
Schema Mapping Discovery From
Example Data Using ILP

Manuel Fink and Heiner Stuckenschmidt

Research Group Data and Web Science, University of Mannheim, Germany

Abstract. We frame the task of schema mapping discovery for Data Exchange
as an ILP problem to discuss resulting challenges and advantages. The challenges
stem from the necessity of learning complex mappings in practice as we illustrate
with simple examples.

1 Introduction

Data Exchange describes the problem of making data from a source schema accessible
in a target schema by the use of a schema mapping that describes the relationship be-
tween the heterogeneous schemata. In this work, we discuss schema mapping discovery
from example data that is given in both the source and target schema. We restrict our-
selves to the case of two relational database schemata and assume metadata is available
that specifies primary and foreign key constraints within both schemata as well as data
domains of attributes. This use case is motivated by an industry problem in which the
content of a database needs to be transformed to be used with a newer ERP software.
While an official tool is available that does this task for the two ERP systems at hand,
it is slow, inflexible (all data or nothing) and further preprocessing steps on the source
data are required. These problems could be alleviated if one could capture the underly-
ing logic with rules that express how the data needs to change during the workflow. The
formal nature of the rules allows an easy transition to a definition of the data migration
task in an arbitrary conversion tool. As the official tool is essentially a black box, the
idea is to execute the complete workflow once on a system filled with dummy data and
learn transformation rules by comparing the source data to the resulting target data.

2 Approach

To illustrate one kind of transformation logic that we are interested in, consider the
data example in Figure 1 that shows the same foods in both source and target. In this
example, the content of the three source tables Vegetable, AnimalProduct and Nutri-
tionalValue is stored in the target within two tables Ingredient and VegetarianIngredi-
ent. Some of the VegetarianIngredient tuples stem from a join between Vegetable and
NutrionalValue, some from a join between AnimalProduct and NutrionalValue. More
specifically, it is filled with all foods from the Vegetable table and those foods from the
AnimalProduct table which are of type egg. During the transformation, a renaming and
reordering of the macro nutrition attributes has taken place. A schema mapping that
correctly describes this relationship is given by the two horn rules in Figure 1.
The example suggests that ILP could be used to infer the transformation rules. Indeed,
the problem of learning rules to construct a specific target table from the source tables,
can be formulated within the ILP framework [7] as follows.



2 Fink et al.

Vegetable
ID Name NID
017 Mushroom (white) 11
032 Mushroom (brown) 11
067 Potato 24

AnimalProduct
ID Name Type NID

7254 Beef (Minced) meat 34
8696 Chicken (Breast) meat 65
8920 Egg (Chicken) egg 67

NutritionalValue
ID KCal Protein CarboHydrates Fat
11 16 2.7g 0.6g 0.2g
24 76 1.9g 15.6g 0g
34 208 20.5g 0g 14g
65 102 23g 0g 0.7g
67 137 11.9g 1.5g 9.3g

VegetarianIngredient
ID Name E C F P
017 Mushroom (white) 16 0.6g 0.2g 2.7g
032 Mushroom (brown) 16 0.6g 0.2g 2.7g
067 Potato 76 15.6g 0g 1.9g

8920 Egg (Chicken) 137 1.5g 9.3g 11.9g

AnimalProduct(ID,Name, egg, NID) ∧NutritionalV alue(NID,E, P,C, F )

→ V egetarianIngredient(ID,Name,E,C, F, P )
(1)

V egetable(ID,Name,NID) ∧NutritionalV alue(NID,E, P,C, F )

→ V egetarianIngredient(ID,Name,E,C, F, P )
(2)

Fig. 1. Source (left) and target (right) databases storing food information in heterogenous
schemata whose relationship is described by the schema mapping below.

The ground facts derived from tuples in source relations are the background knowledge
B, while ground facts from tuples in the given target relation form the positive evidence
E+. Any ground fact that does not resemble a tuple in the target relation can be used
negated as negative evidence E−. Then, a hypothesisH is a potential schema mapping.
The following two constraints on an ILP problem are trivially satisfied as B does not
share any predicates withE− orE+ and becauseB andE− are always satisfiable here:
(i) Prior Satisfiability: B ∧ E− 2 false
(ii) Prior Necessity: B 2 E+

Concerning the two criteria that a hypothesisH has to satisfy to be accepted as solution,
we find that they are justified for the problem and represent intuitive properties that the
rules should have:
(iii) Posterior Sufficiency: B ∧H � E+

(iv) Posterior Satisfiability: B ∧H ∧ E− 2 false
Posterior sufficiency (iii) requires that all target tuples are inferred from the source
tuples. Posterior Satisfiability (iv) demands from a solution that it does not produce too
much, i.e. tuples that should not be there.



Schema Mapping Discovery Using ILP 3

3 Challenges

We will now present further characteristics of Data Exchange that complicate the appli-
cation of ILP algorithms to it. We justify them with the more complex transformation
scenario shown in Figure 2.

Person
ID Name CityID EmpID
0 Chris 5 13
1 Liz 4 25

City
ID Name LatLong
3 New York 40.7128N 74.0060W
4 Philadelphia 39.9526N 75.1652W
5 Baltimore 39.2904N 76.6122W

Employer
ID Name CityID
13 Comcast 4
25 HBO 3

Commute
ID Employee Start Stop
1 Chris 1 2
2 Liz 2 3

GeoLocation
ID LatLong
1 39.2904N 76.6122W
2 39.9526N 75.1652W
3 40.7128N 74.0060W

Person(ID, PName,CID1, EID) ∧ City(CID1, CName1, Loc1)

∧ Employer(EID,EName,CID2) ∧ Ctiy(CID2, CName2, Loc2)

→ ∃ CoID,GID1, GID2 : Commute(CoID,PName,GID1, GID2)

∧ GeoLocation(GID1, Loc1) ∧ GeoLocation(GID2, Loc2)

(3)

Fig. 2. Source database (left) containing data about peoples’ work place and a Target (right)
database storing commute information derived from it with the given rules.

First, we can see that there is now information in the target that is not inferrable from
source information (Commute.ID, Commute.Start, Commute.Stop and GeoLocation.ID).
In the practical problem we are trying to solve, such attributes are for example integer
keys that appear to be randomly generated depending on the order in which the objects
in the database are transformed. As they do not represent characteristics of the stored
objects, they are typically called labeled nulls in Data Exchange. Learning rules that
are so specific that they generate exactly the given labeled nulls from the source exam-
ples would be overfitting. However, as long as a schema mapping produces labeled null
values that preserve the semantic relation between data objects, their actual values do
not even matter.

This affects the language bias needed for practical schema mappings in two ways.
First, to produce labeled nulls, a schema mapping needs existential quantifiers in the
head of the rule for any attributes that are not determined by source values. Further-
more, generating target tuples with labeled nulls for one relation at a time, does not en-
sure correct foreign key relationships between target relations. Allowing more than one
relation in the head of a schema mapping is a solution to this problem, as this allows the



4 Fink et al.

joint generation of semantically related tuples from different relations, connected via
shared labeled nulls. Consequently, GLAV (global-and-local-as-view) mappings, i.e.
sourge-to-target tuple-generating dependencies, as the one in Figure 2 have been the
focus of most existing Data Exchange works [1–4, 6]. Given a vector x̄ of variables, a
vector ȳ of variables representing labeled nulls and φ, ψ being first-order formulas with
atoms using variables from x̄ and ȳ, a GLAV schema mapping has the following form:
∀x̄ φ(x̄) → ∃ȳ ψ(x̄, ȳ).

As ILP systems typically learn rules with only one relation and no existential quan-
tifier in the head, it is not straight-forward how to achieve GLAV mapping expressivity
with them. One idea is using metadata information about foreign key relationships in
the target schema to join related target relations into one universal table, so one relation
in the head of the mapping rule is sufficient. The tuples generated upon application of
the mapping rule would need to be split to gain tuples for the individual relations. As in
our problem there are thousands of tables, some with more than 80 attributes, scalability
is already a big challenge and this could make it even more ambitious.

To make a bottom-up search possible, one needs data examples that describe in-
dividual objects in their source and target representation. As the complete database
content is given as a whole, instance matching would be needed to produce these fine-
grained examples to bootstrap a bottom-up search. However, as the schema is heteroge-
nous, schema matching is a prerequisite to be able to identify similar instances. It gets
further complicated by the fact that information about objects is spread across multiple
tables and even with information about foreign key relations, it is often ambiguous how
to denormalize tables.

On the other hand, metadata about key relationships could be leveraged to more
efficiently navigate the hypothesis space because shared variables of relations in a rule’s
body could be restricted to those attributes that are in a key relationship. Similarly, if a
variable in x is bounded to an attribute of a certain data domain, one could restrict its
appearance in the head to attributes of the same domain.

An immediate advantage of ILP systems is that schema mappings with constants in
the rule body could be learned. This could prove very valuable in practice as Figure 1
showed. On the other hand, regarding constants in our problem, their usage could also
pose a problem for applying ILP to it. In a logic context, multiple ground facts contain-
ing the same constant x are supposed to express relations of some abstract entity x. In a
database though, a constant can occur multiple times in different tuples with no seman-
tic relationship between those tuples which could mislead the search. This is especially
common for numerical values.

A long-term goal is to support data transformation functions on top of schema
changes as in ∀x̄ φ(x̄) → ∃ȳ ψ(f(x̄), ȳ). Imagine Ingredient.E in Figure 1 storing all en-
ergy values suffixed by ”kCal” or converted to kJ instead by multiplying the values with
a constant. So far, we developed a prototype that learns such transformation functions
in a setting where the database schema is fixed. In the scenario we dealt with, a mapping
i described a copy process for table Ti with columns x1, ..., xni affected by functions
f1, ..., fni

which where either the identity function id or from a pool of parameterized
meta functions: ∀x1, ..., xni

TSource
i (x1, ..., xni

) → TTarget
i (f1(x1), ..., fni

(xni
)).

The difficulty in this case was identifying corresponding source and target tuples due to



Schema Mapping Discovery Using ILP 5

transformed keys to generate examples for the learning of the transformation functions.
Another challenge was the existence of columns storing the concatenation of multiple
referenced key values as a violation of first database normal form. The number of splits
as well as the offset positions had to be learned as well as individual transformation
functions for the different parts. In addition, there were multiple rules on how to split
and transform the same column. The choice of rule for a given tuple was determined by
the value(s) of one or multiple control columns within the same table.

4 Related Work

Finding rules that correctly capture the relationship between the source and target sche-
mata is a non-trivial task for which multiple different approaches have been studied.
For example, early works such as Clio [5] use as input a set of correspondences be-
tween attributes that can either be specified by a user or automatically generated with
schema matching techniques. Together with metadata information about the schemata,
such as foreign key relationships, schema mappings can be suggested that fit these spec-
ifications. Systems like these aim to help a user formalize a desired schema mapping
without the need for database expert knowledge. As they do not assume data examples
to be available, they can not evaluate the correctness of the candidate mappings. The
use of data examples for schema mapping discovery was explored later-on.

Muse [1] was one of the first systems to do so by generating data examples for the
user of a mapping tool to visualize the effect of schema mappings.

EIRENE [2] is able to synthesize GLAV schema mappings by asking a user to
illustrate its desired outcome with a small data example including source and target
tuples. In the problem we consider, the two database contents are provided as a whole
and it is unknown which source relations need to be mapped to which target relations.
In EIRENE, the section within source and target schema, that includes the relations for
the rule, is implicitly given by the predicates that occur in the examples resulting in a
smaller search space. Moreover, due to the iterative input of examples, correspondences
between source and target tuples are known.

MWeaver [8] is another system that allows a user to enter data examples which are
used to infer schema mappings. As the user enters more and more examples, the num-
ber of possible candidate mappings tends to decrease until only the intended mapping
remains. Unlike in EIRENE, the user does not enter examples consisting of both source
and target information. Instead, she defines a set of attributes for a target table and fills
in the cells of the table one-by-one to demonstrate which information she expects in the
table. As the user enters more and more values for an attribute, it becomes clear which
source attributes are needed in the body of the rule because only they contain these val-
ues. Still, unless all attributes stem from the same source table, it remains a challenge
on how to join all source tables that contain needed attributes in the correct way. This is
similar to the problem that the first approaches tackled. The difference this time is that
data examples can be used to guide the search and reject joins that do not produce the
target tuples intended by the user.

CMD [6] is a recent approach that can be used to find a subset among given can-
didate schema mappings that collectively best describe the given data examples. The



6 Fink et al.

schema mappings used as input are assumed to satisfy metadata constraints and known
correspondences and could be provided by existing works such as Clio. A central con-
tribution is the tolerance of dirty data examples. Probabilistic Soft Logic allows this by
formulating the selection of the best mapping subset as optimization problem. As in-
put the solver is given the information which target tuple is produced by which schema
mappings and also about tuples generated by a mapping that are not correct target tu-
ples. It then computes a subset of the schema mappings that minimizes the amount
of unexplained target tuples, wrongly produced tuples and number of mappings in the
set. Due to labelled nulls and corrupted examples, it is not always possible to decide
if a target tuple is correctly produced by a schema mapping or if a tuple produced by
it corresponds to a valid target tuple. Therefore the degree of equality between tuples
is not expressed binary but as a number between 0 and 1. This warrants the use of a
probabilistic logic system. While the use of logic suggests a connection to mapping
discovery using ILP, it is worth noting that logic is not used to learn schema mappings
from example data but to select the best fitting mapping subset under noisy examples.

While EIRENE and CMD focus on GLAV mappings, MWeaver is limited to learn-
ing project-join queries, i.e. a subset of GAV mappings. Therefore none of these sys-
tems could produce the mapping given in Figure 1 as constants in the body are not
supported. Furthermore, MWeaver does not support more than one relation in the head
which means mappings involving foreign key relationships in target relations like in
Figure 2 are not supported.

A theoretical framework for the discovery of GLAV schema mappings from data
examples was developed in [4] and extended in [3]. Apart from complexity results, it
introduces criteria for a schema mapping to be called valid and fully explaining which
are semantically equal to constraints (iii) and (iv) that ILP requires from a solution (see
Section 2). The framework also mentions schema mappings with constants in the body
of the rules when introducing a language of repairs for GLAV mappings.

While these works deal with certain aspects of the problem already, exploring it
with ILP is (to the best of our knowledge) a new approach.

References

1. Alexe, B., Chiticariu, L., Miller, R.J., Tan, W.C.: Muse: Mapping understanding and design
by example. In: 2008 IEEE 24th International Conference on Data Engineering. pp. 10–19
(April 2008)

2. Alexe, B., ten Cate, B., Kolaitis, P.G., Tan, W.C.: Designing and refining schema mappings
via data examples. In: Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data. pp. 133–144. SIGMOD ’11, ACM (2011)

3. Cate, B.T., Kolaitis, P.G., Qian, K., Tan, W.C.: Approximation algorithms for schema-mapping
discovery from data examples. ACM Trans. Database Syst. 42(2), 12:1–12:41 (Apr 2017)

4. Gottlob, G., Senellart, P.: Schema mapping discovery from data instances. J. ACM 57(2),
6:1–6:37 (Feb 2010)

5. Haas, L.M., Hernández, M.A., Ho, H., Popa, L., Roth, M.: Clio grows up: From research pro-
totype to industrial tool. In: Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data. pp. 805–810. SIGMOD ’05, ACM (2005)

6. Kimmig, A., Memory, A., Miller, R.J., Getoor, L.: A collective, probabilistic approach to
schema mapping. In: 2017 IEEE 33rd International Conference on Data Engineering (ICDE).
pp. 921–932 (April 2017)

7. Muggleton, S., de Raedt, L.: Inductive logic programming: Theory and methods. The Journal
of Logic Programming 19-20, 629 – 679 (1994)

8. Qian, L., Cafarella, M.J., Jagadish, H.V.: Sample-driven schema mapping. In: Proceedings
of the 2012 ACM SIGMOD International Conference on Management of Data. pp. 73–84.
SIGMOD ’12, ACM (2012)


