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Abstract

In this thesis we consider the mean field limit of N -particle system induced both from social
science application and from physical background. Based on establishing the ordinary differ-
ential equation of characteristics for transport equation, we handle the non-Lipschitz force in
the non-linear partial differential equation, which is also a Vlasov-type equation.

The first part of the thesis is to review different kinds of kinetic particle systems to their corre-
sponding Vlasov-related equations. We will summerize the literatures to date and give a whole
picture of what the mean field limit is all about through very concrete examples and models
done so far. Followed by the review, we will in the chapters to come present some novel ideas
and methods that we used to tackle those problems during the years of research.

Further for the particle model, we investigate a two-dimensional pedestrian flow system and
illustrate the probabilistic method in detailed steps to show that the N -particle pedestrian flow
system can be represented by the one particle density function when N approaches infinity,
which is so-called mean field equation. As regard to the wellposedness of the mean field equa-
tion, the weak solution is also presented with a more general setting for the equation, or in
other words, for the non-Lipschitz force. Last but not least, we focus on the well-known rela-
tivistic Vlasov-Maxwell and present both the non-relativistic limit and mean field limit for the
corresponding particle relativistic Vlasov-Maxwell model, which converges to what we know as
the Vlasov-Poisson equation, with all the analysis in the last chapter.
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Zusammenfassung

In dieser Arbeit betrachten wir die mean field limit des N -Partikelsystems, die sowohl aus
sozialwissenschaftlichen Anwendungen als auch aus physikalischen Gründen induziert wird.
Basierend auf der Festlegung der gewöhnlichen Differentialgleichung der Characteristics für die
Transportgleichung, behandeln wir die Nicht-Lipschitz-Kraft in der nichtlinearen partiellen Dif-
ferentialgleichung, die ebenfalls eine Vlasov-Gleichung ist.

Der erste Teil der Arbeit ist die Überprüfung verschiedener Arten von kinetischen Partikel-
systemen zu ihren entsprechenden Vlasov-bezogenen Gleichungen. Wir werden die bisherigen
Literaturen zusammenfassen und anhand sehr konkreter Beispiele und bisheriger Modelle ein
Gesamtbild davon vermitteln, worum es bei der mean field limit geht. Nach der Überprüfung
werden wir in den folgenden Kapiteln einige neue Ideen und Methoden vorstellen, mit denen
wir diese Probleme in den Jahren der Forschung angegangen sind.

Weiterhin untersuchen wir für das Partikelmodell ein zweidimensionales Fußgängerströmungssys-
tem und veranschaulichen die probabilistische Methode in detaillierten Schritten, um zu zeigen,
dass dasN -Partikel-Fußgängerströmungssystem durch die One-Particle-Density-Funktion dargestellt
werden kann, wenn sich N der Unendlichkeit nähert, was eine sogenannte mean field Gleichung
ist. Hinsichtlich der Wellposedness der mean field Gleichung wird der schwachen Lösung auch
eine allgemeinere Einstellung für die Gleichung, also für die Nicht-Lipschitz-Kraft, gegeben.
Letztens konzentrieren wir uns auf den bekannten relativistischen Vlasov-Maxwell und präsen-
tieren sowohl die nicht-relativistische Grenze als auch die mean field limit für das entsprechende
partikelrelativistische Vlasov-Maxwell-Modell, das mit der gesamten Analyse im letzten Kapitel
zu dem konvergiert, was wir als Vlasov-Poisson-Gleichung kennen.
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Chapter 1

Introduction

Collective behaviour of a large number of interacting individuals is a very ubiquitous and
yet an important phenomenon, such as animal behaviours (flocking, swarming), pedestrian
flow and many other social and natural sciences. Modelling these collective behaviours is no
doubt an essential task and mathematically challenging research topic. Most of the literatures
up to date follow the strategy of so-called mean field limit, which is from the Newtonian
motion equations of particle description to its corresponding one-particle density equation.
This limiting process is actually from microscopic level to mesoscopic level. One can also go
further to the hydrodynamic limit, which is marcoscopic level.
Nature and human societies offer many examples of self-organized behavior. Ants form colonies,
birds fly in flocks, mobile networks coordinate a rendezvous, and human opinions evolve into
parties. These are simple examples of collective dynamics that tend to self-organize into large-
scale clusters of colonies, flocks, parties, etc. [113].
In the following sections, we will review and investigate different kinds of microscopic particle
models and their corresponding mesoscopic descriptions.

1.1 Background

Modeling the collective behaviour of a large number of interacting individuals is a very chal-
lenging problem in animal behaviour, pedestrian flow, cell adhesion and chemotaxis problems,
and many other biological applications, see for instance [6, 12, 13, 94] and the literature therein
[17].
Consider a system of identical point particles. If the total number of particles is large enough,
the state of the system at the time t can be then described in the statistic sense by the
distribution function f ≡ f(t, x, v) in the one particle phase space, which represents the density
of particles located at the position x ∈ Rn with velocity v ∈ Rn at the time t. Due to the
practical application, we consider the dimension n = 2 or n = 3. Mean field equation is
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best understood by getting acquainted with the most famous examples of such equations listed
below.

1.2 Vlasov-type Equations

Vlasov-Poisson

The Vlasov-Poisson system reads
∂tfp + v · ∇xfp + Ep · ∇vfp = 0,

Ep(t, x) =
1

4π

∫
R3

ρp(t, y)
x− y
|x− y|3

dy,

ρp(t, y) =

∫
R3

fp(t, y, v) dv,

(1.2.1)

with the initial data fp(0, x, v) = f0(x, v).
The Cauchy problem for the Vlasov-Poisson system has been the focus of countless works in the
past few decades. For the Vlasov-Poisson system, global existence and uniqueness of classical
solutions were obtained by Ukai and Okabe [119] in two dimensions. The three dimensional
case is more delicate; global weak solutions with finite energy were first built by Arsenev [5].
Global existence and, in some cases, uniqueness, of more regular solutions were then separately
established by Lion and Perthame [84] and by Pfaffelmoser [98] with different techniques. In
both works the main issue consists in controlling the large plasma velocities for all time in order
to propagate regularity properties of the solutions. In Lion and Perthame’s work [84], this is
achieved by constructing weak solutions with finite velocity moments of order higher than three∫∫

R3×R3

|v|mf(t, x, v) dxdv <∞, m > 3,

which. by Sobolev embeddings, implies further bounds on the spatial density and on the electric
field. In particular, if the solution admits finite moments of order m > 6 then the electric field
is uniformly bounded and uniqueness holds under some additional regularity assumptions on
the initial density. On the other hand, the theory of DiPerna and Lions [40] ensures that such
solutions are constant along the trajectories of a "generalized flow" defined in a weak sense.
In contrast with the Eulerian approach of [84], the strategy of [98] relies on a careful analysis
of the characteristics to control the growth of the velocity support and thereby obtain global
existence and uniqueness of classical compactly supported solutions, which moreover propagate
the regularity of the initial density [37].
We refer to the further improvements and developments by Schaeffer [107], Wollman [125],
Castella [21], Loeper [85], Chen and Zhang [24]. Moreover, Gasser, Jabin and Perthame [45]
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established propagation of the velocity moments for m > 2 with an additional assumption on
the space moments, and in [105], Salort proved existence and uniqueness of weak solutions
even if m < 6. Finally, Pallard [92] recently combined Eulerian and Lagrangian points of view
to establish existence of solutions propagating velocity moments for m > 2 and obtained an
explicit polynomial in time bound on the moments [37].

Vlasov-Maxwell

The time evolution of the magnetized plasma when each charged particle is accelerated by
Lorentz force which comes from the electromagnetic field created by all the other particles [50]
is described by the relativistic Vlasov-Maxwell system:

∂tfm + v̂ · ∇xfm + (Em + c−1v̂ ×Bm) · ∇vfm = 0,

∂tEm = c∇×Bm − jm, ∇ · Em = ρm,

∂tBm = −c∇× Em, ∇ ·Bm = 0,

(1.2.2)

where v̂ =
v√

1 + c−2v2
, ρm(t, x) =

∫
R3

fm(t, x, v) dv and jm(t, x) =

∫
R3

v̂fm(t, x, v) dv. The

parameter c is the speed of light, (Em, Bm) is the electro-magnetic field, and the distribution
function fm(t, x, v) ≥ 0 describes the density of particles with position x ∈ R3 and velocity
v ∈ R3. The initial data 

fm(0, x, v) = f0(x, v),

Em(0, x) = E0(x),

Bm(0, x) = B0(x),

(1.2.3)

satisfy the compatibility conditions ∇ · E0(x) = ρ0(x) =

∫
R3

f0(x, v) dv, ∇ ·B0(x) = 0.

Local existence and uniqueness of classical solutions to this initial value problem for smooth and
compactly supported data was established in [47]. These solutions can be extended globally
in time provided the momentum support can be controlled, which has been done for data
which are small [48] or close to neutral [46] or close to spherically symmetric [102]. Worthy of
mentioning is that different approaches to the results in [47] were recently given in [9, 73]. In
order to obtain the global solution, DiPerna and Lions weakened the solution concept to weak
solutions. We refer to [39].

As was shown in [106] using an integral representation for the electric and magnetic field due
to Glassey and Strauss [47], the solutions of relativistic Vlasov-Maxwell system converge in
pointwise sense to solutions of the non-relativistic Vlasov-Poisson system (below) at the rate
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of 1/c as c tends to infinity. The Vlasov-Poisson system reads
∂tfp + v · ∇xfp + Ep · ∇vfp = 0,

Ep(t, x) =
1

4π

∫
R3

ρp(t, y)
x− y
|x− y|3

dy,

ρp(t, y) =

∫
R3

fp(t, y, v) dv,

(1.2.4)

with the initial data fp(0, x, v) = f0(x, v). We note that there are global existence results for
classical solutions of the Vlasov-Poisson system [84, 98, 107].
However a more interesting and challenging question to consider is what the corresponding
particle model of relativistic Vlasov-Maxwell equation is and whether we can rigorously in
mathematics prove the mean filed limit (or in the large N limit). Up to our knowledge and
at the time of this writing, taking both the mean filed limit and the non-relativistic limit
(or classical limit) of Vlasov-Maxwell system together into account is rare in all literatures.
Separately speaking of the mean field limit, Braun and Hepp [11] and Dobrushin [41] have
proposed rigorous derivations of a system analogous to the Vlasov-Poisson system with a twice
differentiable mollification of the Coulomb potential. Hauray and Jabin [63] have succeeded
in treating the case of singular potentials, but not including the Coulomb singularity yet.
Until recently, Lazarovici and Pickl [81] gave a probabilisitic proof of the mean field limit and
propagation of chaos N -particle systems in three dimensions with Coulomb potential, which
provide us with a very constructive idea of method.
On the other hand, writing down the corresponding N -particle model of the non-relativistic
Vlasov-Maxwell system is a perplexing task because one needs to find the satisfying description
of the electromagnetic self-interaction within the theory of classical electrodynamics [43, 70,
110]. The problem of deriving a regularized variant of the Vlasov-Maxwell system from a
particle model was explicitly mentioned by Kiessling in [72]. Only after several years did Golse
[50] establish the mean field limit of a N -particle system towards a regularized variant of the
relativistic Vlasov-Maxwell system with the help of [43] by Elsken, Kiessling and Ricci.
In the present work, we want to combine the mean field limit and non-relativistic limit of the
regularized relativistic Vlasov-Maxwell particle model to Vlasov-Poisson equation. The method
we apply here is more or less along the line of [47, 50, 81] with the mollifications, the regu-
larization procedure of which somehow removes the difficulties caused by the electromagnetic
self-interaction forces. Unlike regularizing the Coulomb potential in the mean field limit es-
tablished in [11, 41], the regularization of the self-interaction force in Vlasov-Maxwell system
is more difficult since the electromagnetic field involves both a scalar and vector potentials
[50]. The solutions of the relativistic Vlasov-Maxwell system, as was discussed by Glassey
and Strauss in [47], are closely related with the wave equation, namely with Kirchhoff formula,
which we also used in this paper. We would like to mention that there are other representations
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of the solutions of the relativistic Vlasov-Maxwell system, for example [9, 10], but they are all
in fact equivalent.

Vlasov-Klein-Gordon

The relativistic Vlasov-Klein-Gordon describes a collisionless ensemble of particles moving at
relativistic speeds, coupled to a Klein-Gordon field. Let f = f(t, x, v) ≥ 0 denote the density
of the particles in phase space, ρ = ρ(t, x) their density in space, and u = u(t, x) a scalar
Klein-Gordon field, where t ∈ R+, x ∈ R3 and v ∈ R3 are the time, position and velocity
respectively. The system reads

∂tfKG + v̂ · ∇xfKG −∇xu · ∇vfKG = 0,

∂2
t u−∆u+ u = −ρKG,

ρKG(t, y) =

∫
R3

fKG(t, y, v) dv,

(1.2.5)

with the initial data fKG(0, x, v) = f0(x, v), u(0, x) = u1(x) and ∂tu(0, x) = u2(x).
The study of this system was first initiated in [77], where the existence of global weak solu-
tions for initial data with a size restriction was proven. This size restriction was necessary
because the energy of the system is indefinite so that conservation of energy does not lead to
a-priory bounds for general data [78]. Rein in [78] proved local-in-time existence of classical
solutions and a continuation criterion which says that a solution can blow up only if the particle
momenta become large. They also show that the classical solutions are global in time in the
one-dimensional case.

Cucker-Smale Model

Flocking is a general phenomenon where autonomous agents reach a consensus based on the
limited environmental information and simple rules (mainly three basic rules):

1. Separation - avoid crowding neighbours (short range repulsion);

2. Alignment (re-orientation)- steer towards average heading of neighbours;

3. Cohesion - steer towards average position of neighbours (long range attraction).

There are parallels with the shoaling behavior of fish, the swarming behavior of insects, and
herd behavior of land animals. Mathematically, Cucker-Smale [31, 30] in 2007 postulated a
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model for the flocking of birds with the following system of ODEs:
d

dt
xi = vi,

d

dt
vi =

N∑
j=1

mj(vj − vi)ϕ(|xj − xi|),

where N is the number of the particles while xi(t), vi(t) and mi denote respectively the position
and velocity of the i-th particle at the time t with its mass. The function ϕ : [0,∞) → [0,∞)

is referred to as the communication weight, which is non-negative and non-increasing. The
corresponding Vlasov-type equation

∂tf + v · ∇f + divv(F (f)f) = 0, x ∈ R3, v ∈ R3,

F (f)(t, x, v) :=

∫∫
R6

ϕ(|y − x|)(w − v)f(t, y, w) dwdy.

The literature on aggregation models associated with Vlasov-type equations is rich thus we
mention only a few examples of the most popular branches of the field. Here we find analysis
of time asymptotics (see e.g. [57]) and pattern formation (see e.g. [56, 115]) or analysis
of the models with additional forces that simulate various natural factors (see e.g. [20, 42]-
deterministic forces or [29] - stochastic forces). The other variations of the model include
forcing particles to avoid collisions (see e.g. [27]) or to aggregate under the leadership of
certain individuals (see e.g. [28]). A well rounded analysis of a model that includes effects
of attraction, repulsion and alignment is presented in [14]. The story of the CS model should
probably begin with [120] by Vicsek et al., where a model of flocking with nonlocal interactions
was introduced and it is widely recognized to be up to some degree an inspiration for [31] .
Since 2007 the CS model with a regular communication weight of the form

ϕcs(s) =
K

(1 + s2)
β
2

, β ≥ 0, K > 0

was extensively studied in the directions similar to those of more general aggregation models
(i.e. collision avoiding, flocking under leadership, asymptotics and pattern formation as well
as additional deterministic or stochastic forces - see [2, 19, 55, 59, 93, 108]). Particularly
interest- ing from our point of view is the case of passage from the particle system to the
kinetic equation, which in case of the regular communication weight was done for example in
[61] or [62]. For a more general overview of the passage from microscopic to mesoscopic and
macroscopic descriptions in aggregation models, we refer to [15, 34, 36]. In the paper [61] from
2009 the authors considered the CS model with the singular weight ϕ(s) = s−α, s > 0, α >

0 obtaining asymptotics for the particle system but even the basic question of existence of
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solutions remained open till later years. It turned out that system (1.2.6) possesses drastically
different qualitative properties depending on whether α ∈ (0, 1) or α ∈ [1,∞). More precisely
in [1] the authors observed that for α ≥ 1 the trajectories of the particles exhibit a tendency
to avoid collisions, which they used to prove conditional existence and uniqueness of smooth
solutions to the particle system. On the other hand in [96] the author proved existence of so
called piecewise weak solutions to the particle system with α ∈ (0, 1) and gave an example
of solution that experienced not only collisions of the trajectories but also sticking (i.e. two
different trajectories could start to coincide at some point). This dichotomy is an effect of
integrability (or of the lack of thereof) of ϕ in a neighborhood of 0. It is also the reason why
the approach to the CS model should vary depending on α [89]. One of the latest contributions
to this topic is [16] where the authors showed local in-time well posedness for the kinetic
equation with a singular communication weight ϕ(s) = s−α, s > 0, α > 0 and with an optional
nonlinear dependence on the velocity in the definition of F (f). They also presented a thorough
analysis of the asymptotics for this model. The other more recent addition is [97], where the
author proved existence and uniqueness of W 1,1 strong solutions to the particle system with
a singular weight and α ∈ (0, 1). In the model with regular weight its purpose is to suppress
the distant interactions between particles. However from the modeling point of view it is
often convenient to also amplify the local interactions, which was done for example in [88]
by introducing a different nonsymmetric CS-type model known as the Mosch-Tadmor model.
Singular communication weight in the CS model can also be viewed as a less effective yet easier
to analyze way to emphasize the local interactions between particles.
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Chapter 2

Mean Field Kinetic Equation with
non-Lipschitz Force

In this chapter, we investigate a two-dimensional kinetic mean field equation with position
x ∈ R2 and velocity v ∈ R2

∂tf + v · ∇xf +∇v · [(F ∗ f)f ] +∇v · (Gf) = 0. (2.0.1)

This kind of equation has long been used to characterize social phenomena (or so-called social
fields [83] or social forces [66]) and industrial production, for example pedestrian flow model and
material flow model. These models, due to a great increase in interest over the last few years,
have been developed and investigated from a numerical and theoretical point of view, see for
example [6, ?, 90] for a general overview. Highly inspired by fluid dynamics, pedestrian models
or material flow models can also be further extended to the applications of other behavioral
models including group dynamics [7], opinion formation [116], minimal travel times [38, 67] or
evacuation scenarios [100, 118]. On the other hand, model hierarchies for pedestrian models or
material flow models have been introduced in [33, 44, 52, 53]. Therein, macroscopic equations
are formally derived from a microscopic pedestrian Newtonian system. Depending on the
closure assumption, different non-local continuum models can occur, cf. [25]. However, from
an analytical point of view, there are still several open problems that need to be thoroughly
investigated as for instance the detailed derivation from the N -particle pedestrian Newtonian
system to its mean field limit or Vlasov equation, see [22]. Instead of the formal derivation
with the help of the BBGKY hierarchy [44, 111], the kinetic description has been rigorously
derived by a probabilistic method [8, 11, 63, 65, 99, 112].

In this chapter, we now aim to prove the global existence of the weak solution to the mean field
kinetic equation mentioned above, namely (2.0.1). In our equation, F (x, v) denotes the total
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interaction force and has the similar structure as
x

|x|
, i.e.,

F (x, v) = ∇xV (|x|, v) = ∂rV (r, v)
x

|x|
,

where V (|x|, v) is some (regular) potential. More precisely, F (x, v) can be a composition of the
interaction force Fint(x) and the dissipative force Fdiss(x, v), i.e.,

F (x, v) = (Fint(x) + Fdiss(x, v))H(x, v) (2.0.2)

and H(x, v) := H2R(|x|) · H̃2R̃(|v|), where H2R(|x|) and H̃2R̃(|v|) are smooth functions with
compact support such that

H2R(|x|) =

0, |x| > 2R,

1, |x| < R,
and H̃2R̃(|v|) =

0, |v| > 2R̃,

1, |v| < R̃.

In order to cover a realistic behavior of pedestrians or material flow, the functions H2R(|x|) and
H̃2R̃(|v|) are used to express that the interaction force and the pedestrian velocity are of finite
range. So the total force is considered on a bounded domain.

The other term G(x, v) in the equation represents the desired velocity and direction acceleration
and can be further written as

G(x, v) = g(x)− v, (2.0.3)

where ‖g‖L∞ is bounded by some constant.

Apparently, the proposed model equation involves a singularity comparable to the Coulomb
potential in 2-d, resulting from the total interaction force. That means this singularity, or
in other words the non-local term, needs extra care in the final limiting process. For more
information about the Coulomb potential and the Vlasov-Poisson system we refer to [98, 104,
107].

We now briefly explain our approach. In order to obtain the existence of the weak solution, we
consider an approximate problem (kinetic equation with cut-off) as a starting point and show
that the approximate problem has a weak solution, where the mean field characteristic flow is
of great importance. Unlike the 3-d Vlasov-Poisson equation [41, 84], the non-local operator in
(3.1.2) cannot be decoupled into an elliptic equation. Hence, the Calderón-Zygmund continuity
theorem [51] for second order elliptic equations is not applicable in this case and we have to
find an alternative way to fix the desired compactness arguments. The idea is now to use the
Aubin-Lions lemma [23, 109] and to argue that due to that compact embedding theorem, we
are able to pass the limit especially in the non-local term. We also remark that the result
obtained in the present paper plays a crucial role in the proof of the rigorous derivation of the
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mean field equation in [22].

2.1 Method of Characteristics

In this section, we first recall some basic knowledge from transport equation. As we all know,
the following transport equation

∂tf + v · ∇xf = 0, x ∈ Rn, t > 0

with initial data f(0, x) = f0(x) has the explicit solution formula

f(t, x) = f0(x− tv),

which is a unique C1-solution if the initial data is C1-function. This solution formula is attained
by the characteristics with respect to the transport operator ∂t + v · ∇x.
Similarly, we consider the following mean field partial differential equation∂tf + v · ∇xf +∇v · [(F ∗ f)f ] = 0, x ∈ Rn, v ∈ Rn, t > 0,

f(0, x, v) = f0(x, v)

Here the vector field F can be, in some cases, time-dependent or non time-dependent, can also
depends on both the position variable x and velocity v or only depends on x. First we need
the following definition and theorem, which are typical and standard. One can further refer to
[51].

Definition 2.1.1. Let (x(t), v(t)) be the solution of the ordinary differential system
dx

dt
= v

dv

dt
=

∫∫
Rn×Rn

F (t, x− y, v − w)f(t, y, w) dydw

(x(0), v(0)) = (v0,
∫∫

Rn×Rn F (0, x− y, v − w)f(0, y, w) dydw).

The set
{(t, x(t), v(t)) | t ∈ [0, T ]}

is called the characteristic curve of the ordinary differential system passing through(
v0,

∫∫
Rn×Rn

F (0, x− y, v − w)f(0, y, w) dydw

)
at time t = 0.
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After defining the flow associated to the ordinary differential system of characteristic curves,
we are then able to use the flow to solve the mean field equation.

Theorem 2.1.1. Assume that the vector field F satisfies the condition

(H1) F ∈ C([0, T ]× Rn,Rn) and ∇xF,∇vF ∈ C([0, T ]× Rn,Mn(R))

(H2) there exists k > 0such that

|F (t, x, v)| ≤ k(1 + |x|+ |v|), for all (t, x, v) ∈ [0, T ]× Rn × Rn

Then for each t ∈ [0, T ] and each (x, v) ∈ ×Rn × Rn, the ordinary differential system
dx

dt
= v

dv

dt
=

∫∫
Rn×Rn

F (t, x− y, v − w)f(t, y, w) dydw

(x(0), v(0)) = (v0,
∫∫

Rn×Rn F (0, x− y, v − w)f(0, y, w) dydw)

has a unique solution of class C1 on [0, T ].

The theorem can be easily proven by the standard argument of the Cauchy-Lipschitz theorem,
the assumption of which is guaranteed by the regular condition (H1). And the condition (H2)

is equally important to assure that the solution is global. We also mention that if we impose
further regularity on the vector field F , say

(H3)F ∈ Ck([0, T ]× Rn,Rn) and ∇xF,∇vF ∈ Ck([0, T ]× Rn,Mn(R)), for some k > 1,

the solution will then have a high regularity of class Ck+1 on [0, T ].

Definition 2.1.2. Let (X1,Σ1) and (X2,Σ2) be measurable spaces (meaning that Σ1 and Σ2 are
σ-algebras of the subsets of X1 and X2, respectively). Let T : X1 → X2 be a (Σ1,Σ2)-measurable
map and µ be a positive measure on (X1,Σ1). Then, the formula

ν(B) := µ(T−1(B)), ∀B ∈ Σ2

defines a positive measure on (X2,Σ2), denoted by

ν =: T#µ,

and is referred to as the push-forward of the measure µ under the map T .

Due to the property of the transport equation, we know that solving the equation (2.2.6) is
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equivalent to investigating the corresponding characteristic system, i.e.,
d

dt
Z(t, z0, µ0) =

∫
R2n

K (Z(t, z0), z′)µ(t, dz′),

Z(0, z0, µ0) = z0,
(2.1.1)

where
KN(z, z′) = KN(x, v, x′, v′) :=

(
v, FN(x− x′, v − v′) +GN(x, v)

)
and µ(t, ·) is the push-forward of the measure µ0. Here, for the sake of convenience, we use
z = (x, v) and Z as the four-dimensional vector.

The solvability of the cut-off problem can be then obtained via the standard argument using Ba-
nach Fixed-Point Theorem. For completeness, we present the proof in the following proposition
and theorem.

We denote Pp(Rn ×Rn) as the set of Borel probability measures on Rn ×Rn and Pp(Rn ×Rn)

is defined for each p > 0 by

Pp(Rn × Rn) :=
{
µ ∈ P(Rn × Rn)

∣∣∣ ∫
Rn×Rn

(|x|p + |v|p)µ(dx, dv) <∞
}
.

Proposition 2.1.1. Assume that the interaction kernel K(z, z′) ∈ C(R2n × R2n;R2n) is Lips-
chitz continuous in z, uniformly in z′ (and conversely), i.e., there exists a constant L > 0 such
that

sup
z′∈R2n

|K(z1, z
′)−K(z2, z

′)| ≤ L|z1 − z2|,

sup
z∈R2n

|K(z, z1)−K(z, z2)| ≤ L|z1 − z2|.

For any given z0 = (x0, v0) ∈ Rn×Rn and Borel probability measure µ0 ∈ P1(R2n), there exists
a unique C1-solution, denoted by

R+ 3 t 7→ Z(t, z0, µ0) ∈ R2n,

to the problem 
d

dt
Z(t, z0, µ0) =

∫
R2n

K (Z(t, z0), z′)µ(t, dz′),

Z(0, z0, µ0) = z0,
(2.1.2)

where µ(t, ·) is the push-forward of the measure µ0, i.e., µ(t, ·) = Z(t, ·, µ0)#µ0.
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Proof. Let µ0 ∈ P1(R4) and denote

κ :=

∫
R2n

|v|µ0(dx, dv).

For t∗ :=
1

2L(2 + κ)
, let

X :=
{
Z(t, z) ∈ C([0, t∗];C(R2n;R2n))

∣∣∣ sup
0≤t≤t∗

sup
z=(x,v)∈R4

|Z(t, z)|
1 + |v|

<∞
}

be a Banach space equipped with the norm

‖Z‖X := sup
0≤t≤t∗

sup
z=(x,v)∈R4

|Z(t, z)|
1 + |v|

.

The assumption for the Lipschitz continuity of the kernel K(z, z′) actually implies that K grows
at most linearly at infinity, i.e.,

|K(z, z′)| ≤ L(|z|+ |z′|), z, z′ ∈ R2n.

The map T : X → X , defined by

T Z(t, z) := z +

∫ t

0

∫
R2n

K (Z(s, z), Z(s, ζ))µ0(dζ)ds,

constitutes a contraction which can be seen from the following estimates. For each Z, Ẑ ∈ X ,
we have for 0 ≤ s ≤ t∗∣∣∣ ∫

R2n

K (Z(s, z), Z(s, ζ))µ0(dζ)−
∫
R4

K
(
Ẑ(s, z), Ẑ(s, ζ)

)
µ0(dζ)

∣∣∣
≤ L

∫
R2n

(
|Z(s, z)− Ẑ(s, z)|+ |Z(s, ζ)− Ẑ(s, ζ)|

)
µ0(dζ)

≤ L(1 + |v|+ 1 + κ) sup
z=(x,v)∈R4

|Z(s, z)− Ẑ(s, z)|
1 + |v|

.
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Consequently, we get

‖T Z(t, ·)− T Ẑ(t, ·)‖X

=
∥∥∥∫ t

0

∫
R2n

K (Z(s, z), Z(s, ζ))µ0(dζ)ds−
∫ t

0

∫
R2n

K
(
Ẑ(s, z), Ẑ(s, ζ)

)
µ0(dζ)ds

∥∥∥
X

≤ L‖Z(t, ·)− Ẑ(t, ·)‖X (2 + κ)t∗

≤ 1

2
‖Z(t, ·)− Ẑ(t, ·)‖X .

Then, by Banach Fixed-Point Theorem, there exists a unique Z∗ ∈ X such that T Z∗ = Z∗,
i.e.,

Z∗(t, z) = z +

∫ t

0

∫
R4

K (Z∗(s, z), Z∗(s, ζ))µ0(dζ)ds. (2.1.3)

The interaction kernel is globally Lipschitz continuous, i.e., t∗ is a fixed constant, which implies
that the solution can be easily extended to all time t. Since Z∗ ∈ C(R+;C(R2n;R2n)), K ∈
C(R2n × R4;R2n) and µ0 ∈ P1(R2n), the function

s 7→
∫
R4

K (Z∗(s, z0), Z∗(s, ζ))µ0(dζ)

is continuous on R+ for all z0 ∈ R2n. Exploiting the integral equation (2.1.3) shows that the
function t 7→ Z(t, z0) is C1 in t and satisfies

d

dt
Z∗(t, z0) =

∫
R2n

K (Z∗(t, z), Z∗(t, ζ))µ0(dζ),

Z(0, z0) = z0.

Substituting z′ = Z∗(t, ζ) in the integral above leads to∫
R2n

K (Z∗(t, z0), Z∗(t, ζ))µ0(dζ) =

∫
R2n

K(Z∗(t, z0), z′)Z∗(t, ·)#µ0(dz′),

which means that the function Z∗ is the solution to the problem (2.2.8).

Theorem 2.1.2. Assume that the vector field F = F (t, x, v) ∈ Rn satisfies assumptions (H1),
(H2) and (H3) with k = 1. Let f0 ∈ C1(Rn × Rn). Then the mean field differential equation∂tf + v · ∇xf +∇v · [(F ∗ f)f ] = 0, x ∈ Rn, v ∈ Rn, t > 0,

f(0, x, v) = f0(x, v)
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has a unique solution f ∈ C([0, T ]× Rn × Rn) . The solution is given by the formula

f(t, x, v) = f0(Z(t, ·, ·)−1(x, v))J(0, t, x, v), ∀ t ∈ [0, T ], (x, v) ∈ Rn × Rn,

where J(0, t, x, v) is the Jacobian, i.e.,

J(0, t, x, v) = exp

(∫ 0

t

divv (F ∗ f(s, Z(s, x, v))) ds

)
.

In particular, f(t, ·, ·) ∈ L1(Rn × Rn) for all t ∈ [0, T ] if f0 ∈ L1(Rn × Rn), and one has∫∫
Rn×Rn

f(t, x, v) dxdv =

∫∫
Rn×Rn

f0(x, v) dxdv.

The result for the regular vector field is quite easy to understand and needs not so much
technical care. The following sections are devoted the non-Lipschitz force case, where detailed
handling will be step by step illustrated.

2.2 Mean Field Equation with Cut-off

We start with the definition of weak solution to the mean field equation (2.0.1).

Definition 2.2.1. Let f0(x, v) ∈ L1(R2×R2)∩L∞(R2×R2). A function f = f(t, x, v) is said
to be a weak solution to the kinetic mean field equation (3.1.2) with initial data f0, if there holds∫∫

R2×R2

f(t, x, v)ϕ(x, v) dxdv =

∫∫
R2×R2

f0(x, v)ϕ(x, v) dxdv

+

∫ t

0

∫∫
R2×R2

vf(s, x, v) · ∇xϕ(x, v) dxdvds

+

∫ t

0

∫∫
R2×R2

(F (x, v) ∗ f(s, x, v)) f(s, x, v) · ∇vϕ(x, v) dxdvds

+

∫ t

0

∫∫
R2×R2

G(x, v)f(s, x, v) · ∇vϕ(x, v) dxdvds (2.2.1)

for all ϕ(x, v) ∈ C∞0 (R2 × R2) and t ∈ R+.

Now, we present the main theorem of this paper. In the following, G(x, v) is given by (2.0.3)
while F (x, v) is defined by (2.0.2).

Theorem 2.2.1. For F (x, v) = ∇xV (|x|, v) = ∂rV (r, v)
x

|x|
and G(x, v) = g(x) − v, assume

that ∂rV (r, v),∇v∂rV (r, v) ∈ L∞(R2×R2) and g ∈ L∞(R2×R2). Let f0(x, v) be a nonnegative
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function in L1(R2 × R2) ∩ L∞(R2 × R2), |x|2f0(x, v) ∈ L1(R2 × R2), and∫∫
R2×R2

1

2
|v|2f0(x, v) dxdv =: E0 <∞.

Then, there exists a weak solution f ∈ L∞(R+;L1(R2 ×R2)) to the mean field equation (3.1.2)
with initial data f0. Moreover this solution satisfies

0 ≤ f(t, x, v) ≤ ‖f0‖L∞(R2×R2)e
Ct, for a.e. (x, v) ∈ R2 × R2, t ≥ 0 (2.2.2)

together with the mass conservation∫∫
R2×R2

f(t, x, v) dxdv =

∫∫
R2×R2

f0(x, v) dxdv =:M0 (2.2.3)

and the kinetic energy bound

E(t) :=

∫∫
R2×R2

1

2
|v|2f(t, x, v) dxdv ≤ C, ∀ t ≥ 0, (2.2.4)

where the constant C is independent of t.

Under the assumptions above, the interaction force is bounded but not Lipschitz continuous in
x, we need to use the standard cut-off to over come this difficulty. Another difficulty in this
context is that the interaction force F (x, v) not only depends on the position x but also on the
velocity v. This leads to a totally different structure compared to the Vlasov-Poisson equation,
where the W 2,p theory for Poisson equations is generally used. The proof of Theorem 2.2.1 is
therefore not as straightforward und intuitive as one might expect and needs to be dedicately
handled step by step within the next sections. On the other hand, the self-generating force (or
desired velocity and direction acceleration) G(x, v) is not Lipschitz continuous, which requires
an additional work of mollification.
We briefly recall essential assumptions and properties, cf. [22], that are necessary for the
existence proof.

2.2.1 Notations and Preliminary Work

We consider the flow with cut-off of order N−θ with arbitrary positive θ, i.e.,

FN(x, v) =


V ′(|x|, v)

x

|x|
H(x, v), |x| ≥ N−θ,

N θV ′(|x|, v)xH(x, v), |x| < N−θ.

(2.2.5)

25



Qitao Yin

Then, the mean field cut-off equation becomes

∂tf
N + v · ∇xf

N +∇v · [(FN ∗ fN)fN ] +∇v · (GNfN) = 0, (2.2.6)

where we also take the cut-off of G(x, v) into consideration, i.e.,

GN(x, v) = j 1
N
∗ g(x)− v

with j 1
N

(x) being the standard mollifier.
We also point out several properties for the interaction force FN(x, v) and the acceleration
GN(x, v), namely

(a) FN(x, v) is bounded, i.e., |FN(x, v)| ≤ C.

(b) FN(x, v) satisfies
|FN(x, v)− FN(y, v)| ≤ qN(x, v)|x− y|,

where qN has compact support in B2R ×B2R̃ with

qN(x, v) :=


C · 1

|x|
+ C, |x| ≥ N−θ,

C ·N θ, |x| < N−θ.

(c) ∇vF
N(x, v) is uniformly bounded in N .

(d) |GN(x, v)−GN(y, v)| ≤ C ·N · |x− y|.

Here, we use C as a universal constant that might depend on all the given constants kn, R, R̃, γn, γt.
Furthermore, if there is a singularity in the velocity v in the interaction potential similar to
property (b), it can be treated by using the same method as above and the results also apply.

2.2.2 Mean Field Characteristic Flow with Cut-off

Before we start to prove the existence of the unique weak solution to the equation (2.2.6), we
need first the following definition.

Definition 2.2.2. Let (X1,Σ1) and (X2,Σ2) be measurable spaces (meaning that Σ1 and Σ2 are
σ-algebras of the subsets of X1 and X2, respectively). Let T : X1 → X2 be a (Σ1,Σ2)-measurable
map and µ be a positive measure on (X1,Σ1). Then, the formula

ν(B) := µ(T−1(B)), ∀B ∈ Σ2
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defines a positive measure on (X2,Σ2), denoted by

ν =: T#µ,

and is referred to as the push-forward of the measure µ under the map T .

The definition is often used when it comes to solving mean field characteristic flow. For more
detailed information, we refer to [51]. Due to the property of the transport equation, we know
that solving the equation (2.2.6) is equivalent to investigating the corresponding characteristic
system, i.e., 

d

dt
Z(t, z0, µ0) =

∫
R4

K (Z(t, z0), z′)µ(t, dz′),

Z(0, z0, µ0) = z0,
(2.2.7)

where
KN(z, z′) = KN(x, v, x′, v′) :=

(
v, FN(x− x′, v − v′) +GN(x, v)

)
and µ(t, ·) is the push-forward of the measure µ0. Here, for the sake of convenience, we use
z = (x, v) and Z as the four-dimensional vector.
We denote P(R4) as the set of Borel probability measures on R4 and P1(R4) is defined by

P1(R4) :=
{
µ ∈ P(R4)

∣∣∣ ∫
R4

|v|µ(dx, dv) <∞
}
.

Proposition 2.2.1. Assume that the interaction kernel K(z, z′) ∈ C(R4×R4;R4) is Lipschitz
continuous in z, uniformly in z′ (and conversely), i.e., there exists a constant L > 0 such that

sup
z′∈R4

|K(z1, z
′)−K(z2, z

′)| ≤ L|z1 − z2|,

sup
z∈R4

|K(z, z1)−K(z, z2)| ≤ L|z1 − z2|.

For any given z0 = (x0, v0) ∈ R2 × R2 and Borel probability measure µ0 ∈ P1(R4), there exists
a unique C1-solution, denoted by

R+ 3 t 7→ Z(t, z0, µ0) ∈ R4,

to the problem 
d

dt
Z(t, z0, µ0) =

∫
R4

K (Z(t, z0), z′)µ(t, dz′),

Z(0, z0, µ0) = z0,
(2.2.8)
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where µ(t, ·) is the push-forward of the measure µ0, i.e., µ(t, ·) = Z(t, ·, µ0)#µ0.

This proposition is typically obtained via the standard argument using Banach Fixed-Point
Theorem, see [51].

With Proposition 2.2.1, we are now able to prove that there exists a unique weak solution to
the Vlasov equation with cut-off (2.2.6).

Theorem 2.2.2. Let F and G satisfy the same assumptions as in theorem 2.2.1 and fN0 be a
nonnegative compactly supported function in L1(R2 × R2) ∩ L∞(R2 × R2) satisfying

‖fN0 ‖L1(R2×R2) =M0 and fN0 (x, v) ≤ ‖f0‖L∞(R2×R2),∫∫
R2×R2

1

2
|v|2fN0 (x, v) dxdv ≤ E0 <∞,

and ∫∫
R2×R2

1

2
|x|2fN0 (x, v) dxdv ≤M2 <∞.

Then, there exists a unique weak solution fN ∈ C1(R+;L1(R2 × R2)) to the mean field cut-off
equation (2.2.6) with initial data fN0 , i.e., fN(t, x, v) satisfies∫∫

R2×R2

∂tf
N(t, x, v)ϕ(x, v) dxdv =

∫∫
R2×R2

vfN(t, x, v) · ∇xϕ(x, v) dxdv

+

∫∫
R2×R2

(
FN(x, v) ∗ fN(t, x, v)

)
fN(s, x, v) · ∇vϕ(x, v) dxdv

+

∫∫
R2×R2

GN(x, v)fN(t, x, v) · ∇vϕ(x, v) dxdv (2.2.9)

for all ϕ(x, v) ∈ C∞0 (R2 × R2). Moreover this solution satisfies

lim
t→0

fN(t, x, v) = fN0 (x, v), for a.e. (x, v) ∈ R2 × R2,

0 ≤ fN(t, x, v) ≤ ‖fN0 ‖L∞(R2×R2)e
Ct, for a.e. (x, v) ∈ R2 × R2, t ≥ 0 (2.2.10)

together with the mass conservation∫∫
R2×R2

fN(t, x, v) dxdv =

∫∫
R2×R2

fN0 (x, v) dxdv =:M0, (2.2.11)

the kinetic energy bound ∫∫
R2×R2

1

2
|v|2fN(t, x, v) dxdv ≤ C, ∀ t ≥ 0, (2.2.12)
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and the bound of second moment∫∫
R2×R2

1

2
|x|2fN(t, x, v) dxdv ≤M2e

Ct, ∀ t ≥ 0, (2.2.13)

where the constant C is independent of N and t.

Proof. Without loss of generality, we assume thatM0 = 1. If we choose the interaction kernel
K as

KN(z, z′) = KN(x, v, x′, v′) :=
(
v, FN(x− x′, v − v′) +GN(x, v)

)
,

the mean field cut-off equation (2.2.6) can be put into the form

∂tf
N(t, z) + divz

(
fN(t, z)

∫∫
R2×R2

KN(z, z′)fN(t, z′)dz′
)

= 0.

Notice that the non-linear non-local dynamical system that appears in Proposition 2.2.1 is
exactly the equation of characteristics for the mean field kinetic equation with cut-off (2.2.6),
which we refer to as the mean field characteristic flow (with cut-off). The existence and unique-
ness of the solution to (2.2.6) are therefore achieved as a direct result of the construction of the
mean field characteristic flow. By Proposition 2.2.1, there exists a unique map

R+ × R4 × P1(R4) 3 (t, z0, µ0) 7→ ZN(t, z0, µ0) ∈ R4

such that t 7→ ZN(t, z0, µ0) is the integral curve of the vector field

z 7→
∫∫

R2×R2

KN(z, z′)µN(t, dz′)

passing through z0 at time t = 0, where µN(t) := ZN(t, ·, µ0)#µ0. For the given initial data
fN0 , letting dµ0 = fN0 dz results in

fN(t, z) := fN0
(
ZN(t, ·)−1(z)

)
J(0, t, z), ∀ t ≥ 0,

where J(0, t, z) is the Jacobian, i.e.,

J(0, t, z) = exp

(∫ 0

t

divv
(
FN ∗ fN(s, ZN(s, z)) +GN(ZN(s, z))

)
ds

)
.
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Then we have

|fN(t, z)| ≤ |fN0
(
ZN(t, ·)−1(z)

)
J(0, t, z)|

≤ ‖fN0 ‖L∞(R2×R2) exp

(∫ t

0

‖∇vF
N ∗ fN‖L∞(R2×R2) ds+ Ct

)
≤ ‖fN0 ‖L∞(R2×R2) exp

(∫ t

0

‖∇vF
N‖L∞(R2×R2)‖fN‖L1(R2×R2) ds+ Ct

)
≤ ‖fN0 ‖L∞(R2×R2)e

Ct,

where we have used the property of the acceleration GN(x, v), i.e., GN(x, v) = j 1
N
∗ g(x) − v,

where j 1
N
∗ g(x) is a L∞-function. From the equation, (2.2.11) are straightforward. Property

(2.2.12) is left to be proven. For the kinetic energy estimate, we will again use the property of
the acceleration GN(x, v) and remark that v in GN(x, v) is critical in the estimate because it
serves as a damping term. We now choose {ϕη(x)φη(v)} to be a smooth function which satisfies

ϕη(x) =

0, |x| > 1
η
,

1, |x| < 1
2η
,

and φη(v) =

0, |v| > 1
η
,

1, |v| < 1
2η
,

and ∣∣∣∇z

(
ϕη(x)φη(v)

)∣∣∣ ≤ η
∣∣∣ϕη(x)φη(v)

∣∣∣.
Since ϕη(x)φη(v) is monotone and converges to one for almost all x and v as η goes to zero, we
have ∫∫

R2×R2

v2fN(t, x, v)ϕη(x)φη(v) dxdv →
∫∫

R2×R2

v2fN(t, x, v) dxdv, as η → 0.

The compact support of fN0 implies that fN(t, x, v) has compact support in (x, v) for any fixed
time t. By the definition of weak solution for test functions v2ϕη(x)φη(v), we have

d

dt

∫∫
R2×R2

1

2
v2fN(t, x, v)ϕη(x)φη(v) dxdv

=
1

2

∫∫
R2×R2

vfN(t, x, v) · ∇x

(
v2ϕη(x)φη(v)

)
dxdv

+
1

2

∫∫
R2×R2

(
FN(x, v) ∗ fN(t, x, v)

)
fN(s, x, v) · ∇v

(
v2ϕη(x)φη(v)

)
dxdv

+
1

2

∫∫
R2×R2

GN(x, v)fN(t, x, v) · ∇v

(
v2ϕη(x)φη(v)

)
dxdv
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=
1

2

∫∫
R2×R2

v2fN(t, x, v)φη(v)v · ∇x

(
ϕη(x)

)
dxdv

+

∫∫
R2×R2

v
(
FN(x, v) ∗ fN(t, x, v)

)
fN(t, x, v)ϕη(x)φη(v) dxdv

+
1

2

∫∫
R2×R2

v2
(
FN(x, v) ∗ fN(t, x, v)

)
fN(s, x, v) · ∇v (ϕη(x)φη(v)) dxdv

+

∫∫
R2×R2

v ·GN(x, v)fN(t, x, v)ϕη(x)φη(v) dxdv

+
1

2

∫∫
R2×R2

v2GN(x, v)fN(t, x, v) · ∇v (ϕη(x)φη(v)) dxdv

=:
5∑
j=1

Ij.

Next, we estimate the expressions Ij, j = 1, . . . , 5 individually. It is easy to see

|I1| ≤
1

2

∫∫
R2×R2

∣∣∣v2fN(t, x, v)φη(v)v · ∇x

(
ϕη(x)

)∣∣∣ dxdv
≤ 1

2
η

∫∫
R2×R2

|v|3fN(t, x, v)|φη(v)ϕη(x)| dxdv.

Due to the fact that fN0 is compactly supported, i.e., fN has also compact support for any
finite time t, I1 converges to zero as η → 0 for fixed N . The same argument holds for I3 and
I5, i.e., I3 and I5 converge to zero as η → 0:

|I3| ≤
1

2
· Cη‖FN ∗ fN‖L∞

∫∫
R2×R2

v2fN(t, x, v)ϕη(x)φη(v) dxdv

≤ 1

2
· Cη‖FN‖L∞‖fN‖L1

∫∫
R2×R2

v2fN(t, x, v)ϕη(x)φη(v) dxdv

I5 ≤
1

2
· η‖j 1

N
∗ g‖L∞

∫∫
R2×R2

v2fN(t, x, v)ϕη(x)φη(v) dxdv

−1

2
η

∫∫
R2×R2

|v|3fN(t, x, v)φη(v)ϕη(x) dxdv.

However, for the other integral estimates, we need some extra calculations. Using the properties
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of the desired velocity and direction acceleration GN(x, v), we arrive at

I2 ≤ ‖FN ∗ fN‖L∞
∫∫

R2×R2

(
1

4ε
+ εv2

)
fN(t, x, v)ϕη(x)φη(v) dxdv

≤ ‖FN‖L∞‖fN‖L1

∫∫
R2×R2

(
1

4ε
+ εv2

)
fN(t, x, v)ϕη(x)φη(v) dxdv

I4 ≤ ‖j 1
N
∗ g‖L∞

∫∫
R2×R2

(
1

4ε
+ εv2

)
fN(t, x, v)ϕη(x)φη(v) dxdv

−
∫∫

R2×R2

v2fN(t, x, v)ϕη(x)φη(v) dxdv

Combining all the five terms, taking η to zero in the inequality above and setting ε small enough
such that

ε <
1

2(‖FN‖L∞‖fN‖L1 + ‖g‖L∞)
,

where the fact that ‖j 1
N
∗ g‖L∞ ≤ ‖g‖L∞ has been used, we end up with

d

dt

∫∫
R2×R2

1

2
v2fN(t, x, v) dxdv ≤ C −

∫∫
R2×R2

1

2
v2fN(t, x, v) dxdv,

where C does not depend on N . A direct computation shows that the kinetic energy is bounded
uniformly in t and N . The estimate for the second moment follows from

d

dt

∫∫
R2×R2

|x|2fN(t, x, v) dxdv =

∫∫
R2×R2

|x|2∂tfN(t, x, v) dxdv

=

∫∫
R2×R2

x · vfN(t, x, v) dxdv

≤
∫∫

R2×R2

(|x|2 + |v|2)fN(t, x, v) dxdv

≤
∫∫

R2×R2

|x|2fN(t, x, v) dxdv + C.

2.3 Compactness Arguments

In this section, we aim to achieve all the compactness arguments that are needed to pass the
limit and to obtain the desired weak formulation of the non-cut-off kinetic equation, namely to
prove the main result Theorem 2.2.1.
For given initial data f0, let fN0 be a sequence of functions with compact support which are
w.l.o.g. assumed to be in BN , i.e., a ball of radius N centered at origin. Furthermore fN0
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satisfies
‖fN0 − f0‖L1(R2×R2)∩L∞(R2×R2) → 0, as N →∞.

Let fN(t, x, v) be the solution obtained from Theorem 2.2.2 with initial data fN0 (x, v). Then,
we know

0 ≤ fN(t, x, v) ≤ ‖f0‖L∞(R2×R2)e
Ct, for a.e. (x, v) ∈ R2 × R2, t ≥ 0,

and for any fixed T > 0, there exists a subsequence of fN , still denoted by fN for simplicity,
such that

fN
∗
⇀ f inL∞((0, T );L∞(R2 × R2)).

Due to the tightness in the variable x and v of the sequence fN , implied from (2.2.12) and
(2.2.13), we conclude that f ∈ L1(R2 × R2). Moreover, we notice that the total mass is
preserved, i.e., ∫∫

R2×R2

f(t, x, v) dxdv =

∫∫
R2×R2

fN0 (x, v) dxdv =:M0.

By the definition of weak* convergence for characteristic functions χ|x|+|v|≤r ∈ L1(R2×R2), we
have for each a < b ∈ R+ ∫ b

a

∫∫
R2×R2

χ|x|+|v|≤rf(t, x, v) dxdvdt

= lim
N→∞

∫ b

a

∫∫
R2×R2

χ|x|+|v|≤rf
N(t, x, v) dxdvdt

≤ lim
N→∞

∫ b

a

∫∫
R2×R2

fN(t, x, v) dxdvdt =M0(b− a).

Letting r →∞ and applying Fatou’s lemma yields∫ b

a

∫∫
R2×R2

f(t, x, v) dxdvdt

≤ lim
r→∞

∫ b

a

∫∫
R2×R2

χ|x|+|v|≤rf(t, x, v) dxdvdt

≤ lim
N→∞

∫ b

a

∫∫
R2×R2

fN(t, x, v) dxdvdt =M0(b− a).

By a similar argument for test functions of type χ|x|+|v|≤r|v|2, we can show that∫ b

a

∫∫
R2×R2

|v|2f(t, x, v) dxdvdt ≤ C(b− a)
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by using ∫∫
R2×R2

1

2
|v|2fN(t, x, v) dxdv ≤ C(b− a), ∀ t ≥ 0.

Since the above two inequalities hold for all a < b ∈ R+, they also hold for a.e. t ∈ R+.

Using all the estimates presented in Theorem 2.2.2, we are now ready to pass the limit in (2.2.6)
to the desired weak formulation of the non-cut-off kinetic equation

∂tf + v · ∇xf +∇v · [(F ∗ f)f ] +∇v · (Gf) = 0.

However, we need to take special care on the non-linear term, i.e., the consideration of the
function FN ∗ fN . In the following, we use the notation Lp(Lq) to denote Lp([0, T ];Lq(R2 ×
R2)), 1 ≤ p, q ≤ ∞. It is obvious to see that

‖FN ∗ fN‖L∞(L1)

=
∥∥∥∫∫

R2×R2

(∫∫
R2×R2

FN(x− y, v − w)fN(t, y, w) dydw
)
dxdv

∥∥∥
L∞([0,T ])

=
∥∥∥∫∫

R2×R2

fN(t, y, w)
(∫∫

R2×R2

FN(x− y, v − w) dxdv
)
dydw

∥∥∥
L∞([0,T ])

≤ C
(
‖F‖L1 ,M0, R̄

)
and

‖FN ∗ fN‖L∞(L∞) =
∥∥∥∫∫

R2×R2

FN(x− y, v − w)fN(t, y, w) dydw
∥∥∥
L∞(L∞)

≤ C (‖F‖L∞ ,M0) .

Since ∇vF
N is bounded uniformly in N , we get

‖∇v

(
FN ∗ fN

)
‖L∞(L1)

=
∥∥∥∫∫

R2×R2

(∫∫
R2×R2

∇vF
N(x− y, v − w)fN(t, y, w) dydw

)
dxdv

∥∥∥
L∞(R+)

=
∥∥∥∫∫

R2×R2

fN(t, y, w)
(∫∫

R2×R2

∇vF
N(x− y, v − w) dxdv

)
dydw

∥∥∥
L∞(R+)

≤ C
(
‖∇vF‖L1 ,M0, R̄

)
and

‖∇v

(
FN ∗ fN

)
‖L∞(L∞) =

∥∥∥∫∫
R2×R2

∇vF
N(x− y, v − w)fN(t, y, w) dydw

∥∥∥
L∞(L∞)

≤ C (‖∇vF‖L∞ ,M0) .
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So far, we can conclude by interpolation that FN ∗ fN and ∇vF
N ∗ fN are in L∞(L2). Further-

more, it holds

‖∇x

(
FN ∗ fN

)
‖L∞(L2) ≤ C ·

∥∥∥(χR̄ · 1

|x|

)
∗ fN

∥∥∥
L∞(L2)

≤ ‖fN‖L∞(Lp), ∀ p > 1,

where χR̄ · 1
|x| ∈ L

r,∀ 1 < r < 2, and Young’s inequality have been used. Hence, we conclude
that FN ∗ fN then belongs to L∞(R+;W 1,2(R2 × R2)). Since∫∫

R2×R2

(
vfN(t, x, v)

)2
dxdv ≤ ‖fN‖L∞‖v2fN‖L∞(L1) ≤ C(T ),

we can get for every ϕ ∈ C∞0 (R2 × R2) that∥∥∥∫∫
R2×R2

vfN(t, x, v)∇xϕ(x, v) dxdv
∥∥∥
L∞(R+)

≤ ‖fN‖
1
2

L∞(L∞) · ‖v
2fN‖

1
2

L∞(L1) · ‖∇xϕ‖L2

≤ C(T )‖∇xϕ‖L2 . (2.3.1)

Moreover, we have ∥∥∥∫∫
R2×R2

GN(x, v)fN(t, x, v)∇vϕ(x, v) dxdv
∥∥∥
L∞(R+)

≤ ‖j 1
N
∗ g‖L∞ · ‖fN‖

1
2

L∞(L∞) · ‖f
N‖

1
2

L∞(L1) · ‖∇vϕ‖L2

+‖fN‖
1
2

L∞(L∞) · ‖v
2fN‖

1
2

L∞(L1) · ‖∇vϕ‖L2

≤ ‖g‖L∞ · ‖fN‖
1
2

L∞(L∞) · ‖f
N‖

1
2

L∞(L1) · ‖∇vϕ‖L2

+‖fN‖
1
2

L∞(L∞) · ‖v
2fN‖

1
2

L∞(L1) · ‖∇vϕ‖L2

≤ C(T )‖∇vϕ‖L2 . (2.3.2)

On the other hand, we know∥∥∥∫∫
R2×R2

(
FN ∗ fN

)
(t, x, v) · fN(t, x, v)∇vϕ(x, v) dxdv

∥∥∥
L∞(R+)

≤ ‖FN ∗ fN‖L∞(L∞) · ‖fN‖L∞(L2) · ‖∇vϕ‖L2

≤ C‖∇vϕ‖L2 . (2.3.3)

35



Qitao Yin

Combining (2.3.1)-(2.3.3), it holds for every ϕ ∈ C∞0 (R2 × R2) that∥∥∥∫∫
R2×R2

∂tf
N(t, x, v)ϕ(x, v) dxdv

∥∥∥
L∞(R+)

≤
∥∥∥∫∫

R2×R2

vfN(t, x, v)∇xϕ(x, v) dxdv
∥∥∥
L∞(R+)

+
∥∥∥∫∫

R2×R2

(
FN ∗ fN

)
(t, x, v) · fN(t, x, v)∇vϕ(x, v) dxdv

∥∥∥
L∞(R+)

+
∥∥∥∫∫

R2×R2

GN(x, v)fN(t, x, v)∇vϕ(x, v) dxdv
∥∥∥
L∞(R+)

≤ C‖ϕ‖W 1,2 ,

which implies ∥∥∥∫∫
R2×R2

∂t

(
(FN ∗ fN)(t, x, v)

)
ϕ(x, v) dxdv

∥∥∥
L∞(R+)

=
∥∥∥∫∫

R2×R2

∂tf
N(t, x, v)(FN ∗ ϕ)(x, v) dxdv

∥∥∥
L∞(R+)

≤ C‖FN ∗ ϕ‖W 1,2

= C
∥∥∥∫∫

R2×R2

FN(y, w)ϕ(x− y, v − w) dydw
∥∥∥
W 1,2

≤ C‖FN‖L∞‖ϕ‖W 1,2

≤ C‖F‖L∞‖ϕ‖W 1,2

or, in other words,

‖∂t(FN ∗ fN)‖L∞(W−1,2) = ‖FN ∗ ∂tfN‖L∞(W−1,2) ≤ C.

We then get ∀ϕ ∈ C∞0 (R2 × R2)

FN ∗ fN ∈ L∞([0, T ];W 1,2(Ω)), ∂t(F
N ∗ fN) ∈ L∞([0, T ];W−1,2(Ω)),

where Ω = suppϕ. According to Aubin-Lions compact embedding theorem, e.g. [109], [23],
there exists a subsequence and h ∈ L∞([0, T ];L2(Ω)) such that

FN ∗ fN → h inL∞([0, T ];L2(Ω)).
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It is not difficult to check that h = F ∗ f . Therefore we obtain the following estimates:∣∣∣ ∫ t

0

∫∫
R2×R2

( (
(FN ∗ fN)fN

)
(s, x, v)∇vϕ(x, v)−

(
(F ∗ f)f

)
(s, x, v)∇vϕ(x, v)

)
dxdvds

∣∣∣
=

∣∣∣ ∫ t

0

∫∫
Ω

( (
(FN ∗ fN)fN

)
(s, x, v)∇vϕ(x, v)−

(
(F ∗ f)fN

)
(s, x, v)∇vϕ(x, v)

+
(
(F ∗ f)fN

)
(s, x, v)∇vϕ(x, v)−

(
(F ∗ f)f

)
(s, x, v)∇vϕ(x, v)

)
dxdvds

∣∣∣
≤

∣∣∣ ∫ t

0

∫∫
Ω

( (
(FN ∗ fN)fN

)
(s, x, v)∇vϕ(x, v)−

(
(F ∗ f)fN

)
(s, x, v)∇vϕ(x, v)

)
dxdvds

∣∣∣
+
∣∣∣ ∫ t

0

∫∫
Ω

((
(F ∗ f)fN

)
(s, x, v)∇vϕ(x, v)−

(
(F ∗ f)f

)
(s, x, v)∇vϕ(x, v)

)
dxdvds

∣∣∣
=: J1 + J2.

For the first term J1, we have

lim
N→∞

J1 ≤ lim
N→∞

‖FN ∗ fN − F ∗ f‖L∞(L2(Ω))‖fN‖L∞(L∞)‖∇vϕ‖L2 = 0,

while for the second term J2 we use the fact that fN ∗
⇀ f in L∞(R+;L∞(R2 × R2)) for

F ∗ f · ∇vϕ ∈ L1(L1), namely
lim
N→∞

J2 = 0.

Finally, we have to examine the initial data. Since fN is the weak solution to the cut-off mean
field equation (2.2.6), it obviously satisfies∫∫

R2×R2

fN(t, x, v)ϕ(x, v) dxdv =

∫∫
R2×R2

fN0 (x, v)ϕ(x, v) dxdv

+

∫ t

0

∫∫
R2×R2

vfN(s, x, v) · ∇xϕ(x, v) dxdvds

+

∫ t

0

∫∫
R2×R2

(
FN(x, v) ∗ fN(s, x, v)

)
fN(s, x, v) · ∇vϕ(x, v) dxdvds

+

∫ t

0

∫∫
R2×R2

GN(x, v)fN(s, x, v) · ∇vϕ(x, v) dxdvds

for any test function ϕ(x, v) ∈ C∞0 (R2 × R2). We recall

‖fN0 − f0‖L1(R2×R2)∩L∞(R2×R2) → 0, as N →∞,

and that terms on the right (second till last) hand side are uniformly continuous in time t.
Then, taking limit t→ 0+ on both sides of the above equation verifies the initial data.
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Chapter 3

Pedestrian Flow Model

The notable interest of pedestrian flow models can be dated back to four decades ago with a
considerable increase in interest since about year 2000. For a general recent overview we refer
to [6, 7, 25, 26, 33, 66, 67, 100] and the references therein. Pedestrian models share striking
analogies in classical physics such as gases and fluids, but are also applied to the description
of opinion formation [116], group dynamics or other social phenomena [90]. Pedestrian flow
models are an ideal starting point for the derivation of other or more general quantitative
behavioral models, since the relevant quantities of pedestrian motions are easily measured so
that corresponding models are comparable with empirical data [66]. The modelling presented
here is based on the idea that behavioral changes are guided by so-called social fields or social
forces, which have been suggested by Lewin [83]. Numerical simulations have been recently
carried out in [44] on the microscopic and macroscopic level using the finite particle method
(FPM). Some interesting spatiotemporal patterns are observed.
This chapter provides the detailed derivation from the N -particle (pedestrian) Newtonian sys-
tem to its mean field limit or Vlasov equation. Instead of the formal derivation with the help
of the BBGKY hierarchy, which can be found in [44, 111], we will rigorously derive the kinetic
description by a probabilistic method, which is inspired by Boers and Pickl [8], Hauray and
Jabin [63, 65], Philipowski [99] and Sznitman [112] and all the references therein.
However, the proposed pedestrian model involves a singularity, which comes from the albeit
bounded interaction force and is similar to the one generated by the Coulomb potential in 2-d.
While the authors in [8] do not tackle the direct Coulomb potential in 3-d, i.e. they consider the
singularity that is a little weaker than for the Coulomb potential, we are capable to deal with
the singularity directly due to the compact support of the considered interaction force. Another
difficulty lies in the treatment of the dissipative terms since the interaction force depends not
only on the position x but also on the velocity v. This will lead to extra work on the estimates
and is up to our knowledge rarely done before.
We now briefly explain our approach. In order to obtain the convergence between the exact
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and the mean field dynamics, we mainly split the proof into two parts: Using the Newtonian
system with cut-off as a starting point, we show that the Newtonian and the intermediate system
(Vlasov flow with cut-off) are close to each other for N being large enough. The next step is
to show the intermediate system converges to the Vlasov flow without cut-off. Inbetween we
use characteristics as a bridge to connect the Newtonian system and the mean field dynamics.

Additionally, assuming stochastic initial data offers a way to rule out those deterministic dy-
namics that do not fit into the proper configuration of the Vlasov equation in the sense that
those particles have small probability to appear. In doing so, we obtain the convergence in
(probability) measure between the exact and the mean field dynamics. As a direct implication
of the convergence, we prove the propagation of chaos in terms of bounded Lipschitz distance.

This chapter is organized as follows: we start with the introduction of the pedestrian flow model
in Section 3.1. Then, in Section 3.2 some notations and preliminary work will be introduced.
In Section 3.3 we state the main results and present the corresponding proofs. Section 3.4 is
devoted to the propagation of chaos. At this point, we also refer to [112] for other classical
results with bounded Lipschitz continuity. Finally, we summarize our results.

3.1 Modeling of Pedestrian Flow

Following the pedestrian flow model originally introduced in [44], we consider a two-dimensional
interacting particle system with position xi ∈ R2 and velocity vi ∈ R2, i = 1, . . . , N . The
equations of motion read

dxi
dt

= vi,

dvi
dt

=
1

N − 1

∑
i 6=j

F (xi − xj, vi − vj) +G(xi, vi),

(3.1.1)

where F (x, v) denotes the total interaction force and G(x, v) the desired velocity and direction
acceleration. More precisely, F (x, v) consists of the interaction force Fint(x) and the dissipative
force Fdiss(x, v), i.e.,

F (x, v) = (Fint(x) + Fdiss(x, v))H(x, v)

with
Fint(x) = kn

x

|x|
(2R− |x|) = 2Rkn

x

|x|
− knx,

40



Qitao Yin

Fdiss(x, v) = F n
diss(x, v) + F t

diss(x, v)

= −γn
〈v, x〉
|x|2

x− γt
(
v − 〈v, x〉

|x|2
x

)
=
〈v, x〉
|x|2

(γt − γn)x− γtv

and
H(x, v) := H2R(|x|) · H̃2R̃(|v|),

where H2R(|x|) and H̃2R̃(|v|) are smooth functions with compact support that satisfy

H2R(|x|) =

0, |x| > 2R,

1, |x| < R,
and H̃2R̃(|v|) =

0, |v| > 2R̃,

1, |v| < R̃.

Here, F n
diss(x, v) and F t

diss(x, v) are the normal dissipative force and the tangential friction force,
respectively. Moreover, kn is the interaction constant and γn, γt are suitable positive friction
constants.

Remark 3.1.1. To obtain a realistic behavior of pedestrians, the functionsH2R(|x|) and H̃2R̃(|v|)
are used to express that the interaction force and the pedestrian velocity are of finite range.
Mathematically, the total force is considered on a bounded domain.

The desired velocity and direction acceleration is given by

G(x, v) := G(x, v, ρ) =
1

T

(
−U(ρ)

∇Φ(x)

|∇Φ(x)|
− v
)
,

where
ρ = ρ(x) =

1

NR
max

∑
j,|x−xj |<R

1.

NR
max depends on the time t via the coupling to the positions xj. For a fixed time t, NR

max

describes the maximal number of particles in a ball of radius R and is used here as a normal-
ization parameter. This means, we only scale the number of particles in this region in the sense
how compressed they are. Φ is given by the solution of the eikonal equation

U(ρ(x))|∇Φ| − 1 = 0,

where U : [0, 1]→ [0, Umax] is a density-dependent velocity function. The reaction time T might
also depend on the density ρ.

The kinetic equation associated with this particle system describes the evolution of the (effective
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one particle) density f(t, x, v) as

∂tf + v · ∇xf +∇v · [(F ∗ f)f ] +∇v · (Gf) = 0. (3.1.2)

See [44] for more details and the derivation of macroscopic models for different moment closures.

3.2 Notations and Preliminary Work

Now, we consider the pedestrian flow model (3.1.1) with cut-off of order N−θ with 0 < θ < 1
4
,

i.e.,

FN(x, v) =


(

2Rkn
x

|x|
− knx+

〈v, x〉
|x|2

(γt − γn)x− γtv
)
H(x, v), |x| ≥ N−θ,(

(2RknN
θ − kn)x+N2θ〈v, x〉(γt − γn)x− γtv

)
H(x, v), |x| < N−θ.

In order to present the analytical results in Section 3.3 in a concise and clear manner, we restrict
to the following notations.

Definition 3.2.1. 1. Let (XN
t , V

N
t ) be the trajectory on R4N which evolves according to the

Newtonian equation of motion with cut-off, i.e.,
d

dt
XN
t = V N

t ,

d

dt
V N
t = ΨN(XN

t , V
N
t ) + Γ(XN

t , V
N
t ),

(3.2.1)

where ΨN(XN
t , V

N
t ) denotes the total interaction force with

(
ΨN(XN

t , V
N
t )
)
i

=
1

N − 1

∑
i 6=j

FN(xNi − xNj , vNi − vNj ),

while Γ(XN
t , V

N
t ) stands for the desired velocity and direction acceleration with(

Γ(XN
t , V

N
t )
)
i

= G(xNi , v
N
i ).

2. Let (X
N

t , V
N

t ) be the trajectory on R4N which evolves according to the Vlasov equation

∂tf
N + v · ∇xf

N +∇v · [(FN ∗ fN)fN ] +∇v · (GfN) = 0, (3.2.2)
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i.e., 
d

dt
X
N

t = V
N

t ,

d

dt
V
N

t = Ψ
N

(X
N

t , V
N

t ) + Γ(X
N

t , V
N

t ),

(3.2.3)

where
(
Ψ
N

(X
N

t , V
N

t )
)
i

=

∫∫
FN(xNi − y, vNi − w)fN(t, y, w) dydw and

(
Γ(X

N

t , V
N

t )
)
i

=

G(xNi , v
N
i ) represent the total interaction force and the desired velocity and direction ac-

celeration, respectively.

If N is removed from the superscript, then (Xt, Vt) and (X t, V t) denote the particle configu-
rations driven by the force without cut-off. Analogically, if t is removed from the subscript,
(X, V ) and (X,V ) represent the stochastic initial data, which are independent and identically
distributed. Note that we always consider the same initial data for both systems, that means
(X, V ) = (X,V ).

Remark 3.2.1. We also point out several facts for the interaction force FN(x, v) with cut-off
and the acceleration G(x, v). All the properties can be checked by direct computations.

(a) FN(x, v) is bounded, i.e., |FN(x, v)| ≤ C.

(b) FN(x, v) satisfies the following property

|FN(x, v)− FN(y, v)| ≤ qN(x, v)|x− y|,

where qN has compact support in B2R ×B2R̃ with

qN(x, v) :=


C · 1

|x|
+ C, |x| ≥ N−θ,

C ·N θ, |x| < N−θ.

(c) FN(x, v) is Lipschitz continuous in v.

(d) G(x, v) is bounded, i.e., |G(x, v)| ≤ C.

In this context, we use C as a universal constant that might depend on kn, R, R̃, γn, γt .

Furthermore, if there is a singularity in the velocity v in the interaction potential similar to
Remark 3.2.1(b), i.e.,
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|FN(x, v)− FN(x,w)| ≤ q̃N(x, v)|v − w|,

where q̃N(x, v) has compact support in B2R ×B2R̃ with

q̃N(x, v) :=


C · 1

|v|
+ C, |v| ≥ N−θ,

C ·N θ, |v| < N−θ,

it can be treated by using the same method as above and the results also apply.

3.3 Mean Field Limit

In this section, we present our key results in full detail. To show the desired convergence, our
method can be summarized as follows. First, we start from the Newtonian system with carefully
chosen cut-off and meanwhile introduce an intermediate system which involves convolution-
type interaction with cut-off, namely (3.2.2) and (3.2.3). Then, we show the convergence of
the intermediate system to the final mean field limit, where the law of large number comes into
play. The crucial point of this method is that we apply stochastic initial data or in other words
we consider a stochastic process. It enables us to use the tools from probability theory, which
helps to better understand the mean field process. The overall procedure can be summarized
as follows:



dxi

dt
= vi

dvi

dt
=

1

N − 1

∑
i6=j

F (xi − xj , vi − vj) +G(xi, vi)

cut-off−−−−−−→



dxNi

dt
= v

N
i

dvNi

dt
=

1

N − 1

∑
i6=j

F
N

(x
N
i − x

N
j , v

N
i − v

N
j ) +G(x

N
i , v

N
i )

yN→∞

∂tf + v · ∇xf +∇v · [(F ∗ f)f ] +∇v · (Gf) = 0
without cut-off←−−−−−−−−−−−− ∂tf

N + v · ∇xf
N +∇v · [(FN ∗ fN )fN ] +∇v · (GfN ) = 0ycharacteristics ycharacteristics

dxi

dt
= vi

dvi

dt
=

∫∫
F (xi − y, vi − w)f(t, y, w) dydw +G(xi, vi)



dxNi

dt
= v

N
i

dvNi

dt
=

∫∫
F

N
(x

N
i − y, v

N
i − w)f

N
(t, y, w) dydw +G(x

N
i , v

N
i )

The following assumptions are used throughout this section.

Assumption 3.3.1. We assume that

(a) there exists a time t > 0 and a constant C such that the solution f(t, x, v) of the Vlasov
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equation (3.1.2) satisfies

sup
0≤s≤t

∣∣∣∣∣∣∣∣∫∫ 1

|x− y|
f(s, y, v) dydv

∣∣∣∣∣∣∣∣
∞
≤ C,

(b) the function G(x, v) is Lipschitz continuous both in x and v, i.e., there exists a constant
L such that

|G(x, v)−G(x′, v′)| ≤ L (|x− x′|+ |v − v′|), ∀ (x, v), (x′, v′) ∈ R4N .

Definition 3.3.1. Let α ∈ (0, 1
5
) and St : R4N × R→ R be the stochastic process given by

St = min
{

1, Nα sup
0≤s≤t

∣∣∣(XN
s , V

N
s )− (X

N

s , V
N

s )
∣∣∣
∞

}
.

The set, where |St| = 1, is defined as Nα, i.e.,

Nα :=

{
(X, V ) : sup

0≤s≤t

∣∣∣(XN
s , V

N
s )− (X

N

s , V
N

s )
∣∣∣
∞
> N−α

}
. (3.3.1)

Here and in the following we use | · |∞ as the supremum norm on R4N . Note that

E0(St+dt − St | Nα) ≤ 0,

since St takes the value of one for (X, V ) ∈ Nα.

Theorem 3.3.1. Let θ ∈ (0, 1
4
), α ∈ (0, 1

5
), β ∈ (α, 1−α

4
), γ ∈ (0, 1−α

4
− θ) and fN(t, x, v) be

the solution to the Vlasov equation (3.2.2). Suppose that fN(t, x, v) satisfies Assumption 4.1(a)
and Assumption 4.1(b) holds for G(x, v). Then there exists a constant C such that

P0

(
sup

0≤s≤t

∣∣∣(XN
s , V

N
s )− (X

N

s , V
N

s )
∣∣∣
∞
> N−α

)
≤ eCt ·N−n,

where n = min{1−α−4β, 1−α−4θ−4γ, β−α}. Furthermore, if fN(t, x, v) ∈ L∞((0,∞);L1(R2×
R2)) ∩ L∞((0,∞);L∞(R2 × R2)), it holds with a θ-independent convergence rate that

P0

(
sup

0≤s≤t

∣∣∣(XN
s , V

N
s )− (X

N

s , V
N

s )
∣∣∣
∞
> N−α

)
≤ eCt · r(N),

where the convergence rate r(N) = max{N−(1−α−4β), Nα−β, N−(1−α−4γ) ln2N}.

We remark that fN(t, x, v) ∈ L1(R2×R2) is automatically satisfied due to the mass conservation.
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With additional assumption on the initial condition f0 for the equations (3.1.2), (3.2.2) and on
the solution of the Vlasov equation without cut-off, we further extend our result to

Theorem 3.3.2. Let f(t, x, v) and fN(t, x, v) be the solution to the Vlasov equation (3.1.2) and
(3.2.2) respectively with the same initial data f0. Suppose that Assumption 4.1(b) is satisfied.
Moreover, ∇f0 is integrable and f(t, x, v) ∈ L∞((0,∞);L∞(R2 × R2)). Then there holds

lim
N→∞

P0

(
sup

0≤s≤t

∣∣∣(XN
s , V

N
s )− (Xs, V s)

∣∣∣
∞
> N−α

)
= 0.

The proofs of both theorems will be presented at the end of this section.

The additional requirement on f(t, x, v) stems from the existence and uniqueness of the solution
to the Vlasov equation, which will be shown in another independent work in the near future.

Definition 3.3.2. Let β ∈ (α, 1−α
4

), γ ∈ (0, 1−α
4
− θ). The sets Nβ and Nγ are characterized by

Nβ :=
{

(X, V ) :
∣∣∣ΨN(X

N

t , V
N

t )−Ψ
N

(X
N

t , V
N

t )
∣∣∣
∞
> N−β

}
, (3.3.2)

Nγ :=
{

(X, V ) :
∣∣∣QN(X

N

t , V
N

t )−QN
(X

N

t , V
N

t )
∣∣∣
∞
> N−γ

}
, (3.3.3)

where QN(X
N

t , V
N

t ) and QN
(X

N

t , V
N

t ) are understood in the sense of

(QN(X
N

t , V
N

t ))i :=
1

N − 1

∑
i 6=j

qN(xNi − xNj , vNi − vNj )

and correspondingly

(Q
N

(X
N

t , V
N

t ))i :=

∫∫
qN(xNi − y, vNi − w)fN(t, y, w) dydw.

Next, we will see that the measures of both sets Nβ and Nγ can be arbitrarily small, i.e., the
probability of each set tends to 0 as N goes to infinity. We prove the following two lemmas:

Lemma 3.3.1. There exists a constant C <∞ such that

P0(Nβ) ≤ CN−(1−4β).

Proof. First, we let the set Nβ evolve along the characteristics of the Vlasov equation

Nβ,t :=
{

(X
N

t , V
N

t ) :
∣∣∣NβΨN(X

N

t , V
N

t )−NβΨ
N

(X
N

t , V
N

t )
∣∣∣
∞
> 1
}

46



Qitao Yin

and consider the following fact

Nβ,t ⊆
N⊕
i=1

N i
β,t,

where

N i
β,t :=

(xNi , v
N
i ) :

∣∣∣∣∣Nβ · 1

N − 1

∑
i 6=j

FN(xNi − xNj , vNi − vNj )−Nβ(FN ∗ fN)(t, xNi , v
N
i )

∣∣∣∣∣
∞

> 1

 .

We therefore get

Pt(Nβ,t) ≤
N∑
i=1

Pt(N i
β,t) = NPt(N 1

β,t),

where in the last step we use the symmetry argument in exchanging any two coordinates.
Using Markov inequality gives

Pt(N 1
β,t) ≤ Et

(Nβ · 1

N − 1

N∑
j=2

FN(xN1 − xNj , vN1 − vNj )−Nβ(FN ∗ fN)(t, xN1 , v
N
1 )

)4


=

(
Nβ

N − 1

)4

Et

( N∑
j=2

FN(xN1 − xNj , vN1 − vNj )− (N − 1)(FN ∗ fN)(t, xN1 , v
N
1 )

)4
 .

(3.3.4)

Let hj := FN(xN1 − xNj , vN1 − vNj )−
∫∫

FN(xN1 − y, vN1 −w)fN(t, y, w) dydw. Then, each term

in the expectation (3.3.4) takes the form of
∏N

j=2 h
kj
j with

∑N
j=1 kj = 4, and more importantly,

the expectation assumes the value of zero whenever there exists a j such that kj = 1. This can
be easily verified by integrating over the j-th variable first or, in other words, by acknowledging
the fact that ∀ j = 2, . . . , N , there holds

Et
[
FN(xN1 − xNj , vN1 − vNj )−

∫∫
FN(xN1 − y, vN1 − w)fN(t, y, w) dydw

]
= 0.

Then, we can simplify the estimate (3.3.4) to

Pt(N 1
β,t) ≤

(
Nβ

N − 1

)4

Et

[
N∑
j=2

h4
j +

N∑
2≤m<n

(
4

2

)
h2
mh

2
n

]
.

Since FN is bounded and ||fN ||1 = 1, we thus have for any fixed j

|hj| ≤ |FN(xN1 − xNj , vN1 − vNj )|+
∫∫
|FN(xN1 − y, vN1 − w)|fN(t, y, w) dydw ≤ C.
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Therefore |hj| is bounded to any power and we obtian

Et
[
h2
mh

2
n

]
≤ C and Et

[
h4
j

]
≤ C

and consequently

Pt(N 1
β,t) ≤

(
Nβ

N − 1

)4

·
(
C · (N − 1) + C · (N − 1)(N − 2)

2

)
≤ C ·N−(2−4β).

By noticing the fact that

P0(Nβ) = Pt (Nβ,t) ≤ NPt(N 1
β,t) ≤ N · C ·N−(2−4β) = C ·N−(1−4β),

we obtain the desired result.

In fact, this result holds for any β if we change accordingly the power in the proof to be another
even number (depending on β) greater than four.

Due to the singularity of ∇xF , which is also the motivation for the cut-off, we exploit a slightly
different technique as in Lemma 3.3.1 to prove

Lemma 3.3.2. There exists a constant C <∞ such that

P0(Nγ) ≤ C · r̃(N),

where r̃(N) is the convergence rate, which is N−(1−4γ) ln2N if fN ∈ L∞(R2×R2) or N−(1−4θ−4γ)

otherwise.

Proof. Let the set Nγ evolve along the characteristics of the Vlasov equation

Nγ,t :=
{

(X
N

t , V
N

t ) :
∣∣∣NγQN((X

N

t , V
N

t )−NγQ
N

((X
N

t , V
N

t )
∣∣∣
∞
> 1
}

and consider the fact

Nγ,t ⊆
N⊕
i=1

N i
γ,t,

where

N i
γ,t :=

(xNi , v
N
i ) :

∣∣∣∣∣Nγ · 1

N − 1

∑
i 6=j

qN(xNi − xNj , vNi − vNj )−Nγ(qN ∗ fN)(t, xNi , v
N
i )

∣∣∣∣∣
∞

> 1

 .
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Due to the symmetry in exchanging any two coordinates, we get

Pt(Nγ,t) ≤
N∑
i=1

Pt(N i
γ,t) = NPt(N 1

γ,t).

Using Markov inequality gives

Pt(N 1
γ,t) ≤ Et

(Nγ · 1

N − 1

N∑
j=2

qN(xN1 − xNj , vN1 − vNj )−Nγ(qN ∗ fN)(t, xN1 , v
N
1 )

)4


=

(
Nγ

N − 1

)4

Et

( N∑
j=2

qN(xN1 − xNj , vN1 − vNj )− (N − 1)(qN ∗ fN)(t, xN1 , v
N
1 )

)4
 .

(3.3.5)

In order to avoid redundant complexity, we borrow the notation from Lemma 4.1 and also

define hj := qN(xN1 − xNj , vN1 − vNj )−
∫∫

qN(xN1 − y, vN1 − w)fN(t, y, w) dydw. With the same

argument as in Lemma 3.3.1, we simplify the estimate (3.3.5) to

Pt(N 1
γ,t) ≤

(
Nγ

N − 1

)4

Et

[
N∑
j=2

h4
j +

N∑
2≤m<n

6h2
mh

2
n

]
.

On one hand, due to the cut-off, it is clear that

||qN ||∞ ≤ C ·N θ.

On the other hand, by taking out the L∞-norm of qN and using the integrability of fN , we
achieve ∣∣∣∣∫∫ qN(xN1 − y, vN1 − w)fN(t, y, w) dydw

∣∣∣∣ ≤ C ·N θ.

Therefore |hj| is bounded by C ·N θ and it is now obvious to see that

Et
[
h4
j

]
≤ C ·N4θ and Et

[
h2
mh

2
n

]
≤ C ·N4θ

and consequently

Pt(N 1
γ,t) ≤ C ·

(
Nγ

N − 1

)4(
N4θ · (N − 1) +N4θ · (N − 1)(N − 2)

2

)
≤ C ·N−(2−4θ−4γ).
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By noticing the fact that

P0(Nγ) = Pt (Nγ,t) ≤ NPt(N 1
γ,t) ≤ C ·N−(1−4θ−4γ),

we complete the first part of the lemma.

Furthermore , if fN(t, x, v) ∈ L∞((0,∞);L1(R2×R2))∩L∞((0,∞);L∞(R2×R2)), by applying
the inequality E [(X − E[X])2] ≤ E[X2] for any random variable X, we have for any fixed j

Et

[(
qN(xN1 − xNj , vN1 − vNj )−

∫∫
qN(xN1 − y, vN1 − w)fN(t, y, w) dydw

)2
]

≤ Et
[(
qN(xN1 − xNj , vN1 − vNj )

)2
]

≤
∫∫ (∫∫

|z−y|<N−θ

(
C ·N θ + C

)2
fN(t, y, w) dydw

)
fN(t, z, u) dzdu

+

∫∫ (∫∫
|z−y|≥N−θ

(
C · 1

|z − y|

)2

fN(t, y, w) dydw

)
fN(t, z, u) dzdu.

We take out the L∞-norm of fN in both terms. The integral left inside the first term is bounded
by a constant while in the second term the integral can be estimated by∫∫

|z−y|≥N−θ

(
C · 1

|z − y|

)2

fN(t, y, w) dydw ≤ C + 2πθ lnN ≤ C · lnN,

where we use that qN has compact support. Therefore for any fixed j

Et
[
h4
j

]
≤ ||hj||2∞Et

[
h2
j

]
≤ C ·N2θ lnN,

Et
[
h2
mh

2
n

]
≤ C · ln2N.

Consequently

Pt(N 1
γ,t) ≤ C ·

(
Nγ

N − 1

)4(
N2θ lnN · (N − 1) + ln2N · (N − 1)(N − 2)

2

)
≤ C ·N−(2−4γ) ln2N.

Thus it holds that

P0(Nγ) = Pt (Nγ,t) ≤ NPt(N 1
γ,t) ≤ C ·N−(1−4γ) ln2N.
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Lemma 3.3.3. Let Nα, Nβ, Nγ be defined as in (3.3.1)-(3.3.3). Suppose that fN(t, x, v)

satisfies Assumption 3.3.1(a) and Assumption 3.3.1(b) holds for G(x, v). Then there exists a
constant C <∞ such that∣∣∣(V N

t ,Ψ
N(XN

t , V
N
t ) + Γ(XN

t , V
N
t )
)
−
(
V
N

t ,Ψ
N

(X
N

t , V
N

t ) + Γ(X
N

t , V
N

t )
)∣∣∣
∞
≤ CSt(X, V )N−α+N−β

for all initial data (X, V ) ∈ (Nα ∪Nβ ∪Nγ)c.

Proof. Applying triangle inequality gives∣∣∣(V N
t ,Ψ

N(XN
t , V

N
t ) + Γ(XN

t , V
N
t )
)
−
(
V
N

t ,Ψ
N

(X
N

t , V
N

t ) + Γ(X
N

t , V
N

t )
)∣∣∣
∞

≤
∣∣∣V N
t − V

N

t

∣∣∣
∞

+
∣∣∣ΨN(XN

t , V
N
t )−Ψ

N
(X

N

t , V
N

t )
∣∣∣
∞

+
∣∣∣Γ(XN

t , V
N
t )− Γ(X

N

t , V
N

t )
∣∣∣
∞

≤
∣∣∣V N
t − V

N

t

∣∣∣
∞

+
∣∣∣ΨN(XN

t , V
N
t )−ΨN(X

N

t , V
N

t )
∣∣∣
∞

+
∣∣∣ΨN(X

N

t , V
N

t )−Ψ
N

(X
N

t , V
N

t )
∣∣∣
∞

+
∣∣∣Γ(XN

t , V
N
t )− Γ(X

N

t , V
N

t )
∣∣∣
∞

=: |I1|+ |I2|+ |I3|+ |I4|.

Next, we estimate term by term.

• Since (X, V ) /∈ Nα,
|I1| :=

∣∣∣V N
t − V

N

t

∣∣∣
∞
≤ St(X, V )N−α.

• With the help of qN which is defined in Remark 3.2.1 and the fact that FN is Lipschitz
continuous in v, we obtain∣∣∣∣∣ 1

N − 1

∑
i 6=j

FN(xNi − xNj , vNi − vNj )− 1

N − 1

∑
i 6=j

FN(xNi − xNj , vNi − vNj )

∣∣∣∣∣
≤ 1

N − 1

∑
i 6=j

∣∣qN(xNi − xNj , vNi − vNj )
∣∣ (2|xNi − xNi |+ 2|vNi − vNi |

)
. (3.3.6)

Since (X, V ) /∈ Nα, it follows in particular for any 1 ≤ i ≤ N that

|xNi − xNi | ≤ N−α and |vNi − vNi | ≤ N−α.

So together with (3.3.6), we have∣∣∣(ΨN(XN
t , V

N
t )
)
i
−
(
ΨN(X

N

t , V
N

t )
)
i

∣∣∣ ≤ 4
∣∣∣(QN(X

N

t , V
N

t )
)
i

∣∣∣N−α.
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On the other hand, because (X, V ) /∈ Nγ, it follows∣∣∣(QN(X
N

t , V
N

t )
)
i

∣∣∣ ≤ ||qN ∗ fN ||∞ +N−γ < C

and thus
|I2| :=

∣∣∣ΨN(XN
t , V

N
t )−ΨN(X

N

t , V
N

t )
∣∣∣
∞
≤ CSt(X, V )N−α.

• Since (X, V ) /∈ Nβ, it follows directly

|I3| :=
∣∣∣ΨN(X

N

t , V
N

t )−Ψ
N

(X
N

t , V
N

t )
∣∣∣
∞
≤ N−β.

• Since G(x, v) under Assumption 3.3.1(b) is Lipschitz continuous, we have for each 1 ≤
i ≤ N and (xNi , v

N
i ) =

(
(XN

t , V
N
t )
)
i
, (xNi , v

N
i ) =

(
(X

N

t , V
N

t )
)
i∣∣G(xNi , v

N
i )−G(xNi , v

N
i )
∣∣ ≤ L

∣∣(xNi , vNi )− (xNi , v
N
i )
∣∣ .

Together with the fact that (X, V ) /∈ Nα, there holds

|I4| :=
∣∣∣Γ(XN

t , V
N
t )− Γ(X

N

t , V
N

t )
∣∣∣
∞
≤ LSt(X, V )N−α.

Combining all the four terms, we end up with∣∣∣(V N
t ,Ψ

N(XN
t , V

N
t ) + Γ(XN

t , V
N
t )
)
−
(
V
N

t ,Ψ
N

(X
N

t , V
N

t ) + Γ(X
N

t , V
N

t )
)∣∣∣
∞
≤ CSt(X, V )N−α+N−β

for all (X, V ) ∈ (Nα ∪Nβ ∪Nγ)c.

Using Lemmas 3.3.1 - 3.3.3 we can now prove Theorem 4.1 and Theorem 4.2:

Proof of Theorem 3.3.1

From the definition of the Newtonian flow (3.2.1) and the characteristics of the Vlasov equation
(3.2.3), we know

(XN
t+dt, V

N
t+dt) = (XN

t , V
N
t ) + (V N

t ,Ψ
N(XN

t , V
N
t ) + Γ(XN

t , V
N
t ))dt+ o(dt),

(X
N

t+dt, V
N

t+dt) = (X
N

t , V
N

t ) + (V
N

t ,Ψ
N

(X
N

t , V
N

t ) + Γ(X
N

t , V
N

t ))dt+ o(dt).

Thus ∣∣∣(XN
t+dt, V

N
t+dt)− (X

N

t+dt, V
N

t+dt)
∣∣∣
∞
≤
∣∣∣(XN

t , V
N
t )− (X

N

t , V
N

t )
∣∣∣
∞

+
∣∣∣(V N

t ,Ψ
N(XN

t , V
N
t ) + Γ(XN

t , V
N
t )
)
−
(
V
N

t ,Ψ
N

(X
N

t , V
N

t ) + Γ(X
N

t , V
N

t )
)∣∣∣
∞
dt+ o(dt),
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i.e.,

St+dt−St ≤
∣∣∣(V N

t ,Ψ
N(XN

t , V
N
t ) + Γ(XN

t , V
N
t )
)
−
(
V
N

t ,Ψ
N

(X
N

t , V
N

t ) + Γ(X
N

t , V
N

t )
)∣∣∣
∞
Nαdt+o(dt)

Taking the expectation over both sides yields

E0 [St+dt − St] = E0 [St+dt − St | Nα ] + E0 [St+dt − St | N c
α ]

≤ E0 [St+dt − St | (Nβ ∪Nγ) \ Nα ] + E0 [St+dt − St | (Nα ∪Nβ ∪Nγ)c ]

≤ E0

[ ∣∣∣V N
t − V

N

t

∣∣∣
∞

∣∣∣ (Nβ ∪Nγ) \ Nα ]Nαdt

+E0

[ ∣∣∣ΨN(XN
t , V

N
t )−Ψ

N
(X

N

t , V
N

t )
∣∣∣
∞

∣∣∣ (Nβ ∪Nγ) \ Nα ]Nαdt

+E0

[ ∣∣∣Γ(XN
t , V

N
t )− Γ(X

N

t , V
N

t )
∣∣∣
∞

∣∣∣ (Nβ ∪Nγ) \ Nα ]Nαdt

+E0 [St+dt − St | (Nα ∪Nβ ∪Nγ)c ] + o(dt)

=: J1 + J2 + J3 + J4 + o(dt),

where in the second step we use E0(St+dt − St | Nα) ≤ 0 and decompose the set N c
α into

(Nβ ∪Nγ) \ Nα and (Nα ∪Nβ ∪Nγ)c .

Since (X, V ) /∈ Nα, it follows

J1 = E0

[ ∣∣∣V N
t − V

N

t

∣∣∣
∞

∣∣∣ (Nβ ∪Nγ) \ Nα ]Nαdt

≤
(
P0(Nβ) + P0(Nγ)

)
dt.

Due to the definition of ΨN , Ψ
N , Γ as well as the boundedness of FN , we obtain

J2 ≤
(
||FN ||∞ + ||FN ∗ f ||∞

) (
P0(Nβ) + P0(Nγ)

)
Nαdt,

J3 ≤ 2||G||∞
(
P0(Nβ) + P0(Nγ)

)
Nαdt.

Thanks to Lemma 3.3.1 and Lemma 3.3.2, we get

J1 + J2 + J3 =
[
N−α + C

] (
P0(Nβ) + P0(Nγ)

)
Nαdt

≤ C ·max{r̃(N), N−(1−4β)}Nαdt

where r̃(N) is the convergence rate, which is N−(1−4γ) ln2N if fN ∈ L∞(R2×R2) or N−(1−4θ−4γ)
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otherwise. On the other hand, Lemma 3.3.3 states that

J4 = E0 [St+dt − St | (Nα ∪Nβ ∪Nγ)c ]

≤ (C · E0 [St]N
−α +N−β) ·Nαdt+ o(dt)

= C · E0 [St] dt+Nα−βdt+ o(dt).

Therefore, we can determine the estimate

E0 [St+dt]− E0[St] ≤ E0 [St+dt − St]
≤ C · E0 [St] dt+ C ·max{r̃(N)Nα, N−(1−α−4β), Nα−β}dt+ o(dt).

Equivalently, we have

d

dt
E0[St] ≤ C · E0[St] + C ·max{r̃(N)Nα, N−(1−α−4β), Nα−β}.

Gronwall’s inequality yields

E0 [St] ≤ eCt ·max{r̃(N)Nα, N−(1−α−4β), Nα−β}.

The proof is completed by the following Markov inequality

P0

(
sup

0≤s≤t

∣∣∣(XN
s , V

N
s )− (X

N

s , V
N

s )
∣∣∣
∞
> N−α

)
= P0(St = 1) ≤ E0 [St] .

Proof of Theorem 3.3.2

Let N ∈ N and
Wt := sup

(X,V )∈R4N

∣∣∣(XN

t , V
N

t )− (X t, V t)
∣∣∣ .

With the same argument as in the proof of Theorem 3.3.1, it is not difficult to deduce

Wt+dt −Wt ≤
∣∣∣(V N

t ,Ψ
N

(X
N

t , V
N

t ) + Γ(X
N

t , V
N

t )
)
−
(
V t,Ψ(X t, V t) + Γ(X t, V t)

)∣∣∣
∞︸ ︷︷ ︸

=:D

dt+ o(dt).
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Furthermore, with the Lipschitz continuity of G(x, v), we get

D ≤ Wt +
∣∣∣ΨN

(X
N

t , V
N

t )−Ψ(X t, V t)
∣∣∣
∞

+
∣∣∣Γ(X

N

t , V
N

t )− Γ(X t, V t)
∣∣∣
∞

≤ C ·Wt +
∣∣∣ΨN

(X
N

t , V
N

t )−Ψ(X t, V t)
∣∣∣
∞

≤ C ·Wt + sup
1≤i≤N

∣∣∣FN ∗ fN(xNi , v
N
i )− F ∗ f(xi, vi)

∣∣∣
≤ C ·Wt + sup

1≤i≤N

∣∣∣FN ∗ fN(xNi , v
N
i )− FN ∗ fN(xi, vi)

∣∣∣
+ sup

1≤i≤N

∣∣∣FN ∗ fN(xi, vi)− FN ∗ f(xi, vi)
∣∣∣

+ sup
1≤i≤N

∣∣∣FN ∗ f(xi, vi)− F ∗ f(xi, vi)
∣∣∣.

By using the integrability of ∇FN , we estimate the second term by

sup
1≤i≤N

∣∣∣FN ∗ fN(xNi , v
N
i )− FN ∗ fN(xi, vi)

∣∣∣ ≤ ||∇FN ||1||fN ||∞Wt ≤ C ·Wt.

Due to the integrability of ∇f0, the third term can be controlled by

sup
1≤i≤N

∣∣∣FN ∗ fN(xi, vi)− FN ∗ f(xi, vi)
∣∣∣ ≤ ||FN ||∞||fN − f ||1 ≤ C||∇f0||1Wt.

In the estimates above, the reversibility of both particle trajectories is used. The last term is
straightforward to estimate

sup
1≤i≤N

∣∣∣FN ∗ f(xi, vi)− F ∗ f(xi, vi)
∣∣∣ ≤ ||f ||∞||FN − F ||1 ≤ C ·N−θ.

Therefore we arrive at

Wt+dt −Wt ≤
(
C ·Wt + C ·N−θ

)
dt+ o(dt),

or equivalently
d

dt
Wt ≤ C ·Wt + C ·N−θ.

Gronwall’s inequality gives
Wt ≤ C ·N−θ.

Together with Theorem 3.3.1, we complete the proof.
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3.4 Propagation of Chaos

We can clearly see as the direct byproduct of the results stated above that chaos indeed prop-
agates, which means the convergence of the one particle marginals of the N -particle system to
the solution of the Vlasov equation in the sense of bounded Lipschitz distance. We illustrate the
propagation of chaos also in two steps by using the Vlasov flow with cut-off as an intermediate
tool. We present the result in full detail under the conditions of Theorem 3.3.1.

Definition 3.4.1. For any two probability densities µ, ν : R4 → R+, the bounded Lipschitz
distance is defined by

dL(µ, ν) := sup
g∈L

∣∣∣∣∫ (µ(x, v)− ν(x, v)
)
g(x, v) dxdv

∣∣∣∣ ,
where L := {g : ||g||∞ = ||g||L = 1} and ||g||L denotes the global Lipschitz constant of g.

In order to simplify the notation, we also introduce hereafter (xi,−t, vi,−t) and (xi,−t, vi,−t) to
be the position and velocity of the i-th particle at initial time, which evolves according to the
Newtonian and Vlasov flow with cut-off starting from (xi, vi) at time t, respectively.

Theorem 3.4.1. Let fNt : R× R4 → R+ be the solution to (3.2.2), µt : R× R4N → R+ be the
N-particle density of the Newtonian flow and the one-particle marginals µ(1)

t be given by

µ
(1)
t (x1, v1) :=

∫
µt(x1, v1, · · · , xN , vN) dx2dv2 . . . dxNdvN ,

where
µt(x1, v1, · · · , xN , vN) := µ0(x1,−t, v1,−t, · · · , xN,−t, vN,−t).

Assume that initially the one particle marginals converges to the initial probability density fN0
in the sense of bounded Lipschitz distance, i.e.,

lim
N→∞

dL(µ
(1)
0 , fN0 ) = 0.

Then under the conditions of Theorem 3.3.1, there holds

lim
N→∞

dL(µ
(1)
t , fNt ) = 0.
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Proof. By definition, we have

dL(µ
(1)
t , fNt ) = sup

g∈L

∣∣∣∣∫ (µ(1)
t (x1, v1)− fNt (x1, v1)

)
g(x1, v1) dx1dv1

∣∣∣∣
= sup

g∈L

∣∣∣ ∫ (µt(x1, v1, · · · , xN , vN)−

N∏
i=1

fNt (xi, vi)
)
g(x1, v1) dx1dv1dx2dv2 . . . dxNdvN

∣∣∣. (3.4.1)

Since both the Newtonian and Vlasov flow leave the measure invariant, then

(3.4.1) = sup
g∈L

∣∣∣ ∫ µ0(x1, v1, · · · , xN , vN)g(x1,−t, v1,−t) dx1dv1 . . . dxNdvN

−
∫ N∏

i=1

fN0 (xi, vi)g(x1,−t, v1,−t) dx1dv1 . . . dxNdvN

∣∣∣
≤ sup

g∈L

∣∣∣∣∫ µ0(x1, v1, · · · , xN , vN)
(
g(x1,−t, v1,−t)− g(x1,−t, v1,−t)

)
dx1dv1 . . . dxNdvN

∣∣∣∣
+ sup

g∈L

∣∣∣∣∣
∫ (

µ0(x1, v1, · · · , xN , vN)−
N∏
i=1

fN0 (xi, vi)
)
g(x1,−t, v1,−t) dx1dv1 . . . dxNdvN

∣∣∣∣∣
=: M1 +M2.

Further we decompose M1 into M11 +M12, where

M11 = M1

∣∣∣{
sup0≤s≤t

∣∣∣(XN
s ,V

N
s )−(X

N
s ,V

N
s )
∣∣∣
∞
>N−α

}

and
M12 = M1

∣∣∣{
sup0≤s≤t

∣∣∣(XN
s ,V

N
s )−(X

N
s ,V

N
s )
∣∣∣
∞
≤N−α

}.
Under Theorem 3.3.1, we know

lim
N→∞

P0

(
sup

0≤s≤t

∣∣∣(XN
s , V

N
s )− (X

N

s , V
N

s )
∣∣∣
∞
> N−α

)
= 0.
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By using the fact that ||g||∞ = 1 , we thus obtain

M11 < 2

∫
µ0(x1, v1, · · · , xN , vN) dx1dv1 . . . dxNdvN

< 2P0

(
sup

0≤s≤t

∣∣∣(XN
s , V

N
s )− (X

N

s , V
N

s )
∣∣∣
∞
> N−α

)
→ 0, asN →∞.

On the other hand, due to the reversibility of both particle trajectories and ||g||L = 1, we have

M12 <

∫
µ0(x1, v1, · · · , xN , vN)

∣∣(x1,−t, v1,−t)− (x1,−t, v1,−t)
∣∣ dx1dv1 . . . dxNdvN

= E0

[∣∣(X1,−t, V1,−t)− (X1,−t, V 1,−t)
∣∣]

< E0

[
sup

0≤s≤t

∣∣∣(XN
s , V

N
s )− (X

N

s , V
N

s )
∣∣∣
∞

]
→ 0, asN →∞.

In summary, M1 converges to zero as N goes to infinity. Meanwhile it is also clear that M2

tends to zero as N → ∞ due to the assumption on the initial probability density. Combining
all the terms completes the proof.

Theorem 3.4.2. Let ft : R × R4 → R+ be the solution to (3.1.2), µt : R × R4N → R+ be the
N-particle density of the Newtonian flow and the one-particle marginals µ(1)

t be given by

µ
(1)
t (x1, v1) :=

∫
µt(x1, v1, · · · , xN , vN) dx2dv2 . . . dxNdvN ,

where
µt(x1, v1, · · · , xN , vN) := µ0(x1,−t, v1,−t, · · · , xN,−t, vN,−t).

Assume that initially the one particle marginals converges to the initial probability density f0

in the sense of bounded Lipschitz distance, i.e.,

lim
N→∞

dL(µ
(1)
0 , f0) = 0.

Then under the conditions of Theorem 3.3.2, there holds

lim
N→∞

dL(µ
(1)
t , ft) = 0.

Proof. By replacing fNt with ft in the proof of Theorem 3.4.1 and using the conditions of
Theorem 3.3.2, one will directly get the desired result. But we emphasize that Theorem 3.4.2
actually implies the convergence of the solution of (3.2.2) to the solution of (3.1.2) in the sense
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of bounded Lipschitz distance.

Note that if the initial one particle marginals converges in a certain rate to the initial probability
density in both theorems above, we can also achieve the convergence rate for any fixed time t.
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Chapter 4

From Vlasov-Maxwell to Vlasov-Poisson

The time evolution of plasmas is a very important topic of physics. In many cases, for exam-
ple when considering the plasma in a nuclear fusion reactor, the temperature of the particles
forming the plasma is sufficiently high to neglect quantum effects. Given that the number of
particles forming the plasma is very high, also a mean-field approximation for the internal elec-
tromagnetic forces of the system can be argued [50], thus the system is in good approximation
given by the relativistic Vlasov-Maxwell equations:

∂tfm + v̂ · ∇xfm + (Em + c−1v̂ ×Bm) · ∇vfm = 0,

∂tEm = c∇×Bm − jm, ∇ · Em = ρm,

∂tBm = −c∇× Em, ∇ ·Bm = 0,

(4.0.1)

where v̂ =
v√

1 + c−2v2
, ρm(t, x) =

∫
R3

fm(t, x, v) dv and jm(t, x) =

∫
R3

v̂fm(t, x, v) dv. The

parameter c is the speed of light, (Em, Bm) is the electro-magnetic field, and the distribution
function fm(t, x, v) ≥ 0 describes the density of particles with position x ∈ R3 and velocity
v ∈ R3. Assuming that there are no external electromagnetic fields, the initial data

fm(0, x, v) = f0(x, v),

Em(0, x) = E0(x),

Bm(0, x) = B0(x),

(4.0.2)

satisfy the compatibility conditions ∇ · E0(x) = ρ0(x) =

∫
R3

f0(x, v) dv, ∇ ·B0(x) = 0.

Local existence and uniqueness of classical solutions to this initial value problem for smooth
and compactly supported data was established in [47]. These solutions can be extended globally
in time provided the momentum support can be controlled assuming certain conditions on the
initial data, e.g. smallness [48] closeness to neutrality [46] or closeness to spherical symmetry
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[102]. It is worth to mention that different approaches to the results in [47] were given in
[9, 73]. In order to obtain global existence of solutions, DiPerna and Lions restricted the
solution concept to weak solutions. We refer to [39].
As was shown in [106] using an integral representation for the electric and magnetic field due
to Glassey and Strauss [47], the solutions of relativistic Vlasov-Maxwell system converge in the
pointwise sense to solutions of the non-relativistic Vlasov-Poisson system (below) at the rate
of 1/c as c tends to infinity. The Vlasov-Poisson system reads

∂tfp + v · ∇xfp + Ep · ∇vfp = 0,

Ep(t, x) =
1

4π

∫
R3

ρp(t, y)
x− y
|x− y|3

dy,

ρp(t, y) =

∫
R3

fp(t, y, v) dv,

(4.0.3)

with the initial data fp(0, x, v) = f0(x, v). Here the indexes m and p in (4.0.1) and (4.0.3)
stand for Maxwell and Poisson respectively. We note that there are global existence results for
classical solutions of the Vlasov-Poisson system [84, 98, 107].
However a more interesting and challenging question is to consider what the corresponding
particle model of relativistic Vlasov-Maxwell equation might be and whether we can prove the
validity of the mean field description rigorously in the limit N →∞. Up to our knowledge and
at the time of this writing, taking both the mean filed limit and the non-relativistic limit (or
classical limit) of Vlasov-Maxwell system together into account is rare in the literatures. Con-
cerning the mean field limit, Braun and Hepp [11] and Dobrushin [41] have proposed rigorous
derivations of a system analogous to the Vlasov-Poisson system with a twice differentiable mol-
lification of the Coulomb potential. Hauray and Jabin [63] have succeeded in treating the case
of singular potentials, but not including the Coulomb singularity yet. Until recently, Lazarovici
and Pickl [81] gave a probabilisitic proof of the validity of the mean field limit and propagation
of chaos N -particle systems in three dimensions with Coulomb potential with N -dependent
cutoff, which provides us with a very constructive idea of method. Lazarovici generalized this
result including electromagnetic fields, proving the validity of the relativistic Vlasov-Maxwell
equation [80] considering charges of radius N−δ with δ < 1/12. In this chapter, similar ideas
are used in handling the mean field limit N →∞.
Writing down the correspondingN -particle model of the non-relativistic Vlasov-Maxwell system
is a perplexing task because one needs to find a suitable description for the electromagnetic
self-interaction within the theory of classical electrodynamics [43, 70, 110]. The problem of
deriving a regularized version of the Vlasov-Maxwell system from a particle model was explicitly
mentioned by Kiessling in [72]. Only after several years did Golse [50] establish the mean field
limit of a N -particle system towards a regularized version of the relativistic Vlasov-Maxwell
system with the help of [43] by Elsken, Kiessling and Ricci.
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In the present chapter, we want to combine the mean field limit and non-relativistic limit of the
regularized relativistic Vlasov-Maxwell particle model to Vlasov-Poisson equation. The method
we apply here is more or less along the line of [47, 50, 81] using a mollifier for regularization
removes the difficulties caused by the electromagnetic self-interaction forces. Unlike regularizing
the Coulomb potential in the mean field limit established in [11, 41], the regularization of the
self-interaction force in the Vlasov-Maxwell system is more difficult since the electromagnetic
field involves both a scalar and vector potentials [50]. The solutions of the relativistic Vlasov-
Maxwell system, as was discussed by Glassey and Strauss in [47], are closely related to the
wave equation. This connection uses Kirchhoff’s formula, which we also used in this paper. We
would like to mention that there are other representations of the solutions of the relativistic
Vlasov-Maxwell system, for example [9, 10], but they are all in fact equivalent.

This chapter is organized as follows: in Section 4.2, we prepare the regularization-procedure
of both, the relativistic Vlasov-Maxwell and the Vlasov-Poisson system, and provide estimates
between the solutions of these two systems. In Section 4.3, we introduce the particle model
of the relativistic Vlasov-Maxwell system and apply the probabilisitic method to carry out the
estimates between the characteristic equation of the particle model and that of the relativistic
Vlasov-Maxwell system. We summarize our results in Section 4.4.

4.1 Regularization of the Vlasov-Maxwell and the Vlasov-
Poisson Systems

Let χ ∈ C∞0 satisfy

χ(x) = χ(−x) ≥ 0, supp(χ) ⊂ B1(0),

∫
R3

χ(x) dx = 1,

and define the regularizing sequence

χN(x) = N3θχ
(
N θx

)
.

The regularized version of the Vlasov-Maxwell System (VMN) with unknown (fNm , B
N
m , E

N
m) is

given by:
∂tf

N
m + v̂ · ∇xf

N
m +

(
EN
m + c−1v̂ ×BN

m

)
· ∇vf

N
m = 0,

∂tE
N
m = c∇×BN

m − χN ∗x χN ∗x jNm , ∇ · EN
m = χN ∗x χN ∗x ρNm,

∂tB
N
m = −c∇× EN

m , ∇ ·BN
m = 0,

(4.1.1)
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and initial data (IVMN) 
fNm (0, x, v) = f0(x, v),

EN
m(0, x) = χN ∗x χN ∗x E0(x),

BN
m(0, x) = χN ∗x χN ∗x B0(x),

(4.1.2)

The regularized version of the Vlasov-Poisson System (VPN) with unknown (fNp , E
N
p ) is given

by: 
∂tf

N
p + v · ∇xf

N
p + EN

p · ∇vf
N
p = 0,

EN
p (t, x) =

1

4π

∫∫∫
R9

x− y
|x− y|3

χN(p)χN(z)ρNp (t, y − p− z) dydpdz,

ρNp (t, y) =

∫
R3

fNp (t, y, v) dv,

(4.1.3)

with the initial data fNp (0, x, v) = f0(x, v).

Theorem 4.1.1. Let f0 be a nonnegative C1-function with compact support in R6 and B0 be
in C2

0(R3) ∩W 1,∞(R3) ∩W 2,1(R3). Assume further that

‖∇xB0‖L∞(R3) + ‖B0‖L∞(R3) ≤
1

c2
,

and
E0(x) =

1

4π

∫∫
R6

x− y
|x− y|3

f0(y, v) dvdy.

Then

1. There exists a T > 0 such that (VPN) with initial data fNp (0, x, v) = f0(x, v) admits a
unique C1-solution (fNp , E

N
p ) on the time interval [0, T ).

2. There exists a T ∗ > 0 (independent of c) such that for c ≥ 1, (VMN) with the initial con-
dition (IVMN) has a unique C1- solution (fNm , B

N
m , E

N
m) on the time interval [0, T ∗). Fur-

thermore there exists nondecreasing functions (independent of c and N) q(t) : [0, T ∗)→ R
and H(t) : [0, T ∗)→ R such that

fNm = 0, if |v| ≥ q(t),

‖EN
m(t, x)‖L∞([0,T ∗)×R3) + ‖BN

m(t, x)‖L∞([0,T ∗)×R3) ≤ H(t).

3. Let T̃ = min(T , T ∗), then for every T ∈ [0, T̃ ) there exists a constant M (depending on T
and the initial data, but not on c) such that for c ≥ 1

‖fNm − fNp ‖L∞([0,T )×R3×R3) + ‖EN
m − EN

p ‖L∞([0,T )×R3) + ‖BN
m‖L∞([0,T )×R3) ≤

M

c
.
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The proof of the Theorem involves many long and tedious calculations since it includes many
cut-offs and mollifications, however, no technical difficulties other than presented in the paper
[106] appear. Therefore we deliver the proof in the appendix at the end of the paper for those
readers who want to take a closer look at the details.

Remark 4.1.1. In the current setting, i.e., repulsive particle interactions, both T and T ∗ can be
global. But in the attractive case, there might be lack of global existence of solutions. Therefore
both existence results we give are locally in time. The limits N →∞ and c→∞ in our paper
are taken in the time interval where both solutions exist.

We assume in Theorem 4.1.1 that f0 has compact support, so let

q0 = sup{|v| : there existsx ∈ R3 such that f0(x, v) 6= 0}.

Further, we define the characteristic curves (x(t, x0, v0, t0), v(t, x0, v0, t0)) (or in short (x(t), v(t)))
by 

dx

dt
= v̂,

dv

dt
= EN

m + c−1v̂ ×BN
m .

(4.1.4)

Therefore fNm remains non-negative if f0 is non-negative and that

sup{fNm (t, x, v) : x ∈ R3, v ∈ R3, t ∈ [0, T ∗)} = ‖f0‖L∞(R3×R3).

We also define
p0 = sup{|x| : there exists v ∈ R3 such that f0(x, v) 6= 0}.

Hence fNm (t, x, v) = 0, if |x| ≥ p0 + tq(t).
Before we prove the Theorem, we write the second order form of Maxwell’s equation:

∂ttE
N
m − c2∆EN

m = −χN ∗x χN ∗x (c2∇xρ
N
m + ∂tj

N
m),

∂ttB
N
m − c2∆BN

m = cχN ∗x χN ∗x ∇× jNm ,

EN
m(0, x) = χN ∗x χN ∗x E0,

BN
m(0, x)) = χN ∗x χN ∗x B0,

∂tE
N
m(0, x) = c∇×BN

m(0, x)− χN ∗x χN ∗x jNm(0, x),

∂tB
N
m(0, x) = −c∇× EN

m(0, x).

(4.1.5)
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Proposition 4.1.1. Let Y (t, x) ∈ D′(R× R3) satisfy∂ttY − c2∆Y = δ(t,x)=(0,0),

suppY ⊂ {(t, x) ∈ R+ × R3, |x| ≤ ct},
(4.1.6)

then Y (t, x) =
1t>0

4πc|x|
δ(|x| − ct).

The proof of this Proposition is standard. Y (t, x) is called the fundamental solution of the wave
equation. Set Y N = χN ∗x χN ∗x Y, then the solutions of (4.1.5) are given in terms ofEN

m = ∂tY
N ∗x E0 + Y N ∗x (c∇×B0 − jNm(0, ·))− Y N ∗t,x (c2∇ρNm + ∂tj

N
m),

BN
m = ∂tY

N ∗x B0 − cY N ∗x ∇× E0 + cY N ∗t,x ∇× jNm .
(4.1.7)

Since it is not difficult to show that∫
|y−x|≤ct

h(ct− |y − x|, y) dy = c2

∫ t

0

∫
|ω|=1

(t− τ)2h(cτ, x+ c(t− τ)ω) dωd(cτ),

we can also write the solutions of (4.1.5) in the form
EN
m = E0 −

1

4πc2

∫∫∫
R9

dpdzdyχN(p)χN(z)
(c2∇yρ

N
m + ∂tj

N
m)(t− c−1|x− y|, y − p− z)

|x− y|
,

BN
m = B0 +

1

4πc

∫∫∫
R9

dpdzdyχN(p)χN(z)
∇y × jNm(y − p− z, t− c−1|x− y|)

|x− y|
,

(4.1.8)

where 
E0 = ∂t

∫
|ω|=1

t

4π
EN
m(0, x+ ctω) dω +

t

4π

∫
|ω|=1

∂tE
N
m(0, x+ ctω) dω,

B0 = ∂t

∫
|ω|=1

t

4π
BN
m(0, x+ ctω) dν +

t

4π

∫
|ω|=1

∂tB
N
m(0, x+ ctω) dω.

(4.1.9)

4.2 Combined Mean Field Limit and Non-relativistic Limit

4.2.1 Regularized Vlasov-Maxwell Particle System

The regularized Vlasov-Maxwell system is given by
∂tf

N
m + v̂ · ∇xf

N
m +

(
EN
m + c−1v̂ ×BN

m

)
· ∇vf

N
m = 0,

∂tE
N
m = c∇×BN

m − χN ∗x χN ∗x jNm , ∇ · EN
m = χN ∗x χN ∗x ρNm,

∂tB
N
m = −c∇× EN

m , ∇ ·BN
m = 0,

(4.2.1)
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where v̂ =
v√

1 + c−2v2
, ρNm(t, x) =

∫
R3

fNm (t, x, v) dv, jNm(t, x) =

∫
R3

v̂fNm (t, x, v) dv and the

initial data 
fNm (0, x, v) = f0(x, v),

EN
m(0, x) = χN ∗x χN ∗x E0(x),

BN
m(0, x) = χN ∗x χN ∗x B0(x),

(4.2.2)

satisfy the compatibility conditions ∇ · E0(x) = ρNm(0, x) = ρ0(x), ∇ ·B0(x) = 0.

We consider the corresponding interacting particle system with position xi ∈ R3 and velocity
vi ∈ R3, i = 1, . . . , N . The equations of the characteristics read

d

dt
xi = v̂(vi) =

vi√
1 + c−2v2

i

,

d

dt
vi = EN

m(t, xi) + c−1v̂(vi)×BN
m(t, xi),

(4.2.3)

whereEN
m = ∂tY

N ∗x E0 + Y N ∗x (c∇×B0 − jNm(0, .))− Y N ∗t,x (c2∇ρNm + ∂tj
N
m),

BN
m = ∂tY

N ∗x B0 − cY N ∗x ∇× E0 + cY N ∗t,x ∇× jNm .
(4.2.4)

In order to present the analytical results in Section 4.3 in a concise and clear manner, we restrict
to the following notations.

Definition 4.2.1. 1. For any 1 ≤ i ≤ N (labeling the particle with position xi,Nm ∈ R3 and
velocity vi,Nm ∈ R3) we denote the pair-interaction force by

F 1,N
m (t, xi,Nm ) = − 1

N − 1

N∑
j=1,j 6=i

∫ t

0

(v̂(vj,Nm (s))∂t + c2∇x)Y
N(t− s, xi,Nm (t)− xj,Nm (s)) ds,

F 2,N
m (t, xi,Nm , vi,Nm ) = − 1

N − 1

N∑
j=1,j 6=i

∫ t

0

v̂(vi,Nm (t))×
(
v̂(vj,Nm (s))×

∇xY
N(t− s, xi,Nm (t)− xj,Nm (s))

)
ds,

and the mean-field force of the Vlasov system by

F 3,N
m (t, xi,Nm , vi,Nm ) = E0 ∗x ∂tY N(t, xi,Nm ) + (c∇×B0 − jNm(0, ·)) ∗x Y N(t, xi,Nm )

+c−1v̂(vi,Nm )×B0 ∗x ∂tY N(t, xi,Nm )

−v̂(vi,Nm )× (∇× E0) ∗x Y N(t, xi,Nm ).

Here we point out that F 1,N
m and F 2,N

m are indeed two interacting forces, which means they
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actually also depend on all the other particles.

2. Let (XN
m (t), V N

m (t)) be the trajectory on R6N which evolves according to the Newtonian
equation of motion for the regularized Vlasov-Maxwell system, i.e.,

d

dt
XN
m (t) = V̂ (V N

m (t)),

d

dt
V N
m (t) = Ψ1,N

m (t,XN
m (t), V N

m (t)) + Ψ2,N
m (t,XN

m (t), V N
m (t)) + ΓNm(t,XN

m (t), V N
m (t)),

(4.2.5)

where Ψ1,N
m (t,XN

m (t), V N
m (t)) and Ψ2,N

m (t,XN
m (t), V N

m (t)) denote the total interaction force
with (

Ψ1,N
m (t,XN

m (t), V N
m (t))

)
i

= F 1,N
m (t, xi,Nm )

= − 1

N − 1

N∑
j=1,j 6=i

∫ t

0

(v̂(vj,Nm (s))∂t + c2∇x)Y
N(t− s, xi,Nm (t)− xj,Nm (s)) ds,(

Ψ2,N
m (t,XN

m (t), V N
m (t))

)
i

= F 2,N
m (t, xi,Nm , vi,Nm )

= − 1

N − 1

N∑
j=1,j 6=i

∫ t

0

v̂(vi,Nm (t))×
(
v̂(vj,Nm (s))×∇xY

N(t− s, xi,Nm (t)− xj,Nm (s))
)
ds

while ΓNm(t,XN
m (t), V N

m (t)) stands for the self-driven force with(
ΓNm(t,XN

m (t), V N
m (t))

)
i

= F 3,N
m (t, xi,Nm , vi,Nm )

= EN
0 ∗x ∂tY N(t, xi,Nm ) + (c∇×BN

0 − jNm(0, ·)) ∗x Y N(t, xi,Nm )

+c−1v̂(vi,Nm )×BN
0 ∗x ∂tY N(t, xi,Nm )− v̂(vi,Nm )× (∇× EN

0 ) ∗x Y N(t, xi,Nm ).

3. Let (X
N

m(t), V
N

m(t)) be the trajectory on R6N which evolves according to the regularized
Vlasov-Maxwell equation

∂tf
N
m + v̂ · ∇xf

N
m +

(
EN
m + c−1v̂ ×BN

m

)
· ∇vf

N
m = 0, (4.2.6)
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i.e.,
d

dt
X
N

m(t) = V̂ (V
N

m(t)),

d

dt
V
N

m(t) = Ψ
1,N

m (t,X
N

m(t)) + Ψ
2,N

m (t,X
N

m(t), V
N

m(t)) + ΓNm(t,X
N

m(t), V
N

m(t)),

(4.2.7)

where (
Ψ

1,N

m (t,X
N

m(t))
)
i

= F
1,N

m (t, xi,Nm ) = −(c2∇ρNm + ∂tj
N
m) ∗t,x Y N(t, xi,Nm ) (4.2.8)

= −
∫∫

R6

∫ t

0

dsdydv

(c2∇+ v̂(v)∂s)f
N
m (s, xi,Nm − y, v)Y N(t− s, y),(

Ψ
2,N

m (t,X
N

m(t), V
N

m(t))
)
i

= F
2,N

m (t, xi,Nm , vi,Nm )

= −
∫∫

R6

∫ t

0

dsdydv

v̂(vi,Nm )× v̂(v)×∇xf
N
m (s, xi,Nm − y, v)Y N(t− s, y),(4.2.9)(

ΓNm(t,X
N

m(t), V
N

m(t))
)
i

= F
3,N

m (t, xi,Nm , vi,Nm )

= EN
0 ∗x ∂tY N(t, xi,Nm ) + (c∇×BN

0 − jNm(0, ·)) ∗x Y N(t, xi,Nm )

+c−1v̂(vi,Nm )×BN
0 ∗x ∂tY N(t, xi,Nm )

−v̂(vi,Nm )× (∇× EN
0 ) ∗x Y N(t, xi,Nm ).

represent the total interaction forces and the self-driven force, respectively.

(X(t), V (t)) and (X(t), V (t)) without superscriptN denote the particle configurations driven by
the force without cut-off. (X, V ) and (X,V ), without the argument t, stand for the stochastic
initial data, which are independent and identically distributed. Note that we always consider
the same initial data for both systems, that means (X, V ) = (X,V ). The following lemma
gives us and estimates on the interaction forces, which will be used in the limiting procedure.

Lemma 4.2.1. Let F 1,N

m (t, x) and F 2,N

m (t, x, v) be defined as in (4.2.8) and (4.2.9). Then there
exists a constant M such that

‖F 1,N

m (t, x)‖L∞([0,T ]×R3) + ‖F 2,N

m (t, x, v)‖L∞([0,T ]×R3×R3) ≤ cM.
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Proof. By definition, we know that

‖F 1,N

m (t, x)‖L∞([0,T ]×R3)

= ‖ − (c2∇ρNm + ∂tj
N
m) ∗t,x Y N(t, x)‖L∞([0,T ]×R3)

=
∥∥∥∫∫

R6

∫ t

0

(c2∇x + v̂(v)∂s)f
N
m (s, x− y, v)Y N(t− s, y) dsdydv

∥∥∥
L∞([0,T ]×R3)

, (4.2.10)

where for s < t

Y N(t− s, y) =

∫
R3

∫
|z|≤c(t−s)

1

4πc|z|
δ(|z| − c(t− s))χN(y − p− z)χN(p) dzdp

=

∫
R3

∫
|ω|=1

∫ c(t−s)

0

τ

4πc
δ(τ − c(t− s))χN(y − p− τω)χN(p) dτdωdp

=

∫
R3

∫
|ω|=1

t− s
4π

χN(y − p− c(t− s)ω)χN(p) dωdp,

and

‖Y N(t− s, y)‖L∞([0,T ]×R3) ≤
M

4πc

∫
R3

χN(p) dp =
M

4πc
.

So

(4.2.10)

=
∥∥∥ 1

4π

∫∫∫
R9

dpdydv

∫ t

0

ds

∫
|ω|=1

dω

(t− s)(c2∇x + v̂(v)∂s)f
N
m (s, x− y, v)χN(y − p− c(t− s)ω)χN(p)

∥∥∥
L∞([0,T ]×R3)

≤ cM
(

sup
0≤t≤T

‖∂tfNm (t, ·, ·)‖L∞(R3×R3) + sup
0≤t≤T

‖∇xf
N
m (t, ·, ·)‖L∞(R3×R3)

)
.

And similarly we have

‖F 2,N

m (t, x, v)‖L∞([0,T ]×R3×R3)

=
∥∥∥− ∫∫

R6

∫ t

0

v̂(v)× v̂(z)×∇xf
N
m (s, x− y, z)Y N(t− s, y) dsdydz

∥∥∥
L∞([0,T ]×R3×R3)

≤ cM
(

sup
0≤t≤T

‖∇xf
N
m (t, ·, ·)‖L∞(R3×R3)

)
.
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4.2.2 Regularized Vlasov-Poisson Particle Model

In this section, we consider the Vlasov-Poisson particle model and deduce estimates of the
distance between the solutions of Vlasov-Maxwell and Vlasov-Poisson

The regularization of the Vlasov-Poisson System (VPN) with unknown (fNp , E
N
p ) is given by


∂tf

N
p + v · ∇xf

N
p + EN

p · ∇vf
N
p = 0,

EN
p (t, x) =

1

4π

∫∫∫
R9

dydpdz
x− y
|x− y|3

χN(p)χN(z)ρNp (t, y − p− z),

ρNp (t, y) =

∫
R3

fNp (t, y, v) dv,

(4.2.11)

with the initial data fNp (x, v, 0) = f0(x, v). Thus the corresponding Vlasov-Poisson equations
of characteristics read

d

dt
xNp = vNp ,

d

dt
vNp = EN

p (t, xNp ) =
1

4π

∫∫∫
R9

dydpdz
xNp − y
|xNp − y|3

χN(p)χN(z)ρNp (t, y − p− z).
(4.2.12)

Now we can compare the Vlasov-Maxwell and Vlasov-Poisson equations (or in other words
solutions) with respect to their characteristic curves, which requires a more detailed estimates
on these two solutions, namely fNm and fNp . Using the results in section 4.3, we know that

‖EN
m + c−1v̂ ×BN

m − EN
p ‖L∞(R3) ≤ ‖EN

m − EN
p ‖L∞(R3) + ‖c−1v̂ ×BN

m‖L∞(R3)

≤ c−1M. (4.2.13)

We will next compare the N -particle Vlasov-Maxwell equation with the Vlasov-Poisson equa-
tion. Since the N -body system is subject to a regularized force it is most natural to introduce
that regularization also for the Vlasov-Poisson system. The translation of the one-body Vlasov-
Poisson system to an N -body dynamics is straight forward: each particle moves with the same
flow given by the Vlasov-Poisson equation. This allows now comparison with the N -body
characteristics coming from the N -particle Vlasov-Maxwell equation.

Definition 4.2.2. Let (X
N

p (t), V
N

p (t)) be the trajectory on R6N which evolves according to the
regularized Vlasov-Poisson equation

∂tf
N
p + v · ∇xf

N
p + EN

p · ∇vf
N
p = 0, (4.2.14)
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i.e., 
d

dt
X
N

p (t) = V
N

p (t),

d

dt
V
N

p (t) = Ψ
N

p (t,X
N

p (t)),

(4.2.15)

where (
Ψ
N

p (t,X
N

p (t))
)
i

= F
N

p (t, xi,Np ) = EN
p (t, xi,Np )

=
1

4π

∫∫∫
R9

dydpdz
xi,Np − y
|xi,Np − y|3

χN(p)χN(z)ρNp (t, y − p− z).

4.2.3 Estimates for the Mean Field Limit

In this section, we present our key results in full detail. To show the desired convergence, our
method can be summarized as follows. First, we start from the Newtonian system with carefully
chosen cut-off and meanwhile introduce an intermediate system which involves convolution-type
interaction with cut-off. Then, we show the convergence of the intermediate system to the final
mean field limit, where the law of large number comes into play. The crucial point of this
method is that we apply stochastic initial data or in other words we consider a stochastic
process. This enables us to use tools from probability theory, which helps to better understand
the mean field process.
The following assumptions are used throughout this section.

Assumption 4.2.1. We assume that

(a) E0 and B0 are all Lipschitz continuous functions.

(b) α ∈
(

0,
1

8

)
, β ∈

(
α,

1− α
4

)
and θ ∈

(
0,

1− α− 4β

16

)
.

Definition 4.2.3. Let St : R6N × R→ R be the stochastic process given by

St = min
{

1, Nα sup
0≤s≤t

∣∣∣(XN
m (s), V N

m (s))− (X
N

m(s), V
N

m(s))
∣∣∣
∞

}
.

The set, where |St| = 1, is defined as Nα, i.e.,

Nα :=

{
(X, V ) : sup

0≤s≤t

∣∣∣(XN
m (s), V N

m (s))− (X
N

m(s), V
N

m(s))
∣∣∣
∞
> N−α

}
. (4.2.16)
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Here and in the following we use | · |∞ as the supremum norm on R6N . Note that

E0(St+dt − St | Nα) ≤ 0,

since St takes the value of one for (X, V ) ∈ Nα.

Theorem 4.2.1. Let fNm (t, x, v) be a solution of the regularized Vlasov-Maxwell equation (4.2.6).
Suppose that Assumptions 4.2.1 are satisfied. Then there exists a constant M such that

P0

(
sup

0≤s≤t

∣∣∣(XN
m (s), V N

m (s))− (X
N

m(s), V
N

m(s))
∣∣∣
∞
> N−α

)
≤ eMt · c4N−(1−α−4β−16θ).

The proof of the theorem will be presented later in this section.

Definition 4.2.4. The sets Nβ and Nγ are characterized by

Nβ :=
{

(Xm, Vm) :
∣∣∣Ψ1,N

m

(
X
N

m(t), V
N

m(t)
)
−Ψ

1,N

m

(
X
N

m(t), V
N

m(t)
)∣∣∣
∞
> N−β

}
, (4.2.17)

Nγ :=
{

(Xm, Vm) :
∣∣∣Ψ2,N

m

(
X
N

m(t), V
N

m(t)
)
−Ψ

2,N

m

(
X
N

m(t), V
N

m(t)
)∣∣∣
∞
> N−γ

}
. (4.2.18)

Next, we will see that the probability of both sets Nβ and Nγ can be arbitrarily small, i.e., the
probability of each set tends to 0 as N goes to infinity. We prove the following two lemmas:

Lemma 4.2.2. There exists a constant M <∞ such that

P0(Nβ) ≤Mc4 ·N−(1−4β−16θ).

Proof. First, we let the setNβ evolve along the characteristics of the regularized Vlasov-Maxwell
equation

Nβ,t :=
{

(X
N

m(t), V
N

m(t)) :
∣∣∣NβΨ2,N

m

(
X
N

m(t), V
N

m(t)
)
−NβΨ

1,N

m

(
X
N

m(t), V
N

m(t)
)∣∣∣
∞
> 1
}

and consider the following fact

Nβ,t ⊆
N⊕
i=1

N i
β,t,
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where

N i
β,t :=

{
(xi,Nm , vi,Nm ) :

∣∣∣∣∣
Nβ · 1

N − 1

N∑
j=1,j 6=i

∫ t

0

(v̂(vj,Nm (s))∂t + c2∇x)Y
N(t− s, xi,Nm (t)− xj,Nm (s)) ds

−Nβ

∫∫
R6

∫ t

0

(c2∇+ v̂(v)∂s)f
N
m (s, xj,Nm − y, v)Y N(t− s, y) dsdydv

∣∣∣∣∣
∞

> 1

}
.

We therefore get

Pt(Nβ,t) ≤
N∑
i=1

Pt(N i
β,t) = NPt(N 1

β,t),

where in the last step we use symmetry in exchanging any two coordinates.

Using Markov inequality gives

Pt(N 1
β,t) ≤ Et

(Nβ · 1

N − 1

N∑
j=2

FN
1 (t, x1,N

m − xj,Nm )−NβF
N

1 (t, x1,N
m )

)4


=

(
Nβ

N − 1

)4

Et

( N∑
j=2

FN
1 (t, x1,N

m − xj,Nm )− (N − 1)F
N

1 (t, x1,N
m )

)4
 .
(4.2.19)

Let hj := FN
1 (t, x1,N

m −xj,Nm )−FN

1 (t, x1,N
m ). Then, each term in the expectation (4.2.19) takes the

form of
∏N

j=2 h
kj
j with

∑N
j=1 kj = 4, and more importantly, the expectation assumes the value

of zero whenever there exists a j such that kj = 1. This can be easily verified by integrating
over the j-th variable first or, in other words, by acknowledging the fact that ∀ j = 2, . . . , N ,
there holds

Et
[
FN

1 (t, x1,N
m − xj,Nm )− FN

1 (t, x1,N
m )

]
= 0.

Then, we can simplify the estimate (4.2.19) to

Pt(N 1
β,t) ≤

(
Nβ

N − 1

)4

Et

[
N∑
j=2

h4
j +

N∑
2≤m<n

(
4

2

)
h2
mh

2
n

]
.

Since
‖F 1,N

m ‖L∞([0,T ]×R3) ≤Mc2N4θ,
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and

‖F 1,N

m (t, x)‖L∞([0,T ]×R3) ≤ cM
(

sup
0≤t≤T

‖fNm (t, ·, ·)‖L∞(R3×R3) + sup
0≤t≤T

‖∇xf
N
m (t, ·, ·)‖L∞(R3×R3)

)

we thus have for any fixed j

|hj| ≤ |FN
1 (t, x1,N

m − xj,Nm )|+ |FN

1 (t, x1,N
m )|

≤ cM

(
N4θ + sup

0≤t≤T
‖fNm (t, ·, ·)‖L∞(R3×R3) + sup

0≤t≤T
‖∇xf

N
m (t, ·, ·)‖L∞(R3×R3)

)
.

Therefore |hj| is bounded to any power and we obtian

Et
[
h2
mh

2
n

]
≤Mc4N16θ and Et

[
h4
j

]
≤Mc4N16θ

and consequently

Pt(N 1
β,t) ≤

(
Nβ

N − 1

)4

·
(
Mc4 · (N − 1) +Mc4N16θ · (N − 1)(N − 2)

2

)
≤ Mc4N16θ ·N−(2−4β−16θ).

By noticing the fact that

P0(Nβ) = Pt (Nβ,t) ≤ NPt(N 1
β,t)

≤ N ·Mc4 ·N−(2−4β−16θ) = Mc4 ·N−(1−4β−16θ),

we obtain the desired result.

In fact, this result holds for any β if we change accordingly the power in the proof to be another
even number (depending on β) greater than four. So with similar estimates we get

Lemma 4.2.3. There exists a constant M <∞ such that

P0(Nγ) ≤Mc4 ·N−(1−4γ−16θ).

Lemma 4.2.4. Let Nα, Nβ, Nγ be defined as in (4.2.16)-(4.2.18). Suppose that fNm (t, x, v) is
a solution of the regularized Vlasov-Maxwell equation and Assumption 4.2.1 is satisfied. Then
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there exists a constant M <∞ such that∣∣∣(V̂ (V N
m (t)),Ψ1,N

m (t,XN
m (t), V N

m (t)) + Ψ2,N
m (t,XN

m (t), V N
m (t)) + ΓNm(t,XN

m (t), V N
m (t))

)
−
(
V̂ (V

N

m(t)),Ψ
1,N

m (t,X
N

m(t), V
N

m(t)) + Ψ
2,N

m (t,X
N

m(t), V
N

m(t)) + ΓNm(t,X
N

m(t), V
N

m(t))
)∣∣∣
∞

≤MSt(X, V )N−α +N−β

for all initial data (X, V ) ∈ (Nα ∪Nβ ∪Nγ)c.

Proof. Applying triangle inequality gives∣∣∣(V̂ (V N
m (t)),Ψ1,N

m (t,XN
m (t), V N

m (t)) + Ψ2,N
m (t,XN

m (t), V N
m (t)) + ΓNm(t,XN

m (t), V N
m (t))

)
−
(
V̂ (V

N

m(t)),Ψ
1,N

m (t,X
N

m(t), V
N

m(t)) + Ψ
2,N

m (t,X
N

m(t), V
N

m(t)) + ΓNm(t,X
N

m(t), V
N

m(t))
)∣∣∣
∞

≤
∣∣∣V̂ (V N

m (t))− V̂ (V
N

m(t))
∣∣∣
∞

+
∣∣∣Ψ1,N

m (t,XN
m (t), V N

m (t))−Ψ
1,N

m (t,X
N

m(t), V
N

m(t))
∣∣∣
∞

+
∣∣∣Ψ2,N

m (t,XN
m (t), V N

m (t))−Ψ
2,N

m (t,X
N

m(t), V
N

m(t))
∣∣∣
∞

+
∣∣∣ΓNm(t,XN

m (t), V N
m (t))− ΓNm(t,X

N

m(t), V
N

m(t))
∣∣∣
∞

≤
∣∣∣V̂ (V N

m (t))− V̂ (V
N

m(t))
∣∣∣
∞

+
∣∣∣Ψ1,N

m (t,XN
m (t), V N

m (t))−Ψ1,N
m (t,X

N

m(t), V
N

m(t))
∣∣∣
∞

+
∣∣∣Ψ1,N

m (t,X
N

m(t), V
N

m(t))−Ψ
1,N

m (t,X
N

m(t), V
N

m(t))
∣∣∣
∞

+
∣∣∣Ψ2,N

m (t,XN
m (t), V N

m (t))−Ψ2,N
m (t,X

N

m(t), V
N

m(t))
∣∣∣
∞

+
∣∣∣Ψ2,N

m (t,X
N

m(t), V
N

m(t))−Ψ
2,N

m (t,X
N

m(t), V
N

m(t))
∣∣∣
∞

+
∣∣∣ΓNm(t,XN

m (t), V N
m (t))− ΓNm(t,X

N

m(t), V
N

m(t))
∣∣∣
∞

=: |I1|+ |I2|+ |I3|+ |I4|+ |I5|+ |I6|.

Next, we estimate term by term.

• Since (X, V ) /∈ Nα,

|I1| :=
∣∣∣V̂ (V N

m (t))− V̂ (V
N

m(t))
∣∣∣
∞
≤MSt(X, V )N−α.

• With the fact that F 1,N
m is Lipschitz continuous in x, we denote L as the global Lipschitz
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constant for all the Lipschitz continuous functions in this paper. Thus we obtain∣∣∣∣∣ 1

N − 1

∑
i 6=j

F 1,N
m (t, xi,Nm )− 1

N − 1

∑
i 6=j

F 1,N
m (t, xi,Nm )

∣∣∣∣∣
≤ 1

N − 1

∑
i 6=j

L · 2|xi,Nm − xi,Nm |. (4.2.20)

Since (X, V ) /∈ Nα, it follows in particular for any 1 ≤ i ≤ N that

|xi,Nm − xi,Nm | ≤ N−α.

So together with (4.2.20), we have∣∣∣Ψ1,N
m (t,XN

m (t), V N
m (t))−Ψ1,N

m (t,X
N

m(t), V
N

m(t))
∣∣∣
∞
≤ 2LN−α,

and thus

|I2| :=
∣∣∣Ψ1,N

m (t,XN
m (t), V N

m (t))−Ψ1,N
m (t,X

N

m(t), V
N

m(t))
∣∣∣
∞
≤MSt(X, V )N−α.

Similarly

|I4| :=
∣∣∣Ψ2,N

m (t,XN
m (t), V N

m (t))−Ψ2,N
m (t,X

N

m(t), V
N

m(t))
∣∣∣
∞
≤MSt(X, V )N−α.

• Since (X, V ) /∈ Nβ, it follows directly

|I3| :=
∣∣∣Ψ1,N

m (t,X
N

m(t), V
N

m(t))−Ψ
1,N

m (t,X
N

m(t), V
N

m(t))
∣∣∣
∞
≤ N−β.

• Since (X, V ) /∈ Nγ, it follows directly

|I5| :=
∣∣∣Ψ2,N

m (t,X
N

m(t), V
N

m(t))−Ψ
2,N

m (t,X
N

m(t), V
N

m(t))
∣∣∣
∞
≤ N−β.

• Since E0 and B0 under Assumption 4.1(a) are Lipschitz continuous, we have for each 1 ≤
i ≤ N , (xi,Nm , vi,Nm ) =

(
(XN

m (t), V N
m (t))

)
i
, (xi,Nm , vi,Nm ) =

(
(X

N

m(t), V
N

m(t))
)
i
and together

with the fact that (X, V ) /∈ Nα, there holds

|I6| :=
∣∣∣ΓNm(t,XN

m (t), V N
m (t))− ΓNm(t,X

N

m(t), V
N

m(t))
∣∣∣
∞
≤ LSt(X, V )N−α.
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Combining all the six terms, we end up with∣∣∣(V̂ (V N
m (t)),Ψ1,N

m (t,XN
m (t), V N

m (t)) + Ψ2,N
m (t,XN

m (t), V N
m (t)) + ΓNm(t,XN

m (t), V N
m (t))

)
−
(
V̂ (V

N

m(t)),Ψ
1,N

m (t,X
N

m(t), V
N

m(t)) + Ψ
2,N

m (t,X
N

m(t), V
N

m(t)) + ΓNm(t,X
N

m(t), V
N

m(t))
)∣∣∣
∞

≤MSt(X, V )N−α +N−β

for all (X, V ) ∈ (Nα ∪Nβ ∪Nγ)c.

Using all the Lemmas above we can now prove Theorem 4.2.1:

Proof of Theorem 4.2.1

From the definition of the Newtonian flow (4.2.5) and the characteristics of the Vlasov equation
(4.2.7), we know that

(XN
m (t+ dt), V N

m (t+ dt))

= (XN
m (t), V N

m (t))

+
(
V̂ (V N

m (t)),Ψ1,N
m (t,XN

m (t), V N
m (t)) + Ψ2,N

m (t,XN
m (t), V N

m (t)) + ΓNm(t,XN
m (t), V N

m (t))
)
dt+ o(dt),

and

(X
N

m(t+ dt), V
N

m(t+ dt))

= (X
N

m(t), V
N

m(t))

+
(
V̂ (V

N

m(t)),Ψ
1,N

m (t,X
N

m(t)) + Ψ
2,N

m (t,X
N

m(t), V
N

m(t)) + ΓNm(t,X
N

m(t), V
N

m(t))
)
dt+ o(dt).

Thus∣∣∣(XN
m (t+ dt), V N

m (t+ dt))− (X
N

m(t+ dt), V
N

m(t+ dt))
∣∣∣
∞
≤
∣∣∣(XN

m (t), V N
m (t))− (X

N

m(t), V
N

m(t))
∣∣∣
∞

+
∣∣∣(V̂ (V N

m (t)),Ψ1,N
m (t,XN

m (t), V N
m (t)) + Ψ2,N

m (t,XN
m (t), V N

m (t)) + ΓNm(t,XN
m (t), V N

m (t))
)

−
(
V̂ (V

N

m(t)),Ψ
1,N

m (t,X
N

m(t)) + Ψ
2,N

m (t,X
N

m(t), V
N

m(t)) + ΓNm(t,X
N

m(t), V
N

m(t))
)∣∣∣
∞
dt+ o(dt),

i.e.,

St+dt − St
≤

∣∣∣(V̂ (V N
m (t)),Ψ1,N

m (t,XN
m (t), V N

m (t)) + Ψ2,N
m (t,XN

m (t), V N
m (t)) + ΓNm(t,XN

m (t), V N
m (t))

)
−
(
V̂ (V

N

m(t)),Ψ
1,N

m (t,X
N

m(t)) + Ψ
2,N

m (t,X
N

m(t), V
N

m(t)) + ΓNm(t,X
N

m(t), V
N

m(t))
)∣∣∣
∞
dt+ o(dt),
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Taking the expectation over both sides yields

E0 [St+dt − St]
= E0 [St+dt − St | Nα ] + E0 [St+dt − St | N c

α ]

≤ E0 [St+dt − St | (Nβ ∪Nγ) \ Nα ] + E0 [St+dt − St | (Nα ∪Nβ ∪Nγ)c ]

≤ E0

[ ∣∣∣V̂ (V N
m (t))− V̂ (V

N

m(t))
∣∣∣
∞

∣∣∣ (Nβ ∪Nγ) \ Nα ]Nαdt

+E0

[ ∣∣∣Ψ1,N
m (t,XN

m (t), V N
m (t))−Ψ

1,N

m (t,X
N

m(t))
∣∣∣
∞

∣∣∣ (Nβ ∪Nγ) \ Nα ]Nαdt

+E0

[ ∣∣∣Ψ2,N
m (t,XN

m (t), V N
m (t))−Ψ

2,N

m (t,X
N

m(t), V
N

m(t))
∣∣∣
∞

∣∣∣ (Nβ ∪Nγ) \ Nα ]Nαdt

+E0

[ ∣∣∣ΓNm(t,XN
m (t), V N

m (t))− ΓNm(t,X
N

m(t), V
N

m(t))
∣∣∣
∞

∣∣∣ (Nβ ∪Nγ) \ Nα ]Nαdt

+E0 [St+dt − St | (Nα ∪Nβ ∪Nγ)c ] + o(dt)

=: J1 + J2 + J3 + J4 + J5 + o(dt),

where in the second step we use E0(St+dt − St | Nα) ≤ 0 and decompose the set N c
α into

(Nβ ∪Nγ) \ Nα and (Nα ∪Nβ ∪Nγ)c .

Since (X, V ) /∈ Nα, it follows

J1 = E0

[ ∣∣∣V̂ (V N
m (t))− V̂ (V

N

m(t))
∣∣∣
∞

∣∣∣ (Nβ ∪Nγ) \ Nα ]Nαdt

≤ L
(
P0(Nβ) + P0(Nγ)

)
dt.

Due to the definition of Ψ1,N
m , Ψ

1,N

m , Ψ2,N
m , Ψ

2,N

m and ΓNm, we obtain

J2 + J3 + J4 ≤M
(
P0(Nβ) + P0(Nγ)

)
Nαdt.

Thanks to Lemma 4.2.2 and Lemma 4.2.3, we get

J1 + J2 + J3 + J4 ≤ M
(
P0(Nβ) + P0(Nγ)

)
Nαdt

≤ Mc4 ·N−(1−4β−16θ)Nαdt.

On the other hand, Lemma 4.2.4 states that

J5 = E0 [St+dt − St | (Nα ∪Nβ ∪Nγ)c ]

≤ (M · E0 [St]N
−α +N−β) ·Nαdt+ o(dt)

= M · E0 [St] dt+Nα−βdt+ o(dt).

79



Qitao Yin

Therefore, we can determine the estimate

E0 [St+dt]− E0[St] ≤ E0 [St+dt − St]
≤ M · E0 [St] dt+M · c4 ·N−(1−α−4β−16θ)dt+ o(dt).

Equivalently, we have

d

dt
E0[St] ≤M · E0[St] +M · c4 ·N−(1−α−4β−16θ).

Gronwall’s inequality yields

E0 [St] ≤ eMt · c4 ·N−(1−α−4β−16θ).

The proof is completed by the following Markov inequality

P0

(
sup

0≤s≤t

∣∣∣(XN
m (s), V N

m (s))− (X
N

m(s), V
N

m(s))
∣∣∣
∞
> N−α

)
= P0(St = 1) ≤ E0 [St] .

4.2.4 Estimates for the Non-relativistic Limit

Due to the key estimate (4.2.13), it is easy to repeat the whole procedure in the previous
subsection to obtian

Theorem 4.2.2. Let fNm (t, x, v) and fNp (t, x, v) be the solutions to the regularized Vlasov-
Maxwell equation (4.2.6) and (4.2.14) respectively with the same initial data f0. Suppose that
Assumptions 4.2.1 are satisfied. Then there holds

P0

(
sup

0≤s≤t

∣∣∣(XN

m(s), V
N

m(s))− (X
N

p (s), V
N

p (s))
∣∣∣
∞
> N−α

)
≤ eMtM

c
.

Remark 4.2.1. We point out that the proof is straightforward when we use the flows of (4.2.7)
and (4.2.15).

4.2.5 Combined Limit

Now with all the estimates we achieved above, we take c = Nη, η ∈
(
0, 1−α−4β−16θ

4

)
. Then

Theorem 4.2.3. Let fNm (t, x, v) and fNp (t, x, v) be the solutions to the regularized Vlasov-
Maxwell equation (4.2.6) and (4.2.14) respectively with the same initial data f0. Suppose that

80



Qitao Yin

Assumption 4.2.1 is satisfied. Then there holds

lim
N→∞,c→∞

P0

(
sup

0≤s≤t

∣∣∣(XN
m (s), V N

m (s))− (X
N

p (s), V
N

p (s))
∣∣∣
∞
> N−α

)
= 0.
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Chapter 5

Appendix

Proof. 1. Using the same method as Kurth, R. in [79], it is easy to prove that (VPN) has a
unique C1-solution (fNp , E

N
p ) on the time interval [0, T > 0).

2. The proof of existence of solutions of (VMN) is similar to Glassey, R., Strauss, W [47],
while the proof of existence of functions q(t) and F (t) with the respective properties
follows the ideas of Jack Schaeffer as given in [106]. Therefore we omit the proof in this
manuscript.

3. Next we begin to prove the third part of the theorem. Similar to (A13) and (A14) in the

Appendix of [106], we use the convenient notation ν =
y − x
|y − x|

, x, y ∈ R3. Then we obtain

EN
m(t, x)

= E0 −
1

4πct

∫∫∫
R9

dvdpdz

∫
|x−y|=ct

dSyχ
N(p)χN(z)f0(y − p− z, v)

ν − c−2v̂ · νv̂
(1 + c−1v̂ · ν)

− 1

4π

∫∫∫
R9

dvdpdz

∫
|x−y|<ct

dy

χN(p)χN(z)
fNm (t− c−1|x− y|, y − p− z, v)

|x− y|2
(1− c−2|v̂|2)(ν + c−1v̂)

(1 + c−1v̂ · ν)2

− 1

4πc2

∫∫∫
R9

dvdpdz

∫
|x−y|<ct

dyχN(p)χN(z)
fNm (t− c−1|x− y|, y − p− z, v)

|x− y|(1 + c−1v̂ · ν)2(1 + c−2|v|2)
1
2

×
[
(1 + c−1v̂ · ν)(EN

m + c−1v̂ ×BN
m) + c−2(v̂ · νν − v̂)v̂ · EN

m

−(ν + c−1v̂)ν · (EN
m + c−1v̂ ×BN

m)
]∣∣∣

(t−c−1|x−y|,y−p−z)

= E0 − E1 − E2 − E3,

83



Qitao Yin

and

BN
m

= B0 +
1

4πct

∫∫∫
R9

dvdpdz

∫
|x−y|=ct

dSyχ
N(p)χN(z)f0(y − p− z, v)

(ν × c−1v̂)

(1 + c−1v̂ · ν)

+
1

4πc

∫∫∫
R9

dvdpdz

∫
|x−y|<ct

dy

χN(p)χN(z)
fNm (t− c−1|x− y|, y − p− z, v)

|x− y|2
(1− c−2|v̂|2)(ν × v̂)

(1 + c−1v̂ · ν)2

+
1

4πc2

∫∫∫
R9

dvdpdz

∫
|x−y|<ct

dyχN(p)χN(z)
fNm (t− c−1|x− y|, y − p− z, v)

|x− y|(1 + c−1v̂ · ν)2(1 + c−2|v|2)
1
2

×
[
(1 + c−1v̂ · ν)ν × (EN

m + c−1v̂ ×BN
m)

−c−2(ν × v̂)(v̂ + cν) · (EN
m + c−1v̂ ×BN

m)
]∣∣∣

(t−c−1|x−y|,y−p−z)

= B0 + B1 + B2 + B3,

where
∣∣∣
(t−c−1|x−y|,y−p−z)

means EN
m(t−c−1|x−y|, y−p−z) and BN

m(t−c−1|x−y|, y−p−z).

In order to prove Theorem 4.1.1, we note that the core of the proof consists in comparing
the integral representation of (EN

m , B
N
m) given above with the one of EN

p given in (VPN)
that is

EN
p (t, x) =

1

4π

∫∫∫∫
R12

dvdydpdzχN(p)χN(z)fNp (t, y − p− z)
x− y
|x− y|3

.

To obtain uniform convergence, we will thoroughly calculate EN
m and BN

m . First, we
consider EN

m .

Lemma 5.0.1. ([106], Lemma 1) Let g be a continuous function of compact support on
R3, then there exists a constant M > 0 such that

r

∫
|ω|=1

|g(x+ rω)| dω ≤M.

for all r > 0.

Note that for |v| ≤ q(t), with q(t) ≥ 1,

|v̂| ≤ q(t)

(1 + c−2|v|2)
1
2

≤ q(t),
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and
1

1 + c−1v̂ · ν
≤ 2c−2(c2 + q2(t)) ≤ 4q2(t).

From the proposition and the above two inequalities, we get ∀x ∈ R3, t ∈ [0, T ]∣∣∣ 1

4πct

∫∫∫
R9

dvdpdz

∫
|x−y|=ct

dSyχ
N(p)χN(z)f0(y − p− z, v)

c−2v̂ · νv̂
(1 + c−1v̂ · ν)

∣∣∣
≤ M

c2
tq4(t)

∫∫∫
R9

dvdpdzχN(p)χN(z)

∫
|ω|=1

dωctf0(x− p− z + ctω, v)

≤ Mq4(t)c−2 = O(c−2)

and ∣∣∣ 1

4πct

∫∫∫
R9

dvdpdz

∫
|x−y|=ct

dSyχ
N(p)χN(z)f0(y − p− z, v)

c−1v̂ · νν
(1 + c−1v̂ · ν)

∣∣∣
≤ M

c
tq3(t)

∫∫∫
R9

dvdpdzχN(p)χN(z)

∫
|ω|=1

dωctf0(x− p− z + ctω, v)

≤ Mq3(t)c−2 = O(c−1).

Hence ∀x ∈ R3, t ∈ [0, T ]

E1(t, x) =
1

4πct

∫∫∫
R9

dvdpdz

∫
|x−y|=ct

dSyχ
N(p)χN(z)f0(y − p− z, v)ν +O(c−1).

As ∣∣∣ 1

4π

∫∫∫
R9

dvdpdz

∫
|x−y|<ct

dy

χN(p)χN(z)
fNm (t− c−1|x− y|, y − p− z, v)

|x− y|2
|v̂|2(ν + c−1v̂)

(1 + c−1v̂ · ν)2c2

∣∣∣
≤ 1

4πc2

∫
|y|<P0+tq(t)

∫
|v|<q(t)

(4q2(t))2q2(t)(1 + c−1q(t))
‖f0‖L∞(R3×R3)

|x− y|2
dvdy

≤ M

c2
q6(t)(1 + c−1q(t))q3(t)

∫
|y|<P0+tq(t)

1

|x− y|2
dy

≤ M

c2
,

where we have in the last step used the fact that

sup
x

∫
|y|<P0+tq(t)

1

|x− y|2
dy < M(P0, q(t)). (5.0.1)
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In the same way, we obtain∣∣∣ 1

4π

∫∫∫
R9

dvdpdz

∫
|x−y|<ct

dy

χN(p)χN(z)
fNm (t− c−1|x− y|, y − p− z, v)

|x− y|2
v̂

(1 + c−1v̂ · ν)2c

∣∣∣ ≤ M

c
,

so we have

E2(t, x)

=
1

4π

∫∫∫
R9

dvdpdz

∫
|x−y|<ct

dy

χN(p)χN(z)
fNm (t− c−1|x− y|, y − p− z, v)

|x− y|2
ν

(1 + c−1v̂ · ν)2
+O(c−1)

=
1

4π

∫∫∫
R9

dvdpdz

∫
|x−y|<ct

dy

χN(p)χN(z)
fNm (t− c−1|x− y|, y − p− z, v)

|x− y|2
ν +O(c−1),

where the following estimate has been used∣∣∣ 1

(1 + c−1v̂ · ν)2
− 1
∣∣∣ =
|2c−1v̂ · ν + c−2(v̂ · ν)2|

(1 + c−1v̂ · ν)2
≤ M

c
q4(t)

(
q(t) + c−1q2(t)

)
≤ M

c
.

Recalling Theorem 4.1.1 and |v̂| < c, we get

|E3| ≤
1

4πc2

∫∫∫
R9

dvdpdz

∫
|x−y|<ct

dy

(
4q2(t)

)2
χN(p)χN(z)6H(t− c−1|x− y|)f

N
m (t− c−1|x− y|, y − p− z, v)

|x− y|

≤ M

c2

∫
|y|<P0+tq(t)

1

|x− y|
dy

∫
|v|<q(t)

‖f0‖L∞(R3×R3) dv ≤
M

c
.

Lemma 5.0.2. ([106], Lemma 2) Let g ∈ C2(R3). Assume that ∆g has compact support
for c > 0 and t ≥ 0,

∂t

(
t

∫
|ω|=1

g(x+ ctω) dω

)
= −

∫
|x−y|>ct

∆g(y)

|x− y|
dy.
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Now using this lemma, we estimate E0. We know

E0 = ∂t

∫
|ω|=1

t

4π
EN
m(0, x+ ctω) dω +

t

4π

∫∫
R6

dpdz

∫
|ω|=1

dω

χN(p)χN(z)

(
c∇×B0(x− p− z + ctω)−

∫
R3

v̂f0(x− p− z + ctω, v) dv

)
.

From Lemma 5.0.1, we get

t

4π

∣∣∣∣∫∫
R6

dpdz

∫
|ω|=1

dωχN(p)χN(z)(c∇×B0(x− p− z + ctω)

∣∣∣∣ ≤ M

c

and by Lemma 5.0.2, we obtain

t

4π

∣∣∣∣∫∫
R6

dpdz

∫
|ω|=1

dωχN(p)χN(z)

∫
R3

v̂f0(x− p− z + ctω, v) dv

∣∣∣∣
=

1

4πc

∣∣∣∣∫∫
R6

dpdz

∫
|ω|=1

dωχN(p)χN(z)

∫
R3

v̂ctf0(x− p− z + ctω, v)dv

∣∣∣∣ ≤ M

c
,

thus
E0 = ∂t

∫
|ω|=1

t

4π
EN
m(0, x+ ctω) dω +O(c−1).

Now in order to further calculate E0, we set

g(x) :=
1

4π

∫∫∫∫
R12

dvdydpdzχN(p)χN(z)
f0(y − p− z, v)

|x− y|
.

Note that ∇g(x) = −EN
m(0, x) and ∆g(x) =

∫∫∫
R9

dvdpdzχN(p)χN(z)f0(x − p − z, v).

Using Lemma 5.0.2, we get

∂t

∫
|ω|=1

t

4π
EN
m(0, x+ ctω) dω

= −∂t
∫
|ω|=1

t

4π
∇g(x+ ctω) dω

= − 1

4π
∇
∫
|x−y|>ct

∆g(y)

|x− y|
dy

= − 1

4π
∇
∫∫∫

R9

dvdpdz

∫
|x−y|>ct

dyχN(p)χN(z)
f0(y − p− z, v)

|x− y|

= − 1

4π

∫∫∫
R9

dvdpdz

∫
|x−y|>ct

dyχN(p)χN(z)
∇yf0(y − p− z, v)

|x− y|
.
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Recall that f0 has compact support, so by the divergence theorem, we have

−
∫∫∫

R9

dvdpdz

∫
|x−y|=ct

dSyχ
N(p)χN(z)

f0(y − p− z, v)ν

|x− y|

=

∫∫∫
R9

dvdpdz

∫
|x−y|>ct

dy∇y

(
χN(p)χN(z)

f0(y − p− z, v)

|x− y|

)
=

∫∫∫
R9

dvdpdz

∫
|x−y|>ct

dyχN(p)χN(z)
∇yf0(y − p− z, v)

|x− y|

−
∫∫∫

R9

dvdpdz

∫
|x−y|>ct

dyχN(p)χN(z)
f0(y − p− z, v)ν

|x− y|2

Hence

E0 =
1

4π

∫∫∫
R9

dvdpdz

∫
|x−y|=ct

dSyχ
N(p)χN(z)

f0(y − p− z, v)ν

|x− y|

− 1

4π

∫∫∫
R9

dvdpdz

∫
|x−y|>ct

dyχN(p)χN(z)
f0(y − p− z, v)ν

|x− y|2
+O(c−1).

Therefore

EN
m(t, x)

= − 1

4π

∫∫∫
R9

dvdpdz

∫
|x−y|<ct

dyχN(p)χN(z)
fNm (t− c−1|x− y|, y − p− z, v)ν

|x− y|2

− 1

4π

∫∫∫
R9

dvdpdz

∫
|x−y|>ct

dyχN(p)χN(z)
f0(y − p− z, v)ν

|x− y|2
+O(c−1)

= − 1

4π

∫∫∫∫
R12

dvdpdzdy

χN(p)χN(z)
fNm (max{0, t− c−1|x− y|}, y − p− z, v)ν

|x− y|2
+O(c−1).
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From the representation of EN
p (t, x) from (VPN), we have

|EN
m(t, x)− EN

p (t, x)|

=
1

4π

∣∣∣ ∫∫∫∫
R12

dvdpdzdyχN(p)χN(z)
ν

|x− y|2

×
(
fNm (max{0, t− c−1|x− y|}, y − p− z, v)− fNp (t, y − p− z, v)

) ∣∣∣+O(c−1)

≤ M

c
+

1

4π

∫∫∫∫
R12

dvdpdzdy

χN(p)χN(z)
|fNm − fNp |(max{0, t− c−1|x− y|}, y − p− z, v)

|x− y|2

+
1

4π

∫∫∫∫
R12

dvdpdzdy

χN(p)χN(z)
|fNp (max{0, t− c−1|x− y|}, y − p− z, v)− fNp (t, y − p− z, v)|

|x− y|2
.

Recall that (fNp , E
N
p ) is a C1-solution of (VPN). Now since EN

p is C1 and f0 has compact
support, it follows that

qNp = sup{|v| : ∃x ∈ R3, τ ∈ [0, t] s.t. fNp (τ, x, v) 6= 0}

is finite on [0, T ]. Also ∂tfNp is bounded on [0, T ]× R6. Let

Q := max{q(T ), qNp (T )}

and
G(t) := sup

{
|fNm (τ, x, v)− fNp (τ, x, v)| : x ∈ R3, v ∈ R3 and τ ∈ [0, t]

}
.

Then

|EN
m(t, x)− EN

p (t, x)|

≤
∫
|y|<P0+TQ

∫
|v|<Q

G(max{0, t− c−1|x− y|})
|x− y|2

dvdy

+

∫∫∫∫
R12

dvdpdzdy

χN(p)χN(z)
1

|x− y|2

∫ t

max{0,t−c−1|x−y|}
|∂tfNp (τ, y − p− z, v)| dτ +

M

c

≤ G(t)MQ3

∫
|y|<P0+TQ

1

|x− y|2
dy +MQ3

∫
|y|<P0+TQ

c−1|x− y|
|x− y|2

dy +
M

c

≤ MG(t) +
M

c
,
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where we have used (5.0.1). Now we begin to estimate BN
m . Using Lemma 5.0.2, we get

for the first term B1

|B1| =
1

4πct

∣∣∣∣∫∫∫
R9

dvdpdz

∫
|x−y|=ct

dSyχ
N(p)χN(z)f0(y − p− z, v)

(ν × c−1v̂)

(1 + c−1v̂ · ν)

∣∣∣∣
≤ 1

4π

∫∫∫
R9

dvdpdzχN(p)χN(z)4q2(t)c−1q(t)

∫
|ω|=1

ctf0(x− p− z + ctω, v) dω

≤M
c

∫∫
R6

χN(p)χN(z) dpdz =
M

c
.

Secondly we look into B2.

|B2| =
1

4πc

∣∣∣ ∫∫∫
R9

dvdpdz

∫
|x−y|<ct

dy

χN(p)χN(z)
fNm (t− c−1|x− y|, y − p− z, v)

|x− y|2
(1− c−2|v̂|2)(ν × v̂)

(1 + c−1v̂ · ν)2

∣∣∣
≤ 1

4πc

∫∫∫
R9

dvdpdz

∫
|x−y|<ct

dyχN(p)χN(z)
‖f0‖L∞(R3×R3)(4q

2(t))22q(t)

|x− y|2

≤ M

c

∫
|y|<P0+TQ

∫
|v|<Q

1

|x− y|2
dvdy ≤ M

c
,

where (5.0.1) has been used again. The last term B3 can be shown to be O(c−2) in the
same way as E3. Now what is left is B0. It is easy to calculate that ∂tB0 = −c∇×E0 = 0.
Using Lemma 5.0.2 and Theorem 4.1.1, we get

∣∣∣∣∂t ∫
|ω|=1

t

4π
BN
m(0, x+ ctω) dω

∣∣∣∣
=

∣∣∣∣∂t ∫∫
R6

dpdz

∫
|ω|=1

dω
t

4π
χN(p)χN(z)B0(x− p− z + ctω)

∣∣∣∣
≤

∫∫
R6

dpdz
1

4πct
χN(p)χN(z)

∫
|ω|=1

ct|B0(x− p− z + ctω)| dω

+

∫∫
R6

dpdz
1

4π
χN(p)χN(z)

∫
|ω|=1

ct|∇B0(x− p− z + ctω)| dω

≤ M

∫∫
R6

1

4πct
χN(p)χN(z) dpdz +

∫∫
R6

dpdz

∫
|ω|=1

1

4π
χN(p)χN(z)ct

1

c2
dω

≤ M

c
.

Hence
BN
m = B0 + B1 + B2 + B3 = O(c−1). (5.0.2)
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Combing (5.0.2) and (5.0.2), we know that

|EN
p − EN

m − c−1v̂ ×BN
m | ≤MG(t) +

M

c
, t < T, (5.0.3)

for |v̂| < c.

It remains to estimate fNm − fNp . For ease of notation, we define g = fNm − fNp . It is not
difficult to calculate that

∂tg + v̂ · ∇xg + (EN
m + c−1v̂ ×BN

m) · ∇vg

= (v − v̂) · ∇xf
N
p + (EN

p − EN
m − c−1v̂ ×BN

m) · ∇vf
N
p

=
|v|2v̂

c2(1 +
√

1 + c−2|v|2)
· ∇xf

N
p + (EN

p − EN
m − c−1v̂ ×BN

m) · ∇vf
N
p

(5.0.4)

Note that both |∇xf
N
p | and |∇vf

N
p | are bounded on [0, T ] × R6 and ∇xf

N
p (t, x, v) = 0 if

|v| > qNp (t). Hence

|∂tg + v̂ · ∇xg + (EN
m + c−1v̂ ×BN

m) · ∇vg|

≤ M

c2
+M |EN

p − EN
m − c−1v̂ ×BN

m |

≤ M

c
+MG(t), 0 ≤ t ≤ T.

(5.0.5)

For any x ∈ R3, v ∈ R3, t ∈ [0, T ], we define (x(t), v(t)) as in (4.1.4) and calculate∣∣∣∣ ddtg(t, x(t), v(t))

∣∣∣∣ = |∂tg + v̂ · ∇xg + (EN
m + c−1v̂ ×BN

m) · ∇vg| (5.0.6)

≤ M

c
+MG(t), 0 ≤ t ≤ T. (5.0.7)

Note that g(t, x(t), v(t))|t=0 = 0, so ∀x, v, t, let (x(0), v(0)) be the corresponding initial
data of (4.1.4). Then

|g(t, x, v)| = |g(t, x(t), v(t))− g(0, x(0), v(0))|

=

∣∣∣∣∫ t

0

d

ds
g(s, x(s), v(s)) ds

∣∣∣∣
≤
∫ t

0

(
M

c
+MG(s)

)
ds

≤ Mt

c
+

∫ t

0

MG(s) ds, 0 ≤ t ≤ T.
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By the definition of g and G(t), we get

G(t) ≤ M

c
+M

∫ t

0

G(s) ds, 0 ≤ t ≤ T.

Using the Gronwall’s inequality, we get

G(t) ≤ M

c
exp(Mt) ≤ M

c
, 0 ≤ t ≤ T.

Therefore

‖fNm − fNp ‖L∞([0,T )×R3×R3) + ‖EN
m − EN

p ‖L∞([0,T )×R3) + ‖BN
m‖L∞([0,T )×R3) ≤

M

c
.

for all c ≥ 1. This completes the proof of Theorem.
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