wc1 ∈ Z [
√
w, p1]

∗ with a1 6= 0 and c1 6= 0. Note that if a1 +
√
wc1 ∈ Z [

√
w, p1]

∗

is a unit also a1 −
√
wc1, (a1 +

√
wc1)

2 =
(
a2

1 +wc2
1
)
+
√
w(2a1c1) =: (a2 +

√
wc2) and

h := (a1 +
√
wc1) · (a1 −

√
wc1) ∈ Z [p1]

∗ are units. We obtain (a3, c3) :=
(a2
h , c2

h

)
∈ P2,

because

a2
3 −wc2

3 = h−2
(
a2

2 −wc2
2

)
= h−2 (a2 +

√
wc2

) (
a2 −

√
wc2

)
= h−2 (a1 +

√
wc1

)2 · (a1 −
√
wc1

)2
= 1. (527)

5 Suppose w ∈ Q (p1) \ Z [p1]. Then there is a u ∈ Z [p1] \ {0} with w̃ = w · u2 ∈ Z [p1]. Now every
pair (a, c̃) ∈ Z [p1]

2 with a2 − 1 = w̃c̃2 gives a pair (a, c) := (a, c̃u) ∈ P2. So it is sufficient to consider
w ∈ Z [p1].
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As mentioned earlier we have infinitely many units a1 +
√
wc1. But only finitely many

units a1 +
√
wc1 can give rise to the same element (a3, c3). Hence, there are also infinitely

many elements in P2.
If w ∈ Z [p1] then among those infinitely many elements there are pairs such that w divides
the first element of the pair subtracted by one. Namely, from an element (a3, c3) ∈ P2 with
c3 6= 0 as above we can construct an element (a4, c4) :=

(
a2

3 +wc2
3, 2a3c3

)
. Since

a2
4 −wc2

4 =
(
a4 +

√
wc4

)
·
(
a4 −

√
wc4

)
=
(
a3 +

√
wc3

)2 · (a3 −
√
wc3

)2
=
(
a2

3 −wc2
3

)2
= 1 (528)

this is again in P2 and w|(a4 − 1) with a4 − 1 = a2
3 +wc2

3 − 1 = 2wc2
3.

If we consider the images in PGL(2; C) of the arithmetic Fuchsian groups from Theorem
A.3.4 we end up in an even more specific class of groups. Note that we call a Fuchsian
group a (Schwarzian) triangle group ∆ (k, l,m) if it a has a defining presentation of the
form

∆ (k, l,m) =
〈
A1,A2 |Am1 = Ak2 = (A1A2)

l = id
〉

. (529)

According to a result of Kisao Takeuchi there are exactly 85 arithmetic Fuchsian groups
that are triangle groups. In [Ta77] he lists all possible triples of integers (k, l,m) of those
groups ∆ (k, l,m). Five of these triples (resp. groups) appear in the context of the quad-
rangle singularities.

Theorem A.3.6. The image in PGL(2; C) of the group Γ in Theorem A.3.4 for the
following values of m and w

W1,0 S1,0 E3,0 & U1,0 Z1,0 Q2,0

m 12 10 18 14 12

w 2p1(p1 + 2) 2p3
1 p1(p1 + 2) (−p5)−1 (p1 + 1)−1

(530)

is a triangle group of the following type:

W1,0 S1,0 E3,0 & U1,0 Z1,0 Q2,0

(2, 12, 12) (2, 10, 10) (2, 3, 18) (2, 3, 14) (2, 3, 12)
(531)

Proof. The proof consists of three steps. All three steps together yield the claim. In Step
1 we will present two matrices A1 and A2 in Γ whose images in PGL(2; C) are elliptic and
generate a Schwarzian triangle group of the claimed type in each of the cases. In Step 2 we
will show that no matrix in Γ is closer to A1 than A2. This will be used in Step 3 where
we prove that the images in PGL(2; C) of A1 and A2 generate the image of Γ in PGL(2; C).
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Step 1: First of all, we check that the matrices A1 and A2 as described in (532) are in
Γ (see (516) for a good characterization of the group Γ).

A1 =

ζ 0

0 1

 for all 5 cases. (532)

W1,0 : A2 =

p1 + 2 −2p1(p1 + 2)

1 −(p1 + 2)

 , detA2 = −1,

S1,0 : A2 =

(ζ + 1)p1 −2p3
1ζ

1 −(ζ + 1)p1

 , detA2 = −ζ,

E3,0 & U1,0 : A2 =

p1 + 1 −p1(p1 + 2)

1 −(p1 + 1)

 , detA2 = −1,

Z1,0 : A2 = p1(1− ζ3) ·

1 −(−p5)−1

1 −1

 , detA2 = ζ3,

Q2,0 : A2 =

 ζ + 1 −ζ

p1 + 1 −(ζ + 1)

 , detA2 = −ζ.

(533)

Note that a matrix A ∈ GL(2; C) is elliptic if its eigenvalues λ1 and λ2 satisfy λ2
λ1
∈ S1.

Let

zj
1

 be an eigenvector with eigenvalue λj for j = 1, 2 (possibly z1 = 0 and z2 =∞).

Then the linear transformation of A is a rotation around the fixed point z1 with angle
α(A) = arg λ2

λ1
. Now let A ∈ Γ be elliptic. We assume that its eigenvalues λ1, λ2 are

labelled in such a way that |z1| < |z2|. Then it is |z1|2 < w and z1 is in the interior of the
circle C. In all five cases it holds

λ1(A1) = 1, λ2(A1) = ζ, α(A1) =
2π
m

, (534)

tr(A2) = 0, α(A2) = π. (535)

In (536) the eigenvalues λ1,λ2 and the angle α(A1A2) of the product A1A2 are given.

λ1 λ2 α

W1,0 ζ4 ζ3 −2π
12

S1,0 ζ4 ζ3 −2π
10

E3,0 & U1,0 ζ8 ζ2 −2π
3

Z1,0 e2πi/6ζ2 e−2πi/6ζ2 −2π
3

Q2,0 ζ6 ζ2 −2π
3

(536)

We see that the images of A1 and A2 in PGL(2; C) generate a Schwarzian triangle group
of type as in (531) (cf. [Le64, Section VII 1G]).
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Step 2: Let A2 =

a2 b2

c2 d2

 and A =

a b

c d

 for any A ∈ Γ.

Claim 1: Any A ∈ Γ with c 6= 0 satisfies |a| ≥ |a2|.

The proof of the Claim 1 makes the proof of Theorem A.3.4 more constructive. So at
first we look for candidates f ∈ Z[p1] of |a|2 which are compatible with the inequalities
(521) and (522) and which satisfy f < |a2|2. Then we will show that these candidates are
not compatible with the equality |a|2 = 1 +w · |c|2.

Denote by σR = (σR
1 , . . . ,σR

ϕ(m)/2) : Q(p1) → Rϕ(m)/2 the tuple of the embeddings
σR
j : Q(p1) → R. Then σR(Z[p1]) is a Z-lattice in Rϕ(m)/2. By the inequalities in (521)

and (522) naive candidates f are the numbers f = f(p1) in Z[p1] with

σR(f) ∈ (1, |a2|2) × (0, 1)ϕ(m)/2−1. (537)

The real numbers p1 = ζ + ζ are p1 =
√

5+1
2 ≈ 1.6180339887 for m = 10, p1 =

√
3 ≈

1.7320508076 for m = 12, p1 = 2 cos π7 ≈ 1.8019377358 for m = 14 and p1 = 2 cos π9 ≈
1.8793852416 for m = 18. Thus the naive candidates are of the following forms.

W1,0 : f(p1) = α · 1 + β · p1, (α,β) ∈ {(2, 1), (4, 2), (6, 3)}.

S1,0 : f(p1) = α · 1 + β · p1, (α,β) ∈ {(2, 2), (2, 3)}.

E3,0 & U1,0 : ∅.

Z1,0 : ∅.

Q2,0 : ∅.

Now all these naive candidates can be excluded with the help of the condition

Norm(|a|2 − 1) = Norm(w · |c|2) = Norm(w) ·Norm(|b|2).

Here the norm is the norm in Q(p1) and Z[p1] with values in Q and Z, respectively. In
particular, in the two cases where naive candidates exist it is Norm(w) = −12, Norm(1 +
p1) = −2, Norm(3 + 2p1) = −3, Norm(5 + 3p1) = −2 for the case W1,0 and Norm(w) =

−4, Norm(1 + 2p1) = −1, Norm(1 + 3p1) = −5 for the case S1,0.

Step 3: It is sufficient to show the following Claim 2.

Claim 2: For any matrix A3 ∈ Γ with c3 6= 0, a number k ∈ Z exists such that the
product

A4 := A3 ·A−k1 A2A
k
1 =

a3 b3

c3 d3

 a2 ζ−kb2

ζkc2 d2

 (538)
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satisfies

|c4| < |c3|, here c4 = c3a2 + ζkd3c2. (539)

We can choose k ∈ Z such that

β := | arg(c3a2)− arg(−ζkd3c2)| ≤
π

m
. (540)

We observe that it is

|ζkd3c2|2

|c3a2|2
=
|a3|2 |a2|2−1

w(ζ)

|a3|2−1
w(ζ) |a2|2

=
1− |a2|−2

1− |a3|−2 . (541)

The trivial inequality 1− |a3|−2 < 1 and the inequality |a3| ≥ |a2| from Step 2 give the
inequalities (

1− |a2|−2
)
|c3a2|2 < |ζkd3c2|2 ≤ |c3a2|2. (542)

Moreover it is √
1− |a2|−2 < cos π

m
. (543)

Therefore it is

|c4| = |c3a2|2(sin β)2 + (|c3a2| cosβ − |d3c2|)2

< |c3a2|2(sin
π

m
)2 +

(
1−

√
1− |a2|−2

)2
· |c3a2|2

= |c3|2 · |a2|2
(
(sin π

m
)2 +

(
1−

√
1− |a2|−2)

)2
)

(∗)
< |c3|2. (544)

The inequality
(∗)
< follows in all of the five cases by dividing by |c3|2 and computing the

numerical values on the left hand side in the forelast line of (544). The values of |a2|2 with
a2 as in (533) are

|a2|2 = 7 + 4
√

3 ≈13.9282032 for W1,0, (545)

|a2|2 = 5 + 2
√

5 ≈9.47213596 for S1,0, (546)

|a2|2 = 3 + 4 cos π9 + 2 cos 2π
9 ≈8.29085937 for E3,0 and U1,0, (547)

|a2|2 = −8
(

sin π

14 − 1
)(

cos π7

)2
≈5.04891734 for Z1,0, (548)

|a2|2 = 2 +
√

3 ≈3.73205081 for Q2,0. (549)
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