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For the simulation of material flow problems based on two-dimensional hyperbolic partial differential equations different numerical
methods can be applied. Compared to the widely used finite volume schemes we present an alternative approach, namely, the
discontinuous Galerkin method, and explain how this method works within this framework. An extended numerical study is carried

out comparing the finite volume and the discontinuous Galerkin approach concerning the quality of solutions.

1. Introduction

The modeling and simulation of material flow problems is
motivated by engineering plant planning [1-3]. There exist
various model approaches ranging from microscopic to mac-
roscopic equations to describe the dynamic behavior of the
manufacturing system; see, for example, [4-9], for an over-
view. The main difference is that microscopic models rely on
systems of ordinary differential equations while macroscopic
models are based on conservation laws. In particular for a
large number of parts macroscopic models have the computa-
tional advantage that they are independent of individual
parts. Therefore, with regard to the consideration of simula-
tion and optimal control issues, macroscopic models are a
beneficial tool for computation.

Macroscopic models, or conservation laws, are used in
different engineering areas, for example, traffic flow [10],
manufacturing systems [11], and crowd and evacuation
dynamics [12,13]. In the case of material flow problems, active
research is recently done on a theoretical level [14] or on
numerical solution algorithms [5, 15, 16].

In this work, we are concerned with a two-dimensional
nonlocal hyperbolic conservation law that has been originally
introduced [5]. This model has been validated against real
data measurements and also provides reliable estimates on
material flow and throughput rates in manufacturing system.
It is even possible to rigorously derive such macroscopic
models from microscopic ones via kinetic models; see [8,
9, 16]. From a numerical point of view, solution methods

based on finite volume discretizations are an appropriate way
to simulate material flow systems; see [5, 15]. However, due
to the underlying geometry of the problem discontinuous
Galerkin methods represent an alternative approach. This
has been successfully shown in [17-23] for similar structured
problems in one dimension. Our intention is now to derive a
discontinuous Galerkin method in two space dimensions to
solve the nonlocal hyperbolic conservation law from [5].

The paper is structured as follows. A short introduction
of the macroscopic model taken from [5] is mentioned in
Section 2. In Section 3 we discuss two numerical solution
approaches for the macroscopic models. In detail, we shortly
repeat a finite volume method with dimensional splitting
and introduce a discontinuous Galerkin approach. Finally,
numerical results are shown in Section 4. In particular,
we qualitatively compare the different presented numerical
methods.

2. Material Flow Modeling with
Conservation Laws

We consider a conveyor belt with the given geometry pre-
sented in Figure 1 in two space dimensions, where an obstacle
with angle o in the middle of the belt is used to redirect parts.
A large number of cylindrical-shaped parts are transported
from the left to the right. Once the parts interact with the
obstacle, queuing effects will occur. We furthermore assume
that parts never move out of the x,, x, plane.
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FIGURE 1: (a) Geometry of the conveyor belt. (b) Static velocity field used for numerical simulations.

We briefly recall the conservation law for the evolution of
the part density p derived in [5]. The governing equations in
two space dimensions, that is, x € R?, are then

op+V- (p (den (p) + v (x))) =0, (la)
v (p) = H (p = prax) - 1(p). (1b)
1 (P - _EM (1c)
] c

VL[V (1= p);

p(x0)=py(x), x€ R?, (1d)

where p = p(x, t), H denotes the common Heaviside function
that is zero for negative arguments and p.,, the fixed
maximal density. The flux function is often referred to as
F(p) = (pv"™(p) + v*™(x))).

Equation (la) describes the evolution of the initial part
density (1d) depending on velocity field composed of the
dynamic velocity field v¥"(p) and the time-independent
velocity field v***!(x). The field v*** (x) is induced by the move-
ment of the conveyor belt. For the numerical simulations
in Sections 3 and 4 we will use the velocity field v***(x) as
indicated in Figure 1, where the right picture represents a
smoothed version of the velocity field. The latter is necessary
to avoid problems of well-posedness and stability in the
numerical simulations. Note that all angles between 0 and 90
degrees are feasible and that the smoothing is independent of
the angle that is considered.

In contrast, the dynamic component vdyn(p) in (1c)
determines the movement of colliding parts, especially in
the case they hit the obstacle. Since colliding parts do not
penetrate each other, the density could not be larger than the
density of a close-packing of parts p,,,.. Therefore, we have
to prevent situations, where p > p,.. for py(x1,%,) < Prax
in a certain time t > 0. To activate the density dependent
velocity vdyn(p), the Heaviside function in (1b) is introduced.
If p > pma thatis, H(p — p.) = 1, the density dependent
velocity is active and inactive otherwise. Hence, the velocity
field v (p) disperses clouds with p > p,... and parts are
pushed into a direction with lower density.

The nonlocal operator I(p) in (Ic) is controllable with the
constant parameter € > 0. Here, the negative gradient field
is the steepest descent of the convolution # * p, where 7 is

a sufficiently smooth mollifier or smoothing function, for
example, a Gaussian. So the density dependent force term
I(p) will only act in a small neighborhood of the boundary
of a congested region.

The boundary conditions of (la), (1b), (Ic), and (1d)
are imposed by the geometry of the belt (cf. Figure 1). We
distinguish between solid boundaries (thick black lines),
where free slip conditions are used, and the inflow region at
the left boundary, where homogeneous Dirichlet conditions
are applied.

3. Numerical Methods

Now we present suitable numerical methods to solve the
conservation law (1a), (1b), (I1c), and (1d). The first approach
is based on a one-dimensional finite volume method which is
extended into a two-dimensional problem solver by dimen-
sional splitting [5]. The other approach is a discontinuous
Galerkin method which is useful to compute accurate solu-
tions on complex geometries. Since the finite volume method
is validated against real data (cf. [5]) we will use the results of
this approach as a benchmark solution in Section 4 to test the
performance of the discontinuous Galerkin method.

For both simulation approaches, we assume that the
discontinuous flux function in (la) can be rewritten and
approximated by

F (p) = (7, (p.x). F, (p.x))"
= (p (vjtat + v‘liyn) ,p (vztat + v;‘Y“))T,

v (p) = H(p~ pmax) La () d =12, (2b)

where H is a smoothed version of the Heaviside function; that
is,

(2a)

— 1 1
Hu) = - arctan (yu) + > Y > 0. (3)

3.1. Finite Volume Approach with Dimensional Splitting. The
following procedure is based on a finite volume method with
dimensional splitting; see [24]. We use discretization of the
two-dimensional spatial domain in rectangular cells where
each cell is identified by the indices i, j. The center of a cell
i, j is located at x; ; = (xl’,-,xz,j)T. The lengths of the cells
are given by the spatial step sizes Ax;, Ax, and the time ¢ is
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discretized by step size At. We use the following space and
time grid:

xl,i:iAxl’ i= 1,...,le)
Xy ;= jAxy j=1,...,N,, (4)
tk:kAt) k=1,...,Nt

with cells Qi,j = [xl,i—1/2>x1,i+1/2] X [xz,j—1/2>x2,j+1/2]'
Additionally, grid constants are given by A; = At/Ax, for
d = 1,2. The density p is defined as a step function

p(xt;) = pl.]fj eR forxe Q) (5)

Dimensional splitting is applied to split the original two-
dimensional problem (1a), (1b), (1c), and (1d) into a sequence
of one-dimensional problems. That means, for our purpose,
the flux p(vdyn( p) +v"*(x)) used in the numerical simulation
is split in each dimension according to (2a). Applying a
Godunov-type scheme, the numerical flux in one dimension,
that is, d = 1, at points x;,, , ; and #;, is a modified Roe flux

combined with the nonlocal term I(p) = (I;(p), Iz(p))T:
Fy (ol Pl p Xis12,)
) P (P = Poa) T (P) (Kii125)s L (P) (Riaajay) 20 (6)
’ L::],Jﬁ (= Powe) 1 0) (1) 11 (9) () < 0

Ford = 2at points X; ;,/, and time #; the flux F,(p, pilj., Pilfj+1’
X; j+1/2) is determined analogously. The term I;(p) or L,(p),
respectively, including the convolution is evaluated as follows:

D, pi
I, (p) (Xi+1/2,j) =€ 12 >
Vi (0ap) + (02
b 7)
x, Pi,j
L(p) (Xi,j+1/2) =€ - ; >
\jl +(Dypig) +(Dupry)
where
k

D, pyi= Yok, j 3,1 (v dr,
P9 Qp+1/2,q ( )
8

k
D, pj= pryq . J o, n(r)dr.
pq Pa+1/2
Furthermore, the static flux in x,-direction is
ko k tat
G, (pi,j’Pi+1,j’ is+al/2,j)
k _ stat tat
~ PiViisinp Vi 20 ©)
R tat tat
Pt Viynp Vi) <05

where the discretized static velocity field is given by

Vstat '_ (Vstat Vstat )T L Vstat (X ) (10)
i+1/2,j *7 \"Li+1/2,j7> "2,i+1/2,j) i+1/2,j) *

Again, the flux in x,-direction Gz(pf i pf PRE vft]afrl ) s
defined analogously.
Summarizing, we have to solve the coupled scheme

Ay =yl )
Ef = F, (p pljs Plinjp Xisr/2,)
+Gy (Pi]fj’ pi]irl,j’vfialt/Z,j) >
Fy = Fy (popf s ol %ioipa)
+G, (pik—l,j’ Pfj’vfialt/lj) »
kel _ v W
Pi; =pi,j_/\2 [£; -E],
F2+ =F, (p, pfj)ﬁ:fj+l’xi,j+1/2)
+G, (ﬁfj’ ﬁfjﬂ’vitﬁlﬂ) ’
F, = F, (p, pfj_ppfj’xi,j—l/z)
+G, (ﬁfj—l’ ﬁnyZt;fl/z)
under the stability condition (also known as CFL condition):

0 dyn + stat ll
= (x) <1,
aP [P (V (p) Y > )] o (12)

ford=1,2

At
—max
Axd P

for the smoothed Heaviside function (3). For more details and
a detailed information on the algorithm we refer to [5].

3.2. Discontinuous Galerkin Methods. We now present an
alternative approach to solve (1a), (1b), (1c), and (1d). Discon-
tinuous Galerkin methods (DG methods) play an important
role in finding approximations of many physical applica-
tions based on hyperbolic partial differential equations. For
example, popular applications are found in gas dynamics,
compressible and incompressible flows, chemical transports,
granular flows, and more. We refer to [25-27] for a short
overview. These methods have some interesting benefits; for
example, they preserve the flexibility of finite elements in
handling complicated geometries and they yield very accu-
rate approximations. As already seen, finite volume methods
use constant cell averages. In consideration of upwinding
methods, this leads to artificial numerical diffusion which can
influence the approximation quality. To avoid this drawback
and for further investigations on optimal control issues, we
consider other approximation tools such as the discontinuous
Galerkin method.

In the following derivation, we assume that the flux
function F(p) is approximated by polynomials. To ensure
numerical stability of the DG method, we need to work again
with a continuous flux function as already stated in (2a) and
(3). The presentation of the DG method follows the ideas
drawn in [18-21].



FIGURE 2: A finite element discretization (triangulation) of a domain
Q (ellipse).

3.2.1. Space Integration. We consider a finite element dis-
Q, = U D5
where , is a disjoint union of triangle elements D¥. Also,

cretization of the spatial domain QO =

we assume that the position of each vertices of D* can
only coincide with other vertices of neighboring triangle
elements. An example of such finite element discretization or
triangulation is given in Figure 2. Note that h estimates the

“size” of all triangle elements D¥. In this work, / denotes the
length of the largest triangle edge of all elements D¥,

Let V. = L*(Q,R") be the solution space and let the
approximate space V}, C V be defined by

Vy={veV:ivinePY, k=1,..,K},  (13)

where PV is the space of the polynomials of degree N. By
definition the solutions v are discontinuous at the triangle
interfaces. For the scheme we characterize all elements v € V;,
by a nodal basis. In this presentation, a nodal basis is a special
case of a polynomial basis. Note that a two-dimensional
polynomial has

N. = (N+1)(N+2)

- : (14)

degrees of freedom for choosing the coefhicients. All poly-
nomials v|x, restricted to a triangle-shaped domain D, are
constructible by nodal basis functions ff (x) € PN with

i=j,
0, i#j,

Vij=1,...,N, (15

where x? ¢ DF are nodal points on the finite element k. The

polynomials t’f(x) are called Lagrangian basis functions. The
nodal points xf for i = 1,.. -» N, are distributed on each

triangle element DF as, respectively, shown in Figure 3.
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(a) N=1 (b) N=2 () N=3

FIGURE 3: Nodal points of the basis for linear, quadratic, and cubic
triangle elements DF.

An approximation of the solution (1a), (1b), (1c), and (1d)
is given by an element of V}; that is,

NP
pr 1) = Y ol (1) £ (x),
i=1

N, (16)
Fhx1) =Y F (pf () & ),
i=1

vx € D,

The functions pf‘ (t) are unknowns and characterize the
solution pif at time t. We distinguish that the approximations

pr and the flux ) fulfill (1a), (1b), (Ic), and (1d) in an
arbitrary way; that is,

dpr (x,0) + V- Fk (x,t) = R (x,1), VxeD', (17)

where %ﬁ(x, t) is the residual. Generally, the approximation

p,lj does not fulfill (Ia), (I1b), (1c), and (1d) exactly and the
residual is not zero in all cases. Furthermore, we must decide
in which sense the residual should vanish. Therefore, we
choose a test function ¢(x) € V), that is representable as

NP
¢ (x) = Y ¢ref (x), VxeD- (18)
i=1

We now require that the residual is orthogonal to all test
functions in Vj;; that is,

Ly R (x,t) ¢ (x) dx = 0. (19)
This is true if and only if
|, #angmdx=0 vi-1...N, 0
holds. Thus, we obtain
IDk (Bt )+ V- FE (x 1) & dx=0. (@)

Integrating (21) by parts yields

k
[, P20 - 7 )V (o)
Dk t (22)

_ gk k _
= Japkn J'h(x,t)€j(x)dx V]—l,...,Np,



Mathematical Problems in Engineering

Interface

FIGURE 4: Interface of two neighboring triangles D and D'. The

position of the nodal points xf (red) and xlj (blue) coincides; that

is, xF = xl] The interior and exterior densities p* and p~ define the

!

numerical flux F* at the transition point x} = x i

where n represents the local outward pointing normal.
The solution at the interfaces between triangle elements is
multiply-defined. At this moment, we have a lack of condi-
tions on the local solution and the test functions. Therefore,
we need here a correct combination of solutions to reduce
the degrees of freedom. We select a numerical flux F* for
the fluxes at the triangle interfaces. An illustrated example is
given in Figure 4. Thus, (22) leads to the local statement:
k
j Opn (1) i (x) - F} (x,) - V€ (x) dx
Dk ]

o/ (23)

* ok .
:—LDkn-F €j (x)dx Vj= L...,N,.

In this work, especially, we choose the local Lax-Friedrichs
flux for the presented DG method:

F (o p) = F(p) +F(p))

c .,
3 +on(p"-p), 9

where p*, p~ are the interior and exterior solution value.
Respectively, C is the local maximum of the directional flux

0F 0F
C= max |n,—2 + ny—2
pelp*p7] op dp

. (25)

The goal is to achieve an ODE system to obtain the quantity
pf (t). We plug now (16) into (22) and we get the following
statement:

< [26F )
D [Pa—t L;k & (x) €5 () dx - 7 (pf (1)

i=1

. J €f (x) ijf (x) dx] = —J n
Dk oDF
N, , (26)
Y FE X (x)dx=-) J _on
i=1 interface e

e=1

NP
Y FE (%) £ (%) dx,

i=1

where n, denotes the outward pointing normal of the inter-

face e of the triangle DF. The ODE system (26) can be written
into a matrix notation; that is,

a k
/%"”a—t(t) + 857, (05 0) + SEF, (pF )

3 @7)
_ _Zﬂk,e (ne . F*) )
e=1

where p* is a vector of dimension N, containing the cell
unknowns pik. The local mass matrices .#* and the stiffness
matrices é”f , S ]2‘ are defined by

M = JDk & (x) " (0 dx,

‘5)5,1‘,1' = JDk e (x) axdff (x) dx, o8
d=1,2Vij=1,...,N, k=1,...,K,
-@%j & & Mdx, e=1,23.
interface e
Remark 1. The coeflicient matrices ./ f‘ i 55,;‘,]” ,/%f‘f ford =

1,2 and e = 1,2,3 depend only on the choice of the basis
functions and the corresponding triangulation. Therefore, it
is useful to compute these matrices once only for a complete
simulation. This can be done by a preprocessing routine.

3.2.2. Discontinuous and Shock Solutions: Filtering. It is well
known that nonlinear conservation laws might lead to shocks
or discontinuities in solutions. However, the polynomial
approximation of solutions of the DG method is not able
to prescribe discontinuities so far. If we apply the previous
DG method to problems with shock solutions, the following
problems will occur:

(i) The appearance of artificial and persistent oscillations
around the point of discontinuity.

(ii) The loss of pointwise convergence at the point of
discontinuity.

This phenomenon is already known as the Gibbs phe-
nomenon and its behavior is well understood [28].

Note that a high order polynomial basis on the elements
gives a high order accuracy of the scheme for smooth solu-
tions. However, the DG method handles discontinuities with
persistent oscillations that distort the approximate solution or
influence the stability properties. Therefore, we propose the
following filter approach in stabilizing the computations and
in reducing the oscillations.

The filter approach [29, 30] considers ways to recover
some accuracy information hidden in the oscillatory solu-
tions. One possibility is filtering out high frequent redundant
oscillations (high order polynomials) in the solutions.
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FIGURE 5: Examples of how the filter function (34) varies from the three parameters: the order s, the cutoff N, = Nw,, and the maximum

damping parameter f3.

In the following, we consider the canonical basis

v, (1) =rirl, (i,/)=20i+j<N,

m:=j+(N+1)i+1—§(i—1), (29)

i,7)>0; i+ j< N,
(i, 7) j

which spans the space of N-dimensional polynomials in two
variables r = (r;,r,). Additionally, the spatial variable r is
restricted to a reference triangle I; thatis, r € I := {(r,7;) :
r1,17, = —1,r; + 1, < 0}. However, it is a complete polynomial
basis and it can be orthonormalized through a Gram-Schmidt
process. The resulting basis is denoted by ¥, (r). The next step
is to transform the basis function ¥,,(r) back on a triangle
element D*. This is realizable by a linear mapping ¥ : I —
D, Thus, we obtain the basis function on D¥ by ITIfn(X) =
1/7(‘1’71 (x)) with the property

v, X) ¥, (x)dx =9 30
[ 7007, 60)
An approximate solution of an element D is given by
NP NP
P () = Yl ) = Y P (31
i=1 m=1

The solution above is given in a multidimensional Lagrange
polynomial basis €f€ . Now we transform p;f(x) into the basis
consisting of {7 . Note that the polynomial /% has the degree
deg(u?fn) = i+j. The idea of filtering is to reduce the coefficient

ﬁfn of high polynomial basis elements @fn A popular choice
is the exponential filter

G (w) = exp (—ﬁwzs) (32)
to obtain the filtered expansion
i+j<N
A w= Y o5k (33)
$j20

where the filter is characterized by the the maximum damp-
ing parameter 8 > 0 and the order s > 0. It is reasonable to
use other filter approaches; see [29, 30]. In this work, we use
a filter of the form

1, 0<w<w. = ,
exp<—ﬁ(w_—wczs), w, <w< 1
(l_wC)

The filter (34) is an extension of the exponential filter (32).
N, presents a cutofl; that is, polynomials ﬁﬁq with degree

deg(ﬁfn) < N, are left untouched. An example of the filter
(34) with different parameters is shown in Figure 5.

¢(w) = (34)

Since filtering usage should be used both as minimal as
possible and as much as needed, this is necessary to stabilize
the method, reduce oscillatory solutions, and reduce artificial
viscosity.

3.2.3. Convolution Integration. In particular, the dispersive
term I(p) of (1a), (1b), (1c), and (1d) depends on the convolu-
tion of the density p and the gradient of the mollifier #; that is,

V(g% p)= (3% pdon*p) . (35)
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Hence, it is necessary to include the convolution process into
the discontinuous Galerkin scheme. Without loss of general-
ity, we consider the convolution of the approximate solution

pu € V,, and 0,7 in the nodal point xff of a triangle k; that is,

(0,11 % pu) (%) = JQ n(x - 7) pu (1) dr

= ijq(xf—r)pi(r)d‘r

NP
JDI n (xf< - 1') ];pj€§ (r)dr

—_

M=

1l
—

(36)

Z

1]
M=

pé JDI n (xf< - 1') 8; (r)dr
kil

=6

Il
—_
.

Il
—_

M~

NP

Z Ikl
PG~

=

The computation for the convolution of p, € V, and 0,1
works analogously.

1

Remark 2. Note that the weights cl.k}l are time independent.

Therefore, ci’f}.l can be computed once only before the sim-
ulation starts. However, the computation can result in high
computational efforts for a large number of triangles K and
polynomial degree N. Under certain circumstances, it is nec-
essary to determine and store a number of O((N K )%) weights
to evaluate the convolution (d, 7 * py) for all nodal points.

3.2.4. Time Integration. The DG approximation leads to a
system of N, ordinary differential equations (ODEs) over

each element D, After inverting the local mass matrix .Z,,
system (27) can be transformed in the following matrix form:

dpt ) & 3
e =d(p"), (37)

where pX(t) is a vector of dimension N ,» containing the cell

unknowns pF. @/(p¥) denotes the components of the right
hand side of the ODE system (27) multiplied by the inverse
mass matrix /%f‘ j- The corresponding ODE system can be
solved by explicit methods, for example, the forward Euler
method.

As a result, the DG computation procedure is illustrated
by the following steps:

(1) Computation of 5* is given as follows:
Pt =P () + At (p5(t,)), Vhk=1,...K. (38
(2) Reconstruction of the updated solution 5" is given by
applying
P () =% ("), Vk=1,...,K, (39)

where % denotes the filter process that is discussed
above.

4. Numerical Results

Finally, we present computational results comparing the finite
volume approach and the discontinuous Galerkin method
presented in Section 3. In particular, we comment on the
quality of solutions and analyze lane and pattern artifacts.

All computations are performed on the same platform,
namely, a 3.0 GHz Dual Core computer with 8 GB RAM, and
all algorithms are implemented in MATLAB.

4.1. Finite Volume versus Discontinuous Galerkin. First, we
compare the quality of the two methods to numerically solve
(1a), (1b), (1c), and (1d). The finite volume method and the
discontinuous Galerkin method offer their benefits as well as
drawbacks that are independently discussed in this section.

4.1.1. Macroscopic Model Settings. The field v**(x) is given
by a smoothed velocity field as indicated in Figure 1(b),
where the obstacle angle « is set to 60 degrees. We choose
a smoothed version of the Heaviside function with y = 25
according to (3). The mollifier #, occurring in the operator
I(p), is defined as

o 1 2)
= — =0 , 0 =2500. 40
109 = - exp (50 I (40)
In this example, the maximal density is set to p,,, = 1. The
strength of the term I(p) is selected as € = 2v;, where the
velocity of the conveyor belt is v = 0.395 m/s. Furthermore,
the total time horizon is T' = 7.

4.1.2. Finite Volume Settings. The grid sizes of the finite vol-
ume approach with dimensional splitting are chosen as Ax; =
Ax, = 5-107°, At = 1.25-107 in the following computation.

4.1.3. Discontinuous Galerkin Settings. The discontinuous
Galerkin method uses a triangulation (), with a maximal
triangle edge length i = 0.1. The polynomial degree of each
finite element is N = 10. ODE system (27) is solved by the
explicit Euler method with a time step size At = 107>, Thereby
the filter procedure is called in each computational step of the
ODE solver. The filter settings are selected as § = 36, s = 6,
and N, = 1.

The results are shown in Figure 6. The left column shows
the solution computed by the finite volume approach with
splitting. The right column shows the results of the discon-
tinuous Galerkin method. Each picture shows the density
function as a gray-scaled image plot and each color specifies
a density value. Thus, a dark color represents a higher density
(black represents the maximal density) and vice versa. In
all results, we observe that the parts are transported by the
conveyor belt velocity v;. A formation of congestion can be
seen in all results.

In all plots, we recognize a weak dispersing of density
(cf. Figures 6(g) and 6(h)). This is caused by the term vam =

H(p — pma)I(p). The smoothed modification H(p — poay)
is never zero for p < p.... Consequently, the dispersing
term I(p) is always activated and the quantity drifts apart all
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107° (left) and results of the discontinuous Galerkin method:
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FIGURE 7: Results of the discontinuous Galerkin method with different triangulations (h = 0.1, 0.06,0.04) and polynomials degrees N. All

plots show the solution at time ¢ = 1.

the time. This is also true, if the quantity has no connection to
the singularizer; a dispersing effect is also recognizable (see
Figures 6(a) and 6(b)). Moreover, the term I(p) disperses the
quantity with addition of artifacts (lane formation). Indeed,
lane formations are observable, for example, in Figure 6(g).
The solution of the discontinuous Galerkin method seems to
be smooth and not accurate in contrast to the results of the
finite volume method. This is mainly due to the fact that the
DG method uses polynomials on triangle finite elements of
degree N = 10. However, polynomials are inherently smooth,
and it is impossible to approximate accurate shock solutions
due to the presented size of the finite elements. Indeed,

the quality of the DG method can be improved by refining
the triangle mesh grid. Compared to the DG method, the
splitting method uses 20 times higher discretization.

The following question rises: what mesh grid sizes and
what polynomial degrees are necessary to ensure good
approximations due to the discontinuous Galerkin method.
In the following, the previous example is computed again by
the DG method with different triangulations and polynomial
degrees. We test our problem on 3 different mesh grid sizes
h = 0.1,h = 0.06, and h = 0.04. The results are shown
in Figure 7. For all grid sizes and polynomial degrees, the
qualitative behavior of the solution is approximated quite
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TaBLE 1: Computation times of the discontinuous Galerkin method
(simulation process) with different grid sizes h and polynomial
degrees N. The time is measured in seconds.

N h=0.1 h =0.06 h=0.04
1 714 12.30's 13.42s
3 9.30s 18.63's 51.70's
5 1731s 46.29s —

7 30.10s 111.94 s —

9 49.58s — —

11 88.70 s — —

TaBLE 2: Computation times in seconds for the convolution prepro-
cessing due to the grid size i and polynomial degree N.

N h=0.1 h=0.06 h=0.04
1 0.06's 112 1.73s
3 0.48s 3.88s 79.99s
5 2.01s 60.82s —

7 5.44s 420.08 s —

9 4711s — —

11 183.86's — —

well. A finer grid or a higher polynomial degree generates
more precise solutions; that is, quantity shocks and congested
formations are drawn in an accurate way.

However, a rough triangulation or a low polynomial
degree causes bad approximations (cf. Figure 7(e)). Com-
pared to the other results, the congestion formation in
Figure 7(e) looks quite degenerated.

The computation times of the DG method with respect to
the mesh-sizes and polynomial degrees are shown in Tables 1
and 2. Furthermore, the computation times are distinguished
into preprocessing time (cf. Table 2) and simulation time (cf.
Table 1). Preprocessing contains the calculation of the coeffi-
cients of the convolution (see Remark 2). The simulation time
contains the computation of ODE system (27) by the explicit
Euler method.

The computing time required for the calculation of the
finite volume approach is about 788.21s. Consequently, the
DG method is quite faster than the finite volume approach
for all presented settings. However, the computing times and
the memory requirements of the DG preprocessing increase
enormously since the computation of the convolution in one
nodal point requires at most N, K coefficients. Furthermore,
there are N,,- K nodal points and the convolution is evaluated
twice in each dimension. Thus, it is necessary to calculate
and store about 2 - (NP - K)? coefficients. As a consequence,
the computer was not able to run the preprocessing routine
successfully for small 4 and a large N; for example, N = 11
and h = 0.06; see Table 2.

Let us summarize. The discontinuous Galerkin method is
able to approximate accurately the extended flow equations
on complex geometric domains. However, the presented
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example consists only of a rectangle-shaped domain and it
is not necessary to use methods for complex geometries
(cf. regular grids). As already seen, the DG method needs
a very time and memory consuming preprocessing due to
the convolution. Hence, it is very expensive to apply small
step sizes h for computation of accurate approximations and
evaluating the corresponding convergence behavior.

4.2. Lane and Pattern Formation. The macroscopic model
(1a), (Ib), (1c), and (1d) is based on an integral-differential
equation using a convolution term in the flux function & (p).
Similar models are already used for pedestrian flows [12],
where certain lane or pattern artifacts are already observed.
In this regard, it is not clearly understood why lane or
pattern formation occurs. To investigate the phenomena of
lane formation in more detail, we are motivated to study these
artifacts by applying different numerical schemes.

Pedestrian models as [12] do not limit the influence of the
dispersive term I(p) to a maximum density in (1a), (1b), (1c),
and (1d) and therefore do not need the Heaviside function.
If we additionally neglect the static velocity field v in (la),
(1b), (1c), and (1d), the conservation law reduces to

op+V-(p(L(p))) =0,

(o) = - V(1 *p) (41)

IV e o)

In [12], lane formation was observed for the pedestrian model
with smooth dispersive term, whereas this effect seems to
be much less present in the above presented nonsmooth
material flow model. Note that the finite volume method
and the discontinuous Galerkin approach as well work with
a smoothed Heaviside function. Therefore, we also observe
lane artifacts in Figure 6(g).

We solve the simplified equation (41) on the spatial
domain Q = [-1,1]% The initial density p(x,0) is set to 1
for x € [-1/2,1/2]% otherwise p(x,0) = 0. Additionally,
we compute the simplified model (41) for three different
mollifiers; that is, o = 25, 100, 400. The step sizes of the finite
volume approach are Ax, = Ax, = 0.01 and At = 0.005.

The results of the finite volume approach are shown in
Figure 8. In all plots, we observe that the quantity spreads out
in all directions. Figures 8(a)-8(c) correspond to the setting
with smoothing function parameter 0 = 25. We recognize
a squared-shaped pattern in all time series. In Figures 8(d)-
8(f) and 8(g)-8(i), the smoothing function parameter o =
100,400 is used. Here, we observe a lane formation with a
circular shape. A further increase of the mollifier parameter
o yields thinner lanes in the solution. However, we recognize
the disappearance of the lanes in Figures 8(h) and 8(i). This
is caused by the artificial numerical diffusion of the scheme
which smears out the thin lanes in the solution.

Figure 9 shows the results of the discontinuous Galerkin
method for different triangulations and polynomial degrees;
however, the results are plotted for the timet = 2 and ¢ = 100.
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FIGURE 8: Numerical solution of the simplified model (41) computed by the finite volume approach with dimensional splitting. Visualized for
times ¢ = 0.1,0.2, 0.3 and smoothing function parameter o = 25, 100, 400.

All plots (exceptional (a) and (d)) lead to the same result
and they are similar to the plot of Figure 8(e). Indeed, a low
triangulation and a low polynomial degree cause poor results
(cf. Figures 9(a) and 9(d)). To get the most solution accuracy,
the usage of filters for the DG computations is neglected.
Therefore, some high frequent oscillations can appear (cf.
Figure 8(c)).

5. Conclusion

We have presented a novel numerical simulation algorithm,
the discontinuous Galerkin method, to compute the move-
ment of material flow on conveyor belts. The numerical

difficulties arise from the predefined geometry of the set-
ting and the flux function consisting of a nonlocal term
including a convolution. We have tested the performance of
the discontinuous Galerkin method against a finite volume
scheme and observed satisfactory results. In addition to the
good qualitative behavior of the numerical results, we also
detected and verified solution artifacts as lane formation in
both numerical approaches.
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