A new view on complex span tasks.

Using eye tracking to reveal how eye movements are supported by activated long-term memory.

Lucas Lörch

University of Mannheim, Germany Email: lloerch@mail.uni-mannheim.de

Embedded-Processes Model (Cowan, 1999)

Chunking: Experts in a domain can use information in LTM to group the input and thereby, increase their memory capacity (Cowan, 2001).

Expertise effects on eye movements: Eye movements during reading of musical notation change with expertise (Waters, Underwood & Findlay, 1997). Therefore, we can assume that the central executive controls eye movements and - while doing so - is supported by activated LTM.

→ How does an increased activation of task-irrelevant information influence eye movements?

Task: complex span task for musicians:

- Memory task: remember the pitch of a single note
 - → recall accuracy
- Processing task: perform a short, unknown melody on a piano
 - → accuracy of musical performance
 - number of fixations

Design: one-factorial within-participants design with the factor *chords*. In the *chords* condition, successive memory notes form major chords, in the *no-chords* condition they form a nonsensical sequence

Analyses: Linear mixed effects regression with the predictors *chords, serial position* (position within the 12 repetitions of one trial), *trial number* (position within the 4 trials of the experiment) and by-participant random intercepts and random slopes.

Sample: *n* = 75 music students from the *Mannheim University of Music and Performing Arts*

Recall accuracy:

Large difference between conditions $M(SD)_{chords} = 0.86 (0.34)$ $M(SD)_{noChords} = 0.61 (0.49)$

Accuracy of musical performance:

Nearly perfect performance $M(SD)_{pitchAcc} = 0.95 (0.15)$ $M(SD)_{rhythmAcc} = 0.91 (0.16)$

Number of fixations:

More fixations in the chords condition

....and with increased serial position.

Explanation:

No chunking/ few notes stored in memory

Increased activation of information that is relevant for the musical performance

Reading with fewer fixations

Chunking/
many notes stored in memory

Decreased activation of information that is relevant for the musical performance

Reading with more fixations

References:

Cowan, N. (1999). An Embedded-Processes Model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). New York, NY, US: Cambridge University Press.

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–185.

Waters, A. J., Underwood, G., & Findlay, J. M. (1997). Studying expertise in music reading: Use of a pattern-matching paradigm. Perception & Psychophysics, 59(4), 477–488.

https://doi.org/10.3758/BF03211857