Designing Efficient Network Interfaces For
System Area Networks

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universitat Mannheim

vorgelegt von
Dipl.-Inf. Lars Rzymianowicz

aus Rendsburg

Mannheim, 2002

Dekan: Professor Dr. Herbert Popp, Universitét Mannheim
Referent. Professor Dr. Ulrich Bruning, Universitdt Mannheim
Korreferent: Professor Dr. Volker Lindenstruth, Universitéat Heidelberg

Tag der mindlichen Prifung: 28. August 2002

Designing Efficient Network Interfaces For
System Area Networks

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universitat Mannheim

vorgelegt von
Dipl.-Inf. Lars Rzymianowicz

aus Rendsburg

Mannheim, 2002

Abstract

Designing Efficient Network Interfaces For
System Area Networks

by
Lars Rzymianowicz
Universitdt Mannheim

The network is the key component of a Cluster of Workstations/PCs. Its performance,
measured in terms of bandwidth and latency, has a great impact on the overall system
performance. It quickly became clear that traditional WAN/LAN technology is not too
well suited for interconnecting powerful nodes into a cluster. Their poor performance too
often slows down communication-intensive applications. This observation led to the
birth of a new class of networks called System Area Networks (SAN).

But still SANSs like Myrinet, SCI or ServerNet do not deliver an appropriate level of per-
formance. Some are hampered by the fact, that they were originally targeted at another
field of application. E.g. SCI was intended to serve as a cache-coherent interconnect for
fine-grain communication between tightly coupled nodes. Its architecture is optimized
for this area and behaves less optimal for bandwidth-hungry applications. Earlier ver-
sions of Myrinet suffered from slow versions of their proprietary LANai network proces-
sor and slow on-board SRAM. And even though a standard I/O bus with a physical
bandwidth of more then 500 Mbyte/s (PCI 64 bit/66 MHz) has been available for years,
typical SANs only offer between 100-200 Mbyte/s.

All the disadvantages of current implementations lead to the idea to develop a new SAN
capable of delivering the performance needed by todays clusters and to keep up with the
fast progress in CPU and memory performance. It should completely remove the net-
work as communication bottleneck and support efficient methods for host-network inter-
action. Furthermore, it should be ideally suited for use in small-scale (2-8 CPUs) SMP
nodes, which are used more and more as cluster nodes. And last but not least, it should
be a cost-efficient implementation.

All these requirements guided the specification of the ATOLL network. On a single chip,
not one but four network interfaces (NI) have been implemented, together with an on-
chip 4x4 full-duplex switch and four link interfaces. This unique “Network on a Chip”

architecture is best suited for interconnecting SMP nodes, where multiple CPUs are
given an exclusive NI and do not have to share a single interface. It also removes the
need for any additional switching hardware, since the four byte-wide full-duplex links
can be connected by cables with neighbor nodes in an arbitrary network topology.

Despite its complexity and size, the whole network interface card (NIC) only consists of
a single chip and 4 cable connectors, a very cost-efficient architecture. Each link pro-
vides 250 Mbyte/s in one direction, offering a total bisection bandwidth of 2 Gbyte/s at
the network side. The next generation of 1/0 bus technology, a 64 bit/133 MHz PCI-X
bus interface, has been integrated to make use of this high bandwidth. A novel combina-
tion of different data transfer methods has been implemented. Each of the four NIs offers
transfer via Direct Memory Access (DMA) or Programmed I/O (P10). The PIO mode
eliminates any need for an intermediate copy of message data and is ideally suited for
fine-grain communication, whereas the DMA mode is best suited for larger message
sizes. In addition, new techniques for event notification and error correction have been
included in the ATOLL NI. Intensive simulations show that the ATOLL architecture can
deliver the performance expected. For the first time in Cluster Computing, the network is
no more the communication bottleneck.

Specifying such a complex design is one task, implementing it in an Application Specific
Integrated Circuit (ASIC) is an even greater challenge. From implementing the specifica-
tion in a Register/Transfer-Level (RTL) module to the final VLSI layout generation it
took almost three years. Implemented in a state-of-the-art IC technology with the
CMOS-Digital 0.18 um process of UMC, Taiwan, the ATOLL chip is one of the fastest
and most complex ASICs ever designed outside the commercial IC industry. With a die
size of 5.8x5.8 sgmm, 43 on-chip SRAM blocks with 100 kbit total, 6 asynchronous
clock domains (133-250 MHz), one large PCI-X IP cell and full-custom LVDS and PCI-

X 1/O cells, a carefully planned design flow had to be followed. Only the design of the
full-custom 1/Os and the Place & Route of the layout were done by external partners. All
the rest of the design flow, from RTL coding to simulation, from synthesis to design for
test, was done by ourselves. Finally, the completed layout was given to sample produc-
tion in February 2002, first engineering samples are expected to be delivered 10 weeks
later.

The ATOLL ASIC is one of the most complex and fastest chips ever implemented by a
European university. Recently, the design has won the third place in the design contest
organized at the Design, Automation & Test in Europe (DATE) conference, the premier
European event for electronic design.

Vi

Table of Contents

CHAPTER 1 IntroducCtion e e e 1

1.1 Cluster ComPULING . .o e e e e e e e e e . 1
I 0 I = o 2
1.1.2 Managing large installations. 3.
1.1.3 Driving factors and future directions i 3...

1.2 System Area NetwWOrkso e 4
1.2.1 Theneedforanewclassofnetworks............ i iiiiiii.un 4.....
1.2.2 Emerging from existing technology i e 5....

1.3 ASIC DESIGN . . vttt e e ———— 5
1.3.1 Using 10+ million transistors e 6.
1.3.2 TiMING ClOSUIE . . .ttt e e e 6
1.3.3 Power disSipationt e 7
1.3.4 Verification bottleneck 9

1.4 CoNtribULIONS. . . o e 9

1.5 Organizationttt e 10

CHAPTER 2 System Area Networks. e 11

2.1 Wide/Local Area NetwWOrKSot e e e e 11.
2.1.1 User-level message layers. e 11..

2.2 DeSigN goalso e 13
2.2.1 Price Versus performanCeottt e 13..
2.2.2 Scalability 13
223 Reliabilityo e 14

2.3 Generalarchitecture e e 14
2.3.1 Shared memory vs. distributed memory 15
2.3.2 NIIOCAtON. . . . e 16

2.4 Designdetails e e 18
2.4.1 Physical layer 19
242 SWItChING. . o . 20
2.4.3 ROULNG . . oo e e e ———— 21
244 FIOW CONIOl . . oot 23
2.4.5 Error detection and COIreCtion. i e e 23.

2.5 Datatransfer e e 24
2.5.1 Programmed I/O versus Direct MemoOry ACCESSttt e e 24
2.5.2 Controltransfer. e 26
2.5.3 Collective Operations. e e e 26

2.6 Sl i e e ——— 26
2.6.1 Targeting DSM SYStemSttt e 27. .
2.6.2 The Dolphin SCladapter i e e e e 28.
2.6.3 ReMaArKS. . . . e e 29

2.7 SEIVEINEL . . 30
2.7.1 Scalability and reliability e 30
2.7.2 LinKtechnology e 31

2.7.3 Datatransfero e 32

2.7.4 SWItCRES ..o e e 32
2.7.5 SOftWare 33
2.7.6 RemMarKS. . .. 33
2.8 MYIINEL . o e 34
2.8.1 NIC architecture 34
2.8.2 Transportlayerand SWitChes. i e 35..
2.8.3 Software and performance 36. ..
2.8.4 Remarks. e 37
2.9 QSN ... 38
2.9.1 NICarchiteCture e e 38
2.9.2 Switchesand topologyo e 39
2.9.3 Programming interface and performance e
2.9.4 ReMaArKS. . . . e 41
2.10 IBM SP SWItChZ 41
2.10.1 NICarchitecture e e e e e 42
2.10.2 Network switChes e 43
2.10.3 Remarks. e 44
211 Infiniband 45
2.11.1 ArchiteCture.o 45
2.11.2 Protocol stack e 47
2.11.3 RemMarks. . .. 49
CHAPTER 3 The ATOLL System AreaNetwork. 51
3.1 Anew SAN architecture: ATOLL e e e a1 ..
3.1.1 Designdetails of ATOLLttt e e e e e s 52
3.2 Top-level architecture. 54
3.2.1 Address space layout. 56
3.3 PCI-XINterface 58
3.4 Synchronization interface e 60
3.4.1 Completerinterface. e 61
3.4.2 Slave-Writedatapath e e 63
3.4.3 Slave-Read datapath. 63
3.4.4 Master-Writedatapath 64
3.45 Master-Read datapath. i e 65.
3.4.6 Requesterinterface 66
3.4.7 Deviceinitialization e 67
3.5 POrtinterCONNECE.t e e 70
3.5.1 ATOLL control and status registerst 71....
3.6 HOSE POt . . e 81
3.6.1 Address layout. e e 82
3.6.2 PIO-send Unito e e 83
3.6.3 PIO-receive UNito e 85
3.6.4 Data structures for DMA-based communication
3.6.5 Status/control registers e e 89
3.6.6 DMA-send Unit. 91
3.6.7 DMA-reCeIVE UNIt. . . . o e e 93

Vil

3.6.8 RepPICAtOr e 94

3.7 NEtWOIK POt . .« . e 96
3.7.1 Message frames and link protocol. 96. ...
3.7.2 Sendpath. e e 97
3.7.3 Receive path e 98

3.8 CrOSSDar . .o e e 99

3.9 LINK POt . . e e e 101
3.9.1 LiNK Protocol.o e 101
3.9.2 OUIPUL POt . . ot e e 103
3.9.3 INPUL POIt. . oot 105

CHAPTER 4 Implementation 107

4.1 Design FIOW . ..o . 108

4.2 DESION BNETY . oot e e e e . 109
421 RTLCOING . . .ottt e e 110
422 ClockandresetlogiC.o e 110
4.3 Functional Simulation e 112
4.3.1 Simulationtestbed. 112
4.3.2 Verification Strategy oot 113
4.3.3 RUNIME ISSUBS . . .o ittt it et i e 114
4.4 Logic SYNthesSIS 115
4.4.1 Automated synthesisflow. e 115.
4.4.2 TiIMING ClOSUNE e e e e 116
4.4.3 Design for testability. 120
4.5 Layout generationt e 121
451 Post-layout optimization e 123
4.5.2 Post-layout simulation. 127

CHAPTER 5 Performance Evaluation. 129
D LAlENCY . . .ot e ——— 130
5.2 Bandwidth. e 132
5.3 Resource UtIlization 133

CHAPTER 6 CONCIUSIONS. oo e e e 137
6.1 The ATOLL SAN e e e 137
6.2 FULUrE WOIK. . . . e e e 138

ACKNOWIEAgMENTS i

Bibliography

List of Figures

CHAPTER 1 INTrOTUCTIONuiiiiiiiiiiiiiiiiiiiee ettt et e e e e e e e e e e e e e e e s nnnnnnes 1
Figure 1-1. Number of machine types in the Top500 Supercomputer list [6].........ccoocvveeeiiiiieeeennns 2
Figure 1-2. Fields of development for Cluster COMPULINGcoooviiiiieeiiiiieie e 3
Figure 1-3. The productivity gap in IC development............eeevieieioiii e 6
Figure 1-4. Cell vS. WIre delayuuuiiiiiiiiiiiii e eeeeenan 7.

Figure 1-5. Power dissipation of ICs in the next decade [16]cccveeiiiiiiiiiiiiiiiiiieeee e 8

CHAPTER 2 System Area NetWOIKS............uuuuuiiiiiiiiieeeeeeeeeeeeeeeiirsnn e eeeaeeeees 11
Figure 2-1. User-level vs. OS-based TCP/IP COMMUNICALION...........ceieiiiiiiieniiiiieee it riieeee e 12
Figure 2-2. Write operation t0 remote MEMOIYc.uuiiiiiiiiiiee ettt e e e 15
Figure 2-3. P0SSIble NI IOCAtIONSuuuiiiiiiiee e e e e e e e s e 16.....
Figure 2-4. A bidirectional link and the general message format.............ccccccceeeeeeeeniiiicccciineeeeenn. 19
Figure 2-5. Ultra-fast serial, switched connections replace parallel bus architectures 19
Figure 2-6. Packet Switching teChNIQUEScooiiiiiiiiii e 21..........
Figure 2-7. ROULING MECNANISMSeiiiiiiiiiie e 22
Figure 2-8. Messages forming a deadlOCKcooouiiiiiiiiiiiie e 23
Figure 2-9. PIO vs. DMA data transfer.........ccccveeiee i 25.........
Figure 2-10. Architecture of Dolphin’s SCI card [40]coooiiiiiiiiiieiee e 28
Figure 2-11. A sample ServerNet NEtWOIK [46]uueui it 31
Figure 2-12. ServerNet addreSs SPACE [45]uuiiiiiiiiiiee et 32
Figure 2-13. Architecture of the latest Myrinet-2000 fiber NIC [49]occoiieiiiiiiiiiiiieee e, 34
Figure 2-14. A Clos network with 128 N0des [50]......cccuiuuiiiiiiiiiiiie e 36
Figure 2-15. Block diagram of the Elan-3 ASIC [57] ... e e 38
Figure 2-16. Elan programming lIDraries [57]ccceeeiiiiiiiiiiiiiiie e e e 40
Figure 2-17. Block diagram of the Switch2 node adapter [59]........cocoiuuiiiiiiiiiii e 42
Figure 2-18. The InfiniBand architeCture [61]cuuvieiiiiiiie i 46
Figure 2-19. InfiniBand layered architeCture [B1]............evieiiuiriieiiiiiiie e 47
Figure 2-20. InfiniBand data packet format [B1]..........ccooouiiiiiiiiiiieiiiiiie e 48

CHAPTER 3 The ATOLL System Area Networkccccoovveiiiiiiiiiiiiiiiiiiiieen 51
Figure 3-1. The ATOLL SITUCKUIEuvviiiiii ettt e e e e e e et e e e e e e e e s 52......
Figure 3-2. Top-level ATOLL arChit@CIUIe...........uuuiiiiiiiiiaai it 54
Figure 3-3. Address layout of the ATOLL PCI-X TEVICEcccuuviiiiiiiiiiieiiiiee et 56
Figure 3-4. PCI-X interface architeCture [B5]........ccooiiiiiiiiiiiiiie e 58
Figure 3-5. Structure of the synchronization interface...........ccccoiiiiiiini e, 61
Figure 3-6. Completer interface SignalS...........ccciiiiiiiiieee e 62.........
Figure 3-7. Slave-Write path SIgNalS.........ccccviiiiiiiice e 63.......
Figure 3-8. Slave-Read path SignalS..........ooooiiiiiiii e B3........
Figure 3-9. Typical Slave-Read transfer........ i 64.........
Figure 3-10. Master-Write path SignalS...........coooiiiiiiiii e 65.........
Figure 3-11. Master-Read path SIgNalSccooiiiiiiiiiiiii e 66...........
Figure 3-12. Requester interface SignalS............evvieeeiiiiiiiiiiiiiieice e 67..........
Figure 3-13. Device initialization and debug regiSters.........oooviiiiieeiiiiiiiir e 68
Figure 3-14. Structure of the port iNtErCONNECT.........coiiiiii i 70
Figure 3-15. Hardware control/status and global COUNLEr.............cuveiiiiiiiiiii i 74
Figure 3-16. Host port specific CoONtrol/Status regiSters...........couuiiiieiriiieee e 76
Figure 3-17. Loading the PIO-receive time-0Ut COUNLEToocuviiieiiiiiiee et 77

Figure 3-18. INtEITUPL FEQISTEIS. .. .ottt e e e e e e e e s e r e e e e e e e e e s e s mennnmens 78..
Figure 3-19. LiNK retry reQiSterccuuiiiiiiiiiee et e e e e e e e s e s e ea e mmnnns 80..
Figure 3-20. Structure of the NOSE POtcooi i 81.......
Figure 3-21. Interface between host and NEtWOrK POrt...........cooooviiiiiiiiiiien e 82
Figure 3-22. HOSt port addresSs layOULuevieiiiiiie et 83........
Figure 3-23. Mapping a linear address sequence to @ FIFO..........ccooiiiiiiiiiiiiiiiiie e 83
Figure 3-24. Layout Of PIO-SENA PAGEcuiiiiiee ittt e e e s r e e e e e e naraee e 84..........
Figure 3-25. Structure of the PIO-SeNd UNit............cooiiiiiiiieiiieee e B 8
Figure 3-26. Utilizing a ring puffer for PIO-reCeIVEuuiiiiiiiiiiiiiie e 86
Figure 3-27. Layout Of PIO-TECEIVE PAGE........uueiiiiriiieiiiiiie ettt ST 8
Figure 3-28. Structure of the PIO-reCeIVE UNIT..........eiiiiiiiiiiiiiii e 87
Figure 3-29. Data lEOIONueeiieiiiiiiee ettt ettt e e et e e e s sttt e e e e sbbe e e e e s ssmemmmnes 88.
(ST U1 (RS ERcT O N o] o o =TS] o) (o] S 89.
Figure 3-31. Control flow of sending @ DMA MESSAQEuvveiieeeeieiiiiiiiiieieeeee e e e e se e reeeee e e 91
Figure 3-32. Structure of the DMA-SENd UNIT...........uiiiiiiiiiiii e 92
Figure 3-33. Control flow of the DMA-TeCEIVE UNItc.uuiiiiiiiiiiieeiiite e 93
Figure 3-34. Structure of the DMA-TECEIVE UNIL........cooiuuiiiiiiiiiiiie it 94
Figure 3-35. MeSSAgE fraMESoiiiiiiiiii e 96......
Figure 3-36. Structure of the send Network POrt UNit............coooiiiiiiiiiiiriiee e 97
Figure 3-37. Structure of the receive network port Unit...........ccocveviiiiiee e 98
Figure 3-38. Structure of the CroSShar..............eeiiiiii e 100........
Figure 3-39. Structure of the output INK POtocuuiiiiiiie e 103
Figure 3-40. Reverse flow control MEChaNISIMouuiiiiiiiiiii e 104
Figure 3-41. Structure of the iINput INK POteeiiiii e 5. 10
CHAPTER 4 IMplementationccoouuiiiiiiiiieiie et et 107
Figure 4-1. ATOLL deSign floWccooiiiiiiiiiiie e 109......
Figure 4-2. A dual-clock synchronization fifO ... 111
Figure 4-3. Testbed for the ATOLL ASIC ...t a e 112
Figure 4-4. SYNtheSIS fOW........eiiiiiii e e 116.
Figure 4-5. Logic synthesis lacks physical information.............cccoouiiiiiii e, 117
Figure 4-6. Improvement of timing slack and cell areaccccccveveeiee e, 118
Figure 4-7. Multiplexed flipflop SCAN SIYIE ...ueveveiiieei e 120
Figure 4-8. Floorplan used for the ATOLL ASIC ..ot 122
Figure 4-9. Improving a timing-violated path ... 124
Figure 4-10. Timing optimization during IPO/ECOcc.cieiiiiiiieeiiiiiee e 125
CHAPTER 5 Performance Evaluation.............ccccooooeiiiiiiiiiiiiiiieecieeeee e 129
Figure 5-1. Latency for a single hoSt POrt iN USE........ccccuuviiiiiiiiee e 130
Figure 5-2. Latency for multiple hoSt POrtS iN USEccvvieiiiiiiiiiiiiiie e 131
Figure 5-3. Bandwidth for a single host port in DMA MOUEcccooeiiiiiiiiiiiiiiiiieeeee e 132
Figure 5-4. Bandwidth for a multiple hoSt POrtS iN USE........cccoiiiiiiiiiiiiiiee e 133
Figure 5-5. Network link UtIlIZation...........cc.eeiiiiiiii e 133...
Figure 5-6. Idle time introduced by small link packets...........ccoovuiiiiiiiiiiiie e 134
Figure 5-7. Fifo fill leVel Variationcccouiiiiiiiiiiieiccc e 135.
CHAPTER 6 CONCIUSIONS.....cuutiiiiiiiieee e ettt e e e e e e e e e e e e e eeeeeneaenannn s 137

Xl

CHAPTER 1
Table 1-1.

List of Tables

oo [0 o] o PP PPPPPPPPPPPP 1
Bandwidth gap Of CIUSIErS VS. MPPS......uiiiiiiii e 4

CHAPTER 2 System Area NetWOIKS............uuuuiiiiiiiiiiieeceeeeeeeeeeeses e 11

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.

Comparison of user-level libraries for Fast Ethernetccccovevve e, 12
Supercomputers and their different network topology.............coovcciiiiiiieiiee e, 13
Performance of GM and SCore over Myrinet [55], [56]......cuuvuveeeiiiieeiiiiiiiiiiiiiieeeeeeennn 37
Performance of QSNEL [57].....ueeiiiiiiiiiei e 40..........

CHAPTER 3 The ATOLL System Area NetworKccccoovvviieeiiiiiiiiiceeieeeen 51

Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.

CHAPTER 4

Table 4-1.
Table 4-2.

CHAPTER 5

CHAPTER 6

Control registers Of ATOLLoiiiiiiiiie e 12........
Status registers Of ATOLL.......cccuuiiiiiiiiee e e e e e e e e e s 73.......
Debug registers Of ATOLL.......cccciiiiiiiiiec e e e e 73.........
Extension registers Of ATOLLooeiiiiiiiiieeee et e e 73
Send status/control registers of @ hOSt POITcoooviiiiiiiiiiii e 90
Receive status/control registers of a hOSt POrt.........cc.uevveiiiiiiiiiiiii e 90
Layout of the repliCator @re@ccovuveiieiiiiiiiie e 95........
Encoding of data and control BYtes...........ccccuiiiiiiiiic e 102

IMPIEMENTALION ... 107

TESIDENCN STALISHICS ... iiveeiiie e e e e e s s 115...
INtErNAl SCAN CRAINSiiiiiiiee et e et e e e e et s e e e s 121...

Performance EValUAtioN............ooue oo, 129

(000] 2 [o3 (11T T0] 1S NTT TR RPN 137

Xl

XV

Introduction

1 Introduction

While in Desktop Computing the latest improvements in performance of computer hard-
ware seem to have outrun the demand by typical software, High Performance Computing
(HPC) continues to be one of the main reasons for accelerating hardware like micropro-
cessors or networks. The need to solve large problems like weather forecast or earthquake
simulation drives the development of faster CPUs, while vice versa faster hardware
enables scientists to attack even larger problems. This chapter introduces Cluster Com-
puting as a new alternative to accelerate High Performance Computing. It also discusses
the emergence of a new class of networks called System Area Networks. Finally, a short
introduction is given into the field of ASIC design and its most important problems.

1.1 Cluster Computing

Cluster Computint[l], [2] has established itself as a serious alternative to Massive Par-
allel Processing (MPP) and Vector Computing in the field of High Performance Comput-
ing. The initial idea was developed back in the 1960’s when IBM linked several of their
mainframes together to provide a platform capable of dealing with large commercial
workloads. However, MPP and vector machines from companies like Cray, SGI, IBM,
Intel, NEC, Hitachi, etc. dominated the HPC world throughout the 70’s and 80’s. With the
emergence of the personal computer (PC) and its fast progress in terms of performance,
mainly driven by Intel’'s x86 microprocessors, it became a viable option to use intercon-
nected standard PCs as platform for running HPC applications. Several factors acceler-
ated this trend:

* increasing performance of desktop CPUs from Intel/AMD, closing the gap to high
end RISC microprocessors (Alpha, MIPS, PowerPC, SPARC)

» high performance networks interfacing to standard PC I/O technology like PCI

* low costs of mass-fabricated PC components, compared to classic MPP or Vector
machines, which are build in quantities of a few hundreds or thousands

1. a Cluster is a collection of interconnected computers working together as a single system

Cluster Computing

» standard HPC libraries like MP1 [3] or PVM [4] are freely available in different imple-
mentations across a wide variety of different platforms

» astable, high performance Unix-style operating system is freely available with Linux

1.1.1 Trends

The first so-called Beowulf cluster [5] was assembled by the team around Donald Becker
and Thomas Sterling at NASA’s Goddard Space Flight Center in 1994. It consisted of
16 PCs equipped with Intel 486-DX4 100 MHz CPUs and 16 Mbyte RAM, connected via
10 Mbit Ethernet. This way of building a low-cost, yet powerful supercomputer was
adopted by many research groups throughout the world. Today several thousands of clus-
ters are in operation, the largest installations with more than 1.000 nodes. One of the larg-
est clusters ever built, the ASCI Red system from Intel with more than 9.000 Pentium Pro
machines at the Sandia National Labs, USA, was No.1 on the Top500 supercomputer list
[6]1 from 1997 to 2001.

Figure 1-1.Number of machine types in the Top500 Supercomputer list [6]

100 %

80 % |
MPP
60 % —|

SMP

40 % —\/

20 % // Clusters of SMP
-

L ool Clsters

Nov’'99 Nov’'00 Nov'01

Besides PC clusters, several companies build clusters out of small- to medium-scale SMP
machines. E.g., IBM uses its RS/6000 SP nodes with up to 16 CPUs per SMP, whereas
Compag builds its SC Series supercomputers by clustering AlphaServer GS machines
with up to 32 CPUs. These machines are also often referred to as cluster of SMPs or con-
stellations. Figure 1-1 shows the increasing usage of clusters, according to the Top500
lists of the last three years.

The current trend is to move away from traditional supercomputers to more cost-efficient
cluster systems consisting of Commodity-Off-The-Shelf (COTS) components. Another

1. “TOP500 Supercomputer Sites”, www.top500.0rg

Introduction

main advantage is the better scalability of clusters. Users can start with a small system and
add nodes from time to time to match an increasing need for performance. A big indicator
for this trend is the fact, that all recent Teraflop systems of the national Accelerated Stra-
tegic Computing Initiative (ASCI) program in the USA are clusters of SMPs. These sys-
tems are normally assembled in multiple steps, starting with a small installation followed
by several upgrades. Only one of the top ten systems of the latest Top500 list is a tradi-
tional supercomputer, a Hitachi Vector machine, all other entries are cluster of SMPs.

1.1.2 Managing large installations

But since the number of nodes inside a typical cluster grows fast, it becomes more com-
plicated to make efficient use of the system. A lot of effort has been put into the imple-
mentation of resource management software. These tools help to install and configure the
operating system and parallel libraries across hundreds of nodes with perhaps different
components and equipment. Another major task is the scheduling of parallel jobs and the
allocation of processes to idling nodes. And with an increasing chance of failure of single
nodes inside a cluster with 1.000 nodes or more, terms like availability, checkpointing,
fault detection and isolation become more important. So the focus in Cluster Computing
Is shifting from developing fast hardware more towards implementing software to
manage and easily use installations with 100 or more nodes. One of the main goals of soft-
ware development for clusters is the idea to present the cluster as a so-called Single
System Image (SSI) to the user. The underlying architecture is hidden from the user, who
sees the cluster as a single, large parallel computer.

1.1.3 Driving factors and future directions

Figure 1-2.Fields of development for Cluster Computing

Hardware Software
fast desktop message passing libraries
microprocessors\ > o administration tools
> Cluster fault-tol t soft
. ault-tolerant software
(r::c()atigr%%z\liggad Xcompu“n‘g\ multi-process debuggers
system area networks user-level network layers

Figure 1-2 depicts all fields of development that contribute to the increasing use of clus-
ters for High Performance Computing. Recent research activities extend the idea of Clus-
ter Computing to an even further decoupled architecture called Grid. Grid Computing [7]

System Area Networks

connects several computing resources (clusters, single SMP/MPP/Vector/PC machines)
in different locations to one single computing system. To overcome the heterogeneity of

all components (different platforms, operating systems, networks, etc.) one defines a
common protocol to exchange data between all participating nodes inside the Grid. First

iImplementations are available, but a wide adoption of Grid Computing is yet to come.

1.2 System Area Networks

A fast network is the key component of a high performance cluster. First installations used
traditional Local Area Network (LAN) technology like 10/100 Mbit Ethernet as intercon-
nect between nodes inside the cluster. But it became quickly clear that these networks are
a substantial performance bottleneck. Traditional MPP supercomputers like the Cray T3E
or the SGI Origin rely on dedicated and proprietary high performance networks with
node-to-node bandwidths of 300 Mbyte/s and more. With typical system bus bandwidths
of more than 1 Gbyte/s inside a node, these interconnects can handle the communication
demand of even highly fine-grain parallel applications.

1.2.1 The need for a new class of networks

To be competitive in the field of High Performance Computing clusters need to be
equipped with networks matching the performance of these proprietary solutions. First
experiences were made with existing solutions, either Wide Area Networks (WAN) or
LAN. Networks like ATM, HiPPI or SCI offer more physical bandwidth than 100 Mbit
Fast Ethernet, but were designed with different applications in mind.

Table 1-1.Bandwidth gap of clusters vs. MPPs

machine system bus internode netwgrk system/network
ratio

Cray T3E-1350 with 1.2 Ghyte/s 650 Mbyte/s 1.85

Alpha 21164 675 MHz

SGI Origin 3800 with 3.2 Gbyte/s 1.6 Gbyte/s 2

MIPS 14k 500 MHz

PC cluster with 1 Gbyte/s 12 Mbyte/s 85

Pentium Ill 1 GHz and

Fast Ethernet

a. typical system configurations in the year 2000

E.g., ATM is tuned for wide area connections with its relatively small packet size of
53 bytes and its support for Quality of Service (QoS). And with 155/622 Mbit/s physical
bandwidth it offers more than Fast Ethernet, but is still way behind multi-gigabit net-
works. On the other hand, a network like HiPPI supports up to 1.6 Gbit/s, but is so expen-

Introduction

sive that it clashes with the low-cost idea of Beowulf Computing. Table 1-1 gives an
impression of the gap between system and network bandwidth inside different parallel
architectures.

With almost two orders of magnitude between system bus and network bandwidth clus-
ters with standard LAN technology are no match for traditional supercomputers. This led
quickly to several projects, both at universities and commercial companies. The goal was
to develop a low latency, high bandwidth network with a range of a few meters (up to 10).
Two components had to be constructed:

» aNetwork Interface Card (NIC), which provides a link interface via cable into the net-
work and uses a standard interface to connect to the host system (for PCs that is the
PCI bus)

* a multi-port switch, which is used to connect single nodes into a cluster. The number
of ports typically lies in the range of 6 to 32.

1.2.2 Emerging from existing technology

This new class of networks was named System Area Networks (SAN) to point out their
different application in contrast to existing LAN/WANs. Most developments adopted
existing technologies from the world of classical parallel computers. E.g., the first version
of Myrinet, one of the most successful SANs today, was originally developed for a fine-
grain supercomputer called Mosaic [8] by research groups at the California Institute of
Technology (Caltech) and the University of Southern California (USC). Or the company
Quadrics, offering now the QsNet SAN, emerged from the well-known supercomputer
manufacturer Meiko Ltd., which built cache-only supercomputers like the CS-2 [9]. The
main component of QsNet, the ELAN Il ASIC, is the third generation of the ELAN com-
munication processor introduced in the CS-2.

At the end of the 90’s, several SANs were introduced and widely used in clusters. Net-
works like Myrinet, ServerNet, QsNet and SCI will be discussed in Chapter 2 in detalil.

With their bandwidth in the range of 100-400 Mbyte/s and a one-way latency of around
10 us they facilitated clusters to compete with traditional supercomputers.

1.3 ASIC Design

The development of logic circuits as Application Specific Integrated Circuits (ASIC) con-
tinues at a rate predicted by Gordon E. Moore back in 1965. This famous Moore’s Law
[10] predicts that the number of transistors per IC doubles every 18 months. It has been
valid throughout the last 30 years and seems to continue to be true for the near future. It

ASIC Design

Is made possible by constant advancements in semiconductor technology and silicon fab-
rication.

1.3.1 Using 10+ million transistors

ASIC designers face more and more the problem to be able to make use of all the potential
transistors on a silicon die. This is known as the productivity gap. Every few years, the
Electronic Design Automation (EDA) industry needs a big step forward in methodology
to keep pace with the steep technology curve. Figure 1-3 depicts this situation and shows
some of the improvements of past years and decades.

Figure 1-3.The productivity gap in IC development

H#transistors

A

100m - physical synthesis?
IP, SoC? é\s\oﬁ
HDL entry wa“
logic synthesis
schematic —~_ = —prgdjcﬂv\w
entry -
i J
4
10k == — i i i > year
1970 1980 1990 2000 2010

Designers steadily increase the level of abstraction for modeling logic circuits to enhance
their productivity. They moved from full-custom VLSI layout to schematic entry and on
to Hardware Description Languages (HDL) like Verilog [11] and VHDL [12], which are
tightly coupled with logic synthesis. The next big step in modeling abstraction would be
moving to behavioral or architectural descriptions of logic circuits. First steps have been
made into this direction, but it is not yet clear, if the languages used are based on C/C++
like SystemC [13], or if it is an extension to an existing HDL like Superlog [14].

While ASICs approach the 100 million transistor count and clock frequencies of multiple

GHz, designers face a handful of severe problems.

1.3.2 Timing closure

The IC design flow used over the last years is split into two separate steps, called frontend
and backend. The frontend flow uses logic synthesis to turn a design specified in an HDL

Introduction

into a so-called netlist of logic cells. Optimization goals like area or timing guide the syn-
thesis process into the right direction. To calculate the timing delay of logic paths tools
rely on quite precise cell delays and estimated wire delays. Estimation is necessary, since
the synthesis process only defines the interconnection of logic cells, not their location on
the chip. The estimations were not a problem when cell delays dominated wire delays, like
in older process technologies (0.35-1 um). But with shrinking structures this proportion
gets inversed. This trend is shown in Figure 1-4. Wire delays are going to dominate cell
delays in process technologies beyond 0.18 um. As consequence, the estimations of syn-
thesis tools get more and more imprecise. This leads to huge differences in timing before
and after layout.

Figure 1-4.Cell vs. wire delay

delay A

cell delay

/ wire delay ,
/
/

—

- ——

P process [um]

I | | I I I
0.8 05 035 025 0.18 0.13 0.1

These timing mispredictions force the designer to iterate several times between frontend
and backend design to reach his timing goal. These iterations could last several weeks or
even months, which is unacceptable, since time-to-market is a major factor for success.
EDA companies address this problem by incorporating physical design into the synthesis
process. This is known as physical synthesis, or when frontend and backend design are
fully integrated, called a RTL-to-GDSII flow.

1.3.3 Power dissipation

With frequencies beyond 1 GHz and more than 10 million transistors on chip, current
microprocessors dissipate between 40-70 W. Extensive cooling is needed to prevent the
CPU from overheating and being damaged by effects like electromigration [15]. The
speed of an ASIC is also slowed down by rising temperatures. Recent projections [16]

1. the figure visualizes only the trend, actual numbers may vary from vendor to vendor

ASIC Design

show that power is becoming quickly the main hurdle for future generations of chips, as
depicted in Figure 1-5.

Several techniques are used to reduce the power consumption of ICs. The problem is
being attacked in both domains, design methodology as well as process technology. Semi-
conductor manufacturers develop new technologies with reduced supply voltages to keep
power consumption at an acceptable level. New fabrication techniques like Silicon-On-
Insulator (SOI) reduce the amount of leakage current.

Figure 1-5.Power dissipation of ICs in the next decafs]
Power (W)

per 1cm? g
10.000 Sun’s Surface

1.000 - Nuclear Reactor

100 —
Hot Plate —

10 —

1 I I I > year
1970 1980 1990 2000 2010

IC designers attack the problem at several abstraction levels. For very high frequencies of
1 GHz and more it has been found out that about 50-70 % of total power is consumed by
the clock tree of a chip. This identifies the clock tree as an ideal point of power optimiza-
tion. The trend of building System-on-a-Chip (SoC) designs with lots of components on
a single die also lowers the utilization factor of on-chip components. Hardly all compo-
nents are active at the same time, some may idle, waiting for input data, etc. So one can
disable certain functional units for the time they are not necessary. This is done by sup-
pressing the clock signals for the whole unit, a technique called clock gating. E.g., a
microprocessor could disable its floating point unit as long as no floating point instruc-
tions enter the instruction buffer. This could save a significant amount of power while run-
ning integer-dominated applications. Another method is to adjust the main frequency to
the current demand for processing power. This technique is used heavily for mobile com-
puters like laptops or PDAs.

1. if current trends continue without major improvements in power reduction

8

Introduction

1.3.4 Verification bottleneck

Another major problem is to validate the design before shipping the layout to the chip
manufacturer. With increasing design complexity the verification space, the number of
different input and state combinations, becomes almost unmanageable. More and more
effort has to be put into the functional test of a design, both in terms of testbench com-
plexity and processing power to run them. E.g., the team that developed the newest
UltraSPARC Il microprocessor from Sun [17] used a server farm with 3.000 CPUs in
total to run the huge amount of testbenches in an acceptable time frame. A single verifi-
cation run can easily consume several Gbyte of memory while running for hours or days.

Verification is needed at all levels of the design flow. From high-level simulations of
abstract functional implementations down to transistor-level simulations of the final lay-
out, after each stage one has to verify that the design still meets all goals defined in the
specification. Catching bugs as early as possible has become a significant factor in meet-
ing the time-to-market goals of an IC project.

1.4 Contributions

This dissertation introduces a major redesign of the ATOLL architecture for a high per-
formance System Area Network. It combines several unique features not found in current
solutions, like the support for multiple network interfaces and the inclusion of an on-chip
switch component. Data transfer between the host system and the network is optimized
by a combination of PIO- and DMA-based mechanisms. A novel event notification tech-
nique greatly enhances the capabilities of the NI.

Besides discussing the architecture, it also describes the implementation of the design in
a state-of-the-art semiconductor technology. Putting all the described functionality into a
single chip is an extremely difficult task and has never been done before. A carefully
planned design flow has been established to manage this large project with limited
resources and manpower.

Extensive simulations were done to prove the functional correctness of the design and to
make sure all performance goals are met. At the end, ideas for the next generation of
ATOLL are discussed.

Though the author is responsible for the largest part of design and implementation work
regarding the ATOLL chip, several colleagues of the Chair of Computer Architecture

have helped by designing some significant parts of the chip. Leaving out those parts in
this thesis would prevent the reader from getting a deep understanding of the whole archi-

Organization

tecture. So instead, those parts contributed by others are therefore discussed here and
marked by footnotes. References to additional literature have been added, if possible.

1.5 Organization

The dissertation is organized in six chapters. This first chapter introduced Cluster Com-
puting and System Area Networks in general. It presented current trends and gave also an
insight into the problems in modern IC design. The following chapter then discusses cur-
rent SANs more in detail. After listing the main design concepts, a broad overview is
given about the architectural features of current networks. Chapter 3 presents the motiva-
tion for a novel SAN architecture call ATOLL. The rest of the chapter then introduces the
ATOLL architecture. The mainideas behind ATOLL are presented, as well as their imple-
mentation. Chapter 4 follows with a broad overview about the development of the
ATOLL ASIC. The main design steps are presented, together with the most important
results. This is followed by a performance evaluation in Chapter 5. Finally, Chapter 6
summarizes the results, draws conclusions and discusses areas of future work.

10

System Area Networks

28ystem Area Networks

The network is the most critical component of a cluster. Its capabilities and performance
directly influence the applicability of the whole system for HPC applications. After
describing some traditional network technology, the most important general design issues
for high performance networks are discussed. This is followed by a survey of existing
SAN solutions. Their architecture and main properties are described and evaluated in the
order in which the networks have evolved over the years.

2.1 Wide/Local Area Networks

According to recent cluster rankir?gabout half of all clusters are still equipped with
standard 100 Mbit/s Fast Ethernet network technology. This fact has mainly two reasons:
costs and application behavior. While several SANs are available today, they cannot
really compete with the mass-market prices of Fast Ethernet, even regarding their price
vs. performance ratio. On the other hand, lots of applications have been finetuned to the
limited performance of LANs in the early days of Cluster Computing. When only Ether-
net was available, programmers had no choice than to avoid communication where pos-
sible and to use more coarse grained communication patterns in their applications. So a
large set of programs are tailored towards the high latency and low bandwidth of Ethernet.
Running these applications then on a cluster equipped with a high performance SAN does
not use the full potential of those interconnects. Significant modifications to the program
code would be needed, but are rarely done.

2.1.1 User-level message layers

First clusters running MPI/PVM applications used a normal TCP/IP layer to communicate
over Fast Ethernet. But the TCP/IP protocol stack inside an operating system (OS) kernel
IS quite large, resulting in excessive latencies in the order of 50-70 us for sending a short
message between two nodes. This high latency clashes with the goal of competing with
supercomputers, which normally offer one-way latencies below 10 us. Since about 90 %
of this latency can be attributed to the software, researchers started to implement so-called
user-level message layers [18], which bypass the OS for inter-node communication. By

1. “Clusters @ Top500”, clusters.top500.0rg

11

Wide/Local Area Networks

removing the OS from the communication path, the sending/receiving of a message can
be speed up significantly, as shown in Figure 2-1.

Figure 2-1.User-level vs. OS-based TCP/IP communication

A Application A
Operating .
new | o user-level System \\ traorllltlonal
path library pat
TCP/IP layer
v Network Interface V

Implementations like U-Net [19], GAMMA [20] and Fast Messages [21] all provide a
low-level Application Programming Interface (API) to the network. Only some initializa-
tion routines interact with the OS. All the functions to send/receive messages between dif-
ferent nodes of a cluster directly access the network interface. Implementations mainly
differ in their levels of security and reliability. The fastest implementations simply ignore
any security issues (memory protection, multitasking an NI) because of the fact that most
production clusters run a single parallel job with a one-to-one mapping of processes to
CPUs for highest application performance.

Table 2-1.Comparison of user-level libraries for Fast Ethétnet

User-level library System configuration latency (us) bandwidth
(Mbyte/s)
U-Net DEC 21140 chipset, Intel Pen-| 30.0 12.1
tium 133 MHz
GAMMA DEC 21143 chipset, AMD K7 |14.3 12.1
500 MHz
TCP/IP DEC 21143 chipset, Intel Pen-| 58 10.5
tium 11 350 MHz

a. taken from the GAMMA website: www.disi.unige.it/project/gamma

Table 2-1 shows that user-level libraries can reduce latency by 50-75 %, compared to
TCP/IP performance. But the low physical bandwidth of Ethernet remains a critical bot-
tleneck.

A few other LAN/WANSs have been tested as cluster interconnect, but proved to be as
inefficient as Fast Ethernet. As mentioned earlier, ATM provides more physical band-
width, but its protocol is more oriented towards Quality-of-Service (QoS) applications

12

System Area Networks

like streaming audio/video media. So overall, most LAN/WAN technology is inappropri-
ate as cluster interconnect. Only Fast Ethernet, and recently also its upgrade Gigabit
Ethernet, can be used in combination with user-level message layers, if the applications
are mostly sensitive to latency and not to bandwidth.

2.2 Design goals

Before several cluster interconnects are presented in detail, this section gives an overview
of the main design trade-offs for interconnect hardware. For each design topic, several

possibilities are presented and evaluated. With this basic knowledge in mind, the reader
should be able to rate concrete implementations according to their usability and perfor-

mance for specific applications.

Several decisions must be made when designing a cluster interconnect. The most impor-
tant is undeniably the price/performance trade-off.

2.2.1 Price versus performance

In the last few years clusters of PCs have gained huge popularity due to the extreme low
prices of standard PCs. Traditional supercomputer technology is replaced more and more
by tightly interconnected PCs. In the interconnect market, though, a huge gap exists
between interconnects of moderate bandwidth like Fast Ethernet at a low price ($ 50-100
for a network adapter) and high performance networks like Myrinet or ServerNet ($ 1000
and more). Of course, this is also a consequence of low production volumes. But other
factors, such as onboard RAM or expensive physical layers such as Fiber Channel, can
raise costs significantly.

2.2.2 Scalability

Table 2-2.Supercomputers and their different network topology

Machine Topology

Cray T3E 3D torus

IBM SP2 omega (multistage)

SGI Origin 2000 hierarchical fat hypercube
nCube hypercube

Thinking Machines CM-5 fat tree

Scalability is another crucial issue. It refers to the networks ability to scale almost linear
with the number of nodes. A good topology is the key factor for good scalability. Inter-
connects in traditional supercomputers normally have a fixed network topology (mesh,

13

General architecture

hypercube, etc.) and hardware/software relies on the fixed topology. Table 2-2 gives an
overview about the variety of network topologies used in recent supercomputers.

But clusters are more dynamic. Often a small system is set up to test, if the cluster fits to
the application needs. With increasing demand for computing power, more and more
nodes are added to the system. The network should tolerate the increased load and deliver
nearly the same bandwidth and latency to small clusters (8-32 nodes) and to large ones
(hundreds of nodes). A large mesh will show increased latency compared to a small one,
since the average distance between nodes also increases. Large switches (16x16, 24x24)
forming a cluster-of-clusters topology can help to compensate this effect [22]. Similarly,

a hypercube network cannot be upgraded from 64 to 96 nodes because it needs a power
of two as node count. Therefore, modern cluster interconnects should allow to use an arbi-
trary network topology. Hardware/software determines the topology at system start-up
and initializes routing tables, etc.

2.2.3 Reliability

Applications for parallel computing can be roughly divided into two main classes, scien-
tific and business computing. Especially in the business field, corrupted or lost message
data cannot be tolerated. To guarantee data delivery, protocol software of traditional
WAN/LAN networks compute CRCs, buffer data, acknowledge messages, and retransmit
corrupted data. This protocol layer has been identified as one main reason for poor latency
in current networks. For clusters with their needs for low latency and thin protocol layers,
this overhead must be minimized.

First, cluster interconnects with their short range physical layers have proven to be almost
error-free. The computation of CRCs can be easily done on-the-fly by the NI itself. Pos-
sible errors can be signaled to software through interrupts or status registers. To relieve
software from buffering message data, the NI could also temporary buffer the message
data and initiate retransmissions in case of errors. Overall, the cluster interconnect should
present itself to the user as a reliable network without additional software overhead for
safe data transmission.

2.3 General architecture

A general design decision must be made between a dumb NI, which is controlled and
managed by the CPU, and an intelligent and autonomous NI performing most of the work
by itself. The first solution has the advantage of low design effort resulting in short time-
to-market and redesign costs. On the other hand, enabling the NI to do jobs, such as data

14

System Area Networks

transfer or matching receiver ID with its network address/path, can free the microproces-
sor from this work and reduce start-up latency for message transfers.

Advantages of both methods can be glued together by adding a dedicated communication
processor to the system [23]. This node design has been chosen for some parallel archi-
tectures (Intel Paragon, MANNA [24]) and resulted in good performance values, espe-
cially for communication intensive applications. In the following, the two main trade-offs
are presented.

2.3.1 Shared memory vs. distributed memory

The first decision of a designer of cluster interconnects is the memory (programming)
model to be supported. The shared memory model makes the cluster network transparent
to processes through a common global address space. Virtual memory management hard-
ware and software (MMU, page tables) is used to map virtual addresses to local or remote
physical addresses. Since the overhead of applying this model to the whole address space
is quite large, interconnects supporting shared memory offer the ability to map remote
memory pages into local applications address spaces, like DEC’s (later Compaq) Memory
Channel [25].

Figure 2-2.Write operation to remote memory

4 Node 1 ™\ 4 Node 2\

CPU Memory CPU Memory
| # #
¢ System Bus - - ¢ System Bus
I/O Bus @ I/O Bus
/ Interconnection \\
NI | ! > NI -

K / Network K /

Figure 2-2 shows an example of a write operation to remote memory, where the NI resides
on the 1/0 bus. The operation can be split up into 3 main steps, which are labeled with
their according number:

1. the CPU writes the message data to a shared memory region, which virtual memory
address is mapped to the NI on the 1/O bus

15

General architecture

2. the Nl indexes an address translation table with the write address to determine the des-
tination node of the transaction. It then transfers data to the remote node for further
processing, together with a remote write address

3. the destination node receives the data, and uses the address to write data to local mem-
ory. If the address is virtual, it has to do another translation step. But this could also
already have been done by the sending NI. This depends on whether the shared
address space uses virtual or physical addresses

A lot of work has to be done by the NI, if the virtual shared memory is intended to be
cache-coherent across all cluster nodes, as known from SMP systems. A cache coherence
protocol must observe the memory space on a cache line or page base. Writes must be
propagated to all nodes owning a copy of the memory cell, or these copies must be inval-
idated. For short, the overhead of cluster-wide cache coherence can be manageable for
small systems, but gets inefficient for large node numbers. The only remaining large-scale
shared memory supercomputer today is the SGI Origin [26] with its so-called ccNUMA
architecture.

In the distributed memory model, message passing software makes the network visible to
applications. Data can be sent to other nodes through send/receive API calls. Compared
to the shared memory model, the user has to explicitly call communication routines to
transfer data to or from the network. Besides Memory Channel and SCI, which support
the shared memory model, all remaining interconnects presented here rely on the message
passing model.

2.3.2 NI location
Figure 2-3.Possible NI locations

g N

CPU
yiNl-l NI-2

- # System Bus¢ -

I/0 Bus

NI-3

16

System Area Networks

The location of the NI inside a system has a great impact on its performance and usability.
In general, the nearer it is to the microprocessor, the more bandwidth is typically avail-

able.

As depicted in Figure 2-3, there are three possible locations for the NI:

NI-1

NI-2

An interesting solution is support for communication at the instruction set level
inside a microprocessor. By moving data into special communication registers, it is
transferred into the network at a rate equal to the processor speed. This technique
has been realized in the past in some architectures; its most famous representative
Is the Transputer [27] from INMOS. Through four on-chip links at full processor
clock speed, the Transputer was an ideal candidate as a building block for grid-inter-
connected massive parallel computers. Similar implementations are the iWarp [28]
or related systolic architectures.

Although these architectures are very interesting from the designers view, the
market for this kind of microprocessors proved to be too small. Most implementa-
tions reached the prototype phase, but had no commercial success. Some research
projects also tried to include a network interface at the cache level, but this saw the
same fate. Another try in this direction is the Alpha 21364 (EV8) microprocessor
[29], which has 4 on-chip inter-processor links, each providing a data rate of
6.4 Ghyte/s. But Compaq has recently announced the discontinuation of the family
of Alpha CPUs, so that the EV8 microprocessor will not be fabricated.

Assuming a high performance system bus design, this location is an ideal place for
a network interface. Todays system buses offer very high bandwidths in the range
of several Gbytes/s. Common cache coherence mechanisms can be used to effi-
ciently observe the NI status. The processor could poll on cache-coherent NI regis-
ters without consuming bus bandwidth. If the register changes its state (e.g., a status
flag is set to indicate message arrival), the NI could invalidate the observed cache
line. On the next load instruction, the new value is fetched from the NI. DMA con-
trollers can read/write data from/to main memory using burst cycles at a very high
bandwidth. Although there are several advantages to design the NI with a system
bus interface, only a few Nlis are implemented in this way. The reason for this is that
each processor has its own bus architecture and thus ties an NI implementation to a
specific processor. The market for cluster interconnects is not yet large enough to
justify such a specialization. Furthermore, commercial interests are likely to prevent

17

Design details

the upcoming of standard processor bus architectures, even though more than just
SANs would benefit from them. Only proprietary interconnects can be designed for
the system bus, an example is the SAN adapter of the IBM SP2.

NI-3

Most current interconnects have 1/0O bus interfaces, mainly PCI. The reason is the
great acceptance of PCI as a standard 1/0O bus. PCI-based Nis can be plugged into
any PC or workstation, even forming heterogeneous clusters. A 32 bit/33 MHz PCI
device can deliver a peak data rate of 132 Mbyte/s, which can be nearly reached
with long DMA bursts. To avoid that the PCI bus becomes the main bottleneck
between system buses and physical layers with gigabytes per second bandwidth,
most SANs have already moved on to 64 bit/66 MHz PCI bus interfaces. Since the
I/O bus even then remains a major bottleneck, SAN developers await the implemen-
tation of upcoming I/O bus standards like PCI-X [30] and 3GIO [31]. But a transi-
tion only makes sense when they are widely used in the mainstream PC industry. A
disadvantage of the I/O bus location is the loss of properties such as cache coher-
ence.

Most interconnects presented in this chapter use the 1/0O bus as their interface to the host.

2.4 Design details

In the following, a closer look is taken at some specific implementation details. Small
modifications of the hardware can have a great impact on the NIs overall performance.
This section focuses on various main mechanisms for interconnection networks. Addi-
tional literature [32], [33] is recommended for an even more detailed analysis.

A general rule of thumb could be: Keep the frequent case simple and fast. For example,
mechanisms for error detection and correction should be implemented in a way that they
do not add overhead to error-free transmissions. In the very rare case of a transmission
error, some overhead can be accepted, since error rates of current physical layers are very
low. The NI should also be able to pipeline data transfers. So the head of a message packet
can be fed into the network, even if the tail is still fetched from memory. This enables low
start-up latencies and good overall throughput.

The term link protocol is used for the layout of messages, which are transmitted over the
physical layer and the interaction between communicating link endpoints. Figure 2-4
shows two link endpoints (which could reside in a NI or a switch), connected by two uni-
directional channels for sending and receiving data. Also, it depicts the general layout of
a message. Typically, message data is enclosed by special control datawords, which can

18

System Area Networks

be used to detect start/end of message data and to signal link protocol events (receiver
cannot accept more data, request for retransmission, etc.).

Figure 2-4. A bidirectional link and the general message format

NI/Switch NI/Switch

n bits
Link End P> Link End
Point | q— <——| Point
Address/ Type/ Data/
Destination | Header Payload

2.4.1 Physical layer

Choosing the right physical medium of a channel is a trade-off between raw data rate,
availability and cable costs. Copper is still the most used physical medium for link cables,
but optical links, which have been broadly used to enhance the capacity of Wide Area
Networks, are on the verge of penetrating the LAN and SAN markets. Myricom, one of

the leading SAN suppliers, announced in July 2001 fiber links and the willingness to

replace all copper-based cables with fiber within a few months.

Figure 2-5.Ultra-fast serial, switched connections replace parallel bus architectures

I/O and system technology
PCI-X (133 MHz point-to-point)

PCI (parallel bus) USB (serial, switched)
SCSI (parallel bus) —————» Hypertransport (serial/parallel, switched)
ATA (parallel bus) Infiniband (serial/parallel, switched)

3GIO (serial/parallel, switched)

System Area Networks (Myrinet as example)

byte-parallel, ; serial, copper, ; serial, optical fiber,
copper, 160 MHz 2.5 Ghps 2.5 Ghps

19

Design details

Another trend to observe is the replacement of medium-fast parallel links with high-speed
serial connections. This is not only true for the SAN market, but also for the whole I/O
infrastructure in PCs and workstations. Figure 2-5 shows this trend by listing current and
future I/0O and network technologies. Newest I/0O and system technologies start with serial
implementations, but provide an upgrade path for using multiple connections in parallel.
They all move from a bus-based topology to a full-switched network for better bandwidth
utilization and easier implementation. Myrinet serves here as an example for the SAN
market. It starts byte-parallel, goes serial, then switches from copper to fiber. The next
announced step is the use of multiple serial connections per NIC.

One of the main reasons for using serial connections is the reduced pin count on switches.
Latest switch technology with parallel links is limited by the pin count of IC devices. To
transmit signals at a high clock rate (200-500 MHz) and a reasonable power consumption,
the Low Voltage Data Signaling (LVDS) technique (two wires transmit complementary
current levels of signals) is used. So an 8x8 unidirectional switch with 32 bit differential
signal lines would result in 1024 (= (8+8)*32*2) pins only for the links, which is at the
upper limit of todays IC packaging. Bytewide links, as used by most SANs, have been a
good compromise for the last years. Network switches of moderate sizes can be built,
while raw data rate still exceeds the one of serial mediums.

But recent developments have made it possible to transmit signals via copper cables at
rates of 1-3 Gbps, with 10 Gbps technology on the horizon. Another limitation of electri-
cal transmission at these fast rates is the limited range. Normally, only a few meters can
be spanned, until the signals need to be received or refreshed. And signals become more
sensitive to noise effects from parallel bit lines or even other electrical equipment in the
surrounding. Optical layers have a clear advantage here, since an optical fiber does not
emit any electromagnetic radiation at all. And techniques like Dense Wavelength Divi-
sion Multiplexing (DWDM) or Time Division Multiplexing (TDM) promise to lift the

data rate on optical fibers to 10 Gbps and more.

2.4.2 Switching

The term switching refers to the transfer method of how data is forwarded from the source
to the destination in a network. Two main packet switching techniques, as depicted in
Figure 2-6, are used in todays networks, store & forward and cut-through switching. The
first stores a complete message packet in a network stage before the data is sent to the next
one. This mechanism needs an upper bound for the packet size (MTU, Maximum Transfer
Unit) and some buffer space to store one or several packets temporary.

20

System Area Networks

In Figure 2-6 (a), packet pO just arrived at the switch through port 1 and is placed into the
packet buffer pool. Packets p1 and p2 have been received in total and are now forwarded
towards their destination through different ports. This is the common switching technique
found in LAN/WANS, because it is easier to implement and the recovery of transmission
errors involves only the two participating network stages.

Figure 2-6.Packet switching techniques

(@) (b)

switch switch

switch | |port0
packet pool

port 3

/A

message

/ data flits

switch

| |port2

Newer SANSs like ServerNet, Myrinet and QsNet use cut-through switching (also referred

to as wormhole switching), where the data is immediately forwarded to the next stage as
soon as the address header is decoded. In Figure 2-6 (b), one sees how a message finds its
way through the network like a ‘worm’. Low latency and the need for only a small amount

of buffer space are the advantages of this technique. But error handling is more compli-
cated, since more network stages are involved. Corrupted data might be forwarded
towards the destination before it is recognized as erroneous.

2.4.3 Routing

The address header of a message carries the information needed by routing hardware
inside a switch to determine the right outgoing channel, which brings the data nearer to
its destination. Although a lot of deterministic and adaptive routing algorithms have been
proposed, the latter will not be studied here. Adaptive routing schemes try to find dynam-
ically alternative paths through the network in case of overloaded network paths or even
broken links. But adaptive routing has not found its way into real hardware yet. Two
mechanisms are used in todays interconnects: source-path/wormhole and table-based
routing [34].

21

Design details

In Figure 2-7 (a), an example of wormhole routing [35] is given. A message enters a
switch on port 0 and carries the routing information at the head of the message packet. As
soon as the first dataword is received, routing hardware can determine the outgoing chan-
nel. Used routing data is stripped off, so the routing information for the next switch now
leads the message. The entire path to the destination is attached to a message at its source
location.

Figure 2-7.Routing mechanisms

(a) (b)
switch
switch port O port 1
sort 1 | | | [dest-id]
port o \ port 2
- 7/ port 2 Y /
id |port 2
routing table

In Figure 2-7 (b), a switch containing a complete routing table is shown. For each desti-
nation node its corresponding port is stored. If messages enter the switch a table lookup
determines the right outgoing channel. Routing table size is proportional to the number of
nodes, which can be a limiting factor for large cluster configurations with hundreds or
even thousands of nodes. The former method is easier to implement and faster, whereas
the latter one provides more flexibility. The routing table could provide alternative paths,

if the current addressed path is overloaded. Or based on link utilization information the
routing engine could try to find the fastest path towards the destination. But with such a
non-deterministic routing one needs to be careful. Link protocols could rely on the fact
that messages are delivered in order, which is not assured with such a form of adaptive
routing. Another problem is the prevention of a so-called livelock, where a message is
always routed over alternative paths, but never reaches the final destination.

A problem for both routing mechanisms is the avoidance of deadlocks. A deadlock
appears when several messages block each other in such a way, that no message can reach
its destination and the network is blocked in total. This situation is depicted in Figure 2-

8. Allmessages form a circle of chained, blocked port requests. No message can progress,
thus the network is jammed up. One can solve this problem by restricting the routing of

22

System Area Networks

messages in such a way that these circles of requests cannot appear. One possible solution
IS a strict x-y dimension routing in 2D meshes, where all messages are first routed in the
horizontal direction, and then vertical. Many other solutions exist [36], more or less com-
plex and efficient.

Figure 2-8.Messages forming a deadlock

2.4.4 Flow control

Flow control [37] is used to avoid buffer overruns inside link end points, which can result

in the loss of data. Before the sender can start a transmission, the receiver must signal the
ability to accept the data. One possible solution is a credit-based scheme, where each
sender gets a number of credits from the receiver. On each packet transmission, the sender
consumes a credit point and stops when all credits are consumed. After freeing some
buffer space, the receiver can restart the transmission through handing additional credits
to the sender. Or, the receiver can simply signal the sender if he can accept data or not. In
both cases, the flow control information travels in the opposite direction relative to the
data (reverse flow control). For example, Myrinet inserts STOP and GO control bytes into
the opposite channel of a full-duplex link to stop or restart data transmission on the sender
side.

2.4.5 Error detection and correction

Though todays physical layers have very low error rates, the network must offer some
mechanisms for error detection and possibly correction in hardware. In the era of user-
level NI protocols, it is no longer acceptable that software has to compute a CRC. This
task can easily be done in hardware. For example, the NI adapter can compute a CRC on

23

Data transfer

the fly while data is transferred to it. This CRC is appended to the message data and can
be checked at each network stage. If an error is detected, the message can be marked as
corrupted. The receiver can then send a request for retransmission back to the sender. But,
of course, this assumes that the complete data is buffered on the sender side. Especially
in fields like business computing with its need for fault-tolerant hardware it is also
common to replicate hardware. E.g., some vendors add another full network for redun-
dancy and always transmit data via both connections. The additional costs can be accepted
for applications like transaction servers, where even a few minutes of system failure can
produce a significant drop in sales volume. But in more cost-sensitive areas like Cluster
Computing users tend to handle program failure in software via checkpointing or the like.

2.5 Data transfer

Efficient transfer of message data between the nodes main memory and the Nl is a critical
factor in achieving nearly the physical bandwidth in real user applications. To reach this
goal, modern NI protocol software involves the OS only when the network device is
opened or closed by user applications. Normal data transfer is completely done in user-
level mode by library routines to avoid the costs of OS calls. The goal is a zero copy mech-
anism, where data is directly transferred between the user space in main memory and the
network. Examples are shown for a NI located on the PCI bus, since this is the current (but
not preferred, as earlier mentioned) location of todays network adapters. Also, the focus
IS more on interconnects for message passing because of the broader design space.

2.5.1 Programmed 1/O versus Direct Memory Access

Message data can be transferred in two ways: Programmed 1/O (P1O), where the processor
copies data between memory and the NI, and Direct Memory Access (DMA), where the
network device itself initiates the transfer. Figure 2-9 depicts both mechanisms on the
sender side. P10 only requires that some NI registers are mapped into the user space. The
CPU is then able to copy user data from any virtual address directly into the NI and vice
versa. P10 offers very low start-up times, but gets inefficient with increasing message
size, since processor time is consumed by simple data copy routines. DMA needs a bit
more setup time, since the DMA controller inside the NI normally needs physical
addresses to transfer the correct data. Most interconnects offering DMA transfer require
that pages are pinned down in memory, so the OS cannot swap them out to disk. This
makes it feasible to hand over physical addresses to the NI, but adds an additional copying
step to transfer the user data into the DMA region (loss of zero copy property). After data
is copied (step DMAL in Figure 2-9), the processor starts the transfer by creating an entry
in a job queue (DMAZ2), which can reside either in main memory or the NI. The NI sets

24

System Area Networks

up a DMA transfer to read the message data from memory (DMAS3), which is then fed into
the network. DMA is not suitable for small messages, but it relieves the processor so it
can do useful work in case of large messages.

Figure 2-9.PI1O vs. DMA data transfer

CPU

PIO

NI

System Bus /0 Network
Bﬂdg,e - PCTBUS Registers

—

—

i -
{ omag DMA Space’ DA
' - J[Data |
L DMA2
User, Buffer I
Space /
e
Job |gq -
Queue

Main Memory

Several factors influence the performance of both mechanisms. The simplest PIO imple-
mentation writes message data sequentially into a single NI register, which resides in /0
space. This normally results in single bus cycles and poor bandwidth. To achieve an
acceptable bandwidth, the processor must be able to issue burst cycles. This can be done
by choosing a small address area as target, which is treated as memory. Writing on these
consecutive addresses enables the CPU or the 1/O bridge to apply techniques like write
combining, where several consecutive write operations are assembled in a special write
buffer and issued as burst transaction. This mechanism can be found in most modern
microprocessor architectures. Another solution would be an instruction set support for
cache control (cache line flush, etc.), as implemented in the PowerPC architecture. Since
the PCI bus implements variable-length burst transactions, a DMA controller inside the
NI could try to read/write a large block of data in one burst cycle. Experiments have
shown that it is possible to reach about 90 % of the peak bandwidth with long bursts (110-
120 Mbyte/s on a 32 bit/33 MHz PCI bus with 132 Mbyte/s peak bandwidth).

To sum it up, PIO is superior to DMA for small messages up to a certain size where the
copy overhead stalls the processor too long from useful work. If one recalls that the major-
ity of the typical network traffic is caused by small messages, it becomes clear that an NI
designer should implement support for both mechanisms.

25

SCI

2.5.2 Control transfer

If DMA is used for transferring message data, another critical design choice is the mech-
anism on how to signal the microprocessor the complete reception of a whole message.
This is often referred to as control transfer. In polling mode, the CPU continuously reads
an NI status register. The NI sets a flag bit in case of a completed transaction. If the NI
resides on the 1/O bus, this could waste a lot of valuable bandwidth. As an improvement,
the NI could mirror its status into main memory. This would enable the processor to poll
on cache-coherent memory, thus saving bandwidth.

Another solution is to interrupt the CPU. But this results in a context switch to kernel
mode, which is an expensive operation. A hybrid solution could enable the NI to issue an
interrupt when message data is present for a specific time value without data transfer. A
programmable watchdog timer could be located inside the NI to do this job.

2.5.3 Collective operations

So far, we have only presented mechanisms to send or receive messages in a point-to-
point manner. Software for Parallel Computing often uses collective communication tech-
niques such as barrier synchronization or multicasts. This is especially true with networks
for virtual shared memory, where updated data must be distributed to all other nodes. For
example, supercomputers like Cray-X/MP or AlliantFX [38] offered a dedicated synchro-
nization network. Todays cluster networks leave this task to software, where tree-based
algorithms map a broadcast to a hierarchical send/forward scheme. Only few intercon-
nects have direct hardware support for collective operations. The barrier register of the
Synfinity interconnect [39] is one example.

Networks with a shared bus like Fast Ethernet can easily broadcast data, whereas the inte-
gration into point-to-point networks like Myrinet or ServerNet is more complicated. Often
the hardware realization of collective operations implicates a restriction of the network
topology. This issue is an area for further improvements of todays cluster networks.

2.6 SCI

SCI (Scalable Coherent Interface) [40] is an IEEE standard (ANSI/IEEE Std 1596-1992)
finally approved in 1992. The goal was to develop a network capable of interconnecting
multiple systems into one unified distributed memory machine. It should overcome the
limitations of bus-based approaches, which have a very limited scalability (up to 32/64
CPUSs). The standard defines a set of hardware protocols and memory transactions, with
the option of a hardware cache coherence protocol.

26

System Area Networks

2.6.1 Targeting DSM systems

Several goals influenced the standardization of SCI as a Distributed Shared Memory
(DSM) network. Of course, the premier goal is high performance in all relevant aspects.
To compete as an interconnect for DSM machines with bus-based SMP systems, SCI
needs to provide the same level of data bandwidth, message latency and low CPU over-
head as its competing architectures. The continuous progress in CPU and memory speed
should not outrun the network in terms of performance. The second important goal is scal-
ability in many ways. SCI should be able to scale well beyond hundreds of nodes. That
relates to the cache coherence mechanism, to the interconnect technology in terms of used
media and its length, as well as to the addressing scheme to share a terascale memory
space.

In the following, the main concepts behind SCI are presented:

 all SCI networks should be build out of unidirectional, point-to-point links. Most
implementations use bit-parallel, copper-based links with a range of a few meters.
This is normally sufficient to interconnect a few machines into a tightly-coupled DSM
system.

 links should rely on latest signaling technology to provide best performance. Link
speeds vary today between 500/667 Mbyte/s for SAN cables (LVDS, CMOS) and
1 Gbyte/s for intra-system connections in more advanced, but costly technologies
(GaAs, BICMOS).

» though it is most common today to interconnect PCs or workstations with SCI, its
intention was also to connect different system components (memory modules, disk
arrays, etc.) to an SCI network. But this would require a broad adoption of SCI inter-
face technology. All relevant systems use either SMP or single-CPU machines as
nodes. SCI can support up to 64k nodes, but real systems use normally a two-digit
number of nodes.

» the SCI standard does not specify a specific network topology, but since most adapters
have two unidirectional links (1 in-, 1 out-link), common topologies are single rings,
or for a larger number of nodes 2D tori or rings of rings. With faster nodes and their
improved single-node bandwidth (PCI 64 bit/66 MHz), the ring structures have
become a significant bottleneck, especially for larger installations. Manufacturers
have responded with small-scale switches (8/16 ports) or adapters with 2, or even 3
link connectors to form 2D/3D rings.

27

SCI

» the transaction layer uses split transactions (request/response) to access remote data.
The standard defines a limit of 64 outstanding requests, but most implementations use
a lower number due to buffer restrictions. SCI provides a global, physically distrib-
uted 64 bit address space. The upper 16 bits of an address are used as node identifier.

» though coherency is one of the two defining features of SCI (besides scalability), it is
only included as option in the standard. Due to its complexity and need for additional
resources (cache coherence engine, distributed directory) only few DSM producers
have implemented it. Since most SCI adapters connect to I/0 bus technology like PClI,
cache coherence is not supported.

2.6.2 The Dolphin SCI adapter

Figure 2-10.Architecture of Dolphin’s SCI card [40]

-

¢ PCI
PCI-SCI-Bridge (PSB)

Bus -

PCI Master/Slave |

Protocol
Engine

Read Write
Buffer Buffer
ATC

) t B-Link
Link Controller (LC)

TX Buffer

SCI Out -ag v

Bypass FIFO

RX Buffer

18

T 2

SCl In

The SCI standard was intended to specify an open interface to provide interoperability
across multiple vendors, connectors and devices. But the complexity of the specification
has led to implementations, which concentrated on necessary features and left out others.
This resulted in a market with a few proprietary incompatible solutions. Despite a few
vendors of DSM systems, like Data General’'s AViiON [41] (now part of EMC), Convex
Exemplar [42] (now HP) and Sequent's NUMA-Q [43] (now IBM), the most used SCI
SAN implementation is developed by Dolphin Interconnect LCC

1. www.dolphinics.com

28

System Area Networks

Figure 2-10 depicts the block diagram of the two main chips on the NIC, the PCI-SCI-
Bridge (PSB) and the Link Controller (LC). Both chips communicate via a proprietary B-
Link bus. This decoupled architecture allows attaching multiple LC chips to the B-Link,

a separate development of future generations of both chips, and the use of LC chips for a
non-PCI environment. The main blocks on these chips are:

+ the PCI Master/Slave Interface handles all PCI bus transactions. It also contains a
DMA controller for direct memory-to-memory transfers.

* Read/Write Buffers contain slots for 128 byte data packets associated with every SCI
transaction.

 the Protocol Engine manages all SCI transfers. Up to 16 read/write streams can be
handles simultaneously.

» the Address Translation Cache (ATC) is used to map PCI to SCI addresses. It also
contains some page attributes. The whole Address Translation Table (ATT) is located
in separate SRAM on the adapter, an ATC miss triggers are reload of the referenced
entry into the ATC.

» TX/RX Buffers on the LC inject/extract SCI packets into/out of the SCI link. Packets
addressing other nodes are simply forwarded via a Bypass FIFO.

The latest version of the PSB (PSB66) offers a 64 bit/66 MHz PCI interface, and the most
recent LC (LC3) chip offers a link bandwidth of 667 Mbyte/s. Besides the normal CPU-
initiated read/write transactions some additional features were implemented. A program-
mable DMA engine processes a linked list of control blocks specifying data to be sent to
remote nodes. This frees the CPU in case of large message transfers for better throughput.
A feature called mailbox triggers on specially tagged SCI packets, which are placed into
a separate message pool. An interrupt is raised on reception of such packets to make the
CPU aware of the received data. Since in a multi-CPU node several concurrent write
accesses can occur, a special write gathering is performed to forward data via the SCI link
in larger data blocks. A store barrier mechanism offers the possibility to flush gathered
write data for separate pages.

2.6.3 Remarks

SCI has been used successfully as interconnect in DSM systems, but is less efficient in a
cluster environment due to certain architectural properties. A lot of components have been
optimized for fine-grain communication patterns to support system-wide coherence. A
relative small packet size, unidirectional links for ring structures, slow remote read oper-

29

ServerNet

ations, etc. hinder the hardware to unfold its full potential when used as cluster intercon-
nect. Studies [44] have shown that the sustained node-to-node bandwidth on SCI is more
limited than in other networks.

Another bottleneck is the limited ability to form scalable networks. A popular topology
for SCl is a 2D ring structure, e.g. the largest SCI Cluster in Europe at the Paderborn
Center for Parallel Computing (Fzﬁuses an unidirectional 8x12 2D torus. But this also
means that on a ring containing 12 nodes, all these 12 nodes have to share the link band-
width of 500 Mbyte/s. This is a drawback of SCI systems compared to other full-duplex,
fully switched solutions like Myrinet or QsNet.

All this led to a relatively low acceptance of SCI as cluster interconnect. While other tech-
nologies are used now to build Clusters of thousand or more nodes, SCI Clusters are rarely
larger than 32 nodes. Vendors have responded with small-scale (6-8 ports) switches, but
they can only soften the bandwidth bottleneck. Compared to the SAN market, the manu-
facturers of SCl-based DSM systems have developed some efficient and fast systems. But
all three mentioned before (Data General, Convex and Sequent) have gone out of business
or have been taken over by other companies. Most product lines have been phased out.

2.7 ServerNet

In 1995, Tandem introduced one of the first commercially available implementation of a
SAN called ServerNet. Since its introduction, ServerNet equipment has been sold by
Tandem (now owned by Compaq) for more than one billion dollars. In 1998, Tandem
announced the availability of ServerNet Il [45], the follow-up to the first version, which
raises the bandwidth and adds new features while preserving full compatibility with Serv-
erNet I.

With ServerNet, Tandem, a major computer manufacturer in the business area, addressed
one of the main server problems: limited I/O bandwidth. Tandem’s customers, mainly
business companies running large database applications, needed more I/O bandwidth to
keep up with the growing data volumes their servers should be able to handle. So Server-
Net was intended as a high bandwidth interconnect between processors and I/O devices,
but turned quickly into a general purpose SAN.

2.7.1 Scalability and reliability

With scalable 1/0 bandwidth as the primary goal, ServerNet consists of two main compo-
nents: endnodes with interfaces to the system bus or various I/O interfaces and routers to
connect all endnodes to one clustered system. One main design goal was the ability to

30

System Area Networks

transfer data directly between two 1/O devices, thus relieving processors of plain data
copy jobs. By being able to serve multiple simultaneous I/O transfers, ServerNet removes
the I/O bottleneck and offers the construction of scalable clustered servers. Figure 2-11
shows a sample system configuration. Most ServerNet configurations, besides the Hima-
laya series of Tandem itself, use an I/O (PCI) adapter instead of directly attaching to the
system bus.

Figure 2-11.A sample ServerNet network [46]

[Server }[Server }[Server }[Server }[Server }[Server }

ServerNet
Router

erver
uter

\f/ezérNet
auter

\S;/v
Ro

erNer

uter

\Sf/rverNet
N
Router

ServerNet
Router

ServerNet
Router

ServerNet

Router

ServerNet
Router

(o] (o] (o) [

2.7.2 Link technology

ServerNet is a full duplex, wormhole switched network. The first implementation uses
9 bit parallel physical interfaces with LVDS/ECL signaling, running at 50 MHz. Server-
Net Il raises the physical bandwidth to 125 Mbyte/s, driving standard 8b/10b serializers/
deserializers to connect to 1000BaseX (Gigabit Ethernet) standard cables. With the sup-
port of serial copper cables, ServerNet is able to span across significantly longer dis-
tances. For compatibility reasons, ServerNet Il components also implement the interface
of the first version. Together with additional converter logic, ServerNet | and Il compo-
nents can be mixed within one system, enabling the customer to easily upgrade an existent
cluster with components of the new generation without the need to replace ServerNet |
components. Links operate asynchronously and avoid buffer overrun through periodic
insertion of SKIP control symbols, which are dropped by the receiver. Special flow con-

31

ServerNet

trol symbols are exchanged between two link endnodes to ensure, that data does not have
to be dropped due to lack of buffer space.

2.7.3 Data transfer

The basic data transfer mechanism supported is a DMA-based remote memory read/write.
An endnode can be instructed to read/write a data packet of up to 64 byte (512 byte in
ServerNet Il) from/to a remote memory location. The address of a packet consists of a
20 bit ID and a 32/64 bit address field. The ServerNet ID uniquely identifies an endnode
and the route towards the destination.

The address can be viewed as a virtual ServerNet address. The lower 12 bits are the page
offset, whereas the upper bits are an index into the Address Validation Translation Table
(AVT). Via this indirection, the receiver is able to check read/write permissions of the
sender, as depicted in Figure 2-12. To support communication models, for which the des-
tination of the message is not known in advance, the address can also specify one of sev-
eral packet queues, to which data is then appended.

Figure 2-12.ServerNet address space [45]

20 bit 20/52 bit 12 bit
ServerNet ID AVT index offset

v

address validation
& translation table

routing decision *
local physical address

routing table

A main feature of ServerNet is its support for guaranteed and error free in-order delivery
of data on various levels. On the link layer, a CRC check is done in each network stage to
validate the correct reception of the message. Each link is checked through the periodical
exchange of heartbeat control symbols. Each endpoint assures correct transmission by
sending acknowledges back to the sender. In case of errors, the hardware invokes driver
routines for error handling.

2.7.4 Switches

ServerNet | offers 6 port switches, which can be connected in an arbitrary topology.
Router Il, the next generation of ServerNet switches, raises the number of ports to 12. In-

32

System Area Networks

and outports contain FIFOs to buffer a certain amount of data and are connected through
a 13x13 crossbar. The additional port is used to inject or extract control packets. Each
Router offers a JTAG and processor interface for debug or management services. One
special feature of ServerNet switches is the ability to form so called Fat Pipes. Several
physical links can be used to form one logical link, connecting two identical link end-
points. The switches can now be configured to dynamically choose one of the links, which
leads to a better link utilization under heavy load.

2.7.5 Software

The good reliability of the ServerNet hardware makes it possible to implement low over-
head protocol layers and driver software. Tandem clusters run the UNIX and WindowsNT
operating systems. With its packet queues, the second generation of this SAN introduces
a mechanism to efficiently support the message passing model of the Virtual Interface
Architecture (VIA) [47], a message layer specification for cluster networks.

To provide an easy way of managing the network, a special sort of packets is defined
called In Band Control (IBC) packets. These packets use the same links as normal data
packets, but are interpreted by an 8 bit microcontroller. The IBC protocol is responsible
for initialization, faulty node isolation and several other management issues. IBC packets
are used to gather status or scatter control data to all ServerNet components.

2.7.6 Remarks

Though it is hard to find detailed performance numbers, ServerNet technology seems to
be a very reliable and, with its second generation, also high performance SAN. ServerNet
focuses on the business/server market and has only poorly been accepted by researchers
in the area of technical computing so far, though it would be interesting to see the perfor-
mance of message passing libraries such as MPI and PVM.

ServerNet implements a lot of properties, which are extremely useful for cluster comput-
ing: error handling on various levels, a kind of protection scheme (AVT), standard phys-
ical layers (1000BaseX cables) and support for network management (IBC). But despite
its commercial success, Compag has lately announced the discontuinuation of ServerNet
in favor of the upcoming InfiniBand interconnect. Whether the ServerNet technology is
further developed to fit the Infiniband requirements, or it is abandoned in favor of external
network technology is not clear yet.

1. www.viarch.org

33

Myrinet

2.8 Myrinet

Myrinet [48] is a SAN evolved from supercomputer technology and the main product of
Myricom?, a company founded in 1994. It has become quite popular in the research com-
munity, resulting in 150 installations of various sizes through June 1997. Today thousands
of clusters are equipped with the Myrinet network, with some really large installations of
256+ nodes. A major key to its success is the fact that all hardware and software specifi-
cations are open and public.

The Myrinet technology is based on two earlier research projects, namely Mosaic and
Atomic LAN by Caltech and USC research groups. Mosaic was a fine grain supercom-
puter, which needed a truly scalable interconnection network with lots of bandwidth. The
Atomic LAN project was based on Mosaic technology and can be regarded as a research
prototype of Myrinet, implementing the major features such as network mapping and
address-to-route translation; however, with some limitations (short distances (1 m) and a
topology (1D chains) not very suitable for larger systems). Eventually, members of both
groups founded Myricom to bring their SAN technology into commercial business.

2.8.1 NIC architecture

Figure 2-13.Architecture of the latest Myrinet-2000 fiber NIC [49]

2/4/8 Mbyte SRAM

t 64 bit data path

LANai 9
64/66 [PCIDMA chip | AN .
<—>PC| link ; :
PCl | [oma| ||| host ||risc|!| packet | || SANiber (126 0K
bridge | | cntl interface interface conversion -

Regarding the link and packet layer, Myrinet is very similar to ServerNet (or vice versa).
They differ considerably in the design of the host interface. A Myrinet host interface con-
sists of two major components: the LANai chip and its associated SRAM memory. The
LANai is a custom VLSI chip and controls the data transfer between the host and the net-
work. Its main component is a programmable microcontroller, which controls DMA
engines responsible for the data transfer directions host to/from onboard memory and

1. www.myri.com

34

System Area Networks

memory to/from network. So message data must first be written to the NI SRAM, before

it can be injected into the network. This intermediate buffering adds some latency, the
more the larger the message is. The SRAM also stores the Myrinet Control Program
(MCP) and several job queues. A recent improvement is the upgrade of the link from a
byte-parallel copper-based implementation to a serial optical fiber. The basic architecture
is depicted in Figure 2-13.

More than other SAN developers Myricom has continuously improved the architecture
and the hardware components of the Myrinet network:

« the first version of the NIC was based on Sun’s SBus. But with the broad adoption of
PCI and PCs becoming the main node systems instead of RISC workstations, a PCI-
based NIC was developed. The first version implemented a 32 bit/33 MHz PCI inter-
face. A later version upgraded to 64 bit/66 MHz.

» the LANai chip started at 33 MHz, latest versions (v9) are running at 133/200 MHz.

» on-board SRAM was steadily enlarged, from 512 Kbyte up to latest NIC versions
with 8 Mbyte. This was necessary to satisfy the need for more buffer space on the NIC
to store larger MCPs, provide more space for message data, etc.

« first links were full-duplex byte-parallel links running at 1.28 Gbit/s in each direction
over copper cables up to 10 m. With Myrinet-2000 a serial version of the copper-
based links was introduced, running at 2 Gbit/s.

2.8.2 Transport layer and switches

Data packets can be of any length and are forwarded using cut-through switching. They
consist of a routing header, a type field, the payload and a trailing CRC. Myrinet uses
wormhole routing. While entering a switch, the first header byte encodes the outgoing
port. The switch strips off the leading byte and forwards the remaining part of the packet
to the appropriate output port. When the packet enters its destination host interface, the
routing header is completely eaten up and the type field leads the message. Special control
symbols (STOP, GO) are used to implement reverse flow control.

On the link level, the trailing CRC is computed in each network stage and substituted for
the previous one. A packet with a nonzero CRC entering a host interface then indicates
transmission errors. MTBF (Mean Time Between Failure) times of several million hours
are reported for switches and interfaces. On detection of cable faults or node failure, alter-
native routes are computed by the LANai. To prevent deadlocks from long-term blocked

35

Myrinet

messages, time-outs generate a forward reset (FRES) signal, which causes the blocking
stage to reset itself.

Latest Myrinet switch technology [50] is build around a single crossbar chip with 16 ports,
called XBarl6. A rack-mountable line card equipped with one XBarl6 offers 8 front
panel ports for connecting nodes. 8 ports connect to a backplane interface. Multiple line
cards can now be inserted into racks of different size. A backplane is mounted with 8
XBarl6 chips, forming the spine of a Myrinet network. The preferred topology for a
Myrinet network is the Clos network. Compared to other popular network topologies like
2D/3D tori/grids, hypercubes, fat trees, etc., a Clos network offers full-bisection band-
width, full rearrangability, good scaling and multi-path redundancy. It is the preferred
topology for the latest large-scale Myrinet installations with 256 and more nodes.
Figure 2-14 shows a sample configuration for a 128 node Clos network.

Figure 2-14.A Clos network with 128 nodes [50]

Seime of the Clos Netwaork (backpiane

s
"apreader”
HEfwork

/ At ﬁe’ff RATTAHAT | Tk Fhed, DR PR RER D ek iy
I sl i S| e e W ey o ek S IR SIS 3] g 2 o
COTHETEEETT TETEOET TELETE COECTELE TEETRE EROFLEL FELTEOE FOOERERT TEECRET TRECELR FECRELE TEEITAD TECDELEL FOREURE DA
M o M o M o M & N ” L] ” L] ” il ']

Parts vy o 128 hosis dline cards)

2.8.3 Software and performance

As mentioned before, all Myrinet specifications are open and public. The device driver
code and the MCP are distributed as source code to serve as documentation and base for
porting new protocol layers onto Myrinet. This has motivated many research groups to
implement their own message layers and is one of the main reasons for the popularity of
Myrinet. Device drivers are available for Linux, Solaris, WindowsNT, DEC Unix, Irix

and VxWorks on Pentium (Pro), Sparc, Alpha, MIPS and PowerPC processors. A patched
GNU C-compiler is available to develop MCP programs.

36

System Area Networks

The performance of the Myrinet network is highly depended on the software layer used
to access the Myrinet hardware. Quite a number of software layers have been imple-
mented, e.g. Active Messages [51], Fast Messages [52], BIP [53], Parastation [54] and
many others. Poor quality of early Myrinet software was one issue leading to the devel-
opment of many external implementations.

Over the last two years, Myricom has developed with the GM message layer [55] a quite
stable and fast software layer, which is broadly used now for new installations. The
second message layer with a significant user base is SCore [56] from the Japanese Real
World Computing PartnershifRWCP). Table 2-3 summarizes basic performance num-
bers for this two layers.

Table 2-3.Performance of GM and SCore over Myrinet [55], [56]

GM?3 SCoré&
sustained bandwidth 245 Mbyte/s 146 Mbyte/s
message size with 50% BYY, | 900 Byte 600 Byte
one-way latency 7 us 13.3us

a. 66/64 PCI, Myrinet-2000, fiber, LANai 9 200 MHz
b. 33/64 PCI, Myrinet-SAN, copper, LANai 7 66 MHz

2.8.4 Remarks

The great flexibility of the hardware due to the programmable LANai microcontroller is
one of the major advantages of Myrinet. It has attracted a lot of attention from the research
community and fueled the implementation of lots of message layers on top of the Myrinet
network. Another reason for the success is Myricom’s policy of continuous small
improvements to hardware and software.

Bottlenecks like slow onboard SRAM or LANai chips have been removed, early versions
of low-performance software have been replaced. Regarding market share, Myrinet seems
to dominate the SAN market right now. With shipping more than 5.000 NICs and almost
10.000 switch ports in 1Q/2001, Myrinet is the network to beat in this area. And with
switch technology scaling to 1.000 nodes and more it is well prepared for future teraflop
Cluster installations.

1. pdswww.rwcp.or.jp

37

QsNet

2.9 QsNet

QsNet [57]is a SAN developed by Quadrics Supercomputers Worfd Stahilar to other
SANs, QsNet has its root in traditional supercomputer technology, since Quadrics
emerged from the well-known supercomputer manufacturer Meiko Ldt. Influences of
their cache-only machines are still visible in the QsNet architecture. QsNet is the only
SAN with a seamless integration of the network interface into the nodes memory system.
This unique feature of a globally shared, virtual memory space is made possible by
address translation and mapping hardware directly integrated into the NIC.

2.9.1 NIC architecture

Figure 2-15.Block diagram of the Elan-3 ASIC [57]

interconnection
network + 10

‘ 10

link FIFO FIFO
2 SDRAM thread mcode mux 0 1
- IIF processor processor 4f
DMA inputter
buffers

D T
} e i

MMU& table clock&
TLB walk statistics
engine i
4 way ¢} registers
set associative
cache % 7

-

PCl interface

64
into the node

The third generation of the Elan ASIC is the key component of the QsNet NIC. Its archi-
tecture is depicted in Figure 2-15. In the following, a brief description of the functional
units is given:

* a 64 bit/66 MHz PCI interface is used for communication with the host.

1. www.quadrics.com

38

System Area Networks

 full-duplex 10 bit LVDS links connect the NIC via copper cables to the network at a
rate of 400 Mbyte/s per direction.

* a 32 bit microcode processor supporting up to four concurrent threads. Threads have
different tasks: control of the inputter, setting up the DMA engine, scheduling of
threads, and communicating with the host.

» a 32 bit thread processor, which offloads processing of higher level library tasks from
the host CPU.

* a Memory Management Unit (MMU) with a Translation Look-Aside Buffer (TLB) to
do table walks and translate virtual into physical addresses

* a 64 bit SDRAM interface to connect to external 64 Mbyte SRAM, together with a
8 Kbyte on-chip four-way set-associative memory cache.

2.9.2 Switches and topology

Besides the NIC, two different switches (16 and 128 port) are used to connect QsNet
nodes into a fat-tree network. The basic building block is a line card with 8 Elite-3 switch
chips. Each Elite-3 chip is a 8-port full-duplex switch, with two virtual channels per input
link. Multiple line cards are then used to construct a full-bisection, multi-route fat-tree
network.

Source-path routing is used to deliver network packets to their destination. The sender
attaches a sequence of routing tags to the head of a message. Each network stage interprets
the first routing tag, removes it and forwards the message towards its destination. Special
tags are used to support a broadcast function, which can be utilized to send a message
simultaneously to all remote nodes, or even a group of distinct nodes. At the link level, all
network traffic is pipelined in a wormhole manner, with an end-to-end acknowledgment

of packets. In case of transmission errors, the sending NIC retries the transmission auto-
matically without intervention from the host side.

2.9.3 Programming interface and performance

Figure 2-16 shows the overall structure of the programming interface for a QsNet net-
work. A layer called Elan3lib directly interacts with the hardware. Kernel routines are
mainly used for initialization tasks, like mapping parts of a process local address space
into a globally shared virtual address space. The Elan3lib supports a programming model
with cooperating processes. The main functions are used to map/allocate memory and to
set up remote DMA transfers. Processes communicate mostly via events, e.g. to synchro-
nize the host process with a thread running on the Elan chip. The Elanlib is a higher layer,

39

QsNet

hiding all the hardware- and revision-dependent details. It offers a point-to-point message
passing model with the use of tags to filter messages at the receiving side. It supports both
synchronous and asynchronous message delivery.

Figure 2-16.Elan programming libraries [57]

user application
shmem mpi
elanlib tport
user space elan3lib
kernel space | -
system calls elan kernel routines

The unique feature of QsNet is its ability to directly send data from a process virtual
address space without any intermediate copying. The MMU inside the Elan-3 chip is syn-
chronized to the MMU of the host CPU, or more exact, MMU tables are kept consistent
between the QsNet NIC and the OS kernel running on the host node. That way, a user pro-
cess can call a send routine of the Elanlib with a virtual address, the Elan-3 MMU trans-
lates the virtual into a physical address, either in main memory or in the SRAM on the
QsNet adapter. This is made possible by extending the OS kernel with functions to ensure
consistency of MMU tables. Special memory allocation functions of the Elanlib offer the
possibility to map portions of the on-board SRAM into user processes, e.g. to give the
NIC fastest access to DMA descriptor tables.

Table 2-4.Performance of QsN&[57]

Elan3lib MPI
sustained bandwidth 335 Mbyte/s 307 Mbyte/s
message size with 50 % ByY, | 900 Byte 3 Khyte
one-way latency 2.4us 5.0us

a. Dual 733 MHz Pentium Ill, Serverworks HE chipset, Linux 2.4

QsNet currently leads all SANs in performance, due to its advanced hardware support of
message passing primitives. Its unique ability to communicate directly between virtual

address spaces without intermediate copies removes a lot of processing overhead.
Advanced features like a hardware broadcast boost the performance of collective opera-

40

System Area Networks

tions, like data multicast or synchronization barriers. This is especially true for large-scale
clusters with a performance of several teraflops. To make effective use of these features,
the OS kernel has to be patched, and libraries like MPI have to be highly optimized.
Table 2-4 displays the main performance numbers, both for the Elan3lib and MPI.

2.9.4 Remarks

Though it offers the best performance of todays SANs, QsNet has not attracted the level
of attention like e.g. Myrinet. The reason is a relative high price, in the order of three times
the price of competitive solutions. A significant part of the costs is due to the large amount
of SRAM on the NIC (64 Mbyte). Quadrics has a strong relationship with the High Per-
formance Computing division of Compaq. QsNet is the preferred interconnect for their
Alpha SC series[58], based on SMP nodes with multiple Alpha CPUs. Though only a few
cluster installations exist, these are quite impressive. The latest one is the Terascale Com-
puting System at the Pittsburgh Supercomputing Center (PSC). A cluster of 750 quad pro-
cessor Compaq AlphaServer ES45s, each node equipped with two QsNet adapters,
delivers a peak performance of 6 teraflops. At the date of installation (October 2001), this
system, named ‘Le Mieux’, is the most powerful supercomputer dedicated to unclassified
research.

2.10 IBM SP Switch?2

Though a proprietary network not intended for the PC cluster market, the Switch2 inter-
connect [59] from IBM is very similar in its architecture and use to more general SAN
solutions like Myrinet or QsNet. An intelligent host adapter, driven by an embedded
microcontroller, send/receives data to/from the network. The first generation of SP
Switch technology has been used to interconnect IBM RS/6000 machines since the mid
90’s. But at the end of the decade it was outdated with its 150 Mbyte/s link bandwidth and
slow on-board logic.

To remain one of the top HPC manufacturers, IBM developed with the second generation
of SP Switch technology an interconnect able to keep up the performance of SP clusters.
Switch2 is a key component for IBM’s RS/6000 SP parallel machines. These machines
are clusters of high-end SMP workstations. Several terascale systems are IBM SP
machines, among them the most powerful supercomputer today, the ASCIiWhite
machine. With its 8.192 CPUs in total, the machine is capable of delivering 12.3 teraflops,
twice as much computing power than the second fastest machine (Le Mieux).

1. www.lInl.gov/asci

41

IBM SP Switch2

Though due to its proprietary interface not usable for general cluster computing, its tech-
nology is quite interesting and therefore, shortly presented here.

2.10.1 NIC architecture

Figure 2-17.Block diagram of the Switch2 node adapter [59]
data segmentation

high-speed
switch interface and rez\glssembly
|
= ; =
N\ 2 2
~— P STI TBIC3 x o
v 4 x
D)
. MIC
= = 2 2
o 04 04
e SRAM| |SRAM &) &)
4 @
PPC
740

/4 NBA

A Y

Bus Connector

microcode
g node
operations interface

Figure 2-17 depicts the top-level architecture of the SP Switch2 host adapter. As shown
in the figure, one can partition the network adapter into four regions: a high-speed switch
interface, a module for data segmentation and reassembly, one for running microcode,
and one region to interface to the node system. The main components of these regions are:

* anode bus adapter (NBA) controls the communication with the host via a 16 byte,
125 MHz 6XX bus connector. The 6XX bus is the main system bus of the node,
directly connecting the Switch2 adapter to the CPUs and memory modules. CPUs can
issue load/store instructions to access the adapter.

» a Self Timed Interface (STI) chip connects the adapter via a byte-parallel link to the
network. A link is a full-duplex connection driving differential signals at 500 MHz.
The link can either be an on-board connection of few inches, or a copper cable of up
to 10 meters. The TBIC3 chip is an interface controller, connecting the STI to the on-
board RAM and the PowerPC 740 microprocessor. It contains hardware to offload
packet reassembly and segmentation from the main CPU.

42

System Area Networks

* 16 Mbyte of fast Rambus RDRAM is located on the adapter to provide sufficient
buffer space for message data. A Memory Interface Chip (MIC) controls the RDRAM
and parallelizes multiple accesses to the RDRAM from both the NBA and the TBIC3.

» aPowerPC 740 microprocessor is used to control all on-board components via micro-
code. Itis responsible for packet header generation, making routing decisions, handle
error conditions and communicating with the host. Its microcode program is stored in
4 Mbyte SRAM, along with some other status/control information.

The node architecture is highly decoupled to allow several data transmissions to occur at
the same time. While the host CPU is transferring new message data to the RDRAM, the
PPC 740 may read header information from the RDRAM, and the TBIC3 is forwarding a
message from RDRAM to the STI. All those datapaths at least provide a bandwidth of
1 Ghyte/s, with an aggregate bandwidth of 2.4 Gbyte/s to the RDRAM.

The general purpose PowerPC 740 microprocessor offloads a lot of tasks from the host
CPU. It basically provides a low-level message passing interface to the host CPU. Higher
software layers like MPI or IP then build up on these routines. To send a message, the host
simply writes a work ticket into a job queue residing in the SRAM. The PPC 740 monitors
this queue, and then sets up the data transfer via DMA from the NBA into RDRAM. After
data is completely written to RDRAM, the microprocessor sets up header and data infor-
mation for the TBIC3, which then forwards data autonomously to the STI. Message data
Is segmented into 1 Kbyte units. On the receiving side, the TBIC3 forwards incoming
header information to the PPC 740 for further investigation. The CPU then decides, where
to place message data and communicates this information to the TBIC3. The TBIC3 sets
up DMA transfers to write message data into the RDRAM. Upon completion, it notifies
the microprocessor, which then instructs the NBA to write the message out to the hosts
main memory.

Additional to the message transfers, the Switch2 offers some advanced features. On is the
generation of a Time Of Day (TOD) signal. This signal is used to synchronize all compo-
nents of the network to a master TOD, even with a compensation of cable delays. This
way, a synchronization of the whole network can be maintained at about 1 us.

2.10.2 Network switches

SP machines are mostly connected in a bidirectional multistage interconnection network
(BMIN) topology. Similar to the fat tree network of QsNet, which is a BMIN, they offer
high scalability, multi-route paths and reward communication locality. SP switches are
32-port switches, where 16 ports are normally used to connect to nodes, while the other

43

IBM SP Switch2

16 ports are used to interconnect with other switches. Such a switch contains 8 intercon-
nected 8-port Switch3 [60] chips.

SP switches use source-path wormhole routing with a credit-based flow control scheme

to prevent buffer overflow. Each Switch3 chip contains input/output ports, together with

a large central buffer queue. This 8 Kbyte central buffer is used to store message data in
large chunks in case its targeted output port is blocked by another message in transit. This
mechanism reduces the head-of-the-line blocking, where a blocked message occupies
several network stages and prevents all other messages on this path from advancing.

Each output port has two output queues assigned, one low- and one high-priority queue.
High-priority packets may bypass other messages for faster delivery. Two recent addi-
tions in routing enable better performance for a SP network. First, a restricted form of
adaptive routing can be used to let switches determine the fastest network path. This fea-
ture is especially helpful under heavy workloads to utilize the network in the most effi-
cient manner. Multicast routing is provided via enabling multiple output ports to read the
same packet from the central buffer queue. The specification of output ports can be either
via a table lookup or encoding of routing bytes.

2.10.3 Remarks

The new generation of IBM’s SP Switch technology offers enough performance to let
clusters of RS/6000 SP SMP nodes compete in the HPC market. With a link bandwidth
of 500 Mbyte/s and a scalable network offering advanced features like multicast or adap-
tive routing, SP machines are especially well suited for large terascale installations. Three
out of currently six large teraflop machines of the Accelerated Strategic Computing Ini-
tiative (ASCI) are IBM SP systems.

Up to 350 Mbyte/s sustained bandwidth has been measured for MPI applications. A rela-
tive high latency of 17 us could be declared with the highly decoupled architecture of the
node adapter. The 6XX bus interface is both an advantage and a drawback. The adapter
can directly access main memory, without an 1/0O bridge in between. But the use of the
Switch NICs is limited to two versions of IBM's POWER3 SMP Nodes. For better
throughput in SMP nodes with up to 8 CPUs, each node board offers two slots, so one can
attach two Switch2 adapters to each node.

Features like multicast and adaptive routing have not been implemented with such a level
of hardware supportin a SAN yet. It will be interesting to see, if and how other SAN man-
ufacturers will adopt them.

44

System Area Networks

2.11 Infiniband

I/O bandwidth is more and more becoming a limited resource in todays server systems.
To overcome this bottleneck, a lot of different I/0O technologies have been developed for
various application areas. Technologies like PCI, USB, AGP, SCSI, IDE, Firewire, Ether-
net, Fibre Channel, etc. are used to connect several device classes to a system, among
them networking, storage, input/output and graphics. Most of them are outmoded shared-
bus architectures, with poor scalability and serious bandwidth limitations. Furthermore,
most of them need a significant amount of CPU intervention, eating up a lot of the perfor-
mance benefit from faster microprocessors and memory modules.

To overcome the architectural limitations of bus-based approaches, several major com-
puter vendors have worked towards a new standard for I/O connectivity. Future 1/0 and
Next Generation 1/0 (NGIO) were two competing solutions from different vendors. The
need for a unified 1/0 technology finally led to the formation of the InfiniBand Trade
Associatiort (IBTA) in 1999 through a merger of those two forums. Its goal is to provide

a unified platform for server-to-server and I/O connectivity, based on a message-based
fabric network. In October 2000, the organization released the first version of the Infini-
Band specification [61], a three volume set of documents describing the architecture, con-
figuration and use of an InfiniBand fabric.

Companies like IBM [62] and Intel heavily push the development of IB hardware. First
products are available now, but mainly used for software development and prototype
demonstrations. With its target to replace different technologies it is expected, that 1B
products first enter the market in one or two main areas and will spread to other applica-
tion areas over time. First installations might appear in the storage area, where the demand
for bandwidth is extremely high. IB will be first deployed in high-end servers for enter-
prise-class business applications, like databases, transaction systems or webservers. It is
then expected that the technology moves down into the PC/workstation mass market and
turns into the unified I/O technology it is said to be.

2.11.1 Architecture

Figure 2-18 depicts the general architecture of an IB network. It contains the four building
blocks: Host Channel Adapter (HCA), Target Channel Adapter (TCA), Switches and
Routers. A HCA is an active network interface, similar to a SAN NIC. It interacts with
the host to generate/consume network packets. The HCA provides support for DMA-
based data transfer, memory protection and address translation, and multiple concurrent

1. www.infinibandta.org

45

Infiniband

accesses to the network from several processes. A typical HCA location is inside a server,
where it interfaces to the system bus via a memory controller to provide fast access to the
IB network. The TCA is a reduced passive version of the HCA, mainly intended to serve
as IB interface for 1/0O devices like disks, graphics, etc. Switches connect local compo-
nents into a IB subnet, whereas routers connect the subnet to a larger global InfiniBand
network.

Figure 2-18.The InfiniBand architecture [61]

HGA = Hoat Channed Adaples
Tiih = Targel Charmeal Adaptar
%CA = HOA of TCA TEFH'E[

TCA
e
5
GRU Memory _
Controller HCA Link | SWilch | yink TCA Target
: 3
CPU E
= Ergt
2m
E Memary XA xCA Lirik
CPU

Router | Metwork | Router

The foundation of communication in an InfiniBand fabric is the ability to queue up a set

of jobs that hardware executes. This is done via Queue Pairs (QP), one for send and one
for receive operations. User applications place work requests in appropriate queues,
which are then processed by the hardware. On completion, the hardware acknowledges
the finished job via a completion queue.

Applications can set up multiple QPs, each one independent from the others. A send job
specifies the local data to be sent, and can include the remote address where to place the
data. On the receiving side, a job specifies where to place incoming data. Most of the com-
munication mechanisms for IB have been adopted from the Virtual Interface Architecture
(VIA), a previous standardization effort for communication within clusters.

46

System Area Networks

InfiniBand supports connection oriented and datagram communication. A connected ser-
vice establishes a one-to-one relationship between a local and a remote QP. A datagram
QP is not tied to a single remote consumer.

2.11.2 Protocol stack

The specification separates IB into several layers, as shown in Figure 2-19: transport, net-
work, link and physical layer. This layered approach helps to hide implementation details
between layers, which use a fixed service interface to build on each other.

Figure 2-19.InfiniBand layered architecture [61]

/ end node \

transport

layer

network
layer

link
layer

physical
layer

_ *)

signaling

p to IB subnet

Physical layer

The physical layer specifies how single bits are put on the wire to form symbols. It
defines control symbols used for framing (start/end of packet), data symbols and
fillers (idles). A protocol defines correct packet formats, e.g. alignment of framing
symbols or length of packet sections. The physical layer is responsible for establish-
ing a physical link when possible, informing the link layer whether the link is up or
down, monitoring the status of the link, and passing data and control bytes between
the link layer and the remote link endpoint.

Link layer

The link layer describes the packet format and protocols for packet operation. This
includes flow control and routing of packets within a subnet. It basically defines two
types of packets: link management and data packets. Link management packets are
exchanged between the two link layers on a connection, and are used to train and

a7

Infiniband

maintain link operation. They negotiate operational parameters such as bit rate, link
width, etc. They are also used to convey flow control credits.

Data packets carry a payload of up to 4 Kbyte. A concept called Virtual Lanes (VL)
is used to multiplex a single physical link between several logical links. Up to 16
different VLs may be implemented, but only VLO (data) and VL15 (management)
are required.

Figure 2-20.InfiniBand data packet format [61]

Start E v
Delimiter Data Symbols Dielirniter Ieles.
T
7 _..th..
P I e o
A Packet e h"h"u..x
j Fa f i &
LRH | GRM | BTH | ETH Payload IDasta | ICRC | WCRC
. y
o
. Upper Layer Prﬂtﬂcﬂb
N
\ Transport Layer Protocol J
i
Metwork Layer Protocol

T
Link Layer Protocol

Figure 2-20 depicts the IB data packet format and which layer utilizes which part of
the packet to encapsulate needed information. The Local Route Header (LRH) spec-
ifies source and destination within a subnet, and the VL to use. The payload of a
packet can be 0-4 Kbyte large. Each packet is completed by two CRC words: an
Invariant CRC (ICRC) and a Variant CRC (VCRC). The ICRC covers all fields
which should not change during a transmission. The VCRC covers all fields. This
combination allows switches and routers to modify header fields and still maintain
end-to-end data integrity.

Network layer

The network layer implements the protocol to route packets between subnets. It uses
the Global Route Header (GRH) to identify source and destination ports across mul-
tiple subnets in the format of an IPv6 address. The GRH is interpreted by routers,
which may modify the LRH and GRH to forward a packet towards its destination.

48

System Area Networks

Transport layer

The transport layer is responsible to deliver a packet to the proper QP and to instruct
the QP on how to process the payload. Segmentation of messages larger than a Max-
imum Transfer Unit (MTU) is also a task of this layer. It utilizes two fields of the
packet header to accomplish its job. The Base Transport Header (BTH) specifies the
destination QP, the packet sequence number and a packet type (send, remote DMA,
read, atomic). The sequence number is used by reliable connections to detect lost
packets. The Extended Transport Header (ETH) gives type-specific information,
like remote addresses, total message length, etc.

An Immediate Data (IData) word of 4 byte can be attached to the packet. This word
is placed on the receiving side into the completion queue entry, allowing to broad-
cast single data words without transferring payload into DMA areas.

A Software Transport Interface is defined on how to configure, access and operate 1B
communication structures. Additional management services are defined to provide an
interface for network-wide configuration and administration of IB components.

2.11.3 Remarks

The aggressive goal of InfiniBand to completely take over the whole I/O and server con-
nectivity market is a challenging task. It adopts a lot of mechanisms and technologies
from current SANs and tries to apply them to all forms of I/0. Whether it will succeed or
fail is also highly dependent on the level of cooperation between the leading industry
companies backing IB. The global approach of InfiniBand stands in contrast to possible
optimizations for a specific application area, as it is cluster computing. E.g., the header
overhead of an IB packet is quite large: up to 106 byte. This means that in applications
with a fine-grain communication pattern the protocol overhead consumes a significant
portion of the physical bandwidth.

On the other hand, competing solutions can try to present an InfiniBand software interface
to applications, while breaking down IB communication structures onto more efficient
hardware. At this point, one cannot say if it really becomes the general purpose intercon-
nect, or ends up as a replacement for SCSI and Fiber Channel in the high-end storage mar-
ket.

49

Infiniband

50

The ATOLL System Area Network

3The ATOLL System Area
Network

The idea to develop a new System Area Network was driven by the need for a high per-
formance cluster interconnect that would reduce costs to a minimum and therefore is able
to replace Ethernet as the most commonly used cluster network. Cost reduction goes hand
in hand with the limited opportunities of a small group of researchers to design and imple-
ment such a complex network.

So a large scale integration of all components was a major factor guiding the process of
specification and design of a new SAN. This led to the idea to break with the traditional
partitioning of a network into a node interface and switches connecting them together.
The result is a combined interface/switch device, which serves as a single basic building
block for a new generation of SANSs.

3.1 A new SAN architecture: ATOLL

The main idea behind this approach was formulated earlier within another context. The
first version of ATOLL [63] was designed as a system component for a massive parallel
architecture called PowerMANNA [64]. The node design consisted of a quad-CPU board,
equipped with PowerPC 620 microprocessors. Besides several memory banks, also an
ATOLL chip connects to the system bus to provide a low latency, high bandwidth net-
work connecting all nodes within a system chassis in a 2D grid. The ATOLL chip includes
four Bus Master Engines (BME) to give each node CPU exclusive access to the network.
Special instructions provide the ability to start communication jobs in an atomic way.
This, together with the extreme low latency, gave the design its name: ATOmic Low
Latency (ATOLL).

Most internal structures have been redesigned, due to the different environment of the
MPP and the SAN version of ATOLL. But the overall 4x4 structure, as shown in Figure 3-

1, remained as the main characteristic. Several techniques have been adopted, like worm-
hole routing and a mechanism for link-level error correction and retransmission of cor-
rupted data.

51

A new SAN architecture: ATOLL

Figure 3-1.The ATOLL structure

a)

host link
interface interface
_host link
interface | 8x8 I | interface
host I» crossbar 41 link
interface interface
host link
interface interface

- /

The number of host and link interfaces is a trade-off between the goal to provide as much
performance as possible and what is technically feasible. The bottleneck of todays SANs
Is still the network, considering that advanced 64 bit/66 MHz PCI bus implementations
offer a bandwidth of up to 528 Mbyte/s. With PCI-X and its 1 Gbyte/s entering the mar-
ket, one lets a lot of bandwidth unused. And since dual-CPU, and in the near future quad-
CPU nodes become an attractive option as cluster node architecture, one can overcome
the overhead associated with multiplexing a single NI.

The upper limit for the number of host interfaces is given by the amount of resources
needed to implement them, e.g. control logic, data buffers, etc. The upper limit for the
number of link interfaces is given by the amount of pins needed in the IC package for
implementing the parallel differential signal lines. The 4x4 structure turned out to be a
well balanced system architecture to completely remove the network as communication
bottleneck for the first time in Cluster Computing.

3.1.1 Design details of ATOLL

Some of the major design decisions are a natural consequence of the experiences with
other solutions. ATOLL is a message passing network interfacing to the dominant 1/0
technology PCI, or more specific, to its latest upgrade PCI-X. It utilizes source path and
wormhole routing on the link level to enable very fast data forwarding. Byte-parallel
copper links were the best choice for the interconnect at the start of the project. SANs are
moving now towards high speed serial links, but this technology was still premature at
that time.

52

The ATOLL System Area Network

A unique technique to detect and immediately correct transmission errors on links has
been implemented to remove costly error checking and correction in software. Since
newest cabling technology provides an almost errorfree environment, even for high signal
speeds, this mechanism offers the possibility to treat the network as a reliable media.

The mechanisms for data transfer between the host and the NI were driven by the fact that
the performance of DMA- or PIO-based approaches is highly dependent on the granular-
ity of the communication. Therefore, the decision was made to support both techniques.
This will make it possible to pick the fastest transfer, based on message size and other
impacts of the node system. A novel event notification mechanism avoids costly inter-
rupts and enables the CPU to poll on cache-coherent memory.

Some advanced features had to be omitted to keep the complexity at a manageable level.
It would have been interesting to implement features like adaptive and multicast routing.
As discussed earlier, they can give a huge performance boost, especially for large instal-
lations with hundreds of nodes. But the first version of ATOLL targets the market of small

to medium clusters, with the number of nodes somewhere between 8 and 256. The current
design will be sufficient for these dimensions.

In the following, the major features and mechanisms for the ATOLL System Area Net-
work are summarized:

» best cost-efficient solution by integrating all necessary SAN components into a single
IC

» support for SMP nodes by multiple independent host interfaces
* removing the need for external switch hardware by integration of a switch component

* high sustained bandwidth of multiple concurrent data streams by implementing a
highly decoupled architecture

+ PIO- and DMA-based data transfer to/from host
« efficient control transfer via coherent NIC status information in host memory
« error detection and correction on the link level

The rest of this chapter will introduce the architecture of the ATOLL network chip. The
main focus is on the implemented functionality, and how to make use of it via accessing
the control/status registers of the device. Each top-level unit will be described separately,
its design and its typical use and operation. Regarding the huge complexity of the imple-
mentation (over 400 unique modules with about 30.000 lines of code), the level of detail

53

Top-level architecture

had to be restricted. So not every single state machine or block of control logic is covered
in all aspects. But the description of the most important mechanisms and units should
enable the reader to gain an in-depth insight into the ATOLL architecture.

3.2 Top-level architecture

Figure 3-2.Top-level ATOLL architecture

/ 64

host P4 net link \9”
porto*porto o[] port [&~
8 S g host t link
o] a c oS ne — — |lIN
o4 EIJ_E):§—port1—port1—_—8x8 —_Mport 1[4
-+ =S [EOS — — H X[H
X 1S =€ [lhost | [net || 7] [lin
=1 | 2| | e Mport 2T Tport 2[port 2[4
ol |||t
o 7 S
host net link
~port 3| |port 3] “|port 3 -

<
- /

ATOLL is atrue 64 bit architecture. All addresses used by the device to access data struc-
tures in main memory have 64 bit base addresses. However, the actual pointers used to
reference the start/end of individual data units are 32 bit offsets. This provides a sufficient
amount of continuous memory space for data areas (4 Gbyte), while limiting the expense
of internal arithmetic units. When a read/write address is forwarded to the PCI-X inter-
face, the base address is added to the current offset. Figure 3-2 depicts the top-level archi-
tecture of ATOLL.

In the following, a brief overview of each functional unit is given:
PCI-X interface

the PCI-X interface is used to communicate with the host system. It can act as bus
master or slave, and provides sufficient support for latest improvements to the PCI-
X bus protocol, e.g. split transactions.

Synchronization interface

since the core of ATOLL runs with a higher clock frequency than the PCI-X inter-
face, all control and data signals crossing this clock domain border must be synchro-
nized to prevent signal corruption. This is done in a safe manner by the

54

The ATOLL System Area Network

synchronization interface. It also converts the application interface of the PCI-X
interface into a highly independent and concurrent interface for all four possible
data transfer directions (read/write, master/slave).

Port interconnect

the port interconnect multiplexes the access to the PCI-X interface between all four
host ports. Sufficient buffer space is provided to assemble multiple transfer
requests. It also contains the global status and configuration register sets for
ATOLL.

Host port

a host port contains all logic to enable PIO- and DMA-based message transfer. A
small interchangeable context keeps all addresses and offsets needed to access data
structures for messages residing in main memory. Large SRAM blocks supply
enough buffer space to take up message data and store it for further processing.
Multiple concurrent data transfers can be active at a time, e.g. sending data into the
network from a FIFO in the DMA unit, while reading data from the receive FIFO

of the PIO unit.

Network port

the network port converts a stream of tagged 64 bit datawords from the hostport into
a 9 bit-wide data stream conforming with the link packet protocol and vice versa.

Crossbar

the crossbar is a full-duplex 8x8 port switch. It interprets routing bytes of incoming
messages to decode the outgoing port, which can be any of the 8 ports.

Link port

the link port provides a full-duplex interface to the network. It prevents buffer over-
run by ensuring a reverse flow control scheme. Special retransmission hardware
automatically detects corrupted link packets and retransmits them. Enough buffer
space is included to support cable lengths of up to 20 m.

The whole architecture is optimized to provide the highest level of sustained bandwidth
and an extreme low latency. All host/network/link port units consist of independent mod-
ules for both transfer directions. In contrast to some other SAN interfaces, message data
Is not temporary stored in large external RAM modules. Rather multiple smaller data

55

Top-level architecture

FIFOs are spread all along the data paths from the network to the host. These can be
viewed as distributed on-chip data RAM.

3.2.1 Address space layout

The whole ATOLL device requests an PCI-X address space of 1 Mbyte at system start-
up. Only the first 260 Kbyte if this address space are currently used. Different parts of the
address space are assigned separate memory pages to provide the possibility of using
varying memory page control schemes. E.g., some pages could be defined as cachable,
but pages containing status registers should not be cached to make sure, each access to
them returns valid and up to date data. Since the intention is to support all possible cluster
node platforms (x86, Alpha, SPARC, etc.), the decision was made to select 8 Kbyte
pages, since the Alpha architecture uses this memory page size, whereas x86 micropro-
cessors use 4 Kbyte. So parted address regions with different memory page attributes can
be implemented on both platforms.

Figure 3-3.Address layout of the ATOLL PCI-X device

base address -

host port O A
P (4 pages)| 32 Kbyte
+08000h —p»-
host port 1
(4 pages) | 32 Kbyte
+10000h —p»- pag
host port 2
(4 pages)| 32 Kbyte
+18000h —p»- pag
host port 3
(4 a ES) 32 Kbyte
+20000h __pp pag
cntl/stat regs 8 Kbyte 1 Mbyte
+22000h g (1 page) address space
unused 120 Kbyte
+40000h __g| (15p3ges)
init/debug regs
(1 page) 8 Kbyte
unused 760 Kbyte
+FFFFFh _p» (95 pages) |

Another reason for separate pages is the level of protection for different address areas. The
user needs access to the registers controlling the PIO- and DMA-based message transfer,
but the access to critical control registers should be protected. E.g. a normal user should

not be able to alter the frequency of the core clock, or reset parts of the chip.

56

The ATOLL System Area Network

In all 8 Kbyte pages only the lower 4 Kbyte part is used. The upper 4 Kbyte are left
unused. And read/write accesses to any unused addresses inside the whole ATOLL
address space return the data value 0, respectively consume the written data without any
further action. This prevents system failure by erroneous, misaligned accesses to the
device. Figure 3-3 shows the address layout of the ATOLL PCI-X device. All addresses
given are relative offsets to the base address in hex format.

The page for the initialization and debug registers at address 40000h was appended in a
late stage of the design cycle. To ease the insertion of the registers and the decoding of
addresses, it was simply placed at an address with a unique address bit (a set addr[18] bit
references the init/debug registers). In further versions of the architecture it could be

located just after the control/status registers to implement a more compact address layout.

The layout of the different pages is discussed in detail later in this chapter, at the appro-
priate sections. All four host port address regions have exact the same layout, and are fur-
ther illustrated in the section about the host port. The control/status registers are located
in the port interconnect and are discussed there. Finally, the initialization/debug registers
are located in the synchronization interface and are specified in its section.

57

PCI-X interface

3.3 PCI-X interface

Figure 3-4.PCI-X interface architecture [65]

DW_pcix_top
DW _pcix_core
DW pcix_com
c leter Blo
S DW_pecix_cdp Completer
DW _pcix_ifc Completer Data Path Diata
(FC1 Bus
Interface)
Completer
DW _pecix_csm Control
i (G cmipleter State
Maching)
Complater
Addr
T DWW _pcix_cap ek
% g {Completer Address
= 8 Processor)
ENNE:)
*_'CI] BARs
PCIX | & =12
2 =
BUS |08 =2 %
—p DW _pcix_config
&5
gf:} # (Configuration Y
2= Space) T
= o
F 1 =t
DW_pcit_rap
4 Requester Addres
. Y
2l
L 5] TR DW_poix_rsm
= || .2 == Requester State
= - Machins)
N
-3 =
2| &
gl E Requester
DW _pcix_rdp Diata
(Requester Data
OW_pcix_req Path]
(Requester Block)

58

The ATOLL System Area Network

The PCI-X bus interface module used in the ATOLL chip is an external IP cell from Syn-
opsys, Inc [65]. Its top-level architecture is depicted in Figure 3-4. It implements a bus
interface fully compliant to the PCI-X bus specification[66]. The IP cell is split into four
main blocks:

DW_pcix_ifc

the DW_pcix_ifc module contains the PCI bus interface. It performs multiplexing
of outgoing addresses and data onto the PCI-X AD bus, and registers all incoming
signals. Parity generation and checking is part of this module, as well as detection
of the PCI-X bus mode (32/64 bit, 33/66/100/133 MHz).

DW_pcix_com

the DW_pcix_com module implements the Completer logic. It is responsible for all
actions necessary when the device acts as a bus slave. Data written onto the device
needs to be forwarded to the application. When addressed by a read cycle, the
address has to be delivered to the application, which then returns the data.

DW_pcix_req

the DW_pcix_req module contains the Requester logic. It controls all bus master
transactions triggered by the application. It automatically retries transfers, if a slave
device (like the PCI bus bridge) disconnects in the middle of a data transfer.

DW_pcix_config

the DW_pcix_config module implements the PCI configuration space, as defined
by the PCI bus specification. It serves read/write requests to the configuration
space.

The complexity of the PCI-X bus interface is quite high, since itimplements all the special
protocol cases defined in the specification. This complexity is also visible at the interface
on the application side. But since the functionality needed by the ATOLL core logic is
quite restricted, a lot of features of the PCI-X interface are ignored and disabled. Some
examples are:

» the configuration module provides an interface to the application to read/write config-
uration registers, and to modify/control its behavior. This interface is completely dis-
abled, all output signals of the DW_pcix_config unit are left unconnected, all input
signals are set to their inactive value.

59

Synchronization interface

» the completer interface provides additional signals to force a disconnect of the current
bus transaction, e.g. when the requested data must be fetched from external RAM. But
since the ATOLL core can deliver all data within a few cycles, this feature is not
needed, the corresponding signals are disabled.

In the following, the main parameters are given, which were defined during generation of
an IP cell adapted to the needs of the ATOLL core logic:

» the device can function as PCI-X or PCI device, as defined during system start-up

the device is capable of acting as 64 bit bus device. It can request 64 bit transactions
and react on them. But it can also fall back into a 32 bit-only mode

» the device is capable of running at the highest bus speed defined by the specification,
133 MHz. It also supports lower bus frequencies of 100, 66 and 33 MHz

* asingle 64 bit Base Address Register (BAR) is defined, requesting an address space
of 1 Mbyte at system start-up. This address space is defined as prefetchable

» the cache line size register is configured to support up to 4 bits, resulting in a maxi-
mum cache line size of 16 DWORDS

* no power management functions are implemented

 the registers for minimum grant (MIN_GNT) and maximum latency (MAX_LAT) are
both set to 255, their maximum value. This signals the request of the device for long
bus burst transfers

» the maximum memory read byte count is set to its highest possible value to support
burst transfers of up to 4 Kbyte

» the signal INTA is used by the device to generate interrupts

split/delayed bus transaction are supported

3.4 Synchronization interface

The synchronization interface connects the PCI-X bus module to the ATOLL core logic.
On the PCI-X side, it implements the completer and requester interface defined by the
application side of the unit. The completer interface is used for read/write accesses in
slave mode, when the ATOLL device is the target of a bus transaction. The requester
interface is used for reading data from main memory in master mode, or writing data to
memory. On the ATOLL side, these combined read/write interfaces are split into unigue,
and mostly independent paths. This results in four dedicated interfaces: Slave-Read,

60

The ATOLL System Area Network

Slave-Write, Master-Read and Master-Write. Between those interfaces, in the middle of
the synchronization interface, all control and data signals pass a clock boundary via spe-
cial synchronization elements, which are described in detail later on. Figure 3-5 depicts
this structure, visualizing the main data flow direction.

Figure 3-5. Structure of the synchronization interface

clock domain border

133 MHz ' 250 MHz

c | D
Completer | ||| | Slave-Write -
B '
|
- |
| Slave-Read
— I
° |
(8] ()
£ Y | 5
[} .
€ init/debug | synch. fifos -
< registers | @)
5 | <
o Requester _|_ Master-Read -
I
I
- l
| Master-Write
— 1] -

N | -

3.4.1 Completer interface

The completer interface needs to separate read and write accesses, and interacts with the
Slave-Write and Slave-Read data paths. All signals of the interface used on the PCI-X side
are shown in Figure 3-6. The general signals are utilized for both transfer directions. The
PCI-X bus specification defines several types of read/write bus commands, but ATOLL
only distinguishes between read and write operations. Specifying the number of bytes of
a bus transfer is a new feature introduced with PCI-X, so it has no meaning when operat-
ing in plain PCI mode. Data is then transferred via a two-way handshaking. The producer
simply signals that data is ready, and the consumer signals that it is ready to accept data.

61

Synchronization interface

Transfers occur on each clock edge with both signals set. Detailed timing diagrams of the
completer interface can be looked up in the databook [65] of the IP cell.

Figure 3-6.Completer interface signals

general
com _devsel g device is selected
cdp_64bit xfr g data is 64 bit wide
ifc_addr [18:0] — - start address
ifc_cmd [3:0] ———» PCI-X bus command
cdp2app_bytecnt [12:0] — g number of bytes

write data to device
cdp2app_data [63:0] — g yyite data
cdp2app_data rdy — . datais ready
app can accept data <€———— app2cdp_rdy4data

PCI-X interface
ATOLL core

read data from device

read data <@———— app2cdp_data [63:0]
data is ready <«———— app2cdp_data_rdy

cdp2app_rdy4data ——— cdp can accept data

cdp = completer data path ifc = interface
app = application com = completer

For write transactions, the completer stores the start address and pushes all incoming data
into a synchronization FIFO towards the Slave-Write data path. At the end, the address is
also handed over, together with the number of 64 bit words transmitted. This method
limits write bursts to a length of 64 words, the depth of the data FIFO. But it saves
resources compared to a solution, where each single data word is tagged with its address.

In case of a read request, the address is immediately forwarded to the ATOLL core to
request the data. After a few cycles, the ATOLL core delivers the data passing it through
another 64 word-depth FIFO stage. There is one side condition regarding the relation of
both clocks, when the device is in PCI-X mode. PCI-X forbids wait cycles on the target
side, once the target has started to deliver data. So after the first data word is transferred,
the target must deliver data on each successive clock cycle.

Since the Slave-Read path on the ATOLL side delivers a data word on each second cycle,
the ratio of PCI-X to ATOLL clock frequency must be at least 1:2. So if the PCI-X inter-
face runs at its highest frequency of 133 MHz, the ATOLL clock must be at least
266 MHz. This restriction is a remnant of an earlier version of the design. A future version
could simply implement the ATOLL side in a way, so it delivers data on each clock cycle.
In case of running plain PCI mode, the end of the transfer is signaled via a deasserted

62

The ATOLL System Area Network

device select signal. The completer then deasserts the valid signal for the address, so the
ATOLL side knows it can stop delivering data. All prefetched data still in the data FIFO
is then discarded by flushing the FIFO.

For both transfer directions the completer interface is also responsible to convert a 64 bit
data stream to a 32 bit one, if the PCI-X bus is only capable of running 32 bit transactions.

3.4.2 Slave-Write data path

Figure 3-7.Slave-Write path signals

SlaveWrite_Address [17:0] ——p» address
SlaveWrite_Data [63:0] ——» data
SlaveWrite_Valid ———— data is valid
data can be accepted -«———— SlaveWrite_Stop

On the ATOLL side, the Slave-Write path is plain simple. As soon as an address-length
pair is handed over from the completer, this unit forwards each data word from the FIFO
to the ATOLL core, together with its address. Data is transferred again via a two-way
handshaking, the signals are shown in Figure 3-7. On every clock edge, data is latched if
it is valid and the consumer side can accept the data. This valid/stop scheme is used
throughout the whole architecture to transfer data between adjacent units.

3.4.3 Slave-Read data path

Figure 3-8.Slave-Read path signals

SlaveRead_Address [17:0] ——p» address
SlaveRead AddressValid ————p address is valid
SlaveRead _InterfaceFull ——— data fifo is full
requested data -@——— SlaveRead_DataOut [63:0]
push data into fifo <«———— SlaveRead_InterfaceShiftin

The Completer delivers the address, a valid signal and the byte count for a read access. In
case of running in plain PCI mode, the PCI bus does not use a byte count, but instead sig-
nals the end of a transfer via deasserting a signal prior to the last cycle. Since the only
burst read access to ATOLL could be the reading of message data from the data FIFOs of
the PIO-mode, a prefetching mechanism is used to not let a request fail due to missing
data. So in plain PCI mode, the completer sets the byte count to the maximum possible
value. The Slave-Read path now starts to fetch data from the ATOLL core as long as the
address is signaled as invalid, or the byte count is satisfied.

63

Synchronization interface

Figure 3-8 depicts the interface signals to the ATOLL core. In case the core delivers data
too fast, e.g. when the PCI-X interface runs only at 33/66 MHz, then a full data FIFO is
signaled to prevent buffer overflow. When running with 100/133 MHz, data is transferred
every second clock cycle. Below that, the interface is slowed down to transfer data only
every fourth cycle. This mechanism was introduced to prevent that lots of prefetched data
assembles in the data FIFO, which needed to be shifted out one by one in an early version
of the implementation after the transaction ended (the FIFO simply lacked a flush signal).
Later on, a custom version of the data FIFO was developed with such a flush signal to
render this mechanism unnecessary. It could be simply removed in a later version of the
implementation. Figure 3-9 visualizes a typical Slave-Read transfer.

Figure 3-9.Typical Slave-Read transfer

(a) requesting 8 words from (b) ATOLL core starts
address 02048h ... address delivering data ... address
02048h 02048h
o)
= o @ S}
2 8h = o) T o
@ © = ‘—» -
o - g— _
g length O o) length Cl._)
D3
2|2l a -
data fifo data fifo
(c) the last data words (d) rest of prefetched data
are transferred ... address is flushed! address

ﬁ 02080h

= o . i o
s ; A :
() 1h 5]
s ENG A - s
g length IQ § length 9
\‘ < flush! <
D6 o| D12 of d| &
EEEE R SEEE
data fifo data fifo

3.4.4 Master-Write data path

When acting as bus master, the ATOLL device tries to transfer data in bursts as large as
possible to use the bus as efficiently as possible. When the ATOLL core writes out data
into main memory, each data word is transferred together with its destination address. An

64

The ATOLL System Area Network

additional signal marks the last data word of a burst. Data is handed over via the normal
two-way handshake. Figure 3-10 displays all interface signals.

Figure 3-10.Master-Write path signals

address -¢———— MasterWrite_AddressOut [63:0]
data -———— MasterWrite_DataOut [63:0]
last data of a burst -«————— MasterWrite_last_addr
data is valid -«————— MasterWrite_Valid
MasterWrite_Stop ——— stop transfer

The control logic of the Master-Write data path pushes incoming data into a FIFO. It
stores the first address and only counts incoming words as long as they form a continuous
stream of addresses. At the end of a continuous data block, it hands over address and word
count to the requester unit, which then passes the data burst on to the PCI-X interface.
There are four conditions marking the end of a burst:

» the address of a data word does not match the previous ones. This might happen if
multiple data streams from different host ports are mixed

» the ATOLL signals the last data word of a burst

» the data FIFO is full, so the maximum size for a single burst is reached (currently
64 words)

* or no data has been transferred for a certain amount of time (currently 128 cycles)

3.4.5 Master-Read data path

Reading data from main memory requires more complex logic. To implement an efficient
utilization of the PCI-X interface, requests to read data are handled in a split-phase man-
ner. The ATOLL core issues a request to load a certain number of data words from a spe-
cific address. Up to 32 words can be requested with a single job. The Master-Read path
tries to combine successive jobs into one large burst. It then instructs the requester unit to
fetch data from the PCI-X bus and forwards the data to the ATOLL core.

Since multiple host ports might request data, each job is assigned one of 8 job IDs to be
able to associate returned data with the job requesting it. So up to 8 jobs might be out-
standing, each with up to 32 words. That way, the PCI-X interface is kept busy and only

idles, if no requests for data are active at all. Figure 3-11 shows the interface signals,
grouped into signals used for job creation or completion.

65

Synchronization interface

Figure 3-11.Master-Read path signals

job creation

address -4——— MasterRead_Address [63:0]
number of words requested -———— MasterRead_LengthOut [4:0]
request is valid -«———— MasterRead_ValidOut
MasterRead_IDCreate [2:.0] ———» new job ID
MasterRead_StopOut ———= stop transfer

job completion

MasterRead_Data [63:0] ———» read data
MasterRead_Lengthin [4:0] ——®» word count of job
MasterRead_IDComplete [2:0] ———® ID of completed job
MasterRead Validin ————— data is valid
shift out data from fifo <«———— MasterRead_ShiftOut

The control logic of the Master-Read path keeps outstanding jobs in an internal queue.
Incoming data is then tagged with the correct ID and word count before handing it over
to the ATOLL core. Job requests are served strictly in order to ensure a fair service.

3.4.6 Requester interface

The requester unit needs to multiplex the access to the PCI-X interface between the
Master-Write and the Master-Read data paths. Requests for work is scheduled in a fair
round-robin fashion between them to prevent starvation of one of the paths. Both job sce-
narios follow the same procedure, which is briefly described below:

 if arequest for a job is handed over by one of the two paths, the requester loads the
start address and the byte count into the PCI-X interface

it signals the type of bus command to the interface. Theddareory Read/
Write Block in case of PCI-X, antflemory Read/Write in plain PCl mode

» data is then transferred via the usual two-way handshaking

« after delivering the last data word, the PCI-X interface is released and the requester
looks for new job requests

In contrast to the completer interface, the conversion of 64 bit data into 32 bit data is per-
formed automatically by the PCI-X interface. An interruption of the bus transaction is also
managed by the interface, e.g. when a bus target disconnects in the middle of a transfer.
All these special cases are served and managed by the interface, greatly simplifying the
requester logic. Figure 3-12 lists all interface signals of the Requester part.

66

The ATOLL System Area Network

Figure 3-12.Requester interface signals

general

start address -¢———— app_adr [63:0]
PCI-X bus command -——— app_cmd [3:0]
number of bytes <g———— app_bytecnt [11:0]
load address, start job -e«———— app_adr_ld
rsm_busy —— requester is busy

write data to PCI-X
write data -¢———— app2rdp_data [63:0]
data is ready -«———— app2rdp_data_rdy
rdp2app_rdy4ddata —— = requester can accept data

PCI-X interface
ATOLL core

read data from PCI-X

rdp2app_data [63:0] — g read data
rdp2app_data_rdy ——— = data is ready
app can accept data <«——— app2rdp_rdy4data

rsm = requester state machine
app = application
rdp = requester data path

3.4.7 Device initialization

A few initialization and debug registers have been placed into the synchronization inter-
face. The registers reside on a separate page, because some critical functions are provided,
which should only be accessible from a privileged user/administrator. They have been
moved out of the ATOLL core, since they cannot assume that a stable clock is running in
the core. Also the configuration of the ATOLL core clock is located here. Only four 64 bit
registers are allocated in total, split up into 32 bit low/high parts.

Figure 3-13 gives an overview about each register and the meaning of its individual bits.
Not all bits are used, these are grayed out. In addition, some registers are read only, ignor-
ing write accesses to them. The given address offset is relative to the base address of the

whole ATOLL device.

67

Synchronization interface

Figure 3-13.Device initialization and debug registers

clk_sel_res_n
not_used l_ xbar_res_n 0

reset | |
regOIOWIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
read/write _
pi_res_n
np_res_n[3: 0]
Ip_res_n[3: O]
63 not_used 32 p” hp_res_n[3:0]
||||L||‘L||-|;||||||||||||||||||||| regOh'gh
avoid_glitc feedback cnt[5:0] read/write
slave_select [1:0] for XO-PLL
master/slave_select @ffset 40000h>
n/a 31 not_used 0
regllow||IIIIIIIIIIIII|||||I|||I|||I||||
read/write
ifc_bus64
63 not_used peix_mode _|_‘ 32 status
|||||||||||||||||||||||||||||||||,|,| reglh|gh
PCI-DLL lock peix_133m read only
pcix_100m .
o o (offset: 40008h)
. 31 0
bist_start_low | |
regzlow IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
. R — T xxpoto
read/write T bist start [90] 00 port 1 bist start [9:0]
| bist_start [9:0]
L - —
.
63 not_used 32 . .
] | | | bist_start_high
|IIIIIIII||||||I|||I|||I|||I|||_!regzhlgh
PCI-DLL bypass Si“i’;h'”ltm(s(:\‘/l’s‘:v\f/\)/r) Xxx port 3 read/write
Y bist_start [9:0] (ff . h
synch. int. (Mst-Rd) offset: 40010)
. 31 0
bist_ok_low | |
regslow |IIIIIIIIIIIIIIIIIIIIIIIIIIIIII
t2 - t0
read onIy r bigg)IECESrJ:O] Xxx port 1 bi;ti)éﬁc[)g:O]
| bist_ok [9:0]
Lo —
63 not_used 32—: i i
| | bist_ok_high
|||||||||||||||||||||||||||||||_:reg3h|gh
A s readonly
synch. int. (Mst-Rd) - @ffset: 40018h>

68

The ATOLL System Area Network

Reset register

besides the global power-on reset signal, each major block of ATOLL has been
assigned a unique reset signal. This offers the possibility to reset a specific part of
the device without reinitializing the whole chip. The abbreviations stand for: host
port (hp), network port Gp), link port (Ip), port interconnectpi), crossbar
(xbar) and clock logicglk_sel).

PLL register

the ATOLL clock logic includes a configurable Phase Locked Loop (PLL) to set the
internal clock to anywhere within 175-350 MHz, in steps of 14 MHz. The 6 bit
feedback counter configures the clock frequency. Besides running a chip with its
own clock, there is the possibility to take one of the four incoming clocks from the
links as main clock signal. Which one is selected slave_select [1:0]

The signalmaster/slave_select is then used to switch between the master
and the selected slave (link) clock. Another signal can be set to make sure this tran-
sition is made without glitches on the clock signal.

Status register

The lower 5 bits sample some status bits set by the PCI-X interface. It detects at
system start-up, if it runs in PCI or PCI-X mode, whether it sits on a 64 bit bus, and
which PCI bus frequency is configured. The sigR&l-DLL lock is set, when

the on-chip Digital Locked Loop (DLL) has adjusted the PCI clock to a fixed clock
tree delay, as specified in the PCI-X specification.

BIST start register

All SRAM memory cells have a Built-In Self Test (BIST) logic attached. It checks
the memory for erroneous bits by successive reads/writes of certain bit patterns.
This is done normally via the JTAG test logic, which is used to check chips for man-
ufacturing faults. But these registers provide an additional way to run the BIST tests
via software. Setting the start bits triggers the internal control engine of the BIST
logic to run through all memory cells. Each bit controls one of the 43 SRAM cells
in the ATOLL chip.

All cells within a 10 bit word of xxx port 0/1/2/3 are in the same order
([0:9]): hp_pio_snd, hp_pio_rcv, hp_dma_snd, hp_dma_rcv, np_snd, np_rcv_buf0,
np_rcv_bufl, Ip_in, Ip_out_buf0, Ip_out_bufl.

Three bits are used to control the three SRAMs in the synchronization interface. An
additional bit is used to bypass the PCI-DLL.

69

Port interconnect

BIST ok register

These bits are the corresponding signals to the BIST start bits. Due to different sizes
of the SRAMs some checks are faster than others. But after 10 us all SRAMs are
tested, and all 43 bits should be set. Any bits remaining unset flag a flawed SRAM.

3.5 Port interconnect

Figure 3-14.Structure of the port interconnect

port interconnect

}_/

C Slave-Write
T — g
;—»]]]ID > 2
17
@]
e
control/status
registers

n

Slave-Read |
A/—_(:: ——a
Ay

- I < .

3

host port 1

n

Master-Write
aster-Wite (o) ——a

- - ®

3

host port 2

synchronization interface

A/_@ Master-Read
R
»II[D o ™
@) (L8
17
2

_{

70

The ATOLL System Area Network

The port interconnect multiplexes the four ATOLL core data paths described in “Synchro-
nization interface” on page 60 between all four host ports: Slave-Write, Slave-Read,
Master-Write and Master-Read. It temporary buffers data in FIFOs to ease the implemen-
tation as an IC. The data nets would otherwise travel a long distance across the chip from
the host ports to the synchronization interface, making the task of a physical implementa-
tion extremely difficult. And some additional pipeline stages on each path give the possi-
bility to assemble a few data words in this module, even if the path is blocked further
ahead.

The implementation of both Slave paths is straight forward. An incoming address from
the synchronization interface is decoded to find out the target host port. This can be done
by analyzing only 2 bits of the address, according to “Address space layout” on page 56.
In case of the Slave-Write path, the addressed host port then pops the data from the FIFO.
If data should be read from one of the host ports, the addressed host port starts delivering
data, until the Slave-Read path deasserts the valid signal for the address, thus ending the
transfer. Both data paths also handle requests for the control/status registers.

In case of both Master paths, the access to them must be multiplexed between all host
ports. Each path contains an arbiter, which observes request signals from the host ports.
It grants the data path to only one host port, and releases the grant, if the request signal is
deasserted. This is forced by a host port itself after a specific amount of cycles to prevent
one host port blocking the access to the data path. Arbitration is done based on a fair
round-robin schedule policy. The Master-Write path is multiplexed between 8 requesters,
since two individual units inside each host port need to write data out to memory. The
main unit is the one receiving messages in DMA mode, spooling data out to buffer regions
residing in main memory. The other unit mirrors relevant status information into memory,
removing the need to poll the device for it. These status packets consist of only four 64 bit
data words, thus the impact on the overall data throughput is relative small.

3.5.1 ATOLL control and status registers

A separate modufehosts the control/status registers needed for managing the use of
ATOLL. These are registers configuring the global state of the device, as well as host port
specific registers. Since they control important settings of the device, these registers
should not be visible nor accessible to the normal user. They are normally controlled by
a supervisor, mostly via an administration interface. These registers provide the following
functionality:

1. designed and implemented by Prof. Dr. Ulrich Briining

71

Port interconnect

* link driver control

 start/stop of DMA engines

 interrupt generation (mask & clearance)
» global counter

» debug control of the crossbar

» additional status information

All registers can be split into four categories: control, status, debug and extension. The
registers are aligned to cache line boundaries of eight 64 bit words. This is to prevent the
CPU from fetching more than one register with each access, possibly loading several reg-
isters into prefetch buffers in the system’s chipset. Though all registers are free of side
effects, this decision was made to ensure that a user always gets the up to date status of a
register.

Table 3-1.Control registers of ATOLL

register name | offset mode, width comment

hw_cntl 20000h riw, 32 hardware control, link enable, DMA engines

cnt_load 20040h riw, 64 global counter load

hp_cntl 20080h riw, 64 host port specific control

hp_dma_thres| 200COh| r/w, 32 threshold value to determine receive mode (DMA/RIO)
irg_timeout 20100h riw, 32 IRQ time-out value

irg_mask 20140h riw, 32 IRQ mask setting

irg_clear 20180h riw, 32 IRQ clearance

hp_timeout 201COh | r/w, 32 host port time-out value for PIO mode

In Table 3-1, all control registers are listed with their address offset relative to the device
base address, their mode (read/write, read-only) and whether they use 32 or 64 bit. The
status registers make various status information visible to the user of the device. They are
listed in Table 3-2 in the same manner as in the previous table.

The internal crossbar offers the possibility to observe its status and to insert/pull out link
data in case of severe problems. Table 3-3 lists the eight registers, their use is described
in detail in the ATOLL Hardware Reference Manual [67].

72

The ATOLL System Area Network

Table 3-2.Status registers of ATOLL

register name | offset mode, width comment

hw_state 20200h ro, 32 hardware state, clock configuration, DMA engines
cnt 20240h ro, 64 global counter value

hp_state 20280h ro, 32 host port specific status, last mode of access
Ip_retry 202C0h | ro, 32 link port retry counter

hp_irq_case 20340h ro, 32 host port IRQ cases, out of buffer space

irg_case 20380h ro, 32 global IRQ cases, link error, clock failure

Table 3-3.Debug registers of ATOLL

register name | offset mode, width comment

debug_xbar0 20400h r/w, 64 debug info from crossbar port O
debug_xbarl 20440h r/w, 64 debug info from crossbar port 1
debug_xbar2 20480h r/w, 64 debug info from crossbar port 2
debug_xbar3 204C0Oh| riw, 64 debug info from crossbar port 3
debug_xbar4 20500h r/w, 64 debug info from crossbar port 4
debug_xbar5 20540h r/w, 64 debug info from crossbar port 5
debug_xbar6 20580h r/w, 64 debug info from crossbar port 6
debug_xbar7 205C0h| riw, 64 debug info from crossbar port 7

Finally, two more registers are used as extension to the above set of registers to control
the debugging of the crossbar and to read/write data on 8 general purpose pins of the chip,
as listed in Table 3-4.

Table 3-4.Extension registers of ATOLL

register name | offset mode, width comment
debug_cntl 20600h riw, 32 control of crossbar debug
gp_io 20640h riw, 32 8 general purpose /O pins

In the following, all registers are described in detail. They are listed in groups of func-
tional classes, rather than in the strict sequence given in the tables.

73

Port interconnect

Figure 3-15 depicts the hardware control/status register, as well as the global counter reg-
isters. The latter is simply an internal counter, which is running with the internal ATOLL
core clock. A write access to tleat_load register loads the written value into the counter.
The hardware control/status registers assemble various configuration bits, which are now

Figure 3-15.Hardware control/status and global counter

hW_Cnt' g3 hot_used 34 0
rego |m|u|||u||u||u|m|u||ul||||||||||||||||||||||||||||||||||
read/write | link[x] Ip[x] hp[x] enable
xbar debug driver Tloopback DMA rcv
mode enable enable hp[x] enable
link retry DMA snd
mux [1:0]
[x] = [3:0]
(offset: 20000h)
hW_State g3 Not_used 39 0
regS ||||||||||||||||||||||||||||||||
read-only clk phase synch:- ki Ia|1r(1:lt<|5<e]3 —l—gg([jx%dlil)eMA
XO PLL lock PLL lock hp[x] DMA
internal PLL lock rcv idle
[X] = [3:0]
(offset: 20200h)
cnt_load 63 31 0
regl |m|u|||u||u||u|m|u||ul||||||||||||||||||||||||||||||||
read/write load written value
into 64 bit global counter
(offset: 20040h)
cnt 63 31 0
regg |u||m||u||u||u|u||u||u|]|||||||||||||||||||||||||||||||
read'only 64 bit global counter,

running with internal core clock

(offset: 20240h)

described in more detail:

* hw_cntl[7:0] enables the DMA engines inside the four host ports. The lower four bits
control the DMA engines in the receive unit, whereas the upper four bits control the
send DMA units. These bits are helpful, if the context of the host ports should be
switched, e.g. in case the device is multiplexed between several user processes

74

The ATOLL System Area Network

hw_cntl[15:12] controls a loopback mode of the link ports. Message data normally
sent over the link is then fed back into the device via the input path of the link port.
This is helpful to isolate cable failure from internal chip problems

hw_cntl[17:16] controls the generation of an interrupt based on link bit errors. Bit
errors force a link packet retransmission by the link port. This event is signaled by the
link port, and accumulated in internal 4 bit counténk_retry mux[1:0] determines

the significant bit of the accumulator, that triggers an interrupt. So one can configure it
in a way that an interrupt is generated after 1, 2, 4 or 8 link packet retransmissions

hw_cntl[23:20] enables the LVDS driver I/O cells, so link data is driven over the
cable

hw_cntl[31] is used to activate a special mode for the crossbar debug registers

hw_state[7:0] signals idling DMA engines in the host ports. This is useful to wait for
completion of DMA jobs, after the DMA engines have been disabled. By accident, the
bits for send/receive have been switched in relation thvhentl bits

hw_state[23:20] are set, if the corresponding link is active
hw_state[27:24] are set, if the corresponding link PLL is locked

hw_state[30:28] are set, if the two PLLs for the main ATOLL core clock are locked.
The highest bit is set, if the phases of two clock signals are synchronizes, when the
main clock should be switched from the on-chip clock signal to a link clock

Figure 3-16 shows the registers to control the host ports. Their meaning is as follows:

* hp_cntl[3:0] determines the update frequency of status information written out by the

PIO receive unit inside a host port. After n words have been received from the net-
work and pushed into the 64 word data FIFO, the unit triggers an update of the mir-
rored FIFO fill level in main memory. To span the whole range of the FIFO, the 4 bit
value is multiplied by 4, so updates can occur after 4, 8, 12, 16, ..., 60 words. If set to
0, this mechanism is disabled. Setting this value is a trade-off between the need for up
to date status information and limiting the bandwidth used for updates. The last word
of a message frame (header or data) always triggers the update, so one is informed, if
enough or all remaining data is available

hp_cntl[7:4] does the same job, but for the PIO send module. If the fill level of the
FIFO varies by the threshold value, an update is triggered. Also writing the last word
of the data frame triggers an update

75

Port interconnect

* hp_cntl[31:8] have the same meaning likp_cntl[7:0], but for the other host ports

Figure 3-16.Host port specific control/status registers

hp_cntl 2 0
reg 2 |OW 111 I 111 I 111 I 111 I 111 I 111 I 111 I 111
read/write hp[3] rcv hp[2] rcv hp[1] rcv hp[0] rcv
hp[3] sndupdate hp[2] sndupdate hp[1] sndupdate hp[0] sndupdate
update update update update
63 not_used 32
|]]] [] rooh
NI B T AR AV T AT A T T I‘eg_ZhIgh
h hp[2] PIO hp[1] PIO hp[0] PIO i .
sﬁt[f]cgr:%ete srqc[i !:omplete er([j !:omplete sr% !:omplete read/write @ffset 20080h>
hp_dma_thres e3notused 3 0
regS ||||||||||||||||||||||||||||||||
read/write hp[2] DMA hp[0] DMA
hp[3] DMA threshold hp[1] DMA threshold
threshold threshold
(offset: 200COh)
hp_timeout 63 Not used 31 0
reg 7 b b b b b b b
read/write hp[2] PIO hp[0] PIO
hp[3] PIO timeout hp[1] PIO timeout
timeout timeout
(offset: 201COh)
hp_state 63 not_used 31 0
reglo oo b bva s be s b b s Lo
read-only hp[3] PIC hp[2] PIC hp[1] PIC hp[0] PIO
| rcv tags | rcv tags | rcv tags | rcv tags
hp[3] PIO hp[2] PIO hp[1] PIO hp[0] PIO
snd last snd last snd last snd last
@ffset: 20280"1) mode mode mode mode

* hp_cntl[56, 48, 40, 32] can be used to disable the immediate forwarding of data
written into the PIO send data FIFO towards the network. If set, the PIO send unit

waits, until all data of the mess

age is written to the FIFO. This prevents the insertion

of incomplete messages into the network in case the user process is interrupted (nor-

mal process scheduling, interru
gram code

the 8 bit values specified in the

pt service) or simply crashes due to an error in the pro-

_dma_thres register are used to determine the

mode used to receive a message. This threshold value is compared to the length of an
incoming message in the receive part of a host port, or more specific, to the length of

76

The ATOLL System Area Network

the data frame. It is forwarded to the DMA-receive unit, if the length is greater or
equal to the threshold value. So setting it to O pipes all messages to the DMA-receive
unit, disabling the PIO mode for receiving messages. Since length and threshold are
specified in terms of 64 bit data words, the largest message to be received via the PIO
mode is 254*8=2032 byte large, if the threshold is set to FFh

Figure 3-17.Loading the PlO-receive time-out counter

76543210
[1/1]1]1]0]/0]0]0]| timeout value

e,

[o/1]o[1]o][1][o0[1]0][0O]0[0|0|0O|0|0]0]0..0]O]
32 bit timeout counter

thehp_timeout register specifies an upper limit for the time data has been pushed
into the data FIFO in the P1O-receive unit without reading it. This mechanism shall
prevent data to clog in the host port and to block a path backwards into the network.
An internal 32 bit counter is loaded with the 8 bit time-out value each time a data
word is shifted in or out of the FIFO. To span a large time segment, each second bit of
the upper 16 bit is loaded with a bit from the time-out value, as shown in Figure 3-17.
This makes it possible to configure a time-out of up to 5.7 s, with steps of 262 us,
assuming a 4 ns clock cycle. Each cycle nothing happens, the counter is decremented.
If it runs down to O, an interrupt is generated to force the host to pull the data out of
the host port

thehp_state register provides some information about the status of the PIO unit. In
case of an interrupted or incomplete PIO-based message transfer, one must be able to
recover the situation, avoiding the need to reset the complete device. So driver soft-
ware needs to be able to detect, in which state the P10 unit was left by a user process.
In case of the PIO-Send module, this register shows the mode of the last access to the
unit. More specific, it shows the tags of the last data word written to the FIFO.
According to the tags, driver software is able to complete the message by writing the
missing data to the FIFO. In case of the PIO-Receive unit, one simply sees the tags of
the data word at the head of the FIFO. So software is able to pull out the rest of a mes-
sage one by one. The 4 bittags are {Last, Data, Header, Route}, according to the three
frames a message is composed of, and an additional bit to mark the last word of a
frame

s

Port interconnect

Figure 3-18.Interrupt registers

irg_timeout 63 Not_used 31 0
reg4 Lu|m|u||u||u|||u||u||u||||||||||||||||||||||||||||||||
read/write 32 bit IRQ timeout value

(offset: 20100h)

”'q mask 63 not_used 31 0
reg 5 |,|u|u||u||u||m||u||u||u| coc e bvev b b b br e b
read/write mask bits corresponding to irq_case

@ffset: 20140h>

irg_clear 63 not_used 31 0
reQG Lulmlu||u||u|||u||u||u||||||||||||||||||||||||||||||||
read/write clear corresponding IRQ bit in irg_case

(offset: 20180h)

hp_qu_case 63 hot_used 31 0
reng Lu|m|u||u||u|||u||u||u|||||||||||||||||||||||||||||||||||||
read—only W hp[2] irq case W hp[0] irq case
hp[x] irq case[4:0] = unused hp[x] irq case[6] = data region full
@ﬁset: 20340h> hp[x] irg case[5] = access to empty fifo hp[x] irq case[7] = desc. table full
Irq_case 63 not_used 31 0
regl4 Lulmlu||u||u|||u||u||u||||||||||||||||||||||||||||||||||
read-only link link Ip[x] -
Cock linkiXl cabls k] pebd hppg ey | POt

xbar-in

failure clock removedcable grror PO rcv
active plugged error

(offset: 20380h)

Figure 3-18 gives an overview about all registers related to the generation of interrupts.
There are various sources for interrupt generation, and a user is able to mask those condi-
tions, which should not result in a system interrupt. Each register is described in detail in
the following:

» theirg_timeout register is used in case the host system has crashed and is not able to
serve an interrupt. In such a case, the node should not block communication in the rest
of the cluster by letting pending incoming messages block paths backwards into the

78

The ATOLL System Area Network

network. In case of such a severe system failure, the device should simply consume all
incoming data traffic. So every time an interrupt request is signaled by the device, an
internal counter is loaded with this time-out value. If it runs down to O without any
reaction from the host side, it is assumed that the host is down. This information is
then flagged to all units

theirq_mask register is used to mask specific interrupt sources. The bits correspond
to the IRQ bits in therg_case register. An interrupt is masked, when its bitis setto O

theirg_clear register is utilized to clear a corresponding interrupt inrthecase
register. Writing a 1 to a bit clears the interrupt

thehp_irg_case register offers some more information in case an interrupt is gener-
ated by a host port. It flags a read access to an empty data FIFO in the PIO-receive
unit. In case of the DMA-receive module, two data buffers in main memory can be
filled to a level, where no more messages can be written out to memory. These are the
descriptor table and the data region. These events are flagged by this register. The
remaining 5 bits of a byte used for each host port were used in previous versions, but
late modifications rendered them unnecessary

All possible interrupts are flagged by theg _case register. The specific bits are
described in the following:

irg_case[3:2] are set if error conditions occur in one of the input or the output paths
of the crossbar

irq_case[7:4] flag an amount of bit errors and link packet retransmissions on a link.
The actual limit for the generation of this interrupt is controlled via the two
Ip_retry_mux bits in thehw_cntl register

irg_case[11:8] are used to flag an error in the PIO-receive units of a host port. They
were intended to be the ‘logical OR’ of all possible PI1O error conditions, which are
then specified in thiep_irg_case in detail. But due to late modifications all but one
error condition were dropped, so these bits are basically the samehpfdheg

case[5] bits, showing a read access to an empty PlO-receive data FIFO

irg_case[15:12] show a general error in the DMA-receive units of a host port. They
are the ‘logic OR’ of the two error conditions specified inltheirq_case register

irg_case[23:20] andirq_case[19:16] observe the status of link active signals and
are set, if a link cable is plugged or unplugged

79

Port interconnect

» irg_case[31:28] andirq_case[27:24] observe the status of the associated link clocks
and flag their activity or failure

Figure 3-19.Link retry register

|p retry 63 not_used 31 0

reg 11 |.|u|u||u||u||m||u||u||u| b b b b b b b

read—only —— Ip[2]lretry ——— — Ip[0] retry
Ip[3] retry counter Ip[1] retry counter
counter counter

(offset: 202C0h)

Thelp_retry status register, as shown in Figure 3-19, provides for each link the value of
an 8 bit accumulator counting bit errors on links and the corresponding link packet
retransmissions. They can be used to measure bit error rates over a greater time range.

Besides the registers presented over the last pages, there are other, less important ones,
which are not described in detail here. There is an additional regjpteép to control

8 general purpose I/0O pins. And some registers are used to debug the internal status of the
crossbhar. More specific information about them can be looked up in the ATOLL Hard-
ware Reference Manual [67].

In the following, a typical interrupt service sequence is given:

» assuming the descriptor table of host port 3 is full and the receiving part is not able to
spool out a new message to memory, the host port would flag this event to the inter-
rupt control unit

« this unit compares the event with the corresponding bit ilrghenask register to
make sure the event is not masked

* itthen raises the interrupt line, which is driven out to the PCI-X bus by the PCI-X bus
interface

» asystem trap calls the ATOLL driver software to deal with the interrupt

 the driver software checks tirg_case register to figure out the reason for the inter-
rupt

it allocates memory space for the descriptor table, either by enlarging it or moving
messages in a temporary buffer

80

The ATOLL System Area Network

» the interrupt is then cleared by the software by writing to the corresponding bit of the
irg_clear register. The host port resumes processing messages as soon as there are
again free slots in the descriptor table

3.6 Host port

Figure 3-20.Structure of the host port

a

@ Pl1O-send
]

64x68 data fifo

hp2np
path

N

LT

64x68 data fifo

DMA-send :D—>
64x68 data fifo
©
o status/control
S replicator register file
(&)
é g
c
- event buffer
S
D- -
P1O-receive
g
|_|_|_|_|_|_) np2hp
64x68 data fifo path
DMA-receive @ ::D<—<—
g <—|_

network port

_J

The host port [68]is the main building block of the ATOLL chip. It is responsible for

data transfer from or to the network, either by PIO or DMA. Each host port has a small
working set of some status and control registers needed to access data structures residing
in main memory. Data paths for sending and receiving messages are strictly separated,
offering the possibility of multiple concurrent data transfers into and out of the network.
Each mode is also handled separately, so four unique modules are used to handle data

1. Berthold Lehmann implemented an early simulation model of the host port

81

Host port

transfer: P1O-send, P1O-receive, DMA-send and DMA-receive. Another unit keeps the
working set and interfaces with all transfer modules. A sixth module called replicator is
responsible to update relevant status information residing in main memory. This gives a
CPU fast and cachable access to information without the need to frequently poll the
device. Finally, two units are used to control the access of the host port to the interfacing
network port. In case of sending messages, the access must be multiplexed between the
P10- and DMA-send units. For incoming messages, one must forward them either to the
P10O- or the DMA-receive unit. This decision is configurable and relies on the size of the
iIncoming message. Figure 3-20 depicts the overall structure of a host port.

Figure 3-21.Interface between host and network port.

is_last ————p» last word of a frame
is_data ———m» data frame
is header ———» header frame
i_S_I’OUte —— routing frame

data [63:0] ——®» data
valid ——» data is valid
no space for data <————— Stop

The interfaces towards the port interconnect correspond to the ones between the portinter-
connect and the synchronization interface described earlier. So DMA-receive and repli-
cator use a Master-Write interface, DMA-send uses the Master-Read interface, PIO-send
the Slave-Write interface, and the PIO-receive unit utilizes a Slave-Read interface. On the
network port side, the data protocol is even more simple. A stream of tagged 64 bit words
is transferred via the previously mentioned two-way handshake signaling. Two indepen-
dent interfaces handle incoming and outgoing data traffic in parallel. Figure 3-21 depicts
the interface signals. The tags associate each data word with one of the frames of an
ATOLL message, and additionally mark the last word of a frame.

3.6.1 Address layout

Each host port occupies 4 consecutive 8 Kbyte pages in the address space of the ATOLL
device, as described earlier in “Address space layout” on page 56. These are used to trans-
fer data in PIO mode by read/write accesses to specific addresses. For the DMA-based
data transfer, only a small working set is controlled via this address area. Figure 3-22
shows the general use of each page, whereas the detailed address layout of each separate
page is described later in the corresponding sections. As stated earlier, ATOLL uses

8 Kbyte pages, but leaves the upper 4 Kbyte unused. Different pages might need different
memory control/caching options, and this layout offers the possibility to support a wide
variety of architectures with different page sizes.

82

The ATOLL System Area Network

Figure 3-22.Host port address layout

host port base address

>
N
PlO-send jm

8 Kbyte page

unused /
+02000h —»»

send
control

unused

+04000h —p»
PlO-receive

unused
+06000h

receive
control

unused

3.6.2 PIO-send unit

Programmed I/O is intended as a fast and efficient way to communicate small amounts of
data. A lot of parallel applications tend to transfer only a few bytes per message, spreading
global parameters or exchanging border values of a grid-based computation. A DMA-
based data transfer involves copying data into buffers, setting up a job descriptor and wait-
ing for the device to complete the job. This overhead can be ignored for larger messages,
but adds up for small ones, significantly decreasing performance. So a method is needed
to transfer a few words with nearly no overhead at all. These ideas led to the implemen-
tation of the PIO-send mechanism found in the ATOLL chip.

Figure 3-23.Mapping a linear address sequence to a FIFO

writes to a
linear address
sequence
data pushed in order
0000h DO into send fifo
0008h D1 ; ;
0010h D2 —>| I 912198
0018h D3 o

83

Host port

The FIFO for keeping the data to be sent is directly made accessible to the user. The PCI-
X bus is most efficiently used with burst transfers, combining as much data as possible
into a single transaction. So pushing data into the FIFO is done by writing the data to a
linear sequence of addresses. This gives the data the possibility to assemble itself in CPU
and chipset write buffers to form a large burst transfer. Since the PCI-X bus delivers data
strictly in order, there is no chance of data getting mixed up by out of order delivery. This
mechanism is shown in Figure 3-23.
Figure 3-24.Layout of PIO-send page

page base addrei.:

routing A

64 words

+0200h —»

header
64 words

+0400h —
data

256 word
+0C00h —» WOTes| 4 Kbyte page

last routing
32 words

last header
32 words

last data
32 words

+0D00Oh —®»

+0EOOh —®

+0F00h —®

unused

32 words v

But in addition to the raw data, the PIO-send unit also needs to know the specific tags of
the data word, according to the framing of ATOLL messages. This is done by providing
different regions inside the page for each frame. And since also each last word of a frame
must be marked, there are some addresses for only the last words of a frame. Most of a
message is normally payload data, so this area has been assigned the largest address
region. All address areas are depicted in Figure 3-24, together with their start offset rela-
tive to the page base address and their size in terms of 64 bit words. Since the FIFO has a
depth of 64 words, all areas are sufficient to serve the largest bursts possible.

Figure 3-25 gives an overview about the structure of the PIO-send module. Apart from
normal message data, this module also processes data which should be written into the
status/control register file of the host port. So incoming data is first analyzed, and then
handed over to the register file or pushed into the send FIFO. As soon as data is pushed
into the FIFO, control logic requests the access to the network port. If the access is

84

The ATOLL System Area Network

granted, data is forwarded to the network port. This immediate forwarding of the message
can be delayed until a full message has been written to the FIFO by the configuration bit
in thehp_cntl register described earlier. A separate unit is monitoring the fill level of the
FIFO and passes this information on to the replicator and the register file. Assuming a
message with one routing word, 4 header words and 8 data words, a typical sequence of
sending a message via the PIO mode is as follows:

« first, the user checks the FIFO fill level to make sure, that there is enough space left to
keep all message data

 the single routing word is written to the ‘last routing’ area
+ 3 header words are written to the ‘header’ area, the 4.word to ‘last header’

+ 7 data words are written to the ‘data’ area, the 8.word to ‘last data’

Figure 3-25.Structure of the PIO-send unit

4| status/
‘\ events

A
Y

Q
=
g =
% g
- =
= I 5
o data fifo S
c message = £
s analyzer I =
% — _ |] —
= (|
= 64 words x 68 bit
)
o
Y
K stat/cntl register file /

3.6.3 PIO-receive unit

First versions of the P1O-receive unit implemented the same method as used by the PIO-
send module, mapping the data FIFO to a set of contiguous address areas. But problems
come up with this approach, when one considers prefetching data from the FIFO at vari-
ous levels (chipset, CPU cache). Declaring the P1O-receive page as prefetchable is neces-
sary to enable efficient data transfer between the device and the CPU. But one can not
assure that data prefetched is also consumed by the CPU. E.g., in case of an interrupt some

85

Host port

prefetched data might get lost, since a read access to the FIFO always pops the data out
of the FIFO as side effect. So a subsequent reload of previously prefetched data results in
delivery of wrong data.

Figure 3-26.Utilizing a ring puffer for PIO-receive

the CPU directly
reads data by

aclcessingI data fifo
relevant slots 0 63
cee data from
< network
free used
— 1[—;:r‘\\\\\\\
read ptr write ptr

after reading data,
the CPU advances
the read ptr by
updating its value

a push advances
the write ptr
automatically

To deal with this problem one needs to remove the side effect of the read access. There-
fore, the decision was made to give the user direct control over the deletion of data from
the FIFO. This is done by treating the FIFO as a pointer-controlled ring buffer based on
RAM (in fact, that is exactly the implementation method for large FIFOs in ATOLL). So
data is pushed into the FIFO by the interfacing network port, advancing the write pointer
of the ring buffer. A user is able to read data from the ring buffer, and frees up the accessed
slots of the ring buffer by writing a new value of the read pointer to the unit. This mech-
anism is shown in Figure 3-26.

Figure 3-27.Layout of PIO-receive page

page base address

ring buffer
+0200h 64 words
ring buffer
64 words
+0400h —®
... all addresses
are mapped to
ring buffer ...
+0EOOh :
ring buffer
64 words

The page assigned to the P1O-receive module now references the ring buffer, whereby the
buffer is continuously mapped all over the page, as depicted in Figure 3-27. This is simply
done by taking the lower 6 bits of the start address as offset into the ring buffer. This also

86

The ATOLL System Area Network

enables a user to read across the upper border from word 63 to word O without interrup-
tion. The first address is taken as start offset, then the unit delivers data as long as the
transaction is valid.

Figure 3-28.Structure of the PlIO-receive unit

A
Y

2 e
o address
X —
& analyzer
= £
K o
& <
g ring buflfeTr/flfo g
c | ©
S | le—— =
(@)
o [i
e 64 words x 68 bit
S
o
Y
K stat/cntl register file /

Figure 3-28 shows the structure of the P1O-receive unit. An incoming address is first ana-
lyzed to detect, if the read request targets the register file or the data FIFO. In case of the
register file, the relevant offset is simply forwarded and data is returned on the next cycle.
When addressing the ring buffer, data is popped from it until the transaction is ended. But
internally, the pop operation is done using a temporary FIFO pointer. The read pointer,
which is also used to determine the fill level of the FIFO, is left untouched, until it is
explicitly updated by a write access to its entry in the host port register file.

3.6.4 Data structures for DMA-based communication

DMA-based communication is a good way to offload work from the main CPU. The CPU
communicates with the device via a set of data structures and job descriptors, which
exactly describe the work the device should do. There are two main data areas residing in
main memory for DMA-based communication in ATOLL, called data region (DR) and
descriptor table (DT). The data region is simply a place to assemble message data, which
is to be send into the network by the device. This data region is needed, since ATOLL can
only deal with physical addresses, and not with the virtual addresses of the source data

87

Host port

locations in the user’s virtual address space. Though this is not impossible to implement,
as demonstrated by Quadrics QsNet, its complex implementation was abandoned for the
first version of ATOLL. So ATOLL needs a pinned-down memory area to temporary
buffer the message payload.

Figure 3-29.Data region

DR base addr >

routing table
lower bound >
free
read [:_)tr.
header/data
write Qtl’-
free
upper bound

—

Figure 3-29 depicts the layout of a data region. A base address marks the beginning,
whereas an upper bound marks the end of the area. Read and write pointers are used to
index into this region, which is used as ring buffer. In contrast to header and data payload,
the routing information of a message is normally static. At system start, all routing paths
to all other nodes are computed and remain fixed during the application run. So to prevent
the copying of the same data again and again into the data region, the decision was made
to provide a small static area to keep the routing table. This is done by defining a lower
bound, which is used as next offset in case data hits the upper bound. Separate data
regions exist for sending and receiving data, with the receiving data region lacking a lower
bound. It is simply not needed, since incoming messages have no routing information.

The second data area is the descriptor table, which keeps fix-sized job descriptors for each
DMA message. The job descriptors consist of four 64 bit words. Three words are used to
describe the three message frames, their offset relative to the base address of the data
region and their length. The 4.word is an additional tag, which can be utilized by the soft-
ware to distinguish between different protocols or message types.

Figure 3-30 shows the layout of a job descriptor. The offsets point to the associated frame
data, relative to the base address of the data region. Lengths are given in terms of 64 bit
words. The upper byte of the routing length is used as an additional command byte. Cur-
rently, only one special command is encoded. By setting the lowest bit of this byte to 1
one can mark a job as non-consuming. This means that data is read from the data region
as normal, but the read pointer is not advanced afterwards. This offers the possibility to

88

The ATOLL System Area Network

reference the data again. This method can be used to implement broadcasts on the sending
side by copying the payload just once into the data region and referencing it with multiple
descriptors.

Figure 3-30.Job descriptor

63 31 23 0
routing: offset g?tg length
header: offset length
data: offset length

tag

The command byte is used on the sending side only. When receiving a message, this byte
Is used as a status byte to flag special events associated with the message. In the current
version of ATOLL, only the lowest bit is used to mark incomplete messages. This event
occurs, when the number of words received from the network differs from the message
length information, which is always at the start of the header frame of a message. E.g.,
this can occur, when a user process core dumps while sending a message in PIO mode,
and the driver software completes the message, but not with the right number of words.

Similar to the data region, there are separate descriptor tables for the DMA-send and the
DMA-receive units. As described earlier, a host port generates an interrupt when these
resources are exhausted on the receiving side. Driver software should then always free up
a large amount of memory space to make sure that messages waiting to be received do not
block the network.

3.6.5 Status/control registers

The status/control registers needed for a host port are stored in a separate register file. It
interfaces with all other components of a host port to gather the status data needed and
spreads out the control information to the units. A separate page is used for the send and
the receive part, but only nearly a dozen of registers are implemented for each page. Most
of them store the base addresses and offsets needed for DMA-based message transfer,
whereas only a few are needed to control the PIO mode.

Table 3-5 lists all registers of the send page. The offsets are relative to the page base
address. All registers are 64 bit words, but not all bits might be relevant. Only the base

89

Host port

addresses occupy all 64 bits, the other offsets are 32 bit wide. And the fill level of the PIO-
send FIFO fits into the lower 6 bits of the associated register.

Table 3-5.Send status/control registers of a host port

register name offset mode, width comment

snd_DT_base 0000h riw, 64 base address of the DT
snd_DT _read_ptr 0008h riw, 32 read pointer of the DT
snd_DT_write_ptr 0010h | riw, 32 write pointer of the DT
snd_DT_upper_bound | 0018h| r/w, 32 upper bound of the DT
snd_DR_base 0020h| r/w, 64 base address of the DR
snd_DR_lower_bound | 0028h| r/w, 32 lower bound of the DR
snd_DR_read_ptr 0030h| r/w, 32 read pointer of the DR
snd_DR_write_ptr 0038h riw, 32 write pointer of the DR
snd_DR_upper_bound| 0040h{ riw, 32 upper bound of the DR
snd_repl_base 0048h| riw, 64 base address of the replicator
snd_fifo_fill_level 0800h | ro, 6 fill level of the PIO-send data FIFO

Table 3-6 lists all registers of the receive page. The DMA registers are almost the same as
for the send page, except the unnecessary lower bound register for the data region.

Table 3-6.Receive status/control registers of a host port

register name offset mode, width comment

rcv_DT_base 0000h riw, 64 base address of the DT
rcv_DT_read_ptr 0008h riw, 32 read pointer of the DT
rcv_DT_write_ptr 0010h riw, 32 write pointer of the DT
rcv_DT_upper_bound 0018h| r/w, 32 upper bound of the DT

rcv_DR_base 0020h r/w, 64 base address of the DR
rcv_DR_read_ptr 0028h riw, 32 read pointer of the DR
rcv_DR_write_ptr 0030h riw, 32 write pointer of the DR
rcv_DR_upper_bound 0038h| r/w, 32 upper bound of the DR
rcv_fifo_fill_level 0800h ro, 6 fill level of the P1O-receive data FIFO
rcv_fifo_read_ptr 0808h riw, 6 read pointer of the PIO-receive data FIFO
semaphore FCOOh| riw, 64 semaphore, set on read as side effect
cnt FEOOh | ro, 64 global counter

Besides the fill level of the P1O-receive data FIFO, the receive page also includes a reg-
ister for the FIFO read pointer. Writing a new value to it is equivalent to shifting out the
previously read data words. Each host port has also read access to the internal global
counter, which is located in the supervisor initialization registers described earlier. It is

90

The ATOLL System Area Network

simply spread out to all host ports, so user applications can e.g. precisely time certain
ATOLL library calls.

Another special feature is the semaphore register. It is intended to be utilized in case the
host port needs to be multiplexed between several applications. This is normally not the
case for production-type clusters, since performance is degraded significantly. But it
might make sense for application development or debugging purposes. A write access
simply writes the specified data to the register. But a read access returns the stored value
and, as side effect, sets all bits to 1. So one could initialize the semaphore by writing a 0
to it. When several user processes try to read the register, only one gets the 0 as value, all
others see all bits set to 1. So the one with the 0 has acquired the semaphore, all others
must wait, until the locking application frees it by writing a 0 back to the register.

3.6.6 DMA-send unit

Figure 3-31.Control flow of sending a DMA message

application DMA-send unit
write data load desc.
write header & data load the job desc.
to data region from DT

write desc. load message

create new job descriptor load all 3 frames from DR
in descriptor table and forward it to network

trigger host port free memory

update DT & DR write update DT & DR read
pointers in host port pointers in host port

The DMA-send unit is responsible to observe the data areas for sending messages, and to
process all valid entries in the send descriptor table. If a job is available, it loads the
descriptor, and subsequently loads all message frame data. As soon as requested data is
returning from the PCI-X interface it is forwarded to the network port. Figure 3-31 shows

the general control flow of sending a message via the DMA mode, for both the user appli-
cation and the DMA-send unit. The application triggers the DMA-send control logic by
writing new values of the write pointers for DT & DR into the host port. These are con-

91

Host port

tinuously monitored by the host port. As soon as read and write pointers of the descriptor
table are unequal, a valid job entry is present and processed.

Figure 3-32.Structure of the DMA-send unit

job creation

control FSM
load desc., data ﬁ [
cntl interface Working set =
o
‘\ - o
g =
@© : c
& address reg file o
o calculation . | ol
7
7 - 8
© -
=
Y
S o control FSM
e D 2 monitor job queue
Q S o transfer data =
[O o o
= — o
4+ O X
= (@) © - 4
Q = send fifo 5
— - [— %
. 64x68 data fifo c

job completion

Figure 3-32 depicts the structure of the DMA-send unit. It is split up into two subdesigns.
One part is responsible for requesting data from memory, labeled with ‘job creation’ in
the figure. As described earlier, the Master-Read interface implements a split phase trans-
action scheme, where blocks of up to 32 words can be requested. Each job is assigned a
unique ID, with up to 8 jobs in progress. The ‘job creation’ part now keeps copies of the
relevant status/control registers in a working set module. This working set is continuously
updated from the status/control register file of the host port.

As soon as an entry is detected in the descriptor table, it is requested from memory and
stored in the working set. Step by step the ‘job creation’ part now computes the load
addresses from fixed base addresses and the offsets given in the descriptor. A set of jobs
is then generated to fetch all frame data from memory. The associated job IDs are pushed
into a job queue. This is necessary since multiple host ports might request data in an arbi-
trary sequence. So each host port must keep the jobs it has requested to match them with
the ID of returning jobs.

92

The ATOLL System Area Network

The second part is called ‘job completion’ and is responsible to accept the data the other

part has requested. It therefore monitors the IDs of incoming jobs to detect the ones it

should process. Incoming data is then placed in a FIFO, marked with its corresponding

tags. As soon as data is in the FIFO, this part requests access to the network port. If
granted, data is transferred towards the network. Since the FIFO can only store up to

64 words, the unit cannot request more data. Doing so could cause all data paths to be
blocked in case the path towards the network is not available. This can happen when also
the PIO-send unit is transferring a message, or the path through the crossbar is occupied
by a message just passing through the ATOLL chip.

3.6.7 DMA-receive unit

Figure 3-33.Control flow of the DMA-receive unit

DMA-receive unit

store header

spool header out to.
memory

store data
spool data out to memory

store desc.

write desc, to DT
update write ptrs

The DMA-receive unit is the counterpart to the DMA-send unit. It gets message data from
the network port and spools this data out to the DMA data structures in main memory.
Figure 3-33 shows the main control sequence of the unit. An incoming message consists
of the header and the data frame, since the routing frame is no more needed.

Similar to the DMA-send unit, the DMA-receive module keeps the relevant registers in a
small working set. It then writes header and data out to memory. After all message data
has been processed, it assembles a descriptor pointing to the data spooled out to memory.
This job descriptor is then stored in the receive DT, which is monitored by the user appli-
cation. The write pointers of both DT & DR are updated to reflect the newly arrived mes-
sage.

93

Host port

Figure 3-34.Structure of the DMA-receive unit

Q
=
(O] - o
£ control FSM '\ <— working set 3
g. check space E
o transfer data <‘“—> 5
17 =
< i ©
@®© reg file 8
= (17
©
2 address
C .
calculation
S r—f - o
z & S
C . .
= receive fifo x
S -« S
8 T E
64x68 data fifo o

N

Figure 3-34 gives an overview about the structure of the DMA-receive module. Incoming
data s first stored in a FIFO. Addresses are computed for each data word from the register
values of the working set. Prior to handing data over to the Master-Write interface of the
port interconnect, the control logic makes sure, that enough memory space is available to
store the message in the DMA-receive data structures. If this is not the case, the unit gen-
erates an interrupt and waits, until software frees up memory and updates the relevant read
pointers of DT & DR.

Though each data word is transferred with its address, it makes no sense to mix multiple
data streams from several active DMA-receive units on a word-by-word basis. So as soon
as data enters the FIFO from the network side, the unit requests exclusive access to the
port interconnect. If granted, it keeps the request up until no more data is available. Only
then the request is deasserted, and other host ports might get access to the port intercon-
nect. This way a strong fragmentation of the data stream is avoided, with the probability
to assemble larger burst transfers.

3.6.8 Replicator

The replicator is used to avoid polling status registers of the ATOLL device, which could
degrade overall system performance by interfering with data transfer bursts. Those regis-
ters needed by application software are automatically written out to a separate portion of

94

The ATOLL System Area Network

main memory. There are 8 registers in total written out, separated in two groups of

4 registers, one for send and one for receive operations. An update consists of all
4 registers of each block. New register values are handed over to the replicator, and addi-
tional trigger signals force it to update the values in memory.

The replicator utilizes the same Master-Write interface of the port interconnect as the
DMA-receive unit. Table 3-7 shows the layout of the mirrored registers in main memory.
Each host port can be assigned a unique base address for its replicator through the asso-
ciated register in its control/status register file. The offsets given are relative to this base
address. Though located in normal main memory, those locations are declared as read-
only, since they should not be altered by software (except initialization at system start-up).

Table 3-7.Layout of the replicator area

register name offset mode, width comment

snd_DT_read_ptr 0000h ro, 32 read pointer of the send DT
snd_DR_read_ptr 0008h ro, 32 read pointer of the send DR
snd_fifo_fill_level 0010h ro, 6 fill level of the PIO-send data FIFO
semaphore 0018h| ro, 64 current semaphore value
rcv_DT_write_ptr 0020h ro, 32 write pointer of the receive DT
rcv_DR_write_ptr 0028h ro, 32 write pointer of the receive DR
rcv_fifo_fill_level 0030h ro, 6 fill level of the P1O-receive data FIFO
rcv_fifo_read_ptr 0038h ro, 6 read pointer of the PIO-receive data FIFO

The read and write pointers of the DMA modes are updated on each change. This is also
true for the semaphore and the read pointer of the PIO-receive FIFO. But as described in
previous sections, the update frequency of the FIFO fill level can be configured. So while
utilizing these registers in the replication area one must keep in mind, that the real value
might differ from the mirrored one by up to the threshold value. E.g., if an update is made
every 8 words and the mirrored FIFO fill level is 32, then the real FIFO fill level inside
the host port can be in the range 25-39. And even worse, there can be pending updates
waiting to be transferred to main memory in the device. This might happen if the data
paths are congested due to multiple active host ports.

So before interpreting the value in the replication area, an application should read the
value directly from the device once to make sure, that it is the same as the mirrored one.
And while doing calculations with these values, e.g. to check if the PIO-send FIFO has
enough space left for a message to send, the software should take the threshold into
account.

95

Network port

3.7 Network port

The network port is converting the tagged data stream of 64 bit words into a byte-wide
stream according to the link protocol defined for ATOLL and vice versa. It is split into
two separate units for sending and receiving messages. There is no interaction between
those two units, so they both can process messages concurrently. The sending part also
generates CRC values for error detection later in each network stage.

3.7.1 Message frames and link protocol

As stated earlier, an ATOLL message consists of three frames: routing, header and data.
The routing frame is consumed while the message is routed towards its destination, so
only header and data frame enter the receiving path of a network port. Each frame consists
of several link packets, which can consist of up to 64 data bytes. Only full 64 words are
used to form a message, so the number of data bytes is always a multiple of 8. At least one
data word must be in every frame to ease the implementation.

Figure 3-35.Message frames

frames start with

message: | | | a SOP byte
- e

- g d | >

frames: || routing || header || data [l
e ! N — ~
- / ~ ~
- - / N N
- N \

[SOP[R|...|R [EOP | |’sop| H] --{ H{CRC [EOP NSOP| D|---[DJCRCJEOP |\ \
\

H| H| H|...| H]CRC]EOP | \| D] D| D|...| D]CRC [EOM

multiple link packets

per frame possible / /
CRC bytes protect the last link packet
message data ends with an EOM byte

Figure 3-35 gives an overview about the framing of ATOLL messages and the link pro-
tocol used for the byte-wide data stream in the network. Separate control bytes are used
to enclose the normal message data bytes and to ensure a correct framing. An additional
ninth bit is used to distinguish between control and data bytes (0 = data, 1 = cntl).

There are 4 control bytes used at the network port to build up the framing of message data:

* SOF (Start Of Frame) is the 1.byte of a new frame

96

The ATOLL System Area Network

* a CRC value is computed for each link packet in the header and data frames. It is
appended to the end of the link packet

* EOP (End Of Packet) marks the end of a link packet

« EOM (End Of Message) marks the end of the whole message, and replaces the EOP
byte of the last link packet

Link packets in the routing frame do not have a CRC value attached, since one must react
on bit errors in routing bytes immediately. This is handled by using an error detecting
code for routing bytes, which is discussed in detail later on.

Each frame can be composed of several link packets, but the normal case should be that
a single link packet is enough for the routing and the header frame. E.g., 64 routing bytes
are sufficient to define routing paths in a 2D grid of 32 x 32 = 1024 nodes. A special con-
straint exists for the header frame. The 1.word of it must be the length of the message,
given as separate 32 bit values for header and data frame. The 2.word must be the tag.
This is necessary to give the host port at the receiving side the possibility to check auton-
omously, if the message should be received in PIO or DMA mode. As stated earlier, this
decision is made based on the length of the message and a configurable threshold. The
DMA-send unit automatically ensures this constraint, but e.g. software utilizing the P10-
send mode has to take care of this constraint, too.

3.7.2 Send path

Figure 3-36.Structure of the send network port unit

a N

CRC
generator

data
conversion

input fifo = _ output fifo

1IN = 3 = = 1

8x68 data fifo 16x9 data fifo
control FSM
ensure protocol

¢

host port
crossbhar

97

Network port

Figure 3-36 depicts the overall structure of the send unit of the network port. It can be
viewed as a 3-stage pipeline consisting of an input, a processing and an output stage. The
host port delivers a stream of tagged 64 bit words. This data is temporary stored in a small
FIFO. The following processing stage now shifts out the data word by word and forms a
stream of bytes, tagged with the cntl/data flag bit. It inserts control bytes according to the
link protocol where necessary. A CRC generator computes the CRC value of the pro-
cessed data. After a full link packet has been processed, this CRC value is appended and
the link packet is completed by an EOP or EOM control byte. This stream of link data is
pushed into an output FIFO, which keeps the data until it is transferred towards the cross-
bar.

3.7.3 Receive path

Figure 3-37 shows the structure of the receive unit inside the network port. It basically
consists of the same 3-stage processing pipeline as the send part, but only in the opposite
direction. Data assembles in a small input FIFO. The following protocol stage strips off
the control bytes from the link data stream. It rebuilds a stream of tagged 64 bit words.
There might be some unused routing bytes left at the head of the message. This happens
e.g. when only 3 network hops are needed. Since frames are made of multiple 64 bit
words, 5 bytes are unused. These are simply dropped until the header frame begins.

Figure 3-37.Structure of the receive network port unit

\

output fifo O

([= [data
8x68 data fifo conversion

fifo cntl ' ' '| input fifo
[T (-]

multiplex
fifos 8x9 data fifo

host port
crossbhar

output fifo 1 control FSM
i strip link protocol
8x68 data fifo check CRC

/

The output stage is a bit more complex than in the send unit. Incoming link packets might
be marked as corrupted, since transmission errors were discovered somewhere along the
path the message took through the network. These packets end with a special error control
byte EOP_ERR (End Of Packet ERRor), instead of the normal EOP byte. Since these
packets are automatically retransmitted to the network stage which detected the error, the

98

The ATOLL System Area Network

same link packet follows the corrupted one in the data stream. So the corrupted link packet
needs to be filtered out at the receive unit of the network port. This means data pushed
into the output stage cannot be forwarded to the host port prior to the complete reception
of a correct link packet.

Providing only one output FIFO would result in a significant performance penalty, since
the data stream would be repeatedly stopped and restarted. This would happen, since
pushing data into the FIFO and popping data from it cannot be overlapped. In case of erro-
neous link packets one would otherwise need to keep track of which words to transfer and
which ones to delete.

To keep data flowing a second FIFO was implemented, and the data path switches on each
link packet between them. This way, the normal operation of this unit is as follows:

* alink packet is processed and pushed into FIFO O

» after making sure it is valid, the next incoming packet is pushed into FIFO 1 and the
control logic of the output stage is ordered to forward the data in FIFO 0

« while the second link packet is processed, the first one is transferred to the host port
« after finishing the second packet, FIFO 0 is empty again and roles are switched again

Simulations showed a significant gain in sustained throughput of the unit using two output
FIFOs instead of just one. In case of only one FIFO, a few wait cycles were introduced in
the network port. But even more serious was that these short periods of blockages in the
data stream triggered the flow control of previous links, causing larger idle times on the
links along the data path.

3.8 Crosshar

The crossbar [69]is a full-duplex 4x4 switch, providing an all-to-all connection between

the 4 network ports on one side and the 4 link ports on the other side. It is made of
8 identical crossbar ports, which again are split up into an input and an output unit. An
additional debug interface observes the status of the crossbar and can be utilized to resolve
major failures, like deadlocks or misrouted messages. The overall structure of the crossbar
is shown in Figure 3-38.

The input unit of a crossbar port strips off the first routing byte of an incoming message
and sets the request for the addressed crossbar port. This can be any of the 8 ports, includ-

1. designed and implemented by Prof. Dr. Ulrich Briining and Jorg Kluge

99

Crossbar

ing itself. It then waits for the other side to grant the access and forwards data, until the
end of the message is reached. To not monopolize a specific crossbar port, each input unit
deasserts a request for at least 3 cycles between back-to-back messages. This gives other
ports a chance to request the port.

Figure 3-38.Structure of the crossbar

/ xbar port 0 xbar port 4 N\
% -— output |-=— —» output —» o
e x5
Q9 —w input —» --— Iinput l@—=2
xbar port 1 xbar port 5
X |e— output e—XX3—m- output —m
O o
e g X
QQ—» input —» S input @—=2
| %)
xbar port 2 = xbar port 6
%2}
—‘gN — Output |-— R output —m
Se _ o . =1
QQr— input —» = - input w*—=2
xbar port 3 xbar port 7
% -— oOutput |-=— — output —» &
g _ . £5
Qo —m input —» - input E— =2
debug
interface

- /

The output unit of a crossbar port arbitrates its data path in a fair round-robin fashion.
Once a request is served, data flows into the unit and is buffered in a small FIFO. If the
following unit signals its ability to accept data, the message is transferred out of the cross-
bar. All interfaces use the two-way handshaking introduced earlier.

The additional debug interface observes the status of the crossbar and can be accessed via
the debug registers listed in “ATOLL control and status registers” on page 71. The
detailed implementation of the crossbar and the use of the debug interface is beyond the
scope of this document. Further information can be looked up in the ATOLL Hardware
Reference Manual [67].

100

The ATOLL System Area Network

3.9 Link port

The link port is the gateway to the network. It directly drives and receives signals over the
link cables. As all other top-level building blocks of ATOLL, it is also split up into inde-
pendent units for sending and receiving data. Its main task is to ensure proper and error-
free transmission of data. This includes a reverse flow control protocol to prevent buffer
overflow on the receiving side in case of blocked data paths.

A unique feature of an ATOLL link is its per-link error detection and correction. In con-
trast to the end-to-end error detection and software-driven retransmission found in other
networks, ATOLL link packets are checked in each network stage. Retransmission is
completely handled by hardware and occurs immediately on the link the error was intro-
duced. This provides an extremely fast way to solve the issue of rare bit errors due to envi-
ronmental influences on the link cables.

3.9.1 Link protocol

Two types of bytes make up the link data stream: data and control bytes. They are differ-
entiated by an additional ninth bit. Data bytes itself can be separated into two classes:
routing bytes and normal payload bytes for the header and data frames. A routing byte is
special, since it carries the information of the output port its message should take at the
next crossbar. A bit error in a routing byte would result in catastrophic failure of the net-
work. The message would take a different path then specified, causing it to arrive at a false
destination, or even worse, let it end somewhere in a network stage due to missing routing
information. So one must react immediately in case of errors in routing bytes, the normal
CRC link packet protection scheme of the other two frames is useless here.

Therefore, the upper bit of a routing byte is a parity bit calculated from the remaining
7 bits. This offers the opportunity to detect a single-bit error immediately. Such a faulty
bit is replaced with a special CANCEL control byte, signalizing all other downstream
units that this routing link packet is to be ignored. It is then retransmitted just like any
other erroneous link packet.

Table 3-8 gives an overview about the format and encoding of all data and control bytes.
The first two rows show the encoding of normal data and routing bytes, wheret{gbit

Is the bit distinguishing between data and control bytes. The rest of the table depicts the
encoding of all 11 control bytes used in the ATOLL link protocol.

101

Link port

Table 3-8.Encoding of data and control bytes

hex | d[8]| d[7]| d[6]| d[5]| d[4]| d[3]| d[2]| d[1]| d[O] | comment
Oxx |0 - - - - - - - - normal data byte
Oxx |0 par | - - - - - - - routing byte with parity bit

d[5] [d[4] | d[3] | d[2] | d[1] | p[2] | d[O] | p[1] | P[O] | ECC hit positions, hamming code
IFF |1 |1 [1 |12 |1 |1 1] 1 1 |IDLE (filler byte)
100 |1 0 0 0 0 0 0 0 0 | SOF (Start Of Frame)
107 |1 0 0 0 0 0 1 1 1 | EOM (End Of Message)
119 |1 0 0 0 1 1 0 0 1 | EOP (End Of Packet)
11E|1 |0 |0 [0 |1 |1 |1 | 1 | 0O |EOP_ERR (EndOf Packet ERRor)
12A |1 0 0 1 0 1 0 1 0 STOP (STGdending of data)
12D |1 0 0 1 0 1 1 0 1 | CONT (CONTinue sending data)
133 | 1 0 0 1 1 0 0 1 1 | POSACK (POSitive ACKnowledge)
134 |1 0 0 1 1 0 1 0 0 | NEGACK (NEGative ACKnowledge)
14B | 1 0 1 0 0 1 0 1 1 | RETRANS (RETRANSMiIt link packet
14C |1 |0 |1 [0 |0 |1 |1 | 0| O |CANCEL(CANCEL routing)

Since only data bytes are protected by link packet CRCs or parity bits, another method
had to be found for the control bytes. They are protected by a hamming code, which is an
error correcting code (ECC). So an error is not only detected, but also corrected on the fly.
This is accomplished by using 3 bits of the byte as parity bits, markeyf2a8] in the

table. The parity bits are encoded as follows:

p[0] = XOR(d[6], d[4], d[2])

p[1] = XOR(d[6], d[5], d[2])

p[2] = XOR(d[6], d[5], d[4])
Using this hamming code, a correct control byte can be identifieo[®y] = 000. Any
nonzero value of the parity bits points to the erroneous bit position, which is then simply

inverted to correct a single-bit error. E.g. a valueéafl for the parity bits identifies bit
d[2] as incorrect.

The control bytes SOF, EOM, EOP, EOP_ERR and CANCEL were described earlier. The
IDLE byte is simply used as filler, since a byte is transmitted on each clock edge over a
link. STOP and CONT are the bytes used for the reverse flow control. POSACK and
NEGACK are used by a receiving link port to signal the sender a good or a bad link
packet. The RETRANS byte is used to lead any retransmitted link packet.

102

The ATOLL System Area Network

3.9.2 Output port

Figure 3-39.Structure of the output link port

input path\ / output path\

b input fifo output fifo
7 | »:I-_PT:I:ID
& 8x9 fifo 8x9 fifo
5 \,4_/4

/

retrans bufO \

_>
68x9 fifo

retrans bufl
_>

Kretransmit path 68x9 fifo /

reverse flow \

cntl insertion
rev. flow cntl path K

\

output path
arbiter

link cable out

Figure 3-39 gives an overview about the structure of the link port output unit. Itis split up
into 4 areas according to the different tasks it should manage. The input path gets message
data from the crossbar and stores it temporary in a small input FIFO. Control logic now
forwards each link packet towards the output path, storing data in another FIFO.

The retransmit path is responsible to keep a copy of each link packet sent over the link. If
the receiving side signals a corrupted packet, this unit can retransmit the erroneous packet.
Since the acknowledge from the other side has a certain delay (error detecting logic, cable
propagation time), it would be a waste of bandwidth to wait for it after each single link
packet. So the retransmit path has two identical retransmit buffers to be able to store
2 packets in parallel.

During the unit waits for the acknowledgment of the first packet, a second one can be
transmitted. Thus transmission and acknowledgment of link packets is overlapped, offer-
ing the possibility to operate the link at full capacity. Sometimes it happens that small

packets are transferred, e.g. routing or header packets with only 1-2 words. If both buffers

103

Link port

are filled and wait for their corresponding acknowledge, the input path is stopped as long
as one of the buffers is free again.

Figure 3-40.Reverse flow control mechanism

sender stops
transfer of data,

sends fillers

node O \‘ node 1 @

/”nk port \ link port\ fifo runs

output path ' input path J"!

O —¢ -

STOP s | |

signaled request to
DII:II] se%d a STOP

input path output path
_ _ /

Lo

a STOP is sent
to the sending
link port

IDLE
IDLE
IDLE

IDLE
STOP
IDLE

Figure 3-40 shows how the reverse flow control path is utilized to insert control bytes into

the opposite data stream of a full-duplex link:

A: the FIFO on the receiving side runs full, because the path is blocked further ahead
B: the input path requests its associated output path to send a STOP signal
C: the STOP byte is inserted into the data stream on the opposite path of a link

D: the input path of the sender filters out the STOP byte and signals its reception to
the output path

E: the sending output path recognizes the STOP request and stops transmission of
message data. Instead, it sends only IDLE fillers

The same procedure happens in case the blockage of the path is removed and the FIFO

can again store data. This is signaled by sending a CONT control byte. This mechanism

is also used for the acknowledgment of link packets. The checking input path requests to
send a POSACK or NEGACK byte, which is filtered out at the other side. So the reverse
flow control path of the output unit is responsible for the insertion of these four control

bytes into the link data stream. Additional arbiter and datapath logic multiplex the access

to the link cable between the three subunits of the output path.

104

The ATOLL System Area Network

3.9.3 Input port

Figure 3-41.Structure of the input link port

= < control FSM) PLL

Ifo status link clk

observation V} I‘IQCO(\:/eI’y <+ c
. Q
© o
o) ©
7} o
2 input fifo CRC check synch fifo ~
5 <4—— & decode -+ £

256x9 data fifo 16x9 data fifo

'l
N

The structure of the input path of the link port is shown in Figure 3-41. It can be viewed
as a pipeline of 3 stages: data synchronization, error checking & decode and storage.
Since all ATOLL chips have their own internal clock signal, one must first synchronize
the incoming data to the clock of the receiving node. An additional tenth signal line is used
in the cable to transfer the clock. This is done at half the rate to prevent the introduction
of noise onto the data wires. This clock signal is now recovered by a PLL and used to push
data into a dual-clock data FIFO. Only non-ILDE bytes are pushed into the FIFO to pre-
vent an overflow by a slightly faster running sender. The output port makes sure, that at
least 1 IDLE byte is sent per 64 byte link packet.

The second stage decodes all control bytes and filters out flow control signals, which need
to be forwarded to the corresponding output path (STOP, CONT, etc.). It checks routing
bytes for parity errors, possibly corrects bit errors of control bytes by using the hamming
code, and checks the CRC of link packets. For debugging purposes, a multiplexer can be
used to choose between the data from the cable and the data sent out by the link port. This
offers the possibility to run the link port in a kind of loopback mode.

Finally, data is pushed into a large FIFO. This FIFO is observed by some control logic,
which triggers the sending of STOP and CONT control bytes to stop and restart the link
data stream. The FIFO can store up to 256 bytes, and the data stream is halted, when it is
filled to 50 %. For a short period of time data is still coming into the link port, since the
request needs some time to arrive at the opposite side. This configuration is enough to
support links of up to 25 m. Falling again under the 50 % mark triggers the request to send
a CONT byte.

105

Link port

106

Implementation

4Implementation

The implementation of the ATOLL architecture as an Application Specific Integrated Cir-
cuit (ASIC) [70] has been a huge challenge. With the complexity and the aggressive level
of integration, the task of implementing the ATOLL chip is comparable to high-end com-
mercial chip developments at major semiconductor companies. The goal could only be
attained by following a carefully planned project schedule, maximizing the productivity
of the manpower at our disposal. Other big hurdles have been the restricted financial
budget and the limited access to chip development tools. Normally, ASIC projects of this
size are heavily supported by the technology and tool vendors to help the design team
solving critical issues. The available support from this side for the ATOLL project was
very limited. But despite all these obstacles, the design team was able to ship the final
transistor layout to production in February 2002, almost 3 years after implementing the
first simulation modules.

The Europractice IC Serviéewhich is funded by the European Union (EU), is normally
the only way for European research labs and universities to fabricate a few prototype
chips to validate the practicability of their ideas. The only available state-of-the-art
CMOS process at the time the project was planned was the 0.18 um process from UMC,
Taiwan. So this technology has been chosen for the implementation of ATOLL. Most
Electronic Design Automation (EDA) tools used for the chip development were also
acquired via Europractice. Almost all the tools are developed by Synopsys, Inc. and
Cadence Design Systems, Inc., two of the leading EDA companies.

The ATOLL ASIC is a standard cell based design. Using such pre-configured cell librar-
ies, containing logic gates like AND, OR, NAND, NOR, NOT, DFF, etc. in different sizes
with several driving strengths, speeds up the design time, since one has not to deal with
traditional VLSI design techniques. But the disadvantage is the loss of performance in
terms of speed and greater power consumption, since these cell libraries are often very
conservative to ensure proper function in silicon. Europractice offers such a library for the
UMC process from Virtual Silicon Technologies, Inc. (VST).

1. www.europractice.imec.be

107

Design Flow

To concentrate on the development of the logic unique to ATOLL, several commonly
used building blocks were integrated by using external Intellectual Property (IP) cells.
These cells are:

* aPCI-X interface, donated by Synopsys

» DFF-based fifo structures, included in the DesignWare IP library from Synopsys
* RAMSs of different sizes, generated by a RAM compiler from VST

» two kinds of PLLs, generated by a PLL compiler from VST

 three special full-custom /O cells (PCI-X, LVDS-IN, LVDS-OUT), developed by an
analog expert team from the University of Kaiserslautern

4.1 Design Flow

The design flow [71] pretty much follows the standard ASIC design flow used over the
last decade to design digital ICs. The size of the design and its aggressive target frequency
would have been better manageable with some of the new EDA tools targeting high end
designs. These new tools merge the logical and physical design steps, providing a faster
implementation and more predictable results. Examples are Physical Compiler from Syn-
opsys and Physically Knowledgeable Synthesis (PKS) from Cadence. But these tools
were not part of the Europractice tool packages at the start of the implementation phase.
Cadence PKS tools have been made available lately, though.

So a design flow had to be established from the accessible tools. Where necessary, addi-
tional tools, e.g. for design entry and HDL linting, were acquired to further enhance pro-
ductivity, if affordable. Figure 4-1 depicts the overall design flow, the tools used for each
step and the design formats exchanged between them. Since the design team had almost
no knowledge of backend design (placement & routing of standard cells) and to further
reduce the workload, it was chosen to draw on the backend service offered by IMEC, Bel-
gium for Europractice customers. Each of the illustrated steps is described in detail in the
following sections.

108

Implementation

Figure 4-1.ATOLL design flow

f Verilog HDL
design entry/ HDL Designer (Mentor): design entry

RTL coding Verification Navigator (TransEDA): HDL linting
Verilo%RTL

functional NC-Sim (Cadence): Verilog simulation
simulation

Verilo%RTL

3 i Design Compiler (Synopsys): logic synthesis
logic synthesis Primetime (Synopsys): static timing analysis
Veriloginetlist

DfT Compiler (Synopsys): scan insertion

test insertion BSD Compiler (Synopsys): boundary scan (JTAG)
TetraMAX (Synopsys): ATPG

Veriloginetlist

floorplanning
place & route

Verilog netlist|

< Apollo 1l (Avant!): floorplan, place & route
Star-RCXT (Avant!): parasitic extraction

SDF, PDEF +set_load , +
Verilog
IPO/ECO netlist gate-level
optimization simulation
Floorplan Manager (Synopsys): NC-Sim (Cadence): Verilog simulation
post-layout optimization
lGDSII
SDF: Standard Delay Format
tape out PDEF: Physical Design Exchange Format
to UMC set_load: net capacitances

GDSII: polygon layer masks

4.2 Design entry

The whole design has been implemented using the Verilog HDL on Register-Transfer
Level (RTL). This is achieved by specifying the behavior of the logic in a cycle-accurate
manner. The design process followed a mixed bottom-up, top-down approach. From the
top-level of the chip, a hierarchy of modules has been implemented. A step-by-step refine-
ment of module interfaces and the logic inside functional units has given early feedback
on the consequences of design decisions and sometimes led to the rearrangement of logic
for better performance. Other modules have been designed the same time by merging
basic functional units into larger and more complex blocks.

109

Design entry

To deal with the large design hierarchy and to enhance its visualization, the decision was
made to use a schematic-based design entry tool. After evaluating several alternatives, the
HDL Designer Series from Mentor Graphics was chosen. It offers good visualization
opportunities, multiple entry formats (schematics, state machines, truth tables, HDL code)
and team-based design management. Its RCS-based version management has been uti-
lized to prevent conflicting modifications to the design, as well as to provide the ability to

fall back to previous versions of modules.

For an efficient implementation of complex control logic as Finite State Machines (FSM),

a custom developed tool called FSMDesigner [72] has been used. Its optimized HDL code
generation proved to be a valuable help to deal with complex, hard to implement control
logic. The most obvious advantage was to be able to debug control logic at the more
abstract level of FSMs, compared to plain HDL code. This provided a fast turnaround
time while debugging the design. Regarding the fact that most of the functional bugs were
discovered in the control part of a unit, this helped to save weeks of development time. In
a late stage of the design, the state machine editor of the HDL Designer Series was used
instead, after having figured out how to apply our special implementation style for FSMs
to it.

4.2.1 RTL coding

Since the level of expertise in writing Verilog RTL code varied a lot inside the design
team, a way had to be found to make sure that all designers produce quality code, which
could be easily merged into the whole design. A set of rules and guidelines [73] for writ-
ing Verilog code was established, similar to the Reuse Methodology Manual [74], which
is widely used in industry. To automate the compliance checking of the code, a special
HDL linting tool was acquired, called VN-Check. This tool is part of the larger Verifica-
tion Navigator (VN) tool suite from TransEDA. A rule database was implemented and
each time a designer wanted to check in new code, it was first passed through the linter.
This proved to be a fast and efficient way to catch a lot of coding errors, which normally
cause problems later in the flow. E.g., it ensured a consistent clocking and reset method,
avoided unwanted latches, and forced designers to follow a consistent naming style.

4.2.2 Clock and reset logic

Besides the implementation of the architecture, the clock and reset twigam ASIC is
always a critical factor. The whole chip integrates 6 different clock domains: PCI-X,
ATOLL and 4 link domains. The PCI-X clock is generated by logic on the host main

1. designed and implemented by Patrick Schulz for ATOLL

110

Implementation

board. Based on the system configuration, it can be set to 33/66/100/133 MHz. An on-
chip Delay Locked Loop (DLL) has been implemented to provide a fixed clock tree
delay, as requested by the PCI-X specification. The main ATOLL clock is generated by
an on-chip oscillator, which uses an external crystal residing on the network card next to
the ASIC. It is then internally multiplied by a PLL. The multiply factor is configurable,

so one can run the chip from 175 MHz up to 350 MHz. The stepping width for the PLL is
14 MHz. This offers the possibility to tweak the clock frequency of the ASIC up to its
physical limit, since the assumptions made during the design process, e.g. bad supply
voltage and high temperature, are often far too pessimistic. Finally, to sample data coming
over a link from another node, the clock is sent over the link as additional signal line. This
is done at half the rate of the original clock to prevent unnecessary noise on the cable. At
the receiving side, this clock signal is again doubled, phase-aligned and inverted to sample
incoming data into a synchronization fifo. This fifo is then read with the internal ATOLL
clock.

Figure 4-2. A dual-clock synchronization fifo

push clock domain pop clock domain
e AV \I
data _in P wdata rdata data_out
push + p- Write
wptr rptr B
gray-code P wadr radr =& gray-code e Pop
dual-port
RAM
flags [€mpty
full <e— =
flags <—L synch| DFFs

- /

All signals crossing a clock domain border must be synchronized into the receiving clock
domain. Sampling an asynchronous signal can result in metastability of flipflops, letting
them oscillate for a certain amount of time. The probability of metastability can be
reduced by sampling an asynchronous signal multiple times. For modern technologies, a
double-sampling is sufficient to ensure proper function of logic.

1. designed and implemented by Prof. Dr. Ulrich Briining

111

Functional simulation

So passing data or control signals across a clock domain border is simply done by using
two flipflops in a pipelined fashion. Where itis necessary to pass signals in opposite direc-
tions, e.g. the two-way handshake signals, a dual-clock fifo structure is utilized to safely
transfer data. Some things [75] have to be observed while designing such a dual-clock
fifo. Basically, the push and pop interfaces are driven by different clocks. Data is stored
in a pointer-controlled RAM, with the write pointer residing in the push interface, and the
read pointer controlled by the pop interface. Internally, these pointers are then synchro-
nized to the opposite interface to calculate the fifo fill level and to generate the appropriate
control flags (full, empty, etc.). Using normal binary-coded pointers could result in a fail-
ure, since sampling a value which is just incremented from 0111 to 1000 could result in
any possible bit combination. This is avoided by using a gray-code for the pointers, allow-
ing only one bit to change on each transition. This could result in sampling an old data,
but not a completely wrong one. Figure 4-2 depicts the structure of such a dual-clock fifo.

4.3 Functional simulation

Regarding the size of the design, simulation runtime was a major issue. Therefore, prior
to running any simulations, a benchmark was set up to compare the performance of all
simulators accessible: Verilog XL, NC-Sim (both Cadence), VCS (Synopsys), and Mod-
elsim (Mentor). The compiling simulators NC-Sim and VCS clearly dominated the inter-
preting XL and Modelsim. Since more licenses were available for NC-Sim, it was chosen
as main simulator for both RTL and gate-level simulations.

4.3.1 Simulation testbed

Figure 4-3.Testbed for the ATOLL ASIC

Node 0 ATOLL Node 1
/ \Ilrg\ks / \
PCI-X PCI-X
Master| ATOLL ATOLL o | Master
3 |ASIC ASIC | 3
X X
O)

PCI-X | &_ [PCI-X PCI-X | & PCI-X
Slave Monitor Monitor Slave

o AN /

To test the ATOLL ASIC in an environment as close to its real use as possible, a festbed
has been set up to simulate a network of 2 PCs connected by the ATOLL network, as

1. implemented with the help of Patrick Schulz

112

Implementation

shown in Figure 4-3. The two ATOLL ASICs are connected back-to-back by their 4 links.
On the host side, Synopsys PCI-X FlexModels were used. These are a set of bus func-
tional models (BFM), configured to act as the central components of a PC node:

* a Master BFM is used to model the CPU
* a Slave BFM is used to model main memory
* a Monitor BFM is used to check all ongoing bus transactions for PCI-X compliance

Several Verilog tasks have been developed to control the simulation via the Master BFM.

They also encapsulate all calls to the FlexModel BFMs, so higher-level testbenches do not
have to deal with the control of single PCI-X bus cycles. Some examples for such tasks

are:

 atoll_init initializes the ATOLL ASIC, sets up data structures in main memory

» send_dma: assembles message data in main memory, enqueues a new send descrip-
tor into the descriptor table, and triggers the DMA engine inside the ATOLL ASIC to
process the currently generated DMA job

* receive_pio: receives a message by Programmed I/O

Summarizing, 22 Verilog tasks with more than 2.000 lines of code have been imple-
mented. Using these basic tasks as a kind of “testbench API”, several top-level test-
benches have been developed. They are used to test the implementation for correctness
and to sort out all functional bugs. The implemented tasks could serve as a starting point
for the development of a low-level ATOLL message layer. They issue a sequence of load/
store operations to control the various features for message transfer, very similar to the
algorithms software would need to implement.

4.3.2 Verification strategy

A specific verification strategy was chosen to be followed throughout the verification pro-
cess to coordinate all simulation efforts. This method [76] is called ‘shotgun & sniper
rifle’, according to its dual-way approach. A set of specific corner-case testbenches is
used to test all the critical issues the designers can think of (‘sniper shots’). These test-
benches are small and use fixed parameters to call the basic tasks. On the other side, some
testbenches use alarge sequence of tasks with random parameters (e.g., message size, link
to send data on, DMA or PIO mode, etc.) to cover large portions of the verification space
(‘shotgun’). In total, 11 ‘sniper’ testbenches and one large parameterized ‘shotgun’ test-
bench were implemented, together about 15.000 lines of code.

113

Functional simulation

4.3.3 Runtime issues

Memory usage of the simulator is surprisingly low, the compiled design uses only
63 Mbyte in total. But it has been a problem after starting to write dumps for analysis pur-
poses. When dumping the whole design, the code inflates to more than 1 Gbyte, causing
the machine to swap memory pages. This slows down the simulation significantly. Dump-
ing has been limited to the first levels of hierarchy to overcome this performance drop.
While debugging errors buried deeply in the design hierarchy, a second run of the errone-
ous testbench has recorded only the events from some specific modules.

The small corner-case testbenches run only for some minutes. But the large regression
testbenches simulate sending/receiving thousands of messages of random size via a
random combination of network interfaces and links. They run for days, and even when
limiting the dump to 3-5 levels of hierarchy, the dump files still grow to several Gbyte
after a day. So the decision has been made to turn off dumping at all for these testbenches
to run them as fast as possible.

The ability to write checkpoints of the simulation out to disk to be able to restart it from

a point just before an error occurred would have been very helpful. But unfortunately, the
FlexModels from Synopsys can not be restarted from a checkpoint written by NC-Sim.
So one has to rerun the whole testbench to write a dump containing the occurred error,
even if it happens after several days. Since this methodology would have disrupted the
time schedule of the whole project, a workaround has been found in stopping the regres-
sion test after two days. The testbench is then started over and over again with modified
random numbers (Verilog random numbers are semi-random, the same simulation will
always generate the same sequence of random numbers).

Though one run of such a regression testbench runs for 48 hours, it simulates only about
110 ms of real time. About 50.000 messages are sent in such a run, with a data payload
from a few bytes up to 4 Kbyte. The small ‘sniper shot’ testbenches caught about 80 % of
all functional bugs found. Once they ran without errors, the regression tests still found
some bugs, but the error rate dropped rapidly in the first weeks of simulation.

After several (about 15) runs of the large ‘shotgun’ testbenches completed without errors,
the decision was made to declare the design to be stable enough to be implemented in sil-
icon. Table 4-1 shows some simulation statistics.

114

Implementation

Table 4-1.Testbench statistics

‘sniper shot’ ‘shotgun’
runtime 10-30 min 48 h
no. of simulated messages 250 50.000
started after ... every design modificatipn all the time
no. of total runs 60-80 50-60

4.4 Logic synthesis

Setting up a synthesis flow for such a large design is a non-trivial task. Since the whole
design is too large to be synthesized in one top-down compile, the design had to be broken
down in smaller parts using a “Divide & Conquer” approach. Several methods are well
known for using Design Compiler from Synopsys for such large designs, sometimes
referred to as bottom-up or compile-characterize-write script-recompile flow.

4.4.1 Automated synthesis flow

All these mixed top-down/bottom-up flows require a lot of scripting and data manage-
ment to efficiently constrain and compile subdesigns, which are then glued together into
higher-level modules. Every major ASIC company has set up its own flow based on pre-
configured scripts and custom compile strategies. In 1998, Synopsys introduced a TCL
command line mode for their tools, significantly enhancing the ability to implement
custom procedures and functions. This enhancement and the need for a stable and easy-
to-use synthesis flow resulted in the release of a feature called Automated Chip Synthesis
(ACS) [77]. ACS is a set of TCL procedures intended to automate the bottom-up compi-
lation of large designs. It automatically partitions the design, propagates constraints down
the hierarchy, writes out compile scripts for each partition, and finally generates a Make-
file to control the whole synthesis flow of the design. It reduces the setup of the flow to
specifying only top-level constraints and a few scripts to drive the ACS flow. Recent
benchmarks [78] show that ACS produces good results in terms of timing and area com-
pared to other methods. The fact that it is based on TCL procedures makes it highly con-
figurable. That proved to be a major advantage, as it was necessary to patch one ACS
procedure to work around a serious bug.

The 3 main procedures of ACS are:

» acs_compile_design: does a hierarchical compile of the design using user-specified
top-level constraints

115

Logic synthesis

* acs_recompile_design: extracts timing constraints from a previous ACS run, and
uses them to run a full compile on the RTL design

» acs_refine_design: extracts timing constraints from a previous ACS run, and uses
them to run an incremental compile on the current netlist

Figure 4-4.Synthesis flow

RTL design top-level constraints

Ny

. hierarchical full compile of RTL to extract
ACS compile partition 1/0O constraints

. hier. full compile of RTL using extracted
ACS recompile| /0 constraints from the prew%us netlist

Y

: hier. incremental compile of netlist using
ACS refine constraints from the recompile run

top-down flat top-down incremental compile to work on
incr. compile critical paths and reduce area

¢

scan/JTAG insertion of scan chains and

insertion boundary scan (JTAG) logic

top-down flat top-down incremental compile to fix critical paths
incr. compile introduced by test insertion, clean up netlist

K‘ to layout

Those three commands were used in the above order to establish a base netlist for further
refinements. Top-level compiles were then used to clean up the netlist, globally optimize
remaining critical paths and prepare the netlist for layout. Figure 4-4 depicts the overall
synthesis flow used for the ATOLL ASIC.

4.4.2 Timing closure

At the beginning, the design was pad-limited (around 380 functional 1/0O pads), which
means that the area of the chip is determined by the area needed to place all I/O cells, not
by the size of the core logic. So area was not a major constraint during synthesis of the
core logic. Timing was more critical, especially in the PCI-X clock domain. Very early in

116

Implementation

the design flow some basic compile runs on parts of the RTL design were used to check,
if any parts would be a major problem regarding timing closure. Based on these runs, a
lot of Verilog modules have been rewritten. E.g. pipeline stages were inserted, and large
functional blocks were broken down into several smaller ones. This proved to be a big
advantage for the further work, since once started with the whole synthesis flow, it was
never necessary to go back to RTL coding.

Traditional logic synthesis tools know the logical structure of a design, and have fairly
detailed information about the timing of standard cells. They lack any information about
the physical implementation of a design, since this is done at a later stage of the whole
flow. To calculate the delay of logic paths and find an optimal netlist composed of inter-
connected standard cells, tools need to estimate the effect of nets in terms of length and
delay introduced by them. Library vendors provide with each cell library a set of wire load
models. A wire load model is a way to predict the load, and with it the delay, of nets based
on a statistical evaluation of previously implemented designs using the same technology.
But since designs might differ a lot, these estimations can be very imprecise. This was no
major concern with older technologies when cell delays dominated the wire delays. But
with technologies of 0.18 um or even smaller geometries, this proportion has changed
dramatically. The result is that the physical implementation has a huge impact on the over-
all performance of a design.

Figure 4-5.Logic synthesis lacks physical information

net_3 E|
D net_O[\ | /
U reg_c
reg_a cell a treated the|same way!
net_1 net_2
reg_b
module A cell_b module B

Wire load models are often a set of tables containing net lengths/delays, indexed by the
fanout (the number of cells driven by the net) of the net. Different tables are provided for
modules of different size. So a synthesis tool treats nets of the same level of hierarchy the
same way. Assuming a placed design composed of two modules, as shown in Figure 4-5,
this can lead to mispredicted net lengths:

» thoughnet_0 andnet_1 are part of the same module, their lengths differ a lot

« alsonet_2 andnet_3 both run between both modules, but the cells connected to them
are placed very differently

117

Logic synthesis

These inaccuracies get even worse the larger the design is. To enhance the accuracy, one
can generate so-called custom wire load models, which are specific to the design imple-
mented. They were generated for ATOLL from a trial layout. But it turned out that even
these custom wire load models still were inexact. Dealing with very high-fanout nets [79]
was another crucial issue.

Figure 4-6.Improvement of timing slack and cell area

WNS PCI-X

2 NS —

1,48

1 ns—
WNS ATOLL

0,65

ACS ACS ACS top-down test top-down
compile recompile refine incr. compile insertion incr. compile

2000 ns — 2192\
1500 ns —

1000 ns —

500 ns
TNS ATOLL

22
#cells— 232238 230227 218146 213039 216393 215780

ACS ACS ACS top-down test top-down
compile recompile refine incr. compile insertion incr. compile

Figure 4-6 shows the timing and area results after each step of the synthesis flow. The
numbers are given separately for each of the two major clock domains, PCI-X and
ATOLL. The upper diagram depicts the Worst Negative Slack (WNS), which is the logic
path with the largest timing violation. The lower one shows the Total Negative Slack

118

Implementation

(TNS), which is the sum of all violated paths. Additionally, it lists the number of standard
cells used to implement the design as a gate-level netlist.

The WNS in the PCI-X domain remains stable over the 3 ACS runs, since the PCI-X core
is precompiled via encrypted synthesis scripts. These scripts are delivered by Synopsys
together with the encrypted Verilog source code. The resulting netlist is read in at start
and protected against modification until the first top-down incremental compile. How-
ever, the TNS in the PCI-X domain shrinks a bit, because the synchronization logic inter-
facing the PCI-X core to the rest of the chip lies outside the protected PCI-X core.

WNS and TNS of the ATOLL domain are significantly reduced during the ACS runs, with
atemporary larger WNS for the second run. This is a consequence of too pessimistic con-
straints extracted from the first trial, misleading the recompile step. The first top-down
incremental compile then improves timing of the PCI-X part a lot, whereas most optimi-
zations possible for the ATOLL domain seem to have been done by the ACS runs. Test
insertion than adds some slack, mostly because of inserting the JTAG boundary scan logic
into paths to/from I/O pads. These paths are critical, especially paths through the PCI-X
pads. The number of cells shrinks significantly with the ACS refine step and the first
incremental compile on the gate-level netlist. The last steps only make local optimizations
with little impact on overall cell count.

Though timing and area improve a lot over the whole flow, there are still some violated
paths in the netlist at the end. This is caused by very strict and pessimistic constraints on
some parts of the design. An early version of the flow finished with no slack at all, but
was too optimistic regarding net lengths and load capacitances at some places. So the
post-layout timings differed a lot from the pre-layout numbers, which caused post-layout
optimization to fail. The constraints and also the wire load models were then tightened for
some critical modules. Most of the violated paths run through I/O pads. Since they are on
top-level, the tool wrongly estimated a long net between the pad and the core logic. But
since these nets are quite short after layout, the pre-layout slack was accepted.

Another interesting fact is that the TNS of the PCI-X domain at the end is still twice the
TNS of the ATOLL domain, though the PCI-X part is only about 10 % of the whole
design. The reason for this unbalanced ratio is the fact that the PCI-X part includes a lot
of tightly constraint 1/0 pads, which are still violated after synthesis. On the other hand,
the ATOLL core logic is connected to LVDS pads with less stringent constraints, so fewer
violations occur in it.

119

Logic synthesis

4.4.3 Design for testability

Several factors can cause errors in ASIC production. The amount of fully functional chips,
compared to the total number of dies, is called yield and typically varies between 40-80 %
of the whole production volume. To efficiently sort out the good from the bad chips one
adds on-chip test logic, which is utilized to test silicon dies before they are packaged and
mounted on Printed Circuit Boards (PCB). Separate tests are used to isolate errors in chip
packages and PCBs. The whole area is often referred to as Design for Testability (DfT),
and its whole variety of methods and applications is beyond the scope of this document.
An in-depth discussion of the DfT methddssed for ATOLL can be looked up in addi-
tional literature [80], this section will give only a broad overview.

ATOLL contains three types of test logic:

 full scan using multiplexed flipflop scan style
* JTAG-compliant boundary scan

* Built-In Self Test (BIST) for all RAMs

Full scan means that all registers in the design are replaced with scannable DFFs. These
can be switched viascan_enable signal into scan mode, forming a large chain of scan
flipflops. Figure 4-7 depicts the internal structure of such a scan DFF.

Figure 4-7.Multiplexed flipflop scan style

clk

>

data_in

' 0 data_out
scan_in scan_out
scan_enable |
ATOLL contains 4 full scan chains, which are partitioned according to the different clock
domains. Only the flipflops driven by the 4 link clocks are assembled in one chain, since

each link clock domain only drives about 160 DFFs. One chain is used for the PCI-X
clock domain, and the other 2 scan chains link up all registers of the main ATOLL clock.

1. implemented by Patrick Schulz

120

Implementation

Start- and endpoint of these chains are some general purpose I/O cells, which are not
timing critical and can tolerate some additional load. Table 4-2 lists all full scan chains.

Table 4-2.Internal scan chains

scan chain clock domain number of DFFS
0: GP_IO[7] -> GP_IOJ[3] ATOLL 20.965

1: GP_IO[6] -> GP_I0[2] ATOLL 20.965

2: GP_IO[5] -> GP_IO[1] PCI-X 4.617

3: GP_IO[4] -> GP_IQ[0] 4 link clocks 660

Not all DFFs can be linked up in the scan chains, e.g. if they are driven by a noncontrol-
lable clock. But these are only a few, e.g. the DFFs in the test and clock logic. In total,
about 98.5 % of all DFFs are scanned. The unbalanced lengths of the scan chains affects
the time needed for testing. But this can be accepted due to the low production volume
targeted for the ATOLL chip.

Boundary scan logic [81] is used to drive specific values out of the chip via the 1/O cells.
This is utilized for board-level tests, using a standardized JTAG interface. Internal logic,
called Test Access Point (TAP) controller, provides the signals used to control the bound-
ary scan logic. The boundary scan cells are located between the 1/O cell ring and the core
logic. JTAG is quite popular for this task, since it only needs 5 additional I/O pads to shift
data in and out of the chip. Besides the described task, itis also used in ATOLL to control
the BIST logic.

The internal BIST logic [82] is used to test all 43 instantiated RAM macros in the
ATOLL chip. It uses a 12-N-March algorithm to repeatedly write 0’'s and 1's to each
RAM cell to detect any faulty bit cells. As stated earlier, it is fully controllable and observ-
able through either the JTAG TAP controller or supervisor registers. Normally, the BIST
Is run together with the board-level test, just after board production. The software-con-
trolled BIST is intended for checking boards, which show unstable behavior while in use.

4.5 Layout generation

As mentioned earlier, the IMEC IC Backend Service group was hired to do the layout job.
Place & Route of a design is a difficult and crucial step in the design flow and needs a lot
of experience and knowledge about the tools and the technology. Since this know-how
was not present in the local design group, it was not feasible to learn this task in an accept-
able amount of time, without further extending the time frame of the project.

1. implemented by Erich Krause

121

Layout generation

In addition to handing over the gate-level netlist to the backend team for layout prepara-
tion, some more data is necessary to ensure an efficient and optimal implementation.
Since the ATOLL design has some aggressive timing goals, the layout flow was carefully
planned. A smooth and close collaboration of the layout step with synthesis is an impor-
tant factor to keep the amount of post-layout optimization steps at a minimum. From dis-
cussions with other ASIC designers who did timing-critical chips and various literature
about high-end ASIC design it was figured out that three things are crucial for reaching
timing closure:

« awell considered floorplarfor placing macros and top-level blocks
» using custom wire load models for precise prediction of wire delays during synthesis

» a timing-driven layout flow to optimize critical paths during cell placement and wire
routing

Figure 4-8.Floorplan used for the ATOLL ASIC

- S,
LVDS 1/Os

(AXPAE] P
AR P A
% oz

.9 9.0.0.49.9 9. XK 4 .4.9. 9.

Xbar, Links

81-118 1/0Os
per side

PCI-X, Interface

/

PCI-X 1/0s 1
/.
boundary scan logic ring NI = host & network port

Figure 4-8 depicts the floorplan used for the ATOLL ASIC. But it needed some time to
convince the layout team at IMEC to use it. The default method used for most of their cus-
tomers is to preplace only the RAM macros, and let the tool place all cells freely. After

1. designed with the help of Prof. Dr. Ulrich Briining

122

Implementation

analyzing first layout trials it became clear that this default methodology may work for
the typical small- to -medium-sized designs done at IMEC, which have modest timing
requirements. But it is not suited for the kind of timing-critical and large designs like the
ATOLL chip. Since the top level of the chip is well structured, it really paid off to bring

in the knowledge about the logical structure of the design. The core area was separated
into the 6 regions shown in the floorplan. During placement, cells contained in the logical
structure associated with these regions were allowed to be placed only within their region,
with allowing only some small exceptions to avoid highly congested areas. All 43 RAM
macros were preplaced according to the floorplan, along with some other critical cells.
E.g., the DFFs driving the LVDS outputs were preplaced, making sure that the skew
between single bits of the same link is as low as possible.

The usage of custom wire load models proved to be an advantage, as described earlier.
But still after several runs to finetune them, there were parts of the design, where pre- and
post-layout net delays varied significantly. This inaccuracy is an inherent problem of the
use of wire load models to estimate net lengths, and it gets worse the larger a design is.
However, a lot of violated paths could be optimized by buffer insertion or cell sizing
during post-layout optimization.

To overcome the gap between constraint-driven logic synthesis and physical layout,
newer versions of Place & Route tools offer the possibility to bring in some knowledge
about the timing of a design. A timing-aware placement of cells then greatly enhances the
performance of the layout, since the tool focuses on the optimal layout of critical paths.
Unfortunately, the backend team could not use this type of flow for the ATOLL chip.
Trying to use a timing-driven placement, the tool constantly crashed and never finished.
So one had to fall back to the conventional wire length-driven flow, which optimizes net
lengths between all cells, whether they are part of a critical path or not. This was the main
cause for the large amount of post-layout optimization steps.

4.5.1 Post-layout optimization

After the design is placed and routed, one needs to analyze the timing of the layout, since
it might vary a lot from the netlist version produced by synthesis. Several standardized
data formats exist to hand over data between different design tools. The following data
was delivered by the backend team for timing analysis and post-layout optimization:

* the gate-level netlist, now containing buffer trees for all clock and reset nets

» extracted point-to-point timing of cells in the Standard Delay Format (SDF)

123

Layout generation

* extracted capacitive load information of nets (set_load commands for the synthesis
tool)

» physical cell locations in the Physical Design Exchange Format (PDEF)

This data is fed back into the synthesis tool, which is used to run a so-called In-Place Opti-
mization (IPO) or Engineering Change Order (ECO). Since the synthesis tool is now

aware of the real cell and net delays, it can calculate the exact timing of each path and try
to optimize the ones that do not meet the timing goal. The following methods are used to
do this:

cell upsizing is used to enhance the driving capability of a gate by replacing a cell
with the same logic function, but a higher driving strength. This speeds up the path,
but also increases area

cell downsizing is done by replacing a cell with a lower drive version of it. This can be
useful to reduce the load of nets driving this cell, or to save power

buffer insertion is used to break up long nets, resulting in reduced load and faster tran-
sition times for driving cells

buffer removal is done when synthesis has added too many buffers to a path, from
which some are unnecessary

Figure 4-9.Improving a timing-violated path

delay in ns total = 7,56 ns !l!
net cap. in pF ’
0,37 0,76 4 0,79 0,62 037 1,9 180 080 015
0,0 13 0,4 0,1 .10 4 25 06| p.o1
SDFRPQ1 INVD1 INVD2 INVD1 INVD1 AOI22D1NAN4D1 INVD1 SDFRPB1
_ MUXB2D1
. upsize!) .
insert! P insert! upsize!

\

0,43 0,15 0,17 0,18 0,40 029 030 023 063 080 0,15

0 0,09\0,3 0,4 0,1 ,07™N\0,03\0,31™\0,2 .06/ 0,01
INVD2 BUFD16 INVD20 INVD1 INVD1 AOI22D1 NAN4D4 INVD1 SDFRPB1
SDFRPQ1 BUFD12 MUXB2D1
total = 3,73 ns

Figure 4-9 shows an example of how the timing delay of a path can be halved by these
modifications. E.g. some mispredictions lead to excessive cell delays of nearly 2 ns.
Upsizing those cells or splitting huge net loads can significantly speed up the logic. Espe-

124

Implementation

cially during the first IPO iterations such drastically improvements were made to parts of
the design. In case of buffer insertion, the synthesis tool does not rely on wire load models
to predict the length of newly created nets. Since cell locations are known from the PDEF
information, a basic routing algorithm is used to calculate the net length based on the dis-
tance between both cells.

Figure 4-10.Timing optimization during IPO/ECO

9,07
WNS [ns]
N |
5| die enlarged!
4] 3,84
3
2 —
1_
O——T—T—T1T T 71T T T T T T 1
— — N AN (90)] (0] <t <t L0 Lo ({o]
O O O O O O O O O O o
O a O a O a O a O o O
LLl LLl L L LLl LLl
95%
TNS [ns] X - cell utilization
6.000-4 B~ N
_ . N X 79%
die enlarged! -
5.0004
4.000—
X
3.000—2%
2.000
1.000 - §23
0 400 210 551
| | | | | | | | | | |
— — N AN (90 (90 <t < Lo Lo (o]
O O O O O O O O O O OoO
O a4 O a O a O a O ao O
L L LLl LLl LLl L

125

Layout generation

After all possible optimizations are done, the new gate-level netlist is again transferred to
the layout tool. An ECO step then compares the old and the new version of the netlist,
making the necessary changes. During this process it might be necessary to move upsized
cells, since their area increased. This has again side effects on all surrounding logic, lead-
ing to different net lengths and loads. So timing data can again vary between the results
of the IPO during synthesis and after the ECO done bye the layout tool. But normally the
difference shrinks and the timing converges towards the goal.

All'in all, 6 post-layout iterations were done for the ATOLL ASIC. Figure 4-10 shows,
how the global WNS and TNS improve from one optimization step to the next. An ECO
result refers to the timing after updating the layout, whereas IPO refers to the numbers
achieved after running an optimization in the synthesis tool. According to Figure 4-6, the
first layout is done on a slightly violated netlist with 1,10 ns WNS and 700 ns TNS. Num-
bers after the first layout called ECO1 are much worse. The WNS increases by a factor of
9, and the TNS even by 30. During all following iterations, the timing bounces up and
down between ECO and IPO runs.

The first 3 iterations reduce the timing slack a lot, but at the expense of area. In the lower
part of the diagram, the cell utilization is given. The core area of an ASIC is subdivided
into rows of cell slots, and the ratio of occupied vs. total slots is referred to as cell utiliza-
tion. The higher this value, the more difficult is the task of a layout tool to run an ECO,
since it is very limited in its decisions where to place and move cells and where to route
nets. This effect is visualized by the relative small improvements made from ECO2 to
ECO3. After running IPO3 in the synthesis tool, the cell utilization had grown to 95 %.
The layout tool then refused to run an ECO on the netlist delivered by IPO3, since a few
areas of the chip were so heavily congested, that no more nets could be routed through
them.

The decision was made to enlarge the die by adding 12 ‘not connected’ (NC) dummy I/O
cells to each side of the 1/O ring. Since an ECO can only be run on a fixed core area, a full
Place & Route had to be done, referred to as ECO4 in the diagram. Cell utilization
dropped below 70 %, but on the other side all cells were newly placed, resulting in some
more timing slack. But the remaining iterations shrinked the TNS below 1.000 ns. Some
paths remained violated and could not be optimized to meet their timing goal.

An in-depth analysis showed, that most of these violated timing paths run through the
PCI-X 1/O cells. Some of the boundary scan logic was replaced during the die enlarge-
ment in a bad way, resulting in some very long paths. These paths were optimized a lot
by buffer insertion and excessive cell upsizing, but about 20 paths still have a slack of 1-

126

Implementation

2 ns. The worst slack in the ATOLL clock domain was about 1.4 ns, with only a handful
of paths above 0.5 ns slack.

Since the deadline for the design submission to fabrication was reached after running
ECOG6, the decision was made to accept the remaining slack and go into production. This
decision is backed by two facts:

» the ATOLL core clock is configurable, so it can be tailored to the real capabilities of
the chips

» all design steps were done based on worst-case technology data. In terms of the cell
library used for ATOLL this means 125 C temperature, 1.62 V core voltage (instead
of 1.8 V nominal) and a bad process factor. In reality, things are not that bad. Assum-
ing real world conditions (70-80 C, 1.8 V), timing should be about 20 % better than
estimated by the Static Timing Analysis (STA) tools

4.5.2 Post-layout simulation

A simulation of the gate-level netlist with annotated SDF cell delays was executed to
ensure that no logic got lost somewhere in the design flow, as happened at one point
during the ACS synthesis runs. Another issue was the validation of the critical clock and
reset logic, e.g. the PCI-X DLL, which includes a chain of delay elements. The same test-
benches as for RTL simulation were used, just replacing the RTL design with the gate-
level netlist. However, a few modifications were needed to get the simulation up and run-
ning. E.g., all DFFs are annotated with setup/hold timing checks. This is a problem for
DFFs on clock domain borders, since the incoming asynchronous data will trigger setup/
hold violations during simulation. Resulting metastable data outputs are suppressed by
double-sampling these signals, as described earlier. But the simulation models do not
reflect this behavior. They propagate an ‘x’ (unknown) value, causing the whole simula-
tion to fail. This problem was solved by extracting a list of the affected DFFs during syn-
thesis. A Perl script then was used to find the related entries in the SDF data and to disable
the relevant timing checks.

Early versions of the netlist, which still had some timing violations, were used at a
reduced clock speed to run one of the large regression testbenches. Of course, it was sig-
nificantly slower than the RTL simulation. But the testbench ran for nearly two days with-
out failure.

127

Layout generation

128

Performance Evaluation

5 Performance Evaluation

Besides the aggressive scale of integration, implementing a high performance network
was the primary goal of the ATOLL development. Two types of metrics are important in
the field of Cluster Computing. Message latency measures the time needed to send data
from one node of the cluster to another one. It lies in the range of a few microseconds for
modern networks and is the dominant performance metric for applications with a fine-
grain communication behavior. If a user application tends to exchange only a few bytes,
but this at a fast rate, the network should not slow down the program.

The second important factor is the sustained bandwidth a network can provide. It mea-
sures the actual data rate on a network link, compared to the physical bandwidth limit. A
well developed network should come very close to the physical limit, proving to make
efficient use of the network resources. Bandwidth is usually measured by setting up a con-
tinuous data stream with a fixed message size, sending the same message hundreds or
even thousands of times. Summing up the total amount of data sent and dividing it by the
time needed erases start-up effects and is the preferred method to measure the so-called
sustained bandwidth of a network.

Those two metrics are usually measured on the application level. So no distinction is made
between the performance of software and hardware. And usually the network hardware
accounts for only a small part of the number, especially regarding latency. E.g. a typical
parallel cluster application linked to the MPI message passing library may call a
MPI_send function. This function implements only a high-level MPI layer and calls a
mid-level point-to-point abstraction layer. This again can call a low-level ATOLL hard-
ware layer. The system architecture of a cluster is also an important factor. The CPU bus
interface, the memory controller and the I/O bridge can have a great impact on the perfor-
mance of the whole system.

Since the performance of an ATOLL-equipped cluster can only be measured on a real sys-
tem, this chapter focuses on measuring the performance of only the network part. No com-
parisons are made to other network solutions, since it would be unfair to compare
ATOLL’s network-only numbers to full application-level numbers of other networks.
Hardware-only performance values have not been published for other implementations.

129

Latency

Some performance measurements regarding the ATOLL software can be looked up in the
dissertation of Mathias Waack [83].

All presented performance measurements were derived from simulations of the environ-
ment specified in “Simulation testbed” on page 112. Numbers are given first for a single
host port in use. But since the multiple-interface architecture is a defining feature of
ATOLL, both metrics are also given for two and all four host ports in parallel use. This
provides an insight into the applicability of the ATOLL network for clustering dual- or
guad-CPU machines.

5.1 Latency

The latency is measured both for PIO- and DMA-based message transfer. Since it usually
scales linearly with an increasing message size, it is only quantified for relative small mes-
sages. Latency is measured from the first access to the ATOLL device on the sending
node until the last data transfer on the receiving side. For the PIO mode this means to start
timing the transfer, when the first routing word is written to the P1O send fifo. The transfer

is complete, when the last data word is read from the PIO receive fifo. Regarding the
DMA mode, the measurement begins with triggering the DMA engine inside the host port
by updating the relevant descriptor table pointer. And it ends with the receiving host port
updating the relevant pointers in the replication area. This means that the assembling of
messages in the data structures residing in main memory is not included in the timed pro-
cess. Since the copying of message data into and out of the buffers in memory can be fully
overlapped with the send/receive operations controlled by the ATOLL device, this is a
proper reduction of the latency measurement onto the crucial part of the whole operation.

Figure 5-1.Latency for a single host port in use

time [us]

6 —
4 — 31 36 <— P10 mode
_ ¥ — ——*:% DMA mode
2 — 22 2,6 2.9
message
I I I > size [byte]
32 64 96

Figure 5-1 depicts the one-way latency for a single host port in use. Latency starts at about
2,4 us for a message size of 32 byte. It then slightly increases with the size. Surprisingly,

130

Performance Evaluation

the difference between PIO and DMA mode is almost negligible. At first glance, one
could assume that the PIO mode would be slightly faster, since it directly writes data into
the network on the sending side. Reading data from memory in DMA mode has some
more latency. But this is outweighed by the need to break up the PIO mode send operation
into 6 different PCI-X cycles, according to the PIO send address layout (3 frames,
3 additional accesses for each last word of a frame). Some additional latency is added also
on the receiving side, since the complete reception of a message is not immediately noti-
fied to the host CPU. The CPU polls the fifo fill level with a certain frequency, about one
access each 0,3 us.

On the other hand, DMA mode needs only 3 PCI-X read transactions on the sending side
(descriptor, routing, header & data combined). Once data enters the ATOLL chip, itis for-
warded quite fast towards the network. E.g. it needs about 0,24 us for the first byte of a
message from the PCI-X bus to show up on the network link.

Figure 5-2.Latency for multiple host ports in use

time [us]
6 —
33 38 w—4HP

4 — 2,9 32’ ‘;,‘%3,64—2 HP

R — 34—,3 1 HP
2]

message
I I I > size [byte]

Figure 5-2 shows that the number of active host ports in parallel has only a minor effect
on message latency. Only DMA mode transfers were used. E.g. al5 % increase in latency
for all four host ports in use is an acceptable value, compared to a single host port. Further
investigation revealed that the multiple accesses to the PCI-X bus from different host
ports were smoothly interleaved by the logic in the port interconnect and the synchroni-
zation interface. During an active PCI-X transfer, several read requests can queue up in
the related data paths and can be started as soon as the current transfer is finished. The idle
time between back-to-back PCI-X transfers also depends on the performance of the bus
arbiter. The simulation used 6 PCI-X cycles to switch control of the bus, a similar value
should be found in real implementations.

131

Bandwidth

All in all, the latency numbers taken from simulation are very promising. Even when
operating in a quad-CPU node system with multiple message transfers in parallel, latency
Is remarkable low. This should distinguish ATOLL from other networks, which are typi-
cally multiplexed in software when installed inside a SMP node.

5.2 Bandwidth

Measuring the bandwidth of a network is normally done for very large messages. But sim-
ulating the sending of a 1 Mbyte message, and this even 10-100 times, was not practical
in the described simulation environment. It would have required weeks of simulation
runtime. So instead, messages between 1-4 Kbyte are used, repeated 10 times in a row.
This should deliver a good insight into the performance of the ATOLL network regarding
bandwidth.

Figure 5-3.Bandwidth for a single host port in DMA mode

bandwidth [Mbyte/s]

A

200 - 213
201
187
100
50 —
message
l | | > size [byte]

1.024 2.048 3.072 4.096

Figure 5-3 depicts the bandwidth of DMA-based message transfer for a single active host
port. Reaching 213 Mbyte/s for a 4 Kbyte message is a very good number. These values
will decrease by 5-15 % when adding software overhead, but they should still be very
competitive. The bandwidth asymptotically approaches a maximum sustained bandwidth
of 225-230 Mbyte/s, or about 90 % of the theoretical maximum bandwidth. This shows a
good utilization of internal data paths.

Figure 5-4 gives an insight into the bandwidth for multiple host ports in use. Similar to
latency, the impact of multiple parallel message transfers is relatively low. Bandwidth
drops by only 9 % with all four host ports sending 4 Kbyte messages. The reason for the
good scalability of the ATOLL device is the same as for latency. Multiple message trans-
fers are handled very efficiently by the internal logic. The requests from all host ports to

132

Performance Evaluation

read data from main memory are queued and served with minimum overhead. The bottle-
neck is the PCI-X bus, but with its physical bandwidth of 1 Gbyte/s it is still able to keep
all requesters busy. Regarding the internal conversion of a 64 bit data stream into a byte-
wide link protocol in the network port, it is sufficient for a host port to deliver one data
word on each eighth cycle. This rate can be almost hold up, even for all host ports busy.

Figure 5-4.Bandwidth for a multiple host ports in use

bandwidth [Mbyte/s]

A 213

201 <«—1HP
200 3192 %0_?—;2«2 HP
162 D e 1;37— 195 T—4HP
150 — 156 ¢ -~ 176
152
100 —
50
message
l | | > size [byte]

1.024 2.048 3.072 4.096

5.3 Resource Utilization

During the functional simulation of the ATOLL chip implementation, an efficient utiliza-
tion of internal resources was a major goal, besides the validation of the logic. Early sim-
ulations brought up some bottlenecks resulting from too few on-chip resources, which
then were resolved by enlarging fifo structures or performing similar enhancements.

Figure 5-5.Network link utilization

link utilization [%]

A

100 -
92
75 - o 88
73
50 — 65
25
message
| | | > size [byte]

1.024 2.048 3.072 4.096

133

Resource Utilization

One major resource is the network link. Its efficient use is a crucial factor of overall per-
formance. So one driving force behind the definition of the link protocol was to keep the
control overhead for sending packets as low as possible. The amount of control bytes, as
defined in the link protocol for message framing, reverse flow control and packet
acknowledgment, is kept to the minimum possible.

Figure 5-5 shows the link utilization, given as rate between raw message data vs. total
bytes sent over the link for a message. Control overhead is quite high below a message
size of 1 Kbyte and makes up for about a third of link traffic. But utilization quickly
exceeds 90 % and approaches a maximum value of nearly 95 % for large messages.

Control bytes account for only a small portion of link overhead. Most of the wasted band-
width is caused by small link packets, which normally appear at the head of a message.
The maximum size of 64 bytes is almost never used by link packets belonging to the rout-
ing and header frames. Most of the messages sent via the ATOLL network should manage
to get along with 1-3 data words (up to 24 data bytes). These consecutive link packets
introduce some idle time in the link ports, since only 2 packets can be in transit at one
time. After both retransmission buffers have been filled, the link port waits for the positive
acknowledgment of the first packet. Only when the POSACK control byte for this packet
has been received, the buffer is freed and the next packet can be transmitted.

Figure 5-6.1dle time introduced by small link packets

2. POSACK 1. POSACK

- & -
link in I I

. Y
link out [T idle time! |] |

3. link packet (64 byte) 2. link packet (16 byte) 1. link packet (16 byte)

-
t

Though only about 20 idle cycles are introduced when sending two back-to-back link
packets with 16 byte payload, this short period of a blocked data path propagates in both
directions along the link. E.qg. it causes the delayed issue of a read request to main memory
in the host port due to the lack of space in the main send data fifo. Figure 5-6 depicts the
situation mentioned, showing the idle time introduced by a late acknowledgment byte.
But this situation is a rare event in the ATOLL architecture and the additional resources

134

Performance Evaluation

needed for more retransmission buffers far outweighed the gain. So the decision was
made to get along with two buffers.

While message data travels through several top-level units in the ATOLL device, itis tem-
porary stored in multiple data fifos spread all over the architecture. So a data path from
the PCI-X bus towards the network can be seen as a very deep pipeline, with about
40 register stages in total. The size of the fifos is tailored to provide a steady and contin-
uous data stream. It should be prevented that any of the main units runs out of data, once
a message transfer is started.

Figure 5-7.Fifo fill level variation

synch. port network
unit interface interconnect host port port link port
requester MasterRead. DMA-send send send
L i e iy
- |
fill level 0.489% 0-75% 14-93% 24-88% 32-92 %

variation

Figure 5-7 lists the variation of the fifo fill level along the data path for the DMA-send
mode. It is measured while sending a relatively large message. The numbers display min-
imum and maximum fullness, once then message transfer has started. One can see that the
first two fifos still run empty during transmission. Only a fraction of the total PCI-X band-
width is used by a single path, so it is not necessary to keep these fifos filled. The more
one gets towards the network, the higher is the average fill level of fifos. Once started, the
last 3 fifos never run out of data during a message transfer. The fill level still varies a lot,
mainly just after the operation started. But once a few data words have been processed, a
contiguous data stream keeps all units busy.

All performance measurements were done assuming no network contention. In reality,
this assumption is of course too optimistic. So performance numbers will also decrease
due to network congestion. But the performance values presented in this chapter demon-
strate that the ATOLL architecture is capable of maximizing most internal resources. The
network is no more the communication bottleneck in a cluster equipped with the ATOLL
network. Instead, the interface to the host system, in this case the PCI-X bus, is the limit-
ing factor. One can overcome this limitation only by locating the network interface closer
to the CPU, e.g. on the system bus. But as mentioned eatrlier, this restricts the use of the
NI to a single microprocessor architecture.

135

Resource Utilization

136

Conclusions
6Conc|usions

Clusters are emerging as a competitive alternative to Vector or MPP supercomputers in
the field of High Performance Computing. The excellent price/performance ratio of mass-

market PC technology makes it very attractive to assemble lots of desktop computers and
tie them together with a high performance network. These Beowulf computers start to

show up in rankings like the Top500 supercomputer list, and are even more popular for

assembling small- to medium-sized clusters of 32-256 nodes.

The key component is a fast network. A new class of so-called System Area Networks
emerged, since the traditional LAN/WAN technology was quickly identified as a perfor-
mance bottleneck. SANs like Myrinet, SCI and QsNet offer message latencies in the order
of 5-15 us and sustained bandwidths in the range of 100-300 Mbyte/s. But the price/per-
formance ratio of most networks is still too high to gain a broader acceptance of these new
SANSs. So the majority of clusters is still equipped with standard Ethernet technology.

Recent trends in PC technology pose new problems to SANs. E.g. SMP desktop comput-
ers are becoming available at a price advantage, compared to multiple single-CPU

machines. New clusters are often assembled with dual-CPU nodes. This offers a cost
advantage, together with less requirements for area, administration and power usage. And
the next generation of microprocessor technology will even make 4-8 CPU SMP nodes an

attractive node option, mostly based on better SMP support by CPUs.

To sum up, current SAN technology has helped Cluster Computing to make a big step for-
ward, but there is still plenty of room for improvements in performance and cost.

6.1 The ATOLL SAN

This dissertation introduces a novel SAN version of the ATOLL architecture, derived
from a first MPP version of the architecture. It integrates all necessary components of a
network into one single chip, including the switch. ATOLL provides support for not only
one, but four network interfaces by an aggressive replication of resources. Four byte-wide
link interfaces running at 250 MHz offer the possibility to directly connect nodes in dif-
ferent topologies, without the need for any external switching hardware.

137

Future work

ATOLL offers a sophisticated mechanism to dynamically choose between PIO- and
DMA-based message transfer. This supports extremely low start-up latency for small
messages through a Programmed I/O interface, as well as high sustained bandwidth for
large messages by autonomous DMA engines inside each host port. An efficient notifica-
tion mechanism avoids the use of costly interrupts by a cache-coherent polling of status
registers in main memory. The consecutive sending/receiving of messages can be done in
an overlapping fashion, keeping the utilization of internal resources at a very high level.

An error detection and correction protocol avoids end-to-end control of data transmis-
sions. Bit errors introduced by environmental effects are discovered and solved by a
packet retransmission mechanism on each link. On the host side, a state-of-the-art PCI-X
interface offers up to 1 Gbyte/s of I/O bandwidth. This is needed to serve the bandwidth
requirements of the ATOLL core, which has a bisection bandwidth of 2 Gbyte/s on the
network side.

Early performance evaluations promise extremely low latency and a very competitive
sustained bandwidth of ATOLL. Multiple data transfers via all four host ports can be sup-
ported with a negligible performance impact. This will be an outstanding feature of a clus-
ter composed out of SMP nodes, which are equipped with the ATOLL network card.

Besides redesigning the architecture of ATOLL towards a SAN, this dissertation
describes also the implementation of the ATOLL ASIC. Its sheer size and complexity
posed a lot of problems, which were solved by a well-planned design flow and a sophis-
ticated design methodology. Despite not quite reaching the timing goal, a transistor layout
of the chip was shipped to prototype production in February 2002. It is expected that the
real chips can be operated at about 90 % of the targeted clock frequency.

The ATOLL ASIC is one of the most complex and fastest chips ever implemented by a
European university. Recently, the design has won the third place in the design contest
organized at the Design, Automation & Test in Europe (DATE) conferetioe premier
European event for electronic design.

6.2 Future work

The future development of a second generation of ATOLL will be greatly influenced by
technology trends in the whole computer industry. Upcoming interconnect standards like
InfiniBand target the server-to-server connection. But it is still questionable, if it will
really take over the whole range of 1/0 as predicted. Other emerging standards like 3GIO

1. www.date-conference.com

138

Conclusions

from Intel are still in the specification phase, but might become a serious contender for
InfiniBand in the area of low-level I/O connectivity, as needed for graphics, I/O devices
(keyboard, mouse, modem), etc. InfiniBand might be restricted to the fields now known
as Storage Area Networks, replacing such technologies as Fiber Channel and all varia-
tions of SCSI. But how both technologies coexist is still part of an ongoing discussion
[84]. On the other hand, recent optimizations have been specified for existing technolo-
gies like PCI-X. The next generation of PCI-X, as specified in the upcoming v2.0 speci-
fication, will support dual- or quad-pumped data busses, raising the maximal physical
bandwidth to 4 Gbyte/s.

Of course, the definition of the next generation architecture will be also greatly influenced
by the experiences users gain with the first generation of ATOLL. E.g. the PIO mode
takes up significant resources inside the chip. If the performance gain, compared to the
DMA mode, is not large enough to justify the additional resources, it might be an alterna-
tive to drop it and use the free resources for a better implementation of the DMA mode.

Mainly there are two options for the development of the next version of ATOLL. A small
and easier to manage option is a so-called technology shrink. It is normally done by
making only minor modifications to the overall architecture, but implementing it in the
newest technology. So within 1-2 years, one could again implement almost the same
architecture by the following steps:

» using a 0.10 um CMOS technology, targeting a core frequency of 500-700 MHz

» going from parallel copper cables to serial fiber links. The reduced pin count needed
would also offer the possibility to increase the number of link interfaces to 6-8

* moving from a PCI-X v1.0 bus interface to a PCI-X v2.0 interface offering up to
4 Gbyte/s

» enlarging internal RAM/fifo structures to provide more buffer space

These enhancements would help to keep up with the progress in desktop technology,
resulting in a network with three or four times the performance of the current version. This
is a possible alternative if no major design flaws are detected during the widespread usage
of the first version.

A more challenging approach would be a major redesign of the whole architecture. The
current one is efficient but not very flexible. Adding new features is almost impossible,
due to the fixed implementation of all control logic in hardware. The current trend in IC
design is moving towards so-called Systems-on-a-Chip (SoC) designs. Rather than
designing all necessary logic from scratch, one assembles pre-build IP blocks into a larger

139

Future work

system. These blocks can be bus interfaces, like the PCI-X interface already used in
ATOLL. But a lot of microprocessor cores are also available, e.g. MIPS, ARM, PowerPC,
etc. So one could take advantage of the millions of transistors modern IC technology
offers by a mixture of soft- and hardmacros, which are glued together by some amount of
self-implemented logic. Recent market surveys have shown that the current percentage of
chip area used by IP cells is about 20-30 %. Some reports [85] predict that this number
increases to 80-90 % within the next 5 years. This way, the implementation effort could
be kept manageable, since most of the logic comes as completely verified transistor lay-
out. More concentration could be devoted to the definition of the overall architecture and
its fine tuning for highest performance.

The architecture would head towards the ones of Myrinet, QsNet or the IBM SP network,
which all have a programmable microprocessor as the key component of the NIC. But
ATOLL would offer the whole system combined on a single chip. And with todays
advanced technology, even multiple controllers could be implemented. This could be
used to split up the work into a host and a network side, avoiding any bottlenecks intro-
duced by off-loading too much work onto a single controller.

Both options have their pros and cons. But it shows that the ATOLL architecture has the
potential to compete with the most advanced commercial solutions in the SAN market in
the future.

140

Acknowledgments

This thesis would not have been possible without the help and contributions by many col-
leagues. My advisor Professor Dr. Ulrich Brining was always available to discuss tech-
nical issues and provided a working environment, which made it possible to finally
complete one of the largest non-commercial chip projects.

The whole team of the Chair of Computer Architecture contributed to the development of
the ATOLL network. My colleague Patrick Schulz took over crucial parts of the imple-

mentation like the insertion of test structures and provided significant support while set-
ting up the complex functional testbed. And my colleague Mathias Waack implemented
all the software necessary to make use of the ATOLL network from a user’s point of view.

I would like to thank all those individuals for their contributions, which gave me the pos-
sibility to complete my own work.

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

Bibliography

Rajkumar Buyya (editor). "High Performance Cluster Computing: Architectures
and Systems, Volume 1." Prentice Hall PTR, 1999.

Gregory F. Pfister. "In Search of Clusters, Second Edition." Prentice Hall PTR,
January 1998.

William Gropp, Ewing Lusk, Anthony Skjellum. "Using MPI: Portable Parallel
Programming with the Message-Passing Interface.” MIT Press, 1994.

Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek,
Vaidy Sunderam. "PVM: Parallel Virtual Machine - A Users’ Guide and Tutorial
for Networked Parallel Computing.” MIT Press, 1994.

Thomas Sterling, Daniel Savarese, Donald J. Becker, John E. Dorband, Udaya A.
Ranawake, Charles V. Packer. "BEOWULF: A Parallel Workstation For Scientific
Computation.” CRC Press, Proceedings of the 24th International Conference on
Parallel Processing, Volume I, pages 11-14, Boca Raton, FL, August 1995.

The Top500 Supercomputer List, www.top500.0rg

lan Foster, Carl Kesselman (editors). "The Grid: Blueprint for a New Computing
Infrastructure.” Morgan Kaufmann Publishers, July 1998.

Jakov N. Seizovic. "The Architecture and Programming of a Fine-Grain Multi-
computer.” California Institute of Technology (Caltech), Technical Report CS-TR-
93-18, 1993.

Duncan Roweth. "Industrial Presentation: The Meiko CS-2 System Architecture.”
ACM Press, Proceedings of the 5th Annual ACM Symposium on Parallel Algo-
rithms and Architectures, page 213, June 1993.

Gordon E. Moore. "Cramming more Components onto Integrated Circuits." Elec-
tronics, Volume 38, Number 8, April 1965.

Donald E. Thomas, Philip R. Moorby. "The Verilog Hardware Description Lan-
guage, Third Edition." Kluwer Academic Publishers, 1996.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Ben Cohen. "VHDL Coding Styles and Methodologies, 2nd Edition." Kluwer
Academic Publishers, 1999.

J. Bhasker, Sanjiv Narayan. "RTL Modeling Using SystemC." Proceedings of the
International HDL Conference, San Jose, CA, March 2002.

Peter L. Flake, Simon J. Davidmann, David J. Kelf. "SUPERLOG: Evolving Ver-
ilog and C for System-on-Chip Design." Proceedings of the International HDL
Conference, San Jose, CA, March 2000.

Nagaraj, Frank Cano, Haldun Haznedar, Duane Young. "A Practical Approach to
Static Signal Electromigration Analysis." ACM/IEEE Press, Proceedings of the
1998 Conference on Design Automation (DAC), pages 572-577, Los Alamitos,
CA, June 1998.

Patrick P. Gelsinger. "Microprocessors for the New Millennium -Challenges,
Opportunities and New Frontiers." Proceedings of the IEEE International Solid-
State Circuits Conference (ISSCC), San Francisco, CA, February 2001.

Sun Microsystems, Inc. "Sun Compute Farms for Electronic Design." Technical
White Paper, 2000.

Raoul A. Bhoedjang, Tim Ruhl, Henri E. Bal. "User-Level Network Interface Pro-
tocols." IEEE Computer, Vol. 31, No. 11, pages 53-60, November 1998.

Matt Welsh, Anindya Basu, Thorsten von Eicken. "Low-Latency Communication
over Fast Ethernet." Proceedings EUROPAR-96, August 1996.

Giuseppe Ciaccio. "Optimal Communication Performance on Fast Ethernet with
GAMMA." Springer, Proceedings of the International Workshop on Personal
Computers based Networks Of Workstations (PC-NOW), Lecture Notes in Com-
puter Science (LNCS) 1388, Orlando, Florida, March 1998.

Scott Pakin, Vijay Karamcheti, Andrew A. Chien. "Fast Messages: Efficient, Por-
table Communication for Workstation Clusters and MPPs." IEEE Concurrency:
Parallel Distributed & Mobile Computing, Vol. 5, No. 2, pages 60-73, April 1997.

Yueming Hu. "A Simulation Research on Multiprocessor Interconnection Net-
works with Wormhole Routing." IEEE-CS Press, Proceedings of the International

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Conference on Advances in Parallel and Distributed Computing, Shanghai, China,
March 1997.

B. H. Lim, P. Heidelberger, P. Pattnaik, M. Snir. "Message Proxies for Efficient,
Protected Communication on SMP Clusters." IEEE-CS Press, Proceedings of the
International Symposium on High Performance Computer Architecture (HPCA),
pages 116-127, February 1997.

Wolfgang K. Giloi, Ulrich Brining, Wolfgang Schroder-Preikschat. "MANNA:
Prototype of a Distributed Memory Architecture with Maximized Sustained Per-
formance." Proceedings Euromicro PDP Workshop, 1996.

Marco Fillo, Richard B. Gillett. "Architecture and Implementation of Memory
Channel 2." Digital Technical Journal, Vol. 9/1, 1997.

James Laudon, Daniel Lenoski. "The SGI Origin: A ccNUMA Highly Scalable
Server." ACM Press, Proceedings of the 24th Annual International Symposium on
Computer Architecture (ISCA), Computer Architecture News, Vol. 25/2, pages
241-251, June 1997.

Colin Whitby-Strevens. "The Transputer." IEEE Press, Proceedings of the 12th
International Symposium on Computer Architecture (ISCA), pages 292-300, Bos-
ton, MA, June 1985.

Thomas Gross, David R. O’Hallaron. "iWarp: Anatomy of a Parallel Computing
System." MIT Press, 1998.

Robert O. Mueller, A. Jain, W. Anderson, T. Benninghoff, D. Bertucci, et. al. "A
1.2GHz Alpha Microprocessor with 44.8GB/s Chip Pin Bandwidth." Proceedings
of the IEEE International Solid-State Circuits Conference (ISSCC), San Francisco,
CA, February 2001

PCI Special Interest Group. "PCI-X Addendum to the PCI Local Bus Specifica-
tion." PCI-SIG, Revision 1.0, September 1999.

Ajay V. Bhatt. "Creating a Third Generation I/O Interconnect." Technology and
Research Labs, Intel Corp., Whitepaper, 2001.

Isaac D. Scherson, Abdou S. Youssef (editors). "Interconnection Networks for
High-Performance Parallel Computers.” IEEE-CS Press, 1994.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Andrew A. Chien, Mark D. Hill, Shubhendu S. Mukherjee. "Design Challenges for
High-Performance Network Interfaces." IEEE Computer, Vol. 31, No. 11, pages
42-45, November 1998.

Jose Duato, Sudhakar Yalamanchili, Lionel Ni. "Interconnection Networks: An
Engineering Approach." IEEE-CS Press, 1997.

Prasant Mohapatra. "Wormhole routing techniques for directly connected multi-
computer systems." ACM Computing Surveys, Vol. 30, No. 3, pages 374-410,
September 1998.

William J. Dally and Charles L. Seitz. "Deadlock-Free Message Routing in Multi-
processor Interconnection Networks." IEEE Transactions on Computers, Vol. C-
36, No. 5, pages 547-553, 1987.

Allan R. Osborn, Douglas W. Browning. "A Comparative Study of Flow Control
Methods in High-Speed Networks." IEEE-CS Press, Proceedings of the 12th
Annual International Phoenix Conference on Computers and Communications,
pages 353-359, Tempe, AR, March 1993.

David C. DiNucci. "Programming Parallel Processors: Alliant FX/8." Addison-
Wesley, pages 27-42, 1988.

Jeff Larson. "The HAL Interconnect PCI Card." Springer, 2nd International Work-
shop CANPC, Lecture Notes in Computer Science, Vol. 1362, Las Vegas, NV, Feb-
ruary 1998.

Hermann Hellwagner, Alexander Reinefeld (editors). "SCI: Scalable Coherent
Interface, Architecture and Software for High-Performance Compute Clusters.”
Springer, Lecture Notes in Computer Science, Vol. 1734, 1999.

Data General Corp. "AViiON AV 20000 Server Technical Overview." White Paper,
1997.

G. Abandah, E. Davidson. "Effects of Architectural and Technological Advances
on the HP/Convex Exemplar's Memory and Conmmunication Performance.” ACM
Press, Proceedings of the 25th Annual International Symposium on Computer
Architecture (ISCA), ACM Computer Architecture News, Vol. 26, No. 3, pages
318-329, June 1998.

Vi

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

David X. Wang. "New Scalable Parallel Computer Architecture - Non-Uniform
Memory Access (NUMA-Q)." IEEE Press, International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA), Las Vegas, NV,
June 1997.

Ch. Kurmann, Thomas Stricker. "A Comparison of two Gigabit SAN/LAN tech-
nologies: Scalable Coherent Interface versus Myrinet." Proceedings of the SCI
Europe Conference (EMMSEC), Bordeaux, France, September 1998.

David Garcia, William Watson. "ServerNet II." Springer, Proceedings CANPC
Workshop, Lecture Notes in Computer Science, Vol. 1417, 1998.

Alan Heirich, David Garcia, Michael Knowles, Robert Horst. "ServerNet-II: a
Reliable Interconnect for Scalable High Performance Cluster Computing." Techni-
cal Report, Compag Computer Corporation, September 1998.

Compaq Computer Corp., Intel Corp., Microsoft Corp. "Virtual Interface Architec-
ture Specification.” Version 1.0, December 1997.

N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic,
Wen-King K. Su. "Myriné - A Gigabit-per-Second Local-Area-Network." IEEE
Micro, Vol. 15, No. 1, pages 29-36, February 1995.

Myricom, Inc. www.myri.com.

Myricom, Inc. "Guide to Myrinet-2000 Switches and Switch Networks." User
Guide, August 2001.

Steven S. Lumetta, Alan Mainwaring, David E. Culler. "Multi-protocol Active
Messages on a Cluster of SMPs." ACM/IEEE-CS Press, Proceedings of the ACM/
IEEE International Conference on Supercomputing, San Jose, CA, November
1997.

Scott Pakin, Mario Lauria, Andrew Chien. "High Performance Messaging on
Workstations: Illinois Fast Messages (FM) for Myrinet." ACM/IEEE-CS Press,
Proceedings of the ACM/IEEE International Conference on Supercomputing, San
Diego, CA, November 1995.

vii

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Loic Prylli, Bernard Tourancheau. "BIP: A New Protocol Designed for High Per-
formance Networking on Myrinet." Springer, Lecture Notes in Computer Science,
Vol. 1388, 1998.

Joachim M. Blum, Thomas M. Warschko, Walter F. Tichy. "PULC: ParaStation
User-Level Communication. Design and Overview." Springer, Lecture Notes in
Computer Science, Vol. 1388, 1998.

Myricom, Inc. "The GM Message Passing System." User Guide, 2000.

Yutaka Ishikawa, Hiroshi Tezuka, Atsuhi Hori, Shinji Sumimoto, Toshiyuki Taka-
hashi, Francis O’Carroll, Hiroshi Harada. "RWC PC Cluster Il and SCore Cluster
System Software - High Performance Linux Cluster." Proceedings of the 5th
Annual Linux Expo, pages 55-62, 1999.

Fabrizio Petrini, Wu-chun Feng, Adolfy Hoisie, Salvador Coll, Eitan Frachtenberg.
"The Quadrics Network: High-Performance Clustering Technology." IEEE Micro,
No. 1, pages 46-57, January 2002.

Compag Computer Corp. "Compaq Alpha SC Announcement." Whitepaper,
November 1999.

IBM. "RS/6000 SP: SP Switch2 Technology and Architecture." Whitepaper,
March 2001.

Craig B. Stunkel, Jay Herring, Bulent Abali, Rajeev Sivaram. "A New Switch Chip
for IBM RS/6000 SP Systems." ACM/IEEE-CS Press, Proceedings of the ACM/
IEEE International Conference on Supercomputing, Portland, OR, November
1999.

InfiniBand Trade Association. "InfiniBand Architecture Specification." Vol.1, 2 &
3, Rev 1.0, October 2000.

IBM. "InfiniBand: Satisfying the Hunger for Network Bandwidth." Whitepaper,
June 2001.

Ulrich Bruining, Lambert Schaelicke. "Atoll: A High-Performance Communication
Device for Parallel Systems." IEEE-CS Press, Proceedings of the Conference on
Advances in Parallel and Distributed Computing, pages 228-234, 1997.

viii

[64] Peter M. Behr, Samuel Pletner, A. C. Sodan. "PowerMANNA: A Parallel Architec-
ture Based on the PowerPC MPC620." IEEE-CS Press, Proceedings of the Sixth
International Symposium on High-Performance Computer Architecture, pages
277-286, Toulouse, France, January 2000.

[65] Synopsys, Inc. "DesignWare DW_pcix MacroCell Databook."” October 2001.

[66] PCI Special Interest Group (PCISIG). "PCI-X Addendum to the PCI Local Bus
Specification." Revision 1.0, September 1999.

[67] Ulrich Briining, Jorg Kluge, Lars Rzymianowicz, Patrick Schulz. "ATOLL Hard-
ware Reference Manual." Internal Databook, 2002.

[68] Berthold Lehmann. "Implementation of an efficient hostport for the ATOLL SAN-
Adapter." Diploma Thesis, Institute of Computer Engineering, University of
Mannheim, March 1999.

[69] Jorg Kluge, Ulrich Briining, Markus Fischer, Lars Rzymianowicz, Patrick Schulz,
Mathias Waack. "The ATOLL approach for a fast and reliable System Area Net-
work." Third Intl. Workshop on Advanced Parallel Processing Technologies
(APPT’99) conference, Changsha, P.R. China, October 1999.

[70] Michael J. S. Smith. "Application-Specific Integrated Circuits.”" Addison-Wesley,
VLSI Systems Series, 1997.

[71] Pran Kurup, Taher Abbasi, Ricky Bedi. "It's the Methodology, Stupid!" ByteK
Designs, Inc., 1998.

[72] Lars Rzymianowicz. "FSMDesigner: Combining a Powerful Graphical FSM Edi-
tor and Efficient HDL Code Generation with Synthesis in Mind." Proceedings of
the 8th International HDL Conference and Exhibition (HDLCON), pages 63-68,
Santa Clara, CA, April 1999.

[73] Tim Leuchter, Lars Rzymianowicz. "Guidelines for writing efficient RTL-level
Verilog HDL code." University of Mannheim,
http://mufasa.informatik.uni-mannheim.de/Isra/persons/lars/verilog_guide

[74] Michael Keating, Pierre Bricaud. "Reuse Methodology Manual for System-On-A-
Chip Designs, 2nd Edition." Kluwer Academic Publishers, June 1999.

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

Clifford E. Cummings. "Synthesis and Scripting Techniques for Designing Multi-
Asynchronous Clock Designs." Synopsys User Group Meeting (SNUG), San Jose,
CA, March 2001.

Peet James. "Shotgun Verification: The Homer Simpson Guide to Verification."
Synopsys User Group Meeting (SNUG), Boston, MA, September 2001.

Synopsys, Inc. "Automated Chip Synthesis User Guide, v2001-08." Synopsys
Online Documentation (SOLD), August 2001.

Steve Golson. "A Comparison of Hierarchical Compile Strategies." Synopsys User
Group Meeting (SNUG), San Jose, CA, March 2001.

Rick Furtner. "High Fanout without High Stress: Synthesis and Optimization of
High-Fanout Nets using Design Compiler 2000.11." Synopsys User Group Meet-
ing (SNUG), Boston, MA, September 2001.

Patrick Schulz. "Design for Test (DfT) and Testability of a Multi-Million Gate
ASIC." Diploma Thesis, Institute of Computer Engineering, University of Man-
nheim, November 2000.

Harry Bleeker, Peter van den Eijnden, Frans de Jong. "Boundary-Scan Test: A
Practical Approach." Kluwer Academic Publishers, 1993.

Erich Krause. "Integration, Test and Validation of a PCI IP Macrocell into the
Multi-Million Gate ATOLL ASIC." Diploma Thesis, Institute of Computer Engi-
neering, University of Mannheim, April 2001.

Mathias Waack. "Concepts, Design and Implementation of efficient Communica-
tion Software for System Area Networks." Institute of Computer Engineering,
University of Mannheim, June 2002.

IBM. "InfiniBand and Arapahoe/3GIO: Complementary Technologies for the Data
Center." Whitepaper, February 2002.

International Business Strategies, Inc. "Analysis of SoC Design Costs: A Custom
Study for Synopsys Professional Services." Technical Report, February 2002.

	Designing Efficient Network Interfaces For System Area Networks
	Inauguraldissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften...
	vorgelegt von
	Dipl.-Inf. Lars Rzymianowicz
	aus Rendsburg
	Mannheim, 2002

	Designing Efficient Network Interfaces For System Area Networks
	Inauguraldissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften...
	vorgelegt von
	Dipl.-Inf. Lars Rzymianowicz
	aus Rendsburg
	Mannheim, 2002
	Abstract

	Designing Efficient Network Interfaces For System Area Networks
	by Lars Rzymianowicz Universität Mannheim

	Table of Contents
	1 Introduction
	While in Desktop Computing the latest improvements in performance of computer hardware seem to ha...
	1.1 Cluster Computing
	Cluster Computing[1], [2] has established itself as a serious alternative to Massive Parallel Pro...
	1.1.1 Trends
	The first so-called Beowulf cluster [5] was assembled by the team around Donald Becker and Thomas...
	Besides PC clusters, several companies build clusters out of small- to medium-scale SMP machines....
	The current trend is to move away from traditional supercomputers to more cost-efficient cluster ...

	1.1.2 Managing large installations
	But since the number of nodes inside a typical cluster grows fast, it becomes more complicated to...

	1.1.3 Driving factors and future directions
	Figure�1-2 depicts all fields of development that contribute to the increasing use of clusters fo...

	1.2 System Area Networks
	A fast network is the key component of a high performance cluster. First installations used tradi...
	1.2.1 The need for a new class of networks
	To be competitive in the field of High Performance Computing clusters need to be equipped with ne...
	E.g., ATM is tuned for wide area connections with its relatively small packet size of 53�bytes an...
	With almost two orders of magnitude between system bus and network bandwidth clusters with standa...

	1.2.2 Emerging from existing technology
	This new class of networks was named System Area Networks (SAN) to point out their different appl...
	At the end of the 90’s, several SANs were introduced and widely used in clusters. Networks like M...

	1.3 ASIC Design
	The development of logic circuits as Application Specific Integrated Circuits (ASIC) continues at...
	1.3.1 Using 10+ million transistors
	ASIC designers face more and more the problem to be able to make use of all the potential transis...
	Designers steadily increase the level of abstraction for modeling logic circuits to enhance their...
	While ASICs approach the 100�million transistor count and clock frequencies of multiple GHz, desi...

	1.3.2 Timing closure
	The IC design flow used over the last years is split into two separate steps, called frontend and...
	These timing mispredictions force the designer to iterate several times between frontend and back...

	1.3.3 Power dissipation
	With frequencies beyond 1�GHz and more than 10�million transistors on chip, current microprocesso...
	Several techniques are used to reduce the power consumption of ICs. The problem is being attacked...
	IC designers attack the problem at several abstraction levels. For very high frequencies of 1�GHz...

	1.3.4 Verification bottleneck
	Another major problem is to validate the design before shipping the layout to the chip manufactur...
	Verification is needed at all levels of the design flow. From high-level simulations of abstract ...

	1.4 Contributions
	This dissertation introduces a major redesign of the ATOLL architecture for a high performance Sy...
	Besides discussing the architecture, it also describes the implementation of the design in a stat...
	Extensive simulations were done to prove the functional correctness of the design and to make sur...
	Though the author is responsible for the largest part of design and implementation work regarding...

	1.5 Organization
	The dissertation is organized in six chapters. This first chapter introduced Cluster Computing an...

	2 System Area Networks
	The network is the most critical component of a cluster. Its capabilities and performance directl...
	2.1 Wide/Local Area Networks
	According to recent cluster rankings, about half of all clusters are still equipped with standard...
	2.1.1 User-level message layers
	First clusters running MPI/PVM applications used a normal TCP/IP layer to communicate over Fast E...
	Implementations like U-Net [19], GAMMA [20] and Fast Messages [21] all provide a low-level Applic...
	Table�2-1 shows that user-level libraries can reduce latency by 50-75�%, compared to TCP/IP perfo...
	A few other LAN/WANs have been tested as cluster interconnect, but proved to be as inefficient as...

	2.2 Design goals
	Before several cluster interconnects are presented in detail, this section gives an overview of t...
	Several decisions must be made when designing a cluster interconnect. The most important is unden...
	2.2.1 Price versus performance
	In the last few years clusters of PCs have gained huge popularity due to the extreme low prices o...

	2.2.2 Scalability
	Scalability is another crucial issue. It refers to the networks ability to scale almost linear wi...
	But clusters are more dynamic. Often a small system is set up to test, if the cluster fits to the...

	2.2.3 Reliability
	Applications for parallel computing can be roughly divided into two main classes, scientific and ...
	First, cluster interconnects with their short range physical layers have proven to be almost erro...

	2.3 General architecture
	A general design decision must be made between a dumb NI, which is controlled and managed by the ...
	Advantages of both methods can be glued together by adding a dedicated communication processor to...
	2.3.1 Shared memory vs. distributed memory
	The first decision of a designer of cluster interconnects is the memory (programming) model to be...
	Figure�2-2 shows an example of a write operation to remote memory, where the NI resides on the I/...
	1. the CPU writes the message data to a shared memory region, which virtual memory address is map...
	2. the NI indexes an address translation table with the write address to determine the destinatio...
	3. the destination node receives the data, and uses the address to write data to local memory. If...
	A lot of work has to be done by the NI, if the virtual shared memory is intended to be cache-cohe...
	In the distributed memory model, message passing software makes the network visible to applicatio...

	2.3.2 NI location
	The location of the NI inside a system has a great impact on its performance and usability. In ge...
	As depicted in Figure�2-3, there are three possible locations for the NI:
	NI-1
	An interesting solution is support for communication at the instruction set level inside a microp...
	NI-2
	Assuming a high performance system bus design, this location is an ideal place for a network inte...
	NI-3
	Most current interconnects have I/O bus interfaces, mainly PCI. The reason is the great acceptanc...
	Most interconnects presented in this chapter use the I/O bus as their interface to the host.

	2.4 Design details
	In the following, a closer look is taken at some specific implementation details. Small modificat...
	A general rule of thumb could be: Keep the frequent case simple and fast. For example, mechanisms...
	The term link protocol is used for the layout of messages, which are transmitted over the physica...
	2.4.1 Physical layer
	Choosing the right physical medium of a channel is a trade-off between raw data rate, availabilit...
	Another trend to observe is the replacement of medium-fast parallel links with high-speed serial ...
	One of the main reasons for using serial connections is the reduced pin count on switches. Latest...
	But recent developments have made it possible to transmit signals via copper cables at rates of 1...

	2.4.2 Switching
	The term switching refers to the transfer method of how data is forwarded from the source to the ...
	In Figure�2-6 (a), packet p0 just arrived at the switch through port 1 and is placed into the pac...
	Newer SANs like ServerNet, Myrinet and QsNet use cut-through switching (also referred to as wormh...

	2.4.3 Routing
	The address header of a message carries the information needed by routing hardware inside a switc...
	In Figure�2-7 (a), an example of wormhole routing [35] is given. A message enters a switch on por...
	In Figure�2-7 (b), a switch containing a complete routing table is shown. For each destination no...
	A problem for both routing mechanisms is the avoidance of deadlocks. A deadlock appears when seve...

	2.4.4 Flow control
	Flow control [37] is used to avoid buffer overruns inside link end points, which can result in th...

	2.4.5 Error detection and correction
	Though todays physical layers have very low error rates, the network must offer some mechanisms f...

	2.5 Data transfer
	Efficient transfer of message data between the nodes main memory and the NI is a critical factor ...
	2.5.1 Programmed I/O versus Direct Memory Access
	Message data can be transferred in two ways: Programmed I/O (PIO), where the processor copies dat...
	Several factors influence the performance of both mechanisms. The simplest PIO implementation wri...
	To sum it up, PIO is superior to DMA for small messages up to a certain size where the copy overh...

	2.5.2 Control transfer
	If DMA is used for transferring message data, another critical design choice is the mechanism on ...
	Another solution is to interrupt the CPU. But this results in a context switch to kernel mode, wh...

	2.5.3 Collective operations
	So far, we have only presented mechanisms to send or receive messages in a point-to- point manner...
	Networks with a shared bus like Fast Ethernet can easily broadcast data, whereas the integration ...

	2.6 SCI
	SCI (Scalable Coherent Interface) [40] is an IEEE standard (ANSI/IEEE Std 1596-1992) finally appr...
	2.6.1 Targeting DSM systems
	Several goals influenced the standardization of SCI as a Distributed Shared Memory (DSM) network....
	In the following, the main concepts behind SCI are presented:

	2.6.2 The Dolphin SCI adapter
	The SCI standard was intended to specify an open interface to provide interoperability across mul...
	Figure�2-10 depicts the block diagram of the two main chips on the NIC, the PCI-SCI- Bridge (PSB)...
	The latest version of the PSB (PSB66) offers a 64�bit/66�MHz PCI interface, and the most recent L...

	2.6.3 Remarks
	SCI has been used successfully as interconnect in DSM systems, but is less efficient in a cluster...
	Another bottleneck is the limited ability to form scalable networks. A popular topology for SCI i...
	All this led to a relatively low acceptance of SCI as cluster interconnect. While other technolog...

	2.7 ServerNet
	In 1995, Tandem introduced one of the first commercially available implementation of a SAN called...
	With ServerNet, Tandem, a major computer manufacturer in the business area, addressed one of the ...
	2.7.1 Scalability and reliability
	With scalable I/O bandwidth as the primary goal, ServerNet consists of two main components: endno...

	2.7.2 Link technology
	ServerNet is a full duplex, wormhole switched network. The first implementation uses 9�bit parall...

	2.7.3 Data transfer
	The basic data transfer mechanism supported is a DMA-based remote memory read/write. An endnode c...
	The address can be viewed as a virtual ServerNet address. The lower 12�bits are the page offset, ...
	A main feature of ServerNet is its support for guaranteed and error free in-order delivery of dat...

	2.7.4 Switches
	ServerNet I offers 6 port switches, which can be connected in an arbitrary topology. Router II, t...

	2.7.5 Software
	The good reliability of the ServerNet hardware makes it possible to implement low overhead protoc...
	To provide an easy way of managing the network, a special sort of packets is defined called In Ba...

	2.7.6 Remarks
	Though it is hard to find detailed performance numbers, ServerNet technology seems to be a very r...
	ServerNet implements a lot of properties, which are extremely useful for cluster computing: error...

	2.8 Myrinet
	Myrinet [48] is a SAN evolved from supercomputer technology and the main product of Myricom, a co...
	The Myrinet technology is based on two earlier research projects, namely Mosaic and Atomic LAN by...
	2.8.1 NIC architecture
	Regarding the link and packet layer, Myrinet is very similar to ServerNet (or vice versa). They d...
	More than other SAN developers Myricom has continuously improved the architecture and the hardwar...

	2.8.2 Transport layer and switches
	Data packets can be of any length and are forwarded using cut-through switching. They consist of ...
	On the link level, the trailing CRC is computed in each network stage and substituted for the pre...
	Latest Myrinet switch technology [50] is build around a single crossbar chip with 16 ports, calle...

	2.8.3 Software and performance
	As mentioned before, all Myrinet specifications are open and public. The device driver code and t...
	The performance of the Myrinet network is highly depended on the software layer used to access th...
	Over the last two years, Myricom has developed with the GM message layer [55] a quite stable and ...

	2.8.4 Remarks
	The great flexibility of the hardware due to the programmable LANai microcontroller is one of the...
	Bottlenecks like slow onboard SRAM or LANai chips have been removed, early versions of low-perfor...

	2.9 QsNet
	QsNet [57] is a SAN developed by Quadrics Supercomputers World Ltd. Similar to other SANs, QsNet ...
	2.9.1 NIC architecture
	The third generation of the Elan ASIC is the key component of the QsNet NIC. Its architecture is ...

	2.9.2 Switches and topology
	Besides the NIC, two different switches (16 and 128 port) are used to connect QsNet nodes into a ...
	Source-path routing is used to deliver network packets to their destination. The sender attaches ...

	2.9.3 Programming interface and performance
	Figure�2-16 shows the overall structure of the programming interface for a QsNet network. A layer...
	The unique feature of QsNet is its ability to directly send data from a process virtual address s...
	QsNet currently leads all SANs in performance, due to its advanced hardware support of message pa...

	2.9.4 Remarks
	Though it offers the best performance of todays SANs, QsNet has not attracted the level of attent...

	2.10 IBM SP Switch2
	Though a proprietary network not intended for the PC cluster market, the Switch2 interconnect [59...
	To remain one of the top HPC manufacturers, IBM developed with the second generation of SP Switch...
	Though due to its proprietary interface not usable for general cluster computing, its technology ...
	2.10.1 NIC architecture
	Figure�2-17 depicts the top-level architecture of the SP Switch2 host adapter. As shown in the fi...
	The node architecture is highly decoupled to allow several data transmissions to occur at the sam...
	The general purpose PowerPC 740 microprocessor offloads a lot of tasks from the host CPU. It basi...
	Additional to the message transfers, the Switch2 offers some advanced features. On is the generat...

	2.10.2 Network switches
	SP machines are mostly connected in a bidirectional multistage interconnection network (BMIN) top...
	SP switches use source-path wormhole routing with a credit-based flow control scheme to prevent b...
	Each output port has two output queues assigned, one low- and one high-priority queue. High-prior...

	2.10.3 Remarks
	The new generation of IBM’s SP Switch technology offers enough performance to let clusters of RS/...
	Up to 350�Mbyte/s sustained bandwidth has been measured for MPI applications. A relative high lat...
	Features like multicast and adaptive routing have not been implemented with such a level of hardw...

	2.11 Infiniband
	I/O bandwidth is more and more becoming a limited resource in todays server systems. To overcome ...
	To overcome the architectural limitations of bus-based approaches, several major computer vendors...
	Companies like IBM [62] and Intel heavily push the development of IB hardware. First products are...
	2.11.1 Architecture
	Figure�2-18 depicts the general architecture of an IB network. It contains the four building bloc...
	The foundation of communication in an InfiniBand fabric is the ability to queue up a set of jobs ...
	Applications can set up multiple QPs, each one independent from the others. A send job specifies ...
	InfiniBand supports connection oriented and datagram communication. A connected service establish...

	2.11.2 Protocol stack
	The specification separates IB into several layers, as shown in Figure�2-19: transport, network, ...
	Physical layer
	The physical layer specifies how single bits are put on the wire to form symbols. It defines cont...
	Link layer
	The link layer describes the packet format and protocols for packet operation. This includes flow...
	Figure�2-20 depicts the IB data packet format and which layer utilizes which part of the packet t...
	Network layer
	The network layer implements the protocol to route packets between subnets. It uses the Global Ro...
	Transport layer
	The transport layer is responsible to deliver a packet to the proper QP and to instruct the QP on...
	A Software Transport Interface is defined on how to configure, access and operate IB communicatio...

	2.11.3 Remarks
	The aggressive goal of InfiniBand to completely take over the whole I/O and server connectivity m...
	On the other hand, competing solutions can try to present an InfiniBand software interface to app...

	3 The ATOLL System Area Network
	The idea to develop a new System Area Network was driven by the need for a high performance clust...
	So a large scale integration of all components was a major factor guiding the process of specific...
	3.1 A new SAN architecture: ATOLL
	The main idea behind this approach was formulated earlier within another context. The first versi...
	Most internal structures have been redesigned, due to the different environment of the MPP and th...
	The number of host and link interfaces is a trade-off between the goal to provide as much perform...
	The upper limit for the number of host interfaces is given by the amount of resources needed to i...
	3.1.1 Design details of ATOLL
	Some of the major design decisions are a natural consequence of the experiences with other soluti...
	A unique technique to detect and immediately correct transmission errors on links has been implem...
	The mechanisms for data transfer between the host and the NI were driven by the fact that the per...
	Some advanced features had to be omitted to keep the complexity at a manageable level. It would h...
	In the following, the major features and mechanisms for the ATOLL System Area Network are summari...
	The rest of this chapter will introduce the architecture of the ATOLL network chip. The main focu...

	3.2 Top-level architecture
	ATOLL is a true 64�bit architecture. All addresses used by the device to access data structures i...
	In the following, a brief overview of each functional unit is given:
	PCI-X interface
	the PCI-X interface is used to communicate with the host system. It can act as bus master or slav...
	Synchronization interface
	since the core of ATOLL runs with a higher clock frequency than the PCI-X interface, all control ...
	Port interconnect
	the port interconnect multiplexes the access to the PCI-X interface between all four host ports. ...
	Host port
	a host port contains all logic to enable PIO- and DMA-based message transfer. A small interchange...
	Network port
	the network port converts a stream of tagged 64�bit datawords from the hostport into a 9�bit-wide...
	Crossbar
	the crossbar is a full-duplex 8x8 port switch. It interprets routing bytes of incoming messages t...
	Link port
	the link port provides a full-duplex interface to the network. It prevents buffer overrun by ensu...
	The whole architecture is optimized to provide the highest level of sustained bandwidth and an ex...
	3.2.1 Address space layout
	The whole ATOLL device requests an PCI-X address space of 1�Mbyte at system start- up. Only the f...
	Another reason for separate pages is the level of protection for different address areas. The use...
	In all 8�Kbyte pages only the lower 4�Kbyte part is used. The upper 4�Kbyte are left unused. And ...
	The page for the initialization and debug registers at address 40000h was appended in a late stag...
	The layout of the different pages is discussed in detail later in this chapter, at the appropriat...

	3.3 PCI-X interface
	The PCI-X bus interface module used in the ATOLL chip is an external IP cell from Synopsys, Inc [...
	DW_pcix_ifc
	the DW_pcix_ifc module contains the PCI bus interface. It performs multiplexing of outgoing addre...
	DW_pcix_com
	the DW_pcix_com module implements the Completer logic. It is responsible for all actions necessar...
	DW_pcix_req
	the DW_pcix_req module contains the Requester logic. It controls all bus master transactions trig...
	DW_pcix_config
	the DW_pcix_config module implements the PCI configuration space, as defined by the PCI bus speci...
	The complexity of the PCI-X bus interface is quite high, since it implements all the special prot...
	In the following, the main parameters are given, which were defined during generation of an IP ce...

	3.4 Synchronization interface
	The synchronization interface connects the PCI-X bus module to the ATOLL core logic. On the PCI-X...
	3.4.1 Completer interface
	The completer interface needs to separate read and write accesses, and interacts with the Slave-W...
	For write transactions, the completer stores the start address and pushes all incoming data into ...
	In case of a read request, the address is immediately forwarded to the ATOLL core to request the ...
	Since the Slave-Read path on the ATOLL side delivers a data word on each second cycle, the ratio ...
	For both transfer directions the completer interface is also responsible to convert a 64�bit data...

	3.4.2 Slave-Write data path
	On the ATOLL side, the Slave-Write path is plain simple. As soon as an address-length pair is han...

	3.4.3 Slave-Read data path
	The Completer delivers the address, a valid signal and the byte count for a read access. In case ...
	Figure�3-8 depicts the interface signals to the ATOLL core. In case the core delivers data too fa...

	3.4.4 Master-Write data path
	When acting as bus master, the ATOLL device tries to transfer data in bursts as large as possible...
	The control logic of the Master-Write data path pushes incoming data into a FIFO. It stores the f...

	3.4.5 Master-Read data path
	Reading data from main memory requires more complex logic. To implement an efficient utilization ...
	Since multiple host ports might request data, each job is assigned one of 8�job IDs to be able to...
	The control logic of the Master-Read path keeps outstanding jobs in an internal queue. Incoming d...

	3.4.6 Requester interface
	The requester unit needs to multiplex the access to the PCI-X interface between the Master-Write ...
	In contrast to the completer interface, the conversion of 64�bit data into 32�bit data is perform...

	3.4.7 Device initialization
	A few initialization and debug registers have been placed into the synchronization interface. The...
	Figure�3-13 gives an overview about each register and the meaning of its individual bits. Not all...
	Reset register
	besides the global power-on reset signal, each major block of ATOLL has been assigned a unique re...
	PLL register
	the ATOLL clock logic includes a configurable Phase Locked Loop (PLL) to set the internal clock t...
	Status register
	The lower 5�bits sample some status bits set by the PCI-X interface. It detects at system start-u...
	BIST start register
	All SRAM memory cells have a Built-In Self Test (BIST) logic attached. It checks the memory for e...
	BIST ok register
	These bits are the corresponding signals to the BIST start bits. Due to different sizes of the SR...

	3.5 Port interconnect
	The port interconnect multiplexes the four ATOLL core data paths described in “Synchronization in...
	The implementation of both Slave paths is straight forward. An incoming address from the synchron...
	In case of both Master paths, the access to them must be multiplexed between all host ports. Each...
	3.5.1 ATOLL control and status registers
	A separate module hosts the control/status registers needed for managing the use of ATOLL. These ...
	All registers can be split into four categories: control, status, debug and extension. The regist...
	In Table�3-1, all control registers are listed with their address offset relative to the device b...
	The internal crossbar offers the possibility to observe its status and to insert/pull out link da...
	Finally, two more registers are used as extension to the above set of registers to control the de...
	In the following, all registers are described in detail. They are listed in groups of functional ...
	Figure�3-15 depicts the hardware control/status register, as well as the global counter registers...
	Figure�3-16 shows the registers to control the host ports. Their meaning is as follows:
	Figure�3-18 gives an overview about all registers related to the generation of interrupts. There ...
	All possible interrupts are flagged by the irq_case register. The specific bits are described in ...
	The lp_retry status register, as shown in Figure�3-19, provides for each link the value of an 8�b...
	Besides the registers presented over the last pages, there are other, less important ones, which ...
	In the following, a typical interrupt service sequence is given:

	3.6 Host port
	The host port [68] is the main building block of the ATOLL chip. It is responsible for data trans...
	The interfaces towards the port interconnect correspond to the ones between the port interconnect...
	3.6.1 Address layout
	Each host port occupies 4�consecutive 8�Kbyte pages in the address space of the ATOLL device, as ...

	3.6.2 PIO-send unit
	Programmed I/O is intended as a fast and efficient way to communicate small amounts of data. A lo...
	The FIFO for keeping the data to be sent is directly made accessible to the user. The PCI- X bus ...
	But in addition to the raw data, the PIO-send unit also needs to know the specific tags of the da...
	Figure�3-25 gives an overview about the structure of the PIO-send module. Apart from normal messa...

	3.6.3 PIO-receive unit
	First versions of the PIO-receive unit implemented the same method as used by the PIO- send modul...
	To deal with this problem one needs to remove the side effect of the read access. Therefore, the ...
	The page assigned to the PIO-receive module now references the ring buffer, whereby the buffer is...
	Figure�3-28 shows the structure of the PIO-receive unit. An incoming address is first analyzed to...

	3.6.4 Data structures for DMA-based communication
	DMA-based communication is a good way to offload work from the main CPU. The CPU communicates wit...
	Figure�3-29 depicts the layout of a data region. A base address marks the beginning, whereas an u...
	The second data area is the descriptor table, which keeps fix-sized job descriptors for each DMA ...
	Figure�3-30 shows the layout of a job descriptor. The offsets point to the associated frame data,...
	The command byte is used on the sending side only. When receiving a message, this byte is used as...
	Similar to the data region, there are separate descriptor tables for the DMA-send and the DMA-rec...

	3.6.5 Status/control registers
	The status/control registers needed for a host port are stored in a separate register file. It in...
	Table�3-5 lists all registers of the send page. The offsets are relative to the page base address...
	Table�3-6 lists all registers of the receive page. The DMA registers are almost the same as for t...
	Besides the fill level of the PIO-receive data FIFO, the receive page also includes a register fo...
	Another special feature is the semaphore register. It is intended to be utilized in case the host...

	3.6.6 DMA-send unit
	The DMA-send unit is responsible to observe the data areas for sending messages, and to process a...
	Figure�3-32 depicts the structure of the DMA-send unit. It is split up into two subdesigns. One p...
	As soon as an entry is detected in the descriptor table, it is requested from memory and stored i...
	The second part is called ‘job completion’ and is responsible to accept the data the other part h...

	3.6.7 DMA-receive unit
	The DMA-receive unit is the counterpart to the DMA-send unit. It gets message data from the netwo...
	Similar to the DMA-send unit, the DMA-receive module keeps the relevant registers in a small work...
	Figure�3-34 gives an overview about the structure of the DMA-receive module. Incoming data is fir...
	Though each data word is transferred with its address, it makes no sense to mix multiple data str...

	3.6.8 Replicator
	The replicator is used to avoid polling status registers of the ATOLL device, which could degrade...
	The replicator utilizes the same Master-Write interface of the port interconnect as the DMA-recei...
	The read and write pointers of the DMA modes are updated on each change. This is also true for th...
	So before interpreting the value in the replication area, an application should read the value di...

	3.7 Network port
	The network port is converting the tagged data stream of 64�bit words into a byte-wide stream acc...
	3.7.1 Message frames and link protocol
	As stated earlier, an ATOLL message consists of three frames: routing, header and data. The routi...
	Figure�3-35 gives an overview about the framing of ATOLL messages and the link protocol used for ...
	There are 4�control bytes used at the network port to build up the framing of message data:
	Link packets in the routing frame do not have a CRC value attached, since one must react on bit e...
	Each frame can be composed of several link packets, but the normal case should be that a single l...

	3.7.2 Send path
	Figure�3-36 depicts the overall structure of the send unit of the network port. It can be viewed ...

	3.7.3 Receive path
	Figure�3-37 shows the structure of the receive unit inside the network port. It basically consist...
	The output stage is a bit more complex than in the send unit. Incoming link packets might be mark...
	Providing only one output FIFO would result in a significant performance penalty, since the data ...
	To keep data flowing a second FIFO was implemented, and the data path switches on each link packe...
	Simulations showed a significant gain in sustained throughput of the unit using two output FIFOs ...

	3.8 Crossbar
	The crossbar [69] is a full-duplex 4x4 switch, providing an all-to-all connection between the 4�n...
	The input unit of a crossbar port strips off the first routing byte of an incoming message and se...
	The output unit of a crossbar port arbitrates its data path in a fair round-robin fashion. Once a...
	The additional debug interface observes the status of the crossbar and can be accessed via the de...

	3.9 Link port
	The link port is the gateway to the network. It directly drives and receives signals over the lin...
	A unique feature of an ATOLL link is its per-link error detection and correction. In contrast to ...
	3.9.1 Link protocol
	Two types of bytes make up the link data stream: data and control bytes. They are differentiated ...
	Therefore, the upper bit of a routing byte is a parity bit calculated from the remaining 7�bits. ...
	Table�3-8 gives an overview about the format and encoding of all data and control bytes. The firs...
	Since only data bytes are protected by link packet CRCs or parity bits, another method had to be ...
	Using this hamming code, a correct control byte can be identified by p[2:0] = 000. Any nonzero va...
	The control bytes SOF, EOM, EOP, EOP_ERR and CANCEL were described earlier. The IDLE byte is simp...

	3.9.2 Output port
	Figure�3-39 gives an overview about the structure of the link port output unit. It is split up in...
	The retransmit path is responsible to keep a copy of each link packet sent over the link. If the ...
	During the unit waits for the acknowledgment of the first packet, a second one can be transmitted...
	Figure�3-40 shows how the reverse flow control path is utilized to insert control bytes into the ...
	The same procedure happens in case the blockage of the path is removed and the FIFO can again sto...

	3.9.3 Input port
	The structure of the input path of the link port is shown in Figure�3-41. It can be viewed as a p...
	The second stage decodes all control bytes and filters out flow control signals, which need to be...
	Finally, data is pushed into a large FIFO. This FIFO is observed by some control logic, which tri...

	4 Implementation
	The implementation of the ATOLL architecture as an Application Specific Integrated Circuit (ASIC)...
	The Europractice IC Service, which is funded by the European Union (EU), is normally the only way...
	The ATOLL ASIC is a standard cell based design. Using such pre-configured cell libraries, contain...
	To concentrate on the development of the logic unique to ATOLL, several commonly used building bl...
	4.1 Design Flow
	The design flow [71] pretty much follows the standard ASIC design flow used over the last decade ...
	So a design flow had to be established from the accessible tools. Where necessary, additional too...

	4.2 Design entry
	The whole design has been implemented using the Verilog HDL on Register-Transfer Level (RTL). Thi...
	To deal with the large design hierarchy and to enhance its visualization, the decision was made t...
	For an efficient implementation of complex control logic as Finite State Machines (FSM), a custom...
	4.2.1 RTL coding
	Since the level of expertise in writing Verilog RTL code varied a lot inside the design team, a w...

	4.2.2 Clock and reset logic
	Besides the implementation of the architecture, the clock and reset logic of an ASIC is always a ...
	All signals crossing a clock domain border must be synchronized into the receiving clock domain. ...
	So passing data or control signals across a clock domain border is simply done by using two flipf...

	4.3 Functional simulation
	Regarding the size of the design, simulation runtime was a major issue. Therefore, prior to runni...
	4.3.1 Simulation testbed
	To test the ATOLL ASIC in an environment as close to its real use as possible, a testbed has been...
	Several Verilog tasks have been developed to control the simulation via the Master BFM. They also...
	Summarizing, 22�Verilog tasks with more than 2.000�lines of code have been implemented. Using the...

	4.3.2 Verification strategy
	A specific verification strategy was chosen to be followed throughout the verification process to...

	4.3.3 Runtime issues
	Memory usage of the simulator is surprisingly low, the compiled design uses only 63�Mbyte in tota...
	The small corner-case testbenches run only for some minutes. But the large regression testbenches...
	The ability to write checkpoints of the simulation out to disk to be able to restart it from a po...
	Though one run of such a regression testbench runs for 48�hours, it simulates only about 110�ms o...
	After several (about 15) runs of the large ‘shotgun’ testbenches completed without errors, the de...

	4.4 Logic synthesis
	Setting up a synthesis flow for such a large design is a non-trivial task. Since the whole design...
	4.4.1 Automated synthesis flow
	All these mixed top-down/bottom-up flows require a lot of scripting and data management to effici...
	The 3�main procedures of ACS are:
	Those three commands were used in the above order to establish a base netlist for further refinem...

	4.4.2 Timing closure
	At the beginning, the design was pad-limited (around 380�functional I/O pads), which means that t...
	Traditional logic synthesis tools know the logical structure of a design, and have fairly detaile...
	Wire load models are often a set of tables containing net lengths/delays, indexed by the fanout (...
	These inaccuracies get even worse the larger the design is. To enhance the accuracy, one can gene...
	Figure�4-6 shows the timing and area results after each step of the synthesis flow. The numbers a...
	The WNS in the PCI-X domain remains stable over the 3�ACS runs, since the PCI-X core is precompil...
	WNS and TNS of the ATOLL domain are significantly reduced during the ACS runs, with a temporary l...
	Though timing and area improve a lot over the whole flow, there are still some violated paths in ...
	Another interesting fact is that the TNS of the PCI-X domain at the end is still twice the TNS of...

	4.4.3 Design for testability
	Several factors can cause errors in ASIC production. The amount of fully functional chips, compar...
	ATOLL contains three types of test logic:
	Full scan means that all registers in the design are replaced with scannable DFFs. These can be s...
	ATOLL contains 4�full scan chains, which are partitioned according to the different clock domains...
	Not all DFFs can be linked up in the scan chains, e.g. if they are driven by a noncontrollable cl...
	Boundary scan logic [81] is used to drive specific values out of the chip via the I/O cells. This...
	The internal BIST logic [82] is used to test all 43�instantiated RAM macros in the ATOLL chip. It...

	4.5 Layout generation
	As mentioned earlier, the IMEC IC Backend Service group was hired to do the layout job. Place & R...
	In addition to handing over the gate-level netlist to the backend team for layout preparation, so...
	Figure�4-8 depicts the floorplan used for the ATOLL ASIC. But it needed some time to convince the...
	The usage of custom wire load models proved to be an advantage, as described earlier. But still a...
	To overcome the gap between constraint-driven logic synthesis and physical layout, newer versions...
	4.5.1 Post-layout optimization
	After the design is placed and routed, one needs to analyze the timing of the layout, since it mi...
	This data is fed back into the synthesis tool, which is used to run a so-called In-Place Optimiza...
	Figure�4-9 shows an example of how the timing delay of a path can be halved by these modification...
	After all possible optimizations are done, the new gate-level netlist is again transferred to the...
	All in all, 6�post-layout iterations were done for the ATOLL ASIC. Figure�4-10 shows, how the glo...
	The first 3�iterations reduce the timing slack a lot, but at the expense of area. In the lower pa...
	The decision was made to enlarge the die by adding 12�‘not connected’ (NC) dummy I/O cells to eac...
	An in-depth analysis showed, that most of these violated timing paths run through the PCI-X I/O c...
	Since the deadline for the design submission to fabrication was reached after running ECO6, the d...

	4.5.2 Post-layout simulation
	A simulation of the gate-level netlist with annotated SDF cell delays was executed to ensure that...
	Early versions of the netlist, which still had some timing violations, were used at a reduced clo...

	5 Performance Evaluation
	Besides the aggressive scale of integration, implementing a high performance network was the prim...
	The second important factor is the sustained bandwidth a network can provide. It measures the act...
	Those two metrics are usually measured on the application level. So no distinction is made betwee...
	Since the performance of an ATOLL-equipped cluster can only be measured on a real system, this ch...
	All presented performance measurements were derived from simulations of the environment specified...
	5.1 Latency
	The latency is measured both for PIO- and DMA-based message transfer. Since it usually scales lin...
	Figure�5-1 depicts the one-way latency for a single host port in use. Latency starts at about 2,4...
	On the other hand, DMA mode needs only 3�PCI-X read transactions on the sending side (descriptor,...
	Figure�5-2 shows that the number of active host ports in parallel has only a minor effect on mess...
	All in all, the latency numbers taken from simulation are very promising. Even when operating in ...

	5.2 Bandwidth
	Measuring the bandwidth of a network is normally done for very large messages. But simulating the...
	Figure�5-3 depicts the bandwidth of DMA-based message transfer for a single active host port. Rea...
	Figure�5-4 gives an insight into the bandwidth for multiple host ports in use. Similar to latency...

	5.3 Resource Utilization
	During the functional simulation of the ATOLL chip implementation, an efficient utilization of in...
	One major resource is the network link. Its efficient use is a crucial factor of overall performa...
	Figure�5-5 shows the link utilization, given as rate between raw message data vs. total bytes sen...
	Control bytes account for only a small portion of link overhead. Most of the wasted bandwidth is ...
	Though only about 20�idle cycles are introduced when sending two back-to-back link packets with 1...
	While message data travels through several top-level units in the ATOLL device, it is temporary s...
	Figure�5-7 lists the variation of the fifo fill level along the data path for the DMA-send mode. ...
	All performance measurements were done assuming no network contention. In reality, this assumptio...

	6 Conclusions
	Clusters are emerging as a competitive alternative to Vector or MPP supercomputers in the field o...
	The key component is a fast network. A new class of so-called System Area Networks emerged, since...
	Recent trends in PC technology pose new problems to SANs. E.g. SMP desktop computers are becoming...
	To sum up, current SAN technology has helped Cluster Computing to make a big step forward, but th...
	6.1 The ATOLL SAN
	This dissertation introduces a novel SAN version of the ATOLL architecture, derived from a first ...
	ATOLL offers a sophisticated mechanism to dynamically choose between PIO- and DMA-based message t...
	An error detection and correction protocol avoids end-to-end control of data transmissions. Bit e...
	Early performance evaluations promise extremely low latency and a very competitive sustained band...
	Besides redesigning the architecture of ATOLL towards a SAN, this dissertation describes also the...
	The ATOLL ASIC is one of the most complex and fastest chips ever implemented by a European univer...

	6.2 Future work
	The future development of a second generation of ATOLL will be greatly influenced by technology t...
	Of course, the definition of the next generation architecture will be also greatly influenced by ...
	Mainly there are two options for the development of the next version of ATOLL. A small and easier...
	These enhancements would help to keep up with the progress in desktop technology, resulting in a ...
	A more challenging approach would be a major redesign of the whole architecture. The current one ...
	The architecture would head towards the ones of Myrinet, QsNet or the IBM SP network, which all h...
	Both options have their pros and cons. But it shows that the ATOLL architecture has the potential...

	Acknowledgments
	This thesis would not have been possible without the help and contributions by many colleagues. M...
	The whole team of the Chair of Computer Architecture contributed to the development of the ATOLL ...
	I would like to thank all those individuals for their contributions, which gave me the possibilit...

	Bibliography
	[1] Rajkumar Buyya (editor). "High Performance Cluster Computing: Architectures and Systems, Volu...
	[2] Gregory F. Pfister. "In Search of Clusters, Second Edition." Prentice Hall PTR, January 1998.
	[3] William Gropp, Ewing Lusk, Anthony Skjellum. "Using MPI: Portable Parallel Programming with t...
	[4] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, Vaidy Sunderam. "PVM:...
	[5] Thomas Sterling, Daniel Savarese, Donald J. Becker, John E. Dorband, Udaya A. Ranawake, Charl...
	[6] The Top500 Supercomputer List, www.top500.org
	[7] Ian Foster, Carl Kesselman (editors). "The Grid: Blueprint for a New Computing Infrastructure...
	[8] Jakov N. Seizovic. "The Architecture and Programming of a Fine-Grain Multicomputer." Californ...
	[9] Duncan Roweth. "Industrial Presentation: The Meiko CS-2 System Architecture." ACM Press, Proc...
	[10] Gordon E. Moore. "Cramming more Components onto Integrated Circuits." Electronics, Volume 38...
	[11] Donald E. Thomas, Philip R. Moorby. "The Verilog Hardware Description Language, Third Editio...
	[12] Ben Cohen. "VHDL Coding Styles and Methodologies, 2nd Edition." Kluwer Academic Publishers, ...
	[13] J. Bhasker, Sanjiv Narayan. "RTL Modeling Using SystemC." Proceedings of the International H...
	[14] Peter L. Flake, Simon J. Davidmann, David J. Kelf. "SUPERLOG: Evolving Verilog and C for Sys...
	[15] Nagaraj, Frank Cano, Haldun Haznedar, Duane Young. "A Practical Approach to Static Signal El...
	[16] Patrick P. Gelsinger. "Microprocessors for the New Millennium -Challenges, Opportunities and...
	[17] Sun Microsystems, Inc. "Sun Compute Farms for Electronic Design." Technical White Paper, 2000.
	[18] Raoul A. Bhoedjang, Tim Rühl, Henri E. Bal. "User-Level Network Interface Protocols." IEEE C...
	[19] Matt Welsh, Anindya Basu, Thorsten von Eicken. "Low-Latency Communication over Fast Ethernet...
	[20] Giuseppe Ciaccio. "Optimal Communication Performance on Fast Ethernet with GAMMA." Springer,...
	[21] Scott Pakin, Vijay Karamcheti, Andrew A. Chien. "Fast Messages: Efficient, Portable Communic...
	[22] Yueming Hu. "A Simulation Research on Multiprocessor Interconnection Networks with Wormhole ...
	[23] B. H. Lim, P. Heidelberger, P. Pattnaik, M. Snir. "Message Proxies for Efficient, Protected ...
	[24] Wolfgang K. Giloi, Ulrich Brüning, Wolfgang Schröder-Preikschat. "MANNA: Prototype of a Dist...
	[25] Marco Fillo, Richard B. Gillett. "Architecture and Implementation of Memory Channel 2." Digi...
	[26] James Laudon, Daniel Lenoski. "The SGI Origin: A ccNUMA Highly Scalable Server." ACM Press, ...
	[27] Colin Whitby-Strevens. "The Transputer." IEEE Press, Proceedings of the 12th International S...
	[28] Thomas Gross, David R. O’Hallaron. "iWarp: Anatomy of a Parallel Computing System." MIT Pres...
	[29] Robert O. Mueller, A. Jain, W. Anderson, T. Benninghoff, D. Bertucci, et. al. "A 1.2GHz Alph...
	[30] PCI Special Interest Group. "PCI-X Addendum to the PCI Local Bus Specification." PCI-SIG, Re...
	[31] Ajay V. Bhatt. "Creating a Third Generation I/O Interconnect." Technology and Research Labs,...
	[32] Isaac D. Scherson, Abdou S. Youssef (editors). "Interconnection Networks for High-Performanc...
	[33] Andrew A. Chien, Mark D. Hill, Shubhendu S. Mukherjee. "Design Challenges for High-Performan...
	[34] Jose Duato, Sudhakar Yalamanchili, Lionel Ni. "Interconnection Networks: An Engineering Appr...
	[35] Prasant Mohapatra. "Wormhole routing techniques for directly connected multicomputer systems...
	[36] William J. Dally and Charles L. Seitz. "Deadlock-Free Message Routing in Multiprocessor Inte...
	[37] Allan R. Osborn, Douglas W. Browning. "A Comparative Study of Flow Control Methods in High-S...
	[38] David C. DiNucci. "Programming Parallel Processors: Alliant FX/8." Addison- Wesley, pages 27...
	[39] Jeff Larson. "The HAL Interconnect PCI Card." Springer, 2nd International Workshop CANPC, Le...
	[40] Hermann Hellwagner, Alexander Reinefeld (editors). "SCI: Scalable Coherent Interface, Archit...
	[41] Data General Corp. "AViiON AV 20000 Server Technical Overview." White Paper, 1997.
	[42] G. Abandah, E. Davidson. "Effects of Architectural and Technological Advances on the HP/Conv...
	[43] David X. Wang. "New Scalable Parallel Computer Architecture - Non-Uniform Memory Access (NUM...
	[44] Ch. Kurmann, Thomas Stricker. "A Comparison of two Gigabit SAN/LAN technologies: Scalable Co...
	[45] David Garcia, William Watson. "ServerNet II." Springer, Proceedings CANPC Workshop, Lecture ...
	[46] Alan Heirich, David Garcia, Michael Knowles, Robert Horst. "ServerNet-II: a Reliable Interco...
	[47] Compaq Computer Corp., Intel Corp., Microsoft Corp. "Virtual Interface Architecture Specific...
	[48] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, Wen-King...
	[49] Myricom, Inc. www.myri.com.
	[50] Myricom, Inc. "Guide to Myrinet-2000 Switches and Switch Networks." User Guide, August 2001.
	[51] Steven S. Lumetta, Alan Mainwaring, David E. Culler. "Multi-protocol Active Messages on a Cl...
	[52] Scott Pakin, Mario Lauria, Andrew Chien. "High Performance Messaging on Workstations: Illino...
	[53] Loic Prylli, Bernard Tourancheau. "BIP: A New Protocol Designed for High Performance Network...
	[54] Joachim M. Blum, Thomas M. Warschko, Walter F. Tichy. "PULC: ParaStation User-Level Communic...
	[55] Myricom, Inc. "The GM Message Passing System." User Guide, 2000.
	[56] Yutaka Ishikawa, Hiroshi Tezuka, Atsuhi Hori, Shinji Sumimoto, Toshiyuki Takahashi, Francis ...
	[57] Fabrizio Petrini, Wu-chun Feng, Adolfy Hoisie, Salvador Coll, Eitan Frachtenberg. "The Quadr...
	[58] Compaq Computer Corp. "Compaq Alpha SC Announcement." Whitepaper, November 1999.
	[59] IBM. "RS/6000 SP: SP Switch2 Technology and Architecture." Whitepaper, March 2001.
	[60] Craig B. Stunkel, Jay Herring, Bulent Abali, Rajeev Sivaram. "A New Switch Chip for IBM RS/6...
	[61] InfiniBand Trade Association. "InfiniBand Architecture Specification." Vol.1, 2 & 3, Rev 1.0...
	[62] IBM. "InfiniBand: Satisfying the Hunger for Network Bandwidth." Whitepaper, June 2001.
	[63] Ulrich Brüning, Lambert Schaelicke. "Atoll: A High-Performance Communication Device for Para...
	[64] Peter M. Behr, Samuel Pletner, A. C. Sodan. "PowerMANNA: A Parallel Architecture Based on th...
	[65] Synopsys, Inc. "DesignWare DW_pcix MacroCell Databook." October 2001.
	[66] PCI Special Interest Group (PCISIG). "PCI-X Addendum to the PCI Local Bus Specification." Re...
	[67] Ulrich Brüning, Jörg Kluge, Lars Rzymianowicz, Patrick Schulz. "ATOLL Hardware Reference Man...
	[68] Berthold Lehmann. "Implementation of an efficient hostport for the ATOLL SAN- Adapter." Dipl...
	[69] Jörg Kluge, Ulrich Brüning, Markus Fischer, Lars Rzymianowicz, Patrick Schulz, Mathias Waack...
	[70] Michael J. S. Smith. "Application-Specific Integrated Circuits." Addison-Wesley, VLSI System...
	[71] Pran Kurup, Taher Abbasi, Ricky Bedi. "It’s the Methodology, Stupid!" ByteK Designs, Inc., 1...
	[72] Lars Rzymianowicz. "FSMDesigner: Combining a Powerful Graphical FSM Editor and Efficient HDL...
	[73] Tim Leuchter, Lars Rzymianowicz. "Guidelines for writing efficient RTL-level Verilog HDL cod...
	[74] Michael Keating, Pierre Bricaud. "Reuse Methodology Manual for System-On-A- Chip Designs, 2n...
	[75] Clifford E. Cummings. "Synthesis and Scripting Techniques for Designing Multi- Asynchronous ...
	[76] Peet James. "Shotgun Verification: The Homer Simpson Guide to Verification." Synopsys User G...
	[77] Synopsys, Inc. "Automated Chip Synthesis User Guide, v2001-08." Synopsys Online Documentatio...
	[78] Steve Golson. "A Comparison of Hierarchical Compile Strategies." Synopsys User Group Meeting...
	[79] Rick Furtner. "High Fanout without High Stress: Synthesis and Optimization of High-Fanout Ne...
	[80] Patrick Schulz. "Design for Test (DfT) and Testability of a Multi-Million Gate ASIC." Diplom...
	[81] Harry Bleeker, Peter van den Eijnden, Frans de Jong. "Boundary-Scan Test: A Practical Approa...
	[82] Erich Krause. "Integration, Test and Validation of a PCI IP Macrocell into the Multi-Million...
	[83] Mathias Waack. "Concepts, Design and Implementation of efficient Communication Software for ...
	[84] IBM. "InfiniBand and Arapahoe/3GIO: Complementary Technologies for the Data Center." Whitepa...
	[85] International Business Strategies, Inc. "Analysis of SoC Design Costs: A Custom Study for Sy...

