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Abstract

Business process models are commonly used to document a company’s operations.
They describe internal processes in a chronological and logical order. Business
process model matching refers to the automatic detection of semantically similar
correspondences in process models. The output of those matching techniques is the
basis for many applications. Currently, most research effort has been undertaken
to improve the performance of such matching techniques. However, to support
the improvement of process model matching techniques further, efficient and fair
evaluation strategies are required. Moreover, information about the matching task,
regarding the complexity of a data set have to be gathered. In the current literature,
complexity is mostly associated with different level of granularity, thus 1 : m or
n : m correspondences. However, the evaluation should also account for differ-
ent complexity aspects of the matching task, for example syntactical overlap of
correspondences. Moreover, the evaluation of matching results actually strongly
depends on the application. In this thesis, we therefore propose an application
dependent evaluation. On the one hand, we introduce a non-binary evaluation,
which better reflects the uncertainty of a gold standard and propose evaluation
metrics, based on this non-binary gold standard which take different application
scenarios into account. On the other hand, we propose a conceptually novel evalu-
ation procedure, which offers detailed information about strength and weaknesses
of matchers without manually processing the matcher output. It therefore helps to
find optimal application scenarios for specific matching techniques. It can further
serve as a basis for a prediction for future matching tasks. We conduct experiments
to show the insights gained by the introduced evaluation metrics and methods.
Moreover, we apply the metrics at the OAEI 2016 and 2017.
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Zusammenfassung

Geschiftsprozessmodelle sind in fast jedem grofieren Unternehmen zu finden. Sie
beschreiben firmeninterne Prozesse in einer chronologischen bzw. logischen Ab-
folge. Solche Prozessmodelle kénnen sehr grofle Datenmengen beinhalten, teil-
weise mit mehreren hunderttausend Prozessmodellen. Solche Datenmengen lassen
sich handisch kaum bewiltigen, daher miissen sie beispielsweise automatisch bear-
beitet werden. Hierzu werden haufig “Matching Technologien” verwendet. Um zu
erkennen wie gut solche Technologien in der Praxis funktionieren, bedarf es ef-
fizienter Evaluierungstechniken. Aktuell werden dafiir hauptsiachlich Metriken
aus dem Information Retrieval herangezogen, die auf einem biniren Goldstan-
dard basieren. In der Praxis zeigt sich jedoch, dass solche binidren Goldstandards
die tatsdchliche Komplexitat eines Datensatzes nicht korrekt widerspiegeln. Die
Erstellung eines solchen Goldstandards ist einerseits sehr subjektiv und anderer-
seits gibt es nicht immer eine richtige oder falsche Losung. Um diese “Unsicher-
heiten” zu beriicksichtigen, schlagen wir einen nicht-biniren Goldstandard vor,
welcher (alle) mogliche Korrespondenzen eines Datensatzes enthilt. Dartiber hin-
aus entwickeln wir Evaluierungsmetriken, welche nicht-binidre Werte erlauben
und eine Evaluierung je nach Anwendungsfall zulassen. Somit wird die Perfor-
mance der Matcher aus unterschiedlichen Blickwinkeln betrachtet. Dariiber hin-
aus préasentieren wir eine konzeptionell neuartige Evaluierungsmethode, welche
detailierte Informationen iiber die Performance der Matcher bietet. Dabei wird der
Datensatz und Matcher-Output automatisiert in verschiedene Komplexitétsstufen
eingeteilt. Die Ergebnisse erlauben zudem optimale Matching-Szenarien fiir spezi-
fische Matcher abzuleiten. Die eingefithrten Metriken und Evaluierungsmethoden
wurden bereits bei der OAFEI 2016 und 2017 angewendet.
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Introduction

In this chapter, we provide an introduction to the field of business process modeling.
We focus our review on the main challenges of the evaluation techniques of process
model matchers. In this context, we formulate research questions in the area of
evaluating process matching techniques, which are addressed in this thesis. We

then summarize the contributions of the thesis.

1.1 Business Process Modeling

Business process modeling is a growing discipline in many companies. Conceptual
models, like business process models, are commonly used to document a company’s
operations. It aims in documenting the business processes within a company or
institution. Business process modeling is widely used within a company for many
reasons: For example to achieve transparency of the business processes or to make

the processes comprehensible.
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Weske (2012) describes a business process as follows:

“A business process consists of a set of activities that are performed in coordination
in an organizational and technical environment. These activities jointly realize a
business goal. Each business process is enacted by a single organization, but it may
interact with business processes performed by other organizations.”

Consequently, business processes are targeted controlling instruments of oper-
ations within a company or institution. Therefore the economical point of view
of the process is transformed into a technical process. Within such processes, the
activities of the process models describe an event or task. Examples for notations
which are used to document business process models are Business Process Model-
ing and Notation (BPMN) (Owen and Raj, 2003), Event-driven Process Chain (EPC)
(Van der Aalst, 1999), Unified Modeling Language (UML) (Eriksson and Penker, 2000)
or Petri-Nets (Murata, 1989; Van der Aalst, 1998).

Concrete applications are for instance the automation of manufacturing pro-
cesses, the improvement of manufacturing processes, to generally increase the
quality or to save costs. Therefore business process modeling is part of business
process management. Business Process Management contains the techniques, man-
agement and tools which support the design and analysis of business processes.
Business Process Models contain one or more Business Processes. In particular,
applications are in the context of “Industry 4.0”, “Internet of things” and “Smart
factory”. In this context, process models can be used, e.g., to fully automate the pro-
duction process in factories. Another application of the development of business
processes models is the quality management and best practices.

In some cases, the amount of data is too huge for manual processing business
processes. The China railway company, for instance, stores more than 200 000
business process models (Ekanayake et al., 2011). This amount is too huge for
manual processing, therefore in such cases automatic processing is required. One
prominent example is the automatic matching of process models. In the next sec-
tion we introduce to process model matching and provide an overview of current

challenges in this field.



1.2 Business Process Model Matching

1.2 Business Process Model Matching

Business process model matching is concerned with the detection of similarities
in business process models. On the one hand, the control flow of the process
models is an important feature, on the other hand, semantic similarities of the
labels are compared. The matching of the activities of the process models are called
correspondences. Generally spoken, a matcher is a tool which automatically detects
correspondences in business process models, or which supports an individual in

generating correspondences, in order to save effort and time.

Register
Applicant
Publish
Notification

University A

Check Evaluate Prepare
Application Application Notification

Archive

Documents

Documents
In Time?

University B

Accept
Student

Figure 1.1: Two process models and possible correspondences as shown in (Kuss
et al,, 2016)

To highlight the challenges associated with such a matching task, we illustrate
such specific difficulties in the example depicted in Figure 1.1. It shows two pro-
cess models describing the steps students have to undertake to be admitted for
the graduate programs of two different universities; in this case University A and
University B. Possible correspondences are illustrated by gray shades.

Consider, for instance, the correspondence between “Check application” from
University A and “Documents complete?” as well as “Documents in Time?" in the
process of University B. A matching technique must be able to detect that in the
process of University A a pre-check of the application is made, which is described
at University B with the question if the documents are complete and in time. Such
correspondences are 1 : m correspondences (in this case 1:2 correspondences).

Similarly, a matching system has to detect the presence of complex correspondence
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» &«

between “Prepare Notification”, “Register Applicant” as well as “Publish Notification”
with “Reject Student” and “Accept Student”. To automatically recognize that the
latter three activities relate to a stream of action that can be referred to “Accept or
Reject Student”, requires the recognition of complex semantic relationships. (This
is an example for an n : m correspondence, here 3:2). Another complex matching
is the correspondence between the activity “Evaluate” and “Is student Qualified?”.
Here, a matching technique must be capable to automatically recognize that both
activities evaluate if a student is suitable. This is especially challenging because
on the one hand the words have no syntactical overlap and on the other hand one
activity is a verb while the other activity is a sentence. Another challenge is the
fact that not all activities from one process model are matched in the corresponding

model (like in this example the activity “Archive Documents”).

Systems that automatically perform such matching tasks are called matching
techniques or shortly matchers. To address such challenges associated with process
model matching, many different matching techniques have been proposed in recent
years. Typically, these techniques combine different measures to quantify the struc-
tural as well as the textual similarity between the considered process models. The
first matching techniques that have been defined combined structural measures
such as the graph edit distance with syntactic text similarity measures such as
the Levenshtein distance (Dijkman et al., 2009; Weidlich et al., 2010a). More recent
techniques also consider semantic relationships between words, most commonly by
building on the lexical database WordNet (Cayoglu et al., 2013b; Klinkmiiller et al.,
2013; Leopold et al., 2012). A few techniques also employ alternative strategies. Ex-
amples include matching techniques incorporating human feedback (Klinkmiiller
et al., 2014), techniques selecting the most promising similarity measures based on
prediction (Weidlich et al., 2013a), techniques selecting the best correspondences
based on voting (Meilicke et al., 2017), and techniques that employ machine learn-
ing (Sonntag et al., 2016). Weidlich et al. (2010a) presents a method for n : m node

matching.

Process matching techniques are relatively rarely used in practice compared to
their many application scenarios. In order to fully exploit the potential in practice,
the performance of process matching techniques needs to be improved. Consider-
ing the variety of matching techniques that have been defined in previous work,
a key question is how to evaluate the performance of these techniques. While the

specific technologies or model-related aspects exploited by the matching technique
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do not change how a matching technique needs to be assessed, the question is how
to fairly quantify to what extent the generated correspondences are correct. Over-
all, it can be observed that most research efforts are spend in advancing the process
matching techniques compared to the advancement of their evaluation. However,
the improvement process of process model matching techniques is closely linked
to an efficient and fair evaluation. Current evaluation mostly relies on a ranking
of the evaluated matching techniques. It provides a quantitative analysis of the
matching results. However, it does not provide a detailed qualitative analysis. This
research gap is filled in this thesis.

The Process Model Matching Contests (PMMCs) (Antunes et al., 2015; Cayoglu
et al.,, 2013a) are the leading forum for the evaluation of process model match-
ing techniques. However, these evaluation experiments assess the performance of
matching techniques through a ranking. Consequently, they only provide limited
information about the performance of matching techniques, e.g., detailed infor-
mation about the strength and weaknesses of a matching technique are missing.
However, the progress of process model matching techniques is strongly influenced
by the available evaluation techniques. Important is that the evaluation techniques
are “fair” and that they can be computed efficiently, i.e., without (intensive) manual
labor.

In the next section, we discuss research questions which we address in this

thesis.

1.3 Research Questions

In this section, we motivate and introduce the main research questions, which are

addressed in this thesis.

1.3.1 Gold Standard Creation
The Oxford Dictionary' defines a gold standard as follows:

“A thing of superior quality which serves as a point of reference against which

other things of its type may be compared.”

Translated into the domain of process model matching, a gold standard is defined

as the optimal result of a “perfect” matcher. But which result is literally optimal is

'https://en.oxforddictionaries.com/
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not that clear or conclusive as it may appear; in fact, this is highly subjective. We
will elaborate on this in details below.

The gold standard, as of the state-of-the-art, has the following main weaknesses:

« In evaluation experiments at least three experts are required to define a gold
standard, who then discuss about the correspondences which have to be in-
cluded into the gold standard. The correspondences which are considered
by only one annotator, or a minority of annotators, is not considered in the
gold standard, and thus in the evaluation treated as a wrong correspondence.
If three different domain experts are asked to create a gold standard, each
expert will identify a different set of correspondences as correct. The orga-
nizers of the two Process Model Matching Contests (PMMC) 2013 and 2015
stated that there was not even a single pair of process models where two
annotators fully agreed on (Antunes et al.,, 2015; Cayoglu et al., 2013a). This
illustrates that it comes with high risk to define only a single set of correct
correspondences. In other words, creating a gold standard is a highly subjec-
tive task. This is ignored currently. For example, if three experts congregate
to discuss about a gold standard, then the resulting gold standard strongly

depends on those three experts.

+ The procedure to yield a gold standard is very time consuming, since the

experts need to discuss and agree on each of the correspondences.

+ Generally, the definition of a gold standard has a high effect on the evaluation
of matching techniques. All correspondences which are not part of the gold
standard are considered as wrong, thus negatively affecting the performance
of matchers. A binary evaluation does not differentiate if a correspondence is
totally unrelated (thus wrong) or if a correspondence is arguable but related.

This leads to unclear evaluation results.

+ There is a considerable loss of information when forcing the experts to agree
on one single set of correspondences. All other correspondences are excluded

from the gold standard. This information is lost in the gold standard.

Therefore, there is a need for a more fine-grained evaluation, which takes the
arguability of correspondences into account. In the next section, we illustrate this

in more detail with an example.



1.3 Research Questions

1.3.2 Absence of a “Perfect Match”

State-of-the-art evaluation procedures for process model matching techniques aim
in assessing which of the correspondences identified by a matching technique are
correct. While there seems to be no way to circumvent this basic assessment,
there are nevertheless several problems attached to it. To illustrate these problems,
consider the example depicted in Figure 1.2. It shows two simplified process models
from the Process Model Matching Contest (PMMC) 2015 (Antunes et al., 2015).

Possible correspondences are shown by gray markings.

> .
® Recglve Check Assess Send
@ online y e
> o documents applicant decision letter
= application
=}

Invite for

interview

Invite for

aptitude test

N
z Receive Check if Check if Inform about
5 application application is bachelor is niorm abou
> . decision
= form complete sufficient
=}

Figure 1.2: Two process models and possible correspondences as shown in Kuss
et al. (2016)

Upon closer inspection of the correspondences shown in Figure 1.2, it becomes
clear that, it is not that obvious to classify which correspondences are actually cor-
rect. While there are arguments in favor of many of the correspondences, there are
also counter arguments in many cases. Consider, for instance, the correspondence
between “Receive online application” from the first University and “Receive applica-
tion form” in the process of the second University. On the one hand, we can argue
that these activities do not correspond to each other because the former relates to
an online procedure, whereas the second refers to a paper-based application. On
the other hand, we can argue in favor of this correspondence because both activ-
ities deal with the receipt of an application document. Moreover, for the overall
process, the concrete implementation of an activity is not important as long as the

result of the activity is the same. Thus, it is disputable whether or not to accept
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this correspondence as correct. There are similar arguments for matching “Invite
for interview” on “Invite for aptitude test”. An interview is clearly a different assess-
ment instrument than an aptitude test, which makes the correspondence disputable.
However, we can argue again that the result of the activity is the same with respect
to the overall process. By performing one of these activities, relevant knowledge
is acquired that helps to decide upon the suitability of the applicant. Similar ar-
guments can be given in favor or against the other correspondences depicted in
Figure 1.2. Consider, for example, the correspondence “Send decision letter” and
“Inform about decision”. On the one hand it can be argued in favor of this correspon-
dence, because the activities share the same purpose. However, on the other hand,
the activity “Inform about decision” does not specify how this is conducted. And
therefore one can argue against this correspondence.

These examples illustrate that it may be hard and, in some cases, even impossible
to agree on a single correct set of correspondences. Despite this, the evaluation of
process model matching techniques currently depends on the definition of such a set
of correct correspondences referred to as gold standard. This alignment is used in an
evaluation context to distinguish between correct and incorrect correspondences
given an alignment generated by a matching system. It finally is used for the
computation of Precision, Recall, and F-Measure, which are the traditional measures
used to evaluate process model matching techniques (cf. Antunes et al. (2015);
Cayoglu et al. (2013a); Leopold et al. (2012); Weidlich et al. (2010a, 2013b)). Those
binary evaluation measures are not always a suitable measure, since it does not
fully account for the complexity of the matching task. The binary evaluation clearly
states which correspondences are correct and which are not. But as we explained
above, sometimes this is blurred. A binary gold standard, however, implies that
any correspondence that is not part of the gold standard is incorrect and, thus,
negatively affects the above mentioned metrics. This raises the question of why the
performance of process model matching techniques is determined by referring to
a single correct solution when human annotators may not even agree on what this
correct solution is. To take the uncertainty in matching tasks into account, different
evaluation metrics are required, which examine the performance of matchers from

different perspectives.
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1.3.3 How to Evaluate Process Model Matching Techniques?

In the previous section, we stated the problems associated with the definition of
one single “perfect match”. Another important question is the evaluation technique.
Currently the evaluation of process model matching techniques almost exclusively
relies on Precision, Recall and F-Measure. Those measures rely on such a binary
gold standard, as described above. Moreover, the metrics do not provide infor-
mation about strength and weaknesses of the matchers. However, an important
feature of an efficient evaluation technique is to identify potential for improvement.
Therefore, it is necessary to provide a detailed overview about specific strength
and weaknesses of the matchers. Besides the limitation of a fair assessment of
the matching techniques, in the Process Model Matching Contests the evaluation
experiments only provide a grading and ranking of the participating matching
techniques. The evaluation experiments do not aim in providing a detailed analy-
sis about specific strength and weaknesses of matching techniques and, therefore,
do not aim in providing a feedback about possibilities for improvement. To pro-
vide such feedback, currently it is necessary to manually process and interpret the
matcher output. One central research question in this thesis is therefore how to
automatize this expensive task.

Moreover, one central research question to achieve deeper insights about the
performance of matchers is, how to determine what defines the complexity of a
matching task. This is necessary to determine which matchers are able to perform
well on complex data sets. In the current literature, complexity of process model
matching tasks is associated with the different level of granularity of the process
models, thus resulting in 1 : m or n : m correspondences (cf. Antunes et al. (2015);
Makni et al. (2015); Weidlich et al. (2010b)). Although this is one aspect which
makes a matching task complex, this is not the only one. In fact, complexity is
for instance associated with the extent of syntactic overlap of the activities to be
matched. If we look into details, we can observe that 1 : m correspondences mostly
have a low syntactic overlap, since the same activity is expressed in a different level
of granularity, thus different ways.

Therefore, we propose an evaluation procedure, which classifies the matching

task and matching results into different levels of complexity.



1 Introduction

1.4 Contribution

This thesis contributes to the body of knowledge in several ways. The most signifi-

cant contributions of this thesis can be summarized as follows:

10

« We propose a new approach towards a gold standard. We name it non-binary

gold standard. To obtain this non-binary gold standard, experts individu-
ally develop their own gold standard. Each assignment among the experts’
choices is then treated as a vote for the individual correspondence. In this way,
each correspondence is assigned with a specific so-called support value. As a
result a non-binary gold standard is derived. The proposed non-binary gold
standard has the following three main advantages: First, the introduced non-
binary gold standard incorporates the uncertainty of the correspondences,
in contrast to the state-of-the-art gold-standard. In hardly any practical case
“the true” gold standard is achievable. To define a single set of correct cor-
respondences strongly depends on the point of view of the annotators, but
even more on the application. Therefore, relying on a binary gold standard
does not account for the true complexity of a matching task. Moreover, it
also does not account for the subjectivity, which is associated with such a
task. Second, it is not necessary to fully agree on one single gold standard.
This avoids the sophisticated task to agree on each correspondence, which
is actually only feasible for a small group of annotators. Third, because it
is no longer necessary to discuss about each correspondence among the an-
notators, a higher number of annotators can contribute to the definition of
a non-binary gold standard. This higher number of annotators additionally
may increase the quality of the non-binary gold standard. The approach is

presented in Section 5.1.

We introduce a new evaluation procedure which fairer assesses the perfor-
mance of matchers, since it takes the arguability of correspondences into
account. We adapt Precision, Recall and F-Measure (ProP, ProR and ProFM),
to allow non-binary values, derived from the non-binary gold standard. Fur-
thermore, we introduce a new distance-based measure (ReD), which comple-
ments the metrics from Information Retrieval. These metrics are presented

in Section 5.2 and Section 5.3.



1.4 Contribution

+ We develop Bounded versions of ProP, ProR and ProFM, which are adapted
to exclude values below a specific threshold in the non-binary gold standard.
The non-binary evaluation identifies characteristics of a matcher to derive
optimal matching scenarios for the matchers. In this way, we can identify
matchers which focus on finding correspondences with a high support value
in the data set. On the one hand such high-support correspondences are the
most “sure” correspondences, however on the other hand such correspon-
dences are also often rather obvious. For instance, “trivial” correspondences
mostly have a high support value in the non-binary gold standard. These

Bounded versions of ProP, ProR and ProFM are presented in Section 5.2.

« We introduce a fully non-binary evaluation procedure. In this evaluation
procedure, we consider the confidence values of the matchers, but not with
their absolute values. Instead, the matcher output as well as the non-binary
gold standard are transformed into a ranked collection of correspondences.
Then, the confidence and support values are compared with respect to this
ranking through a ranking-based correlation. In this way, it can also be
assessed if the confidence values of the matchers reflect a realistic confidence

of the correspondences. This evaluation method is presented in Chapter 6.

+ We propose a conceptually novel evaluation method, which is a category-
dependent evaluation via matching patterns. The idea is to automatically
divide the matching task as well as the matcher output into categories with
different complexity levels. Then standard metrics, like Precision, Recall
and F-Measure, can be applied to each of the categories separately. We fur-
ther compute the false-positive and false-negative alignments for each of
the categories. In this way, we obtain an in-depth evaluation providing de-
tailed information about the computed correspondences, where no manually
processing of the matcher output is required. This category-dependent eval-
uation better reveals strength and weaknesses of a matcher. The evaluation
procedure further allows to tune matchers to specific applications. The evalu-
ation via matching patterns further allows for an assessment of the data set: it
informs about the complexity of the matching task through the identification
of the complexity and fraction of correspondences of a data set. Moreover,
the quality of the gold standard can be assessed indirectly, e.g., quality and

quantity of manual annotations. This is introduced in Chapter 7.

11



1 Introduction

12

« We provide synthetic test cases, which complement the above described

matching patterns, with attributes which cannot be assigned automatically.
We furthermore provide an evaluation platform, where all metrics, intro-
duced in this thesis, can be accessed. The synthetic data set and “Evaluation

Portal” are described in Section 8.2.1 and Section 8.2.2.

« We apply the concepts and metrics introduced in this thesis at the OAEI 2016

and 2017 (Achichi et al., 2016, 2017).

Some of the work presented in this thesis has already been published:

Kuss, Leopold, Van der Aa, Stuckenschmidt and Reijers: A probabilistic eval-
uation procedure for process model matching techniques. Data & Knowledge

Engineering, 2018

Kuss, Leopold, Meilicke and Stuckenschmidt: Ranking-based evaluation of
process model matching. On the Move to Meaningful Internet Systems. OTM

2017 Conferences: Confederated International Conferences: CooplS 2017

Kuss and Stuckenschmidt: Automatic classification to matching patterns for

process model matching evaluation. ER-Forum-Demos 2017

Achichi et al.: Results of the Ontology Alignment Evaluation Initiative 2016.
International Workshop on Ontology Matching co-located with the 16th In-
ternational Semantic Web Conference (ISWC 2017)

Kuss, Leopold, Van der Aa, Stuckenschmidt and Reijers: Probabilistic evalua-

tion of process model matching techniques. ER 2016

Achichi et al.: Results of the Ontology Alignment Evaluation Initiative 2016.
International Workshop on Ontology Matching co-located with the 15th In-
ternational Semantic Web Conference (ISWC 2016)

Antunes et al.: The Process Model Matching Contest 2015. GI-Edition: Lec-

ture Notes in Informatics, 2015

Publication which is not subject of the thesis:

« Meilicke, Leopold, Kuss, Stuckenschmidt and Reijers: Overcoming individ-

ual process model matcher weaknesses using ensemble matching. Decision

Support Systems, 2017



1.5 Thesis Outline

1.5 Thesis Outline
The remainder of the thesis is organized as follows:

+ Chapter 2 Background and Basic Definitions: introduces to basic notions and
definitions, which we use as basis in this thesis. Moreover, we introduce the
most common metrics from Information Retrieval, which we refer to in our

experiments in this thesis.

« Chapter 3 Process Model Matching Contests: in this chapter we present the
results of the Process Model Matching Contest 2015 and compare those results
to the results of the first Process Model Matching Contest 2013. Furthermore,

in this chapter the data sets, which we refer to in this thesis, are described.

« Chapter 4 Related Work: discusses related work in the field of process model
matching evaluation and the evaluation of related fields like schema matching

and ontology matching.

 Chapter 5 Probabilistic Evaluation: in this chapter, the non-binary gold stan-
dard is introduced. Moreover, we present the novel evaluation metrics, which

are based on the non-binary gold standard.

« Chapter 6 Ranking-based Evaluation: in this chapter, we introduce the com-
pletely non-binary evaluation procedure, where we use the confidence values,

given by some matchers, to calculate the Spearman’s rank correlation.

« Chapter 7 Evaluation by Automatic Classification to Matching Patterns: we
present our conceptually new evaluation procedure, where all correspon-
dences of the data set as well as matcher output are classified into different

categories, depending on the complexity level.

« Chapter 8 Summary, Conclusions and Outlook: in this chapter, we summarize
the main results of the thesis. Moreover, we give a comprehensive outlook
of future research and present first results. Furthermore, we introduce an

evaluation portal, where the metrics can be accessed.
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Background and Basic

Definitions

In this chapter, we provide an overview of the basic notions and definitions, which
we refer to in this thesis. These definitions serve as a basis of our own definitions,
which we state in the corresponding chapters. Moreover, we provide a brief intro-
duction to the most common metrics in the field of Information Retrieval, which

are commonly used in state-of-the-art evaluation experiments.

The chapter is organized as follows. Section 2.1 discusses the basic definitions
in the context of business process modeling and process model matching, to lay
the foundation for business model matching evaluation. Section 2.2 discusses basic
notions in the field of Information Retrieval. Those notions are widely used in
evaluation experiments of process model matching techniques and related fields

like ontology matching and schema matching.
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2 Background and Basic Definitions

2.1 Basic Notions and Definitions

In the first chapter, we introduced the field of business process modeling and the
matching of such process models. In the following, we provide a formal definition
of the basic terms which we refer to in this thesis.

Based on the definition by Klinkmiiller et al. (2014), we define a process model,

and the corresponding set of activities, as follows:

Definition 1 (Process model, set of activities). Let L be a set of labels and T be a
set of events. Then a process model P is a tuple (N, E, \, T), in which:

e N is the set of nodes;

e EEC N x N is the set of edges;

e A\: N — L is a function that maps nodes to labels; and
e 7: N = T is a function that assigns types to nodes,

and which satisfiesVa € act(P) = {a|a € N N7(a) = activity}

{n|n €N, (a,n) € E} < 1 and (2.1)
{n|n €N, (n,a) € B} < 1. (2.2)

Set act(P), also denoted by A, is called the set of activities for process model P.

The definition of a process model involves the set of events 7. Possible events
in a process model depend on the notation/format of the process models. Examples
are “and”, “or”, “xor”. In our case, mainly the activities are relevant types of events
for our considerations. Currently, the matching of process models is mostly based
on a comparison of the label strings of the activities in the process models to be
matched. Examples for such labels are “Check application” or “Register child”.

For a process model P, we require that each node a has at most one control
flow edge originating from a, as ensured by condition (2.1). Similarly, (2.2) ensures

that each activity node a has at most one control flow edge into the node a.

Definition 2 (Process Model Matching). Given two Process Models P1 and Ps, the
goal of process model matching is to automatically identify pairs of equivalent or

similar activities from act(P1) x act(Ps).

16



2.1 Basic Notions and Definitions

By definition, process model matching aims at automatically identifying which
activities in the process model describe an equal or similar behavior/task. Hence,
activities from Py and P», which relate to one of these tasks, are matched with
activities which describe the same or a similar task. Such pairs of activities are also
called correspondences or alignments.

Matching techniques, which automatically identify such correspondences in
process models, are also called matchers. Mostly the matching of process models
is based on the labels strings of the activities. However, some matchers also take
structural or background information into account. The result of a matching is

called matcher output, which we formally define in the following:

Definition 3 (Matcher output). For two process models P, and Py with their activity
sets A1 and Ao, a matcher output O is a subset of all possible alignments, i.e., O C
A1 X AQ.

A matcher output is not just any random subset of possible alignments. Rather,
the goal of a matcher is to identify activities which describe the same or a similar
task. This is reflected in the matcher output O.

In this thesis, we are not only interested in these activity pairs, but also in the
confidence that the two activities are matched correctly. For that reason, we define

a confidence of an alignment or correspondence between P; and P as a function
A :act(Py) x act(Pa) — [0,1].

We refer to A(a1,az) as the confidence of correspondence (aj, az) from the set
act(Pr) x act(Pa).

In the following, we distinguish between two types of alignments:

1. A binary alignment is an alignment that uses only two different confi-
dence values, ie., A(a1,a2) € {0,a} for all (a1,a2) € act(P1) x act(P2)
and some « > 0. Typically « is set to 1. Therefore, a binary alignment only
distinguishes between (probably) correct and (probably) incorrect correspon-

dences.

2. A non-binary alignment is an alignment that uses more than two values
from the range [0, 1]. It can thus be used to assign confidence scores for

ordering the correspondences on an ordinal scale instead of distinguishing

17



2 Background and Basic Definitions

only between correct and incorrect. We define such an assignment in Section
5.1.

Binary as well as non-binary alignments can be created by human experts, by
matching techniques, or by a combination of manual effort and automated match-
ing techniques. Therefore, this distinction holds for correspondences, created by
matching techniques (matcher output) as well as manually generated human as-
sessments (gold standard). In all of these cases, confidence scores can be used to
express in how far one should trust in the correctness of a generated correspon-
dence. However, most of these approaches do not associate a clear probabilistic
meaning to a specific value within a non-binary correspondence. This means, for
example, that we cannot assume that a correspondence with a confidence of 1.0
will be correct for sure nor can we assume that a confidence score of 0.5 means that
the probability that the correspondence is correct is exactly 50%. Nevertheless, all
approaches have in common that a higher confidence value is intended to refer to
a higher probability for being correct.

Based on the previous discussion, we define a binary gold standard as follows:

Definition 4 (Binary Gold standard). Let A; and As be the sets of activities of two
process models Py and Pa, respectively. Then, a binary human assessment can be
captured by the subset H C A; X Ag and the confidence function A : act(P1) X
act(Pay) — {0,1} with A(a1,a2) = 1 forall (a1,a2) € H and 0 otherwise. Each
element (a1,a2) € H specifies that a human assessor considers the activity a; to
correspond to the activity as. Such a binary human assessment is also called gold

standard or reference alignment.

Note two specific details related to this definition. First, Definition 4 also allows
for one-to-many (1 : m) and many-to-many (n : m) relationships. If, for instance,
the elements (a1, a2) and (a1, az) are both part of H, then there exists a one-to-
many relationship between the activity a; and the two activities a2 and as. The
advantage of capturing a complex correspondence based on several elementary
correspondences is that the matching technique is not required to identify the entire
complex correspondence. If it, for instance, identifies (a1, az) but not (a1, ag), it
would at least get credit for having identified (a1, a2). Second, the information that
is available for deciding about a possible correspondence may vary from model to
model. In general, we assume that the decision will be mainly based on the labels.

If available, however, also data objects can provide valuable input.
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2.2 Introduction to Metrics from Information Retrieval

Such a binary gold standard is derived from an undefined number of annota-
tors, resulting in one single gold standard, which the annotators have to agree
on. Based on the definition of a binary gold standard, in Section 5.1, we define a
non-binary gold standard in which we allow the assignment of non-binary values
to the correspondences of the gold standard. This is an important generalization
of the definition of a binary gold standard, which lies the necessary foundation for
our proposed evaluation procedures.

In the evaluation experiments in this thesis, the task of a matcher is to match the
process models pair-wise. The result of the matchers is then compared to a manually
generated gold standard. The task of a matcher is to identify semantically similar
alignments, i.e., to identify the correspondences of the gold standard. Because it is
rarely possible to reach a perfect matching, i.e., O = H, the matcher output needs
to be evaluated. In the next section, we briefly introduce a selection of evaluation
metrics, from the field of Information Retrieval, which we refer to in the evaluation

experiments in this thesis.

2.2 Introduction to Metrics from Information Retrieval

In process model matching the metrics from Information Retrieval are widely used
for evaluation experiments (Van Rijsbergen, 1979). Researchers in this field com-
pare their matchers to the state-of-the-art by such metrics. This is conducted simi-
larly in related fields like schema matching and ontology matching (Do et al., 2002;
Euzenat et al., 2011). The advantage of those measures is that they are easy to
compute and the results can be intuitively interpreted.

For the calculations of Precision, Recall and F-Measure, the matcher output is
compared to a manually generated reference alignment, also called gold standard.
Comparing the correspondences computed by a matcher to a manually generated
gold standard, then each activity is classified into one of the following four at-

tributes, with respect to the specific gold standard:

1. true-positive (TP), which are correctly computed correspondences;
2. true-negative (TN), which are correctly not-computed alignments;

3. false-positive (FP), which are correspondences which are computed but not

correct;
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2 Background and Basic Definitions

4. false-negative (FN), which are correspondences which are correct, but not

computed by a matcher.

By definition, those classifications depend on the choice of the particular gold
standard. Then, the following formulas define Precision, Recall, F-Measure and

Accuracy:

brecision. TP
recision: TP+ FP
Recall: rre
“r TPYFN
Precision - Recall
F-Measure: . —
Precision + Recall
A _ TP+TN
ccuracy: TPLTN + FPLFN

Therefore, Precision states the fraction of alignments, which are correct on the
whole matcher output. Recall states the fraction of correct alignments of the gold
standard, which are computed by the matcher. The F-Measure, is the harmonic
mean of Precision and Recall. The Accuracy states the fraction of correct classi-
fied correspondences, compared to all possible correspondences. The significance
of the information content of the Accuracy measure is rather small for process
model matching evaluation, since the Accuracy is a function of the number of true-
negative (TN) correspondences. Typically, in big data sets there is a huge number
of true-negative alignments. (This leads to a high absolute number of true-negative
alignments). Therefore, the fraction of the relevant alignments on the total data
set is low, leading to small differences between the matchers. Consequently, the
information content of the Accuracy measure is very limited for the comparison
of process model matching techniques. Even weak matchers typically achieve an
accuracy of more than 90%.

The above described metrics can be either computed at the micro or the macro
average. This distinction has its source in the structure of the matching task. Some
data sets consist of a collection of process models, i.e., they contain different test
cases. At the macro average, the metrics are computed pair-wise within a test case,
then the results are averaged. In contrast, for the micro average, the metrics are

calculated for the union of the correspondences of the entire data set.
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2.2 Introduction to Metrics from Information Retrieval

Macro average may result in inconsistencies, in particular if a test case is small.
In this case it is possible that empty test cases exist, which can result in an inaccurate
measurement. To make this clearer, see the following example, taken from the gold
standard of the Process Model Matching Contest 2015 (Antunes et al., 2015) of
the University Admission data set of the touple “University Frankfurt - University
Hohenheim™:

The gold standard of this test case consists of two correspondences:

« c1: Wait for results — Waiting for the response
o co9: Rejected — Rejection

There are only two correct correspondences. If a matcher does not detect any
of these two correspondences, then the calculation of Precision is undefined. In
this small example, where a matcher computes an empty test case, this means for
the Precision: 0_?_—0. The result for this is undefined. That means actually there is no
result for this test case. One can argue in favor to treat such cases as Precision of
1.0 since the matcher did not compute any correspondence at all, thus no incorrect
correspondence is computed. This is very intuitive and was conducted this way in
the Process Model Matching Contest 2015 (Antunes et al., 2015). However, on the
other hand one can argue that a Precision of 1.0 is not valid since the matcher did
not compute any correspondence at all. This shows that such empty alignments
lead to unclear results which can be interpreted differently. In the data sets which
we use for our evaluations, empty alignments for specific test cases of matchers
and gold standards do occur. To avoid such inaccuracies and inconsistencies we
always refer to the micro values for the rankings in all evaluation experiments of
this thesis. We only use macro values to compare the values to the Process Model
Matching Contests (Antunes et al., 2015; Cayoglu et al., 2013a).

In Information Retrieval, additional measures are introduced, e.g., a variety of
different F-Measures with a differing weight of Precision and Recall. For more
information, we refer the interested reader to Fawcett (2006) and Manning et al.
(2008).

We discuss in Chapter 4 a selection of further measures for evaluation experi-
ments.

In the next chapter, we introduce the Process Model Matching Contests where

those metrics are used to conduct evaluation experiments.
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Process Model Matching
Contests (PMMCs)

In this chapter, we describe the results of the Process Model Matching Contest
2015 (Antunes et al., 2015). We aim to draw conclusions for future evaluation
experiments. Moreover, we compare the results of the Process Model Matching
Contest 2015 to the results of the contest 2013 (Cayoglu et al., 2013a), to deduce the

improvement of process model matching techniques in this time interval.

Moreover, we describe the data sets which are used in this context and which
we always take as basis for our evaluation experiments, which we conduct in this

thesis.

The chapter is organized as follows, Section 3.1 introduces the data sets of the
Process Model Matching Contest 2015 and compares them to the setting of the

2013 contest edition. In Section 3.2 the results of the matchers are presented. While
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3 Process Model Matching Contests (PMMCs)

Section 3.3 compares the results of 2015 to the contest of 2013, Section 3.4 states

conclusions which we can draw for future evaluation strategies.

3.1 Data Sets of the Process Model Matching Contest

In 2013, the first Process Model Matching contest was conducted. The idea was
to deliver a common basis for evaluation and to indicate the improvement process
of the matching techniques. The 2015 contest was part of the EMISA Workshop
(Kolb et al., 2015) and included three different data sets (Antunes et al., 2015). Table
3.1 provides a comparison of the data sets which were used in the 2013 and 2015
edition of the contest. As we can see, the two contests share only one data set. (The

differences of both University Admission data sets are explained below.)

PMMC 2013 PMMC 2015

University Admission (UA) X x (modified)
University Admission Sub (UAS) - X
Birth Registration (BR) X X
Asset Management (AM) - X

Table 3.1: Data sets of the PMMC 2015 (Antunes et al., 2015) and 2013 (Cayoglu
et al,, 2013a)

The data sets differ notably, on the one hand, due to the different formats. On
the other hand due to their content. The models cover different issues of process
modeling.

In the following, we give an overview of the three data sets and present an

example for each data set.

3.1.1 University Admission Data Set (UA)

The first data set is the University Admission data set (Figure 3.1). This data set
consists of nine admission processes of different German universities. The business
process models are in BPMN-format with English text and were created by grad-
uate students at the Humboldt University Berlin. In the Process Model Matching
Contest 2013, the data set was in Petri-Nets; later it was transformed into BPMN.
Moreover, the gold standard was improved compared to the 2013 version. In 2015,

two gold standards were used. The first gold standard contains only activity equiv-
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3.1 Data Sets of the Process Model Matching Contest

alence, where the activities are classified as equivalent. The second gold standard
also included activity subsumptions. This means that one activity is a subsump-
tion of the corresponding activity. The data set contains abbreviations which are
specific for the described processes. For instance, the abbreviation “GPA” stands
for “Grade Point Average”. This is a grading scale to rank students according to
their qualifications. A similar abbreviation is used in the second data set, the Birth
Registration data set. However, in the context of the Birth Registration data set
the abbreviation “GBA” has a different meaning. This illustrates one difficulty as-
sociated with process model matching, where abbreviations may be used and are

context-dependent in their meaning.

Applicant

rsity of Cologne

Univer

Figure 3.1: Example of a (small) process model of the University Admission data
set

3.1.2 Birth Registration Data Set (BR)

The Birth Registration data set contains nine birth registration processes from Ger-
many, Russia, South Africa, and the Netherlands. The business process models
are in Petri-Nets and contain Englisch text. The models were created by graduate
students at the Humboldt University Berlin and in the context of a process analy-
sis in Dutch municipalities. It can be observed that the data set contains inexact
language combinations, as well as dutch abbreviations. One example is again the
abbreviation “GBA”, which is again used in a process model label. However, in this
context “GBA” stands for “Gemeentelijke Basisadministratie Persoonsgegevens”,
which is a local residents registration office. Abbreviations like this are especially

difficult to detect for matching techniques, since the models are supposed to be in
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3 Process Model Matching Contests (PMMCs)

English, but have to detect Dutch abbreviations. Moreover, the transitions contain
label like “t3” and “t9”. This is also the case for some “places”, like for example “p6”
or “p13” in our example (Figure 3.2). Therefore, a suitable match of such labels can

only be performed if matchers take structural dependencies into account.
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Figure 3.2: Example of a cutout of a process model of the Birth Registration data
set

3.1.3 Asset Management Data Set (AM)

The Asset Management data set was firstly introduced in the 2015 process matching
contest. The data set consists of 36 model pairs, derived from 72 models from the
SAP Reference Model Collection. The process models cover different aspects from
the area of finance and accounting. They are EPC models in EPML format, with
English text. The data set is very specific due to the high amount of technical terms.
The matchers need to have knowledge about those special technical terms. Some
examples of such terms and specific abbreviations are covered in the example in

Figure 3.3.

3.1.4 Characteristics of the Three Data Sets

Table 3.2 summarizes some characteristics of the three data sets with its corre-
sponding four gold standards. It states the size of the process models as well as the
different level of granularity, by stating the minimal and maximal number of activ-

ities and the number of 1 : m correspondences. Such correspondences are difficult
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3.1 Data Sets of the Process Model Matching Contest
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Figure 3.3: Example process model of the Asset Management data set

Characteristic UA UAs BR AM
No. of Activities (min) 12 12 9 1
No. of Activities (max) 45 45 25 43
No. of Activities (avg) 242 242 17.9 18.6

No. of 1:1 Correspondences (total) 202 268 156 140
No. of 1:1 Correspondences (avg) 5.6 7.4 4.3 3.8
No. of 1:m Correspondences (total) 30 360 427 82

No. of 1:m Correspondences (avg) 0.8 10 119 23

Table 3.2: Characteristics of the test data sets of the PMMC 2015 (Antunes et al.,
2015)

to detect, since they describe either a subset or a subsumption of the corresponding
activity. We can see from the numbers in Table 3.2, that the Birth Registration data
set consists of a high number of 1 : m correspondences. This additionally increases
the complexity of the data set, besides the characteristics which we state above. As
we can see in Table 3.2, the number of 1 : m correspondences increases for the gold
standard which includes subsumptions. However, in some process model pairs the
1 : m correspondences are actually no subsumptions, but due to different level of
granularity.

In the following, we give one example for such an 1 : m (1:2) correspondence

for the pair “University Cologne” and “IIS Erlangen”:

27



3 Process Model Matching Contests (PMMCs)

« “Check Application” - “Check application in time”

« “Check Application” — “Check application complete”

This example illustrates an equivalence correspondence, because the same activ-
ity is described in different level of detail, but describes the same process. Therefore,
the 1:2 correspondence results from different level of granularity in the two process
models. In fact, it is not an actual subsumption.

However, the data sets also contain subsumptions. An example for such a sub-

sumption, in this case a 1 : 3 subsumption, are the correspondences:

« “Rank with applicants” — “Sum scores”
« “Rank with applicants” — “Reject application”

« “Rank with applicants” — “Accept application”

In this case, the subsumption correspondence do not describe an equal activity
of the application process, but one activity is a subsumption of the other activity.

Both kind of 1 : m correspondences can be found in the data sets.

3.2 Results of the PMMC 2015

In the experiments of the contest the gold standards of the evaluation experiments
were publicly available, except of the gold standard of the Asset Management data
set. In the results (Tables 3.3 — 3.6), we state the micro- as well as the macro-values
of Precision, Recall and F-Measure as described in Section 2.2. The reason is that
in the 2013 edition of the contest only macro-values were computed. Therefore, to
compare the results, we need to compare the macro-values of Precision, Recall and
F-Measure. The best results for each metric in each data set are always highlighted
in bold.

The results for the University Admission data set (Table 3.3) illustrate a high
diversity of the quality of the matching results. The best F-Measure (micro-average)
results are obtained by the RMM/NHCM (0.668), RMM/NLM (0.636) and MSSS
(0.608).

For the University Admission data set, a second gold standard was used which
included subsumptions to the gold standard. The results are shown in Table 3.4.
Again the matcher RMM/NHCM achieves the best F-Measure (micro average of
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Precision Recall F-Measure
Approach @-mic  @-mac  SD ¢-mic  @-mac SD ¢-mic  @-mac SD
RMM/NHCM .686 .597 .248 .651 .61 277 668 .566 224
RMM/NLM 768 .673 .261 543 466 279 .636 509 236
MSSS .807 .855 .232 487 343 .353 .608 378 343
OPBOT .598 .636 .335 .603 .623 312 .601 .603 3
KMSSS 513 .386 .32 578 402 .357 544 374 .305
RMM/SMSL 511 .445 .239 578 578 .336 543 477 .253
TripleS 487 .685 329 483 297 361 485 .249 278
BPLangMatch 365 291 .229 435 314 .265 397 295 .236
KnoMa-Proc 337 223 .282 474 292 329 394 .243 .285
AML-PM .269 .25 .205 672 .626 319 .385 341 .236
RMM/VM2 214 .186 227 466 332 .283 .293 227 .246
pPalm-DS 162 125 157 578 381 .38 .253 18 .209
Table 3.3: Results of University Admission data set
Precision Recall F-Measure

Approach 0-mic  (¢-mac  SD @-mic  @-mac  SD @-mic  @-mac  SD
RMM/NHCM .855 .82 .194 308 326 282 452 424 .253
OPBOT 744 776 .249 .285 3 .254 412 .389 .239
RMM/SMSL .645 713 263 277 283 217 .387 .36 .205
KMSSS .64 .667 .252 273 .289 .299 .383 336 235
AML-PM .385 403 2 .365 378 273 375 .363 22
KnoMa-Proc 528 517 .296 282 281 278 367 319 .25
BPLangMatch .545 .495 21 .247 .256 .228 .34 316 .209
RMM/NLM 787 .68 267 211 229 .308 333 .286 299
MSSS .829 .862 233 .19 212 312 .309 .255 318
TripleS 543 716 307 .205 224 336 297 217 .284
RMM/VM2 327 317 .209 .27 278 .248 .296 284 .226
pPalm-DS 233 273 .163 316 .328 .302 .268 .25 184

Table 3.4: Results of University Admission data set with subsumption

0.452), however the results decrease considerably, due to a strong decrease of Recall,

which is halved, and at the same time a weak increase of Precision.

The results of the Birth Registration data set are given in Table 3.5. The matchers

results are not as good as the results obtained for the University Admission data
set. The best matcher (OPBOT) achieves a micro F-Measure of 0.565. The reason

may be a higher complexity level of the Birth Registration data set. However, it

may be also an issue of the quality of the gold standard. For the Asset Management
data set (Table 3.6), the best results are achieved by AML-PM (micro F-Measure of
0.677). The results show that no matching technique has a high performance on all
tested data sets.
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Precision Recall F-Measure

Approach ¢-mic  @-mac  SD ¢-mic  @-mac SD ¢-mic  @-mac SD

OPBOT 713 .679 184 468 474 239 565 .54 216
pPalm-DS 502 499 172 422 429 .245 459 426 187
RMM/NHCM 727 715 197 333 325 .189 456 416 175
RMM/VM2 474 44 2 4 .397 241 433 404 21

BPLangMatch .645 558 205 309 297 22 418 369 221
AML-PM 423 402 .168 365 .366 .186 392 367 164
KMSSS .8 768 238 254 237 238 385 313 254
RMM/SMSL 508 499 151 309 .305 233 384 342 178
TripleS 613 553 .26 .28 .265 264 384 306 237
MSSS 922 972 .057 202 177 223 332 244 261
RMM/NLM .859 .948 .096 .189 164 211 309 225 244
KnoMa-Proc 234 217 .188 297 278 234 262 237 205

Table 3.5: Results of Birth Registration data set

Precision Recall F-Measure

Approach (-mic  @-mac SD (-mic  @-mac SD (-mic  @-mac  SD

AML-PM 786 .664 408 595 .635 407 677 48 422
RMM/NHCM 957 .887 314 .505 521 422 .661 485 426
RMM/NLM 991 .998 .012 486 492 436 .653 531 438
BPLangMatch 758 567 436 563 612 .389 .646 475 402
OPBOT 662 .695 379 617 .634 409 .639 514 1403
MSSS .897 979 .079 473 486 432 619 519 429
RMM/VM2 .676 .621 376 .545 .6 .386 .603 454 .384
KMSSS .643 .834 282 527 532 417 579 482 382
Triples .614 814 .261 .545 .546 434 .578 481 .389
pPalm-DS 394 724 348 595 .615 431 474 451 376
KnoMa-Proc 271 421 .383 514 .556 42 355 .268 279
RMM/SMSL 722 .84 307 234 37 .366 354 333 327

Table 3.6: Results of Asset Management data set

3.3 Comparison of the Results of the PMMC 2015 to the
Results of the PMMC 2013

In the following, we summarize the results of the 2015 contest and compare it with
the results of the 2013 contest. The 2013 contest took place as part of the “4th
International Workshop on Process Model Collections: Management and Reuse”
(Cayoglu et al.,, 2013a). We want to learn in how far we can observe a progress of
the matching techniques, in average but also compared to the best performances
in 2013 and 2015.

To directly compare the results of 2013 to 2015, the setting has to be the same.
This is not the case for those two PMMCs. The only data set which is unmodified
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compared to the 2013 edition is the Birth Registration data set. Therefore, we use

this data set for our comparisons.

In 2013, the best results were achieved by RefMod-Mine/NHCM with an macro
average F-Measure of 0.45. (Note that we compare the macro values, because in
the 2013 edition, only the macro values were computed.) Three matchers could
not outperform those results from 2013: pPalm-DS (0.426), RMM/NHCM (0.416),
and RMM/VM2 (0.402). In 2015, the best matcher on this data set is the matcher
OPBOT with macro average F-Measure of 0.54. This is a significant improvement
compared to 2013. However, the OPBOT did not participate in 2013. Therefore, it
might be more telling to compare the average results of the participating matchers
of 2013 to the average participating matchers of 2015 (which is ~0.35) in 2015 and
average approach in 2013 (=0.29). This indicates a small progress. However, as
we indicate in the previous section, the Birth Registration data set is rather special
in its characteristics. Therefore, it is difficult to draw a final conclusion about the

progress of the matching systems only from this data set.

To compare the results even though the data sets differ, we can compare the
average and best F-Measure for the matching techniques. Table 3.7 provides those
information. We compare the two data sets which are used in the 2013 edition
of the contest, even though the University Admission data set has been modified,
compared to 2013. Thus, the comparison is only a hint about the improvement
over the past two years. Again, we compare the macro-values of F-Measure, due
to the missing micro-values in the contest 2013. As we can see, the results indicate
a limited progress from 2013 to 2015 with regard to the average results. However,
for the results of the best matchers, we observe a stronger increase of the macro

F-Measure.

UA BR
Average Result 2013 (FM) 30 .29
Best Result 2013 (FM) 41 45
Average Result 2015 (FM) 37 .35
Best Result 2015 (FM) 57 54

Table 3.7: Avg and max results of the PMMC 2015 (Antunes et al., 2015) compared
to 2013 (Cayoglu et al., 2013a)
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3.4 Conclusions

In this chapter, we provided an introduction to the data sets of the Process Model
Matching Contest 2015, which are a running example for our experiments in this
thesis.

As we can observe from the results, most matchers aim in a high Precision and
therefore miss a considerable amount of correspondences. To understand which
correspondences are especially challenging for the matchers, it would be necessary
to manually process the matcher output. The experiments from the PMMCs do not

provide further information about the individual performance of matchers.

Only OPBOT and RMM/NHCM have a balanced Precision and Recall. More-
over, only OPBOT and RMM/NHCM achieve rather good results for all data sets
in the 2015 edition. To include the subsumptions into the gold standard leads to
a strong decrease of Recall, with a small increase of Precision for some matchers,
since most of the subsumption correspondences are not computed by the matchers.
However, in the gold standard of the matching contest they do not always resemble
real subsumptions, partially they are actually equivalence correspondences which
results from different level of granularity of the process models. Therefore, the
information content of this test data set is questionable, since it is a mixture of
subsumptions and equivalence correspondences, which should be actually part of
the “main” gold standard of the data set. This also explains the small increase of

Precision of some matchers.

Moreover, we compared the results of the Process Model Matching Contest 2013
with the results of 2015, to measure the improvement in those two years. We can
observe from the comparison that the progress to 2015 is limited, even though
the different settings of the PMMCs make a comparison difficult and can only be

considered as a hint.

Furthermore, we can state that the evaluation experiments in the two contests
do not provide further information about the performance of matchers. It is much

more a grading of the tested matching techniques.

Moreover, it does not provide detailed information about the gold standards. In
fact, the gold standard has a high effect on the evaluation results. As we argued
already in Section 1.3.2, the “perfect match” (gold standard) which is used for the
evaluation experiments of the process model matching contest is in fact highly

questionable. The organizers of the contest 2015 improved the gold standard com-
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pared to 2013. However, the gold standard is obtained by a small group of persons
and reflects their point of view.

Furthermore, the evaluation experiments do not provide specific information
about the data set and its complexity. The estimation of the complexity of the
matching task is only based on the number of 1 : m correspondences and the
different level of granularity, due to the variations in size of the applied process
models. However, there are additional characteristics which make a data set more or
less complex. Furthermore, we do not obtain any detailed information about specific
strength and weaknesses of matching techniques. To support the improvement
of matching techniques and to offer an efficient evaluation procedure, different
considerations are required.

In the next section, we provide an overview about related work in the evaluation
of process model matching techniques and the evaluation in related fields like

schema-matching and ontology-matching.
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Related Work

In this chapter, we discuss related work in the field of process model matching
evaluation and related fields like ontology matching and schema matching. We
will take this as a basis to motivate the evaluation procedures, described in this

thesis.

State-of-the-art evaluation techniques mostly rely on Precision, Recall and F-
Measure for evaluation of process model matching techniques (Baeza-Yates et al.,
1999). These are standard metrics from the Information Retrieval field that can
be used to quantify the performance of matchers alongside different dimensions.
The reliance on these metrics applies to process model matching techniques (cf.
Antunes et al. (2015); Cayoglu et al. (2013a); Leopold et al. (2012); Weidlich et al.
(2010a, 2013b)) as well as to the related fields of schema matching and ontology
matching techniques (cf. Rahm and Bernstein (2001); Shvaiko and Euzenat (2013)).

In general, research about the evaluation of process model matching techniques

is rare. One important forum for evaluation experiments are the Process Model
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Matching Contests (Antunes et al., 2015; Cayoglu et al,, 2013a). In the Process
Model Matching Contest 2015, the organizers found that there is no single matcher
which has a high performance on all data sets. Moreover, it could be observed
that the improvement compared to the PMMC 2013 was limited (cf. Section 3.2).
The question rises why the matching techniques have not improved significantly
over the past years. There has been limited research effort to answer this question.
Recently, in (Jabeen et al., 2017) the authors analyze the most used similarity metrics
to answer this question. Moreover, the authors in Weidlich et al. (2013a) propose
a prediction of the matching results, in the way that they provide information in

how far one should trust in the confidence of a matching result.

To support the improvement of matching techniques, the evaluation needs to
offer more detailed insights about the performance of matchers than the current
experiments can deliver. Currently, the evaluation of process model matching
techniques does not fairly assess the performance of matchers. On the one hand, the
generation of a gold standard strongly depends on the experts which generate a gold
standard. On the other hand, the evaluation does not take the true complexity of a
matching task into account. Moreover, the evaluation only provides a ranking and
grading of the matching techniques. The experiments do not provide information

about strength and weaknesses of matchers.

In ontology matching, an important evaluation forum is the “Ontology Align-
ment Evaluation Initiative” (OAEI), which has a longer tradition than the Process
Model Matching Contests. The OAEI is conducted each year. The OAEI provides a
basis of synthetic scenarios to test matchers on those data sets. In addition to that,
more research has been dedicated to evaluation strategies in ontology matching
(cf. (Ehrig and Euzenat, 2005; Euzenat, 2007; Sfar et al., 2016; Shvaiko and Euzenat,
2013; Zavitsanos et al., 2011)). For example, Euzenat (2007) introduced semantic
Precision and Recall. This extension for ontology matching techniques allows to
differentiate if the computed correspondences are related, by taking the ontological
structure into account. As a consequence, deductible alignments are evaluated.
Similarly, Ehrig and Euzenat (2005) propose alternative notions for these measures
that take the closeness of results in ontology matching into account. Closeness can,
for example, exploit the tree structure of ontologies, where the distance between el-
ements in the tree can be computed to determine if a result is close or remote to the
expected result. Therefore, those evaluation techniques mainly focus on relaxing

the strict notion of Precision and Recall. Although it better reflects the closeness
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of the computed alignments, it does not take the arguability of correspondences
into account. Moreover, the evaluation method does not provide information about
the kind of correspondences a matcher can identify and thus does not provide

information about specific strength and weaknesses of matching techniques.

In the related field of schema matching, Bellahsene et al. (2011) summarize
the evaluation experiments in this field. For example, Lee et al. (2007) propose
synthetic scenarios to tune a schema matcher to specific applications. Similarly,
the annual Ontology Alignment Evaluation Initiatives apply synthetic data sets
which allow to test matching systems on specific characteristics, e.g., Achichi et al.
(2017). However, these synthetic data sets are artificially generated test cases and
therefore cannot always provide a realistic setting. In Euzenat et al. (2011), the
authors explain that it is not suitable to apply matchers on synthetic scenarios,
since these scenarios are too artificial. It is not clear if matchers have a similar
performance on real-world data. Moreover, the automatic generation of the test
cases often relies on the same resources as most matchers rely on, e.g., WordNet
(Miller, 1995). Therefore, experts generated synonyms manually, but the manual
synonym generation comes with high efforts. Moreover, the experiments take the
runtime of the schema- and ontology-matcher into account. For process model
matching evaluation this is not an interesting property, since the process models

are rather small.

Sagi and Gal (2012) adapt Precision and Recall to evaluate non-binary confidence
values which are computed by schema matching techniques. In this paper, the
authors introduced an extension of a similarity matrix to evaluate schema matching
techniques. Despite the existence of these different measures, what they all have in
common is that they rely on the existence of a binary gold standard, i.e., on a single
set of correct correspondences. Another limitation of such approaches is to use the
confidence values which are computed by a matcher for the metrics: As we show in
Section 6.1.1, the confidence values of the matchers are not comparable, since they
have different ranges. The huge range differences also avoid a normalization. For
example, some matchers compute confidence values between 0.95 and 1.0. For the
normalization it would be necessary to stretch the confidence values range from
the current 0.95 to 1.0. to the range of the gold standard (which is 0.125 to 1.0).
However, such a normalization does not lead to stable results. We will explain this

in greater detail in Section 5.3.
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Recently, the authors extended their work in Sagi and Gal (2018). In their paper,

the authors state:

“In particular, most data integration evaluation methods use a binary (match/no
match) approach, while the variety and veracity of big data requires to broaden

evaluation to a full scope in between”

However, they do not propose a non-binary gold standard for their evaluations.
Similarly, in Thaler et al. (2014) the authors call for a more adequate evaluation
of process model matching techniques. The authors state that it is sometimes im-
possible to agree on one single gold standard and that there are sometimes many
possibilities which correspondences are actually correct. However, they do not
propose an alternative evaluation procedure, which solves the subjectivity of ref-
erence alignments. Instead, the authors provide guidelines on how to build a gold

standard.

Another research direction in ontology matching is the use of crowd-sourcing
(Kittur et al., 2008; Paolacci et al., 2010). This research direction focuses on the
problem how to establish a gold standard, which is very time-consuming and re-
quires experts in the domain. In (Cheatham and Hitzler, 2014), the authors propose
crowd-sourcing to establish a gold standard for ontology matching via Amazon
Mechanical Turk (Turk, 2012). The authors call this “Wisdom of the Crowds”. Since
individuals who are not familiar with ontology matching establish a gold standard
via crowd-sourcing, the authors introduce a metric which takes the “fuzzyness® (as
they state) into account. However, in their paper, the authors compare the confi-
dence values, computed by the matchers, directly to the values of the gold standard,
e.g., the values of the matcher and the gold standard are multiplied or the differ-
ence between both values is calculated. In this proposed calculation, depending
on the absolute number of the confidence value, the correspondence is considered
as false-positive or false-negative. Since the range of the confidence values of the
matcher output and the confidence values of the gold standard are not normalized,
this leads to unwanted effects. Hence, the difference between the values of the gold
standard and the confidence values of the matchers, are calculated without any nor-
malization. As we will explain in Chapter 5, the confidence values of the matchers
have no common range. (Each matcher uses a different threshold.) Therefore, the
results cannot be compared and it may lead to unfair results, when simply using

those values for the calculations. We will illustrate this in more detail in Section 6.
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The Spearman’s rank correlation, which we utilize in this thesis, already con-
tains some kind of normalization, since the confidence values are only considered
to establish a rank of the correspondences.

As an alternative measure to the rank correlation coefficient by Spearman, the
Kullback Leibler divergence measures the divergence of two probability distribu-
tions. In statistics it is commonly used to measure the loss of information in approx-
imations of probability distributions (Kullback and Leibler, 1951). In the following,
we state the formula and explain why it is not an appropriate measure for process

model matching evaluation.
Definition 5. Let P and Q be two discrete probability distributions with P(i) > 0
and Q(i) > 0 for all i. Then, the Kullback-Leibler divergence is calculated by

D (PIQ) = 3P0 (). (a.1)

with the natural logarithm In(-).

To apply the Kullback-Leibler divergence towards process model matching eval-
uation, we have to make two changes to the matcher output and the non-binary
gold standard. Therefore, let P be the confidence values of the matcher output
and () be the support values of the non-binary gold standard. Then, first, to avoid
taking the logarithm of 0, P (i) > 0 for all correspondences i including those not
contained in the matcher output but present in the non-binary gold standard. To
achieve this, we assign a small constant ¢ as confidence value for such correspon-
dences. Similarly, small constants € have to be added to all correspondences 7 with
Q(i) = 0 to avoid the division by 0. Second, to yield a probability distribution for
P and @, we have to divide the confidence values and the support values, respec-
tively, by the sum of the entries. For example, the matcher output P then yields

the following normalized values

normp = Z P(i)

P(i)

P(i) <« .
normp

The Kullback-Leibler divergence has the following main disadvantage for pro-
cess model matching evaluation. First, the Kullback-Leibler divergence measure

is not symmetric, i.e., when exchanging the role of P and (), then the resulting

39



4 Related Work

Kullback-Leibler divergence typically does yield different values. This is not a de-
sired property. Second, the choice of ¢ is arbitrary. The particular choice of € can
result in unwanted effects, even if it is a very small value. For example, assume
P(i) = 0.5and Q(i) = ¢, i.e., correspondence i is not included in the gold standard
but computed by the matcher with confidence value of 0.5. Now, when choosing
e = 0.00001, we obtain 0.5 - In(5%25;) ~ 5.4099. If we lower the value of € to
0.000001, then the fraction inside the logarithm increases by factor 10 to yield a
larger value of 0.5 - ln(%) ~ 6.5612. This illustrates the strong effect which
an arbitrary choice of € might have on the value of the Kullback-Leibler divergence.
Because of the nature of the process model matching evaluation, we expect many
entries with Q(i) = ¢, i.e., FPs. Third, the normalization of both the matcher out-
put and the non-binary gold standard changes their absolute values. For example, if
a correspondence has both the same confidence and support value (for example 0.5
or 1.0), then the Kullback-Leibler divergence should be 0 for this correspondence
(because In(1) = 0). Unfortunately, the normalization does not preserve the prop-
erty of equal confidence and support value, i.e., after normalization these values
are no longer the same which causes also the Kullback-Leibler divergence to be
non-zero for this particular correspondence.

Consequently, the Kullback-Leibler divergence seems not to be a good choice
for the evaluation of process model matching techniques.

A smoothed version of the Kullback-Leibler divergence is presented by the
Jensen-Shannon divergence (Lin, 1991). As such, it also measures the difference

between two probability distributions. It is computed as follows.

Definition 6. Let P and Q be two discrete probability distributions with P(i) > 0
and Q(i) > 0 for all i. Then, the Jensen—Shannon divergence is calculated by

Disp (P,Q) = %DKL (P|M) + %DKL (QIM), (4.2)

with M = (P + Q).

It is noteworthy that the Jensen-Shannon divergence is symmetric, i.e., by det-
inition Dysp (P,Q) = Djsp (Q, P). As such, the Jensen-Shannon divergence
overcomes the first drawback of the Kullback-Leibler divergence, as stated above.
The Jensen—Shannon divergence also requires the assignment of € values for both
P and (). However, the undesired effect described above does not occur because the

logarithm decreases smaller than linearly for small values. For example, P(i) = €
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and Q(i) = 0.5 yields € - ln(m) which is &~ —0.0001 for ¢ = 0.0001 and ~
—0.00001 for € = 0.00001 for the first term in (4.2) for correspondence . Therefore,
the Jensen—Shannon divergence also overcomes the second drawback of the Kull-
back-Leibler divergence for our application. Unfortunately, the Jensen-Shannon
divergence also requires a normalization, just like the Kullback-Leibler divergence,
because both metrics compare probability distributions. Thus, the third drawback
of the Kullback-Leibler divergence also remains for the Jensen-Shannon diver-
gence. Therefore, the rank-correlation is a more appropriate measure for process
model matching evaluation, since it does not have the described drawbacks. The
rank-correlation already implies a normalization for the different values of the con-
fidence values of the matchers and the support values of the gold standard, since
only the rank is considered. We will explain this in more detail in Chapter 6.

All in all, it can be summarized that current evaluation experiments for process
model matching as well as related fields do not provide detailed information about
the performance of matchers, without manually processing the matcher output.
Moreover, the evaluation experiments do not adequately take the uncertainty of a
reference alignment into account.

In the next chapter, we therefore introduce a non-binary gold standard, which
avoids the problem to agree on one single gold standard. Instead, questionable
alignments are included but are assigned with a specific weight. This also avoids a
loss of information, since “possible” correspondences are included. We will further
show that there is a very low fraction of correspondences where all the annotators

agreed on.
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In the previous chapters, we discussed state-of-the-art evaluation and gave an
introduction to the field of Information Retrieval. We further argued that a binary
gold standard does not take the true complexity of a matching task into account. In
this chapter, we introduce a probabilistic evaluation procedure, which takes a non-
binary gold standard as basis for the evaluation. We believe that the probabilistic
evaluations can be used for a more fine-grained evaluation of matchers and, thus,
can help to improve the matchers itself. The evaluation can be assessed without
the need for additional information, thus can be used to evaluate existing matching

systems.

In this chapter, we introduce a new, so-called non-binary gold standard, which
does not exhibit the weaknesses described above. The idea is to move away from a
0 or 1 measure of false or correct correspondences to a non-binary value between 0
and 1. A correspondence with value 0 is still regarded as a wrong correspondence;

value 1 remains a correct correspondence. All values in between 0 and 1 are in-
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tended to measure the strength of correctness of the correspondence, reflecting the
expert opinion of the annotators. For example, if two out of three experts define
a correspondence as correct, then the non-binary gold standard contains that cor-
respondence with weight 0.67. Therefore, instead of discarding correspondences
from single annotators, they are considered as correspondences with a specific sup-
port value. To include all such correspondences in the non-binary gold standard
avoids a loss of information.

This chapter is organized as follows. In Section 5.1, we provide a formal defini-
tion of our non-binary gold standard. Our definition of the non-binary gold standard
allows for the adjustment of the well-known and intuitive metrics Precision, Recall
and F-Measure. These definitions are adjusted to deal with the non-binary values
in Section 5.2. Those measures are metrics which can be intuitively interpreted. It
further indicates if matchers focus on a high Precision or on a high Recall or if the
results are balanced. Moreover, we introduce new performance measures, which
take the non-binary gold standard as basis for the evaluation in Section 5.3. The
relative distance measures a correspondence with low support values closer to 0
than to 1. Finally in Section 5.4, we conduct experiments for all metrics and show
the insights which we gain by applying the described metrics to two data sets and
matchers of the Process Model Matching Contest 2015 as well as the OAEI 2016
and 2017. We will further demonstrate the robustness of our metrics through our
experiments in Section 5.4.6.

Some of the work in this chapter has already been published in Kuss et al. (2016,
2018).

5.1 Definition of a Non-binary Gold Standard

In Section 2.1, we defined a binary gold standard. Based on this definition we define

the non-binary gold standard which we refer to.

Definition 7 (Non-Binary Gold Standard). A non-binary gold standard is a tuple
GS = (Aq, Aoy, H, o) where

e Ay and Ay are the sets of activities of two process models,

e i = {Hi,...,H,} is a set of independently created binary human assess-

ments, and
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e 0: A1 x Ay — R isa function assigning to each (a1, a2) € Ay x Ag asupport
value, which is the number of binary human assessments in H that contain the
correspondence (a1, as) divided by the total number of binary human assess-

ments |H|.

The overall rationale of the non-binary gold standard from Definition 7 is to
count the individual opinions from the binary human assessments as votes. Such
a binary human assessment according to Definition 4 should be created indepen-
dently and solely reflect the opinion of a single assessor. Based on a number of such
independently created binary human assessments, we can then define a non-binary
gold standard. In this way, we obtain a support value o for each correspondence
according to the number of votes in favor of this correspondence. We can under-
stand this support value as confidence values. In this way, any correspondence with
a support value 0.0 < o < 1.0 can be regarded as an uncertain correspondence.
For these correspondences, there is no unanimous vote about whether or not it is
a correct correspondence.

We can observe that the non-binary gold standard covers a broad range of
correspondences.

To take the uncertainty of correspondences into account, a non-binary gold
standard is required. To obtain a gold standard with confidence values we collected
assessments created by individual human annotators. Each of these binary human
assessments captures the correspondences that a single annotator identifies between
two given process models. We asked 8 individuals to identify the correspondences
for the 36 model pairs from the University Admission data set. We prepared re-
spective templates for each model pair and asked the annotators to complete this
task model pair by model pair. We instructed them to not spend more than two
hours in a row on this task to avoid low quality results caused by depletion. The
group of involved annotators was heterogeneous and included 4 researchers being
familiar with process model matching and 4 student assistants from the Univer-
sity of Mannheim in Germany. Some student assistants were already familiar with
process model matching. The remaining student assistants were introduced to the
problem of process model matching and of creating a gold standard. They were
told that the gold standard expresses their point of view and therefore were not
influenced in the way they identified correspondences. Then all correspondences
from each annotator were collected and each annotator’s choice was counted as a

vote for the corresponding annotation. The result of this step, was a non-binary
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gold standard based on 8 binary assessments. On average, the annotators spent
around one hour per model pair (i.e., approximately 36 hours per annotator). Note
that we did not apply any changes to the individual assessments. We included them
in their original form into the non-binary gold standard. Similarly, the procedure

was conducted for the Birth Registration data set.!

5.2 Probabilistic Precision, Recall, and F-Measure

Based on the support values provided by the non-binary gold standard, we define
probabilistic versions of Precision, Recall, and F-Measure, which take the uncer-
tainty of correspondences into account. For notational convenience, we introduce

C to refer to the set of all correspondences that have a support value above 0.0.

Definition 8 (Probabilistic Precision, Recall, and F-Measure). Let A1 and As be the
sets of activities of two process models, M : Ay x Ag the correspondences identified by
a matching technique, and GS = (A1, Aa, H, o) a non-binary gold standard. Then,

we define probabilistic Precision, Recall, and F-Measure as follows:

ZM o(m)

Probabilistic Precision (ProP) = me (5.1)

>, o(m)+[M\C|
me

> o(m)
meM

> o(c)

ceC

ProP x ProR

Probabilistic F-Measure (ProFM) = 2 X ———— (5.3)
ProP + ProR

Probabilistic Recall (ProR) = (5.2)

Probabilistic Precision and Recall are adaptations of the traditional notions of
Precision and Recall that incorporate the support values from a non-binary gold
standard GS. We define probabilistic Precision (ProP) as the sum of the support
values of the correspondences identified by the matching technique (M) divided
by the same value plus the number of correspondences that are not part of the
non-binary gold standard (|M \ C|). This definition gives those correspondences
that have been identified by many annotators a higher weight than those that have
only been identified by a few. Therefore, it accounts for the uncertainty associated

with correspondences in the non-binary gold standard. The metric further rewards

"We received three out of eight individual gold standards of the Birth Registration data set from
researchers of the Karlsruhe Institute of Technology (KIT) in Germany.
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5.2 Probabilistic Precision, Recall, and F-Measure

matchers which are also able to detect correspondences with low support values
in the non-binary gold standard.

The correspondences, identified by the matchers are considered as binary val-
ues, thus they have a confidence value of 1.0. We use only binary values for the

correspondences of the matcher, because of the following two reasons:

1. Most matchers do not provide confidence values for the computed correspon-

dences, i.e. the confidence values are already binary.

2. The matchers which provide confidence values use a different range of con-
fidence values, e.g., they use different thresholds. Therefore, the confidence
values cannot be compared directly, without any normalization. However, a
normalization does not lead to stable results, due to the very small interval
of the confidence values, which some matchers compute. In Section 6.1 we

will explain this in more detail.

Since we cannot use the confidence values of the matchers, we keep the binary
values in the evaluation on matcher side for all matchers. Therefore, only the values
of the gold standard are non-binary. As a result, the impact of false-positives, i.e.,
correspondences that have been identified by the matching technique but are not
part of the non-binary gold standard, result in a strong penalty of 1.0. We justify
this high penalty by the high coverage of uncertain correspondences included in
non-binary gold standards. These gold standards can be expected to contain a
broad range of potential correspondences (thus are almost complete), including
those identified by only one single annotator. Any correspondence not included in
this broad range can be considered to be certainly incorrect, which is reflected in
the penalty of 1.0 for false-positives. We will show this in more detail in Section
5.4.6.

Probabilistic Recall (ProR) follows the same principle as the probabilistic Preci-
sion. It resembles the traditional definition of recall, but incorporates the support
values from the non-binary gold standard respectively. As a result, identifying cor-
respondences with a higher support has a higher influence on the Recall than iden-
tifying correspondences with a low support. The probabilistic F-Measure (ProFM)
presents the harmonic mean of probabilistic Precision and Recall. It is computed
in the same way as the traditional F-Measure, though it is here based on ProP and
ProR.
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To illustrate these metrics, consider the correspondences, their support values,
and the output of three matchers depicted in Table 5.1. The support values reveal
that 5 out of 6 correspondences are considered to be correct correspondences by one
or more binary human assessor. Matcher M identifies exactly these 5 correspon-
dences. Therefore, M achieves ProP and ProR scores of 1. This indicates a “perfect
match” since the matcher did not compute any wrong alignments. Moreover, the
matcher did not miss any correspondence, which is classified as reasonable. For
some applications, this is a wanted outcome of a matcher. For example, if the results
of a matcher are used to incorporate human feedback as proposed by Klinkmiiller
et al. (2014). Therefore, the metric rewards matchers which focus on finding all
reasonable correspondences. However, the penalty of not computing correspon-
dences with low support value is very low. By contrast, matcher M3 identifies only
3 of the 5 correct correspondences. The matcher also includes the incorrect corre-
spondence cg in its output. This results in a ProP value of 0.71 and a ProR value of
0.77. Although matcher M3 correctly identifies 4 correspondences, instead of the
3 identified by M, it achieves the exact same ProP and ProR values. This occurs
because M3 identifies ¢4 and c¢5, which have a combined support value of 0.75, i.e.,
the same support value as correspondence c3 that is identified by Ms. This shows
that correspondences with a high support value have a greater contribution to the

metrics than those with low support.

Table 5.1: Exemplary matcher output and metrics

C o Mi Ms Msjs

cl .00 1 1 1

¢s 075 1 1 1

cs 075 1 1 0

Ca 050 1 0 1

s 025 1 0 1

6 000 0 1 1
ProP 1 071 0.71
ProR 1 077 0.77
ProFM 1 074 0.74

These exemplary calculations show that our non-binary/probabilistic version
of Precision and Recall takes the support values explicitly into account. In this

way, correspondences that have been identified by many assessors have a more
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5.2 Probabilistic Precision, Recall, and F-Measure

significant contribution to the metric than those that have only been identified by
a few. At the same time, matchers that compute correspondences with low support

value are rewarded. This is a desired feature for many applications.

However, the non-binary gold standard also allows us to change this point of
view. It allows moreover to obtain more fine-grained insights into the performance
of matchers. We can achieve this by computing probabilistic Precision and Recall
scores for correspondences with a minimal support level. By adapting the equations
from Definition 8. In this way, we can differentiate between matchers that identify
correspondences with a broad range of support values and those that focus on the
identification of correspondences with high support values. We capture this notion

of Bounded probabilistic Precision, Recall, and F-Measure in Definition 9.

Definition 9 (Bounded Probabilistic Precision, Recall, and F-Measure). Let A1 and
Ag be the sets of activities of two process models, M : A1 x Ao the correspondences
identified by a matching technique, GS = (A1, Aa, H, o) a non-binary gold standard,
and C; refers to the set of correspondences with a support level 0 > 7. Then, we define
Bounded probabilistic Precision, Recall, and F-Measure as follows:

2, o(m)

meM

ProP(7) = S o (m) + M\ G| (5.4)
meM
o
ProR(7) = mﬁ (5.5)
CEZCT (c)
ProFM(r) = 2 ProP(7) x ProR(7) (5.6)

X
ProP(7) + ProR(7)

By computing Bounded Precision and Recall values, we can directly gain insights
into the differences between the results obtained by the matchers, consider now
Table 5.2. The correspondences ¢4 and c5 are highlighted in red, since those two
correspondences turn into false-positives for ProP(0.75) and ProR(0.75). We can see
from the values of Table 5.2, that the results for the matchers M; — M3 change
considerably (cf. Table 5.1). For instance, My improves, since the matcher focuses
on computing correspondences with high support values. In contrast, the results
for the matchers M; and M3 decrease, since those matchers also identify the

correspondences with low support values. For the Bounded probabilistic evaluation,
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Table 5.2: Exemplary matcher output and metrics for Bounded probabilistic FM at
7 = 0.75 with the matchers of Table 5.1

C o My Mz Mg

Ccl 1.00 1 1 1

ca 0.75 1 1 1

c3 0.75 1 1 0

Cy4 B54 0.00 1 0 1

Cs =25 0.00 1 0 1

Ce 0.00 0 1 1
ProP(0.75) 056 0.71 0.37
ProR(0.75) 1.0 10 07
ProFM(0.75) 0.71 0.83 0.48

matcher My achieves the best results, since this matcher focuses on computing
correspondences with a high support value in the non-binary gold standard.
With the Bounded version of the metrics it can be determined, which matchers
focus on correspondences with high support values and which identify correspon-
dences with low support values. In particular, with the Bounded version of the
metrics, it is possible to determine a threshold; all correspondences under this
threshold 7 are excluded from the evaluation. Therefore, the Bounded version of
the metrics do not penalize any more if low-support correspondences under a se-
lected threshold 7 are not computed. This threshold can be selected depending on
the application scenario, to assure that the focus of the matcher fits the specific
application. For example, if it is desired to build a matcher, which focuses on finding

only “sure” correspondences, the Bounded version of the metrics can indicate this.

5.3 Relative Distance

The previously introduced notions of ProP, ProR, and ProFM implicitly build on
the premise that matchers should also identify correspondences with low support
values. In fact, they reward matchers that identify correspondences with low sup-
port values and penalize matchers that fail to identify them. As an illustration,
consider a correspondence for which 2 out of 5 human annotators agree that this
is a correct correspondence. If identified by a matcher, the ProP, ProR, and ProFM

scores of the matcher will increase, because the correspondence has a non-zero

50



5.3 Relative Distance

support value. However, it is important to recognize that also 3 out of the 5 an-
notators agree that this is not an actual correspondence, i.e., the majority of the
annotators disagree with the correspondence. Generally, the evaluation strongly
depends on the applications. For example, for some applications it might be re-
quired that only “sure” correspondences are considered. A metric which rewards
matchers that also identify uncertain correspondences would not be a reasonable
metric for such applications. The previously introduced metrics do not fully take
such a majority of disagreements into account. The Bounded Precision and Recall
in fact allows to evaluate only correspondences of the non-binary gold-standard
with a higher threshold, this circumvents the above described problems. However,
those correspondences with a lower threshold are excluded from the evaluation and
therefore again this information is lost in the non-binary gold standard. Recogniz-
ing such characteristics, we also introduce an alternative performance measure that
explicitly considers agreements and disagreements in a non-binary gold standard,
without the loss of information. This performance measure builds on the notion of
distance between the matcher output and the support values from the non-binary
gold standard. The overall rationale is to explicitly account for agreements and
disagreements with the annotators of the non-binary gold standard. Intuitively,
this means that correspondences with low support values are no longer favorable
since most annotators disagree with these correspondences. We define the measure
Relative Distance (ReD) as follows.

Definition 10 (Relative Distance). Let A; and Ay be the sets of activities of two
process models, M : Aj x Ag the correspondences identified by a matching technique,
w: Ay x As — {0,1} a function that returns 1 if a correspondence m € M and 0
if a correspondence m ¢ M, and GS = (A1, Aa, H, o) a non-binary gold standard.

Then, we define the Relative Distance as follows:

Relative Distance (ReD) = Z ((m) — o(m))? (5.7)
me(MUC)

The core idea underlying the ReD measure is to compute the distance between
the matcher output (which can be 1.0 or 0.0) and the support value o from the
non-binary gold standard. We square the values to obtain a lower penalty for
correspondences that have a high support. To illustrate the mechanism of ReD,
consider Table 5.3. It shows how the output of the three matchers from Table 5.1
is evaluated by ReD.
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M 1 M2 M3
C o(en) u(cn) ReD(cp) u(cn) ReD(cp) u(cn) ReD(cp)
c1 1.00 1 0 1 0 1 0
C2 0.75 1 0.063 1 0.063 1 0.063
c3 0.75 1 0.063 1 0.063 0 0.563
Cq 0.50 1 0.25 0 0.25 1 0.25
Cs 0.25 1 0.563 0 0.063 1 0.563
Cg 0.00 0 0 1 1 1 1
Total 0.938 1.438 2.438

Table 5.3: Illustration of Relative Distance

The example depicted in Table 5.3 illustrates three key characteristics of ReD.
First, matchers identifying a correspondence that is not part of the non-binary gold
standard or fail identifying a correspondence with a support of 1.0 receive a penalty
of 1. Second, it does not matter whether a matcher identifies a correspondence with
a support of 0.5 (see c4). The distance in both cases is identical. This is a reasonable
approach taking into account that the matcher agrees/disagrees with half of the
annotators. Third, the penalty for identifying a correspondence with a low support
is higher than for not identifying it (see c5). This is again in line with the argument
of taking agreements into account. Given a support of 0.25 of c5, a matcher that
does not identify cs5, disagrees with 25% of the annotators. A matcher that does

identify c5, disagrees with 75% of the annotators.

Note that we again did not consider the confidence values of the matchers, for

the reasons which we explained above.

In this way, we complement the above introduced evaluation measures; in con-
trast to ProFM, ReD does not reward matchers which identify a correspondence
with low support value in the non-binary gold standard. However, low support
correspondences are not treated as incorrect, as this was the case for the Bounded
variants of Precision and Recall. Therefore, the information of the uncertain corre-
spondences are preserved and not lost, as this is the case in the Bounded version
of ProFM.

In summary, it can be stated that the choice of the particular metric depends
on the application of the matchers. If matchers should also indentify uncertain
correspondences then ProP, ProR and ProFM is a suitable measure. It further can

be used to analyze the focus of the different matchers; with the Bounded variants
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of ProP, ProR and ProFM it is possible to understand if matchers focus on identify-
ing high supported correspondences (which are also often obvious), or if they also
identify low-support correspondences. In contrast to ProFM, ReD rewards match-
ers that aim in identifying high-support correspondences, since it is penalized if
matchers compute correspondences with a low support value. The metric treats a
low-support correspondence closer to a wrong than a correct correspondence. This
changes with a support value of > 0.5.

In the next section, we apply our probabilistic evaluation procedure with all
introduced metrics to the University Admission data set and the Birth Registra-
tion data set introduced in the context of the Process Model Matching Contest
2015 (Antunes et al., 2015).

As described in Section 5.1, we created a non-binary gold standard, based on cor-
respondences identified by 8 individual annotators (for each data set), and compute
the probabilistic measures for up to 16 different matchers that solved this matching
problem. The overall goal of our experiments is to demonstrate the usefulness
of the non-binary perspective and the value of the insights that our evaluation

procedures delivers.

5.4 Experiments

To illustrate the insights which we gain by the above introduced evaluation mea-
sures, we apply them to the data sets and matchers of the University Admission
data set and the Birth Registration data set of the PMMC 2015 (Antunes et al., 2015),
which we introduced and described in Section 3.1.

The University Admission data set consists of nine BPMN process models de-
scribing the admission processes for graduate study programs of different German
universities. The size of the models varies between 10 and 44 activities. This indi-
cates the high level of complexity, since there are big differences in granularity of
the matched data sets.

The Birth Registration data set also consists of 36 model pairs that were derived
from 9 models representing the birth registration processes of Germany, Russia,
South Africa, and the Netherlands. The models were created by graduate students
at the HU Berlin and in the context of a process analysis in Dutch municipalities.
The data set is in Petri-Nets. This data set has also been used in the PMMC 2013
(Cayoglu et al., 2013a).
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The task of the Process Model Matching Contest 2015 was to match these models
pair-wise, resulting in a total number of 36 matching pairs.

Based on the non-binary gold standard, we calculated ProP, ProR, ProFM and
ReD for a total of 16 matchers. Twelve matchers solved this matching problem in
the context of the PMMC 2015 and 4 matchers solved it in the context of a subtrack
of the Ontology Alignment Evaluation Initiative (OAEI) 2016 and 2017 (Achichi
et al,, 2016, 2017). In line with the report from both the PMMC 2015 and OAEI
2016 and 2017, we distinguish between micro and macro average. Macro average
is defined as the average Precision, Recall, and F-Measure of all 36 matching pairs.
Micro average, by contrast, is computed by considering all 36 pairs as one matching
problem. The micro average scores take different sizes of matching pairs (in terms
of the correspondences they consist of) into account. As a result, a poor Recall on
a small matching pair has only limited impact on the overall micro average Recall

score.

5.4.1 Results

This section discusses the results of our experiments. Section 5.4.2 elaborates on
the characteristics of the non-binary gold standard of the University Admission
data set. Section 5.4.3 presents the results from the evaluation with ProP, ProR,
and ProFM and compares them to the results of the non-binary evaluation. Section
5.4.4 discusses the insights from the evaluation with the Bounded versions of ProP,
ProR, and ProFM. Section 5.4.5 presents the results from the evaluation with ReD.

Section 5.4.6 investigates when the ProFM and ReD metrics become robust.

5.4.2 Attributes of the Non-binary Gold Standard

Figure 5.1 illustrates exemplary the average correspondence support values for
the University Admission data set from the PMMC 2015 (Antunes et al., 2015) of
the eight experts for each process model pair. The average support values differ
notably for the various models. It is characteristic for this applied data set that
some process model pairs vary strongly in their size and structure, thus have a
significantly different level of granularity. Some process model pairs are similar

regarding the structure, size and the syntax of the process model label.
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5 Probabilistic Evaluation

In Figure 5.1, we can observe that process model pairs which have a similar
structure and size, get a higher average correspondence support level of the eight
annotators, (e.g., IIS Erlangen - Potsdam). Opposed to this, process model pairs
which differ significantly in size and structure get a low average correspondence
support level, (e.g., Frankfurt - Hohenheim, Cologne - Hohenheim). A different
level of granularity in the data set implies a higher complexity of the matching
task; for humans as well as matching techniques.

The non-binary gold standard from the University Admission data set resulting
from the 8 binary assessments consists of a total of 879 correspondences. The
binary gold standard from the PMMC 2015 only consisted of 234 correspondences,
which is less than a third. The average support value per model pair ranges from
0.33 to 0.91. This illustrates that the models considerably differ with respect to how

obvious the contained correspondences are.
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Figure 5.2: Distribution of support values in the non-binary gold standard of the
University Admission data set

Figure 5.2 illustrates the distribution of the support values of the University
Admission data set. It shows that there are two extremes. On the one hand, there
is a high number of correspondences with 6 or more votes (support value > 0.75).
On the other hand, there is also a high number of correspondences with three
votes or less (support value < 0.375). Overall, the number of correspondences
which would be included based on a majority vote (support value > 0.5) amounts
to 495, which is only a little more than half of the correspondences from the non-
binary gold standard. These numbers illustrate the complexity associated with

defining a binary gold standard and highlight the risks of a purely binary evaluation
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procedure. Instead of excluding a high number of possible correspondences, we
include them with a respective support value. This avoids a loss of information.
The broad coverage of the non-binary gold standard implies that all reasonable
correspondences are included. Thus, correspondences which are not part of the
non-binary gold standard can be considered as wrong. This is one major difference
to a binary gold standard. We will show that the probabilistic evaluation is robust

and does not profit from further annotators.
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Figure 5.3: Average increase of number of correspondences with additional anno-
tators

Figure 5.3 further illustrates the average number of correspondences that are
added to the non-binary gold standard by an additional annotator. The numbers
from Figure 5.3 emphasize that the number of correspondences added by an addi-
tional annotator decreases very quickly. While the second annotator, on average,
adds about 145 new correspondences to the non-binary gold standard, the 8th an-
notator only adds 24 new correspondences. Note that the correspondences that are
newly introduced by the 8th annotator only have a support of 0.125, since none of
the previous annotators agreed with these correspondences. Overall, these numbers
show that we quickly reach a point where hardly new reasonable correspondences
are added. This is in line with the notion of theoretical saturation in qualitative
research settings (Bowen, 2008). In this context, theoretical saturation describes

the point where no new insights can be obtained from analyzing additional data.
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5.4.3 Evaluation Using Probabilistic Precision, Recall and

F-Measure

Based on the non-binary gold standard, we calculated ProP, ProR, ProFM, and ReD
for a total of 16 matchers. Twelve matchers solved this matching problem in the
context of the PMMC 2015 and 4 matchers solved it in the context of a subtrack of
the Ontology Alignment Evaluation Initiative (OAEI) 2016 and 2017 (Achichi et al.,
2016). In line with the report from both the PMMC 2015 and OAEI 2016/2017, we
distinguish between micro and macro average. Macro average is defined as the
average Precision, Recall, and F-Measure of all 36 matching pairs. Micro average,
by contrast, is computed by considering all 36 pairs as one matching problem.
The micro average scores take different sizes of matching pairs (in terms of the
correspondences they consist of) into account. As a result, a poor Recall on a small
matching pair has only limited impact on the overall micro average Recall score.

Table 5.4 presents the probabilistic evaluation results based on the non-binary
gold standard. It shows the micro and macro values of probabilistic F-Measure
(ProFM), Precision (ProP) and Recall (ProR) for each of the 16 matchers that partici-
pated in the PMMC 2015 or the OAEI 2016/2017. The column Rank - New indicates
the rank the matcher has achieved according to the ProFM micro value. The col-
umn Rank - Old shows the rank the system has achieved according to the binary
evaluation, as conducted in the Process Model Matching Contest 2015. In line with
the report of the PMMC 2015 we distinguish between “micro” and “macro” values,
which we describe in Section 2.2.

The results in the table illustrate that the probabilistic evaluation has notable
effects on the ranking. For instance, for the University Admission data set, the
matcher AML-PM moves from rank 14 to 5 and the matcher RMM-NLM moves
from rank 3 to rank 14. A brief analysis of the matchers’ inner workings provides
an explanation for this development. The matcher AML-PM does not impose strict
thresholds on the similarity values it uses for identifying correspondences. As a
result, it also identifies correspondences with low support values. In the binary gold
standard, however, these correspondences were simply not included and resulted
in a decrease of Precision.

Table 5.5 illustrates this effect by showing an excerpt from the correspondences
generated by the matcher AML-PM and the respective entries from the binary
and the non-binary gold standard. We can see that from the 5 correspondences

from Table 5.5 only two were included in the binary gold standard. In the context
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Rank Approach ProFM ProP ProR
New OIld A mic mac mic mac mic mac
1 2 +1 RMM-NHCM 432 .391 .83 777 292 .297
2 11 +9  LogMap 42 .366 .683 .676 304 301
3 1 -2 AML 419 376 795 728 .284 .289
4 6 +2  Know-Match-SSS .411 .358 679 .788 295 297
5 14 +9 AML-PM 408 .395 411 46 406 .408
6 13 +7 KnoMa-Proc 406 .345 573 594 314 .302
7 5 -2 OPBOT 369 318 669 .676 254 .248
8 12 +4 BPLangMatCh 361 327 .559 505 267 .265
9 7 -2 RMM-SMSL 358  .325 .6 712 .255  .256
10 9 -1 DKP-lite 347 284 895 911 215 .219
11 8 -3 DKP 341 .285 759 .691 .22 .223
12 15 +3  RMM-VM2 318 .307 333 337 304 3006
13 4 -9 Match-SSS 315 .249 .827 814 194 .203
14 3 -11 RMM-NLM 312 .253 .73 .583 .198 .203
15 10 -5 TripleS 301 .21 518 .498 212 216
16 16 +0 pPalm-DS 275 261 229 .289 345 344

Table 5.4: Results of probabilistic evaluation of the University Admission data set
with non-binary gold standard

Correspondence (C) Gold Standard
Activity 1 Activity 2 Binary Non-binary
Send documents by post  Send appl. form and documents 0 0.750
Evaluate Check and evaluate application 0 0.500
Apply online Complete online interview 0 0.375
Wait for results Waiting for response 1 0.875
Rejected Receive rejection 1 0.625

Table 5.5: Effect of gold standard on assessment of output of matcher AML-PM

of an evaluation based on this binary gold standard these three correspondence
would therefore reduce the Precision of this matcher. An evaluation based on the
non-binary gold standard, however, would come to a different assessment. The
non-binary gold standard does not only include the two correspondences from
the binary gold standard, but also includes the three other correspondences. It
is obvious that this positively affects the ProP of the matcher and improves its
overall ProFM respectively. For the matcher RMM-NLM we observe the opposite

effect. In the context of the evaluation with the non-binary gold standard it misses
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a huge range of correspondences. Consequently, the ProR of this matcher decreases

considerably.

Rank Approach ProP ProR ProFM
New Old A mic mac mic mac mic mac
1 1 +0 OPBOT .65  .614 517 446 576 .5
2 +1  RMM-NHCM .781 .718 443 364 565 458
3 11 +8 LogMap .834 .78 411 308 551 .39
4 +4  Know-Match-SSS .865 .812 379 292 527 .39
5 6 +1  BPLangMatch .661 524 417 327 511 .39
6 10  +4 TripleS .651 .588 426 328 515 .38
7 7 +0 AML-PM 513 458 505 44 509 439
8 12 +4  I-Match 812 .644 366 .267 504 345
9 2 -7 pPalm-DS 469 462 521 442 493 425
10 5 -5 AML 467 417 515 44 49 41
11 13 +2  Match-SSS 974 991 315 .23 476 323
12 4 -8  RMM-VM2 454 419 48 41 466 402
13 9 -4 RMM-SMSL 518 542 42 344 464 379
14 14 4+0 RMM-NLM 912 967 293 .21 443 .295
15 15 £0 KnoMa-Proc 224 .207 437 342 296 248

Table 5.6: Results of probabilistic evaluation of the Birth Registration data set with
non-binary gold standard

Different behavior can be observed for the Birth Registration data set in Table
5.6. The matcher RMM-NHCM, for instance, increases its performance not just
relatively (compared to the other matchers), but also with the absolute numbers.
For instance, the F-Measure of RMM-NHCM increases from .456 in the binary
evaluation, to .565 in the non-binary evaluation. (Such an effect can be observed
for other matchers as well.) This is surprising, because the non-binary gold standard
contains a high number of uncertain alignments, which can be expected to result in
a decrease of the Recall of the matchers. The improvement of the absolute values
for the F-Measure of some matchers indicates that the reliability of the binary gold
standard for the Birth Registration data set is highly questionable. This highlights

the problems associated with a binary evaluation.
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5.4.4 Evaluation Using Bounded Probabilistic Precision, Recall,

and F-Measure

The Bounded variants of ProP, ProR, and ProFM provide the possibility to obtain
more detailed insights into the performance of the matchers. Figure 5.4 illustrates
this by showing the values of ProP, ProR, and ProFM for 7 = 0.0, 7 = 0.375,
7 = 0.5, and 7 = 0.75 for 5 selected matchers from the University Admission
data set of the PMMC 2015. We selected these matchers to illustrate the different
observations by the Bounded probabilistic evaluation.

The results from Figure 5.4 show that the effect of a change in the minimum
support level 7 varies for the different matchers. In general, we observe a decreasing
ProP(7) and an increasing ProR(7) for higher values of 7. This is intuitive because
a higher value of 7 results in the consideration of fewer correspondences. However,
for some matchers this effect is stronger than for others. For instance, we observe
hardly any change in ProP(7) and a strong increase in ProR(7) for the matcher
pPalm-DS. This means that this matcher mainly identifies correspondences with
high support. It therefore benefits from a stricter gold standard. The matcher
RMM-NLM represents a contrasting case. The ProP(7) of this matcher decreases
dramatically with an increase of 7, while its ProR(7) slightly increases. This reveals
that this matcher also identifies a considerable number of correspondences with low
support. Since these correspondences turn into false-positives when we increase
T, the ProP(7) drops respectively.

As we observe in Figure 5.4c, the ProFM(7) of the matcher KnoMaProc increases
with rising 7, because this matcher mostly identifies correspondences with high
support values in the non-binary gold standard. Contrary, the performance of
the matcher AML-PM decreases with rising 7 since this matcher identifies a huge
number of correspondences with low support values, which turn into false-positives
for the Bounded metrics. Therefore, the ProFM of AML-PM decreases compared
to KnoMaProc. Hence, KnoMaProc achieves a higher ProFM at 7 = 0.75 than
AML-PM.

The consideration of the bounded variants of ProP, ProR, and ProFM illustrate
that an evaluation based on a non-binary gold standard facilitates a more detailed
assessment of specific matchers. It is possible to identify whether a matcher fo-
cuses on rather obvious correspondences (with high support) or whether a matcher
also identifies less apparent correspondences (with low support). Therefore, it al-

lows for an application dependent evaluation. For instance, it can be considered if
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Figure 5.4: ProP, ProR, and ProFM for different values of 7
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matchers aim at focusing on obvious, thus “sure”, correspondences or also focus

on computing uncertain correspondences.

5.4.5 Evaluation Using Relative Distance

The relative distance ReD explicitly takes the number of agreements and disagree-
ments with the annotators from the gold standard into account. As a result, match-
ing systems that identify correspondences with low support values are slightly
penalized. Table 5.8 gives an overview of the results obtained using this distance
measure. It shows for each matcher the ReD value, the ProFM value, the ranks

based on the respective measures, and the delta between the ranks.

Rank Approach ReD  ProFM
ReD ProFM A mic mac
1 1 +0 RMM-NHCM 261.1 432 .391
2 10 +8 DKP-lite 265.6 .347 .284
3 3 +0 AML 269.8 .419 .376
4 13 +9  Match-SSS 276.6 315 .249
5 11 +6 DKP 288.6 .341 .285
6 2 -4 LogMap 2952 42 366
7 14 +7 RMM-NLM 297.6 312 .253
8 4 -4 Know-Match-SSS 298.8 .411 .358
9 7 -2 OPBOT 3139 .369 .318
10 9 -1 RMM-SMSL 340.6 .358 .325
11 8 -3 BPLangMatch 3434 361 .327
12 6 -6  KnoMa-Proc 3449 406 .345
13 15 +2  TripleS 3474 301 .21
14 5 -9  AML-PM 510 408 .395
15 12 -3 RMM-VM2 533.8 .318 .307
16 16 +0 pPalm-DS 815.7 .275 .261

Table 5.7: Results of probabilistic evaluation with non-binary gold standard for the
University Admission data set

The results depicted in Table 5.8 illustrate that the use of ReD has notable effects
on the ranking. We can identify several matchers whose rank changed considerably.
For instance, the matcher AML-PM went from rank 5 to rank 14 and the matcher
DKP-lite went from rank 10 to rank 2. However, it is also interesting to note that
the first and the last rank did not change. The matcher RMM-NHCM has both the
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lowest ReD value as well as the highest ProFM value. The matcher pPalm-DS has
both the highest ReD value as well as the lowest ProFM value. As a result, they

remain on the first and the last rank, respectively.

To better understand these results, it is necessary to look into the specific cor-
respondences that the matchers identify. An analysis of the correspondences iden-
tified by the matcher AML-PM reveals, for instance, that this matcher establishes
a high number of correspondences with low support values. This means that the
fairly good ProFM value of AML-PM results from a high number of small rewards
for low-support correspondences. Since ReD does not reward but penalizes the
identification of such correspondences, ReD is rather high in comparison to other
matching systems. For the matcher DKP-lite, which moved 8 ranks up, we observe
the opposite effect. This matcher mainly produces correspondences with high sup-
port values. While this resulted in a rather moderate ProFM value because of all
the unidentified low-support correspondences, the ReD value of this matcher is

very low, resulting in a good rank.

The two extreme cases of AML-PM and DKP-lite illustrate that ReD penalizes
matchers that identify a high number of correspondences with low support values
and rewards matchers that do not. This also reveals the specific characteristics of
the matching systems on the first and the last rank. The matcher RMM-NHCM
identifies a considerable number of correspondences with high support values. As
a result, both ProFM as well as ReD yield good results. The matcher pPalm-DS,
by contrast, simply produces a considerable amount of noise. The high number of
false positives (and at the same time a low number of true positives) results in a
bad performance from the perspective of both measures.

This can also be observed for the Birth Registration data set. The non-binary
gold standard contains many alignments with support value 0.125. This effect also
leads to the strong ranking differences between ReD and ProFM. (ProFM slightly

penalizes matchers which do not compute uncertain alignments.)

5.4.6 Robustness of the Results

The advantage of the probabilistic evaluation procedure is that it builds on the
individual assessments of a number of annotators. In this way, we circumvent the
almost unfeasible task of defining a single set of correct correspondences. How-

ever, building on the assessments of annotators also raises the question when the
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Rank Approach ReD  ProFM
ReD ProFM A mic mac
1 12 +11  Match-SSS 1054 476 .323
2 4 +2  Know-Match-SSS 108.0 .527 .390
3 14 +11 RMM-NLM 121.1 443 .295
4 11 +7 AML 122.0 .490 .410
5 8 +3  I-Match 129.4 504 .345
6 3 -3 LogMap 148.1 .551 .390
7 2 -5 RMM-NHCM 153.6 .565 .458
8 5 -3 TripleS 164.6 .515 .380
9 6 -3 BPLangMatch 184.1 .511 .390
10 1 -9 OPBOT 216.6 .576 .500
11 10 -1 RMM-SMSL 256.4 464 .379
12 7 -5 AML-PM 264.1 .509 439
13 9 -4 pPalm-DS 320.9 .493 425
14 13 -1 RMM-VM2 3524 466 .402
15 15 +0 KnoMa-Proc 630.6 .296 .248

Table 5.8: Results of probabilistic evaluation with non-binary gold standard for the
Birth Registration data set

evaluation results actually become robust, i.e., how many annotators are required

before the presented performance measures stabilize.

Figure 5.5 illustrates how the ProFM and ReD develop for 5 representative match-
ing systems with an increasing number of annotators for the University Admission
data set. To avoid a bias resulting from the order of the annotators (including some-
one as the 8th annotator who identified a lot of correspondences, would lead to a
non-representative movement in the graph), we computed the average values for
both evaluation measures based on all possible annotator combinations. For exam-
ple, the values for 4 annotators are obtained by computing and averaging ProFM
and ReD for all possible combinations of 4 annotators in the University Admission

data set.

The values in Figure 5.5a show that ProFM converges after only including 4
annotators, i.e., the inclusion of additional annotators has a negligible effect on the
results. For instance, the additional correspondences included by the 7th annotator
do not even change the third decimal place for most matching systems. For ReD,

we observe that more annotators are required. We see that ReD changes quite
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drastically when including additional annotators. This can be explained by the
strong effect of low-support correspondences on this measure.

Additional annotators are likely to include more correspondences, which re-
duces the number of correspondences that are considered as false positives. Despite
this rather strong decrease, we still observe that ReD converges. After including 7
annotators, the change is below 2% for all matching systems.

To get insights into the differences between the two annotator groups (student
assistants and researchers), we also analyzed the binary assessments from both
groups and compared the correspondences they created. We found that the student
group came up with more correspondences than the researcher group (825 versus
615). The total number of correspondences where the entire subgroup agreed on a
correspondence was, however, slightly higher for the researcher group (242 versus
211). These numbers indicate that the student group had a more diverse view on
the correspondences and, as a result, had a higher degree of disagreement. These
insights emphasize once again that the idea of consulting several annotators is
a promising strategy. The higher the number of annotators, the less individual
opinions affect the evaluation.

Altogether, we can state that the presented performance measures stabilize
after including 4 to 7 annotators. While we cannot give a general recommendation
(independently from the data sets) about the number of annotators that is required,
our analysis showed that this number is likely to be below 10. Taking into account
that annotators only need to be familiar with the domain and not with process

model matching, this is a feasible number.

5.5 Summary, Observations and Findings

In this chapter, we introduced a probabilistic evaluation procedure, which takes a
non-binary gold standard as basis for the evaluation. This probabilistic evaluation
procedure takes the disputability of correspondences into account. The evaluation
experiments in this section illustrate that the presented performance measures
have a different focus. The metrics are designed to provide additional insights
from different angles. ProFM (together with ProP and ProR) is based on the well-
known measure from Information Retrieval and, therefore, might be considered as
intuitive by many people. A specific characteristic of this measure is that it rewards

matching systems that also recognize correspondences with low support values.
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Whether this is a desired outcome, largely depends on the application scenario
of the matching system. If the output of a matching system is used as input for
humans, i.e., the matching system’s task is to suggest possible correspondences,
identifying a larger number of correspondences is helpful. A notable advantage of
this measure is the low number of annotators that is required for the non-binary
gold standard. We found that ProFM already converges after including 4 annotators.
The Bounded version of this measure further allows to use a specific threshold, to
exclude uncertain correspondences from the evaluation. It further allows a deeper
understanding if matchers focus on finding correspondences with low support
values or if the matchers aim in identifying the correspondences which have a high
support value in the non-binary gold standard. This helps to tune the matcher to a

specific application.

In contrast, ReD takes the number of disagreements with the annotators of the
non-binary gold standard explicitly into account. As a result, it rather favors match-
ers that focus on identifying high-support values. In contrast to the ProFM, ReD
treats a low probability score closer to 0 than to 1. In other words, correspondences
with low support values in the gold standard, computed by a matcher are slightly
sanctioned. Therefore, matchers which focus on computing “sure” correspondences
achieve better results than matchers which also identify correspondences with low
support values in the non-binary gold standard. If this is a desired feature of a
matcher, ReD provides a better impression of the performance than ProFM. A
small disadvantage of ReD is that it requires more annotators than ProFM to pro-
duce stable results. Our analysis showed that ReD converged after including 7

annotators, as opposed to 4 for the ProFM metric.

Our conducted experiments further reveal that the matchers did not fail in iden-
tifying correspondences in the Birth Registration data set as it seemed to be the
case in the binary experiments of the PMMC 2015. In fact the gold standard of the
PMMC 2015 seems to have major shortcomings. This again indicates that a purely
binary evaluation does not account for the full complexity of a matching task. This

again highlights the risk of a binary evaluation procedure.

In summary, we can state that the choice of the performance measure mainly
depends on the application scenario of the evaluated matching system. The eval-
uation procedure, introduced in this chapter, for conceptual reasons assumes that
the output of the matching technique is binary. In fact, some matching techniques

compute confidence values that indicate the reliability of the identified correspon-
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dences. The transformation of these confidence values into binary values does
not only come with the loss of information, but also results in a less accurate as-
sessment of the performance of the matching technique. In the next chapter, we
therefore introduce a completely non-binary evaluation measure. In this evalua-
tion procedure the confidence values, computed by the matchers are considered
as well. However, the confidence values of the matcher as well as the non-binary
gold standard are not considered with their absolute values. The values are only
used to transform the matcher output as well as gold standard into a ranked set of
correspondences. Then the correlation between both is computed. We will present

the rank-correlation in the next chapter.
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Ranking-based Evaluation

In the previous chapter we introduced a non-binary reference alignment and intro-
duced evaluation metrics which take the non-binary values as basis for the evalua-
tion. However, the results of the matchers were interpreted as binary, because the
range of the confidence values differs strongly among the matchers. In this chapter
we introduce a fully non-binary evaluation procedure, where the matcher output
is ranked according to its confidence values.

The chapter is organized as follows: Section 6.1 introduces the idea of the rank-
ing based-evaluation and provides examples to illustrate the characteristics of the
metric. While Section 6.2 presents the experimental results of the ranking-based
evaluation and conducts a detailed performance analysis of the matchers of the
PMMC 2015, Section 6.3 concludes our findings and provides recommendations for
the application of the ranking-based evaluation.

Some of the work presented in this chapter has already been published in Kuss
et al. (2017).
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6.1 Introduction to the Ranking-based Evaluation

One important aspect of the above proposed evaluation techniques is their restric-
tion to interpret the evaluated alignments of the matchers as binary alignments.
Even though some of the matcher’s alignments feature a rich distribution of dif-
ferent confidence values, these alignments have been interpreted for conceptual
reasons as binary alignments. Therefore, the proposed approach above does not
account for the fact that automatically generated alignments are also often anno-
tated with confidence values. For that reason it is better to analyze how close the
confidence value distribution in the gold standard is to the confidence value distri-
bution in the generated alignment. The question whether or not a correspondence
is correct then needs to be replaced by the question in how far the confidence esti-
mated by a matching technique resembles the confidence in the gold standard. In
this approach, we follow this idea and propose an evaluation procedure for compar-
ing a non-binary gold standard against a non-binary alignment. The probabilistic
gold standard comprises a ranking of the probability of the correspondences in the
gold standard. Low support values stand for a low rank. Similarly, some matcher
provide confidence values for each correspondences. Thus the confidence values
yield a ranking of all computed correspondences. To calculate the correlation of the
correspondences to the reference alignment, the values of the reference alignment
as well as the confidence values are only used for generating a ranked gold standard
and a ranked matcher output. The rank-correlation then measures the correlation
between the ranked matcher output and the ranked reference alignment. Thus,
the confidence and support values just affect the ranking of a correspondence, the

values itself are not considered in the final calculations of the correlation coefficient.

Note that the fact whether an alignment is annotated with a confidence value is
sometimes mixed up with the question whether or not the alignment is generated
by a first-line or by a second-line matcher. According to Gal and Sagi (2010), a
first-line matcher is defined as a matcher that uses the models themselves as input,
while a second-line matcher uses the output of one or several first-line matchers as
input, e.g., a set of matrices that store confidence values. For that reason one can
assume that the result of a first-line matcher is always a binary alignment, while
the result of a second-line matcher might be a non-binary alignment. However,

many matching systems are a combination of first-line and second-line matchers
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Matcher Minimum Maximum Average Std. Dev.
AML 0.60 1.00 0.80 0.15
AML-PM 0.30 1.00 0.73 0.23
Know-Match-SSS 0.76 1.00 0.90 0.12
LogMap 0.75 1.00 0.92 0.08
Match-SSS 0.95 1.00 0.99 0.01
pPalm-DS 0.77 1.00 0.85 0.07
TripleS 0.70 1.00 0.84 0.13

Table 6.1: Range of confidence values of process matchers participating in the
PMMC 2015 and the OAEI 2016/2017

and, therefore, generate non-binary alignments. The ranking-based evaluation

procedure is applicable to any non-binary alignment.

6.1.1 Evaluating with Confidence Values

Table 6.1 shows properties of the non-binary alignments which were generated
by the participants of the Process Model Matching Contest 2015 (Antunes et al.,
2015) - AML-PM, Match-SSS, pPalm-DS, TripleS — and by the participants of the
Process Model Matching track at the Ontology Alignment Evaluation Initiative
(OAEI) 2016 (Achichi et al., 2016) - AML, LogMap. The non-binary alignments of
the missing matching techniques were not available to us. We therefore excluded
them from the analysis.

Table 6.1 shows for each matching system the confidence values of the cor-
respondences with the lowest and highest confidence as well as the average and
the standard deviation. The minimum confidence values vary strongly among the
matching techniques. We can observe that the alignments of AML-PM contain
correspondences with rather low confidence values (i.e., as low as 0.3). Apparently,
such a low confidence value was not sufficient for LogMap to include a correspon-
dence in the final alignment. The lowest confidence value included by LogMap
is 0.75. This illustrates that the meaning of a confidence value differs consider-
ably among different matchers. An evaluation procedure that analyzes confidence
values needs to take this into account in an appropriate way.

One strategy to do so is to normalize the confidence values. To this end, a
range for the normalization has to be determined. The confidence values are then

extended (i.e., projected) to this defined range. One intuitive choice for such a nor-
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malization range is to normalize the confidence values of the matcher to the range
of the support values of the alignments in the non-binary gold standard. In case of
10 annotators, these support values range between 0.1 and 1.0. However, in fact,
choosing a range for the normalization is arbitrary. Furthermore, some matchers
might be closer to the chosen range than others. This also means that the normal-
ization affects some matchers more than others. In Table 6.1 it can be observed that
there are matchers using a high threshold (i.e., they have a range between 0.95 and
1.0). For such matching techniques, this small range of confidence values has to
be stretched to the full range of support values of the non-binary gold standard. A
normalization which affects some matchers stronger than others, would not result
in a reasonable assessment. Therefore, also a correlation-based assessment does
not deliver meaningful results, due to different ranges of confidence values. The
disadvantages associated with normalization can be avoided by applying a different
strategy. Instead of comparing the absolute values, the confidence values of the
matchers can be used to transform the matcher’s output into a ranked list (set)
of correspondences. In this way, the confidence values only define a rank of the

considered correspondence.

6.1.2 Foundations of the Ranking-based Evaluation

In the following, we introduce and define the ranking-based evaluation procedure
for process model matching techniques. The core idea is to compare two non-
binary alignments (i.e., the matcher output and a non-binary gold standard) based
on comparing the rankings of their correspondences.

Given two process models M; and Mo, let G be a non-binary alignment be-
tween M and My, that represents the manually created gold standard and A be
a non-binary alignment between M; and My that was generated by a matching
techniqe. In the following, we show how to compute and use the Spearman’s
rank-correlation coefficient (Spearman, 1904) to measure the quality of A given the
manually created gold standard G. Let n be the number of correspondences with a

confidence value higher than zero in G or A, ie.,
n = |{(a1,a2) € act(Mi) x act(My) | A(a1,a2) >0V G(a1,az) > 0}].
To compute the rank-correlation, the following steps need to be performed inde-

pendently for both G and A.
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Normalized Ranks The n correspondences in G and .4 have to be ranked accord-
ing to their confidence values (in increasing order). This leads to a rank of
1 through n for each correspondence. If there are correspondences with the
same confidence value, their ranks are normalized. In these cases, which
we refer to as ties, the rank of each correspondence with the same confi-
dence value is given by the arithmetic mean of the ranks occupied by these

Correspondences.

Correction Term for Ties The number of times each value is observed in the
alignment is counted. This is denoted by ¢ 4 . with respect to A and ¢g , with
respect to G. The index k is used here to refer to the different values (or ranks).
As a result of this counting, we obtain > _, t 41 = >, tgx = n. In the final
formula, we need to use the correction terms Ty = ), ((tA’k)3 — tAJg)

and Tg = > ((tg,k)3 - tg,k)-

We can now use the following formula to compute Spearman’s rank-correlation
coefficient, where d; denotes the difference between the normalized ranks of the i-
correspondence from those correspondences that have a positive confidence value

in G or A:

nd—n—3iTg— T4 — 63" d?
V(3 —n —Tg) (n3 —n —Ty)

Table 6.2 illustrates how to compute the correlation coefficient for an illustrative

p:

example by showing the resulting values for all intermediate steps. The starting
point is a set of 15 correspondences, of which 13 are part of the gold standard G. The
alignment A represents the output of a fictional matching technique and includes
confidence values between 0.75 and 1.0. From the values it becomes clear, that
A includes two correspondences that are not part of G, i.e. the correspondences
with a confidence value of 0.0. What is more, A includes several correspondences
with a confidence value of 0.0 that have a confidence value of above 0.0 in the gold
standard G. To compare G and A, both alignments are first ranked. Since several
correspondences have the same confidence value, the ranks need to be normalized.
This results in a total of 9 different ranks for G and 5 different ranks for 4. Based
on the frequency of these different ranks (see tg , and t 4 ), the rank differences
can be computed. The final rank-correlation is -0.07102. Note that, while a high

correlation coefficient is in general desirable, this number is hard to interpret in
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isolation. A negative correlation might indicate a high number of false-positives,
but also that many correspondences with a high rank from G have a low rank in
A. We will point this out in more detail with the experiments in Section 6.2.

To include all possible pairs of correspondences into the calculations, i.e., addi-
tionally all true-negative correspondences, would highly increase the total number
of correspondences considered. In our considered data sets the average size of a
process model is about 24 activities (cf. Table 3.2). For our data sets about 95% of
the total number of all possible correspondences are true-negatives. Therefore, the
true-negatives dominate the number of correspondences in the gold standard as
well as matcher output. Similarly, like in the Accuracy measure, the differences of
the rank-correlation between the matchers would decrease, because all matchers
share the very high amount of the true-negative correspondences. Therefore, this

would not lead to an increase of information.

Gold Standard G Alignment A Rank Difference
Conf. Rank Norm. ftg tg wtor | Conf. Rank Norm. ftaj 5 ,tak d; d?
0.000 1 1.5 2 6 1.00 15 14 3 24 -12.5 156.25
0.000 2 1.5 0.75 3 8.5 2 6 -7 49
0.125 3 4.5 4 60 0.75 9 8.5 -4 16
0.125 4 4.5 0.00 1 4 7 336 0.5 0.25
0.125 5 4.5 0.00 2 4 0.5 0.25
0.125 6 4.5 0.80 10 10 1 0 -5.5 30.25
0.250 7 7 1 0 0.81 11 115 2 6 -4.5 20.25
0.375 8 8 1 0 0.81 12 11.5 -3.5 12.25
0.500 9 9 1 0 0.00 3 4 5 25
0.625 10 10 1 0 0.00 4 4 6 36
0.750 11 11 1 0 0.00 5 4 7 49
0.875 12 12 1 0 0.00 6 4 8 64
1.000 13 14 3 24 0.00 7 4 10 100
1.000 14 14 1.00 13 14 0 0
1.000 15 14 1.00 14 14 0 0
n=15 79 =90 TA =372 7 d? =558.5

Table 6.2: Example of correlation coefficient calculation for an alignment .4 com-
puted by a matching technique and the gold standard G. The resulting
correlation coefficient is p = -0.07102

Table 6.3 uses the output of eight exemplary matching techniques to further
illustrate how different characteristics of the alignments affect the correlation coef-

ficient. More specifically, it illustrates the effect of three particular characteristics:

« Differing range of confidence values: The matching techniques producing
the alignments .A; and A3 compute different ranges of confidence values. In
alignment A;, the lower bound is 0.3 and the upper bound is 0.8. In alignment

Aj, both the lower bound and the upper bound are higher (0.78 and 1). The
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lower bound is even considerably higher, which makes the confidence values
hardly comparable. However, in the context of the rank-based evaluation,
both matching techniques yield the same result. This is the case because
the calculation is based on the ranks and not on the absolute confidence
values. This example illustrates the idea and the value of the ranking-based

evaluation procedure.

« Missing correspondences: The alignments As, A4, As, and Ag illustrate the
effect of missing correspondences in the produced alignments. We observe
that A3 and A4 yield quite similar results although alignment 43 includes
all correspondences from G and .4, misses the correspondence from line 3.
The missing correspondence (which is interpreted as a correspondence with
confidence 0.0), results in a slight decrease of the overall correlation coeffi-
cient calculated for A4. However, since the missing correspondence has a
very low confidence value (i.e., 0.125), the decrease is marginal. Alignment
Ajs shows a case where a more important correspondence is missing (i.e., a
correspondence with a confidence value of 0.5 in G). Here, we see that this
missing correspondence has a quite considerable effect on the final correla-
tion coefficient because it drops to 0.512. Quite expectedly, this effect is even
more severe for alignment Ag, where a correspondence with a confidence
value of 1.0 is not included. Note that we inserted a row of zeros to make
sure that the lowest rank is always associated with the same value. Without
this row, matcher A3 and matcher A4 would have the same rank-correlation.
However, in our experiments this changed the results only marginally (the

fourth decimal digit).

« Additional correspondences: Alignment A7 includes a correspondence that
is not part of the gold standard G. However, since it has the lowest rank,
the correlation coefficient is only affected marginally. For alignment Ag, we
observe a case where the corresponding matching technique has computed
an incorrect correspondence with the highest possible confidence value (i.e.,

1.0). The final correlation coeflicient is affected accordingly.

All in all, the examples from Table 6.3 show that if matching techniques miss
or incorrectly identify correspondences with low confidence values in G, the cor-
relation coeflicient is only marginally affected. However, if a matching technique

computes or misses incorrect correspondences with high confidence values in G,
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the correlation coefficient is affected severely. Since this appropriately reflects

the desired performance of process model matching techniques, this is a favorable

outcome.
G Ay As As Ay As Ag Az Asg
0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.000 - - - - - - 0.70 1.00

0.125 030 078 0.76 0.00 078 078 0.78 0.78
0.125 030 078 0.78 0.78 078 0.78 0.78 0.78
0.125 030 078 078 078 0.78 0.78 0.78 0.78
0.125 030 078 0.78 0.78 078 0.78 0.78 0.78
0.125 030 078 078 078 0.78 078 0.78 0.78
0.250 040 080 080 0.80 080 080 0.80 0.80
0.500 041 088 088 088 0.00 0388 0.88 0.88
1.000 0.80 100 100 100 1.00 0.00 1.00 1.00

p 1.000 1.000 0.953 0.929 0.512 0.210 0.996 0.503

Table 6.3: Behavior of rank-correlation illustrated by the output of eight exemplary
matchers.

The rank-correlation is not a valid assessment metric for matchers which only
compute binary alignments. This would result in correspondences with only two
ranks. This is not sufficient to measure a ranking-based correlation. In the next
section we apply the rank-correlation to all matchers which included confidence
values in their matcher output. This is the case for seven matching systems of the
University Admission data set and five of the Birth Registration data set. In this way,
we aim to assess if the matchers generate the same distribution of correspondences

like in the non-binary gold standard.

6.2 Experiments of the Ranking-based Evaluation

In the following, we compute the rank-correlation for all matchers which compute
confidence values. In our case, all matchers which computed > 3 confidence values,
are considered in the ranking-based evaluation. (This is valid for seven matchers

of the University Admission data set and five of the Birth Registration data set.)
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6.2.1 Results of the Ranking-based Evaluation

As a result of applying our evaluation procedure to the output of the considered
matching techniques, we obtained a respective rank-correlation coefficient for each
matcher. We computed the results with the free software environment R, which
is a statistical programming language (R Core Team, 2013). Tables 6.4 and 6.5
summarize these results. It shows the evaluation metrics and the rank (R) for three

different evaluation procedures:

« nB-nB (non-binary — non-binary): The non-binary evaluation procedure in-
troduced in this paper. The performance is captured using the rank-correlation

coefficient (p).

+ B-nB (binary — non-binary): The probabilistic evaluation procedure compar-
ing the binary output of a matcher against a non-binary gold standard. The
performance is captured using the probabilistic F-Measure (ProFM), proba-
bilistic Precision (ProP), and probabilistic Recall (ProR).

« B-B (binary - binary): The classical evaluation procedure comparing the
binary output of a matcher against a binary gold standard. The performance

is captured using the F-Measure (FM), Precision (Prec), and Recall (Rec).

nB-nB B-nB B-B
Matcher R »p R ProFM ProP ProR R FM Prec Rec
AML 1 .245 1 424 806 .288 1 .702 .719 .685
Match-SSS 2 223 5 314 .828 .194 2 .608 .807 .487
LogMap 3 .153 2 418 680 .302 5 .481 .449 517
Know-Match-SSS 4 .120 3 409 676 .293 3 544 513 578
TripleS 5 -.008 6 300 519 211 4 485 487 .483
AML-PM 6 -.266 4 407 411 .404 6 385 .269 .672
pPalm-DS 7 -.295 7 276 230 .346 7 253 .162 578

Table 6.4: Results for the seven considered matchers from the University Admis-
sion data set from the PMMC 2015 and the OAEI 2016/2017 for three
evaluation procedures

The results from Tables 6.4 and 6.5 reveal that there is a weak correlation be-
tween the output of some matchers and the non-binary gold standards. Three

matchers at the University Admission data set and one of the Birth Registration
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nB-nB B-nB B-B
Matcher R »p R ProFM ProP ProR R FM Prec Rec
Match-SSS 1 .524 5 476 974 315 5 .332 .922 .202
Know-Match-SSS 2 471 1 .527 865 .379 3 385 .800 .254
TripleS 3 .277 2 515 .651 .426 4 384 .613 .280
pPalm-DS 4 127 4 493 469 521 1 .459 502 .422
AML-PM 5 -.068 3 .509 513 .505 2 392 423 .365

Table 6.5: Results for the five considered matchers from the Birth Registration data
set from the PMMC 2015 for three evaluation procedures.

data set even have a negative correlation coefficient. This outcome can be explained
by the characteristics of the matchers as well as the characteristics of the gold stan-
dards. To understand how the characteristics of the matchers can explain this
outcome, consider the metrics from the other two evaluation procedures (i.e., B-nB
and B-B). All three matchers with a negative correlation coefficient have a particu-
larly low Precision. Apparently, a negative correlation coefficient primarily relates
to a high number of false-positives. A notable characteristic of the non-binary gold
standard that contributed to the weak correlation is the high number of correspon-
dences with a low support value. The non-binary gold standard of the University
Admission data set for example contains a total of 831 correspondences, of which
about 20% have the lowest rank, i.e., at most one of the eight annotators has voted
for them. It is, thus, not surprising that many matchers miss these correspondences.
While the penalty for missing them is rather low, the recall values reveal that this

also explains the overall correlation coefficient.

Table 6.6 provides the number of correspondences in the non-binary gold stan-
dard of the University Admission data set as well as the matcher output and their
union with n correspondences. It can be observed that many matchers compute
a very low fraction of correspondences, which are part of the non-binary gold
standard, e.g., 110 for M-SSS (140 - (861-831) ). The matcher pPalm-DS, which com-
putes a high number of correspondences, computes 181 correct correspondences,
647 are wrong correspondences. Thus, the matcher pPalm-DS misses a high frac-
tion of correspondences and at the same time computes a high number of wrong

correspondences.

Let us consider two scenarios. The first scenario: a matcher does not compute

a correspondence with the lowest confidence value. This correspondence is then
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Matcher # Alignmentsin n
Matcher Output

AML 221 912
AML-PM 579 1178
Know-Match-SSS 261 949
LogMap 267 950
Match-SSS 140 897
pPalm-DS 828 1477
TripleS 230 978

Table 6.6: Number of computed alignments with the corresponding Union with the
non-binary gold standard of the matchers exemplary for the University
Admission data set

evaluated as a zero for the confidence for the matcher, thus it is included in the
group of the lowest rank. In the ranking of the non-binary gold standard, the cor-
respondence is part of the second lowest ranking (the lowest rankings are those
which are not in the non-binary gold standard but are in the matcher output). Con-
sequently, the rank-correlation is only affected marginally because both ranks of
the non-binary gold standard and the matcher output are close to each other. In
contrast, consider the second scenario: the matcher computes a correspondence
(with a relatively high confidence value) which is not part of the non-binary gold
standard. Such a correspondence has the lowest rank in the non-binary gold stan-
dard but a relatively high rank in the matcher output ranking. One reason is that
a relative high number of correspondences in the non-binary gold standard have

low support values.

In sum, not computing a correspondence in the non-binary gold standard is less
critical for the rank-correlation compared to computing a correspondence which
is not part of the non-binary gold standard. This effects become larger with larger
confidence value in the matcher output. Thus, a matcher which computes a wrong
correspondence with high confidence, significantly decreases the rank-correlation;
see Table 6.3. This is a desired feature, as the non-binary gold standard can be

regarded to contain all reasonable correspondences, by construction.
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Figure 6.1: Plots for a matcher with a rank-correlation of 1

6.2.2 Visualization of the Results

Abstracting from the absolute values, we see that the correlation coefficient allows
us to rank the matchers according to their performance. We can observe that the
ranking obtained through the evaluation presented here does not always deviate
from the ranking we obtain when using the other evaluation procedures. In fact,
the matcher AML is always considered to perform best and the matcher pPalm-DS
is always considered to be worst for the University Admission data set. However,
for the Birth Registration data set, we observe that the rankings of the matchers

change considerably.

To understand the variations, consider Figure 6.2, which visualizes the output
of the different matching techniques by plotting the confidence values of the gen-
erated correspondences against the confidence values of the gold standard. The
horizontal axis indicates the confidence values of the gold standard, the vertical
axis the confidence values of the matching technique. The size of the dots indicates
the number of the correspondences with this particular combination. The bigger
the dot, the more correspondences with this combination exist. As discussed earlier,
the rank-correlation is a linear measure of dependency after the ranking has been
applied. Figure 6.1 shows a “perfect matcher”. Note that the standard correlation
for this perfect matcher is only 0.911 while the rank-correlation is 1. This highlights
the importance of considering the ranks instead of the absolute values. Therefore,
the optimal result after ranking is a point cloud resembling the linear line shown

in Figure 6.1(b). Looking into the details, we can make the following observations:
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Figure 6.2: Visualization of rank-correlation results for University Admission data
set.
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Figure 6.2: Visualization of rank-correlation results for University Admission data
set (continued).
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Figure 6.2: Visualization of rank-correlation results for University Admission data
set (continued).

« AML: The matcher computes a solid number of correspondences that also
have high confidence values according to the gold standard (see upper right
corner). At the same time, AML also misses a considerable number of cor-
respondences. The left side of the plot clearly shows that there are many
correspondences where the output of the matching technique is 0.0 while the
gold standard contains confidence values above zero. Note that gap between

0.0 and 0.6 results from the range of the confidence values generated by AML.

o MSSS: The plots for this matching technique illustrate that MSSS identifies
a rather small number of correspondences with quite high accuracy. The
upper right corner shows that particularly safe indisputable correspondence
are identified. Nonetheless, the left side of the plot also highlights that the
matcher misses several correspondences, of which quite a notable number

have a confidence of above 0.75 in the non-binary gold standard.

« LogMap: At first glance, the plot for the matcher LogMap seems to resemble
the results from AML. However, the clear difference in the correlation coeffi-
cient shows that there is, in fact, a notable difference between the two. The
biggest difference can be found in the lower right corner of the plot. LogMap
identifies a even higher number of correspondences that are not part of the
gold standard with high certainty. This is respectively reflected in the lower

rank coeflicient.

« KMSSS: The matching technique KMSSS mainly produces correspondences
with a confidence value of above 0.75 in the gold standard (see upper right
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corner). This indicates that this matcher focuses, similarly to MSSS, on rather
obvious correspondences. The main difference to MSSS is a lower cutoff value.
As a result, the total number of generated correspondences increases. This,

however, does not result in a better correlation coefficient.

« TripleS: The plot for TripleS illustrates that, on the one hand, it misses a
high number of correspondences (see left-hand side of the figure). On the
other hand, it is not able to identify correspondences with high confidence
values in the gold standard with sufficient certainty. As opposed to many

other matchers, the big dot in the right upper corner is missing.

« AML-PM: The results for the matching technique AML-PM look quite similar
to the results of AML, although the range of the generated confidence values
is bigger (0.3 to 1.0). Whatis notable is the high number of false-positives with
a high confidence value, indicated by the large dots in the lower right corner.
This dramatically decreases the rank-correlation coefficient for AML-PM.
Note that AML-PM by far identifies the highest number of correspondences

with a confidence of 1.0 that are not included in the gold standard.

+ pPalm-DS: The matcher pPalm-DS generates a high number of correspon-
dences that are not part of the gold standard (see lower right corner). At
the same time, however, it also misses a high number of correspondences
(see left-hand side of the plot). Note that this technique generated by far the

highest number of correspondences.

Similar behavior can be observed for the Birth Registration data set, as shown in
Figure 6.3. However, the data set contains a very high number of correspondences
which only one annotator classified as an alignment. The matchers miss a high
number of such correspondences which is indicated by the big dot in the lower
left corner. However, in the rank-correlation this does not result in a strong effect,
because the matchers miss the correspondences with the lowest rank. This explains
the better results of the rank-correlation for the Birth Registration data set compared
to the University Admission data set. In the following, we explain the results for

the Birth Registration data set in more detail.

« MSSS: The matcher MSSS identifies a rather small number of correspondences
with quite high accuracy. At the same time misses many correspondences

of the non-binary gold standard. However, the matcher only computes a
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Figure 6.3: Visualization of rank-correlation results for the Birth Registration data
set.
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Figure 6.3: Visualization of rank-correlation results for the Birth Registration data
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very low number of correspondences which are not part of the gold standard
(lower right corner in both plots). That explains the rather good results in the
rank-correlation. However, it computes its false-positives with its highest

rank, which decreases the rank-correlation considerably.

o KMSSS: The matcher KMSSS computes a low number of false-positive align-
ments but mainly with its lowest rank. Therefore, the matcher yields a rather

high correlation coefficient.

« TripleS: Similarly like already observed for the the University Admission data
set, the matcher misses a high number of correspondences and at the same

time generates a high number of false-positive alignments.

« AML-PM: Similarly the matcher generates a high number of false-positives
with a high confidence value. This indicates that the confidence values which
the matcher computes are not accurate and do not resemble the distribution

of the non-binary gold standard.

+ pPalm-DS: Similarly like already observed at the University Admission data
set the matcher pPalm-DS generates a high number of correspondences that
are not part of the gold standard (see lower right corner). At the same time,
however, it also misses a high number of correspondences (see left-hand side
of the plots). This is a surprising observation since this matcher had a rather
high performance for this data set at the binary gold standard used at the
PMMC 2015.

The described metric provides an accurate correlation measure for matchers
which provide confidence values. The rank-correlation implies a normalization of
the confidence values, computed by a matcher, by normalizing the matcher output
into a ranked collection of the computed correspondences. Compared to the ranked
reference alignment, it provides a correlation which is not based on the absolute
values, but on the rank of the correspondences. However, the rank-correlation is
not a suitable measure for matcher which do not compute confidence scores since
they only provide binary results, thus computes only correspondences with two
ranks. This is not enough to compute stable results for a ranking-based evaluation.
(Binary values do not impose a natural ranking of the computed correspondences.)

All in all, this analysis highlights a major difference of the presented evaluation

procedure to existing ones: The confidence of the matcher is taken into account.
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If a matcher identifies a correspondence that is not part of the gold standard with
high certainty, the penalty is much higher than if the certainty is low. This is an
important difference to both the B-nB and B-B evaluation procedures where the
output of the matcher is considered as zero or one.

This particular feature of our evaluation procedure also explains the different
rankings. Matching techniques that identify false-positives with high certainty
receive a bigger penalty than matching systems that identify false-positives with
low certainty. This complements the metrics, introduced in Chapter 5. In this way
it can be observed, whether the confidence values of the matchers reflect the extent
of confidence of the computed correspondences, or whether the confidence values
of the matchers do not correlate with the confidence values in the non-binary gold
standard.

Both, false-positives and false-negatives have a high negative impact on the
measured results. Therefore, the metric strictly measures any differences to the
reference alignment. The metric takes into account the importance of the cor-
respondences (generated and in the reference alignment) it does not measure a
correlation for the computed values, but for the ranking.

If the results of one single matcher has to be validated, then the results of
the ProFM is easier to interpret than the ranking-based evaluation. The ranking
based evaluation depends on many variables which makes an interpretation for
improvement more difficult. However, the ranking-based evaluation can indicate
if matchers compute FP alignments with high confidence or if matchers miss align-
ments with high confidence; e.g., the evaluation can validate the confidence values,
computed by a matcher. The evaluation procedure requires a variety of confidence
values of the matchers as well as in the gold standard. Otherwise too many corre-

spondences share the same rank.

6.3 Conclusions

In this chapter, we introduced a fully non-binary evaluation method, which takes
the confidence values of the matchers as well as the support values of the non-
binary gold standard as basis for the evaluation. However, the values itself are
not considered in the calculations, instead they are considered to transform the
matcher output as well as non-binary gold standard into a ranked collection of

correspondences.
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The rank-correlation directly translates the properties of the non-binary gold
standard in that it assumes that the non-binary gold standard is almost complete.
With other words, the non-binary gold standard is designed to avoid the random-
ness/arbitrariness of the gold standard. Consequently, the non-binary gold standard
is robust with respect to different annotators, i.e., changing the annotators, or in-
creasing the number of annotators, won’t alter the non-binary gold standard much,
while it might have a significant effect on the binary gold standard. Therefore,
the rank-correlation strictly measures the existence of false-positive or missing
correspondences with a high rank in the reference alignment. This also helps to
understand if the confidence values of the matchers reflect a realistic value.

With the different evaluation measures, presented in this thesis, we assess the
quality of the generated correspondences of the matchers from different angles
and allow for an application-dependent evaluation. In the next chapter, we will
introduce a conceptually new evaluation measure, which classifies the matching
task as well as matcher output into matching patterns. These matching patterns
provide additional information about specific strength and weaknesses of a matcher,
by dividing the matching task into categories with differing complexity level. We

introduce the categories in the next chapter.
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Evaluation by Automatic
Classification to Matching

Patterns

The experiments at the Process Model Matching Contests showed that currently
no matching technique has a high performance on all tested data sets (Achichi
et al., 2016, 2017; Antunes et al., 2015). Consequently, the evaluation needs to offer
insights into strengths and weaknesses of each matching technique. On the one
hand, this enables to use matching techniques for specific applications which fit
the patterns of a matching technique. On the other hand, the matchers can be
tuned to specific application scenarios and therefore weaknesses can be eliminated.
One important instrument to perceive strengths and weaknesses of a matcher is to
analyze the correspondences which the matchers compute. In this way, it can be

analyzed which types of correspondences the matchers can identify reliably and

93



7 Evaluation by Automatic Classification to Matching Patterns

which are especially challenging. It further indicates what kind of correspondences
lead to false-positive or false-negative alignments in the matcher output. Currently,
this is assessed manually, by manually analyzing the matcher output. However,
this manual assessment comes with high efforts.

To automatize this expensive task, we propose a conceptually different evalu-
ation approach. The basis of our idea is to group the alignments of the matcher
output as well as the gold standard into different categories. In our example, we
utilize five different such categories. For each of the category, the widely-used
measures Precision, Recall and F-Measure are computed. These metrics for each
category enable us then to analyze a matcher’s performance in greater detail. In
this way the matching task is divided into groups with specific attributes. This
way, we gain insights which matcher performs well on “trivial” correspondences or
can also identify “difficult” correspondences. Among the more complex correspon-
dences, we learn for each individual matcher which correspondences can be found
and which are challenging. In particular, it is possible to predict the performance
of matching techniques for specific applications. Therefore, these insights allow to
differentiate for each specific application, which matching technique is suitable for
the specific matching task. Sometimes information about the data set are available
in advance and therefore desired features of a matching technique can be known in
advance. In our experiments we will show that, for some data sets, it is already suf-
ficient to compute stable results if matchers focus to classify syntactically identical
labels (“trivial” correspondences) in process models.

The remainder of the chapter is organized as follows. Section 7.1 introduces
the matching patterns which are automatically assigned and provides examples
to illustrate these patterns in Section 7.2. In Section 7.3, the evaluation metric is
introduced. In Section 7.4, evaluation experiments are obtained and the results of
the evaluation by matching patterns are discussed in detail. Section 7.5 provides a
conclusion of the introduced evaluation method.

Some of the work presented in this chapter has already been published in Kuss
and Stuckenschmidt (2017).
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7.1 Introduction to the Automatic Classification into

Matching Patterns

Currently, the evaluation focuses on grading the evaluated matchers. Thus, the
evaluation is designed to provide a matcher’s rank within a group of matchers.
Most evaluation methods are not designed to provide a detailed analysis of an indi-
vidual matcher output. To obtain such detailed information, currently it is required
to manually process and interpret the matcher output to identify possibilities for
improvement. In contrast, we propose a new evaluation technique which provides
such information for an individual matcher output, without the need for manual
processing. In the first step of the proposed evaluation method, the correspon-
dences in the gold standard are assigned to the different categories. The same is
done for the matcher output in the second step. Both steps are done automatically —
no user input is required. Then, each category is treated as its own matching prob-
lem where standard metrics can be applied. By automatic annotation to matching
patterns, the matching problem itself is classified into categories. These categories
divide the matching problem into different levels of complexity. On the one hand,
this helps gaining insights about the complexity of the matching task itself, on
the other hand, this helps understanding strengths and weaknesses of a matcher.
Equally important, the categorization provides possibilities for the improvement
of a matcher’s performance.

Furthermore, the categorization helps to understand the performance of a mat-
cher for specific matching tasks. Sometimes a matcher needs to satisfy different
tasks. For example, when finding similar process models in a database it may be
required to be able to identify a high fraction of correspondences which are only
semantically identical, thus have only limited syntactical overlap. However, for
some applications it is simply required to compute a high fraction of identical
labels. For an efficient evaluation it is necessary that the evaluation is able to take

the specific application scenarios into account.
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Currently all correspondences are evaluated together, although the kind of cor-
respondences in a data set differs notably. We know, for instance, that there is a
high fraction of “trivial” correspondences in some data sets. Moreover, the com-
plexity differs significantly with regard to different syntactical overlap which the

activities share. To make this more clear, consider the following example:
« C1: Send application to selection committee — Forward documents

The correspondence C1 is a complex correspondence, because both activities

have no syntactical identical word in common.
« C2: Invite applicant for appointment — Invite applicant for interview

In contrast, C2 has a much lower complexity level, since both activities have
a high syntactic overlap. In this case, after stemming is applied, 2/3 of the words
are syntactically identical. Therefore, it is not reasonable to evaluate all correspon-
dences as a whole. In fact, the evaluation needs to differentiate between different
complexity levels, to allow for a detailed perfomance analysis. On the one hand to
better assess the performance of a matcher and on the other hand to find strengths
and weaknesses of matchers.

The question which arises is which categories actually are useful and which
can be assigned automatically. We want to assess this by the fraction of syntactical
overlap of the activities in the process models. Therefore, we propose a stepped

complexity depending on the syntactical overlap, which we explain in the following:

« Trivial correspondences:

A natural choice is to test if matchers are able to detect trivial correspon-
dences, e.g., correspondences which are syntactically identical after basic

stemming has been applied. (This classification can be done automatically.)

« Correspondences which share one word or the verb, e.g., one word is

syntactical identical:

To achieve a detailed analysis, it is useful to have categories with different
complexity level. Complexity can be measured by the fraction of syntactical
overlap of correspondences. If correspondences share only one word, then
such a correspondence may be complex to detect, because the other words in

the activities do not syntactically overlap and are only semantically identical

96



7.1 Introduction to the Automatic Classification into Matching Patterns

or similar. However, some matchers may already compute a correspondence
if both activities have only one word in common. This results in a low Pre-
cision for this category. With this proposed category we can detect such
shortcomings. We are further interested to learn if it makes a difference
for the matching results if the common word is a verb or any other word.
Most matchers combine the bag-of-word with the Lin-similarity. That means
each words of a label are compared with the corresponding words of the
corresponding label and the highest score for each combination is computed.
Hence, sometimes the similarity score is already high, if two labels share one
word. Therefore, we want to learn if matchers have a high false-positive rate

in this category. (This classification can be done automatically.)

Correspondences which share two or more words:

To achieve a “stepped” complexity level, it is interesting to learn how the re-
sults change with decreasing complexity. Therefore, we propose a category
which includes correspondences with two or more identical words. This cat-
egory is then more complex than the “trivial” category. It is interesting to
observe if matchers already fail to have a high F-Measure in this category.
Therefore, we gain stepped complexity levels of the proposed categories.
Moreover, this naturally leads to the advantage that all correspondences of
the data set are assigned to a category (exclusively). This is an important as-
pect for the evaluation, to fully obtain insight which kind of correspondences
matchers compute. If matchers compute a high fraction of correspondences
which are not part of any category, those correspondences would not be clas-
sified and therefore the information is lost. In this way, we circumvent this

problem. (This classification can be done automatically.)

Complex correspondences (like synonyms):

Most difficult to match are correspondences which have no syntactical over-
lap (as in our example C1 above). This is the case for example for synonyms.
However, to test matchers with the automatic generation of synonyms leads
to the problem that a database is required to access synonyms. Mostly Word-
Net (Miller, 1995) is used in such cases. To generate test cases with synonyms
automatically, the synonyms have to be obtained from such a database. If
matchers use the same database as for the synonym generation, they are

rewarded. This is contrary to the idea of objective evaluation experiments.
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Therefore, we propose to classify a category, which contains alignments
which have no syntactical overlap but can be assigned automatically. Such
a category then contains complex alignments which have only a semantic
similarity. In this way, we avoid the problem of artificially generated cate-
gories. In fact, we obtain a complex category with real-world data, without
any manipulation, which allows to learn if matchers can deal with synonyms.
To complement this complex category we propose categories with stepped
complexity levels, like the categories explained above. (This classification

can be done automatically.)

In the next section we introduce the categories, which we automatically assign.
Furthermore, we illustrate the categories with examples from the data sets of the
Process Model Matching Contest 2015 (Antunes et al., 2015).

7.2 The Categories

The core of the evaluation via matching patterns is to automatically assign cor-
respondences of the reference alignment as well as the computed alignments to
groups with specific attributes. After the automatically generated classification
to one of the categories, the well-known metrics Precision, Recall and F-Measure
(Manning et al., 2008) are calculated for each of theses categories separately. As a
consequence, the matching task is divided into groups with specific attributes. In
the following, we define the categories and illustrate these with examples. The cat-
egories are chosen to provide a deeper knowledge about specific attributes which
are important features of a matching technique. Note that the specific numbering of

the categories is not related to the complexity level of the corresponding category.

Definition 11 (Normalization). For the classification, an activity is normalized, if
(1) all stop words are removed, (2) stemming has been applied and (3) case sensitivity

is ignored.

Example of stop-words are “of”, “for” and “the”. Examples for stemming are

“checking” and “checks” transformed into “check”. (This is a basic step for matchers.)

Definition 12 (Categorization, category). Let Ay, As be the activity sets for two
process models Py and P,. A categorization is a partition into disjoint sets C' (i), ie.,
C(i) C Ay x Ag foralli withU;C(i) = A1 X Ag and C(i)NC(j) = 0 foralli # j.
Any C(1) is a category.
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It is important to note that each correspondence is assigned to one category
exclusively. All correspondences are assigned to a category.
In general, the categories should be chosen carefully. The following character-

istics have to hold when choosing the categories:
« the classification has to be assigned automatically,
« the categories have to resemble difficult matching problems,
« the categories have to resemble trivial matching problems,

« there needs to be a reasonable number of correspondences in each category.
Too many categories lead to too few alignments in each category; too few

categories lack information.

Therefore, we propose the following categories (the examples are extracted
from the gold standard of the data sets of the PMMC 2015 (Antunes et al., 2015)):

Category “trivial”: This category contains alignments which are identical after

normalization.

All remaining correspondences, which are not in Category “trivial”, are assigned

to one of the following categories:

Category | “no word identical”: Alignments which have no word in common

after normalization are assigned to this category. Examples:
Example 1: Evaluate — Assessment of application

Example 2: Hand application over to examining board — Send documents to

selection committee

[The stop word “to” is ignored and not counted as an identical word.]
Example 3: Talk to applicant — Do the interview
Example 4: Shipping — Delivery and Transportation Preparation

Example 5: Shipment — Transportation Planning and Processing

Category Il “one verb identical”: Alignments which are assigned to this cate-
gory have exactly one identical verb after normalization. No other words are

identical. Examples:
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Example 6: Send documents by post — Send all the requirements to the sec-

retarial office for students
Example 7: Wait for results — Waiting for response

[This example illustrates two specific characteristics: the verb is nor-

malized (stemming), the stop word (in this case “for”) is ignored.]
Example 8: Send acceptance — Send commitment

Example 9: Check data — Check documents

Category lll “one word identical”: This category consists of alignments which
have exactly one word (but not a verb) in common after normalization. Ex-

amples:
Example 10: Talk to applicant — Appoint applicant

Example 11: Hand application over to examining board — Send applica-

tion to selection committee
[In this example the stop word “to” is ignored.]
Example 12: Apply online - Fill in online form of application

Example 13: Invoice approval — Invoice Verification

Category IV “> two words identical”: This category consists of correspondences

which share > 2 words. Examples are:
Example 14: Send application — Send application form and documents

Example 15: Send documents to selection committee — Send application to

selection committee
Example 16: Receiving the written applications — Receive application
Example 17: Time Sheet Approval — Time Sheet Permit
One important aspect is the different complexity level of the described categories.
In the following, we discuss each category with increasing complexity level of the
categories.

The Cat. trivial contains identical labels after normalization. Only basic syntac-

tical matching techniques are required to identify such correspondences. This is
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important to assess since matching techniques are required to achieve very precise

results in this category.

The Cat. IV contains only alignments which share two or more identical words.
Therefore this category is a category with less complex alignments compared to
Cat. I through Cat. III.

Cat. II and Cat. III have a rather high complexity level, since these categories
have just one word / one verb in common. Both categories can further indicate if
a matcher produces already a high fraction of alignments if one word or the verb

between two labels are identical.

Cat. I, however, is the most complex category among the introduced categories,
since these alignments have no word in common. They have no syntactical overlap.
Consequently these alignments just have a semantic connection, like this is the
case for synonyms. To identify alignments from this category correctly, a matcher

requires advanced semantic knowledge.

Note that each alignment is assigned to exactly one of these categories exclu-
sively, i.e., the alignments cannot be assigned to several categories. The above
described categories are a partitioning of all possible correspondences in a data set,
i.e., each possible correspondence is assigned to exactly one of the five categories
above, because any non-trivial correspondence has either no identical words, one
identical verb, one identical word which is not a verb or two or more identical

words.

Figure 7.1 illustrates a simplified example of a reference alignment which is
assigned to the above described categories. The figure shows two example process
models, which illustrate the application process of Master students at two univer-
sities. A matcher’s task is to identify correspondences of one process model in
the other process model. The correspondences of this matching task are marked
with different gray scales for each of the introduced categories above. For each
introduced category there is one example in the figure. However, the Cat. IV is
illustrated with two examples of the reference alignment. Note that the illustrated
figure is an example of a reference alignment. For the evaluation procedure also

the alignments computed by a matcher are classified to the matching patterns.

Figure 7.2 illustrates the conceptual structure of the automatically assigned cate-
gories. The matching problem is divided into “trivial” and “non-trivial” alignments.

“Trivial” alignments are any alignments which are identical or identical after nor-
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Cat. Cat. Il Cat. | Cat. IV
Trivial One verb No word = 2 words
identical identical identical
University A

Conduct oral
examination

Send letter of
Rejection
Receive Check Send letter of
Application Application Acceptance

Prepare
Notification

Send

Rejection
Send
Acceptance

Cat. IV

Invite to an
Aptitude
test

Receive Check Archive
Application Documents Documents

University B

Figure 7.1: Example of a categorized reference alignment

malization. “Non-trivial” alignments are all other alignments. The “non-trivial”

category consists of four sub-categories.

7.3 Metrics for the Categories

We define the category-dependent metrics as follows:

Definition 13 (Category-dependent Precision, category-dependent Recall, catego-
ry-dependent F-Measure). Let set G be the gold standard, O be the matcher output
and C(i) be the categories. The set G(i) is the collection of reference alignments
assigned to category C(i), i.e, G(i) = G N C(i) for all i. Similarly, O(i) is the
collection of correspondences computed by a matcher and assigned to category C(i);
ie,O(i) = 0NC(i) foralli.

The category-dependent Precision, cP (i), is defined as

G(1) N O@)]

PO =60

and the category-dependent Recall, cR(i), is given by

L lae) no)
RO =@
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Alignments

Identical after
normalization

Cat. |
No word
identical

Cat. IV
> 2 words
identical

Cat. Il
One verb
identical

Cat. lll
One word
identical

Figure 7.2: Structural dependencies of the categories

The category-dependent F-Measure, cF'M (i), is then

cP(i) - cR(7)

cP is the fraction of correctly computed alignments to all computed alignments
in the category. cR is the fraction of correctly computed alignments to all correct
correspondences (with respect to the gold standard) in category i. Both, category-
dependent Precision and Recall are values between 0.0 and 1.0. A category-dependent
Precision of 1.0 means that all computed correspondences in the corresponding cate-
gory are contained in the gold standard, i.e., O(i) C G(7). In contrast, a Recall of 1.0
means that all correspondences of the gold standard are computed, i.e. G(z) C O(i).
The cFM(i) is the harmonic mean of the category-dependent Precision (cP) and Re-
call (cR). All alignments in the gold standard as well as the matcher output are
assigned to exactly one category exclusively, i.e. there is no overlap between these
categories. After this, category-dependent Precision, Recall and F-Measure of the
alignments are calculated. That means, the categories are evaluated separately and

independently.
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7.4 Experiments

As demonstrated in the previous experiments, we apply the proposed evaluation
procedure to the data sets and participating matchers of the Business Process Model
Matching Contest 2015 and the Process Model Matching Track at the OAEI 2016
and 2017. We will show, which insights the evaluation via matching patterns offers.
We will learn more about the characteristics of the applied data sets and highlight
strengths and weaknesses of matchers. We want to find out if matchers are able
to detect “complex” correspondences and if “trivial” correspondences can be found
reliably. Moreover, we aim to acquire knowledge if the observations are consistent
for all data sets. We will further apply the matching patterns to the probabilistic
evaluation, introduced in Section 5.1.

Additionally to the already introduced data sets of Section 5.4, we apply the
evaluation procedure to the Asset Management data set. This data set consists of
36 model pairs of a SAP Reference Model collection which describe processes in
the area of finance and accounting. This data set was first introduced and applied
at the PMMC 2015.

In our experiments, the matching patterns are assigned automatically to the gold
standard, as well as to the matcher output of the matchers which participated in the
PMMC 2015 and the PMMT at the OAEI 2016 and 2017. Then category-dependent
Precision, Recall and F-Measure are computed for each category separately. After
application of the matching patterns to the gold standard as well as to the align-

ments computed by the matchers, the following results are computed.!

7.4.1 Computational Results

In the following, we provide the experimental results of the categorization of the
matching task for all data sets and gold standards of the PMMC 2015 and the Process
Model Matching Track of the OAEI 2016 and 2017. We further compare the binary
to the non-binary results.

Tables 7.1-7.3 illustrate the results for each data set. The first column provides
a list of all participating matchers. They are listed in alphabetic order. In the

second column, the F-Measure (FM) over all matching patterns is reported as the

"The implementation of the matching patterns, containing the automatic annotation can be accessed
here:https://github.com/kristiankolthoff/PMMC-Evaluator/tree/
master/src/main/java/de/unima/ki/pmmc/evaluator/annotator
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Approach FM Cat. Cat. I Cat. II Cat. III Cat. IV
trivial no word iden. one verb iden. one word iden. > two words iden.
[44.3%][103] [29.3%][68] [11.6%][27] [7.3%][17] [7.3%][17]
cP R ¢cFM P R cFM P R cFEM P R cFM P R M
AML .698 844 959 .862 952 .595 .623 .833 300 .311 667 372 .344 157 576 .183
AML-PM 385 844 963 .864 458 397 334 187 .633 217 .045 .500 .069 112 .970 .151
BPLangM 397 939 816 .864 - - - 462 344 262 152 .526 .175 084 348 .094
DKP 538 844 968 .867 267 .048 .070 - - - - - - 136 .227 .099
DKP-lite 534 844 968 .867 - - - - - - - - - 136 .227  .099
I-Match 472 907 942 .924 - - - 400 .074 125 - - - 500 .059 .105
KnoMa-Proc .394 833 931 .845 - - - 078 133 .067 068 .346 .092 052 .409 .066
KMSSS 544 846 1.0 .883 450 172 151 500 .289 .251 357 .205 .164 142 636 .152
LogMap 481 844 978 .872 - - - 467 167 127 .082 372 .094 .092 530 .110
MSSS .608 844 968 .867 500 .069 .057 .833 .500 .489 - - - 143 091 .083

OPBOT .601 978 706 .774 713 .468 .433 562 322 .290 432 .500 .333 128 530 .164
pPalm-DS 253 843 986 .874 - - - .053 344 .072 029 410 .046 062 .939 .086
RMM-NHCM .668 .954 .930 .928 .821 .374 .397 452 456 .292  .550 .372 .302 178 439 .166

RMM-NLM 636  .843 1.0 .881 486 .324 303 - - - - - - 1.0 .091 .091
RMM-SMSL 543 844 912 .839 778 423 439 152 311 121 - - - .087 .121 .058
RMM-VM2 293 825 767 .759 - - - .044 367 .065 .040 372 .058 081 .742 .110
TripleS 485 843 1.0 881 - - - 077 156 .072 625 179 185 025 121 .029

Table 7.1: Results of University Admission data set

Approach FM Cat. Cat. 1 Cat. II Cat. III Cat. IV
trivial no word iden. one verb iden. one word iden. > two words iden.
[45.9%][102) [34.2%](76) [0.9%][2] [8.1%][18] [10.8%][24]
cP cR  cFM cP cR  cFM cP cR cFM cP cR  cFM cP cR  cFM
AML-PM 677 996 1.0 .998 1.0 .059 .059 .667 1.0 .667 231 .396 .219 571 742 .565
BPLangM 646 996 951 .970 300 .176 .149 1.0 .500 .500 200 354 .161 .646 .706 .528
KnoMa-Proc .355 251 968 .367 - - - .083 1.0 .119 100 .062 .042 .220 570 .237
KMSSS 579 996 1.0 .998 - - - - - - 333 .062 .067 342 552 .297
MSSS 619 996 1.0 .998 - - - - - - - - - 417 127 119
OPBOT .639 996 1.0 .998 250 026 .033 500 1.0 .500 286 469 .252 640 .891 .653
pPalm-DS 474 996 1.0 .998 - - - 1.0 10 1.0 243 312 .161 301 .909 .333
RMM-NHCM .661 996 1.0 .998 - - - - - - 500 .062 .083 667 303 .290
RMM-NLM .653 996 1.0 .998 - - - - - - - - - 1.0 .194 .217
RMM-SMSL 354 990 .582 .659 - - - - - - 333 177 144 333 109 .089
RMM-VM2 .603 996 962 .976 1.0 .059 .059 667 1.0 .667 131 417 126 450 612 418
TripleS 578 996 1.0 .998 - - - - - - 111 .062  .048 372 633 324

Table 7.2: Results of Asset Management data set

micro value, i.e. it is computed over all test cases. The remaining columns pro-
vide the category-dependent Precision (cP), Recall (cR) and F-Measure (cFM) for
each matcher in each category. cP, cR and cFM are macro values, independently
computed for each of the matching patterns. For each category, the tables further
show in the heading the fraction of correspondences from the whole data set as
well as the total number of correspondences of a category in the gold standard. The
best three matchers are highlighted in each category. One central observation is
the distribution of the correspondences in the reference alignments. This aids in

understanding the complexity level of the applied data sets.

105



7 Evaluation by Automatic Classification to Matching Patterns

Approach FM Cat. Cat. I Cat. I Cat. III Cat. IV
trivial no word iden. one verb iden. one word iden. > two words iden.
[4.5%][26] [75.0%][437] [1.5%][9] [9.9%][58] [9.1%][53]
cP cR ¢cFM P R ¢cFM P R cFM P R cFM P cR M
AML 420 759 .846 .800 427 364 393 133 222 .167 438 362 .396  .632 .453 .527
AML-PM 392 190 792 .239 386 .329 .329 .071 .048 .036 496 336 .308 772 366 .382
BPLangM 418 891 594 562 517 254 314 500 .333 .250 .554 346 .340 742 253 .295
I-Match .358 950 .731 .826 746 236 358 .667 222 .333 400 .103 .164 667 151 .246
KnoMa-Proc .262 563 .698 .509 215 279 229 .200 .190 .100 130 .130 .082 519 342 .300
KMSSS .385 908 .688 .701 791 239 308 - - - 450 .148 .143 773 352 355
LogMap .358 339 731 463 726 261 .384 - - - 357 .086 .139 .818 .170 .281
MSSS 332 1.0 .667 .696 973 174 243 - - - .583 .130 .119 1.0 .144 .158
OPBOT 565  .882 .854 .831 676 .422 .483 250 .286 .152 714 485 470 688 451 444

pPalm-DS 459 894 .875 .871 454 .356 .354 .100 .286 .111 452 426 .335 706 .587 .504
RMM-NHCM .456 923 .698 .717 717 319 .389 400 .190 .167  .552 .262 .261 623 292 .283
RMM-NLM .309 1.0 443 487 952 163 .223 - - - 389 130 119 1.0 154 .174
RMM-SMSL 384 667 292 307 506 .329 346 .095 .286 .111 304 194 147 633 .390 .353
RMM-VM2 433 .894 .854 .805 391 339 .339 .050 .190 .056 413 432 335 652  .470 .469
TripleS .384 445 719 450 651 .268 .309 - - - 433 142 131 679 367 .361

Table 7.3: Results of Birth Registration data set

Table 7.1 illustrates the results for the University Admission data set (including
the participants of the PMMT at the OAEI 2016 and 2017). As can be observed,
the University Admission data set consists of a very high fraction of trivial corre-
spondences. Almost half of the correspondences (44,3%) in the gold standard are
trivial correspondences. It can further be observed that most matchers focus on
identifying trivial correspondences. Just few matchers can identify a reasonable
number of complex correspondences. Similar behavior can be observed for the
Asset Management data set in Table 7.2 with 45,9% trivial correspondences. Again,
most matchers focus on identifying these trivial correspondences. No matcher can
achieve good results for Cat. I. For Cat. II and Cat. III there is a similar picture.
However, for the Asset Management data set, the number of correspondences in
Cat. II is too low to draw meaningful conclusions. Moreover, the matchers com-
pute a high fraction of false-positives in Cat. IV, which we can observe by the
very low Precision in this category. Thus, the matchers compute a high fraction of

false-positives when > 2 words are identical.

For the Birth Registration data set (Table 7.3), we can make different observa-
tions. 75% of all correspondences are correspondences of Cat. I. This shows that
this data set is by far the most complex of these three data sets. Similar to the
Asset Management data set, only a low fraction of correspondences of the gold
standard have only the verb in common (Cat. II). Furthermore, it can be observed
that many matchers fail in identifying the trivial correspondences of this data set.

One explanation may be the gold standard for this data set because we find that
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the binary gold standard of the Birth Registration data set does not fully cover all
trivial correspondences or contains wrong trivial alignments. Another observation
is that matcher need to take structural dependencies into account, to differentiate

between wrong and correct trivial alignments.

The Cat. trivial of the Asset Management and the Birth Registration data sets
only contains correspondences which are exactly identical without any normal-
ization. This is not the case for the University Admission data set. Therefore, we
further distinguish between the kind of trivial correspondences, i.e., if these cor-
respondences are “identical” or “identical after normalization”; see Figure 7.2. We
find that in the University Admission data set, about 7% of Cat. trivial consists of
correspondences which are trivial after normalization, like stemming. This is a very
small fraction and illustrates that for the detection of most correspondences of this
category not even a normalization is required. However, the sub-division of Cat.
trivial, helps to understand if matchers are able to detect trivial correspondences,
which require normalization. We found that only the matchers RMM-NHCM and
KMSSS achieved a F-Measure of 1.0 for “trivial” alignments after normalization. This
indicates that most of the tested matchers cannot detect “trivial” correspondences

which require a normalization.

7.4.2 Exemplary Observations and Findings

With the evaluation through matching patterns it is possible to identify character-
istics, strengths and weaknesses of a matcher. The results clearly show that most
matchers focus on finding correspondences with low complexity, i.e., Cat. trivial
and Cat. IV. The matchers clearly lack identifying complex correspondences. This
is especially evident for the Asset Management data set which contains special
technical terms. For detecting non-trivial correspondences, a matching technique
requires knowledge about these terms. It can be observed that the matcher BPLang-
Match, in contrast to the other matchers, is able to identify difficult correspondences
of this specific data set (Cat. I). At the Asset Management data set, Cat. II consists
only of two correspondences and therefore it is impossible to draw conclusions for
this category. The matcher AML achieves very good results for Cat. I (cFM of 0.623)
at the University Admission data set. In general, the matcher OPBOT achieves con-
siderably good results over all categories and test cases. Moreover, the matcher

OPBOT achieves considerably good results for Cat. I in the Admission data set.
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Therefore, it is not surprising that this matcher reaches the best F-Measure on the

Birth Registration data set. (For both, the binary as well as non-binary evaluation.)

Approach University Admission Asset Management Birth Registration

trivial I I I v trivial I 1T I v trivial I II I v

[103] [68] [27] [17] [17] [102] [76] [2] [18] [24] [26] [437] [9] [58] [53]

FP FN FPFN FPFN FPFN FPFN FPEFN FPFN FPFEN FPFN FPFEN FP FN FP FN FP FN FP FN FP FN
AML 12 6 227 122 311 45 8 - - - - - - - - - = 7 4213278 13 7 27 37 14 29
AML-PM 12 5 32 48 60 12 113 10 117 1 10 075 2 0 1911 13 4 48 5 203287 9 8 24 38 6 32
BPLangM 6 24 37 68 820 55 9 70 10 1 51571 0 1 16 13 7 8 72311 6 16 37 6 41
DKP 12 4 19 60 0 27 017 36 14 - - - - - - - - - - - - - - - - - - - -
DKP-lite 12 4 068 027 017 36 14 - - - - - - - - - - - - - - - - - - - -
I-Match 9 6 168 325 0 17 116 - - - - - - - - - - 7 35334 7 952 445
KnoMa-Proc 12 10 1 68 24 23 41 12 134 9 209 7 076 13 0 1517 69 8 12 7 463306 10 7 35 53 15 37
KM-SSS 12 0 16 61 7 18 913 83 6 10 076 0 2 317 61 10 2 7 23326 1 9 752 441
LogMap 12 2 068 423 3911 92 8 - - - - - - - - - - 37 7 43323 1 9 953 244
Match-SSS 12 4 4 64 217 0 17 9 17 10 376 0 2 018 8 21 0o 8 6347 1 9 353 0 48
OPBOT 3 21 11 32 821 12 10 60 8 1 01874 3 027 9 21 2 2 4 74248 5 5 17 29 12 24
pPalm-DS 13 3 5 68 143 15 317 10 216 2 1 0 476 0 0 3513 163 1 4 3 181274 10 7 32 34 17 19
RMM-NHCM 8 3 7 42 13 16 511 36 9 10 076 0 2 117 315 1 7 49295 3 7 12 43 8 37
RMM-NLM 13 0 25 45 0 27 017 017 10 076 0 2 018 0 18 0 13 10352 1 9 753 0 46
RMM-SMSL 11 17 6 34 59 15 8 17 43 15 15 076 0 2 14 14 522 4 16 130291 13 7 19 50 8 39
RMM-VM2 8 20 2 68 114 20 169 11 104 5 17 075 1 03910 16 9 3 4190280 21 7 32 31 13 28
TripleS 13 0 068 52 22 2 14 51 16 10 076 0 2 1916 5 7 25 6 60313 1 9 1052 7 40

Table 7.4: False-positive (FP) and false-negative (FN) alignments for the three data
sets and all matchers, assigned to the categories

Observing the performance of the matchers at the three different data sets, it
seems that the matchers are optimized to the specific data sets. This is a disad-
vantage of making the gold standards publicly available, as it was for example
the case in the PMMC 2015. For example, while the matchers focus on finding
correspondences from Cat. trivial in the University Admission data set and Asset
Management data set, in contrast, at the Birth Registration data set matchers aim at
identifying correspondences from Cat. I. This can also be observed by the number
of false-positive and false-negative alignments for each category (Table 7.4). The
matchers compute a high number of false-positive alignments in Cat. I for the Birth
Registration data set, i.e., the matchers aim at identifying correspondences from
this category. For the Asset Management data set, however, most matchers do not
compute alignments from Cat. I at all. This can be explained by the fact that Cat.
Lis on the one hand the most difficult category, but on the other hand, to succeed
at the Birth Registration data set it is necessary to compute correspondences from
this category. The reason is the very high fraction of correspondences on the whole
Birth Registration data set for Cat. I (about 75%). Furthermore, the Asset Manage-
ment data set contains a high number of technical terms. Therefore, Cat. I is over

proportionally complex at this data set.
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The classification of the false-positives and false-negatives into the categories
allows a more fine-grained understanding about a matcher’s performance. It en-
ables to directly identify where sources for errors of the matchers are. Moreover, it
allows for an application-dependent evaluation, thus “tuning” of the matchers. In
the Asset Management data set, for example, the matcher KnoMa-Proc computes a
very high number of false-positive alignments in Cat. trivial. The matcher RMM-
SMSL misses many trivial correspondences (56) from the Asset management data
set. Moreover, we can observe that in the Birth Registration data set the binary gold
standard seems to contain some errors. This can be observed by the high number of
false-positives and false-negatives which all matchers compute in this category. In
the next section, we will describe the results for the matchers with the non-binary

evaluation and see that we can verify this observation.

7.4.3 Results of the Matching Patterns using Probabilistic

Evaluation

When we apply the evaluation via matching patterns to the probabilistic evaluation,
introduced in Section 5.1, we can make some interesting observations and observe
characteristics about the non-binary gold standard. Firstly, we can observe that the
distribution of the gold standard changes considerably compared to the binary gold
standard. Moreover, in the Birth Registration data set we learn that the binary gold
standard misses a high number of, e.g., trivial correspondences. It is interesting to
observe that the absolute values of many matchers increase with the probabilistic
evaluation in the Birth Registration data set. This is especially surprising because
we expect a decrease of Recall, since the non-binary gold standard covers a much
broader range of correspondences. We can moreover show that the poor results
in the “trivial” category result from mistakes in the annotation of the binary gold
standard. The performance for the Cat. trivial in the non-binary evaluation is much
more reasonable. Hence, the binary gold standard of the Birth Registration data set
has many shortcomings. Moreover, we can observe an increase of the performance
for Cat. I at the Birth Registration data set (e.g., DKP). This also indicates the
shortcomings of the binary gold standard of the Birth Registration data set.

Moreover, we can observe that the fraction of correspondences changes con-
siderably for the University Admission data set. Especially the fraction of “trivial”

correspondences decreases (relatively). However, the absolute numbers (of corre-
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7 Evaluation by Automatic Classification to Matching Patterns

spondences) cannot be compared directly since they are weighted differently in the

non-binary gold standard.

Approach ™M Cat. Cat. I Cat. II Cat. III Cat. IV
trivial no word iden. one verb iden. one word iden. > two words iden.
[7.3%][86] [75.6%][896] [3.1%](37] [7.0%](83] [6.2%][73]
cP cR ¢cFM P R M P R M P R ccFM P R cFM
AML 490 764 701 .731 433 .488 .459 284 .352 314 .539 .580 .559 553 .619 .584
I-Match 504 1.0 .670 .802 816 363 .502 1.0 .222 .364 524 195 .284 .688 301 .419
LogMap 551 882 .814 .847 .847 411 .554 1.0 .019 .036 535 .204  .295 .873 312 .46
AML-PM 509 829 .878 .853 488 484 486 111 .093 101 385 42 402 754 557 .641
BPLangMatch 511 944 611 .742 645 399 493 273 167 207 .59 509 .546 733 375 .496
KnoMa-Proc 296 603 .661 .631 217 45 293 .011 .019 .014 156 .204 177 414 449 431
Know-Match-SSS .527 947 .647 .769 .886 .376 .528 1.0 .019 .036 .676 .221 .333 695 415 .52
Match-SSS 476 1.0 .629 .772 966 .316 .476 1.0 .019 .036 1.0 .173 .294 1.0 .199 .332
OPBOT 576 905 .692 .785 .64 .489 .555 .200 .148 .170 665 .633 .649 583 .636 .609
pPalm-DS 493 867 .710 .781 442 488 464 515 315 .391 379 540 445 545 .761 .635
RMM-NHCM .565 948 .661 .779 781 436 .559 .077 .037 .05 722 367 487 786 .5 611
RMM-NLM 443 1.0 452 .623 931 3 454 1.0 .019 .036 549 173 .263 1.0 .256 .407
RMM-SMSL 464 75 326 454 526 449 485 373 .352 .362 322 252 .283 552 449 495
RMM-VM2 466 906 .701 .791 426 444 435 2 370 .26 441 .558 .492 522 597 557
TripleS 515 439 .679 .533 721 432 54 1.0 .019 .036 51 .221 309 619 443 517

Table 7.5: Results of Birth Registration data set using probabilistic evaluation

Approach FM Cat. Cat. I Cat. II Cat. III Cat. IV
trivial no word iden. one verb iden. one word iden. > two words iden.
[12.3%][108] [50.1%][439] [15.6%][137] [9.1%](80] [12.8%][112]
cP cR cFM  cP cR ¢cFM P R c¢cFM P R c¢cFM P R cFM
AML 424 92 991 945 701 078 .12 1.0 .043 .068 1.0 .164 2 696 429 439
I-Match 271 97 99 979 - - - 5 029 .029 - - - 5 .004 .007
LogMap 418 92 1.0 949 - - - 661 .058 .067 256 .17 125 696 .683 .616
AML-PM .407 92 994 946 441 072 .099 588 .327 .343 283 .441 .273 .649 .818 .665
BPLangMatCh 376 996 .789 .846 .05 018 .024 808 .083 .127 356 .341 .278 .635 575 .526
DKP .343 92 1.0 949 1.0 400 .467 - - - - - - .809 .358 .345
DKP-lite 342 92 1.0 949 - - - - - - - - - .809 .358 .345
KnoMa-Proc 406 949 983 .956 319 121 1 144 152 .085 515 .776 .552
Know-Match-SSS .409 92 1.0 949 378 .041 .051 719 .098 119 .857 .149 .161 593 529 483
Match-SSS 314 92 1.0 949 259 012 .015 941 109 .137 - - - .019 .001 .001
OPBOT 376 939 .62 .681 631 .06 .097 695 .053 .074 483 .19 164 739 374 352
pPalm-DS 276 92 986 .942 143 .002 .004 092 124 .073 069 .203 .077 477 .855 .534
RMM-NHCM 448 966 868 .874 634 .046 .077 1.0 .172 .258 .800 177 .2 903 441 477
RMM-NLM 311 92 1.0 949 263 .043 .061 - - - - - - - - -
RMM-SMSL .356 914 915 .902 777 .058 .098 15 121 .063 - - - .870 485 517
RMM-VM2 320 934 843 .88 - - - 086 .138 .1 143 321 153 591 711 .57
TripleS .300 920 1.00 .949 - - - 073 .04 .033 625 .073 .075 247 131 .093

Table 7.6: Results of University Admission data set using probabilistic evaluation

7.5 Conclusions

We propose a conceptually new evaluation procedure by automatically dividing the
matching task as well as the matcher output into patterns with specific attributes.
The proposed evaluation via matching patterns provides an in-depth evaluation

about a matcher’s performance, including specific strengths and weaknesses. It

110
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replaces the need for manual processing the matcher output, which is very time-
consuming and supports a fast improvement of matching techniques.

Our proposed category-dependent evaluation has the following properties:

informs about the data set, e.g., the complexity of the matching task,

- assesses the gold standard indirectly, e.g., quality and quantity of manual

annotations,
« identifies characteristics as well as strengths and weaknesses of a matcher,
« enables to optimize a matcher to specific application scenarios.

By identifying the strengths and weaknesses of a matcher, the proposed evalu-
ation technique may aid the progress of matching techniques.

Moreover, it allows for an application dependent evaluation, as the evaluation
procedure can aid in improving matching techniques to obtain desired attributes.
The evaluation procedure further is an efficient way to automatically process the
matcher output. It delivers insights in what kind of false-positive and false-negative
alignments matchers generate and therefore enables for an quantitative as well
as qualitative analysis. Moreover, it offers information about the complexity of
the data set. In current literature, complexity is associated with different level of
granularity and the fraction of 1 : m or n : m correspondences. In our evaluation,
we analyze the syntactical overlap of the activities. We found, for example, that for
the University Admission data set, a matcher can achieve a rather high performance,
if it only computes the “trivial” correspondences.

The detailed performance measure, by the categories, allows to predict the re-
sults of matchers for future applications. This prediction helps to choose the best
matchers for each specific application. The approach can be extended by differ-
ent matching patterns. Furthermore, standard metrics can be applied. The only
limitation is that they can be assigned automatically.

To overcome this limitation, we propose synthetic test cases, which complement
the matching patterns. To keep the manual effort as low as possible, we propose
a framework were the test scenarios are generated semi-automatically. The test
scenarios allow to test and tune matchers to specific applications and challenges.
As a result we get synthetic test scenarios, with real-world data. They can be com-

plemented by different synthetic test cases which can be generated automatically
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7 Evaluation by Automatic Classification to Matching Patterns

as well as semi-automatically. However, even the models are generated from real-
world data, the manipulation of the models may lead to artificial circumstances.
However, the aggregation of the correspondences of the gold standard as well as
matcher output provides test scenarios like synthesized data sets, with real-world
data. Therefore, matchers can be tuned and tested for a specific application sce-
nario.

We will introduce the synthetic scenarios in the outline in Section 8.2.1 and show
some future possibilities regarding a prediction of the performance of matchers. To
offer the evaluation of all metrics as well as all evaluation frameworks and synthetic
data sets, introduced in this thesis, we implement an “Evaluation Portal” which can
be assessed by researchers in the field of process model matching. All described
metrics and evaluation methods can be assessed via this portal. We will describe

the evaluation platform in greater detail in Section 8.2.2.
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Summary, Conclusions and
Outlook

In this chapter, we summarize the main contributions of the thesis in Section 8.1.
Moreover, we give an outlook about how to use, access and complement the intro-
duced evaluation procedures and metrics in Section 8.2. As an outlook for further
evaluation procedures, we moreover introduce synthetic test cases, which may aid
in a deeper understanding of the functionality of matching techniques and allows
to tune matchers to fulfill specific attributes in Section 8.2.1. In Section 8.2.2 we
introduce the evaluation platform, which allows to access all metrics, introduced
in this thesis. Moreover, we provide an approach to predict the performance of
matching techniques for specific data sets with the results of the experiments in
Section 8.2.3. Section 8.2.4 states additional possible future research directions in

the field of process model matching evaluation.
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8 Summary, Conclusions and Outlook

8.1 Thesis Summary

In this thesis, we introduced a probabilistic evaluation procedure for process model
matching techniques. In this context we introduced a non-binary gold standard,
where we calculated and included the support values of the annotators of the non-
binary gold standard. We adapted the standard notions of Precision and Recall
to comprise non-binary values and introduced Bounded variants of the measures,
which can be computed with the determination of a specific threshold. Moreover,
we introduced a distance-based performance measure. This metric takes the argua-
bility of correspondences with low support values explicitly into account. If match-
ers compute a correspondence with low support value it is marginally sanctioned.
With this metrics we conducted experiments with the data sets and matchers from
the Process Model Matching Contest 2015 and the Process Model Matching Track
at the OAEI 2016 and 2017.

The metrics proposed in this thesis allow for a more fine-grained evaluation,
since they offer insights, for instance whether matchers focus on identifying cor-
respondences with low support or with high support values. Therefore, we can
acquire knowledge if matchers are suitable for a specific application scenario. In
our evaluations with the non-binary gold standard, we found that the ranking of
the performance of the matchers for the tested data sets change considerably for
some matchers. Moreover, we learned that the binary gold standard did not contain
many correspondences which are reasonable and even have a high support value
in the non-binary gold standard. In the probabilistic evaluation with the Birth
Registration data set, we observed that some matchers improve their performance
absolutely. This is especially surprising, since we expect a decrease of Recall, due
to the high coverage of correspondences in the non-binary gold standard. However,
this indicates that the binary gold standard does not contain many correspondences

which are actually correct and highlights the risk of a binary evaluation.

Furthermore, we introduced a ranking-based evaluation method for process
model matching where the confidence values of the matchers as well as the support
values of the non-binary gold standard are considered. However, in this completely
non-binary evaluation procedure the confidence values itself are not considered.
The confidence values are only considered to compile a ranked collection of cor-
respondences. Besides the performance measurement, this aids in understanding

to which extent the results and confidence values of matchers correlate with the
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8.1 Thesis Summary

support values of the non-binary gold standard. It helps to understand whether
the confidence values of a matcher reflect a similar distribution of the non-binary
gold standard. In the experiments, we learned that the matchers from the Process
Model Matching Contest only have a small rank-correlation with the non-binary
gold standard. Some matchers even have a negative rank-correlation. This results
from the high number of false-positives which some matchers compute with a high
confidence score. This means that the confidence scores which some matchers com-
pute, do not reflect the actual distribution properly. Thus, the confidence scores
which some matchers compute, do not properly give the extent in how far one

should trust in the correspondence.

Furthermore, we introduced a category-dependent evaluation procedure. The
matching task as well as the matching results are split into categories with different
attributes and complexity levels. In this way, we provide an in-depth evaluation
which offers insights about specific strengths and weaknesses of matchers. More-
over, the category-dependent evaluation provides diverse insights about the data
set itself. It further enables to tune matchers to specific application scenarios. We
found that the University Admission data set and the Asset Management data set
consist of a high fraction of “trivial” correspondences. We learned that in both data
sets the matchers focus on computing “trivial” correspondences. The matchers fail
in identifying complex correspondences, which have a weak syntactical overlap.
We further classified all false-positive and false-negative correspondences, com-
puted by the matchers into the introduced categories and therefore pointed out

specific areas of improvement of matchers.

The introduced evaluation methods and metrics were applied in the context of
the Process Model Matching Track at the Ontology Alignment Evaluation Initiative
2016 and 2017 (Achichi et al., 2016, 2017). There the results of the participating
ontology matchers are evaluated with the introduced evaluation procedures, de-
scribed in this thesis.

Table 8.1 briefly summarizes the approaches introduced in this thesis. It further
indicates which measures have been applied to the Process Model Matching Track
at the OAEI 2016 and 2017. The approaches which have not been applied (ReD
and Ranking-based evaluation), have been published after the OAEI 2017 has been
conducted.

In addition to the above described approaches, we propose synthetic generated

test scenarios which also take structural dependencies of the process models into
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Approach Attributes Applied at  Applied at
OAEI 2016 OAEI 2017

Non-binary Gold standard Definition of a non-binary GS, which takes the uncertainty of X X
a GS into account. Uncertain correspondences are included
and assigned with a support value.

ProP, ProR, ProFM Adaption of Precision, Recall, F-Measure to consider non- X X
binary values, in this way the uncertainty of the GS is consid-
ered in the metrics.

Bounded ProP,ProR,ProFM Adaption of the probabilistic measure, which allows to ex- X -
clude correspondences under a chosen threshold.

Relative Distance (ReD) Distance-based measure, which takes the non-binary GS as ba- - -
sis; in this measure, correspondences with low support-values
are marginally sanctioned.

Ranking-based Evaluation Correlation-based evaluation, which transforms the matcher - -
output and GS into a ranked collection of correspondences,
then the correlation is applied. (completely NB)

Matching Patterns Category-dependent evaluation, which divides the matching - X
task and results into different levels of complexity.

Table 8.1: Summary of the introduced Evaluation Approaches

account, to complement the category-dependent evaluation. This is introduced in
Section 8.2.1.

Furthermore, we provide an evaluation framework, which is an “Evaluation
Portal” where researches can access the evaluation methods and metrics which we

introduced in this thesis. We describe the “Evaluation Portal” in Section 8.2.2.

In addition to the above stated findings, the category-dependent evaluation
enables to predict the performance of matchers for specific data sets. We provide
an overview of such a prediction in Section 8.2.3. There we will try to learn how
complex the matching task is, to give a recommendation about which matchers

may be most successful on a given matching task.

8.2 Future Research

In the following, we discuss future work in the evaluation of process model match-
ing techniques and give an outlook of approaches for future evaluation experiments.
We introduce semi-automatically generated synthetic scenarios, which we propose
for future evaluation experiments. Furthermore, we want to provide an outlook in
how far the evaluation results of the matching patterns may allow for a prediction

of the performance of matchers for specific data sets.
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8.2 Future Research

8.2.1 Semi-automatically Generated Synthetic Test Scenarios

The categorization to matching patterns introduced in Section 7.1 is annotated
automatically. This automatic annotation naturally leads to a limitation of the
problem classes, since not each possible category can be assigned automatically so
far. The aim of the synthetic scenarios is that they resemble typical difficulties of
process model matching tasks. Moreover, we want to learn if matchers consider
structural information or background information of the process models, such as
textual descriptions. Currently most matchers compare the activity labels, however
there are also matching approaches which use the control flow information of
business process models, like by Klinkmiiller and Weber (2017). To complement
the matching patterns by test cases which include such scenarios and test cases
which cannot be generated automatically, we propose synthetic scenarios.

The manual effort to generate those scenarios has to be as low as possible. There-
fore, we propose semi-automatically generated synthetic test cases. To complement
the above introduced matching patterns, we chose synthetic scenarios which reflect
typical difficulties in data sets. However, some of the synthetic test cases cannot
be assigned completely automatically. One example is the generation of synonyms,
as we explained in Section 7.1. Therefore, we generate transformation rules de-
pending on the matching scenario and depending on application requirements of
the matching techniques. On the one hand, we want to learn if matchers also take
the structure of process models into account, or if they use different background
information or if they are solely label-based. The original models can be manip-
ulated manually and automatically. Then as a next step the manipulated models
can be compared to the original models. In this way, the gold standard is obtained

automatically.

8.2.1.1 Transformation Rules of the Synthetic Test Scenarios

In (Ferrara et al., 2010) the organizers introduce synthetic scenarios. Those test
cases are artificially generated test cases. They provide additional information
about the ability of matchers to solve specific matching tasks. One example is
to test if ontology matcher are able to detect synonyms. The synthetic datasets
itself are artificially generated and therefore cannot resemble real-world data sets.
Moreover, for the automatic generation of such test cases libraries such as WordNet

(Miller, 1995) are utilized to find (for example) synonyms. However, most matchers
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rely on libraries like WordNet, therefore, we propose the manual generation of the
synonyms. Moreover we propose to manipulate real-world data sets in a way that
they fulfill typical difficulties in process model matching tasks. To simplify this we
propose semi-automatically generated test scenarios, where part of the generation
is done manually. In the following, we introduce the synthesized data sets and
present which insights can be obtained.

In the following, we describe those transformation rules and possible scenarios
and indicate which of the test scenarios are manipulated semi-automatically, thus
require manual input.

Semi-automatic generated test scenarios:

1. Generate 1 : m correspondences:

a) Insert activities to the process model:

The original models are manipulated in a way that 1 : m correspon-

dences emerge.
Example: evaluate — check application, score qualification, sum scores

b) Summarize activities to one activity: the opposite step (to summarize
activities) has the same effect. In this way, 1 : m correspondences are

generated.

Example: print out and sign application form, collect additional required

documents — prepare application
2. Manually replace words by synonyms

3. Manipulate activities: Adding stop words, use abbreviations, adding typos

In real-world data typos exist and abbreviations are used. To test if match-
ers offer such a functionality we add typos or manipulate models by using

abbreviations.

4. Process models with (one) identical label: Matchers which do not take the
structure of process models into account, generate n : m mappings. The
matchers would match each identical label with each other. The evaluation of
such matchers, would also indicate if matchers take structural dependencies
into account or if they can deal with the structural information only. The

distribution of the results can indicate this.
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Automatic generated test scenarios: !

1. Background information are removed, the models itself are not changed. The
results are compared to the original models. If the results change it indicates

if matchers take background information into account.

27 Delete words from activity

Example: send letter of rejection — send rejection

3." a) Mapping of part of the process model with the original process model
Example: Mapping of half model of process model 1 with half model of
process model 2. It helps to understand if matchers take structural properties

of the process models into account.

4 Flip the process model vertically. The activities are exchanged vertically. This
tests if matchers take structural dependencies of the process models into

account.

8.2.1.2 Conclusions

We introduced synthetic scenarios, which complement the matching patterns from
Chapter 7.1 in different ways. On the one hand the synthetic scenarios complement
the matching patterns by test cases which cannot be extracted automatically from
the data sets. On the other hand the synthetic scenarios assess if matchers take
structural information or background information into account or if they work
solely label-based.

We will include the synthetic data sets to the “Evaluation Portal”, which we
introduce in the next section. There the synthetic data sets can be downloaded and
the matchers can be applied on the new data sets. Then the results can be evaluated

via this platform.

8.2.2 Evaluation Portal

To give researchers open access to all introduced evaluation procedures and metrics
we establish an evaluation framework, where researchers can upload their matcher
output and evaluate them against the introduced metrics. As a basis for the ex-

periments the data sets from the Process Model Matching Contests are available.

"With a * noted steps are done completely automatically.
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Moreover, the synthetic test cases can be downloaded. The Portal can be accessed
online?.

In the following, we give a short introduction to the functionality and features
of the evaluation platform.

At first, the User has to register to the portal and to log into the system. After
this short registration process, the User can access the evaluation portal. Figure 8.1,
shows the start page of the evaluation portal, after the log-in has been performed.
At this stage the User can choose a data set, on which he or she wants to perform
the evaluation experiments. In this case the University Admission data set and the
Birth Registration data set are available for evaluation.

After the choice of the data set has been performed, the corresponding matcher
output can be uploaded for the evaluation (cf. Figure 8.2 and Figure 8.3).

After the matcher output has been successfully uploaded, the User is asked for
the choice of the metrics for the evaluation experiments (Figure 8.4). Then the
evaluation can be conducted. The uploaded results are compared to the choice
of gold standards. After the information have been computed, the results page
appears, which summarizes all selected metrics and data. This is illustrated in the

screen-shot in Figure 8.5.

®http://alkmaar.informatik.uni-mannheim.de/pmmc
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Figure 8.5: Results page with choice of metrics
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8 Summary, Conclusions and Outlook

8.2.3 Predicting the Performance of Matchers

The introduced matching patterns from Chapter 7.1 allow for a detailed analysis of
the performance of matching techniques, without manually processing the matcher
output. It helps understanding strengths and weaknesses of matchers and to tune
matchers to specific application scenarios. However, the insights gained by this
evaluation procedure may also be a basis for a prediction of the performance of
matching techniques. Moreover, it can help to classify the complexity of the match-
ing task itself.

The insights gained by the classification to matching patterns can be directly
applied for such a prediction, if the structure (fraction of matching patterns) of the

matching task is known in advance. Then the following can be applied:

« to apply the best matcher of the dominant group of the matching task

« to apply an ensemble of matchers which have the best performance in the

most dominant group(s)

« to apply an ensemble of matchers which have the best performance of the

most dominant groups, thus complement each other

In schema- and ontology matching as well as process matching, an ensemble
of matchers was proposed to achieve better matching results (Eckert et al., 2009;
Gal and Sagi, 2010; Meilicke et al., 2017). In our case, the ensemble of matchers is
then selected depending on the performance of the matchers in the most dominant
categories of the applied data set.

In many applications the “structure” of the data set, in terms of the distribution of
complexity of the correspondences of the matching task may be known in advance.
However, in some matching context the structure of the data set may not be known
in advance. One approach to learn more about the data set, especially about the
complexity of the matching task, may be to use the results of the matchers which
solved a given matching task. Then the results can be assigned into the categories,
introduced in Section 7.2. The matchers results, classified into the categories, can
serve as a hint to get information about the complexity of the matching task.

To follow this approach, we compute the results of an ensemble of matchers to
learn if we can in this way get information about the distribution of the data set. To
learn if the approach can provide such information, we test it at the data sets of the
PMMC 2015. Similarly like proposed in Meilicke et al. (2017), we chose an ensemble
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of computed correspondences. In our case we compute all correspondences where
two matchers agreed on. As a next step, we apply the categorization to the matching
patterns, which we introduced in Section 7.1.

For our experiments, we take the ensemble of the results of all matchers which
participated in the PMMC 2015 and the Process Model Matching Track of the OAEI
2016 and 2017. The results are given in Table 8.2 - 8.4.

Category # Alignments Distribution Actual Distribution
in % in %

TRIVIAL 108 17.0 44.4

Cat. I 56 8.1 29.3

Cat. II 142 20.5 11.6

Cat III 143 20.7 7.3

Cat. IV 229 33.1 7.3

Table 8.2: Characteristics of the University Admission data set (with n=2)

Category # Alignments Distribution Actual Distribution
in % in %

TRIVIAL 36 5.8 4.5

Cat. 1 422 68.5 75.0

Cat. I1 25 4.1 1.5

Cat. II1 77 12.5 9.9

Cat. IV 56 9.1 9.1

Table 8.3: Characteristics of the Birth Registration data set (with n=2)

Category # Alignments Distribution Actual Distribution
in % in %

TRIVIAL 103 38.7 45.9

Cat. 1 1 0.4 34.2

Cat. II 12 4.5 0.9

Cat. III 39 14.7 8.1

Cat. IV 110 41.5 10.8

Table 8.4: Characteristics of the Asset Management data set (with n=2)

In Tables 8.2 - 8.4, we give the results forn = 2, e.g., computed correspondences
of at least two matchers. In the Tables 8.5 — 8.7 the results of n = 3 are given. The

first column states the five categories, the second column gives the number of
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Category # Alignments Distribution Actual Distribution
in % in %

TRIVIAL 108 25.3 44.4

Cat. 1 51 10.9 29.3

Cat. II 55 11.85 11.6

Cat. III 58 12.5 7.3

Cat. IV 182 39.2 7.3

Table 8.5: Characteristics of the University Admission data set (with n=3)

Category # Alignments Distribution Actual Distribution
in % in %

TRIVIAL 27 6.8 4.5

Cat. 1 269 67.8 75.0

Cat. II 12 3.0 1.5

Cat. II1 46 11.6 9.9

Cat. IV 43 10.8 9.1

Table 8.6: Characteristics of the Birth Registration data set (with n=3)

Category # Alignments Distribution Actual Distribution
in % in %

TRIVIAL 103 51.5 45.9

Cat. 1 1 0.5 34.2

Cat. II 4 2.0 0.9

Cat. III 16 8.0 8.1

Cat. IV 76 38.0 10.8

Table 8.7: Characteristics of the Asset Management data set (with n=3)

correspondences which are computed for n = 2 and n = 3, respectively. The third
column provides the fraction on the whole data set for the corresponding category.
The last column states the fraction of the categories from the gold standard.

For both (n = 2 and n = 3), we can observe that for two out of three data sets
the results do not totally reflect the realistic distribution of the kind and fraction of
correspondences of the data sets. However, for the Birth Registration data set (Table
8.3) the results provide a very accurate impression about the distribution of the
correspondences of the data set. In the results in Tables 8.2 — 8.4, we consider each
correspondence, which is computed by at least two matchers. We also computed

the results for n = 3 to reduce the number of false-positives. This improves the
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results, e.g., the fraction of the categories, and therefore better reflects the real
distribution for the University Admission data set and Asset Management data set
(cf. Table 8.5 and Table 8.7).

However, the results are still not that convincing compared to the Birth Regis-
tration data set. Especially Cat. I and Cat. IV do not reflect the realistic distribution.
The reason are the many false-positive correspondences which many of the match-
ers compute. This is especially evident for Cat. IV in the University Admission
data set and partially for the Asset Management data set. We have observed this
property already in Section 7.4.1. This category consists of correspondences with
> 2 syntactic identical words. Therefore, many matchers compute a high fraction
of false-positives in this category.

To make this more clear, consider the following example of two activities which
should not be matched. The example is extracted from a matcher output:

“Fill out application form” — “Receive application form”

Those activities describe a different action, therefore the example is no correct
correspondence. Some matchers compute a high fraction of such false-positive
correspondences. The reason is that the similarity measures of the matchers cal-
culate a high similarity score because of the two identical words “application” and
“form”, even “Fill out” and “Receive” have a low similarity score. However, the
average similarity score of the three words is above the threshold, which many
matchers use. Thus, some matchers compute a high fraction of such false-positive
correspondences.

We can observe this also in the results above on the very high fraction of corre-
spondences of Cat. IV (cf. Table 8.2 — Table 8.4). This indicates that the prediction
of the performance of matchers for unknown data sets might only consider the
ensemble results of the matchers with the best performance, not of all matchers. In

practice, this is also more feasible, since not all matchers are available for execution.

129



8 Summary, Conclusions and Outlook

8.2.4 Additional Future Research Directions

In the previous section, we gave an introduction to future research directions in
the field of process model matching evaluation and highlighted the possibilities to
use evaluation results to predict the performance of matching techniques.

In this section, we outline additional possible research directions in process
model matching evaluation.

In future experiments the evaluation of process model matching techniques
should offer a broader range of data sets, and may contain synthetic scenarios
as we introduced in this chapter. Those synthetic scenarios are generated from
real-world data and therefore provide a realistic setting. This can complement the
existing data sets also in terms of structural properties of the process models.

In future work, it would be interesting to apply such approaches which translate
the process models into ontologies. This would help to understand if correspon-
dences, computed by a matcher are close or related, or totally unrelated and thus
simply wrong. Such an approach for Ontology Matching was introduced in Ehrig
and Euzenat (2005).

To translate process models into ontologies has been conducted already for the
Process Model Matching Track at the Ontology Alignment Evaluation Initiative
(Achichi et al., 2016). There, ontology matcher were applied to process model
matching. However, the translation into ontologies did not aim to provide all
information of the process model into an ontological structure. The translation
was performed to apply ontology matchers to the matching of the process models
on a label-based comparison.

However, there have been further approaches to translate process models into a
hierarchical representation, as in Vanhatalo et al. (2009). Such a translation would
allow for an analysis of the matcher output, in particular the false-positives, com-
puted by a matcher. In this way, the false-positives can be analyzed to learn whether
both activities are related or simply wrong. Nevertheless, in real-world data, the
process models are not always consistent. The process models are, for instance,
not always modeled totally consistent with regard to the structure and hierarchy.
Sometimes, for instance, “Swimlanes” are not considered correctly. Moreover, there
are many different formats for the process models, like in the data sets which we
used for this thesis, in EPC, BPMN or Petri-Nets.

For each format a different translation into ontologies is required. This addi-

tionally makes such a translation sophisticated.

130



8.2 Future Research

However, for correctly modeled process models it would be an interesting ap-
proach to better differentiate the incorrect computed alignments.

This may also help to determine a threshold for a specific matcher. Moreover,
it could aid in an improvement of matching results. However, this would not just
result in a more detailed evaluation. To install such constraints for a matcher, to
not match activities from a different hierarchy, may improve the matching results

of future matching techniques.
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