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1. Introduction

Most empirical studies in production analysis are based on functional forms that have to
satisfy some curvature conditions in order to be compatible with microeconomic theory.
The aim of this paper is to present and implement a new method for imposing price con-
cavity of a cost function and testing this property. The main advantage of the framework
is that it is easily implemented even for cost functions which are nonlinear in parameters.
Contributions in the field of production analysis often check whether concavity is ful-

filled by the estimated parameters of the cost function. Since the seminal papers by
Lau [1978] and by Diewert and Wales [1987], concavity is more and more often directly
imposed (locally or globally) on the parameters. More recently, Ryan and Wales [1998,
2000] and Moschini [1999] discuss further techniques to impose concavity. However, few
contributions test whether concavity is statistically rejected by the data. Kodde and Palm
[1987] and Härdle, Hildenbrand and Jerison [1991] are notable exceptions in the context
of demand analysis. Tests of the concavity assumption appear interesting from a statis-
tical point of view, but also from an economic perspective: production units and goods
considered in almost all empirical investigations are aggregates for which microeconomic
properties are not necessarily valid (see for instance Koebel [2002] on this point). In this
context, the a priori imposition of concavity may lead to estimation biases.
Among the alternative ways of imposing the negative semi-definiteness of a constant

matrix H, the one proposed by Lau [1978], and its further developments by Diewert
and Wales [1987] and by Ryan and Wales [1998], are particularly attractive since they
are easy to implement. Their approach consists in reparameterizing the matrix H by
H0 = −U 0U and estimating the parameters of the triangular matrix U instead of H. The
resulting matrix H0 automatically verifies negative semi-definiteness. Several problems
may arise when using this procedure. First, by applying it in turn to 29 two-digit industrial
branches, Koebel [1998] found convergence problems with the nonlinear SUR estimator
for the parameters of H0 for more than half of the branches considered. These problems
are even more serious when the unrestricted specification is already nonlinear in the
parameters (as e.g. the Box-Cox cost function). Second, the procedure proposed by Ryan
and Wales cannot be used for demand systems for which the parameters of the matrix
H cannot all be identified from the reparameterization H0 = −U 0U (see also Moschini
[1999]). The method we outline in this paper can be applied for a very wide range of
demand systems and is illustrated using a generalized Box-Cox specification which nests
both the translog and the normalized quadratic functional forms.1

The solution we propose makes use of a minimum distance, or an asymptotic least-
squares estimator, proposed by Gouriéroux, Monfort and Trognon [1985] and Kodde,
Palm and Pfann [1990]. Concavity is imposed in two stages. In a first stage we estimate

the unrestricted parameters to obtain estimate bH, and this will typically not be negative
semi-definite. In a second stage, the difference between H0 and bH is minimized (for a
distance measured in an appropriate metric) to obtain the concavity restricted estimates

1 Diewert and Wales [1992] call Normalized Quadratic a functional form which was called Generalized
McFadden functional form in Diewert and Wales [1987].
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bH0

. We then present a parametric test for the concavity of the cost function in prices:
the method we rely on for imposing concavity can simultaneously be used for testing this

assumption, by testing whether the matrix bH0

− bH is statistically different from zero.
These results are applied to the analysis of the impact of price, output growth and

technological change on labor demand for different skill levels. Rather few studies have
considered different skill classes of labor as distinct inputs in the production process.
In general, labor is treated as a single aggregate input, with two kinds of undesirable
consequences. First, it is only under restrictive conditions on the technology and on the
evolution of prices that the different labor and material inputs can be combined into single
aggregate measures. Considering aggregate labor may therefore lead to an estimation
bias. Second, disaggregated information is often of interest for assessing the impact of
policies to fight the high unemployment of unskilled workers (by means of wage subsidies
for example). This information cannot be recovered from models considering aggregate
labor. In this paper, we consider the wages of different types of labor, the prices of energy,
material and capital, the level of output, and the impact of time, in order to explain the
evolution of different input demands.
As concavity rejection may in fact be attributable to an inappropriate specification

of the functional form, we retain a generalized Box-Cox formulation which nests several
usual models. Although the generalized Box-Cox is non-linear in parameters, concavity is
imposed and the parameters are estimated without great difficulties. The test for the null
of concavity is computed for several specifications, and we study whether some functional
forms are more likely to fulfill concavity than others. Furthermore, price elasticities are
compared when curvature conditions are imposed and when they are not.
The factor demand system is estimated for 31 German manufacturing branches for the

period 1978 to 1990. The skill categories are based on the highest formal qualification
received: workers without any formal vocational certificate are categorized as low-skilled
or unskilled; workers with a certificate from the dual vocational training system who
have attained either a university level entrance degree (“Abitur”) or a vocational school
degree, are categorized as medium-skilled or skilled; and finally, workers with a university
or technical university degree are categorized as high-skilled workers.
The observed shift in demand away from unskilled labor is widely documented in the

economic literature. For Germany the situation can be visualized on Figure 1 below,
which describes the evolution of the share of each skill in aggregate labor, with ht, st and
ut respectively denoting high-skilled, skilled and unskilled workers and aggregate labor
defined as `t = ht + st + ut. One explanation for this shift is that technological change
is skilled labor augmenting (Berman, Bound and Griliches, 1994) and that higher skilled
labor is more complementary to equipment investment than lower skilled labor. Another
reason for the change in employment composition is that employment changes in response
to changes in wages and output vary for different skill levels (e.g., Bergström and Panas,
1992, Betts, 1997). Both effects, as well as the impact of time and of price changes, are
simultaneously investigated here.
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Figure 1: Evolution of the shares of three types of qualification (h=high skill, s=skill, u=unskilled) in
aggregate manufacture employment (l=labor), West Germany, basis 1978=1.00.

Sections 2 and 3 are devoted to the presentation of the techniques used to impose
and to test concavity, respectively. The generalized Box-Cox specification is presented in
Section 4 and the results of some specification tests appear in Section 5. The results of
concavity tests are examined in Section 6 and the elasticities are discussed in Section 7.
Section 8 concludes.

2. Parameter estimation under concavity restriction

The technological constraint that a production unit faces is given by f (x, z;α) ≤ 0, where
x is a variable input vector, z is a vector of characteristics (such as outputs and time trend)
and α ∈ A ⊂ RSα is the vector of unknown technological parameters. The cost function
c gives the minimal value in x of the product p0x which can be achieved for given prices
p and the technological constraint. That is,

c (p, z,α) = min
x
{p0x : f (x, z,α) ≤ 0} , (1)

where p ∈ RSp++, x ∈ RSx+ , z ∈ RSz+ and Sv denotes the dimension of a vector v. The Sx-
vector of optimal input demands x∗ (p, z,α) is obtained by applying Shephard’s lemma to
c. As a consequence of the rational behavior of production units, the microeconomic cost
function is linearly homogeneous and concave in input prices. Concavity in prices means
that the (Sp × Sp)-Hessian matrix

H ≡ ∂2c (p, z;α)

∂p∂p0
(2)

of the cost function will be symmetric and negative semi-definite. In addition, linear
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homogeneity in prices implies that
∂2c (p, z;α)

∂p∂p0
p = 0, (3)

hence, only Sp (Sp − 1) /2 elements of H will be linearly independent.
For simplicity, linear homogeneity in prices and symmetry, which are easily imposed,

will not be tested in the sequel; hence any matrix H and its estimates bH are assumed to
be compatible with these properties. In general the matrix H depends on p and z; we
denote H the matrix obtained from H for fixed levels of prices and characteristics: p = p
and z = z.
Let N denote the number of observations. The expression of the (unrestricted) model

can be written as X = X∗ (α) + ε, where X∗ is the (NSx × 1) stacked vector of optimal
demands x∗, X is the vector of observed inputs quantities, and ε is the (NSx × 1) vector
of added residual terms. We assume that Ωε, the conditional variance of ε, is consistently
estimated by bΩε. The (unrestricted) least squares estimator bα is defined asbα = argmin

α
(X −X∗ (α))0 bΩ−1ε (X −X∗ (α)) . (4)

The concavity restricted least squares estimator is obtained asbα0 = argmin
α

n
(X −X∗ (α))0 bΩ−1ε (X −X∗ (α)) : v0Hv ≤ 0, ∀v ∈ RSp

o
. (5)

Since the matrix H in (2) in general does not solely depend on α but also on price and
output levels, concavity is only imposed locally in (5) (at p = p and z = z) and will
not necessarily be fulfilled at other observation points. Hence the notation H in (5). The
method we propose could however be adapted to impose concavity at more than one point
or globally. Several techniques for estimation under inequality constraints have recently
been overviewed by Ruud [1997] and Ryan and Wales [1998]. In the sequel, we focus on
a method which is attractive because of its simplicity and which can be applied to a wide
range of functional specifications.
As already mentioned, symmetry and linear homogeneity are easily imposed on the cost

function, and Diewert and Wales [1987] and Ryan and Wales [1998] show that restricting
the parameters α to fulfill negative semi-definiteness of the matrix H is not much more
difficult. Indeed, for some functional forms, the parameter vector α can be split into
α = (α0A,α

0
B)
0, where αA is a vector with Sp (Sp − 1) /2 free parameters, whose values

can be chosen to ensure negative semi-definiteness of H for any value of the remaining
parameters αB.2 For many usual functional forms, the Hessian matrix of the cost function
with respect to p can be written at a given point as H = A+B where the matrix A only
depends on the concavity driving parameters αA = vecliA, and B only depends on αB
but not on αA. The operator vecli which is introduced here stacks up a maximal subset of
linearly independent components of a matrix. It is a slight adaptation of the operator vec,
with the complication that it is not uniquely defined. However, results will not depend
on the choice of the subset, provided that this choice is made once and for all, so that the

2 For those functional forms which are flexible in the sense given by Diewert and Wales [1987], the total
number of parameters Sα will always be greater than the number Sp (Sp − 1) /2 of parameters involved
in αA, so that the decomposition α = (α0A,α

0
B)

0 is justified.
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ambiguity of the definition is only superficial. We can therefore write

H (p, z;αA,αB) = A (p, z;αA) +B (p, z;αB) , (6)

or more succinctly H = A + B. Negative semi-definiteness of H can then be obtained,
for any given matrix B, by choosing the free parameters αA such that A is sufficiently
negative semi-definite. For this purpose, Ryan and Wales propose to reparameterize the
matrix A as A ≡ −U 0U − B, where the matrix U (Sp × Sp) is lower triangular, and to
estimate the parameters of U and B instead of A and B. Negative semi-definiteness of
H is then achieved by construction. As A = −U 0U − B, the parameters αA of A can be
directly determined when the parameters of U and B are identified.
Let H0 = −U 0U denote the restricted Hessian matrix and let η0H (u) = vecliH0 be the

vector comprising the SηH ≡ Sp (Sp − 1) /2 free parameters of H0. The components of
η0H are functions of the elements uij of U, hence the notation η

0
H (u) , with u = vecliU.

Instead of estimating the parameters α = (α0A,α
0
B)
0 of the cost function, Ryan and Wales

estimate (u0,α0B)
0 by solving a nonlinear least square problem of the type

min
u,αB

(X −X∗ (u,αB))
0 bΩ−1ε (X −X∗ (u,αB)) . (7)

The identification of the parameter vector α = (α0A,α
0
B), which is of interest for the

computation of elasticities, may then be obtained from (6).
This approach presents three main drawbacks. First, convergence may be difficult to

obtain. By implementing (7) in turn for 29 industrial sectors, Koebel [1998] encounters
convergence problems for more than half of them. These difficulties are even more severe
when the unrestricted functional form x∗ (p, z;α) is already nonlinear in the parameters.
Second, the decomposition of H as in (6) is not possible for every functional form, and
the identification of the restricted parameters αA in terms of η0H and αB is not always
straightforward (see Ryan andWales [1998] and Moschini [1999] on this last point). Third,
tests for the concavity assumption are not provided.
Instead of relying on (7), we could estimate the concavity restricted parameters via the

asymptotically equivalent minimum distance estimator obtained as the solution ofeα0 = argmin
α

n
(bα− α)0 bΩ−1α (bα− α) : v0Hv ≤ 0, ∀v ∈ RSpo , (8)

where bα denotes the unrestricted estimate of α, and bΩα is a consistent estimate of the
variance matrix of bα. In (8), the parameters α are chosen such that the distance between
the unrestricted and concavity restricted parameters is minimized. The asymptotic equiv-
alence between the solutions of (5) and (8) is discussed by Gouriéroux and Monfort [1989,
Chapter XXI].
In general, the inequality constraint v0Hv ≤ 0 in (8) cannot be explicitly imposed on

the parameters α, and the cases considered by Diewert and Wales [1987] and Ryan and
Wales [1998] are exceptions rather than the rule. We therefore estimate the concavity
restricted parameters in two stages, a procedure which is justified in Proposition 1. In

the first stage, the parameters bη0H of the concavity restricted Hessian matrix bH0

are
determined as the solution of

min
u

¡bηH − η0H (u)¢0 bΩ−1H ¡bηH − η0H (u)¢ ≡ d, (9)
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where bηH = vecli bH and η0H (u) = vecli (−U 0U). Let g : RSα → RSηH be such that
g (α) ≡ vecli∇2

ppc (p, z;α); then a consistent estimate of the variance of bηH is given by:bΩH ≡ ∂g

∂α0
(bα) bΩα∂g0

∂α
(bα) . (10)

Gouriéroux and Monfort [1989] and Wolak [1989] show that the minimum achieved in (8)
is asymptotically equivalent to the Wald statistic d in (9).
From (9), we obtain bη0H , but in most cases these estimates (in number SηH ) do not allow

to identify the Sα concavity restricted parameters bα0 of the cost function (see footnote 2).
Therefore, a second stage is needed to identify the parameters of interest bα0. Identification
can be achieved by adapting the Asymptotic Least Squares (ALS) framework proposed by
Gouriéroux, Monfort and Trognon [1985]. The assertions and propositions which follow
are proven in Appendix A. The relationship between the SηH restricted parameters bη0H
and the Sα structural parameters bα0 can be written asbα0 = argmin

α

n
(bα− α)0 bΩ−1α (bα− α) : bη0H = g (α)o , (11)

and the solution to this problem is asymptotically equivalent to

bα0 = bα+ bΩα∂g0
∂α

(bα)µ ∂g
∂α0

(bα) bΩα∂g0
∂α

(bα)¶−1 ¡bη0H − g (bα)¢ . (12)

From this expression it can be seen that the concavity restricted parameters bα0 are equal
to the unrestricted estimates bα corrected by a function of the difference bη0H−g (bα) between
the parameters of the concavity restricted and unrestricted Hessians. The relationships
between these estimators and their properties are given in Proposition 1 below.

Proposition 1. Under the assumption that each of the problems (8), (9) and (11)
has a unique solution, the following properties are verified: under the null of con-
cavity,

(i) the solution eα0 of (8) and the solution bα0 of (11) are asymptotically equivalent;
(ii) the solution bη0H of (9) is asymptotically equivalent to g ¡eα0¢ and to g ¡bα0¢;
(iii) the minimum distances achieved in problem (8), (9) and (11) are asymptotically
equivalent;

(iv) an asymptotic solution of (11) is given by (12).

Point (i) of Proposition 1 justifies our two-steps procedure for solving (8). Point (ii)
allows to retain the statistic bη0H obtained by solving (9) as an estimator for g (α0) . Part
(iii) provides a rationale for computing the LR type test for the null of concavity using the
minimum value achieved in (9). Point (iv) justifies the use of (12) for the determination
of the concavity restricted parameters.
Concerning the asymptotic distribution of the estimators bη0H and bα0 under H0, we

must distinguish the case where the true value saturates the constraints or not. If they
do not, these asymptotic distributions are N (α,Ωα) and N (ηH ,ΩH) , respectively. If
some constraints are saturated by the true value, however, the distributions of bη0H and
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bα0 becomes quite complex; see Gouriéroux, Holly and Monfort [1982], Kodde and Palm
[1986] and Wolak [1989].
A special case of this minimum distance estimator of bα0 was used in Koebel [1998]

for the estimation of the concavity restricted parameters of a normalized quadratic cost
function: for this functional form, the matrix B (p, z;αB) vanishes in the expression (6),
and the concavity restricted parameters α0A can be estimated and identified in one stage.
The main advantage of using (9) and (12) rather than (7) is that convergence is obtained
much more easily. As will be shown in the next section, (9) is also useful for testing the
validity of the concavity restrictions.

3. Testing concavity

In consumer analysis, tests of the definiteness of a matrix are sometimes presented: for
example Härdle and Hart [1992] and Härdle, Hildenbrand and Jerison [1991] present a

method relying on whether the highest nonzero eigenvalue of bH is significantly negative.
Kodde and Palm [1987] prefer to consider all eigenvalues simultaneously and propose a
distance test based on:

dKP ≡ min
λ≤0

³bλ− λ´0 bΣ− ³bλ− λ´ , (13)

where bλ denotes the vector of all eigenvalues of the estimated matrix bH and bΣ is a
consistent estimate of the variance matrix of λ given bybΣ = ∂λ

∂ vec0H

³bH´ bΩH ∂λ0

∂ vecH

³bH´ .
where bΩH is the variance matrix of vec bH.3 A generalized inverse of bΣ has to be considered
in (13), because H is symmetric and singular, but dKP is independent of the choice of gen-
eralized inverse. The following proposition gives an asymptotically equivalent expression
of the test statistic dKP proposed by Kodde and Palm.

Proposition 2. Under the assumption that the eigenvalues λ are differentiable with
respect to ηH ,

dKP ≥ d,
dKP

a
= d.

Briefly, Proposition 2 states that in small samples dKP ≥ d, but that both statistics
are asymptotically equivalent. The distance dKP between restricted and unrestricted
eigenvalues is asymptotically equivalent to the distance d between the elements of the

estimated matrix bH and the negative semi-definite matrix bH0

. The distance dmay however
be more useful than dKP for three reasons. First, the computation of d is somewhat simpler
since we do not have to calculate the matrix of derivatives of the eigenvalues with respect
to the parameters ∂λ/∂ vec0H. Second, the statistic d can be computed even when the

3 Note that bΩH is different from bΩH which is the variance matrix of vecli bH. While the later has full
rank, the former is singular.
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eigenvalues are multiple and not differentiable. Third, in the case where α can be split
into (η0H ,α

0
B)
0 , we can directly obtain the restricted parameters bα0A by solving (9); this is

not the case when using (13).
Does the assumption that the eigenvalues are differentiable strongly restrict the ap-

plicability of Proposition 2? The following result shows that the set of matrices which have
multiple eigenvalues is of measure zero, and therefore Proposition 2 can almost always be
applied.

Proposition 3. (i) The eigenvalue λ1 is differentiable with respect to ηH if and
only if λ1 is simple.

(ii) The set of all matrices H which have multiple eigenvalues is of Lebesgue measure
zero.

Proposition 3 means that almost all matrices have differentiable eigenvalues. Hence,
the technical problem related to the non-differentiability of some eigenvalues which may
arise when Proposition 2 is applied occurs only for a small set of matrices with measure
zero. The following example illustrates the proposition. Let Sp = 2, then a symmetric
matrix H satisfying (1) and (3) at p = (1, 1) is of the formµ

a −a
−a a

¶
,

and has multiple eigenvalues if and only if a = 0. When the distribution of the random
parameter a is continuous and smooth, the occurrence of multiple eigenvalues is an unlikely
event.
Gouriéroux, Holly and Monfort [1982], Kodde and Palm [1986] and Wolak [1989] have

shown that under the null hypothesis, the statistic d will asymptotically follow a mixture
of Chi-squared distributions:

Pr [d ≥ d] a=
Sp−1X
j=0

Pr
£
χ2 (j) ≥ d¤w (Sp − 1, Sp − 1− j,ΩH) ,

where the weight wj denotes the probability that j of the Sp − 1 eigenvalues of H are
negative. As the computation of the weights in the expression of d is not straightforward,
the lower and upper bounds to the critical value computed by Kodde and Palm [1986]
will be used for hypothesis tests.

4. A generalized Box-Cox cost function

In order to avoid the imposition of a priori restrictions on an unknown technological struc-
ture, many researchers have relied on flexible functional forms which can be interpreted
as a (local) second order approximation to an arbitrary cost function. Translog, general-
ized Leontief and normalized quadratic cost functions have often been used for estimating
price elasticities. We consider a generalized Box-Cox cost function which nests the former
usual specifications. In contrast to the Box-Cox formulations of Berndt and Khaled [1979]
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and of Lansink and Thijssen [1998], our specification nests both the normalized quadratic
and the translog cost functions.
In order to specify our model, we apply the Box-Cox transformation to the explanatory

variables pit and zit: for γ1 6= 0, let

Zjit =
z
γ1
jit − 1
γ1

, j = 1, . . . , Sz,

Pjit =
(pjit/θ

0
ipit)

γ1 − 1
γ1

, j = 1, . . . , Sp.

For γ1 = 0, let Zjit = ln zjit and Pjit = ln (pjit/θ
0
ipit) . The term θ0ipit appearing in the

expression of Pjit is introduced to guarantee that the cost function is linearly homogeneous
in prices. The vector θi of size Sp × 1 is chosen to be equal to xi1/ci1 so that θ0ipit
corresponds to a Laspeyres price index for total costs, normalized to ‘1’ for t = 1. The
choice of the Laspeyres cost index for normalization is appealing because the Laspeyres
index is independent of the units of measurement of prices and of quantities (it satisfies
the index theoretical dimensionality and commensurability axioms).
The specification of the cost function is

c∗ (pit, zit; θi,αi) = p0itxi1 (γ2C
∗ (pit, zit; θi, βi) + 1)

1/γ2 , (14)

for γ2 6= 0 and c∗ = p0itxi1 exp (C∗) for γ2 = 0, where
C∗ (pit, zit; θi, βi, γ1) = C (Pit, Zit;βi)

= β0i + (P
0
it, Z

0
it)B1 +

1

2
(P 0it, Z

0
it)B2

µ
Pit
Zit

¶
(15)

= β0i + (P
0
it, Z

0
it)

µ
Bpi
Bz

¶
+
1

2
(P 0it, Z

0
it)

µ
Bpp Bpz
Bzp Bzz

¶µ
Pit
Zit

¶
.

In c∗, the technological parameters to be estimated are gathered in the vector αi =
(β 0i, γ1, γ2)

0
. The matricesB1 andB2 contain the parameters of βi and are of size (Sp + Sz)×

1, and (Sp + Sz)× (Sp + Sz) , respectively. It can be directly seen that the cost function
c∗ is linearly homogeneous in prices. The term p0itxi1 appearing in the expression of c

∗

ensures both price homogeneity of degree one of the cost function and scale invariance of
the estimated parameters’ t-values. The sensitivity of the t-values with respect to an ar-
bitrary scaling of the dependent variable is a problem often arising with nonlinear models
(see Wooldridge [1992] for a discussion in the context of Box-Cox regression models). To
understand why scale invariance holds here, consider the regression cit = c∗+νcit, where c
denotes observed costs, c∗ is defined in (14) and νcit is the realization of a random variable:
changing the scaling of cit = p0itxit will similarly change the scaling of the multiplicative
term p0itxi1 in the expression c

∗ and leave all parameter estimates unaffected.
A (locally) flexible function must be able to approximate the level, the Sp + Sz first

order derivatives and the (Sp + Sz)
2 second order derivatives of an arbitrary function

at a given point. This corresponds to the number of parameters entailed by the spec-
ification (15), which thereby satisfies a necessary requirement for being flexible. Yet
without further restrictions on the parameters βi, the function C

∗ is not parsimoniously
parameterized. Symmetry in (pit, zit) and homogeneity of degree zero in pit imply respec-
tively (Sp + Sz) (Sp + Sz − 1) /2 and 1 + Sp + Sz additional restrictions on C∗. Hence
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in order for it to be a flexible function it is only necessary that C∗ entails at least
(Sp + Sz) (Sp + Sz + 1) /2 free parameters. These additional restrictions are imposed on
the parameters βi as follows:

Bpp = B0pp, Bzz = B
0
zz, Bpz = B

0
zp, (16)

ι0SpBpi = 1, ι0SpBpp = 0, ι0SpBpz = 0,

where ιSp denotes a (Sp × 1)-vector of ones.
From (14), (15) and (16), it can be seen that several known functional forms are

obtained for particular values of the parameters (γ1, γ2). A complete justification of
the following assertions can be found in Appendix B. For γ1 = γ2 = 1, the normalized
quadratic cost function (NQ) is obtained. The generalized Leontief (GL) corresponds to
γ1 = 1/2 and γ2 = 1. The generalized square root (GSR) is obtained for γ1 = 1 and
γ2 = 2. When γ1 → γ2 → 0, the translog (TL) is the limiting case. A log-linear (resp.
lin-log) specification is obtained as γ1 = 1 and γ2 → 0 (γ1 → 0 and γ2 = 1). It is easy
to see that the above Box-Cox (BC) specification is a flexible functional form: as (14)
entails several flexible functional forms as special cases, the Box-Cox cost function itself
is flexible.
The system of input demands x∗ (pit, zit; θi,αi) is obtained through Shephard’s lemma.

Note that the dependence of the Laspeyres index on current prices must be taken into
account in the derivation to obtain:

x∗it = xi1c
∗
it/ (p

0
itxi1) + p

0
itxi1 (c

∗
it/ (p

0
itxi1))

(1−γ2) ∂P
0
it

∂pit

∂Cit
∂Pit

, (17)

where
∂Cit
∂Pit

= Bpi +BppPit +BpzZit,

and
∂Pit
∂p0it

=
bpγ1−1
(θ0ipit)

γ1

µ
ISp −

1

θ0ipit
pitθ

0
i

¶
.

By convention bp ≡ diag (pit) is a diagonal matrix with elements pijt on the main diagonal.
We verify that

∂Pit
∂p0it

pit = 0,

as a consequence of Pit being homogeneous of degree zero in pit. Hence, for the specification
(17), the adding-up condition p0itx

∗ = c∗ is automatically satisfied.
The Hessian of the cost function with respect to prices is given by

∂2c∗

∂pit∂p0it
= xi1 (c

∗
it/p

0
itxi1)

(1−γ2) ∂Cit
∂P 0it

∂Pit
∂p0it

+ (c∗it/p
0
itxi1)

(1−γ2) ∂P
0
it

∂pit

∂Cit
∂Pit

x0i1

+p0itxi1 (1− γ2) (c∗it/p0itxi1)(1−2γ2)
µ
∂P 0it
∂pit

∂Cit
∂Pit

¶µ
∂Cit
∂P 0it

∂Pit
∂p0it

¶
(18)

+p0itxi1 (c
∗
it/θ

0
ipit)

(1−γ2)
µ
∂P 0it
∂pit

Bpp
∂Pit
∂p0it

+

µ
∂Cit
∂P 0it

∂2Pit
∂pjt∂pht

¶¶
.

After an evaluation at (pit, zit) , we see that this matrix does not admit an additively
separable representation such as (6). For this reason, it is more convenient to apply
the method presented in Section 2 for the determination of the concavity constrained
estimates. Evaluating (18) at the unrestricted parameter values bαi yields bηH which can
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in turn be replaced in problem (9) in order to derive the minimum distance estimates bη0H
for the parameters of the restricted Hessian matrix ∇2

ppc
¡
p, z; bα0¢ . Knowing the value ofbη0H , the restricted parameters bα0 which are of interest for the computation of the different

elasticities can be computed using (12).

5. Empirical implementation

We first shortly describe the data set we use and then present some preliminary results
aimed to precise the sample split and the specification we rely on for testing concavity.

5.1 Data description

Given the data available, we define the vector of inputs as xit = (kit, hit, sit, uit, eit,mit)
0

and the prices as pit = (pkit, phit, psit, puit, peit, pmit)
0 , where the labor input hit denotes

high-skill labor, sit denotes skilled labor and uit low-skilled or unskilled workers. Labor
is measured in total workers (full-time equivalent). In addition, eit denotes energy, mit

material and kit capital. The subscripts t and i denote time and branch, respectively.
Other explanatory variables entering the cost function are the level of production yit, and
a time trend t.4 These variables are regrouped in a vector zit = (yit, t)

0. The total costs
of production are defined by cit = p0itxit.
Within our model specification, the net capital stock is assumed to be variable. In

fact there exist several economic reasons (as time to build and adjustment costs) in favor
of treating capital and perhaps high skill labor as fixed or quasi-fixed inputs. Several
difficulties are however related to these approaches: Gagné and Ouellette [1997] show
on the basis of a Monte-Carlo analysis that meaningful estimates of the shadow value of
capital may be difficult to obtain.
The user costs of capital are computed using the investment price p4kit, the nominal

interest rate rt and the depreciation rate δit:

pkit = (rt + δit) p4kit.

The depreciation rate is calculated as δit = 1 − (kit − ∆kit)/ki,t−1 where ∆kit denotes
gross investment at constant prices. Annual interest rates are drawn from the Deutsche
Bundesbank (long-term interest rate for public sector bonds). Our results differ somewhat
from those obtained with the alternative formula pkit = (1 + rt) p4kit − (1− δit) p4ki,t+1
for the user costs of capital.5

The data used consists of a panel of 31 out of 32 German two-digit manufacturing
branches observed over period 1978-90. One branch (Petroleum processing, No 15) has
been dropped from our sample because of the importance of taxes included in the output
and the unreliability of the data available on the different skills. The choice of the period
is related to the fact that energy expenditures and quantities, which are based on input-
output tables, are only available from 1978 onwards. Because of data-related difficulties

4 The Box-Cox transformation is not applied to t. Hence Zit =
¡¡
y
γ1
it − 1

¢
/γ1, t

¢
in (15).

5 Janz and Koebel [2000] present a recent comparison of the empirical performance of alternative models
of capital formation.
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appearing with the German reunification, we prefer not to use post-reunification data.
Most of our data were drawn from the German National Accounts.
We disaggregate the total number of employees and total labor cost into three categories

by using detailed information on earnings and qualifications. Information on employment
by education is taken from the Employment Register of the Federal Labor Office (Bun-
desanstalt für Arbeit). It contains information on employment by skill category and by
branch as of June 30, for all employees paying social security contributions (each year
between 1975 and 1996 is covered). Labor is divided into three groups: group 1 (high
skilled) is defined as workers with a university or polytechnical degree, group 2 (skilled)
is made up of those having completed vocational training as well as of technicians and
foremen and the remaining group 3 (unskilled) comprises workers without formal quali-
fications. From this dataset we calculate the shares of the 3 skill groups in employment
and multiply these proportions with total employment available for each branch from the
national accounts to obtain hit, sit and uit.
Information on earnings is taken from the IABS for skilled and unskilled labor and from

the Federal Statistical Office (Löhne und Gehälter Statistik) for high-skilled labor.6 From
this dataset we calculate relative wages (phit/puit)IABS and (psit/puit)IABS and combine
these figures with the national account data to obtain phit, psit and puit as

puit =
p`it`it³

phit
puit

´
IABS

hit +
³
psit
puit

´
IABS

sit + uit
, (19)

psit =

µ
psit
puit

¶
IABS

puit,

phit =

µ
phit
puit

¶
IABS

puit.

This method relies on the assumption of proportionality between the wages in the IABS
and in the national accounts, and it ensures that the wage bill phithit + psitsit + puituit
coincides with that of the national accounts given by p`it`it.
For rendering the homoscedasticity of the vector of added residuals, ν, more plausible,

the system of input demands is divided by the output levels:

xit/yit = x
∗ (pit, yit, t; θi,αi) /yit + νit. (20)

As the parameter vector θi ≡ xi1/ci1 is included as explanatory variable, the residual term
νit is correlated with the θi for t = 1. In order to avoid this endogeneity problem, we drop
the observations for which t = 1 from the regression. For the 1979-1990 period, the factor
demand equations for capital, energy, material and the three types of labor are estimated
with the iterative nonlinear SUR estimator, assuming that vector νit has zero mean and
a constant variance matrix Ων, and that it is uncorrelated with the regressors.7 We thus
obtain maximum likelihood estimates under the assumption ν ∼ N (0,Ων) .

6 The IABS dataset is a 1% random sample of all persons covered by the social security system. Depend-
ing on the year, it includes between 66,995 and 74,708 individuals working in manufacturing industries.
The earnings for high-skilled workers are unfortunately top-coded in the IABS.
7 Note that the matrix Ων is not singular.
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5.2 Preliminary results

First, the parameters αi have been estimated by assuming that the relation (20) is valid for
all branches in our sample. For Sp = 6, the specification (17) entails 218 free parameters
(among which 186 branch dummies), which have to be estimated on the basis of 31 ×
12×6 = 2232 observations. To account for sectoral differences, the Box-Cox specification
(15) includes some branch dummies β0i, but in fact the remaining coefficients might also
differ across branches. Given the relatively short time period available, the parameters
of the Box-Cox model cannot be estimated for each branch separately. Therefore, we
investigate parameter heterogeneity by estimating model (20) for different subgroups of
branches. These groups are formed on the basis of similarities (a) in their production,
(b) in their size, (c) in their skill structure of labor, (d) on whether they are labor or (e)
capital intensive. Within each group it is assumed that technologies only differ through
β0i and Bpi, whereas across groups, technologies can differ in any of the parameters αi.
The first sample split distinguishes three groups of branches according to the main type

of production: those mainly producing (i) intermediate inputs (ii) investment goods and
(iii) consumption goods. This classification is retained by the German Federal Statistical
Office for the calculation of aggregate values for one-digit industries. In the second sample
split, we classify the branches in 3 groups according to their level of production (at 1985
values). In the three last sample splits, we categorize the branches according to the
size of some cost shares. In each case, we split the 32 branches into three groups, each
entailing 10 or 11 branches, according to whether they are located in the lower, the median
or upper 33.3-quantile of the distribution of a relevant variable, which is yit, phithit/cit,
(phithit + psitsit + puituit)/cit and pkitkit/cit for the sample split based on output level,
skill, labor and capital intensity, respectively.8 For the groups with 10 (respectively 11)
branches, there are 92 (98) parameters (among which 60 (66) are branch dummies) which
have to be determined using 10×12×6 = 720 (792) observations. The results of the tests
for the null of identical Box-Cox technologies across branches are summarized in Table 1.
In all cases, the pooled model is rejected by the likelihood ratio test. The sample splits
(a) and (c) yield the highest log-likelihood values.
Even in the case where statistical tests reject the equality of some parameters, there

exist arguments in favor of pooling the data. Baltagi [1995, chapter 4] recommends the
use of a mean squared error (MSE) criterion for assessing the poolability of the data,
rather than tests on the equality of parameters. In modelling cigarette demand, Baltagi,
Griffin and Xiong [2000] found that pooled data may provide more reliable forecasts,
because the “efficiency gains from pooling appear to more than offset the biases due
to heterogeneity”. As a long time period is necessary for such comparisons, we cannot
pursue along these lines. Instead, we consider below the pooled model along with the two
disaggregate models for which the highest likelihood was reached. Our choice is justified
by the fact that a comparison of pooled versus disaggregate estimates may be interesting
with regard to the tests for functional forms and for concavity.

8 Since we consider intermediate material inputs as a factor of production, the industries which are not
labor intensive will not automatically be capital intensive.
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Table 1: Box-Cox estimates for different sample splits(1)

Split (a) consumer goods investment goods intermediate goods LR-test(2)

log-L 3651.43 2370.14 2482.76 1814.0
Split (b) small branches medium branches large branches LR-test(2)

log-L 2621.26 2674.48 2755.66 908.1
Split (c) low skill intensive skill intensive high skill intensive LR-test(2)

log-L 3245.45 2743.28 2455.91 1694.6
Split (d) not labor intensive labor intensive highly labor intensive LR-test(2)

log-L 2904.73 2658.75 2625.56 1183.4
Split (e) not capital intensive capital intensive highly capital intensive LR-test(2)

log-L 3040.00 2602.68 2578.73 1248.1
(1) See Tables C1 and C2 in Appendix C for the denomination of the industries corresponding to the different sample
splits.

(2) The LR-test is calculated as 2
³P3

j=1 log `j − 7597.34
´
where 7597.34 is the log-likelihood obtained on the pooled

sample and log `j denotes the log-likelihood obtained for the jth group of the corresponding sample split. Under the

null, this test statistic is chi-squared with 106 degrees of freedom (there are 3× 32− 32 = 64 slope parameters and
3× 21− 21 = 42 terms of the covariance matrix which may be different in the split regressions). The corresponding
5% threshold critical value is 131.03.

5.3 Tests of nested specifications

Several usual specifications of input demands are nested within the Box-Cox model and
can therefore easily be tested against it. In Table 2, we provide the estimates obtained forbγ1 and bγ2, their t-statistics and the log-likelihood values obtained for the pooled and two
disaggregate models (entailing each three subsamples). The upper part of Table 2 gives
the result for the Box-Cox specification. Although they differ between subsamples, bγ1 andbγ2 are in all cases comprised between 0 and 1. These estimates are however statistically
different from 0 and 1, which already suggests that the estimated Box-Cox is actually
different from common functional forms. In two cases (subsamples (ii) in split (a) and (i)
in split (c)), the assumption γ1 = γ2 cannot be rejected, which corresponds to a Box-Cox
form similar to the one proposed by Berndt and Khaled [1979].
The log-likelihood values for alternative functional forms nested within the Box-Cox

are reported in Table 2. Among the different usual specifications, the translog achieves
the highest likelihood, followed by the normalized quadratic. However, on the basis of a
likelihood-ratio test, the null hypothesis that the alternative functional form describes the
technology as well as the Box-Cox is rejected for all specifications and samples considered.
As all alternative specifications are rejected, only the Box-Cox should be retained in

the sequel. For assessing the disparities between alternative functional forms, both in
terms of their elasticities and in their ability to satisfy concavity, we continue to consider
the normalized quadratic and the translog. This permits to assess whether concavity
violation is due to the choice of a particular functional form or is rejected for the bulk of
the specifications.
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Table 2: Log-Likelihood values of alternative specifications

Specification Sample γ1 (t-value) γ2 (t-value) Log-likelihood
pooled 0.360 (14.1) 0.260 (14.6) 7597.34

Box-Cox split (a)
(i)
(ii)
(iii)

0.595 (16.2)
0.018 (0.4)
0.541 (11.3)

0.347 (19.3)
0.047 (2.3)
0.191 (5.4)

8504.33

split (c)
(i)
(ii)
(iii)

0.189 (3.1)
0.571 (12.5)
0.527 (15.9)

0.191 (8.8)
0.146 (5.4)
0.385 (12.0)

8444.64

Normalized
Quadratic

pooled
split (a)
split (c)

1 1
7392.65
8256.20
8204.02

Generalized
Leontief

pooled
split (a)
split (c)

1/2 1
7285.95
8126.22
8074.30

Generalized
Square-Root

pooled
split (a)
split (c)

1 2
6997.64
7886.53
7860.66

Translog
pooled
split (a)
split (c)

→ 0 → 0
7453.24
8313.98
8292.78

Lin-Log
pooled
split (a)
split (c)

1 → 0
7059.10
7899.54
7952.71

Log-Lin
pooled
split (a)
split (c)

→ 0 1
7122.83
8135.50
8083.25

6. Concavity tests

In this section we first present further estimates based on the concavity unrestricted
model discussed above. Then, using the method outlined in Section 2, we determine the
concavity restricted parameters bα0 and the test statistic bd for the null of concavity. The
results are presented in Table 3. Columns three to five refer to the concavity unrestricted
estimates. We evaluate the unrestricted Hessian ∇2

ppc (pit, zit;αi), which is different at
each observation point, and calculate the mean (over i and t) of the highest eigenvalue
as well as the mean number of positive eigenvalues. The corresponding sample standard
deviation is reported in parentheses. The percentage of observations violating concavity
appears in column 5.
The main conclusion that can be drawn from these unrestricted estimates is that con-

cavity is not often verified. It seems difficult to comprehensively summarize the com-
parisons between pooled and disaggregate estimates or between the different functional
forms. Only in the cases of the BC and the TL is concavity not violated on the whole
sample. With the BC, which is more flexible than the TL, it can however not be said that
concavity is more often observed than with the TL. For the NQ, concavity was violated
globally for any sample considered. At the more disaggregate level, however, we found a
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greater number of positive eigenvalues than in the pooled sample. For the BC and the
TL, concavity is only observed in a very limited number of cases. It seems that concavity
is a little less often violated at the disaggregate level than for the pooled sample.

Table 3: Tests of price concavity of the cost function(1)

unrestricted estimates restricted estimates

Highest No. of positive % of Concavity % of concav.

Specif. Sample eigenvalue eigenvalues failures test bd reject accept

Box-Cox pooled 0.6 (0.9) 0.8 (0.4) 100.0 36.8 (23.2) 79.0 7.5

(i) 0.3 (0.4) 0.9 (0.3) 92.3 21.7 (12.0) 76.9 15.4

split (a) (ii) 5.9 (6.1) 1.9 (0.3) 100.0 20.9 (5.4) 100.0 0.0

(iii) 2.0 (2.4) 2.7 (0.5) 100.0 16.9 (7.9) 68.5 0.0

(i) 0.5 (1.1) 0.9 (0.7) 70.5 9.6 (13.9) 26.8 49.2

split (c) (ii) 2.4 (2.3) 1.9 (0.3) 100.0 37.8 (18.8) 100.0 0.0

(iii) 1.4 (1.5) 2.4 (0.8) 100.0 16.7 (5.4) 87.5 0.0

Normalized pooled 0.1 (0.0) 1.0 (0.0) 100.0 9.7 (1.3) 1.3 0.0

Quadratic(2) (i) 0.3 (0.1) 1.0 (0.0) 100.0 1.9 (0.1) 0.0 100.0

split (a) (ii) 3.2 (0.6) 2.0 (0.0) 100.0 29.1 (0.3) 100.0 0.0

(iii) 5.3 (0.7) 3.0 (0.0) 100.0 25.8 (0.3) 100.0 0.0

(i) 7.3 (1.7) 2.0 (0.0) 100.0 38.1 (0.0) 100.0 0.0

split (c) (ii) 3.7 (1.0) 3.0 (0.0) 100.0 33.3 (0.1) 100.0 0.0

(iii) 1.0 (0.1) 2.0 (0.0) 100.0 16.1 (0.0) 100.0 0.0

Translog pooled 4.4 (12.2) 2.0 (0.7) 98.1 108.9 (83.0) 81.7 7.8

(i) 11.4 (32.4) 2.1 (0.9) 90.4 92.9 (76.4) 84.6 14.7

split (a) (ii) 7.9 (8.2) 1.9 (0.3) 100.0 26.4 (7.6) 100.0 0.0

(iii) 2.0 (3.3) 1.9 (0.8) 100.0 42.0 (37.1) 68.5 10.2

(i) 3.4 (9.8) 1.2 (0.8) 83.3 14.0 (38.3) 38.6 42.5

split (c) (ii) 2.7 (3.5) 1.6 (0.5) 100.0 69.1 (59.8) 80.8 0.0

(iii) 2.3 (2.7) 2.3 (0.7) 100.0 75.1 (48.0) 80.0 11.7

(1) In column 3, 4 and 6, we report the mean of the corresponding variable over all observations of the (sub)sample.
The sample standard deviation is given in parentheses. The lower and upper critical values for the null hypothesis
of concavity are taken from Kodde and Palm [1986]. The critical values at the 5% threshold are given by d` = 2.706
and du = 10.371.

(2) For the NQ, the concavity test should take the same value at any observation point. The finding of a positive

standard deviation in column 6, may reveal the existence of several local minima to problem (8).
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The second part of Table 3 (columns 6 to 9) reports some results on the statistical
significance of concavity violations. As concavity is imposed locally at, say, i = i0 and
t = t0, the result of our test depends on the arbitrary choice of the reference point
(i0, t0) . To avoid this inconvenience, we compute the test taking in turn each observation
as reference point. The average level of bd over all reference points of the group and its
sample standard deviation are gathered in column 6. The null hypothesis of concavity
is rejected when the test statistic bd is found to be significantly different from zero. The
percentage of cases for which bd was found to be significant (non significant) is reported in
columns 7 and 8. As we use the upper and lower bounds proposed by Kodde and Palm
[1986] for testing the inequality restrictions, these percentages do not sum up to 100, and
it is not possible to reach a conclusion for every value of bd.
The test points out that concavity violation is significant on average. For 18 out of 21

models the number of conclusive rejections exceeds that of conclusive failures to reject.
In three cases (the BC on sub-sample (c) (i), the NQ on pooled data, and the TL on
sub-sample (c) (i)), there are many test statistics falling in the inconclusive area (i.e.
d` < bd < du), so that no conclusion can be reached.
What can be learned from this inference? First, no relationship between the frequency

of concavity rejection and the number of degrees of freedom entailed in the model appears
to exist: concavity is rejected (or not) independently of the sample split or functional forms
considered. Second, whereas the tests of local concavity only provide weak evidence for a
rejection, global concavity would be unambiguously rejected.

7. Restricted and unrestricted elasticities

In order to better understand the consequences of imposing concavity, we now compare
restricted and unrestricted estimates of price, output and time elasticities. We also use
the computed elasticities in order to study which model performs best in predicting the
observed evolution of labor demand.

7.1 Own price elasticities

Tables 4 and 5 present own-price elasticities derived from models with and without con-
cavity restriction, on the pooled sample and on sample split (a). Since the variations over
time are not substantial, all elasticities are evaluated at 1985 values. To save space, we
report the median value of each elasticity over the branches and its estimated standard
error (s.e.) using the delta method. The concavity restriction is imposed for the year
1985 and for the branch producing the median level of output (No. 42).
For the pooled model, the concavity unrestricted results are not always plausible. With

the BC and the TL, the own price elasticity of energy is significantly positive. With the
NQ, the unrestricted own price elasticities have the expected sign but are always lower in
absolute value than with the BC and TL. There is a great variability of the elasticities
with respect to the functional form retained: ²hph ranges between −1.39 for the TL and
−0.37 for the NQ, and ²epe ranges between −0.08 for the NQ and 0.88 for the TL. Note
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that inputs with a low cost share (as energy and high-skilled labor) have particularly
variable own-price elasticities across the specifications. For material inputs, the own-price
elasticity is rather stable.
When concavity is locally imposed on the estimates, all own-price elasticities become

negative. For the observation at which concavity is imposed, the concavity test statisticbd is 79.7 for the BC, 9.5 for the NQ and 296.1 for the TL respectively. It can be seen
that the restricted and unrestricted results are increasingly different with the importance
of bd. For the NQ specification, there are only small differences between restricted and
unrestricted estimates, whereas for the TL model, the restricted ²hph becomes implausible.
This may explain why Diewert and Wales [1987] find relatively small differences between
the unrestricted and restricted estimates, whereas Gagné and Ouellette [1998] show that
the imposition of concavity may lead to important disparities between unrestricted and
restricted estimates. Our main result is that concavity restrictions do not seem to be
very useful with this type of data. In the single case where concavity cannot be statisti-
cally rejected (with the NQ), the restricted and unrestricted values are relatively similar.
With the other two functional forms, concavity is rejected and the restricted own price
elasticities are dramatically changed. With the BC, the imposition of concavity strongly
affects the own-price elasticities for capital, high-skilled labor and energy. Coincidently
these are the inputs with the smallest cost shares. With the TL this effect is even more
pronounced.
The own-price elasticities obtained from the three sub-samples (split (a)) are reported

in Table 5. For the BC, the value of the unrestricted own-price elasticity for energy ²epe
is now more plausible than the one obtained on the pooled sample. There is however
some loss of precision in the BC estimates, since only 3 out of 6 own-price elasticities are
significantly negative. Again, the own-price elasticities are smaller in absolute values for
the NQ specification.
For the observation at which concavity is imposed, the concavity test statistic bd is

64.8 for the BC, bd = 1.9 for the NQ and bd = 293.6 for the TL. In this light it is not
surprising that the disparity between the concavity unrestricted and restricted estimates
are the most important for the TL specification. Contrary to the result obtained on
the pooled sample, however, there is no huge difference between the restricted and the
unrestricted elasticities. In fact, when the split model is restricted to fulfill concavity,
only the estimates for one subsample are affected (the subsample containing the point
(i0, t0)); the impact of concavity on the median elasticity is therefore limited. Note that
the median of the concavity restricted elasticities ²mpm and ²epe is not always negative in
Table 5: as concavity is imposed at a given observation, the median elasticity may violate
concavity.
The ranking of the own price elasticities of labor suggests that the demand for skilled

labor is more elastic than for the demand for low-skilled labor. This stands in contradiction
with findings in most previous studies (see Hamermesh 1993). Given the disparities that
we have found, we must conclude that estimates of the own-price elasticities are highly
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Table 4: Own-price elasticities, pooled data(1)

Box-Cox Normalized quadratic Translog
unrestricted restricted unrestricted restricted unrestricted restricted
median s.e. median median s.e. median median s.e. median

²kpk −0.104 0.066 −0.204 −0.052 0.023 −0.063 −0.002 0.071 −0.392
²hph −1.117 0.352 −1.606 −0.373 0.182 −0.618 −1.390 0.531 −3.277
²sps −0.501 0.068 −0.522 −0.222 0.029 −0.242 −0.437 0.070 −0.565
²upu −0.458 0.091 −0.530 −0.241 0.112 −0.284 −0.148 0.136 −0.448
²epe 0.347 0.083 −0.074 −0.076 0.029 −0.090 0.878 0.130 −0.019
²mpm −0.021 0.019 −0.042 −0.013 0.013 −0.016 −0.061 0.024 −0.113

(1) Median value of the elasticities evaluated at the 1985 data and estimated standard error (s.e.).

Table 5: Own-price elasticities, sample split (a)(1)

Box-Cox Normalized quadratic Translog
unrestricted restricted unrestricted restricted unrestricted restricted
median s.e. median median s.e. median median s.e. median

²kpk −0.027 0.030 −0.027 −0.035 0.007 −0.035 0.052 0.048 −0.152
²hph −0.631 0.694 −0.615 −0.351 0.105 −0.353 −0.648 0.168 −1.321
²sps −0.516 0.084 −0.445 −0.089 0.026 −0.092 −0.399 0.065 −0.569
²upu −0.387 0.099 −0.414 0.007 0.096 −0.057 −0.209 0.111 −0.752
²epe 0.003 0.076 −0.127 −0.101 0.042 −0.101 0.036 0.061 −0.278
²mpm 0.010 0.068 0.010 0.015 0.004 0.015 −0.014 0.074 −0.014

(1) Median value of the elasticities over the three subsamples, evaluated at the 1985 data and estimated standard error

(s.e.).

sensitive to the choice of functional form and sample split.9

7.2 Cross-price elasticities

To measure factor substitution possibilities, we compute cross-price elasticities for the
unrestricted and concavity restricted models. The results for the pooled sample are given
in Table D1, whereas these for sample split (a) are given in Table D2 in Appendix D.
For the pooled sample BC unrestricted model, there are 15 out of 30 median cross-price
elasticities which are significant at the 5 percent level. This number reduces to 9 for the
NQ and to 12 for the TL cases. The number of significant elasticities obtained from the
split sample are respectively 13, 14 and 13 for the BC, NQ and TL.
The cross-price elasticities computed on the basis of the NQ tend to be small in absolute

value, pointing out a rigid production structure precluding frictionless substitution from
one input against the other. Only 4 to 6 out of 30 elasticities are greater than 0.1 in
absolute value for the NQ, depending on which sample and restrictions are chosen. For

9 In an earlier version of the paper we found that the own-price elasticities (in absolute terms), estimated
on the basis of the NQ specification, are decreasing with the level of skill. The difference in the results can
be explained by a different estimation sample (only 27 industries have been retained) and an alternative
definition of the user costs of capital.
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the BC, there are 8 to 12 elasticities which are greater than 0.1 (respectively 12 to 14 for
the TL). In comparison to our preferred specification (the BC), the TL overestimates and
the NQ underestimates the extent of substitution and complementarity relationships.
Although there are some differences between the alternative models, the number of

contradictions is not very important (we say that a contradiction occurs when an elas-
ticity which is significantly different from zero in one model changes its sign or becomes
insignificant in the other model). It can be observed that when concavity is not statisti-
cally rejected, the concavity adjusted elasticities do not differ much from the unrestricted
ones (see the NQ case). The choice of the functional form and sample split has a greater
impact on the estimates than the choice of whether to impose concavity or not.
We also observe some stable results for the elasticities of substitution. First, there is

a dominant substitutability relationship between the three types of labor inputs: high-
skilled and skilled labor can easily be substituted as well as skilled and unskilled labor.
High-skilled labor cannot be substituted with any other input, and is complementary to
unskilled labor. For all specifications considered, capital and energy are substitutes: a
similar result is found in most previous studies for the US and Canada (see Thompson
and Taylor, 1995). For some models, there is evidence for capital-skill complementarity,
but this result is not robust with respect to the choice of functional form and does not
hold in our preferred specification.10 The results we have found are somewhat different
to those found by Falk and Koebel [2000] and by Fitzenberger [1999] in the case where
capital is quasi-fixed.

7.3 Output and time elasticities

Tables D3 and D4 (see Appendix D) present the output and time elasticities obtained
from the pooled and split samples. These elasticities are, in most cases, significant at the
five percent level. The results do not vary much across the specifications considered, and
remain almost unaffected by the imposition of concavity. The main regularities are that:
(i) there are increasing returns to scale (²cy ≤ 1); (ii) costs are reduced as time goes by
(²ct ≤ 0); (iii) no input is regressive (or inferior), the elasticity of capital with respect
to y is the lowest and the material-output elasticity is approximately equal to one; (iv)
time is high-skill labor using, less-skilled labor saving (²ht ≥ 0 ≥ ²st ≥ ²ut), energy saving
and material using. However, the interpretation of the time elasticities is delicate: they
may pick up the influence of technical progress, but also the impact of any other omitted
relevant variable which is correlated with time.
There are however some differences across the estimates. With the NQ, one would

typically conclude that the output elasticity for different types of labor is increasingly
positive with rising skill levels (²hy ≥ ²sy ≥ ²uy). This result does not hold with the BC

10 As in our model capital is assumed to be flexible, we adapt the definition given by Bergström and
Panas [1992] and speak of capital-skill complementary when ²hpk ≤ ²spk ≤ ²upk . When ²upk ≤ 0, these
inequalities mean that the degree of complementarity between labor and capital increases with skills.
When 0 ≤ ²hpk it means that the degree of substitutability between labor and capital decreases with
skills.
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and the TL on the pooled sample. On sample split (a) , there is some weak evidence
for this hypothesis: for all functional forms retained ²hy ≥ ²sy and ²hy ≥ ²uy. For all
models considered, no contradiction can be found between the unrestricted and concavity
restricted estimates.

7.4 Decomposition of factor demand growth

In order to better assess the performance of the different models, we now consider how
well they can explain the observed shift away from unskilled labor and towards skilled
labor that occurred over the period. For this purpose, one possibility would be to compare
observed and predicted values of input demands for each specification. It is clear, from
the statistical tests above, that the Box-Cox model on sample split (a) is the specifica-
tion providing the best overall fit. As we are rather interested in the plausibility of the
elasticities presented in Tables 4, 5 and D4 to D7, we follow an alternative approach in
this sub-section, and study how well the evolution of input demands can be predicted
using the alternative elasticities. For this purpose we decompose the predicted change in
labor demand into three components reflecting the impact of factor substitution, growth
and time respectively. These effects can be identified from the total differentiation of the
labor demand equations:

∆g∗it '
X

j=k,h,s,u,e,m

∂g∗

∂pjit
∆pjit +

∂g∗

∂yit
∆yit +

∂g∗

∂t
(21)

⇔ ∆g∗it
g∗it

'
X

j=k,h,s,u,e,m

εgpj
∆pjit
pjit

+ εgy
∆yit
yit

+ εgt,

where ∆g∗it/g
∗
it denotes the predicted percentage change for the three types of labor (g

∗
it =

h∗it, s
∗
it, u

∗
it). The observed values of the growth rates ∆git/git, ∆pjit/pjit and ∆yit/yit can

be calculated easily for each branch and time period. The different elasticities involved in
(21) are computed for each branch and time period from the estimates. Then we compare
the predicted and observed values (∆g∗it/g

∗
it and ∆git/git) for each branch and time period.

The first term on the right side of (21) measures the effect of own-price variation and
input substitution, the second term reflects the impact of changes in the level of output and
the last term denotes the impact of time. Note that the above decomposition is based on
a first order approximation, and is only precise for small changes ∆pjit and∆yit. Whereas
a second order approximation would be more precise, the separate identification of the
impact of price, output and time would then no longer be possible, as the second order
terms involve interacting variables.
Columns three and five of Table 6 give the observed and predicted change for the three

types of labor. In general, the predicted changes are relatively close to the observed ones.
For instance, the (median) increase in the level of high-skilled labor is 3.2 percent which
is close to the prediction of 2.9 percent with the BC. From the comparisons of predicted
and observed values across functional forms, we can conclude that the Box-Cox seems to
be the most reliable model: in 8 out of 12 cases, the evolution of h, s and u as explained
by the BC is nearer to the observations than for the TL and NQ. The NQ appears to be
the worst functional form, as it is never more precise than the BC or the TL.
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Comparisons between concavity restricted and unrestricted specifications and between
pooled and disaggregate models using the above criteria are inconclusive. In several cases
the concavity restricted model does better than the unrestricted one, but as the differences
are very small this does not warrant a firm conclusion. Concerning the estimates on sample
split (a) , they provide a better prediction for labor demands h and u, but lead to a worse
prediction for skilled workers, independently of the functional form retained.
The last three columns of Table 6 show the decomposition (21). In general the impact

of output and time is more important than price effects in explaining the shift towards
skilled and away from unskilled labor. The impact of the evolution of prices is (almost)
always negative, but also very small in absolute value (especially for the NQ). High-
skilled labor is the labor input which is the most affected by the evolution of prices,
due to the relatively high own-price elasticities. This suggests that wage pressure is an
almost negligible factor for explaining the shift away from unskilled labor. For instance,
only between 0 and 10 percent of the shift against unskilled labor can be explained by
price effects. For h, the negative price effect is netted out by a positive impact of output
growth, so that in the last instance the impact of time determines the overall evolution of
high-skilled demand over the period. For skilled labor, output has the largest impact, and
this widely offsets the negative effect of time. For unskilled labor, output is important
too (at least for the BC and the TL), but it is largely outweighed by the impact of time.
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Table 6: Determinants of labor demand by skill classes(1)

Functional input actual modelling predicted % change attributable to:
form demand change assumptions(2) change Price Output Time

Box-Cox h 3.19

(a) / unr.
(a) / res.
(p) / unr.
(p) / res.

2.94
3.10
2.19
2.32

−0.76
−0.57
−0.69
−0.66

0.93
0.93
0.80
0.72

2.76
2.73
2.09
2.26

s 0.30

(a) / unr.
(a) / res.
(p) / unr.
(p) / res.

0.61
0.59
0.27
0.43

−0.15
−0.09
−0.19
−0.08

1.15
1.09
1.09
1.06

−0.39
−0.41
−0.63
−0.55

u −3.19
(a) / unr.
(a) / res.
(p) / unr.
(p) / res.

−3.25
−3.26
−3.43
−3.39

−0.20
−0.20
0.03
0.08

1.32
1.27
1.24
1.11

−4.37
−4.33
−4.70
−4.58

Normalized
quadratic h 3.19

(a) / unr.
(a) / res.
(p) / unr.
(p) / res.

2.46
2.46
1.57
1.80

−0.31
−0.31
−0.15
−0.15

1.14
1.14
0.89
0.96

1.63
1.63
0.83
1.00

s 0.30

(a) / unr.
(a) / res.
(p) / unr.
(p) / res.

0.97
0.98
0.59
0.65

−0.03
−0.03
−0.01
−0.01

1.12
1.12
0.92
0.93

−0.12
−0.12
−0.32
−0.27

u −3.19
(a) / unr.
(a) / res.
(p) / unr.
(p) / res.

−2.94
−2.94
−2.49
−2.44

0.03
0.02
−0.02
−0.02

0.05
0.05
0.05
0.05

−3.02
−3.00
−2.51
−2.47

Translog h 3.19

(a) / unr.
(a) / res.
(p) / unr.
(p) / res.

2.79
2.90
2.48
2.44

−1.15
−1.06
−1.38
−1.62

1.05
1.05
1.27
1.06

2.90
2.92
2.59
3.00

s 0.30

(a) / unr.
(a) / res.
(p) / unr.
(p) / res.

0.73
0.93
0.32
0.57

−0.37
−0.17
−0.31
−0.21

1.39
1.37
1.23
1.23

−0.29
−0.27
−0.60
−0.45

u −3.19
(a) / unr.
(a) / res.
(p) / unr.
(p) / res.

−2.97
−3.05
−3.40
−3.42

−0.27
−0.27
−0.05
−0.05

1.64
1.62
1.73
1.73

−4.34
−4.40
−5.08
−5.09

(1) Column 3 shows the median growth rate over all industries and years. Columns 6 to 8 show the median value of the
estimated impacts of price, output and time over all industries and years. The entries of column 5 are the sum of the
corresponding entries of column 6 to 8.

(2) The letter (a) denotes sample split (a), (p) denotes the pooled sample, unr. stands for the concavity unrestricted

specification and res. for the concavity restricted specification.
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8. Conclusion

The purpose of this paper is to propose a method for imposing curvature conditions
on a wide class of functional forms and for testing these restrictions. In the empirical
application we estimate the parameters of a concavity constrained Box-Cox cost function.
For our dataset, a parametric test for the null of concavity leads to a weak rejection of
this assumption.
As concavity rejection may be related to a bad specification of functional form and

to the heterogeneity of the observations, we also compare the performance of alternative
model specifications and find that indeed the choice of functional form and sample split
are important issues for obtaining plausible results. In particular the NQ functional
form seems to underestimate the scope of substitution and complementary patterns. No
relation could be found between the specification of the model and the frequency of
concavity rejection. This may be related to the fact that the true aggregate relationships
do not necessarily inherit all microeconomic properties (Koebel [2002]).
Concerning the determinants of labor demand, in general the impact of output and

time is more important than price and substitution effects. We find that substitutability
dominates between high skilled and skilled labor and between skilled and unskilled labor.
Some complementarity is found between high-skilled and unskilled labor. The impact of
prices and wages can, however, not explain much of the observed changes in the different
types of labor inputs: while the evolution of skilled labor demand is mainly explained
by output growth, the dominant factor ‘explaining’ the shift against unskilled labor and
towards high-skilled labor is the residual time trend. This emphasizes the necessity to
extend the usual theoretical framework in production analysis, in order to provide a better
understanding of technological change and its determinants.
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Appendix A: Proofs of the propositions

Proof of Proposition 1: For the sake of completeness, we adapt the results of Gouriéroux,
Holly and Monfort [1982], Gouriéroux and Monfort [1989] and Wolak [1989] to prove the
assertions of Proposition 1. For this aim, we also adopt their assumptions, which are not
stated here for brevity.
Points (i) and (ii). It is clear that bα and eα0 converges to the true parameter α0 under
H0. It remains to show that bα0 also converge to α0. For this purpose, we characterize (in
stages 1 to 3) the necessary conditions for an optimum in (8), (9) and (11), and show in
stage 4, that the conditions corresponding to (8) are equivalent to those corresponding to
(9) and (11).
Stage 1. Problem (8) can be reparameterized using the Cholesky decomposition in or-
der to transform the inequality constraints v0Hv ≤ 0, ∀v, into the equality constraints
g (α) = η0H (u) . The corresponding Lagrangean is

L = (bα− α)0 bΩ−1α (bα− α) + µ0 ¡η0H (u)− g (α)¢ ,
where µ

¡
SηH × 1

¢
denotes the vector of Lagrange multipliers. The solution

¡eα0, eµ0, eu0¢
satisfies the first order conditions:

∂L
∂α

= 0⇔ −2bΩ−1α ¡bα− eα0¢− ∂g0
∂α

¡eα0¢ eµ0 = 0 (A-1)

∂L
∂u

= 0⇔ ∂η00H
∂u

¡eu0¢ eµ0 = 0 (A-2)

∂L
∂µ

= 0⇔ η0H
¡eu0¢ = g ¡eα0¢ . (A-3)

From ∂L/∂α = 0 we obtain:

eµ0 = −2µ ∂g
∂α0

¡eα0¢ bΩα∂g0
∂α

¡eα0¢¶−1 ∂g
∂α0

¡eα0¢ ¡bα− eα0¢ (A-4)

and ¡bα− eα0¢0 bΩ−1α ¡bα− eα0¢ = eµ00
2

∂g

∂α0
¡eα0¢ bΩα∂g0

∂α

¡eα0¢ eµ0
2
. (A-5)

Stage 2. The Lagrangean corresponding to (11) is given by

L = (bα− α)0 bΩ−1α (bα− α) + µ0 ¡bη0H − g (α)¢ ,
and the solution

¡bα0, bµ0¢ satisfies:
∂L
∂α

= 0⇔ −2bΩ−1α ¡bα− bα0¢− ∂g0
∂α

¡bα0¢ bµ0 = 0 (A-6)

∂L
∂µ

= 0⇔ bη0H − g ¡bα0¢ = 0. (A-7)

Similarly to the former problem, we obtain

bµ0 = −2µ ∂g
∂α0

¡bα0¢ bΩα∂g0
∂α

¡bα0¢¶−1 ∂g
∂α0

¡bα0¢ ¡bα− bα0¢ , (A-8)

¡bα− bα0¢0 bΩ−1α ¡bα− bα0¢ = bµ00
2

∂g

∂α0
¡bα0¢ bΩα∂g0

∂α

¡bα0¢ bµ0
2
. (A-9)
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Stage 3. The first order conditions for a solution to (9) lead to:

∂η00H
∂u

¡bu0¢ bΩ−1H ¡bηH − η0H ¡bu0¢¢ = 0, (A-10)

Inserting (A-7) into (A-10) and after first order Taylor development around bα, this last
condition becomes

∂η00H
∂u

¡bu0¢ bΩ−1H ∂g

∂α0
(bα) ¡bα− bα0¢ a

= 0,

which is asymptotically equivalent to (using (A-8) and (10))

∂η00H
∂u

¡bu0¢ bµ0 a
= 0. (A-11)

Stage 4. In summary we have shown that the system (A-6)-(A-7), where bη0H ≡ η0H (bu0) is
determined in (A-10), can be asymptotically equivalently written as

−2bΩ−1α ¡bα− bα0¢− ∂g0
∂α

¡bα0¢ bµ0 = 0

η0H (bu0)− g ¡bα0¢ = 0

∂η00H
∂u

(bu0) bµ0 a
= 0.

This system comprises the same equations and unknown as the system (A-1)-(A-3), and
as their solutions are unique they must be asymptotically identical.
Point (iii). As bα, eα0 and bα0 converge to the true parameter α0 under H0 (Point i),
we directly see from (A-4)-(A-5) and (A-8)-(A-9) of Point (i), that the minima of (8)
and (11) are asymptotically equivalent. We now show that

¡bα− bα0¢0 bΩ−1α ¡bα− bα0¢ is
asymptotically equivalent to

¡bηH − bη0H¢0 bΩ−1H ¡bηH − bη0H¢ under H0, with bη0H ≡ η0H (bu0) =
g
¡bα0¢. Using a first order Taylor development of g ¡bα0¢ around bα, we can write under
H0: £

g (bα)− g ¡bα0¢¤0 · ∂g
∂α0

(bα) bΩα∂g0
∂α

(bα)¸−1 £g (bα)− g ¡bα0¢¤
a
=

¡bα− bα0¢0 ∂g0
∂α

¡bα0¢ · ∂g
∂α0

(bα) bΩα∂g0
∂α

(bα)¸−1 ∂g
∂α0

¡bα0¢ ¡bα− bα0¢
=

bµ00
2

∂g

∂α0
¡bα0¢ bΩα∂g0

∂α

¡bα0¢ · ∂g
∂α0

(bα) bΩα∂g0
∂α

(bα)¸−1 ∂g
∂α0

¡bα0¢ bΩα∂g0
∂α

¡bα0¢ bµ0
2

a
=

bµ00
2

∂g

∂α0
¡bα0¢ bΩα∂g0

∂α

¡bα0¢ bµ0
2

=
¡bα− bα0¢0 bΩ−1α ¡bα− bα0¢ ,

where the fourth equality follows from points (i) and (ii) and the last equality follows
from (A-9).
Point (iv). Using a first order Taylor expansion of (A-6) and (A-7) around bα, we can
rewrite these conditions as

bα0 − bα a
= bΩα ∂g

∂α
(bα)0 bµ0

2bη0H − g (bα)− ∂g

∂α0
(bα) ¡bα0 − bα¢ a

= 0.
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Solving this system in
¡bα0, bµ0¢ yields
bµ0 a
= 2

·
∂g

∂α0
(bα) bΩα∂g0

∂α
(bα)¸−1 ¡bη0H − g (bα)¢ ,

and, finally:

bα0 a
= bα+ bΩα∂g0

∂α
(bα) · ∂g

∂α0
(bα) bΩα∂g0

∂α
(bα)¸−1 ¡bη0H − g (bα)¢ .

Q.E.D.

Proof of Proposition 2: In order to ensure that the minimization in (13) occurs on the
domain where λ ≤ 0 we can simply reparameterize λ for imposing the nonpositivity of its
components: for instance, define λ0 as the vector with −ν2i as components. Then we can
write

dKP = min
λ

½³bλ− λ´0 bΣ− ³bλ− λ´ : λ ≤ 0¾ (A-12)

= min
ν

½³bλ− λ0 (ν)´0 bΣ− ³bλ− λ0 (ν)´¾
= min

ν
vec0

³bΛ− Λ0´P 0bΣ−P vec³bΛ− Λ0´ ,
where P is defined as the selection matrix of size Sp × S2p such that P vec (Λ) = λ. Let Q
be the matrix of orthonormal eigenvectors of H; then

Q0HQ = Λ. (A-13)

From this equation it follows that (see e.g. Magnus [1985] and Kodde and Palm [1987]):
∂λ

∂ vec0H
= P (Q0 ⊗Q0) .

Let bΩH be the (singular) variance matrix of vec bH; the variance matrix considered by
Kodde and Palm can then be written as

bΣ− =

"
∂λ

∂ vec0
¡
H
¢ ³ bH´ bΩH ∂λ0

∂ vec
¡
H
¢ ³ bH´#− = ·P ³ bQ0 ⊗ bQ0´ bΩH ³ bQ0 ⊗ bQ0´0 P 0¸−

= P
³ bQ0 ⊗ bQ0´ bΩ−H ³ bQ0 ⊗ bQ0´0 P 0, (A-14)

using the orthogonality of
³ bQ0 ⊗ bQ0´ and ³ bQ0 ⊗ bQ0´0 and the fact that PP 0 is an identity

matrix.11 Note that bΩH , the covariance matrix of bηH ≡ vecli bH, is a submatrix of bΩH .
Let H

0
= bQΛ0 bQ0, using (A-12) and (A-14), we can rewrite
dKP = min

ν
vec0

³ bQ0 bH bQ− Λ0´P 0bΣ−P vec³ bQ0 bH bQ− Λ0´
= min

ν
vec0

³ bQ0 ³bH −H0
´ bQ´P 0bΣ−P vec³ bQ0 ³bH −H0

´ bQ´
= min

ν
vec0

³bH −H0
´³ bQ⊗ bQ´P 0bΣ−P ³ bQ0 ⊗ bQ0´ vec³bH −H0

´
= min

ν
vec0

³bH −H0
´ bΩ−H vec³bH −H0

´
= min

ν
vecli0

³bH −H0
´ bΩ−1H vecli

³bH −H0
´
,

11 It is then easy to check that, denotingA = P
³ bQ0 ⊗ bQ0´ bΩH ³ bQ0 ⊗ bQ0´0 P 0, one has indeedAA−A = A.
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where the second equality follows from the properties of the vec operator and Kronecker
product,12 and the fourth from Dhrymes’ [1994] Lemma A1.13 As the matrixH

0
= bQΛ0 bQ0

is negative semi-definite, it can be written as−U 0U. However, the matrix bQΛ0 bQ0 comprises
only the Sp − 1 free parameters of ν, whereas −U 0U is made of the Sp (Sp − 1) /2 free
parameters u. Hence in small samples

dKP = min
ν
vecli0

³bH −H0
´ bΩ−1H vecli

³bH −H0
´

≥ min
u
vecli0

³bH + U 0U´ bΩ−1H vecli
³bH + U 0U´

= min
u

£bηH − η0H (u)¤0 bΩ−1H £bηH − η0H (u)¤ = d,
with bηH ≡ vecli bH and η0H (u) ≡ vecli (−U 0U) . The reason for the inequality is that in
the minimization over u, which entails more parameters than ν, can only reach a smaller
value than in the case when the minimization is over ν. By minimizing over ν, one does
not change the eigenvectors bQ, whereas the minimization over u affects simultaneously
eigenvalues and eigenvectors. Asymptotically dKP

a
= d, because under H0, a first order

Taylor development of bλ0 around bλ allows to write³bλ− bλ0´0 bΣ− ³bλ− bλ0´
a
= vec0

³bH −H0
´ ∂λ

∂ vec
¡
H
¢ ³ bH´ bΣ− ∂λ

∂ vec0
¡
H
¢ ³ bH´ vec³bH −H0

´
=

¡bηH − bη0H¢0 bΩ−1H ¡bηH − bη0H¢ .
Q.E.D.

Proof of Proposition 3: (i) An eigenvalue λ1 ofH is a solution of f
¡
λ, H

¢ ≡ ¯̄λISp −H ¯̄ =
0.14 This eigenvalue λ1 can be expressed as a function of the parameters of H when the
conditions of the implicit function theorem are fulfilled, that is, when ∂f

¡
λ, H

¢
/∂λ 6= 0

at λ = λ1. Since ¯̄
λISp −H

¯̄
=
¯̄
λISp − Λ

¯̄
=

SpY
i=1

(λ− λi) ,
it follows that

∂f
¡
λ, H

¢
∂λ

=

SpX
j=1

SpY
i6=j
(λ− λi) .

Hence
∂f
¡
λ, H

¢
∂λ

¯̄̄̄
¯
λ=λ1

=

SpY
i6=1
(λ1 − λi) .

Thus, ∂f
¡
λ, H

¢
/∂λ is different from zero if and only if λ1 is simple. A related result is

12 For three matrices of adequate dimensions, vec (ABC) = (C0 ⊗A) vec (B) .
13 Dhrymes’ [1994] Lemma A1: Let x ∼ N (µ,Σ) be a m -element (column) vector of random variables
and suppose rank(Σ) = r ≤ m. Let x(1) be an arbitrary subset of r elements of x, such that its covariance
Σ(11) is nonsingular. Then, in the obvious notation, where Σg is the (unique) generalized inverse,

(x− µ)0Σg (x− µ) =
³
x(1) − µ(1)

´0
Σ−1(11)

³
x(1) − µ(1)

´
Remark that the result is valid for any vector x (the normality assumption is not necessary).
14 Notation λ is used here for a scalar, and no longer for the vector used in the proof of Proposition 2.
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obtained by Magnus [1985, Theorem 1].
(ii) We adapt a proof given by Lau [1978, Lemmata 3.6 and 3.7] to our slightly different
problem. Let HSp−1 be the set of all real symmetric matrices with rank Sp − 1 and
let H0

Sp−1 be the subset of HSp−1 of all matrices with multiple eigenvalues. For given

eigenvalues λ2, . . . ,λSp , the set of λ1 such that
QSp
i6=1 (λ1 − λi) = 0 is a set of measure zero.

As the union (over j = 1, . . . , Sp) of a countable number of null sets is again a null set,
the subset H0

Sp−1 of matrices satisfying
QSp
i6=j (λj − λi) = 0, j = 1, . . . , Sp, is of measure

zero. Q.E.D.

Appendix B: Some functional forms nested within

the BC

In this appendix we show how the normalized quadratic, a version of the generalized
Leontief, and the translog, are obtained as special cases of the generalized Box-Cox speci-
fication. The derivation of further interesting functional forms can also be obtained along
these lines.
• For γ1 = γ2 = 1, the normalized quadratic cost function is obtained as a special case
of the Box-Cox specification. Indeed, we then have

Zit = zit − ιSz ,
Pit =

pit
θ0ipit

− ιSp,
where ιSp is a Sp-vector of ones. The cost function (14) then becomes

c∗ = θ0ipitC
∗
NQ (pit, zit,α) + (θ

0
ipit)

= θ0ipit
¡
1 + β0i + P

0
itBpi + Z

0
itBz +

1
2
P 0itBppPit + P

0
itBpzZit +

1
2
Z 0itBzzZit

¢
= p0itBpi + (θ

0
ipit) z

0
itBz +

1
2

p0itBpppit
θ0ipit

+ p0itBpzzit + (θ
0
ipit)

1
2
z0itBzzzit

+θ0ipit
³
1 + β0i − ι0SpBpi − ι0SzBz + 1

2
ι0SpBppιSp + ι

0
SpBpzιSz +

1
2
ι0SzBzzιSz

´
+θ0ipit

µ
−ι0SpBpp

pit
θ0ipit

− ι0SpBpzzit −
p0it
θ0ipit

BpzιSz − ι0SzBzzzit
¶

Considering the restrictions (16), we obtain

c∗ = p0itBpi + θ
0
ipitz

0
itBzi +

1
2

p0itBpppit
θ0ipit

+ p0itBpzzit +
1
2
θ0ipitz

0
itBzzzit

+θ0ipit
¡
β0i − ι0SzBz + 1

2
ι0SzBzzιSz

¢
+ θ0ipit

µ
− p0it
θ0ipit

BpzιSz − ι0SzBzzzit
¶

= p0itBpi + θ
0
ipitz

0
itBz +

1
2

p0itBpppit
θ0ipit

+ p0itBpzzit +
1
2
z0itBzzzit,

which is the expression of the normalized quadratic cost function, with

Bpi = Bpi −BpzιSz + θi
¡
β0i − ι0SzBz + 1

2
ι0SzBzzιSz

¢
Bz = Bz −BzzιSz .
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• In the case where γ1 = 1/2 and γ2 = 1, we have
Zit = 2

³
z
1/2
it − ιSz

´
,

Pit = 2

"µ
pit
θ0ipit

¶1/2
− ιSp

#
,

where by convention z1/2it =
³
z
1/2
1 , . . . , z

1/2
Sz

´0
it
and p1/2it =

³
p
1/2
1 , . . . , p

1/2
Sp

´0
it
. The cost

function (14) then becomes

c∗ = θ0ipitC
∗
GL (pit, zit,α) + θ

0
ipit

= θ0ipit
¡
1 + β0i + P

0
itBpi + Z

0
itBz +

1
2
P 0itBppPit + P

0
itBpzZit +

1
2
Z 0itBzzZit

¢
= 2 (θ0ipit)

1/2
p
1/20
it Bpi + 2θ

0
ipitz

1/20
it Bzi + 2p

1/20
it Bppp

1/2
it

+4 (θ0ipit)
1/2
p
1/20
it Bpzz

1/2
it + 2θ0ipitz

1/20
it Bzzz

1/2
it

+2θ0ipit
³
1 + β0i − ι0SpBpi − ι0SzBz + ι0SpBppιSp + 2ι0SpBpzιSz + ι0SzBzzιSz

´
+4θ0ipit

"
−ι0SpBpp

µ
pit
θ0ipit

¶1/2
− ι0SpBpzz1/2it −

µ
p0it
θ0ipit

¶1/2
BpzιSz − ι0SzBzzz1/2it

#
= 2 (θ0ipit)

1/2
p
1/20
it Bpi + 2θ

0
ipitz

1/20
it Bz + 2p

1/20
it Bppp

1/2
it

+4 (θ0ipit)
1/2
p
1/20
it Bpzz

1/2
it + 2θ0ipitz

1/20
it Bzzz

1/2
it

+2θ0ipit
¡
β0i − ι0SzBz + ι0SzBzzιSz

¢
+ 4θ0ipit

"
−
µ
p0it
θ0ipit

¶1/2
BpzιSz − ι0SzBzzz1/2it

#
.

After reparameterization, we obtain

c∗ = (θ0ipit)
1/2
p
1/20
it Bpi + θ

0
ipitz

1/20
it Bz + p

1/20
it Bppip

1/2
it

+(θ0ipit)
1/2
p
1/20
it Bpzz

1/2
it + θ0ipitz

1/20
it Bzzz

1/2
it ,

which is a version of the generalized Leontief cost function, with
Bpi = 2Bpi − 4BpzιSz ,
Bz = 2Bz − 4BzzιSz ,
Bppi = 2Bpp + diag

£
2θi
¡
β0i − ι0SzBz + ι0SzBzzιSz

¢¤
,

Bpz = 4Bpz,

Bzz = 2Bzz,

where diag (v) is a diagonal matrix with the vector v on the main diagonal.

• When γ1 → 0 and γ2 → 0, the translog is obtained as a limiting case. Indeed,

Zit = limγ1→0
z
γ1
it − 1
γ1

= ln zit,

C∗TL = limγ2→0
(c∗/θ0ipit)

γ2 − 1
γ2

= ln c∗ − ln (θ0ipit) ,

Pit = limγ1→0
(pit/θ

0
ipit)

γ1 − ιSp
γ1

= ln pit − ιSp ln (θ0ipit) ,

where by convention ln zit = (ln z1, . . . , ln zSz)
0
it and ln pit =

¡
ln p1, . . . , ln pSp

¢0
it
. The

cost function then becomes
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ln c∗ = C∗TL (pit, zit,αi) + ln (θ
0
ipit)

=
¡
β0i + P

0
itBpi + Z

0
itBzi +

1
2
P 0itBppPit + P

0
itBpzZit +

1
2
Z 0itBzzZit

¢
+ ln (θ0ipit)

= β0i + (ln pit)
0Bpi + (ln zit)

0Bzi + 1
2
(ln pit)

0Bpp (ln pit)

+ (ln pit)
0Bpz ln zit + 1

2
(ln zit)

0Bzz ln zit

+ ln (θ0ipit)
³
1− ι0SpBpi + 1

2
ln (θ0ipit) ι

0
Sp
BppιSp − ι0SpBpp (ln pit)− ι0SpBpz ln zit

´
(B-1)

After restrictions (16) have been imposed, the last line of (B-1) vanishes and the usual
translog specification is obtained.
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Appendix C: Description of the branches

Denomination of the branches

No. Branch No. Branch

14 Chemical products 30 Electrical machinery, equipment and appliances

15 Refined petroleum products 31 Precision instruments and optical equipment

16 Plastic products 32 Tools and finished metal products

17 Rubber products 33 Musical instruments, games and toys, jewelry, etc.

18 Quarrying, building materials, etc. 34 Wood working

19 Ceramic products 35 Wood products

20 Glass products 36 Pulp, paper and paperboard

21 Iron and steel 37 Paper and paperboard products

22 Non-ferrous metals, etc. 38 Paper processing

23 Foundry products 39 Printing and reproduction

24 Drawing plants products, cold rolling mills, etc. 40 Leather and leather products, footwear

25 Structural metal products, rolling stock 41 Textiles

26 Machinery and equipment 42 Wearing apparel

27 Office machinery and computers 43 Food products (excl. beverages)

28 Road vehicles 44 Beverages

29 Ships and boats 45 Tobacco products

30 Aircraft and spacecraft

Description of the different sample splits considered

Split (a) consumer goods investment goods intermediate goods
Industry No. 16, 19, 20, 34, 36, 38, 39, 25, 26, 27, 28, 29, 14, 17, 18, 21, 22,

40, 41, 42, 43, 44, 45. 30, 31, 32, 33. 23, 24, 35, 37.
Split (b) small branches medium branches large branches
Industry No. 17, 19, 20, 23, 29, 30, 18, 22, 25, 27, 32, 14, 16, 21, 24, 26,

34, 35, 37, 38, 40. 36, 39, 42, 44, 45. 28, 31, 33, 41, 43.
Split (c) low skill intensive skill intensive high skill intensive
Industry No. 24, 34, 35, 36, 38, 39, 16, 18, 20, 21, 22, 14, 17, 19, 25, 26,

40, 41, 42, 43, 44. 23, 28, 33, 37, 45. 27, 29, 30, 31, 32.
Split (d) not labor intensive labor intensive highly labor intensive
Industry No. 14, 21, 22, 27, 35, 37, 16, 17, 18, 20, 24, 19, 23, 25, 26, 30,

38, 40, 43, 44, 45. 28, 29, 34, 41, 42. 31, 32, 33, 36, 39.
Split (e) not capital intensive capital intensive highly capital intensive
Industry No. 16, 22, 25, 26, 31, 32, 14, 17, 23, 24, 28, 18, 19, 20, 21, 27,

33, 36, 40, 42, 43. 30, 34, 38, 41, 45. 29, 35, 37, 39, 44.
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Appendix D: Further estimation results

Table D1: Cross price elasticities, pooled sample

Box-Cox Normalized quadratic Translog
unrestricted restricted unrestricted restricted unrestricted restricted
median s.e. median median s.e. median median s.e. median

²kph −0.116 0.023 −0.094 −0.070 0.014 −0.058 −0.132 0.028 −0.120
²kps −0.091 0.039 −0.022 −0.005 0.009 0.016 −0.151 0.050 0.104
²kpu 0.073 0.038 0.089 0.058 0.038 0.053 0.104 0.031 0.119
²kpe 0.068 0.025 0.026 0.040 0.012 0.034 0.053 0.030 0.009
²kpm 0.154 0.036 0.200 0.038 0.058 0.014 0.107 0.067 0.243
²hpk −0.770 0.157 −0.608 −0.399 0.087 −0.334 −0.914 0.179 −0.841
²hps 2.439 0.492 2.095 1.191 0.219 1.134 3.419 0.544 3.457
²hpu −0.264 0.372 0.296 −0.233 0.273 −0.013 −0.892 0.539 1.069
²hpe −0.054 0.112 −0.048 0.014 0.066 0.007 −0.037 0.116 −0.037
²hpm −0.143 0.287 −0.115 −0.130 0.117 −0.129 −0.138 0.309 −0.255
²spk −0.045 0.020 −0.010 −0.002 0.008 0.010 −0.057 0.021 0.046
²sph 0.166 0.027 0.156 0.066 0.012 0.062 0.250 0.035 0.247
²spu 0.262 0.056 0.263 0.144 0.034 0.144 0.054 0.032 0.065
²spe 0.000 0.015 0.028 0.000 0.013 0.005 −0.006 0.035 0.017
²spm 0.099 0.052 0.091 0.031 0.016 0.043 0.152 0.038 0.127
²upk 0.066 0.036 0.079 0.046 0.029 0.045 0.098 0.022 0.117
²uph −0.038 0.054 0.038 −0.029 0.027 −0.003 −0.118 0.071 0.146
²ups 0.486 0.109 0.454 0.241 0.062 0.242 0.102 0.084 0.123
²upe 0.023 0.019 0.024 −0.027 0.020 −0.017 0.020 0.021 0.008
²upm −0.081 0.040 −0.065 −0.007 0.026 −0.001 −0.040 0.088 −0.008
²epk 0.150 0.058 0.056 0.081 0.026 0.066 0.125 0.076 0.029
²eph −0.033 0.035 −0.030 0.003 0.134 0.001 −0.023 0.036 −0.024
²eps −0.002 0.076 0.120 0.000 0.047 0.028 −0.052 0.069 0.119
²epu 0.065 0.047 0.066 −0.059 0.046 −0.043 0.059 0.127 0.036
²epm −0.541 0.134 −0.161 0.055 0.046 0.036 −0.992 0.182 −0.085
²mpk 0.022 0.012 0.029 0.004 0.003 0.002 0.011 0.008 0.029
²mph −0.002 0.004 −0.002 −0.003 0.004 −0.003 −0.003 0.006 −0.005
²mps 0.024 0.012 0.022 0.012 0.007 0.016 0.045 0.013 0.036
²mpu −0.011 0.010 −0.010 −0.001 0.014 0.000 −0.004 0.010 −0.001
²mpe −0.024 0.007 −0.006 0.004 0.003 0.002 −0.042 0.008 −0.004

(1) Median value of the elasticities evaluated at the 1985 data and estimated standard error (s.e.).
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Table D2: Cross price elasticities, sample split (a)

Box-Cox Normalized quadratic Translog
unrestricted restricted unrestricted restricted unrestricted restricted
median s.e. median median s.e. median median s.e. median

²kph −0.001 0.008 0.007 −0.011 0.007 −0.011 −0.015 0.008 −0.008
²kps −0.108 0.038 −0.052 −0.074 0.052 −0.074 −0.147 0.170 −0.078
²kpu 0.004 0.046 0.032 0.037 0.015 0.044 −0.001 0.063 0.001
²kpe 0.111 0.018 0.025 0.041 0.007 0.038 0.097 0.013 0.057
²kpm 0.005 0.053 −0.021 0.034 0.013 0.034 0.001 0.218 0.068
²hpk −0.006 0.098 0.024 −0.020 0.006 −0.020 −0.099 0.162 −0.042
²hps 1.209 0.214 1.209 0.128 0.039 0.128 1.258 0.216 1.258
²hpu −0.484 0.339 −0.484 −0.009 0.076 0.027 −0.713 0.926 −0.471
²hpe −0.097 0.103 −0.097 0.017 0.073 0.015 −0.173 0.077 −0.031
²hpm 0.112 0.232 0.112 0.280 0.138 0.280 0.130 0.127 0.130
²spk −0.055 0.045 −0.027 −0.043 0.031 −0.043 −0.055 0.068 −0.035
²sph 0.124 0.027 0.124 0.021 0.005 0.021 0.152 0.035 0.152
²spu 0.159 0.065 0.153 −0.007 0.028 0.003 0.128 0.071 0.131
²spe 0.070 0.020 0.070 0.043 0.012 0.042 0.041 0.016 0.053
²spm −0.003 0.041 −0.003 −0.012 0.008 −0.012 0.115 0.048 0.115
²upk 0.003 0.045 0.024 0.034 0.014 0.034 −0.001 0.040 0.001
²uph −0.070 0.045 −0.070 −0.001 0.005 0.002 −0.077 0.122 −0.057
²ups 0.269 0.106 0.251 −0.008 0.028 0.005 0.184 0.131 0.184
²upe −0.011 0.023 −0.008 0.002 0.008 0.002 0.028 0.016 0.028
²upm 0.162 0.143 0.150 −0.082 0.027 −0.082 0.166 0.044 0.166
²epk 0.167 0.060 0.058 0.067 0.012 0.063 0.118 0.046 0.118
²eph −0.033 0.016 −0.038 0.002 0.005 0.002 −0.063 0.018 −0.032
²eps 0.208 0.067 0.131 0.219 0.063 0.219 0.100 0.135 0.224
²epu −0.041 0.074 −0.029 0.004 0.066 0.004 0.029 0.021 0.029
²epm −0.201 0.066 0.046 −0.183 0.110 −0.183 −0.253 0.060 −0.072
²mpk 0.001 0.012 −0.002 0.005 0.002 0.004 0.000 0.027 0.012
²mph 0.003 0.004 0.003 0.005 0.003 0.005 0.006 0.025 0.006
²mps −0.001 0.010 −0.001 −0.004 0.003 −0.004 0.032 0.014 0.032
²mpu 0.022 0.007 0.019 −0.012 0.004 −0.012 0.040 0.020 0.039
²mpe −0.023 0.008 0.002 −0.007 0.004 −0.008 −0.037 0.011 −0.002

(1) Median value of the elasticities over the three subsamples, evaluated at the 1985 data and estimated standard error

(s.e.).
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Table D3: Output and time elasticities, pooled data

Box-Cox Normalized quadratic Translog
unrestricted restricted unrestricted restricted unrestricted restricted
median s.e. median median s.e. median median s.e. median

Output elasticities
²cy 0.873 0.014 0.847 0.798 0.014 0.798 0.890 0.012 0.883
²ky 0.426 0.039 0.400 0.203 0.033 0.199 0.468 0.047 0.459
²hy 0.503 0.151 0.470 0.518 0.133 0.530 0.673 0.141 0.611
²sy 0.631 0.027 0.613 0.517 0.025 0.517 0.650 0.030 0.652
²uy 0.748 0.045 0.713 0.366 0.049 0.368 0.893 0.065 0.889
²ey 0.694 0.100 0.693 0.669 0.146 0.662 0.634 0.114 0.553
²my 1.031 0.034 1.011 1.045 0.018 1.045 1.020 0.015 1.018
Impact of time
²ct −0.004 0.000 −0.004 −0.003 0.000 −0.003 −0.005 0.000 −0.005
²kt −0.005 0.001 −0.006 −0.003 0.001 −0.003 −0.006 0.002 −0.009
²ht 0.024 0.006 0.025 0.009 0.003 0.011 0.027 0.007 0.033
²st −0.006 0.001 −0.006 −0.003 0.000 −0.003 −0.006 0.001 −0.005
²ut −0.047 0.002 −0.046 −0.024 0.002 −0.024 −0.051 0.002 −0.051
²et −0.025 0.004 −0.025 −0.012 0.002 −0.013 −0.032 0.005 −0.031
²mt 0.004 0.001 0.004 0.000 0.000 0.000 0.004 0.001 0.004

(1) Median value of the elasticities evaluated at the 1985 data and estimated standard error (s.e.).

Table D4: Output and time elasticities, sample split (a)

Box-Cox Normalized quadratic Translog
unrestricted restricted unrestricted restricted unrestricted restricted
median s.e. median median s.e. median median s.e. median

Output elasticities
²cy 0.854 0.021 0.844 0.803 0.021 0.803 0.889 0.022 0.883
²ky 0.547 0.046 0.480 0.399 0.099 0.399 0.639 0.051 0.667
²hy 0.942 0.110 0.905 1.013 0.111 1.013 0.902 0.180 0.902
²sy 0.662 0.056 0.647 0.579 0.037 0.580 0.746 0.061 0.729
²uy 0.715 0.040 0.715 0.331 0.100 0.332 0.759 0.048 0.759
²ey 0.660 0.044 0.674 0.502 0.080 0.502 0.649 0.084 0.579
²my 0.985 0.022 0.990 1.035 0.024 1.035 0.963 0.022 0.963
Impact of time
²ct −0.002 0.001 −0.002 −0.002 0.001 −0.002 −0.003 0.001 −0.003
²kt −0.002 0.001 −0.006 0.000 0.001 −0.001 −0.006 0.002 −0.007
²ht 0.029 0.002 0.028 0.019 0.001 0.018 0.030 0.007 0.030
²st −0.004 0.002 −0.004 −0.001 0.001 −0.001 −0.003 0.001 −0.002
²ut −0.043 0.002 −0.043 −0.024 0.003 −0.024 −0.044 0.002 −0.044
²et −0.023 0.002 −0.023 −0.017 0.004 −0.017 −0.027 0.004 −0.027
²mt 0.005 0.001 0.005 0.002 0.001 0.002 0.004 0.001 0.004

(1) Median value of the elasticities over the three subsamples, evaluated at the 1985 data and estimated standard error

(s.e.).
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