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Abstract

In this paper we derive an efficient optimization approach to calculate optimal controls

of electric transmission lines. These controls consist of time-dependent inflows and switches

that temporarily disable single arcs or whole subgrids to reallocate the flow inside the system.

The aim is then to find the best energy input in terms of boundary controls in combination

with the optimal configuration of switches, where the dynamics is driven by a coupled sys-

tem of hyperbolic differential equations. Our optimization approach is a two-step heuristic

based on the idea of partial outer convexification. We examine the applicability of a discrete

approximation lemma and introduce a third step to improve the quality of the heuristic. A

comparison with a direct solver yields very promising results.
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1 Introduction

In a world full of electrical devices, energy management has become one of the most relevant fields
of research. Various publications focus on different aspects of energy supply [2, 16, 18, 30, 38, 45,
46, 47, 54]. This work will be based on [27]. Therein the computation of optimal power source
outputs for a given set of customer demands in a power network has been considered.

In current research [20, 41, 44] the focus lies on the opportunity to temporarily change the topol-
ogy of the network and thus on the opportunity to influence the distribution at inner vertices. The
so-called optimal transmission switching is based on the classic power flow problem [7, 9, 14, 37],
an algebraic system of nonlinear equations. We will contribute to this by deriving an alternative
approach based on the telegraph equations [22, 25, 34], which are a system of hyperbolic partial
differential equations (PDEs). We will present a model which is an extension of the power network
problem from [27], which contains additional binary variables. This results in a mixed-integer non-
linear optimization problem (MINLP), which requires more sophisticated solution methods that
exploit the structure of the problem.

Therefore, an alternative approach, partial outer convexification, has reached popularity in
the field of optimal control problems constrained by ordinary differential equations. In outer
convexification [48, 49], a heuristic has been derived, that approximates the optimal solution of
the MINLP by first solving the NLP-relaxation and afterwards rounding the values of the binary
variables via a suitable rounding strategy given by a mixed-integer linear problem (MILP). This
approach has rarely been applied to PDE-constrained problems [26, 32, 33]. Outer convexification
has the advantage of an approximation lemma that guarantees the convergence the approximate
solution against the solution of the NLP-relaxation if the time step size approaches zero for a fixed
spatial step size. In general, this result should be handled with care. Considering the time and
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space step sizes individually can have a severe effect on the approximation of the partial differential
equation due to effects like numerical diffusion.

The outline is as follows: In section 2 we extend the optimization problem from [27] to the
MINLP of interest. Then we present a valid discretization and additional constraints that occur in
practice. In section 3 we introduce the two-step heuristic of partial outer convexification and prove
that an important approximation result can be applied in the case of the extended power network
problem. Furthermore, we extend the heuristic by a third step, which involves the solution of an
additional NLP, which can be viewed as a postprocessing step to obtain more reliable solutions.
We conclude this article in section 4 by comparing the heuristic with directly solving the MINLP.

2 Modeling

Several different mathematical models for transmission lines or power grids are present in the
literature. Nevertheless, our starting point is the model considered in [25, 27], which is based on
the telegraph equations, a coupled 2× 2-system of balance laws describing the transport along a
single transmission line with space coordinate x ∈ R and time coordinate t ∈ R

+

∂tξ(x, t) + Λ ∂xξ(x, t) +B ξ(x, t) = 0, (1)

where

Λ =

(

λ+ 0
0 λ−

)

, with λ± = ±(
√
LC)−1

and

B = [bij ] =
1

2

(

RL−1 +GC−1 RL−1 −GC−1

RL−1 −GC−1 RL−1 +GC−1

)

.

Here, ξ = (ξ+, ξ−) with ξ±(·, ·) ∈ R are the so-called characteristic variables, where ξ+ represent
right-traveling components and ξ− represents left-traveling components. Inductance, capacitance,
resistance and the admittance per unit length of the conductor are represented by the constant
parameters L,C,R and G. The voltage and current can be computed from the characteristic
variables [25].

2.1 The optimization problem

We would like to start by revisiting the optimization problem (5) of [27]. Therefore we introduce
a network G = (V,A) with power sources VQ ⊂ V and customers VS ⊂ V . Let δ+v denote
the set of outgoing arcs of vertex v and δ−v denote the set of ingoing arcs of vertex v, then
VS = {v ∈ V ||δ+v | = 0} and VQ = {v ∈ V ||δ−v | = 0}. Our aim is to minimize the mismatch
between the load and the demand at all customers of the set VS in the network by choosing the
optimal inflow controls uq(t) for all power sources q ∈ VQ. Furthermore the set δv is the set of all
arcs adjacent to vertex v. We denote by n = |V | the number of vertices of graph G and by m = |A|
the number of arcs. We interpret each arc r as an interval Ir = [0, lr] with length lr and define the
distribution at inner vertices through constant distribution matrices D± ∈ R

m×m. We assemble
the ξ(·, ·) of all arcs to a vector ξ and all power inflows uq(t) to a vector u. Furthermore matrices
Λ and B are composed of the matrices Λ and B of the different arcs in order to formulate the
transport along the arcs and the coupling and boundary conditions in compact form

∂tξ +Λ∂xξ +Bξ = 0 (2)

and
(

Λ+ 0
0 D−

)

ξ(0, t) =

(

D+ 0
0 Λ−

)

ξ(l, t) +

(

Λ+ 0
0 0

)

u(t), (3)

where Λ± handle the possibly different properties of the transmission lines.
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Furthermore we assume fixed values as initial conditions

ξr(x, 0) = ξ0(x) ∈ R ∀r ∈ A, x ∈ [0, lr]. (4)

In order to measure the mismatch between the transmitted load and the demand Qs(t), s ∈ VS

for a time interval [0, T ] , we define the load at customer s at time t as

Cs(t) =
∑

i∈δs

ξ+i (li, t).

Finally, we can formulate the optimization problem (5).















min
u∈U

F (ξ,u) = 1
2

∑

s∈VS

∫ T

0
(Qs(t)− Cs(t))

2
dt

s.t. (2), (3) and (4),

(5)

where u can be chosen from the set of feasible inflow controls U . For more detailed derivations of
the optimization problem, we refer to [25, 27].

The theoretical results on the existence of optimal controls for this type of problems can be
found in [15]. Therein the authors prove the existence of an optimal control for a system of
nonlinear conservation laws with a source term under certain conditions. These results apply to
problem (5).

Next, we introduce switches in the form of binary variables swr(t) for the telegraph equations
and extend the power network flow problem (5). The ideas are universally applicable and can
be applied to other network frameworks with time-dependent variables as well. Without binary
decisions the distribution at a vertex is predetermined at all points in time, cf. equation (3). We
influence the distribution at crossings by disabling certain arcs or subgrids. This means that if arc
r = (v1, v2) were to be disabled at time t, we would need to ensure that no flow from arcs entering
nodes v1 or v2 is distributed to ξ+r (0, t) or ξ

−
r (lr, t), respectively.

In Figure 1 we see a network with two arcs (marked with a hatched circle) that can be tem-
porarily disabled, namely arc 4 and arc 5. If arc 4 is disabled, then all load ξ+ that reaches vertex
4 will be distributed to arcs 2 and 3 and all load ξ− that reaches vertex 4 will be passed on to arc
1.
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Figure 1: Extended tree-network with two switches (hatched circles).
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In partial outer convexification [48, 50, 51] we do not consider single switches. Here, binary
variables are defined that contain the information about all switches. We will call these binaries
outer controls, to avoid confusion with the single switches. A finite set of configurations Ω of
different outer controls is predetermined and the corresponding binary variables bc(t), c ∈ Ω are
introduced. Considering the graph of figure 1 there are four outer controls. The first control
implies that arcs 4 and 5 are active, the second control demands inactivity of both arcs and
controls three and four demand that exactly one of the arcs is active. In general any combination
of the states of all switches is possible and therefore there are |Ω| = 2nsw outer controls, where nsw

denotes the number of switchable arcs. The number of outer controls can be reduced if constraints
connecting different switches are known. For example if for some reason switch 1 has to be on if
the switches 2 and 3 are off, then any outer control contradictory to this relation can be neglected.
This is reasonable for example in the context of traffic light control [26], where accidents can be
caused by a wrong combination of green phases of different traffic lights, but also in the case of
power networks where it can be important to prevent overvoltage for example. We will denote
the number of outer controls as noc = |Ω|. For each outer control c constant distribution matrices
D+

c = ( cd+rk) ∈ R
m×m and D−

c = ( cd−rk) ∈ R
m×m are defined. When applying partial outer

convexification we substitute (3) by

(

Λ+ 0
0

∑

c∈Ω

bc(t)D
−
c

)

ξ(0, t) =

(∑

c∈Ω

bc(t)D
+
c 0

0 Λ−

)

ξ(l, t) +

(

Λ+ 0
0 0

)

u(t). (6)

Since an outer control c includes information about all switches at a given time t, we know
that exactly one control can be active simultaneously, which results in so-called SOS constraints
of type 1:

∑

c∈Ω

bc(t) = 1 ∀t ∈ [0, T ]. (7)

The optimization problem becomes















min
u∈U,b∈B

F (ξ,u, b) = 1
2

∑

s∈VS

∫ T

0
(Qs(t)− Cs(t))

2
dt

s.t. (2), (4), (6) and (7),

(8)

where b ∈ B if bc(t) ∈ {0, 1} for all t ∈ [0, T ] and all c ∈ Ω.
So far we are able to deactivate and activate single arcs. In applications it can be of interest

to deactivate whole subgrids simultaneously. Therefore we need to couple the switching decision
for a set of arcs. Let us first formally define a subgrid.

Definition 2.1. Let α(r) denote the start vertex of arc r and ω(r) denote the end vertex of arc

r. A subgrid GSub = (VSub, ASub) of the graph G = (V,A) fulfills the following conditions

1. VSub ⊂ V

2. ASub ⊂ A

3. r ∈ A : α(r), ω(r) ∈ VSub ⇐⇒ r ∈ ASub

4. v ∈ V : (α(r) ∈ VSub ∀ r ∈ A : ω(r) = v)
and (ω(r) ∈ VSub ∀ r ∈ A : α(r) = v) =⇒ v ∈ VSub

5. GSub is connected, i.e. ∀ pairs of vertices in VSub there exists a connecting path in the

underlying undirected graph.

The first two conditions simply imply that all vertices and arcs of the subgrid have to be
contained in the original graph. The third condition demands that if there is an arc r ∈ A such
that both endpoints are contained in VSub then r is also contained in the arc set ASub of the
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subgrid. And that the endpoints of an arc of the arc set ASub of the subgrid have to be part of
the subgrid, too. The fourth condition demands that if a vertex is only connected through arcs
whose other endpoints lie in the vertex set VSub of the subgrid, then this vertex has to be part of
the subgrid.

An example of a subgrid is given in Figure 2. We intend to activate and deactivate the subgrid
GSub consisting of vertices 4, 5, 6 and all arcs inside of the gray area. Therefore we have to change
the state of the switches sw1, that correspond to the arcs entering and leaving the subgrid GSub.

11Q11(t) 3

1

u1(t)

13

Q13(t)

5 4
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2 9 Q9(t)
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12
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Figure 2: Network with subgrid in gray scale and two switches.

Problem (8) is a nonlinear optimization problem and the bilinear equality constraints lead to
a nonconvex feasible set. We will apply a first discretize then optimize strategy, where these con-
straints can easily be substituted by linear constraints in the discretized problem. The discretized
version of problem (8) is a MINLP. We will later show how to benefit from properties of partial
outer convexification in a solution method. But first we will discretize (8) and introduce additional
constraints to obtain more realistic controls.

2.2 The discretized optimization problem

In the following we will derive an appropriate discretized version of (8) as a basis for the optimiza-
tion of power networks.

First of all, we introduce step sizes ∆t and ∆x in time and space for the discretization of
equation (2) which satisfy the CFL-condition

∆t ≤
√
LC∆x. (9)

The continuous time interval [0, T ] becomes {t0, . . . , tnT
} where nT = T

∆t
is the number of discrete

time steps and te = e∆t, e = 0, . . . , nT . On each arc we get the discretization points {x0, . . . , xl̃r
}
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with xd = d∆x, d = 0, . . . , l̃r. The quotient of the arc lengths and the space step size l̃r = lr
∆x

is

the number of discretization points of arc r. We assume that nT and l̃r are integer for all r ∈ A.
Then, we exploit that the system (1) is written in its characteristic variables. Therefore

information from only one side is relevant and a simple upwind scheme can be applied as in [27].
This yields

ξ+(x, t+∆t) = ξ+(x, t)− λ+ ∆t
∆x

(ξ+(x, t)− ξ+(x−∆x, t))

−b11ξ
+(x, t)∆t− b12ξ

−(x, t)∆t

(10)

and
ξ−(x, t+∆t) = ξ−(x, t)− λ− ∆t

∆x
(ξ−(x+∆x, t)− ξ−(x, t))

−b12ξ
+(x, t)∆t− b11ξ

−(x, t)∆t,

(11)

the discretized form of the system (1) for the transport along a single arc. Additionally, we apply
a quadrature formula to the objective function of (8), which results in

F (ξ(u),u) =
1

2

∑

s∈VS

nT
∑

e=0

we (Qs(te)− Cs(te))
2
. (12)

A trapezoidal rule for which the weights are we = ∆t and w0 = 1
2∆t, wT = 1

2∆t, respectively, is a
natural choice. Nevertheless, for our computations we will simply set we = ∆t for all e = 0, . . . , nT .

Furthermore, we substitute the bilinear equality constraints by a set of linear constraints. The
MINLP has become a mixed-integer quadratic problem (MIQP).

2.3 Additional Constraints that couple over time

In practice additional constraints are often necessary to achieve applicable results. Thus they have
to be added to problem (8). As mentioned above, we will solve these problems in a first discretize
then optimize manner. Therefore we will introduce the additional constraints for the discretized
version.

Without further constraints it is not unlikely that a switch changes its state rapidly between 0
and 1. We would like to prevent such behavior and give a minimum time between two alterations.
There are different ideas for the implementation, which are commonly used in the modeling of
traffic lights [26, 28]. We can choose a coarser time grid for the binary variables than for the
inflow controls and state variables. Furthermore, we can introduce a penalty term in the objective
function to penalize altering the state. Nevertheless, we will introduce additional constraints for
our implementation.

To this end, we introduce vectors ac ∈ {0, 1}nsw with c ∈ Ω, which contain one entry per
switch. The j-th entry has value 0 if switch j is deactivated by the outer control c and 1 if it is
activated. There are two types of constraints. The first inequality

k+⌊M1
∆t ⌋

∑

e=k+1

∑

c∈Ω

acjbc(te) ≥
∑

c∈Ω

acj

⌊

M1

∆t

⌋

(−bc(tk) + bc(tk+1)) (13)

for all k ≤ nT −
⌊

M1

∆t

⌋

, j ∈ {1, . . . , nsw} ensures that switch j has to keep its state for at least a
time of M1 after switching from off to on. Whereas the second inequality

k+⌊M2
∆t ⌋

∑

e=k+1

(

1−
∑

c∈Ω

acjbc(te)

)

≥
∑

c∈Ω

acj

⌊

M2

∆t

⌋

(bc(tk)− bc(tk+1)) (14)

for all k ≤ nT −
⌊

M2

∆t

⌋

, j ∈ {1, . . . , nsw} ensures that the switch has to keep its state for a time of
at least M2 after switching from on to off.
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3 Solution techniques

Solving nonlinear optimization problems and mixed integer programming problems can both be
a challenging task. In mixed-integer nonlinear programming [5, 31, 39] the difficulties of handling
integer variables and dealing with nonlinear functions are combined. Even though there has been
a lot of research so far, there is still need for improvements. Many publications consider branch
and bound strategies for nonlinear convex problems [10, 13, 17, 29, 40, 53, 55]. Others are dealing
with multitree methods for convex problems that aim to reduce the number of NLPs that have to
be solved. Common multitree methods are outer approximation [11, 19, 21] and the generalized
Benders decomposition [24, 56].

In general nonconvex problems are harder to solve. One common approach is to approximate
the nonlinear functions by piecewise linear functions such that an MILP solver can be applied [23,
57, 58]. Many other publications focus on branch and bound for nonconvex MINLP, so-called
spatial branch and bound. Here the focus lies on different relaxation techniques [1, 6, 42]. Finally,
there has also been a lot of research concerning heuristics [8, 12, 43].

For an efficient algorithm it is important to benefit from the structure of an MINLP if possible.

3.1 Two-step heuristic

In the following we describe how partial outer convexification can help during the solution process.
Partial outer convexification first appeared in the context of control problems constrained by or-
dinary differential equations [48]. In various publications [35, 36, 49, 50] a two-step heuristic has
been derived for ODE-constrained problems, which divides the solution of the MINLP in an NLP
and an MILP without dynamic constraints. Furthermore, an approximation theorem has been de-
rived, giving an upper bound on the error of the heuristic [52]. A first publication on the topic of
problems constrained by semilinear PDEs with a bound on the error has been achieved in [33] with
the help of semigroups. Unfortunately these results demand an amount of smoothness which usu-
ally only occurs in the case of parabolic PDEs. In [32] approximation results have been published
for first order semilinear hyperbolic PDEs in one space dimension. Recently, the two-step heuristic
has been successfully applied to traffic light optimization in road networks [26] described by the
well-known Lighthill–Williams–Richards model containing hyperbolic PDEs. Here, a discretized
version of the approximation theorem has been derived to which we will refer later.

In the following, we will lay the theoretical foundation for the application of the two-step
heuristic to problem (8). The general idea is to approximate the solution of the MINLP by first
solving its NLP-relaxation and afterwards applying a rounding strategy to fulfill the integrality
condition. In a final step, the corresponding trajectories to the rounded binary values can be
computed by a simple simulation. The procedure has been summarized in algorithm 1.

Algorithm 1 Two-step heuristic

1: Discretize problem (8) with appropriate step sizes ∆t and ∆x fulfilling the CFL-condition (9).

2: Step 1: Relax the integrality conditions

bc(te) ∈ {0, 1} → b̃c(te) ∈ [0, 1] ∀e ∈ {0, . . . , nT }, c ∈ Ω

and solve the arising NLP. This yields controls ũ and b̃.
3: Step 2: Compute a feasible binary solution b out of b̃ by a suitable rounding procedure
4: Get the feasible trajectories ξ±(t) and the objective function value F (ξ,u, b) by a simulation

with controls ũ and b.

This approach is based on a theorem which yields an upper bound on the error between the
trajectories of the relaxed problem and those of the solution obtained by the heuristic. We state
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a discretized version of the original theorem taken from [26]. Let

H =

{

α̂ ∈ R
noc

≥0

∣

∣

∣

∣

noc
∑

i=1

α̂i = 1

}

be the set of all relaxed controls that fulfill the SOS type 1 conditions (7). Furthermore we need
two norms ‖ · ‖X : Rn → R≥0 and ‖ · ‖Ω : Rnoc → R≥0.

Theorem 3.1. [26] Let I = {0, . . . , nT −1},D ⊆ R
N , and Φ : I×D → R

n×noc be a matrix-valued

function that is continuous with respect to the second argument and satisfies

‖Φ(t, µ)ν‖X ≤ Moc‖ν‖Ω ∀t ∈ I, µ ∈ D, ν ∈ R
nΩ , (15)

‖(Φ(t, µ)− Φ(t, η))α̂‖X ≤ Loc‖µ− η‖X ∀t ∈ I, µ, η ∈ D, α̂ ∈ H (16)

for constants Moc, Loc < ∞. Furthermore, for each t ∈ I let ht > 0, α̂t, βt ∈ H such that

T =
∑nT−1

t=0 ht and for each t ∈ I ∪ {nT } let µt, ηt ∈ D be given such that for all t ∈ I

µt+1 = µt + htΦ(t, µ
t)α̂t and ηt+1 = ηt + htΦ(t, η

t)βt.

If for some set I ′ ⊆ I, constants Coc, ǫ < ∞ and some vector δ0 ∈ R
noc it holds that

‖(Φ(t+ 1, µt+1)− Φ(t, µt))ν‖X ≤ htCoc‖ν‖Ω ∀t ∈ I ′, ν ∈ R
noc , (17)

∥

∥

∥

∥

∥

δ0 +

k−1
∑

t=0

ht(α̂
t − βt)

∥

∥

∥

∥

∥

Ω

≤ ǫ ∀k ∈ I ∪ {nT }, (18)

then it follows with T ′
k = kmax{ht|t = 0, . . . , k− 1} and njump = |I \ (I ′ ∪ {nT − 1})| that for all

k ∈ I ∪ {nT }
k
∑

t=0

ht‖µt − ηt‖X ≤ exp(T ′
kLoc − 1)

Loc

(‖µ0 − η0‖X + (2Moc(1 + njump) + TCoc)ǫ). (19)

Theorem 3.1 is the basis of the two-step heuristic. It delivers an upper bound on the produced
error and furthermore, we observe in equation (19) that the mismatch of the trajectories is forced
to zero for ǫ → 0 if µ0 = η0. Therefore, we are interested in the minimization of ǫ. This gives rise
to a rounding strategy.

In mixed-integer optimization rounding is in general a bad idea. In many cases it leads to
suboptimal or even infeasible solutions. In the context of partial outer convexification on the
other hand it has been proven to be an efficient way to avoid the application of a time-consuming
branch and bound strategy. Based on Theorem 3.1 the Combinatorial Integral Approximation
Problem (CIAP) [35] has been derived. In Theorem 3.1 the quality of the approximation depends
linearly on the value of ǫ in condition (18). Therefore we are interested in minimizing ǫ, which is
the aim of the CIAP. We will state the version from [26].

Let ω̂t be the values of the binary variables in time step t of the solution of the NLP. The
CIAP has the following form:

min
βt∈H∩{0,1}noc

t=0,...,nT−1
δ0∈R

noc ,ǫ∈R

ǫ

s.t.

∥

∥

∥

∥

∥

δ0 +

k−1
∑

t=0

∆t(ω̄t − βt)

∥

∥

∥

∥

∥

Ω

≤ ǫ, for all k = 0, . . . , nT .

(20)

Remark: Additional constraints, e.g. (13-14), can be included in (20).
With the choice ‖ · ‖Ω = ‖ · ‖∞ the CIAP can be transformed into an MILP by applying

standard linearization techniques. An upper bound on the value of ǫ in terms of ∆t has been

8



derived in [50] and therefore an upper bound on the mismatch in equation (19) of Theorem 3.1.
In order to apply the two-step heuristic to problem (8) we need to derive a vectorial shortform

ξ(·, te+1) = ξ(·, te) + ∆tΦc(t, ξ), (21)

where the function Φc depends on the binary variables. Afterwards we assure that all requirements
of theorem 3.1 are fulfilled.

We start by transforming (10) and (11) to

ξ+r (xd, te+1) = ξ+r (xd, te) + ∆t[−λ+
r

1
∆x

(ξ+r (xd, te)−Θ+
c (ξ(·, te), r, xd, te))

−b11ξ
+
r (xd, te)− b12ξ

−
r (xd, te)]

(22)

and
ξ−r (xd, te+1) = ξ−r (xd, te) + ∆t[−λ+

r
1

∆x
(ξ−r (xd, te)−Θ−

c (ξ(·, te), r, xd, te))

−b11ξ
−
r (xd, te)− b12ξ

+
r (xd, te)].

(23)

The functions Θ+
c and Θ−

c are defined as

Θ+
c (ξ(·, te), r, xd, te) =















∑

k∈δ
−

α(r)

cd+rk
λ
+
k

λ
+
r

ξ+k (xl̃k
, te) if d = 1, r ∈ A \AQ

ur(te) if d = 1, r ∈ AQ

ξ+r (xd−1, te) otherwise

(24)

and

Θ−
c (ξ(·, te), r, xd, te) =















∑

k∈δ
+
(
ω(r))

cd−rk
λ
−

k

λ
−

r

ξ−k (xl̃k
, te) if d = l̃r − 1, i ∈ A \AS

0 if d = l̃r − 1, r ∈ AS

ξ−i (xd+1, te) otherwise

. (25)

Equations (22 - 25) define the vectorial shortform (21). Next, we will prove an important stability
property of the network flow problem, which will play an important part when showing that we
can fulfill all necessary inequalities for the application of Theorem 3.1. In this context we will
need the following norm.

||F ||∞,n =

n
∑

i=1

sup
k

|Fi(xk)| with xk = k∆x,

where F : RN → R
n.

We can apply it to (ξ+r (·, t), ξ−r (·, t))T . On a single edge this reads

∥

∥

∥

∥

(

ξ+r (·, te)
ξ−r (·, te)

)∥

∥

∥

∥

∞,2

= sup
j

|ξ+r (xj , te)|+ sup
k

|ξ−r (xk, te)|.

Next, we want to show that our numerical scheme (10) and (11) is stable in the ‖ · ‖∞,2-norm
under some conditions, i.e.

∥

∥

∥

∥

(

ξ+r (·, te+1)
ξ−r (·, te+1)

)∥

∥

∥

∥

∞,2

≤
∥

∥

∥

∥

(

ξ+r (·, te)
ξ−r (·, te)

)∥

∥

∥

∥

∞,2

Lemma 3.2. The numerical scheme (10) and (11) is stable in the ‖ · ‖∞,2-norm if

∆t ≤ 1

λ+
r +∆xb11

∆x

is fulfilled.
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Proof. Let j, k be arbitrary but fixed. Then, the numerical discretization leads to the estimate

|ξ+r (xj , te+1)|+ |ξ−r (xk, te+1)|

= |ξ+r (xj , te)(1− λ+
r

∆t

∆x
− b11∆t) + λ+

r

∆t

∆x
ξ+r (xj−1, te)− b12∆tξ−r (xj , te)|

+ |ξ−r (xk, te)(1− λ+
r

∆t

∆x
− b11∆t) + λ+

r

∆t

∆x
ξ−r (xk+1, te)− b12∆tξ+r (xk, te)|

(∗)

≤ sup
j

|ξ+r (xj , te)|(1− λ+
r

∆t

∆x
− b11∆t) + λ+

r

∆t

∆x
sup
j

|ξ+r (xj−1, te)|+ b12∆t sup
k

|ξ−r (xk, te)|

+ sup
k

|ξ−r (xk, te)|(1− λ+
r

∆t

∆x
− b11∆t) + λ+

r

∆t

∆x
sup
k

|ξ−r (xk+1, te)|+ b12∆t sup
j

|ξ+r (xj , te)|

= (sup
j

|ξ+r (xj , te)|+ sup
k

|ξ−r (xk, te)|)(1− b11∆t+ b12∆t)

= (1− b11∆t+ b12∆t)

∥

∥

∥

∥

(

ξ+r (x, te)
ξ−r (x, te)

)∥

∥

∥

∥

∞,2

,

where (∗) is valid if

1− λ+
r

∆t

∆x
− b11∆t ≥ 0 ⇔ ∆t

(

λ+
r

∆x
+ b11

)

≤ 1 ⇔ ∆t ≤ 1

λ+
r +∆xb11

∆x,

which is a stronger assumption than the CFL-condition (9). To achieve stability we finally need
to show that

(1− b11∆t+ b12∆t) ≤ 1.

This is always fulfilled since

0 ≤ G

C
⇐⇒ 1

2

(

R

L
− G

C

)

≤ 1

2

(

R

L
+

G

C

)

⇐⇒ b12 ≤ b11.

Assuming that all input controls u(t) are known, Lemma 3.2 ensures that there exists an upper
bound M ∈ R such that

|ξ+r (xj , te)|+ |ξ−r (xk, te)| ≤ M

holds for all r ∈ A, j, k ∈ {0, . . . , l̃r} and e ∈ {0, . . . , nT }. This bound depends on the inflow u,
the initial values ξ±0 and the shape of the network G = (V,A).

Next, we will consider the requirements of Theorem 3.1 to show its applicability to problem
(8), similar to the approach in [26]. As norms we choose the discrete L1−norm

‖ξ(·, te)‖X =
∑

r∈A

l̃r
∑

d=1

|ξ+r (xd, te)|∆x+
∑

r∈A

l̃r−1
∑

d=0

|ξ−r (xd, te)|∆x

and the maximum norm ‖ · ‖Ω = ‖ · ‖∞.
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We start with (15) and choose e ∈ {0, . . . , nT }, µ = ξ and ν ∈ R
nΩ .

‖Φ(te, ξ)v‖X =
∑

r∈A

l̃r
∑

d=1

∣

∣

∣

∑

c∈Ω

( λ+
r

∆x
(Θ+

c (ξr(·, te), xd, te)− ξ+r (xd, te))

− b11ξ
+
r (xd, te)− b12ξ

−
r (xd, te)

)

νc

∣

∣

∣
∆x

+
∑

r∈A

l̃r−1
∑

d=0

∣

∣

∣

∑

c∈Ω

( λ+
r

∆x
(Θ−

c (ξr(·, te), xd, te)− ξ−r (xd, te))

− b11ξ
−
r (xd, te)− b12ξ

+
r (xd, te)

)

νc

∣

∣

∣
∆x

≤
∑

r∈A

l̃r
∑

d=1

(

2
λ+
r

∆x
M + b11M + b12M

)

∑

c∈Ω

|νc|∆x

+
∑

r∈A

l̃r−1
∑

d=0

(

2
λ+
r

∆x
M + b11M + b12M

)

∑

c∈Ω

|νc|∆x

=
(

4
λ+
r

∆x
+ 2b11 + 2b12

)

Mnoc

∑

r∈A

(l̃r)‖ν‖Ω =: Moc‖ν‖Ω

Next, we consider (16). Here, we set η = (η+, η−)T and α̂ ∈ H.

‖[Φ(te, ξ)− Φ(te, η)]α̂‖X =

=
∑

r∈A

l̃r
∑

d=1

∣

∣

∣

∑

c∈Ω

( λ+
r

∆x
(Θ+

c (ξr(·, te), xd, te)−Θ+
c (ηr(·, te), xd, te)− ξ+r (xd, te) + η+r (xd, te))

− b11ξ
+
r (xd, te) + b11η

+
r (xd, te)− b12ξ

−
r (xd, te) + b12η

−
r (xd, te)

)

α̂c

∣

∣

∣
∆x

+
∑

r∈A

l̃r−1
∑

d=0

∣

∣

∣

∑

c∈Ω

( λ+
r

∆x
(Θ−

c (ξr(·, te), xd, te)−Θ−
c (ηr(·, te), xd, te)− ξ−r (xd, te) + η−r (xd, te))

− b12ξ
+
r (xd, te) + b12η

+
r (xd, te)− b11ξ

−
r (xd, te) + b11η

−
r (xd, te)

)

α̂c

∣

∣

∣
∆x

≤
(

4
λ+
r

∆x
+ 2b11 + 2b12

)

noc‖η − ξ‖X =: Loc‖η − ξ‖X

In a last step we address (17), where we additionally assume that there exist constants CΘ ∈ R

and njump ∈ N such that for all ∆t > 0, r ∈ A and d = 1 or d = l̃ − 1

|Θ±
c (ξr(·, te), xd, te+1)−Θ±

c (ξr(·, te), xd, te)| ≤ ∆tCΘ (26)

holds for all t ∈ {0, . . . , nT } except for njump exceptions.
Exploiting (26), inequality (15) and the vectorial shortform (21), we derive the following in-
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equality

‖[Φ(te+1, ξ)− Φ(te, ξ)]ν‖X

=
∑

r∈A

l̃r
∑

d=1

∣

∣

∣

∑

c∈Ω

( λ+
r

∆x
(Θ+

c (ξr(·, te), xd, te+1)−Θ+
c (ξr(·, te), xd, te)− ξ+r (xd, te+1) + ξ+r (xd, te))

− b11ξ
+
r (xd, te+1) + b11ξ

+
r (xd, te)− b12ξ

−
r (xd, te+1) + b12ξ

−
r (xd, te)

)

νc

∣

∣

∣
∆x

+
∑

r∈A

l̃r−1
∑

d=0

∣

∣

∣

∑

c∈Ω

( λ+
r

∆x
(Θ−

c (ξr(·, te), xd, te+1)−Θ−
c (ξr(·, te), xd, te)− ξ−r (xd, te+1) + ξ−r (xd, te))

− b12ξ
+
r (xd, te+1) + b12ξ

+
r (xd, te)− b11ξ

−
r (xd, te+1) + b11ξ

−
r (xd, te)

)

νc

∣

∣

∣
∆x

≤
∑

r∈A

l̃r
∑

d=1

∣

∣

∣

∑

c∈Ω

( λ+
r

∆x
(Θ+

c (ξi(·, te), xd, te+1)−Θ+
c (ξr(·, te), xd, te)−∆t +Φc

d(te, ξ))

− b11∆t +Φc
d(te, ξ)− b12∆t −Φc

d(te, ξ)
)

νc

∣

∣

∣
∆x

+
∑

r∈A

l̃r−1
∑

d=0

∣

∣

∣

∑

c∈Ω

( λ+
r

∆x
(Θ−

c (ξr(·, te), xd, te+1)−Θ−
c (ξr, xd, te)−∆t −Φc

d(te, ξ))

− b12∆t +Φc
d(te, ξ)− b11∆t −Φc

d(te, ξ)
)

νc

∣

∣

∣
∆x

≤ ∆t2
((

2
λ+
r

∆x
+ b11 + b12

)

Moc +
λ+
r

∆x
CΘnΩ

)

‖ν‖Ω =: ∆tCoc‖ν‖Ω

for all e ∈ 0, . . . , nT − 1 except for njump exceptions.
This concludes the proof, that Theorem 3.1 is applicable to problem (8). In [50] it has been

proven that there is an upper bound on ǫ which depends on ∆t. Therefore, we can drive the error
to zero by decreasing ∆t if we keep ∆x constant. Note, that this does not lead to a violation of
the CFL-condition (9). In [26] the authors propose the inclusion of the additional constraints in
the CIAP (20) from the second phase, the reconstruction phase. Note, that in this case no upper
bound for ǫ is known. Therefore we have no guarantee that the error goes to zero if we decrease
∆t.

3.2 Third step

In Algorithm 1 we first solve an NLP where the integrality conditions of the binary variables
have been relaxed. Afterwards we get binary variables by a suitable rounding strategy, where we
suggest solving the CIAP and we receive the correct values of the state variables afterwards via
a simulation. Even though we know that the error between the solution of the first step and the
rounded solution converges to 0 for ∆t → 0 whilst keeping ∆x fixed, the approximation can be
nonsatisfactory for ∆t ≫ 0. Note, that in contrast to the traffic light optimization in [26], we
also have to find the optimal inflow controls. After obtaining the binary values denoted by occ(te)
through rounding, the inflow controls ũq(te) from step 1 will most likely not be the optimal inflow
controls corresponding to occ(te). Therefore it is reasonable to exchange the simulation by a third
optimization step and compute the optimal inflow controls for bc(te). The procedure has been
summarized in Algorithm 2.

As explained above this will improve the quality of the solution for higher values of ∆t compared
to Algorithm 1. For a fixed spatial step size ∆x and ∆t → 0 the improvement in the third step
compared to a simple simulation vanishes.
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Algorithm 2 Three-step heuristic

1: Discretize problem (8) with appropriate step sizes ∆t and ∆x fulfilling the CFL-condition (9).

2: Step 1: Relax the integrality conditions

bc(te) ∈ {0, 1} → b̃c(te) ∈ [0, 1] ∀e ∈ {0, . . . , nT }, c ∈ Ω

and solve the arising NLP. This yields controls ũ and b̃.
3: Step 2: Compute a feasible binary solution b out of b̃ by a suitable rounding procedure
4: Step 3: Solve a NLP to get the optimal inflow controls u to the binaries b.

4 Numerical results

All computations of this chapter have been performed on a PC equipped with 16GB Ram and
an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz. All NLPs have been solved with Ipopt 3.12.7,
wherein the derivatives have been provided if an analytical formulation was available. Otherwise
they have been computed with ADOL-C 2.6.3. All MILPs and MIQPs have been solved using
IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer 12.7.0.0.

In general, we will set the parameters of the telegraph equations to L = C = 1, R = 0.001,
and G = 0.002 and all computations will be based on the graphs from Figures 1 (referred to as
“tree 2sw”) and 2 (referred to as “subgrid”). Here, we choose arc lengths lr = 1 for all r ∈ A.

As demand settings we use the standard load profiles from the Stromnetz Berlin GmbH∗ as
real world data. The data set distinguishes between four different types of customers: households,
industry, farms and a group with constant demand. The profiles for one day (23rd of September,
2014) are presented in Figure 3. The data shows accumulated values given every 15 minutes. This
yields data for 96 time points which we extend by 8 time steps of 0 demand in the beginning.

0 02:00 06:00 10:00 14:00 18:00 22:00
time

0

10

20

30

40

50

60
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um
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io
n

households
industry
farms
const. demand

Figure 3: Standard load profiles for different types of customers.

Furthermore, we will set an upper bound on the inflow at every energy source. This will

∗http://www.stromnetz-berlin.de/de/stromversorger.html
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increase the dependence of the solution on the states of the switches.

4.1 Numerical examination of the three-step heuristic

In this section, we apply the two-step heuristic with and without an additional third step (Algo-
rithm 1 and Algorithm 2, respectively) to various examples. As the rounding procedure we choose
the CIAP (20). At first, we are interested in verifying the result from Theorem 3.1. Therefore,
we choose attainable demands and decrease ∆t whilst keeping ∆x constant. Attainable demands
are demands for which controls exist such that the demand is met with equality for all customers
and all time steps. These demands have been computed through a simulation with inflow controls
chosen as a constant value plus a sinusoidal function and binary controls obtained by rounding a
sinusoidal function. The results are summarized in Table 1. OFV is short for objective function
value and AC stands for “additional constraints”. For the additional constraints (13) and (14),
we demand that a switch has to keep its state for at least 4 time units. Note, that CPLEX has
been stopped in step 2 after 1h if it was not able to terminate sooner.

Three-step heuristic

Step 1 Step 2 Step 3

∆t OFV time AC CIAP OFV time OFV time
Tree 2sw, T = 15,∆x = 1
1 3.3e-4 0.79s no 0.42 543.8 0.18s 46.9 0.06s
0.5 3.7e-3 2.88s no 0.23 29.2 1.29s 3.29 0.26s
0.25 4.4e-3 13.51s no 0.13 3.63 12.34s 0.20 1.47s
0.2 4.5e-3 23.18s no 0.11 3.00 92.20s 0.24 2.46s
0.1 1.5e-3 179.6s no 0.06 0.70 > 1h 0.05 10.25s
1 3.3e-4 0.79s yes 0.90 1080.1 0.35s 327.7 0.07s
0.5 3.7e-3 2.87s yes 0.88 381.0 2.08s 44.8 0.31s
0.25 4.4e-3 13.5s yes 0.87 515.0 59.4s 44.8 1.47s
0.2 4.5e-3 24.3s yes 0.88 270.3 139.6s 34.2 2.93s
0.1 1.5e-3 188.9s yes 0.84 282.0 460.0s 32.7 11.3s

Table 1: Effect of the discretization in the three-step heuristic.

In Figure 4, we visualize the results of Table 1 for the network of Figure 1. Note, that the
objective function value after step 2 is computed via a simulation with the inflow controls from
step 1 and the rounded binary controls from step 2. On the one hand, we see that we are able
to drive the objective function value of the CIAP and thus ǫ to zero if no additional constraints
are present. Furthermore, the objective function value of the controls obtained in step 2 goes to
zero, too. On the other hand, this cannot be observed in the presence of additional constraints
that couple over time. Here, the value of the CIAP only decreases very slowly and the overall
objective function value is still not close to zero for ∆t = 0.1. Furthermore, there is in both cases
an immense benefit from the third step, even though its execution takes only a fraction of the
time needed for step 1 and 2.

Note, that these results have to be handled with extra care. Choosing ∆t independently from
∆x leads to diffusion in the advection, even though the approximation scheme is still stable as
long as the CFL-condition is fulfilled.

4.2 Comparison with a direct solver

Next, we consider the realistic demands from Figure 3. We assume that the first two consumers
are households, that the third consumer is an industrial facility and that the fourth and fifth
consumer represent farms. For Figure 2 only the order of the consumers has been altered. For the
discretization we choose either a coarser grid with step sizes ∆x = ∆t = 0.5 or a finer grid with
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Figure 4: Visualization of the results of table 1 on network 1.

∆x = ∆t = 0.25 with a time horizon of T = 26. Here, we compare the three-step heuristic to the
performance of CPLEX when directly solving the MIQP that we derived previously.

The results of the three-step heuristic are summarized in Table 2. For every step, we saved
the number of variables of the corresponding problem, the objective function value of its solution
and the computing time. Note, that the number in the brackets denotes the number of binary
variables. First of all, we observe, that the effect of the third step is still of high importance for
realistic demands as it helps to decrease the objective function value considerably. Furthermore,
it only requires a fraction of the computing time of the first step, which dominates the total
computing time. The computing time of the CIAP immensely increases for bigger instances or finer
discretization grids and especially for the computations with additional constraints. We further
observe that for computations containing the subgrid, the presence of additional constraints can
lead to a weak approximation after the second step, which cannot be balanced out by the third
step. This becomes clear when we compare the objective function values of step 3 to the objective
function values obtained by the MIQP solver (table 3).

Three-step heuristic

Step 1 Step 2 Step 3

#var OFV time AC #var OFV time #var OFV time
Tree 2sw, T = 26,∆x = 0.5,∆t = 0.5
306 2743 9.3s no 209(204) 4633 0.41s 102 3071 1.0s

yes 209(204) 4583 1.1s 102 3146 0.9s
Tree 2sw, T = 26,∆x = 0.25,∆t = 0.25
606 2683 51.4s no 409(404) 4688 5.5s 202 3057 6.7s

yes 409(404) 4634 71.5s 202 3177 7.1s

Subgrid, T = 26,∆x = 1,∆t = 0.5
306 1583 23.2s no 209(204) 5811 0.7s 102 4760 1.3s

yes 209(204) 12023 3.2s 102 8462 1.6s
Subgrid, T = 26,∆x = 0.25,∆t = 0.25
606 1538 108.2s no 409(404) 5638 54.9s 202 4712 13.5s

yes 409(404) 12693 83.5s 202 8927 9.3s

Table 2: Computational results for the three-step heuristic.

When solving the MIQP with CPLEX we stop the computation after one hour and look at the
objective function value and the gap. First of all we observe that CPLEX performed worse than
the 3-step heuristic for almost every instance. It does not terminate within one hour and leaves a
rather big gap. It especially performed badly for big instances such as the subgrid example on a
fine grid.
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Partial Outer Convexification MIQP

∆t #var AC start OFV time gap
Tree 2sw, T = 26
0.5 5014(192) no cold 3739 > 1h 80.4%
0.5 no warm 3071 > 1h 70.1%
0.5 5027(204) yes cold 3339 > 1h 54.4%
0.5 yes warm 2939 > 1h 43.5%
0.25 14294(384) no cold 4316 > 1h 89.6%
0.25 no warm 3057 > 1h 84.8%
0.25 14314(404) yes cold 4422 > 1h 71.0%
0.25 yes warm 3177 > 1h 51.8%
Subgrid, T = 26
0.5 6626(192) no cold 4585 > 1h 84.0%
0.5 no warm 4760 > 1h 87.3%
0.5 6640(204) yes cold 7411 > 1h 87.7%
0.5 yes warm 5246 > 1h 85.7%
0.25 18975(384) no cold 53432 > 1h 98.9%
0.25 no warm 4214 > 1h 86.5%
0.25 18995(404) yes cold 53432− 2140.8s
0.25 yes warm 8872− 900.9s

Table 3: Computational results for partial outer convexification.

Note that CPLEX has numerical difficulties in all computations that are marked with a minus in
the OFV-column, which can not be solved by increasing the numerical emphasis and the Markowitz
tolerance as recommended by the CPLEX user’s manual. In these cases CPLEX declares a solution
as optimal, which can be proven to be feasible, but not optimal. Moreover, CPLEX accepts a
better solution as feasible in a warm start, which also contradicts the optimality of the nonoptimal
solution and illustrates, that this behavior is an internal CPLEX issue. Generally CPLEX benefits
from warm starts for bigger instances. However, in one of the cases the warm start led to a worse
control. The warm starts are performed with the solutions obtained by using the three-step
heuristic.

0 5 10 15 20 26
t

3-Step:sw2(t)

3-Step:sw1(t)

MIQP:sw2(t)

MIQP:sw1(t)

Figure 5: Switches obtained on network 1 with ∆t = ∆x = 0.5 without additional constraints. A
black bar represents a phase in which the switch has value one.
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Finally, we want to compare the controls produced by the three-step heuristic with the controls
from the MIQP solver. Therefore we consider the computation with the extended tree network
with a coarse grid and without additional constraints. Here, the three-step heuristic obtained an
objective function value of 3071 and the MIQP solver an objective function value of 3739. The
state of the switches is visualized in Figure 5 for both computations, whereas the inflow controls
can be seen in Figure 6.
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Figure 6: Inflow controls obtained on network 1 with ∆t = ∆x = 0.5 without additional con-
straints.

First of all we observe, that the solution computed with the three-step heuristic tends to alter
the state of the switches more often. This behavior is then passed on to the inflow controls.
Furthermore, we observe that if the binary controls of the two solutions coincide for some time
steps, then the outflow controls coincide as well. Here, we see a time shift between the inflow
controls, which is due to the difference in the lengths of the paths from the sources to the consumers.

5 Conclusion and future work

We have derived a model for the inflow control of power grids based on hyperbolic differential
equations with the opportunity to temporarily disable single arcs or whole subgrids. In order
to apply a two-step heuristic based on partial outer convexification, we proved the applicability
of an important approximation result. Furthermore we extended the algorithm by a third step
and showed its importance through a numerical study. We concluded that the heuristic works
faster and delivers better controls compared to an MIQP solver restricted to one hour computing
time. Future work includes the comparison with different models and other heuristics in order to
further increase the quality of the control and decrease the computing time. A combination of the
three-step heuristic and the space mapping concept[3, 4] is conceivable.
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