
r
Designing Efficient Network Interfaces Fo
System Area Networks

Inauguraldissertation

zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Dipl.-Inf. Lars Rzymianowicz

aus Rendsburg

Mannheim, 2002



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dekan: Professor Dr. Herbert Popp, Universität Mannheim 
Referent: Professor Dr. Ulrich Brüning, Universität Mannheim 
Korreferent: Professor Dr. Volker Lindenstruth, Universität Heidelberg 
 
 
Tag der mündlichen Prüfung: 28. August 2002 



r
Designing Efficient Network Interfaces Fo
System Area Networks

Inauguraldissertation

zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Dipl.-Inf. Lars Rzymianowicz

aus Rendsburg

Mannheim, 2002





r

nce,

ystem

too

too

the

er-

other

ct for

ized

ver-

es-

sical

ars,

SAN

ith the

net-

nter-

SMP

hould

hip,

on-

ip”
Abstract

Designing Efficient Network Interfaces Fo
System Area Networks

by

Lars Rzymianowicz

Universität Mannheim

The network is the key component of a Cluster of Workstations/PCs. Its performa

measured in terms of bandwidth and latency, has a great impact on the overall s

performance. It quickly became clear that traditional WAN/LAN technology is not

well suited for interconnecting powerful nodes into a cluster. Their poor performance

often slows down communication-intensive applications. This observation led to

birth of a new class of networks called System Area Networks (SAN).

But still SANs like Myrinet, SCI or ServerNet do not deliver an appropriate level of p

formance. Some are hampered by the fact, that they were originally targeted at an

field of application. E.g. SCI was intended to serve as a cache-coherent interconne

fine-grain communication between tightly coupled nodes. Its architecture is optim

for this area and behaves less optimal for bandwidth-hungry applications. Earlier

sions of Myrinet suffered from slow versions of their proprietary LANai network proc

sor and slow on-board SRAM. And even though a standard I/O bus with a phy

bandwidth of more then 500 Mbyte/s (PCI 64 bit/66 MHz) has been available for ye

typical SANs only offer between 100-200 Mbyte/s.

All the disadvantages of current implementations lead to the idea to develop a new

capable of delivering the performance needed by todays clusters and to keep up w

fast progress in CPU and memory performance. It should completely remove the

work as communication bottleneck and support efficient methods for host-network i

action. Furthermore, it should be ideally suited for use in small-scale (2-8 CPUs)

nodes, which are used more and more as cluster nodes. And last but not least, it s

be a cost-efficient implementation.

All these requirements guided the specification of the ATOLL network. On a single c

not one but four network interfaces (NI) have been implemented, together with an

chip 4x4 full-duplex switch and four link interfaces. This unique “Network on a Ch
V
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architecture is best suited for interconnecting SMP nodes, where multiple CPU

given an exclusive NI and do not have to share a single interface. It also remove

need for any additional switching hardware, since the four byte-wide full-duplex li

can be connected by cables with neighbor nodes in an arbitrary network topology.

Despite its complexity and size, the whole network interface card (NIC) only consis

a single chip and 4 cable connectors, a very cost-efficient architecture. Each link

vides 250 Mbyte/s in one direction, offering a total bisection bandwidth of 2 Gbyte/

the network side. The next generation of I/O bus technology, a 64 bit/133 MHz PC

bus interface, has been integrated to make use of this high bandwidth. A novel com

tion of different data transfer methods has been implemented. Each of the four NIs o

transfer via Direct Memory Access (DMA) or Programmed I/O (PIO). The PIO mo

eliminates any need for an intermediate copy of message data and is ideally suit

fine-grain communication, whereas the DMA mode is best suited for larger mes

sizes. In addition, new techniques for event notification and error correction have

included in the ATOLL NI. Intensive simulations show that the ATOLL architecture c

deliver the performance expected. For the first time in Cluster Computing, the netwo

no more the communication bottleneck.

Specifying such a complex design is one task, implementing it in an Application Spe

Integrated Circuit (ASIC) is an even greater challenge. From implementing the spec

tion in a Register/Transfer-Level (RTL) module to the final VLSI layout generation

took almost three years. Implemented in a state-of-the-art IC technology with

CMOS-Digital 0.18 um process of UMC, Taiwan, the ATOLL chip is one of the fast

and most complex ASICs ever designed outside the commercial IC industry. With

size of 5.8x5.8 sqmm, 43 on-chip SRAM blocks with 100 kbit total, 6 asynchron

clock domains (133-250 MHz), one large PCI-X IP cell and full-custom LVDS and P

X I/O cells, a carefully planned design flow had to be followed. Only the design of

full-custom I/Os and the Place & Route of the layout were done by external partners

the rest of the design flow, from RTL coding to simulation, from synthesis to design

test, was done by ourselves. Finally, the completed layout was given to sample pr

tion in February 2002, first engineering samples are expected to be delivered 10 w

later.

The ATOLL ASIC is one of the most complex and fastest chips ever implemented

European university. Recently, the design has won the third place in the design co

organized at the Design, Automation & Test in Europe (DATE) conference, the pre

European event for electronic design.
VI
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1Introduction

While in Desktop Computing the latest improvements in performance of computer h

ware seem to have outrun the demand by typical software, High Performance Comp

(HPC) continues to be one of the main reasons for accelerating hardware like micr

cessors or networks. The need to solve large problems like weather forecast or earth

simulation drives the development of faster CPUs, while vice versa faster hard

enables scientists to attack even larger problems. This chapter introduces Cluster

puting as a new alternative to accelerate High Performance Computing. It also disc

the emergence of a new class of networks called System Area Networks. Finally, a

introduction is given into the field of ASIC design and its most important problems.

1.1 Cluster Computing

Cluster Computing1[1], [2] has established itself as a serious alternative to Massive P

allel Processing (MPP) and Vector Computing in the field of High Performance Com

ing. The initial idea was developed back in the 1960’s when IBM linked several of t

mainframes together to provide a platform capable of dealing with large comme

workloads. However, MPP and vector machines from companies like Cray, SGI, I

Intel, NEC, Hitachi, etc. dominated the HPC world throughout the 70’s and 80’s. With

emergence of the personal computer (PC) and its fast progress in terms of perform

mainly driven by Intel’s x86 microprocessors, it became a viable option to use inter

nected standard PCs as platform for running HPC applications. Several factors ac

ated this trend:

• increasing performance of desktop CPUs from Intel/AMD, closing the gap to hig

end RISC microprocessors (Alpha, MIPS, PowerPC, SPARC)

• high performance networks interfacing to standard PC I/O technology like PCI

• low costs of mass-fabricated PC components, compared to classic MPP or Vect

machines, which are build in quantities of a few hundreds or thousands

1.  a Cluster is a collection of interconnected computers working together as a single system
1
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• standard HPC libraries like MPI [3] or PVM [4] are freely available in different impl

mentations across a wide variety of different platforms

• a stable, high performance Unix-style operating system is freely available with L

1.1.1 Trends

The first so-called Beowulf cluster [5] was assembled by the team around Donald Be

and Thomas Sterling at NASA’s Goddard Space Flight Center in 1994. It consiste

16 PCs equipped with Intel 486-DX4 100 MHz CPUs and 16 Mbyte RAM, connected

10 Mbit Ethernet. This way of building a low-cost, yet powerful supercomputer w

adopted by many research groups throughout the world. Today several thousands o

ters are in operation, the largest installations with more than 1.000 nodes. One of the

est clusters ever built, the ASCI Red system from Intel with more than 9.000 Pentium

machines at the Sandia National Labs, USA, was No.1 on the Top500 supercompu

[6]1 from 1997 to 2001.

Figure 1-1.Number of machine types in the Top500 Supercomputer list [6]

Besides PC clusters, several companies build clusters out of small- to medium-scale

machines. E.g., IBM uses its RS/6000 SP nodes with up to 16 CPUs per SMP, wh

Compaq builds its SC Series supercomputers by clustering AlphaServer GS mac

with up to 32 CPUs. These machines are also often referred to as cluster of SMPs o

stellations. Figure 1-1 shows the increasing usage of clusters, according to the To

lists of the last three years.

The current trend is to move away from traditional supercomputers to more cost-effi

cluster systems consisting of Commodity-Off-The-Shelf (COTS) components. Ano

1.  “TOP500 Supercomputer Sites”, www.top500.org
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main advantage is the better scalability of clusters. Users can start with a small syste

add nodes from time to time to match an increasing need for performance. A big indi

for this trend is the fact, that all recent Teraflop systems of the national Accelerated

tegic Computing Initiative (ASCI) program in the USA are clusters of SMPs. These

tems are normally assembled in multiple steps, starting with a small installation follo

by several upgrades. Only one of the top ten systems of the latest Top500 list is a

tional supercomputer, a Hitachi Vector machine, all other entries are cluster of SM

1.1.2 Managing large installations

But since the number of nodes inside a typical cluster grows fast, it becomes more

plicated to make efficient use of the system. A lot of effort has been put into the im

mentation of resource management software. These tools help to install and configu

operating system and parallel libraries across hundreds of nodes with perhaps dif

components and equipment. Another major task is the scheduling of parallel jobs an

allocation of processes to idling nodes. And with an increasing chance of failure of s

nodes inside a cluster with 1.000 nodes or more, terms like availability, checkpoin

fault detection and isolation become more important. So the focus in Cluster Comp

is shifting from developing fast hardware more towards implementing software

manage and easily use installations with 100 or more nodes. One of the main goals o

ware development for clusters is the idea to present the cluster as a so-called

System Image (SSI) to the user. The underlying architecture is hidden from the user

sees the cluster as a single, large parallel computer.

1.1.3 Driving factors and future directions

Figure 1-2.Fields of development for Cluster Computing

Figure 1-2 depicts all fields of development that contribute to the increasing use of

ters for High Performance Computing. Recent research activities extend the idea of

ter Computing to an even further decoupled architecture called Grid. Grid Computin

Cluster
Computing

Hardware Software

fast desktop
microprocessors

system area networks

cheap dual/quad
motherboards

message passing libraries

administration tools

user-level network layers

multi-process debuggers

fault-tolerant software
3
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connects several computing resources (clusters, single SMP/MPP/Vector/PC mac

in different locations to one single computing system. To overcome the heterogene

all components (different platforms, operating systems, networks, etc.) one defin

common protocol to exchange data between all participating nodes inside the Grid

implementations are available, but a wide adoption of Grid Computing is yet to com

1.2 System Area Networks

A fast network is the key component of a high performance cluster. First installations

traditional Local Area Network (LAN) technology like 10/100 Mbit Ethernet as interco

nect between nodes inside the cluster. But it became quickly clear that these networ

a substantial performance bottleneck. Traditional MPP supercomputers like the Cray

or the SGI Origin rely on dedicated and proprietary high performance networks

node-to-node bandwidths of 300 Mbyte/s and more. With typical system bus bandw

of more than 1 Gbyte/s inside a node, these interconnects can handle the commun

demand of even highly fine-grain parallel applications.

1.2.1 The need for a new class of networks

To be competitive in the field of High Performance Computing clusters need to

equipped with networks matching the performance of these proprietary solutions.

experiences were made with existing solutions, either Wide Area Networks (WAN

LAN. Networks like ATM, HiPPI or SCI offer more physical bandwidth than 100 Mb

Fast Ethernet, but were designed with different applications in mind.

E.g., ATM is tuned for wide area connections with its relatively small packet size

53 bytes and its support for Quality of Service (QoS). And with 155/622 Mbit/s phys

bandwidth it offers more than Fast Ethernet, but is still way behind multi-gigabit n

works. On the other hand, a network like HiPPI supports up to 1.6 Gbit/s, but is so ex

Table 1-1.Bandwidth gap of clusters vs. MPPsa

a. typical system configurations in the year 2000

machine system bus internode network system/network
ratio

Cray T3E-1350 with
Alpha 21164 675 MHz

1.2 Gbyte/s 650 Mbyte/s 1.85

SGI Origin 3800 with
MIPS 14k 500 MHz

3.2 Gbyte/s 1.6 Gbyte/s 2

PC cluster with
Pentium III 1 GHz and
Fast Ethernet

1 Gbyte/s 12 Mbyte/s 85
4
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sive that it clashes with the low-cost idea of Beowulf Computing. Table 1-1 gives

impression of the gap between system and network bandwidth inside different pa

architectures.

With almost two orders of magnitude between system bus and network bandwidth

ters with standard LAN technology are no match for traditional supercomputers. Thi

quickly to several projects, both at universities and commercial companies. The goa

to develop a low latency, high bandwidth network with a range of a few meters (up to

Two components had to be constructed:

• a Network Interface Card (NIC), which provides a link interface via cable into the n

work and uses a standard interface to connect to the host system (for PCs that i

PCI bus)

• a multi-port switch, which is used to connect single nodes into a cluster. The num

of ports typically lies in the range of 6 to 32.

1.2.2 Emerging from existing technology

This new class of networks was named System Area Networks (SAN) to point out

different application in contrast to existing LAN/WANs. Most developments adop

existing technologies from the world of classical parallel computers. E.g., the first ver

of Myrinet, one of the most successful SANs today, was originally developed for a f

grain supercomputer called Mosaic [8] by research groups at the California Institu

Technology (Caltech) and the University of Southern California (USC). Or the comp

Quadrics, offering now the QsNet SAN, emerged from the well-known supercomp

manufacturer Meiko Ltd., which built cache-only supercomputers like the CS-2 [9].

main component of QsNet, the ELAN III ASIC, is the third generation of the ELAN co

munication processor introduced in the CS-2.

At the end of the 90’s, several SANs were introduced and widely used in clusters.

works like Myrinet, ServerNet, QsNet and SCI will be discussed in Chapter 2 in de

With their bandwidth in the range of 100-400 Mbyte/s and a one-way latency of aro

10 us they facilitated clusters to compete with traditional supercomputers.

1.3 ASIC Design

The development of logic circuits as Application Specific Integrated Circuits (ASIC) c

tinues at a rate predicted by Gordon E. Moore back in 1965. This famous Moore’s

[10] predicts that the number of transistors per IC doubles every 18 months. It has

valid throughout the last 30 years and seems to continue to be true for the near fut
5
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is made possible by constant advancements in semiconductor technology and silico

rication.

1.3.1 Using 10+ million transistors

ASIC designers face more and more the problem to be able to make use of all the po

transistors on a silicon die. This is known as the productivity gap. Every few years

Electronic Design Automation (EDA) industry needs a big step forward in methodo

to keep pace with the steep technology curve. Figure 1-3 depicts this situation and s

some of the improvements of past years and decades.

Figure 1-3.The productivity gap in IC development

Designers steadily increase the level of abstraction for modeling logic circuits to enh

their productivity. They moved from full-custom VLSI layout to schematic entry and

to Hardware Description Languages (HDL) like Verilog [11] and VHDL [12], which a

tightly coupled with logic synthesis. The next big step in modeling abstraction would

moving to behavioral or architectural descriptions of logic circuits. First steps have

made into this direction, but it is not yet clear, if the languages used are based on C

like SystemC [13], or if it is an extension to an existing HDL like Superlog [14].

While ASICs approach the 100 million transistor count and clock frequencies of mul

GHz, designers face a handful of severe problems.

1.3.2 Timing closure

The IC design flow used over the last years is split into two separate steps, called fro

and backend. The frontend flow uses logic synthesis to turn a design specified in an

#transistors

10k

100m

year
1970 1980 1990 2000 2010

#transistors

schematic
entry

HDL entry
logic synthesis

productivity

physical synthesis?
IP, SoC?
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into a so-called netlist of logic cells. Optimization goals like area or timing guide the s

thesis process into the right direction. To calculate the timing delay of logic paths t

rely on quite precise cell delays and estimated wire delays. Estimation is necessary

the synthesis process only defines the interconnection of logic cells, not their locatio

the chip. The estimations were not a problem when cell delays dominated wire delays

in older process technologies (0.35-1 um). But with shrinking structures this propo

gets inversed. This trend is shown in Figure 1-4. Wire delays are going to dominate

delays in process technologies beyond 0.18 um. As consequence, the estimations

thesis tools get more and more imprecise. This leads to huge differences in timing b

and after layout.

Figure 1-4.Cell vs. wire delay1

These timing mispredictions force the designer to iterate several times between fro

and backend design to reach his timing goal. These iterations could last several we

even months, which is unacceptable, since time-to-market is a major factor for suc

EDA companies address this problem by incorporating physical design into the synt

process. This is known as physical synthesis, or when frontend and backend desi

fully integrated, called a RTL-to-GDSII flow.

1.3.3 Power dissipation

With frequencies beyond 1 GHz and more than 10 million transistors on chip, cu

microprocessors dissipate between 40-70 W. Extensive cooling is needed to preve

CPU from overheating and being damaged by effects like electromigration [15].

speed of an ASIC is also slowed down by rising temperatures. Recent projections

1.  the figure visualizes only the trend, actual numbers may vary from vendor to vendor

delay

process [um]

0.8 0.5 0.35 0.25 0.18 0.13 0.1

cell delay
wire delay
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show that power is becoming quickly the main hurdle for future generations of chip

depicted in Figure 1-5.

Several techniques are used to reduce the power consumption of ICs. The prob

being attacked in both domains, design methodology as well as process technology.

conductor manufacturers develop new technologies with reduced supply voltages to

power consumption at an acceptable level. New fabrication techniques like Silicon

Insulator (SOI) reduce the amount of leakage current.

Figure 1-5.Power dissipation of ICs in the next decade1 [16]

IC designers attack the problem at several abstraction levels. For very high frequenc

1 GHz and more it has been found out that about 50-70 % of total power is consum

the clock tree of a chip. This identifies the clock tree as an ideal point of power optim

tion. The trend of building System-on-a-Chip (SoC) designs with lots of component

a single die also lowers the utilization factor of on-chip components. Hardly all com

nents are active at the same time, some may idle, waiting for input data, etc. So on

disable certain functional units for the time they are not necessary. This is done by

pressing the clock signals for the whole unit, a technique called clock gating. E.

microprocessor could disable its floating point unit as long as no floating point inst

tions enter the instruction buffer. This could save a significant amount of power while

ning integer-dominated applications. Another method is to adjust the main frequen

the current demand for processing power. This technique is used heavily for mobile

puters like laptops or PDAs.

1.  if current trends continue without major improvements in power reduction

Power (W)

year1

10

100

1.000

10.000

1970 1980 1990 2000 2010

per 1cm2

Hot Plate

Nuclear Reactor

Sun’s Surface
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1.3.4 Verification bottleneck

Another major problem is to validate the design before shipping the layout to the

manufacturer. With increasing design complexity the verification space, the numb

different input and state combinations, becomes almost unmanageable. More and

effort has to be put into the functional test of a design, both in terms of testbench

plexity and processing power to run them. E.g., the team that developed the n

UltraSPARC III microprocessor from Sun [17] used a server farm with 3.000 CPU

total to run the huge amount of testbenches in an acceptable time frame. A single v

cation run can easily consume several Gbyte of memory while running for hours or d

Verification is needed at all levels of the design flow. From high-level simulations

abstract functional implementations down to transistor-level simulations of the final

out, after each stage one has to verify that the design still meets all goals defined

specification. Catching bugs as early as possible has become a significant factor in

ing the time-to-market goals of an IC project.

1.4 Contributions

This dissertation introduces a major redesign of the ATOLL architecture for a high

formance System Area Network. It combines several unique features not found in cu

solutions, like the support for multiple network interfaces and the inclusion of an on-

switch component. Data transfer between the host system and the network is opti

by a combination of PIO- and DMA-based mechanisms. A novel event notification t

nique greatly enhances the capabilities of the NI.

Besides discussing the architecture, it also describes the implementation of the des

a state-of-the-art semiconductor technology. Putting all the described functionality i

single chip is an extremely difficult task and has never been done before. A care

planned design flow has been established to manage this large project with lim

resources and manpower.

Extensive simulations were done to prove the functional correctness of the design a

make sure all performance goals are met. At the end, ideas for the next generat

ATOLL are discussed.

Though the author is responsible for the largest part of design and implementation

regarding the ATOLL chip, several colleagues of the Chair of Computer Architec

have helped by designing some significant parts of the chip. Leaving out those pa

this thesis would prevent the reader from getting a deep understanding of the whole
9



Organization

re and

ble.

om-

lso an

cur-

w is

otiva-

the

ple-

the

rtant

ter 6
tecture. So instead, those parts contributed by others are therefore discussed he

marked by footnotes. References to additional literature have been added, if possi

1.5 Organization

The dissertation is organized in six chapters. This first chapter introduced Cluster C

puting and System Area Networks in general. It presented current trends and gave a

insight into the problems in modern IC design. The following chapter then discusses

rent SANs more in detail. After listing the main design concepts, a broad overvie

given about the architectural features of current networks. Chapter 3 presents the m

tion for a novel SAN architecture call ATOLL. The rest of the chapter then introduces

ATOLL architecture. The main ideas behind ATOLL are presented, as well as their im

mentation. Chapter 4 follows with a broad overview about the development of

ATOLL ASIC. The main design steps are presented, together with the most impo

results. This is followed by a performance evaluation in Chapter 5. Finally, Chap

summarizes the results, draws conclusions and discusses areas of future work.
10
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2System Area Networks

The network is the most critical component of a cluster. Its capabilities and perform

directly influence the applicability of the whole system for HPC applications. Af

describing some traditional network technology, the most important general design i

for high performance networks are discussed. This is followed by a survey of exis

SAN solutions. Their architecture and main properties are described and evaluated

order in which the networks have evolved over the years.

2.1 Wide/Local Area Networks

According to recent cluster rankings1, about half of all clusters are still equipped wit

standard 100 Mbit/s Fast Ethernet network technology. This fact has mainly two rea

costs and application behavior. While several SANs are available today, they ca

really compete with the mass-market prices of Fast Ethernet, even regarding their

vs. performance ratio. On the other hand, lots of applications have been finetuned

limited performance of LANs in the early days of Cluster Computing. When only Eth

net was available, programmers had no choice than to avoid communication where

sible and to use more coarse grained communication patterns in their applications

large set of programs are tailored towards the high latency and low bandwidth of Ethe

Running these applications then on a cluster equipped with a high performance SAN

not use the full potential of those interconnects. Significant modifications to the prog

code would be needed, but are rarely done.

2.1.1 User-level message layers

First clusters running MPI/PVM applications used a normal TCP/IP layer to commun

over Fast Ethernet. But the TCP/IP protocol stack inside an operating system (OS) k

is quite large, resulting in excessive latencies in the order of 50-70 us for sending a

message between two nodes. This high latency clashes with the goal of competing

supercomputers, which normally offer one-way latencies below 10 us. Since about

of this latency can be attributed to the software, researchers started to implement so-

user-level message layers [18], which bypass the OS for inter-node communicatio

1.  “Clusters @ Top500”, clusters.top500.org
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removing the OS from the communication path, the sending/receiving of a messag

be speed up significantly, as shown in Figure 2-1.

Figure 2-1.User-level vs. OS-based TCP/IP communication

Implementations like U-Net [19], GAMMA [20] and Fast Messages [21] all provide

low-level Application Programming Interface (API) to the network. Only some initializ

tion routines interact with the OS. All the functions to send/receive messages betwee

ferent nodes of a cluster directly access the network interface. Implementations m

differ in their levels of security and reliability. The fastest implementations simply ign

any security issues (memory protection, multitasking an NI) because of the fact that

production clusters run a single parallel job with a one-to-one mapping of process

CPUs for highest application performance.

Table 2-1 shows that user-level libraries can reduce latency by 50-75 %, compar

TCP/IP performance. But the low physical bandwidth of Ethernet remains a critical

tleneck.

A few other LAN/WANs have been tested as cluster interconnect, but proved to b

inefficient as Fast Ethernet. As mentioned earlier, ATM provides more physical b

width, but its protocol is more oriented towards Quality-of-Service (QoS) applicati

Table 2-1.Comparison of user-level libraries for Fast Etherneta

a. taken from the GAMMA website: www.disi.unige.it/project/gamma

User-level library System configuration latency (us) bandwidth
(Mbyte/s)

U-Net DEC 21140 chipset, Intel Pen-
tium 133 MHz

30.0 12.1

GAMMA DEC 21143 chipset, AMD K7
500 MHz

14.3 12.1

TCP/IP DEC 21143 chipset, Intel Pen-
tium II 350 MHz

58 10.5

Application

Network Interface

TCP/IP layer

user-level

library

Operating
System

traditional
path

new
path
12



System Area Networks

pri-

igabit

ations

rview

veral

eader

erfor-

impor-

e low

more

xists

0-100

000

other

l, can

near

ter-

esh,
like streaming audio/video media. So overall, most LAN/WAN technology is inappro

ate as cluster interconnect. Only Fast Ethernet, and recently also its upgrade G

Ethernet, can be used in combination with user-level message layers, if the applic

are mostly sensitive to latency and not to bandwidth.

2.2 Design goals

Before several cluster interconnects are presented in detail, this section gives an ove

of the main design trade-offs for interconnect hardware. For each design topic, se

possibilities are presented and evaluated. With this basic knowledge in mind, the r

should be able to rate concrete implementations according to their usability and p

mance for specific applications.

Several decisions must be made when designing a cluster interconnect. The most

tant is undeniably the price/performance trade-off.

2.2.1 Price versus performance

In the last few years clusters of PCs have gained huge popularity due to the extrem

prices of standard PCs. Traditional supercomputer technology is replaced more and

by tightly interconnected PCs. In the interconnect market, though, a huge gap e

between interconnects of moderate bandwidth like Fast Ethernet at a low price ($ 5

for a network adapter) and high performance networks like Myrinet or ServerNet ($ 1

and more). Of course, this is also a consequence of low production volumes. But

factors, such as onboard RAM or expensive physical layers such as Fiber Channe

raise costs significantly.

2.2.2 Scalability

Scalability is another crucial issue. It refers to the networks ability to scale almost li

with the number of nodes. A good topology is the key factor for good scalability. In

connects in traditional supercomputers normally have a fixed network topology (m

Table 2-2.Supercomputers and their different network topology

Machine Topology

Cray T3E 3D torus

IBM SP2 omega (multistage)

SGI Origin 2000 hierarchical fat hypercube

nCube hypercube

Thinking Machines CM-5 fat tree
13
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hypercube, etc.) and hardware/software relies on the fixed topology. Table 2-2 giv

overview about the variety of network topologies used in recent supercomputers.

But clusters are more dynamic. Often a small system is set up to test, if the cluster

the application needs. With increasing demand for computing power, more and

nodes are added to the system. The network should tolerate the increased load and

nearly the same bandwidth and latency to small clusters (8-32 nodes) and to large

(hundreds of nodes). A large mesh will show increased latency compared to a sma

since the average distance between nodes also increases. Large switches (16x16,

forming a cluster-of-clusters topology can help to compensate this effect [22]. Simil

a hypercube network cannot be upgraded from 64 to 96 nodes because it needs a

of two as node count. Therefore, modern cluster interconnects should allow to use an

trary network topology. Hardware/software determines the topology at system sta

and initializes routing tables, etc.

2.2.3 Reliability

Applications for parallel computing can be roughly divided into two main classes, sc

tific and business computing. Especially in the business field, corrupted or lost mes

data cannot be tolerated. To guarantee data delivery, protocol software of tradi

WAN/LAN networks compute CRCs, buffer data, acknowledge messages, and retra

corrupted data. This protocol layer has been identified as one main reason for poor la

in current networks. For clusters with their needs for low latency and thin protocol lay

this overhead must be minimized.

First, cluster interconnects with their short range physical layers have proven to be a

error-free. The computation of CRCs can be easily done on-the-fly by the NI itself.

sible errors can be signaled to software through interrupts or status registers. To r

software from buffering message data, the NI could also temporary buffer the mes

data and initiate retransmissions in case of errors. Overall, the cluster interconnect s

present itself to the user as a reliable network without additional software overhea

safe data transmission.

2.3 General architecture

A general design decision must be made between a dumb NI, which is controlled

managed by the CPU, and an intelligent and autonomous NI performing most of the

by itself. The first solution has the advantage of low design effort resulting in short ti

to-market and redesign costs. On the other hand, enabling the NI to do jobs, such a
14
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transfer or matching receiver ID with its network address/path, can free the micropro

sor from this work and reduce start-up latency for message transfers.

Advantages of both methods can be glued together by adding a dedicated commun

processor to the system [23]. This node design has been chosen for some parallel

tectures (Intel Paragon, MANNA [24]) and resulted in good performance values, e

cially for communication intensive applications. In the following, the two main trade-o

are presented.

2.3.1 Shared memory vs. distributed memory

The first decision of a designer of cluster interconnects is the memory (programm

model to be supported. The shared memory model makes the cluster network trans

to processes through a common global address space. Virtual memory managemen

ware and software (MMU, page tables) is used to map virtual addresses to local or re

physical addresses. Since the overhead of applying this model to the whole address

is quite large, interconnects supporting shared memory offer the ability to map re

memory pages into local applications address spaces, like DEC’s (later Compaq) Me

Channel [25].

Figure 2-2.Write operation to remote memory

Figure 2-2 shows an example of a write operation to remote memory, where the NI re

on the I/O bus. The operation can be split up into 3 main steps, which are labeled

their according number:

1. the CPU writes the message data to a shared memory region, which virtual mem

address is mapped to the NI on the I/O bus

CPU Memory

NI

System Bus

I/O Bus

Node 1 Node 2

CPU Memory

NI

System Bus

I/O Bus

Interconnection
Network

1
2 3
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2. the NI indexes an address translation table with the write address to determine th

tination node of the transaction. It then transfers data to the remote node for furt

processing, together with a remote write address

3. the destination node receives the data, and uses the address to write data to loca

ory. If the address is virtual, it has to do another translation step. But this could a

already have been done by the sending NI. This depends on whether the shared

address space uses virtual or physical addresses

A lot of work has to be done by the NI, if the virtual shared memory is intended to

cache-coherent across all cluster nodes, as known from SMP systems. A cache coh

protocol must observe the memory space on a cache line or page base. Writes m

propagated to all nodes owning a copy of the memory cell, or these copies must be

idated. For short, the overhead of cluster-wide cache coherence can be managea

small systems, but gets inefficient for large node numbers. The only remaining large-

shared memory supercomputer today is the SGI Origin [26] with its so-called ccNU

architecture.

In the distributed memory model, message passing software makes the network vis

applications. Data can be sent to other nodes through send/receive API calls. Com

to the shared memory model, the user has to explicitly call communication routine

transfer data to or from the network. Besides Memory Channel and SCI, which su

the shared memory model, all remaining interconnects presented here rely on the m

passing model.

2.3.2 NI location

Figure 2-3.Possible NI locations

CPU

NI-3

System Bus

I/O Bus

NI-1 NI-2
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The location of the NI inside a system has a great impact on its performance and usa

In general, the nearer it is to the microprocessor, the more bandwidth is typically a

able.

As depicted in Figure 2-3, there are three possible locations for the NI:

NI-1

An interesting solution is support for communication at the instruction set le

inside a microprocessor. By moving data into special communication registers

transferred into the network at a rate equal to the processor speed. This tech

has been realized in the past in some architectures; its most famous represe

is the Transputer [27] from INMOS. Through four on-chip links at full process

clock speed, the Transputer was an ideal candidate as a building block for grid-

connected massive parallel computers. Similar implementations are the iWarp

or related systolic architectures.

Although these architectures are very interesting from the designers view

market for this kind of microprocessors proved to be too small. Most impleme

tions reached the prototype phase, but had no commercial success. Some re

projects also tried to include a network interface at the cache level, but this saw

same fate. Another try in this direction is the Alpha 21364 (EV8) microproces

[29], which has 4 on-chip inter-processor links, each providing a data rat

6.4 Gbyte/s. But Compaq has recently announced the discontinuation of the fa

of Alpha CPUs, so that the EV8 microprocessor will not be fabricated.

NI-2

Assuming a high performance system bus design, this location is an ideal plac

a network interface. Todays system buses offer very high bandwidths in the r

of several Gbytes/s. Common cache coherence mechanisms can be used

ciently observe the NI status. The processor could poll on cache-coherent NI r

ters without consuming bus bandwidth. If the register changes its state (e.g., a

flag is set to indicate message arrival), the NI could invalidate the observed c

line. On the next load instruction, the new value is fetched from the NI. DMA c

trollers can read/write data from/to main memory using burst cycles at a very

bandwidth. Although there are several advantages to design the NI with a sy

bus interface, only a few NIs are implemented in this way. The reason for this is

each processor has its own bus architecture and thus ties an NI implementatio

specific processor. The market for cluster interconnects is not yet large enou

justify such a specialization. Furthermore, commercial interests are likely to pre
17
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the upcoming of standard processor bus architectures, even though more tha

SANs would benefit from them. Only proprietary interconnects can be designe

the system bus, an example is the SAN adapter of the IBM SP2.

NI-3

Most current interconnects have I/O bus interfaces, mainly PCI. The reason i

great acceptance of PCI as a standard I/O bus. PCI-based NIs can be plugge

any PC or workstation, even forming heterogeneous clusters. A 32 bit/33 MHz

device can deliver a peak data rate of 132 Mbyte/s, which can be nearly rea

with long DMA bursts. To avoid that the PCI bus becomes the main bottlen

between system buses and physical layers with gigabytes per second band

most SANs have already moved on to 64 bit/66 MHz PCI bus interfaces. Sinc

I/O bus even then remains a major bottleneck, SAN developers await the imple

tation of upcoming I/O bus standards like PCI-X [30] and 3GIO [31]. But a tran

tion only makes sense when they are widely used in the mainstream PC indus

disadvantage of the I/O bus location is the loss of properties such as cache c

ence.

Most interconnects presented in this chapter use the I/O bus as their interface to the

2.4 Design details

In the following, a closer look is taken at some specific implementation details. S

modifications of the hardware can have a great impact on the NIs overall performa

This section focuses on various main mechanisms for interconnection networks. A

tional literature [32], [33] is recommended for an even more detailed analysis.

A general rule of thumb could be: Keep the frequent case simple and fast. For exa

mechanisms for error detection and correction should be implemented in a way tha

do not add overhead to error-free transmissions. In the very rare case of a transm

error, some overhead can be accepted, since error rates of current physical layers a

low. The NI should also be able to pipeline data transfers. So the head of a message

can be fed into the network, even if the tail is still fetched from memory. This enables

start-up latencies and good overall throughput.

The term link protocol is used for the layout of messages, which are transmitted ove

physical layer and the interaction between communicating link endpoints. Figure

shows two link endpoints (which could reside in a NI or a switch), connected by two

directional channels for sending and receiving data. Also, it depicts the general layo

a message. Typically, message data is enclosed by special control datawords, whi
18
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be used to detect start/end of message data and to signal link protocol events (re

cannot accept more data, request for retransmission, etc.).

Figure 2-4.A bidirectional link and the general message format

2.4.1 Physical layer

Choosing the right physical medium of a channel is a trade-off between raw data

availability and cable costs. Copper is still the most used physical medium for link ca

but optical links, which have been broadly used to enhance the capacity of Wide

Networks, are on the verge of penetrating the LAN and SAN markets. Myricom, on

the leading SAN suppliers, announced in July 2001 fiber links and the willingnes

replace all copper-based cables with fiber within a few months.

Figure 2-5.Ultra-fast serial, switched connections replace parallel bus architectures

NI/Switch

Link End
Point

n bits

Address/
Destination

Type/
Header

Data/
Payload

NI/Switch

Link End
Point

I/O and system technology

System Area Networks (Myrinet as example)

PCI (parallel bus)
PCI-X (133 MHz point-to-point)
USB (serial, switched)

SCSI (parallel bus) Hypertransport (serial/parallel, switched)
Infiniband (serial/parallel, switched)
3GIO (serial/parallel, switched)

ATA (parallel bus)

byte-parallel,
copper, 160 MHz

serial, copper,
2.5 Gbps

serial, optical fiber,
2.5 Gbps
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Another trend to observe is the replacement of medium-fast parallel links with high-s

serial connections. This is not only true for the SAN market, but also for the whole

infrastructure in PCs and workstations. Figure 2-5 shows this trend by listing curren

future I/O and network technologies. Newest I/O and system technologies start with

implementations, but provide an upgrade path for using multiple connections in par

They all move from a bus-based topology to a full-switched network for better bandw

utilization and easier implementation. Myrinet serves here as an example for the

market. It starts byte-parallel, goes serial, then switches from copper to fiber. The

announced step is the use of multiple serial connections per NIC.

One of the main reasons for using serial connections is the reduced pin count on swi

Latest switch technology with parallel links is limited by the pin count of IC devices.

transmit signals at a high clock rate (200-500 MHz) and a reasonable power consum

the Low Voltage Data Signaling (LVDS) technique (two wires transmit complemen

current levels of signals) is used. So an 8x8 unidirectional switch with 32 bit differen

signal lines would result in 1024 (= (8+8)*32*2) pins only for the links, which is at t

upper limit of todays IC packaging. Bytewide links, as used by most SANs, have be

good compromise for the last years. Network switches of moderate sizes can be

while raw data rate still exceeds the one of serial mediums.

But recent developments have made it possible to transmit signals via copper cab

rates of 1-3 Gbps, with 10 Gbps technology on the horizon. Another limitation of ele

cal transmission at these fast rates is the limited range. Normally, only a few meter

be spanned, until the signals need to be received or refreshed. And signals becom

sensitive to noise effects from parallel bit lines or even other electrical equipment in

surrounding. Optical layers have a clear advantage here, since an optical fiber do

emit any electromagnetic radiation at all. And techniques like Dense Wavelength D

sion Multiplexing (DWDM) or Time Division Multiplexing (TDM) promise to lift the

data rate on optical fibers to 10 Gbps and more.

2.4.2 Switching

The term switching refers to the transfer method of how data is forwarded from the so

to the destination in a network. Two main packet switching techniques, as depict

Figure 2-6, are used in todays networks, store & forward and cut-through switching

first stores a complete message packet in a network stage before the data is sent to t

one. This mechanism needs an upper bound for the packet size (MTU, Maximum Tra

Unit) and some buffer space to store one or several packets temporary.
20
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In Figure 2-6 (a), packet p0 just arrived at the switch through port 1 and is placed int

packet buffer pool. Packets p1 and p2 have been received in total and are now forw

towards their destination through different ports. This is the common switching techn

found in LAN/WANs, because it is easier to implement and the recovery of transmis

errors involves only the two participating network stages.

Figure 2-6.Packet switching techniques

Newer SANs like ServerNet, Myrinet and QsNet use cut-through switching (also refe

to as wormhole switching), where the data is immediately forwarded to the next sta

soon as the address header is decoded. In Figure 2-6 (b), one sees how a message

way through the network like a ‘worm’. Low latency and the need for only a small amo

of buffer space are the advantages of this technique. But error handling is more co

cated, since more network stages are involved. Corrupted data might be forw

towards the destination before it is recognized as erroneous.

2.4.3 Routing

The address header of a message carries the information needed by routing ha

inside a switch to determine the right outgoing channel, which brings the data nea

its destination. Although a lot of deterministic and adaptive routing algorithms have b

proposed, the latter will not be studied here. Adaptive routing schemes try to find dyn

ically alternative paths through the network in case of overloaded network paths or

broken links. But adaptive routing has not found its way into real hardware yet. T

mechanisms are used in todays interconnects: source-path/wormhole and table

routing [34].

p0
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p2

packet pool

port 0

port 1

port 2

port 3
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switch switch

switch switch
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In Figure 2-7 (a), an example of wormhole routing [35] is given. A message ente

switch on port 0 and carries the routing information at the head of the message pack

soon as the first dataword is received, routing hardware can determine the outgoing

nel. Used routing data is stripped off, so the routing information for the next switch

leads the message. The entire path to the destination is attached to a message at its

location.

Figure 2-7.Routing mechanisms

In Figure 2-7 (b), a switch containing a complete routing table is shown. For each d

nation node its corresponding port is stored. If messages enter the switch a table l

determines the right outgoing channel. Routing table size is proportional to the numb

nodes, which can be a limiting factor for large cluster configurations with hundred

even thousands of nodes. The former method is easier to implement and faster, w

the latter one provides more flexibility. The routing table could provide alternative pa

if the current addressed path is overloaded. Or based on link utilization information

routing engine could try to find the fastest path towards the destination. But with su

non-deterministic routing one needs to be careful. Link protocols could rely on the

that messages are delivered in order, which is not assured with such a form of ad

routing. Another problem is the prevention of a so-called livelock, where a messa

always routed over alternative paths, but never reaches the final destination.

A problem for both routing mechanisms is the avoidance of deadlocks. A dead

appears when several messages block each other in such a way, that no message c

its destination and the network is blocked in total. This situation is depicted in Figur

8. All messages form a circle of chained, blocked port requests. No message can pro

thus the network is jammed up. One can solve this problem by restricting the routin

switch

port 0 port 1

port 2
201

dest-id

id

routing table

port 2

port 2
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port 1port 0
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messages in such a way that these circles of requests cannot appear. One possible

is a strict x-y dimension routing in 2D meshes, where all messages are first routed

horizontal direction, and then vertical. Many other solutions exist [36], more or less c

plex and efficient.

Figure 2-8.Messages forming a deadlock

2.4.4 Flow control

Flow control [37] is used to avoid buffer overruns inside link end points, which can re

in the loss of data. Before the sender can start a transmission, the receiver must sig

ability to accept the data. One possible solution is a credit-based scheme, where

sender gets a number of credits from the receiver. On each packet transmission, the

consumes a credit point and stops when all credits are consumed. After freeing

buffer space, the receiver can restart the transmission through handing additional c

to the sender. Or, the receiver can simply signal the sender if he can accept data or

both cases, the flow control information travels in the opposite direction relative to

data (reverse flow control). For example, Myrinet inserts STOP and GO control bytes

the opposite channel of a full-duplex link to stop or restart data transmission on the s

side.

2.4.5 Error detection and correction

Though todays physical layers have very low error rates, the network must offer s

mechanisms for error detection and possibly correction in hardware. In the era of

level NI protocols, it is no longer acceptable that software has to compute a CRC.

task can easily be done in hardware. For example, the NI adapter can compute a C

switch switch

switch switch

msg0

msg1

msg2
msg3

N
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the fly while data is transferred to it. This CRC is appended to the message data an

be checked at each network stage. If an error is detected, the message can be ma

corrupted. The receiver can then send a request for retransmission back to the send

of course, this assumes that the complete data is buffered on the sender side. Esp

in fields like business computing with its need for fault-tolerant hardware it is a

common to replicate hardware. E.g., some vendors add another full network for re

dancy and always transmit data via both connections. The additional costs can be ac

for applications like transaction servers, where even a few minutes of system failur

produce a significant drop in sales volume. But in more cost-sensitive areas like Cl

Computing users tend to handle program failure in software via checkpointing or the

2.5 Data transfer

Efficient transfer of message data between the nodes main memory and the NI is a c

factor in achieving nearly the physical bandwidth in real user applications. To reach

goal, modern NI protocol software involves the OS only when the network devic

opened or closed by user applications. Normal data transfer is completely done in

level mode by library routines to avoid the costs of OS calls. The goal is a zero copy m

anism, where data is directly transferred between the user space in main memory a

network. Examples are shown for a NI located on the PCI bus, since this is the curren

not preferred, as earlier mentioned) location of todays network adapters. Also, the

is more on interconnects for message passing because of the broader design spac

2.5.1 Programmed I/O versus Direct Memory Access

Message data can be transferred in two ways: Programmed I/O (PIO), where the pro

copies data between memory and the NI, and Direct Memory Access (DMA), wher

network device itself initiates the transfer. Figure 2-9 depicts both mechanisms o

sender side. PIO only requires that some NI registers are mapped into the user spac

CPU is then able to copy user data from any virtual address directly into the NI and

versa. PIO offers very low start-up times, but gets inefficient with increasing mes

size, since processor time is consumed by simple data copy routines. DMA needs

more setup time, since the DMA controller inside the NI normally needs phys

addresses to transfer the correct data. Most interconnects offering DMA transfer re

that pages are pinned down in memory, so the OS cannot swap them out to disk

makes it feasible to hand over physical addresses to the NI, but adds an additional co

step to transfer the user data into the DMA region (loss of zero copy property). After

is copied (step DMA1 in Figure 2-9), the processor starts the transfer by creating an

in a job queue (DMA2), which can reside either in main memory or the NI. The NI s
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up a DMA transfer to read the message data from memory (DMA3), which is then fed

the network. DMA is not suitable for small messages, but it relieves the processor

can do useful work in case of large messages.

Figure 2-9.PIO vs. DMA data transfer

Several factors influence the performance of both mechanisms. The simplest PIO i

mentation writes message data sequentially into a single NI register, which resides

space. This normally results in single bus cycles and poor bandwidth. To achiev

acceptable bandwidth, the processor must be able to issue burst cycles. This can b

by choosing a small address area as target, which is treated as memory. Writing on

consecutive addresses enables the CPU or the I/O bridge to apply techniques like

combining, where several consecutive write operations are assembled in a specia

buffer and issued as burst transaction. This mechanism can be found in most m

microprocessor architectures. Another solution would be an instruction set suppo

cache control (cache line flush, etc.), as implemented in the PowerPC architecture.

the PCI bus implements variable-length burst transactions, a DMA controller inside

NI could try to read/write a large block of data in one burst cycle. Experiments h

shown that it is possible to reach about 90 % of the peak bandwidth with long bursts

120 Mbyte/s on a 32 bit/33 MHz PCI bus with 132 Mbyte/s peak bandwidth).

To sum it up, PIO is superior to DMA for small messages up to a certain size wher

copy overhead stalls the processor too long from useful work. If one recalls that the m

ity of the typical network traffic is caused by small messages, it becomes clear that a

designer should implement support for both mechanisms.
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2.5.2 Control transfer

If DMA is used for transferring message data, another critical design choice is the m

anism on how to signal the microprocessor the complete reception of a whole mes

This is often referred to as control transfer. In polling mode, the CPU continuously r

an NI status register. The NI sets a flag bit in case of a completed transaction. If th

resides on the I/O bus, this could waste a lot of valuable bandwidth. As an improvem

the NI could mirror its status into main memory. This would enable the processor to

on cache-coherent memory, thus saving bandwidth.

Another solution is to interrupt the CPU. But this results in a context switch to ke

mode, which is an expensive operation. A hybrid solution could enable the NI to issu

interrupt when message data is present for a specific time value without data trans

programmable watchdog timer could be located inside the NI to do this job.

2.5.3 Collective operations

So far, we have only presented mechanisms to send or receive messages in a po

point manner. Software for Parallel Computing often uses collective communication

niques such as barrier synchronization or multicasts. This is especially true with netw

for virtual shared memory, where updated data must be distributed to all other node

example, supercomputers like Cray-X/MP or AlliantFX [38] offered a dedicated sync

nization network. Todays cluster networks leave this task to software, where tree-b

algorithms map a broadcast to a hierarchical send/forward scheme. Only few inte

nects have direct hardware support for collective operations. The barrier register o

Synfinity interconnect [39] is one example.

Networks with a shared bus like Fast Ethernet can easily broadcast data, whereas th

gration into point-to-point networks like Myrinet or ServerNet is more complicated. Of

the hardware realization of collective operations implicates a restriction of the netw

topology. This issue is an area for further improvements of todays cluster networks

2.6 SCI

SCI (Scalable Coherent Interface) [40] is an IEEE standard (ANSI/IEEE Std 1596-1

finally approved in 1992. The goal was to develop a network capable of interconne

multiple systems into one unified distributed memory machine. It should overcome

limitations of bus-based approaches, which have a very limited scalability (up to 3

CPUs). The standard defines a set of hardware protocols and memory transaction

the option of a hardware cache coherence protocol.
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2.6.1 Targeting DSM systems

Several goals influenced the standardization of SCI as a Distributed Shared Me

(DSM) network. Of course, the premier goal is high performance in all relevant asp

To compete as an interconnect for DSM machines with bus-based SMP systems

needs to provide the same level of data bandwidth, message latency and low CPU

head as its competing architectures. The continuous progress in CPU and memory

should not outrun the network in terms of performance. The second important goal is

ability in many ways. SCI should be able to scale well beyond hundreds of nodes.

relates to the cache coherence mechanism, to the interconnect technology in terms

media and its length, as well as to the addressing scheme to share a terascale m

space.

In the following, the main concepts behind SCI are presented:

• all SCI networks should be build out of unidirectional, point-to-point links. Most

implementations use bit-parallel, copper-based links with a range of a few meter

This is normally sufficient to interconnect a few machines into a tightly-coupled DS

system.

• links should rely on latest signaling technology to provide best performance. Lin

speeds vary today between 500/667 Mbyte/s for SAN cables (LVDS, CMOS) an

1 Gbyte/s for intra-system connections in more advanced, but costly technologie

(GaAs, BiCMOS).

• though it is most common today to interconnect PCs or workstations with SCI, it

intention was also to connect different system components (memory modules, d

arrays, etc.) to an SCI network. But this would require a broad adoption of SCI in

face technology. All relevant systems use either SMP or single-CPU machines a

nodes. SCI can support up to 64k nodes, but real systems use normally a two-d

number of nodes.

• the SCI standard does not specify a specific network topology, but since most ada

have two unidirectional links (1 in-, 1 out-link), common topologies are single rin

or for a larger number of nodes 2D tori or rings of rings. With faster nodes and th

improved single-node bandwidth (PCI 64 bit/66 MHz), the ring structures have

become a significant bottleneck, especially for larger installations. Manufacturer

have responded with small-scale switches (8/16 ports) or adapters with 2, or eve

link connectors to form 2D/3D rings.
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• the transaction layer uses split transactions (request/response) to access remot

The standard defines a limit of 64 outstanding requests, but most implementation

a lower number due to buffer restrictions. SCI provides a global, physically distri

uted 64 bit address space. The upper 16 bits of an address are used as node id

• though coherency is one of the two defining features of SCI (besides scalability),

only included as option in the standard. Due to its complexity and need for additio

resources (cache coherence engine, distributed directory) only few DSM produc

have implemented it. Since most SCI adapters connect to I/O bus technology like

cache coherence is not supported.

2.6.2 The Dolphin SCI adapter

Figure 2-10.Architecture of Dolphin’s SCI card [40]

The SCI standard was intended to specify an open interface to provide interopera

across multiple vendors, connectors and devices. But the complexity of the specific

has led to implementations, which concentrated on necessary features and left out

This resulted in a market with a few proprietary incompatible solutions. Despite a

vendors of DSM systems, like Data General’s AViiON [41] (now part of EMC), Conv

Exemplar [42] (now HP) and Sequent’s NUMA-Q [43] (now IBM), the most used S

SAN implementation is developed by Dolphin Interconnect LCC1.

1.  www.dolphinics.com
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Figure 2-10 depicts the block diagram of the two main chips on the NIC, the PCI-S

Bridge (PSB) and the Link Controller (LC). Both chips communicate via a proprietary

Link bus. This decoupled architecture allows attaching multiple LC chips to the B-L

a separate development of future generations of both chips, and the use of LC chip

non-PCI environment. The main blocks on these chips are:

• the PCI Master/Slave Interface handles all PCI bus transactions. It also contains

DMA controller for direct memory-to-memory transfers.

• Read/Write Buffers contain slots for 128 byte data packets associated with ever

transaction.

• the Protocol Engine manages all SCI transfers. Up to 16 read/write streams can

handles simultaneously.

• the Address Translation Cache (ATC) is used to map PCI to SCI addresses. It a

contains some page attributes. The whole Address Translation Table (ATT) is loc

in separate SRAM on the adapter, an ATC miss triggers are reload of the refere

entry into the ATC.

• TX/RX Buffers on the LC inject/extract SCI packets into/out of the SCI link. Pack

addressing other nodes are simply forwarded via a Bypass FIFO.

The latest version of the PSB (PSB66) offers a 64 bit/66 MHz PCI interface, and the

recent LC (LC3) chip offers a link bandwidth of 667 Mbyte/s. Besides the normal C

initiated read/write transactions some additional features were implemented. A prog

mable DMA engine processes a linked list of control blocks specifying data to be se

remote nodes. This frees the CPU in case of large message transfers for better throu

A feature called mailbox triggers on specially tagged SCI packets, which are placed

a separate message pool. An interrupt is raised on reception of such packets to ma

CPU aware of the received data. Since in a multi-CPU node several concurrent

accesses can occur, a special write gathering is performed to forward data via the SC

in larger data blocks. A store barrier mechanism offers the possibility to flush gath

write data for separate pages.

2.6.3 Remarks

SCI has been used successfully as interconnect in DSM systems, but is less efficie

cluster environment due to certain architectural properties. A lot of components have

optimized for fine-grain communication patterns to support system-wide coherenc

relative small packet size, unidirectional links for ring structures, slow remote read o
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ations, etc. hinder the hardware to unfold its full potential when used as cluster inte

nect. Studies [44] have shown that the sustained node-to-node bandwidth on SCI is

limited than in other networks.

Another bottleneck is the limited ability to form scalable networks. A popular topolo

for SCI is a 2D ring structure, e.g. the largest SCI Cluster in Europe at the Pade

Center for Parallel Computing (PC2) uses an unidirectional 8x12 2D torus. But this als

means that on a ring containing 12 nodes, all these 12 nodes have to share the link

width of 500 Mbyte/s. This is a drawback of SCI systems compared to other full-dup

fully switched solutions like Myrinet or QsNet.

All this led to a relatively low acceptance of SCI as cluster interconnect. While other t

nologies are used now to build Clusters of thousand or more nodes, SCI Clusters are

larger than 32 nodes. Vendors have responded with small-scale (6-8 ports) switche

they can only soften the bandwidth bottleneck. Compared to the SAN market, the m

facturers of SCI-based DSM systems have developed some efficient and fast system

all three mentioned before (Data General, Convex and Sequent) have gone out of bu

or have been taken over by other companies. Most product lines have been phase

2.7 ServerNet

In 1995, Tandem introduced one of the first commercially available implementation

SAN called ServerNet. Since its introduction, ServerNet equipment has been so

Tandem (now owned by Compaq) for more than one billion dollars. In 1998, Tan

announced the availability of ServerNet II [45], the follow-up to the first version, wh

raises the bandwidth and adds new features while preserving full compatibility with S

erNet I.

With ServerNet, Tandem, a major computer manufacturer in the business area, add

one of the main server problems: limited I/O bandwidth. Tandem’s customers, m

business companies running large database applications, needed more I/O bandw

keep up with the growing data volumes their servers should be able to handle. So S

Net was intended as a high bandwidth interconnect between processors and I/O de

but turned quickly into a general purpose SAN.

2.7.1 Scalability and reliability

With scalable I/O bandwidth as the primary goal, ServerNet consists of two main com

nents: endnodes with interfaces to the system bus or various I/O interfaces and rou

connect all endnodes to one clustered system. One main design goal was the ab
30
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transfer data directly between two I/O devices, thus relieving processors of plain

copy jobs. By being able to serve multiple simultaneous I/O transfers, ServerNet rem

the I/O bottleneck and offers the construction of scalable clustered servers. Figure

shows a sample system configuration. Most ServerNet configurations, besides the

laya series of Tandem itself, use an I/O (PCI) adapter instead of directly attaching t

system bus.

Figure 2-11.A sample ServerNet network [46]

2.7.2 Link technology

ServerNet is a full duplex, wormhole switched network. The first implementation u

9 bit parallel physical interfaces with LVDS/ECL signaling, running at 50 MHz. Serv

Net II raises the physical bandwidth to 125 Mbyte/s, driving standard 8b/10b seriali

deserializers to connect to 1000BaseX (Gigabit Ethernet) standard cables. With the

port of serial copper cables, ServerNet is able to span across significantly longe

tances. For compatibility reasons, ServerNet II components also implement the inte

of the first version. Together with additional converter logic, ServerNet I and II com

nents can be mixed within one system, enabling the customer to easily upgrade an e

cluster with components of the new generation without the need to replace Server

components. Links operate asynchronously and avoid buffer overrun through per

insertion of SKIP control symbols, which are dropped by the receiver. Special flow
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trol symbols are exchanged between two link endnodes to ensure, that data does no

to be dropped due to lack of buffer space.

2.7.3 Data transfer

The basic data transfer mechanism supported is a DMA-based remote memory read

An endnode can be instructed to read/write a data packet of up to 64 byte (512 b

ServerNet II) from/to a remote memory location. The address of a packet consists

20 bit ID and a 32/64 bit address field. The ServerNet ID uniquely identifies an endn

and the route towards the destination.

The address can be viewed as a virtual ServerNet address. The lower 12 bits are th

offset, whereas the upper bits are an index into the Address Validation Translation T

(AVT). Via this indirection, the receiver is able to check read/write permissions of

sender, as depicted in Figure 2-12. To support communication models, for which the

tination of the message is not known in advance, the address can also specify one

eral packet queues, to which data is then appended.

Figure 2-12.ServerNet address space [45]

A main feature of ServerNet is its support for guaranteed and error free in-order del

of data on various levels. On the link layer, a CRC check is done in each network sta

validate the correct reception of the message. Each link is checked through the peri

exchange of heartbeat control symbols. Each endpoint assures correct transmiss

sending acknowledges back to the sender. In case of errors, the hardware invokes

routines for error handling.

2.7.4 Switches

ServerNet I offers 6 port switches, which can be connected in an arbitrary topo

Router II, the next generation of ServerNet switches, raises the number of ports to 1

ServerNet ID

routing table

routing decision

20 bit 20/52 bit 12 bit
AVT index offset

address validation
& translation table

local physical address
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and outports contain FIFOs to buffer a certain amount of data and are connected th

a 13x13 crossbar. The additional port is used to inject or extract control packets.

Router offers a JTAG and processor interface for debug or management services

special feature of ServerNet switches is the ability to form so called Fat Pipes. Se

physical links can be used to form one logical link, connecting two identical link e

points. The switches can now be configured to dynamically choose one of the links, w

leads to a better link utilization under heavy load.

2.7.5 Software

The good reliability of the ServerNet hardware makes it possible to implement low o

head protocol layers and driver software. Tandem clusters run the UNIX and Window

operating systems. With its packet queues, the second generation of this SAN intro

a mechanism to efficiently support the message passing model of the Virtual Inte

Architecture (VIA)1 [47], a message layer specification for cluster networks.

To provide an easy way of managing the network, a special sort of packets is de

called In Band Control (IBC) packets. These packets use the same links as norma

packets, but are interpreted by an 8 bit microcontroller. The IBC protocol is respon

for initialization, faulty node isolation and several other management issues. IBC pa

are used to gather status or scatter control data to all ServerNet components.

2.7.6 Remarks

Though it is hard to find detailed performance numbers, ServerNet technology see

be a very reliable and, with its second generation, also high performance SAN. Serv

focuses on the business/server market and has only poorly been accepted by rese

in the area of technical computing so far, though it would be interesting to see the pe

mance of message passing libraries such as MPI and PVM.

ServerNet implements a lot of properties, which are extremely useful for cluster com

ing: error handling on various levels, a kind of protection scheme (AVT), standard p

ical layers (1000BaseX cables) and support for network management (IBC). But de

its commercial success, Compaq has lately announced the discontuinuation of Serv

in favor of the upcoming InfiniBand interconnect. Whether the ServerNet technolog

further developed to fit the Infiniband requirements, or it is abandoned in favor of exte

network technology is not clear yet.

1.  www.viarch.org
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2.8 Myrinet

Myrinet [48] is a SAN evolved from supercomputer technology and the main produc

Myricom1, a company founded in 1994. It has become quite popular in the research

munity, resulting in 150 installations of various sizes through June 1997. Today thous

of clusters are equipped with the Myrinet network, with some really large installation

256+ nodes. A major key to its success is the fact that all hardware and software sp

cations are open and public.

The Myrinet technology is based on two earlier research projects, namely Mosaic

Atomic LAN by Caltech and USC research groups. Mosaic was a fine grain superc

puter, which needed a truly scalable interconnection network with lots of bandwidth.

Atomic LAN project was based on Mosaic technology and can be regarded as a res

prototype of Myrinet, implementing the major features such as network mapping

address-to-route translation; however, with some limitations (short distances (1 m)

topology (1D chains) not very suitable for larger systems). Eventually, members of

groups founded Myricom to bring their SAN technology into commercial business.

2.8.1 NIC architecture

Figure 2-13.Architecture of the latest Myrinet-2000 fiber NIC [49]

Regarding the link and packet layer, Myrinet is very similar to ServerNet (or vice ver

They differ considerably in the design of the host interface. A Myrinet host interface c

sists of two major components: the LANai chip and its associated SRAM memory.

LANai is a custom VLSI chip and controls the data transfer between the host and the

work. Its main component is a programmable microcontroller, which controls D

engines responsible for the data transfer directions host to/from onboard memor

1.  www.myri.com
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memory to/from network. So message data must first be written to the NI SRAM, be

it can be injected into the network. This intermediate buffering adds some latency

more the larger the message is. The SRAM also stores the Myrinet Control Pro

(MCP) and several job queues. A recent improvement is the upgrade of the link fr

byte-parallel copper-based implementation to a serial optical fiber. The basic archite

is depicted in Figure 2-13.

More than other SAN developers Myricom has continuously improved the architec

and the hardware components of the Myrinet network:

• the first version of the NIC was based on Sun’s SBus. But with the broad adoptio

PCI and PCs becoming the main node systems instead of RISC workstations, a

based NIC was developed. The first version implemented a 32 bit/33 MHz PCI in

face. A later version upgraded to 64 bit/66 MHz.

• the LANai chip started at 33 MHz, latest versions (v9) are running at 133/200 MH

• on-board SRAM was steadily enlarged, from 512 Kbyte up to latest NIC versions

with 8 Mbyte. This was necessary to satisfy the need for more buffer space on the

to store larger MCPs, provide more space for message data, etc.

• first links were full-duplex byte-parallel links running at 1.28 Gbit/s in each directi

over copper cables up to 10 m. With Myrinet-2000 a serial version of the copper

based links was introduced, running at 2 Gbit/s.

2.8.2 Transport layer and switches

Data packets can be of any length and are forwarded using cut-through switching.

consist of a routing header, a type field, the payload and a trailing CRC. Myrinet

wormhole routing. While entering a switch, the first header byte encodes the outg

port. The switch strips off the leading byte and forwards the remaining part of the pa

to the appropriate output port. When the packet enters its destination host interfac

routing header is completely eaten up and the type field leads the message. Special

symbols (STOP, GO) are used to implement reverse flow control.

On the link level, the trailing CRC is computed in each network stage and substitute

the previous one. A packet with a nonzero CRC entering a host interface then indi

transmission errors. MTBF (Mean Time Between Failure) times of several million ho

are reported for switches and interfaces. On detection of cable faults or node failure,

native routes are computed by the LANai. To prevent deadlocks from long-term blo
35



Myrinet

locking

rts,

ont

e line

ith 8

r a

like

and-

rred

des.

river

ase for

ps to

rity of

ix

tched
messages, time-outs generate a forward reset (FRES) signal, which causes the b

stage to reset itself.

Latest Myrinet switch technology [50] is build around a single crossbar chip with 16 po

called XBar16. A rack-mountable line card equipped with one XBar16 offers 8 fr

panel ports for connecting nodes. 8 ports connect to a backplane interface. Multipl

cards can now be inserted into racks of different size. A backplane is mounted w

XBar16 chips, forming the spine of a Myrinet network. The preferred topology fo

Myrinet network is the Clos network. Compared to other popular network topologies

2D/3D tori/grids, hypercubes, fat trees, etc., a Clos network offers full-bisection b

width, full rearrangability, good scaling and multi-path redundancy. It is the prefe

topology for the latest large-scale Myrinet installations with 256 and more no

Figure 2-14 shows a sample configuration for a 128 node Clos network.

Figure 2-14.A Clos network with 128 nodes [50]

2.8.3 Software and performance

As mentioned before, all Myrinet specifications are open and public. The device d

code and the MCP are distributed as source code to serve as documentation and b

porting new protocol layers onto Myrinet. This has motivated many research grou

implement their own message layers and is one of the main reasons for the popula

Myrinet. Device drivers are available for Linux, Solaris, WindowsNT, DEC Unix, Ir

and VxWorks on Pentium (Pro), Sparc, Alpha, MIPS and PowerPC processors. A pa

GNU C-compiler is available to develop MCP programs.
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The performance of the Myrinet network is highly depended on the software layer

to access the Myrinet hardware. Quite a number of software layers have been i

mented, e.g. Active Messages [51], Fast Messages [52], BIP [53], Parastation [54

many others. Poor quality of early Myrinet software was one issue leading to the d

opment of many external implementations.

Over the last two years, Myricom has developed with the GM message layer [55] a

stable and fast software layer, which is broadly used now for new installations.

second message layer with a significant user base is SCore [56] from the Japanes

World Computing Partnership1 (RWCP). Table 2-3 summarizes basic performance nu

bers for this two layers.

2.8.4 Remarks

The great flexibility of the hardware due to the programmable LANai microcontrolle

one of the major advantages of Myrinet. It has attracted a lot of attention from the res

community and fueled the implementation of lots of message layers on top of the My

network. Another reason for the success is Myricom’s policy of continuous sm

improvements to hardware and software.

Bottlenecks like slow onboard SRAM or LANai chips have been removed, early vers

of low-performance software have been replaced. Regarding market share, Myrinet

to dominate the SAN market right now. With shipping more than 5.000 NICs and alm

10.000 switch ports in 1Q/2001, Myrinet is the network to beat in this area. And w

switch technology scaling to 1.000 nodes and more it is well prepared for future tera

Cluster installations.

1.  pdswww.rwcp.or.jp

Table 2-3.Performance of GM and SCore over Myrinet [55], [56]

GMa

a. 66/64 PCI, Myrinet-2000, fiber, LANai 9 200 MHz

SCoreb

b. 33/64 PCI, Myrinet-SAN, copper, LANai 7 66 MHz

sustained bandwidth 245 Mbyte/s 146 Mbyte/s

message size with 50% BWmax 900 Byte 600 Byte

one-way latency 7 us 13.3 us
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2.9 QsNet

QsNet [57] is a SAN developed by Quadrics Supercomputers World Ltd1. Similar to other

SANs, QsNet has its root in traditional supercomputer technology, since Qua

emerged from the well-known supercomputer manufacturer Meiko Ldt. Influence

their cache-only machines are still visible in the QsNet architecture. QsNet is the

SAN with a seamless integration of the network interface into the nodes memory sy

This unique feature of a globally shared, virtual memory space is made possib

address translation and mapping hardware directly integrated into the NIC.

2.9.1 NIC architecture

Figure 2-15.Block diagram of the Elan-3 ASIC [57]

The third generation of the Elan ASIC is the key component of the QsNet NIC. Its ar

tecture is depicted in Figure 2-15. In the following, a brief description of the functio

units is given:

• a 64 bit/66 MHz PCI interface is used for communication with the host.

1.  www.quadrics.com
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• full-duplex 10 bit LVDS links connect the NIC via copper cables to the network a

rate of 400 Mbyte/s per direction.

• a 32 bit microcode processor supporting up to four concurrent threads. Threads

different tasks: control of the inputter, setting up the DMA engine, scheduling of

threads, and communicating with the host.

• a 32 bit thread processor, which offloads processing of higher level library tasks f

the host CPU.

• a Memory Management Unit (MMU) with a Translation Look-Aside Buffer (TLB) t

do table walks and translate virtual into physical addresses

• a 64 bit SDRAM interface to connect to external 64 Mbyte SRAM, together with 

8 Kbyte on-chip four-way set-associative memory cache.

2.9.2 Switches and topology

Besides the NIC, two different switches (16 and 128 port) are used to connect Q

nodes into a fat-tree network. The basic building block is a line card with 8 Elite-3 sw

chips. Each Elite-3 chip is a 8-port full-duplex switch, with two virtual channels per in

link. Multiple line cards are then used to construct a full-bisection, multi-route fat-

network.

Source-path routing is used to deliver network packets to their destination. The s

attaches a sequence of routing tags to the head of a message. Each network stage in

the first routing tag, removes it and forwards the message towards its destination. S

tags are used to support a broadcast function, which can be utilized to send a me

simultaneously to all remote nodes, or even a group of distinct nodes. At the link leve

network traffic is pipelined in a wormhole manner, with an end-to-end acknowledgm

of packets. In case of transmission errors, the sending NIC retries the transmission

matically without intervention from the host side.

2.9.3 Programming interface and performance

Figure 2-16 shows the overall structure of the programming interface for a QsNet

work. A layer called Elan3lib directly interacts with the hardware. Kernel routines

mainly used for initialization tasks, like mapping parts of a process local address s

into a globally shared virtual address space. The Elan3lib supports a programming m

with cooperating processes. The main functions are used to map/allocate memory

set up remote DMA transfers. Processes communicate mostly via events, e.g. to sy

nize the host process with a thread running on the Elan chip. The Elanlib is a higher
39
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hiding all the hardware- and revision-dependent details. It offers a point-to-point mes

passing model with the use of tags to filter messages at the receiving side. It support

synchronous and asynchronous message delivery.

Figure 2-16.Elan programming libraries [57]

The unique feature of QsNet is its ability to directly send data from a process vi

address space without any intermediate copying. The MMU inside the Elan-3 chip is

chronized to the MMU of the host CPU, or more exact, MMU tables are kept consis

between the QsNet NIC and the OS kernel running on the host node. That way, a use

cess can call a send routine of the Elanlib with a virtual address, the Elan-3 MMU tr

lates the virtual into a physical address, either in main memory or in the SRAM on

QsNet adapter. This is made possible by extending the OS kernel with functions to e

consistency of MMU tables. Special memory allocation functions of the Elanlib offer

possibility to map portions of the on-board SRAM into user processes, e.g. to give

NIC fastest access to DMA descriptor tables.

QsNet currently leads all SANs in performance, due to its advanced hardware supp

message passing primitives. Its unique ability to communicate directly between vi

address spaces without intermediate copies removes a lot of processing ove

Advanced features like a hardware broadcast boost the performance of collective o

Table 2-4.Performance of QsNeta [57]

a. Dual 733 MHz Pentium III, Serverworks HE chipset, Linux 2.4

Elan3lib MPI

sustained bandwidth 335 Mbyte/s 307 Mbyte/s

message size with 50 % BWmax 900 Byte 3 Kbyte

one-way latency 2.4 us 5.0 us

user application

shmem mpi

elanlib

system calls elan kernel routines

user space

kernel space

elan3lib

tport
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tions, like data multicast or synchronization barriers. This is especially true for large-s

clusters with a performance of several teraflops. To make effective use of these fea

the OS kernel has to be patched, and libraries like MPI have to be highly optim

Table 2-4 displays the main performance numbers, both for the Elan3lib and MPI.

2.9.4 Remarks

Though it offers the best performance of todays SANs, QsNet has not attracted the

of attention like e.g. Myrinet. The reason is a relative high price, in the order of three t

the price of competitive solutions. A significant part of the costs is due to the large am

of SRAM on the NIC (64 Mbyte). Quadrics has a strong relationship with the High P

formance Computing division of Compaq. QsNet is the preferred interconnect for

Alpha SC series[58], based on SMP nodes with multiple Alpha CPUs. Though only a

cluster installations exist, these are quite impressive. The latest one is the Terascale

puting System at the Pittsburgh Supercomputing Center (PSC). A cluster of 750 qua

cessor Compaq AlphaServer ES45s, each node equipped with two QsNet ada

delivers a peak performance of 6 teraflops. At the date of installation (October 2001)

system, named ‘Le Mieux’, is the most powerful supercomputer dedicated to unclas

research.

2.10 IBM SP Switch2

Though a proprietary network not intended for the PC cluster market, the Switch2 i

connect [59] from IBM is very similar in its architecture and use to more general S

solutions like Myrinet or QsNet. An intelligent host adapter, driven by an embed

microcontroller, send/receives data to/from the network. The first generation o

Switch technology has been used to interconnect IBM RS/6000 machines since th

90’s. But at the end of the decade it was outdated with its 150 Mbyte/s link bandwidth

slow on-board logic.

To remain one of the top HPC manufacturers, IBM developed with the second gener

of SP Switch technology an interconnect able to keep up the performance of SP clu

Switch2 is a key component for IBM’s RS/6000 SP parallel machines. These mac

are clusters of high-end SMP workstations. Several terascale systems are IBM

machines, among them the most powerful supercomputer today, the ASCI W1

machine. With its 8.192 CPUs in total, the machine is capable of delivering 12.3 teraf

twice as much computing power than the second fastest machine (Le Mieux).

1.  www.llnl.gov/asci
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Though due to its proprietary interface not usable for general cluster computing, its

nology is quite interesting and therefore, shortly presented here.

2.10.1 NIC architecture

Figure 2-17.Block diagram of the Switch2 node adapter [59]

Figure 2-17 depicts the top-level architecture of the SP Switch2 host adapter. As s

in the figure, one can partition the network adapter into four regions: a high-speed s

interface, a module for data segmentation and reassembly, one for running micro

and one region to interface to the node system. The main components of these regio

• a node bus adapter (NBA) controls the communication with the host via a 16 byt

125 MHz 6XX bus connector. The 6XX bus is the main system bus of the node,

directly connecting the Switch2 adapter to the CPUs and memory modules. CPU

issue load/store instructions to access the adapter.

• a Self Timed Interface (STI) chip connects the adapter via a byte-parallel link to 

network. A link is a full-duplex connection driving differential signals at 500 MHz

The link can either be an on-board connection of few inches, or a copper cable o

to 10 meters. The TBIC3 chip is an interface controller, connecting the STI to the

board RAM and the PowerPC 740 microprocessor. It contains hardware to offloa

packet reassembly and segmentation from the main CPU.
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• 16 Mbyte of fast Rambus RDRAM is located on the adapter to provide sufficient

buffer space for message data. A Memory Interface Chip (MIC) controls the RDR

and parallelizes multiple accesses to the RDRAM from both the NBA and the TB

• a PowerPC 740 microprocessor is used to control all on-board components via m

code. It is responsible for packet header generation, making routing decisions, ha

error conditions and communicating with the host. Its microcode program is store

4 Mbyte SRAM, along with some other status/control information.

The node architecture is highly decoupled to allow several data transmissions to oc

the same time. While the host CPU is transferring new message data to the RDRAM

PPC 740 may read header information from the RDRAM, and the TBIC3 is forwardi

message from RDRAM to the STI. All those datapaths at least provide a bandwid

1 Gbyte/s, with an aggregate bandwidth of 2.4 Gbyte/s to the RDRAM.

The general purpose PowerPC 740 microprocessor offloads a lot of tasks from the

CPU. It basically provides a low-level message passing interface to the host CPU. H

software layers like MPI or IP then build up on these routines. To send a message, th

simply writes a work ticket into a job queue residing in the SRAM. The PPC 740 moni

this queue, and then sets up the data transfer via DMA from the NBA into RDRAM. A

data is completely written to RDRAM, the microprocessor sets up header and data

mation for the TBIC3, which then forwards data autonomously to the STI. Message

is segmented into 1 Kbyte units. On the receiving side, the TBIC3 forwards incom

header information to the PPC 740 for further investigation. The CPU then decides, w

to place message data and communicates this information to the TBIC3. The TBIC

up DMA transfers to write message data into the RDRAM. Upon completion, it noti

the microprocessor, which then instructs the NBA to write the message out to the

main memory.

Additional to the message transfers, the Switch2 offers some advanced features. On

generation of a Time Of Day (TOD) signal. This signal is used to synchronize all com

nents of the network to a master TOD, even with a compensation of cable delays.

way, a synchronization of the whole network can be maintained at about 1 us.

2.10.2 Network switches

SP machines are mostly connected in a bidirectional multistage interconnection ne

(BMIN) topology. Similar to the fat tree network of QsNet, which is a BMIN, they off

high scalability, multi-route paths and reward communication locality. SP switches

32-port switches, where 16 ports are normally used to connect to nodes, while the
43
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16 ports are used to interconnect with other switches. Such a switch contains 8 inte

nected 8-port Switch3 [60] chips.

SP switches use source-path wormhole routing with a credit-based flow control sc

to prevent buffer overflow. Each Switch3 chip contains input/output ports, together

a large central buffer queue. This 8 Kbyte central buffer is used to store message d

large chunks in case its targeted output port is blocked by another message in transi

mechanism reduces the head-of-the-line blocking, where a blocked message oc

several network stages and prevents all other messages on this path from advanc

Each output port has two output queues assigned, one low- and one high-priority q

High-priority packets may bypass other messages for faster delivery. Two recent

tions in routing enable better performance for a SP network. First, a restricted for

adaptive routing can be used to let switches determine the fastest network path. Th

ture is especially helpful under heavy workloads to utilize the network in the most

cient manner. Multicast routing is provided via enabling multiple output ports to read

same packet from the central buffer queue. The specification of output ports can be

via a table lookup or encoding of routing bytes.

2.10.3 Remarks

The new generation of IBM’s SP Switch technology offers enough performance t

clusters of RS/6000 SP SMP nodes compete in the HPC market. With a link bandw

of 500 Mbyte/s and a scalable network offering advanced features like multicast or a

tive routing, SP machines are especially well suited for large terascale installations.

out of currently six large teraflop machines of the Accelerated Strategic Computing

tiative (ASCI) are IBM SP systems.

Up to 350 Mbyte/s sustained bandwidth has been measured for MPI applications. A

tive high latency of 17 us could be declared with the highly decoupled architecture o

node adapter. The 6XX bus interface is both an advantage and a drawback. The a

can directly access main memory, without an I/O bridge in between. But the use o

Switch NICs is limited to two versions of IBM’s POWER3 SMP Nodes. For bet

throughput in SMP nodes with up to 8 CPUs, each node board offers two slots, so on

attach two Switch2 adapters to each node.

Features like multicast and adaptive routing have not been implemented with such a

of hardware support in a SAN yet. It will be interesting to see, if and how other SAN m

ufacturers will adopt them.
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2.11 Infiniband

I/O bandwidth is more and more becoming a limited resource in todays server sys

To overcome this bottleneck, a lot of different I/O technologies have been develope

various application areas. Technologies like PCI, USB, AGP, SCSI, IDE, Firewire, Et

net, Fibre Channel, etc. are used to connect several device classes to a system,

them networking, storage, input/output and graphics. Most of them are outmoded sh

bus architectures, with poor scalability and serious bandwidth limitations. Furtherm

most of them need a significant amount of CPU intervention, eating up a lot of the pe

mance benefit from faster microprocessors and memory modules.

To overcome the architectural limitations of bus-based approaches, several major

puter vendors have worked towards a new standard for I/O connectivity. Future I/O

Next Generation I/O (NGIO) were two competing solutions from different vendors.

need for a unified I/O technology finally led to the formation of the InfiniBand Tra

Association1 (IBTA) in 1999 through a merger of those two forums. Its goal is to provi

a unified platform for server-to-server and I/O connectivity, based on a message-b

fabric network. In October 2000, the organization released the first version of the In

Band specification [61], a three volume set of documents describing the architecture

figuration and use of an InfiniBand fabric.

Companies like IBM [62] and Intel heavily push the development of IB hardware. F

products are available now, but mainly used for software development and proto

demonstrations. With its target to replace different technologies it is expected, th

products first enter the market in one or two main areas and will spread to other ap

tion areas over time. First installations might appear in the storage area, where the de

for bandwidth is extremely high. IB will be first deployed in high-end servers for en

prise-class business applications, like databases, transaction systems or webserve

then expected that the technology moves down into the PC/workstation mass mark

turns into the unified I/O technology it is said to be.

2.11.1 Architecture

Figure 2-18 depicts the general architecture of an IB network. It contains the four buil

blocks: Host Channel Adapter (HCA), Target Channel Adapter (TCA), Switches

Routers. A HCA is an active network interface, similar to a SAN NIC. It interacts w

the host to generate/consume network packets. The HCA provides support for D

based data transfer, memory protection and address translation, and multiple conc

1.  www.infinibandta.org
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accesses to the network from several processes. A typical HCA location is inside a s

where it interfaces to the system bus via a memory controller to provide fast access

IB network. The TCA is a reduced passive version of the HCA, mainly intended to s

as IB interface for I/O devices like disks, graphics, etc. Switches connect local com

nents into a IB subnet, whereas routers connect the subnet to a larger global Infin

network.

Figure 2-18.The InfiniBand architecture [61]

The foundation of communication in an InfiniBand fabric is the ability to queue up a

of jobs that hardware executes. This is done via Queue Pairs (QP), one for send an

for receive operations. User applications place work requests in appropriate qu

which are then processed by the hardware. On completion, the hardware acknow

the finished job via a completion queue.

Applications can set up multiple QPs, each one independent from the others. A sen

specifies the local data to be sent, and can include the remote address where to pl

data. On the receiving side, a job specifies where to place incoming data. Most of the

munication mechanisms for IB have been adopted from the Virtual Interface Architec

(VIA), a previous standardization effort for communication within clusters.
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InfiniBand supports connection oriented and datagram communication. A connecte

vice establishes a one-to-one relationship between a local and a remote QP. A dat

QP is not tied to a single remote consumer.

2.11.2 Protocol stack

The specification separates IB into several layers, as shown in Figure 2-19: transpor

work, link and physical layer. This layered approach helps to hide implementation de

between layers, which use a fixed service interface to build on each other.

Figure 2-19.InfiniBand layered architecture [61]

Physical layer

The physical layer specifies how single bits are put on the wire to form symbo

defines control symbols used for framing (start/end of packet), data symbols

fillers (idles). A protocol defines correct packet formats, e.g. alignment of fram

symbols or length of packet sections. The physical layer is responsible for estab

ing a physical link when possible, informing the link layer whether the link is up

down, monitoring the status of the link, and passing data and control bytes bet

the link layer and the remote link endpoint.

Link layer

The link layer describes the packet format and protocols for packet operation.

includes flow control and routing of packets within a subnet. It basically defines

types of packets: link management and data packets. Link management packe

exchanged between the two link layers on a connection, and are used to trai

transport

link

physical

layer

layer

network
layer

layer

application

end node

signaling
to IB subnet
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maintain link operation. They negotiate operational parameters such as bit rate

width, etc. They are also used to convey flow control credits.

Data packets carry a payload of up to 4 Kbyte. A concept called Virtual Lanes (

is used to multiplex a single physical link between several logical links. Up to

different VLs may be implemented, but only VL0 (data) and VL15 (manageme

are required.

Figure 2-20.InfiniBand data packet format [61]

Figure 2-20 depicts the IB data packet format and which layer utilizes which pa

the packet to encapsulate needed information. The Local Route Header (LRH)

ifies source and destination within a subnet, and the VL to use. The payload

packet can be 0-4 Kbyte large. Each packet is completed by two CRC word

Invariant CRC (ICRC) and a Variant CRC (VCRC). The ICRC covers all fie

which should not change during a transmission. The VCRC covers all fields.

combination allows switches and routers to modify header fields and still main

end-to-end data integrity.

Network layer

The network layer implements the protocol to route packets between subnets. I

the Global Route Header (GRH) to identify source and destination ports across

tiple subnets in the format of an IPv6 address. The GRH is interpreted by rou

which may modify the LRH and GRH to forward a packet towards its destinat
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Transport layer

The transport layer is responsible to deliver a packet to the proper QP and to in

the QP on how to process the payload. Segmentation of messages larger than

imum Transfer Unit (MTU) is also a task of this layer. It utilizes two fields of th

packet header to accomplish its job. The Base Transport Header (BTH) specifie

destination QP, the packet sequence number and a packet type (send, remote

read, atomic). The sequence number is used by reliable connections to dete

packets. The Extended Transport Header (ETH) gives type-specific informa

like remote addresses, total message length, etc.

An Immediate Data (IData) word of 4 byte can be attached to the packet. This w

is placed on the receiving side into the completion queue entry, allowing to br

cast single data words without transferring payload into DMA areas.

A Software Transport Interface is defined on how to configure, access and opera

communication structures. Additional management services are defined to provid

interface for network-wide configuration and administration of IB components.

2.11.3 Remarks

The aggressive goal of InfiniBand to completely take over the whole I/O and server

nectivity market is a challenging task. It adopts a lot of mechanisms and technolo

from current SANs and tries to apply them to all forms of I/O. Whether it will succeed

fail is also highly dependent on the level of cooperation between the leading ind

companies backing IB. The global approach of InfiniBand stands in contrast to pos

optimizations for a specific application area, as it is cluster computing. E.g., the he

overhead of an IB packet is quite large: up to 106 byte. This means that in applica

with a fine-grain communication pattern the protocol overhead consumes a signif

portion of the physical bandwidth.

On the other hand, competing solutions can try to present an InfiniBand software inte

to applications, while breaking down IB communication structures onto more effic

hardware. At this point, one cannot say if it really becomes the general purpose inte

nect, or ends up as a replacement for SCSI and Fiber Channel in the high-end storag

ket.
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3The ATOLL System Area
Network

The idea to develop a new System Area Network was driven by the need for a high

formance cluster interconnect that would reduce costs to a minimum and therefore i

to replace Ethernet as the most commonly used cluster network. Cost reduction goe

in hand with the limited opportunities of a small group of researchers to design and im

ment such a complex network.

So a large scale integration of all components was a major factor guiding the proce

specification and design of a new SAN. This led to the idea to break with the traditi

partitioning of a network into a node interface and switches connecting them toge

The result is a combined interface/switch device, which serves as a single basic bu

block for a new generation of SANs.

3.1 A new SAN architecture: ATOLL

The main idea behind this approach was formulated earlier within another context

first version of ATOLL [63] was designed as a system component for a massive pa

architecture called PowerMANNA [64]. The node design consisted of a quad-CPU b

equipped with PowerPC 620 microprocessors. Besides several memory banks, a

ATOLL chip connects to the system bus to provide a low latency, high bandwidth

work connecting all nodes within a system chassis in a 2D grid. The ATOLL chip inclu

four Bus Master Engines (BME) to give each node CPU exclusive access to the net

Special instructions provide the ability to start communication jobs in an atomic w

This, together with the extreme low latency, gave the design its name: ATOmic

Latency (ATOLL).

Most internal structures have been redesigned, due to the different environment

MPP and the SAN version of ATOLL. But the overall 4x4 structure, as shown in Figur

1, remained as the main characteristic. Several techniques have been adopted, like

hole routing and a mechanism for link-level error correction and retransmission of

rupted data.
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Figure 3-1.The ATOLL structure

The number of host and link interfaces is a trade-off between the goal to provide as

performance as possible and what is technically feasible. The bottleneck of todays

is still the network, considering that advanced 64 bit/66 MHz PCI bus implementat

offer a bandwidth of up to 528 Mbyte/s. With PCI-X and its 1 Gbyte/s entering the m

ket, one lets a lot of bandwidth unused. And since dual-CPU, and in the near future q

CPU nodes become an attractive option as cluster node architecture, one can ove

the overhead associated with multiplexing a single NI.

The upper limit for the number of host interfaces is given by the amount of resou

needed to implement them, e.g. control logic, data buffers, etc. The upper limit fo

number of link interfaces is given by the amount of pins needed in the IC packag

implementing the parallel differential signal lines. The 4x4 structure turned out to

well balanced system architecture to completely remove the network as communic

bottleneck for the first time in Cluster Computing.

3.1.1 Design details of ATOLL

Some of the major design decisions are a natural consequence of the experience

other solutions. ATOLL is a message passing network interfacing to the dominan

technology PCI, or more specific, to its latest upgrade PCI-X. It utilizes source path

wormhole routing on the link level to enable very fast data forwarding. Byte-para

copper links were the best choice for the interconnect at the start of the project. SAN

moving now towards high speed serial links, but this technology was still prematu

that time.

host
interface

host
interface

host
interface

host
interface

link
interface

8x8
crossbar

link
interface

link
interface

link
interface
52



The ATOLL System Area Network

s has

ince

ignal

ia.

ct that

nular-

ques.

other

nter-

level.

ting.

instal-

all

urrent

et-

ngle

nent

a

he

sing

ately,

ple-

etail
A unique technique to detect and immediately correct transmission errors on link

been implemented to remove costly error checking and correction in software. S

newest cabling technology provides an almost errorfree environment, even for high s

speeds, this mechanism offers the possibility to treat the network as a reliable med

The mechanisms for data transfer between the host and the NI were driven by the fa

the performance of DMA- or PIO-based approaches is highly dependent on the gra

ity of the communication. Therefore, the decision was made to support both techni

This will make it possible to pick the fastest transfer, based on message size and

impacts of the node system. A novel event notification mechanism avoids costly i

rupts and enables the CPU to poll on cache-coherent memory.

Some advanced features had to be omitted to keep the complexity at a manageable

It would have been interesting to implement features like adaptive and multicast rou

As discussed earlier, they can give a huge performance boost, especially for large

lations with hundreds of nodes. But the first version of ATOLL targets the market of sm

to medium clusters, with the number of nodes somewhere between 8 and 256. The c

design will be sufficient for these dimensions.

In the following, the major features and mechanisms for the ATOLL System Area N

work are summarized:

• best cost-efficient solution by integrating all necessary SAN components into a si

IC

• support for SMP nodes by multiple independent host interfaces

• removing the need for external switch hardware by integration of a switch compo

• high sustained bandwidth of multiple concurrent data streams by implementing 

highly decoupled architecture

• PIO- and DMA-based data transfer to/from host

• efficient control transfer via coherent NIC status information in host memory

• error detection and correction on the link level

The rest of this chapter will introduce the architecture of the ATOLL network chip. T

main focus is on the implemented functionality, and how to make use of it via acces

the control/status registers of the device. Each top-level unit will be described separ

its design and its typical use and operation. Regarding the huge complexity of the im

mentation (over 400 unique modules with about 30.000 lines of code), the level of d
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had to be restricted. So not every single state machine or block of control logic is cov

in all aspects. But the description of the most important mechanisms and units s

enable the reader to gain an in-depth insight into the ATOLL architecture.

3.2 Top-level architecture
Figure 3-2.Top-level ATOLL architecture

ATOLL is a true 64 bit architecture. All addresses used by the device to access data

tures in main memory have 64 bit base addresses. However, the actual pointers u

reference the start/end of individual data units are 32 bit offsets. This provides a suffi

amount of continuous memory space for data areas (4 Gbyte), while limiting the exp

of internal arithmetic units. When a read/write address is forwarded to the PCI-X in

face, the base address is added to the current offset. Figure 3-2 depicts the top-leve

tecture of ATOLL.

In the following, a brief overview of each functional unit is given:

PCI-X interface

the PCI-X interface is used to communicate with the host system. It can act a

master or slave, and provides sufficient support for latest improvements to the

X bus protocol, e.g. split transactions.

Synchronization interface

since the core of ATOLL runs with a higher clock frequency than the PCI-X int

face, all control and data signals crossing this clock domain border must be syn

nized to prevent signal corruption. This is done in a safe manner by
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synchronization interface. It also converts the application interface of the PC

interface into a highly independent and concurrent interface for all four poss

data transfer directions (read/write, master/slave).

Port interconnect

the port interconnect multiplexes the access to the PCI-X interface between al

host ports. Sufficient buffer space is provided to assemble multiple tran

requests. It also contains the global status and configuration register set

ATOLL.

Host port

a host port contains all logic to enable PIO- and DMA-based message transf

small interchangeable context keeps all addresses and offsets needed to acce

structures for messages residing in main memory. Large SRAM blocks su

enough buffer space to take up message data and store it for further proce

Multiple concurrent data transfers can be active at a time, e.g. sending data in

network from a FIFO in the DMA unit, while reading data from the receive FIF

of the PIO unit.

Network port

the network port converts a stream of tagged 64 bit datawords from the hostpor

a 9 bit-wide data stream conforming with the link packet protocol and vice ver

Crossbar

the crossbar is a full-duplex 8x8 port switch. It interprets routing bytes of incom

messages to decode the outgoing port, which can be any of the 8 ports.

Link port

the link port provides a full-duplex interface to the network. It prevents buffer ov

run by ensuring a reverse flow control scheme. Special retransmission hard

automatically detects corrupted link packets and retransmits them. Enough b

space is included to support cable lengths of up to 20 m.

The whole architecture is optimized to provide the highest level of sustained bandw

and an extreme low latency. All host/network/link port units consist of independent m

ules for both transfer directions. In contrast to some other SAN interfaces, messag

is not temporary stored in large external RAM modules. Rather multiple smaller
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FIFOs are spread all along the data paths from the network to the host. These c

viewed as distributed on-chip data RAM.

3.2.1 Address space layout

The whole ATOLL device requests an PCI-X address space of 1 Mbyte at system

up. Only the first 260 Kbyte if this address space are currently used. Different parts o

address space are assigned separate memory pages to provide the possibility o

varying memory page control schemes. E.g., some pages could be defined as cac

but pages containing status registers should not be cached to make sure, each ac

them returns valid and up to date data. Since the intention is to support all possible c

node platforms (x86, Alpha, SPARC, etc.), the decision was made to select 8 K

pages, since the Alpha architecture uses this memory page size, whereas x86 mic

cessors use 4 Kbyte. So parted address regions with different memory page attribut

be implemented on both platforms.

Figure 3-3.Address layout of the ATOLL PCI-X device

Another reason for separate pages is the level of protection for different address area

user needs access to the registers controlling the PIO- and DMA-based message tr

but the access to critical control registers should be protected. E.g. a normal user s

not be able to alter the frequency of the core clock, or reset parts of the chip.

base address

32 Kbyte
host port 0

(4 pages)

host port 1
(4 pages)

host port 2
(4 pages)

host port 3
(4 pages)

cntl/stat regs
(1 page)

init/debug regs
(1 page)

8 Kbyte

32 Kbyte

32 Kbyte

32 Kbyte

8 Kbyte

unused

unused

(15 pages)

(95 pages)

120 Kbyte

760 Kbyte

+08000h

+10000h

+18000h

+20000h

+22000h

+40000h

+42000h

+FFFFFh

1 Mbyte
address space
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In all 8 Kbyte pages only the lower 4 Kbyte part is used. The upper 4 Kbyte are

unused. And read/write accesses to any unused addresses inside the whole A

address space return the data value 0, respectively consume the written data witho

further action. This prevents system failure by erroneous, misaligned accesses

device. Figure 3-3 shows the address layout of the ATOLL PCI-X device. All addre

given are relative offsets to the base address in hex format.

The page for the initialization and debug registers at address 40000h was append

late stage of the design cycle. To ease the insertion of the registers and the decod

addresses, it was simply placed at an address with a unique address bit (a set addr

references the init/debug registers). In further versions of the architecture it cou

located just after the control/status registers to implement a more compact address l

The layout of the different pages is discussed in detail later in this chapter, at the a

priate sections. All four host port address regions have exact the same layout, and a

ther illustrated in the section about the host port. The control/status registers are lo

in the port interconnect and are discussed there. Finally, the initialization/debug reg

are located in the synchronization interface and are specified in its section.
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PCI-X interface
3.3 PCI-X interface
Figure 3-4.PCI-X interface architecture [65]
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The PCI-X bus interface module used in the ATOLL chip is an external IP cell from S

opsys, Inc [65]. Its top-level architecture is depicted in Figure 3-4. It implements a

interface fully compliant to the PCI-X bus specification[66]. The IP cell is split into fo

main blocks:

DW_pcix_ifc

the DW_pcix_ifc module contains the PCI bus interface. It performs multiplex

of outgoing addresses and data onto the PCI-X AD bus, and registers all inco

signals. Parity generation and checking is part of this module, as well as dete

of the PCI-X bus mode (32/64 bit, 33/66/100/133 MHz).

DW_pcix_com

the DW_pcix_com module implements the Completer logic. It is responsible fo

actions necessary when the device acts as a bus slave. Data written onto the

needs to be forwarded to the application. When addressed by a read cycl

address has to be delivered to the application, which then returns the data.

DW_pcix_req

the DW_pcix_req module contains the Requester logic. It controls all bus ma

transactions triggered by the application. It automatically retries transfers, if a s

device (like the PCI bus bridge) disconnects in the middle of a data transfer.

DW_pcix_config

the DW_pcix_config module implements the PCI configuration space, as def

by the PCI bus specification. It serves read/write requests to the configura

space.

The complexity of the PCI-X bus interface is quite high, since it implements all the spe

protocol cases defined in the specification. This complexity is also visible at the inter

on the application side. But since the functionality needed by the ATOLL core log

quite restricted, a lot of features of the PCI-X interface are ignored and disabled. S

examples are:

• the configuration module provides an interface to the application to read/write co

uration registers, and to modify/control its behavior. This interface is completely 

abled, all output signals of the DW_pcix_config unit are left unconnected, all inp

signals are set to their inactive value.
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• the completer interface provides additional signals to force a disconnect of the cu

bus transaction, e.g. when the requested data must be fetched from external RAM

since the ATOLL core can deliver all data within a few cycles, this feature is not

needed, the corresponding signals are disabled.

In the following, the main parameters are given, which were defined during generati

an IP cell adapted to the needs of the ATOLL core logic:

• the device can function as PCI-X or PCI device, as defined during system start-u

• the device is capable of acting as 64 bit bus device. It can request 64 bit transac

and react on them. But it can also fall back into a 32 bit-only mode

• the device is capable of running at the highest bus speed defined by the specific

133 MHz. It also supports lower bus frequencies of 100, 66 and 33 MHz

• a single 64 bit Base Address Register (BAR) is defined, requesting an address s

of 1 Mbyte at system start-up. This address space is defined as prefetchable

• the cache line size register is configured to support up to 4 bits, resulting in a ma

mum cache line size of 16 DWORDS

• no power management functions are implemented

• the registers for minimum grant (MIN_GNT) and maximum latency (MAX_LAT) ar

both set to 255, their maximum value. This signals the request of the device for 

bus burst transfers

• the maximum memory read byte count is set to its highest possible value to sup

burst transfers of up to 4 Kbyte

• the signal INTA is used by the device to generate interrupts

• split/delayed bus transaction are supported

3.4 Synchronization interface

The synchronization interface connects the PCI-X bus module to the ATOLL core lo

On the PCI-X side, it implements the completer and requester interface defined b

application side of the unit. The completer interface is used for read/write access

slave mode, when the ATOLL device is the target of a bus transaction. The requ

interface is used for reading data from main memory in master mode, or writing da

memory. On the ATOLL side, these combined read/write interfaces are split into un

and mostly independent paths. This results in four dedicated interfaces: Slave-
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Slave-Write, Master-Read and Master-Write. Between those interfaces, in the midd

the synchronization interface, all control and data signals pass a clock boundary via

cial synchronization elements, which are described in detail later on. Figure 3-5 de

this structure, visualizing the main data flow direction.

Figure 3-5.Structure of the synchronization interface

3.4.1 Completer interface

The completer interface needs to separate read and write accesses, and interacts

Slave-Write and Slave-Read data paths. All signals of the interface used on the PCI-X

are shown in Figure 3-6. The general signals are utilized for both transfer directions

PCI-X bus specification defines several types of read/write bus commands, but AT

only distinguishes between read and write operations. Specifying the number of by

a bus transfer is a new feature introduced with PCI-X, so it has no meaning when op

ing in plain PCI mode. Data is then transferred via a two-way handshaking. The prod

simply signals that data is ready, and the consumer signals that it is ready to accep
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Transfers occur on each clock edge with both signals set. Detailed timing diagrams

completer interface can be looked up in the databook [65] of the IP cell.

Figure 3-6.Completer interface signals

For write transactions, the completer stores the start address and pushes all incomin

into a synchronization FIFO towards the Slave-Write data path. At the end, the addr

also handed over, together with the number of 64 bit words transmitted. This me

limits write bursts to a length of 64 words, the depth of the data FIFO. But it sa

resources compared to a solution, where each single data word is tagged with its ad

In case of a read request, the address is immediately forwarded to the ATOLL co

request the data. After a few cycles, the ATOLL core delivers the data passing it thr

another 64 word-depth FIFO stage. There is one side condition regarding the relat

both clocks, when the device is in PCI-X mode. PCI-X forbids wait cycles on the ta

side, once the target has started to deliver data. So after the first data word is trans

the target must deliver data on each successive clock cycle.

Since the Slave-Read path on the ATOLL side delivers a data word on each second

the ratio of PCI-X to ATOLL clock frequency must be at least 1:2. So if the PCI-X int

face runs at its highest frequency of 133 MHz, the ATOLL clock must be at le

266 MHz. This restriction is a remnant of an earlier version of the design. A future ver

could simply implement the ATOLL side in a way, so it delivers data on each clock cy

In case of running plain PCI mode, the end of the transfer is signaled via a deass
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device select signal. The completer then deasserts the valid signal for the address,

ATOLL side knows it can stop delivering data. All prefetched data still in the data FI

is then discarded by flushing the FIFO.

For both transfer directions the completer interface is also responsible to convert a

data stream to a 32 bit one, if the PCI-X bus is only capable of running 32 bit transact

3.4.2 Slave-Write data path

Figure 3-7.Slave-Write path signals

On the ATOLL side, the Slave-Write path is plain simple. As soon as an address-le

pair is handed over from the completer, this unit forwards each data word from the F

to the ATOLL core, together with its address. Data is transferred again via a two-

handshaking, the signals are shown in Figure 3-7. On every clock edge, data is latc

it is valid and the consumer side can accept the data. This valid/stop scheme is

throughout the whole architecture to transfer data between adjacent units.

3.4.3 Slave-Read data path

Figure 3-8.Slave-Read path signals

The Completer delivers the address, a valid signal and the byte count for a read acc

case of running in plain PCI mode, the PCI bus does not use a byte count, but instea

nals the end of a transfer via deasserting a signal prior to the last cycle. Since the

burst read access to ATOLL could be the reading of message data from the data FIF

the PIO-mode, a prefetching mechanism is used to not let a request fail due to m

data. So in plain PCI mode, the completer sets the byte count to the maximum po

value. The Slave-Read path now starts to fetch data from the ATOLL core as long a

address is signaled as invalid, or the byte count is satisfied.

SlaveWrite_Valid
SlaveWrite_Data [63:0]

SlaveWrite_Address [17:0]

SlaveWrite_Stop

address
data
data is valid

data can be accepted

SlaveRead_InterfaceFull
SlaveRead_DataOut [63:0]
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SlaveRead_InterfaceShiftIn

address
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data fifo is full
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push data into fifo
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63



Synchronization interface

data

O is

rred

only

data

ersion

nal).

al to

of the

ge as

data

s. An
Figure 3-8 depicts the interface signals to the ATOLL core. In case the core delivers

too fast, e.g. when the PCI-X interface runs only at 33/66 MHz, then a full data FIF

signaled to prevent buffer overflow. When running with 100/133 MHz, data is transfe

every second clock cycle. Below that, the interface is slowed down to transfer data

every fourth cycle. This mechanism was introduced to prevent that lots of prefetched

assembles in the data FIFO, which needed to be shifted out one by one in an early v

of the implementation after the transaction ended (the FIFO simply lacked a flush sig

Later on, a custom version of the data FIFO was developed with such a flush sign

render this mechanism unnecessary. It could be simply removed in a later version

implementation. Figure 3-9 visualizes a typical Slave-Read transfer.

Figure 3-9.Typical Slave-Read transfer

3.4.4 Master-Write data path

When acting as bus master, the ATOLL device tries to transfer data in bursts as lar

possible to use the bus as efficiently as possible. When the ATOLL core writes out

into main memory, each data word is transferred together with its destination addres
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additional signal marks the last data word of a burst. Data is handed over via the no

two-way handshake. Figure 3-10 displays all interface signals.

Figure 3-10.Master-Write path signals

The control logic of the Master-Write data path pushes incoming data into a FIFO

stores the first address and only counts incoming words as long as they form a conti

stream of addresses. At the end of a continuous data block, it hands over address an

count to the requester unit, which then passes the data burst on to the PCI-X inte

There are four conditions marking the end of a burst:

• the address of a data word does not match the previous ones. This might happe

multiple data streams from different host ports are mixed

• the ATOLL signals the last data word of a burst

• the data FIFO is full, so the maximum size for a single burst is reached (currentl

64 words)

• or no data has been transferred for a certain amount of time (currently 128 cycle

3.4.5 Master-Read data path

Reading data from main memory requires more complex logic. To implement an effic

utilization of the PCI-X interface, requests to read data are handled in a split-phase

ner. The ATOLL core issues a request to load a certain number of data words from a

cific address. Up to 32 words can be requested with a single job. The Master-Read

tries to combine successive jobs into one large burst. It then instructs the requester

fetch data from the PCI-X bus and forwards the data to the ATOLL core.

Since multiple host ports might request data, each job is assigned one of 8 job IDs

able to associate returned data with the job requesting it. So up to 8 jobs might be

standing, each with up to 32 words. That way, the PCI-X interface is kept busy and

idles, if no requests for data are active at all. Figure 3-11 shows the interface sig

grouped into signals used for job creation or completion.

MasterWrite_Valid

MasterWrite_DataOut [63:0]
MasterWrite_AddressOut [63:0]

MasterWrite_Stop

address
data

data is valid
last data of a burst MasterWrite_last_addr

stop transfer
65



Synchronization interface

ueue.

over

.

n the

a fair

sce-

 the

ster

per-

also

nsfer.

g the
Figure 3-11.Master-Read path signals

The control logic of the Master-Read path keeps outstanding jobs in an internal q

Incoming data is then tagged with the correct ID and word count before handing it

to the ATOLL core. Job requests are served strictly in order to ensure a fair service

3.4.6 Requester interface

The requester unit needs to multiplex the access to the PCI-X interface betwee

Master-Write and the Master-Read data paths. Requests for work is scheduled in

round-robin fashion between them to prevent starvation of one of the paths. Both job

narios follow the same procedure, which is briefly described below:

• if a request for a job is handed over by one of the two paths, the requester loads

start address and the byte count into the PCI-X interface

• it signals the type of bus command to the interface. These areMemory Read/

Write Block  in case of PCI-X, andMemory Read/Write  in plain PCI mode

• data is then transferred via the usual two-way handshaking

• after delivering the last data word, the PCI-X interface is released and the reque

looks for new job requests

In contrast to the completer interface, the conversion of 64 bit data into 32 bit data is

formed automatically by the PCI-X interface. An interruption of the bus transaction is

managed by the interface, e.g. when a bus target disconnects in the middle of a tra

All these special cases are served and managed by the interface, greatly simplifyin

requester logic. Figure 3-12 lists all interface signals of the Requester part.

MasterRead_ValidOut
MasterRead_LengthOut [4:0]
MasterRead_Address [63:0]

MasterRead_StopOut

address

request is valid

stop transfer
MasterRead_IDCreate [2:0] new job ID

number of words requested

job creation

job completion
MasterRead_Data [63:0]

MasterRead_LengthIn [4:0]
MasterRead_IDComplete [2:0]

MasterRead_ValidIn
MasterRead_ShiftOut

read data
word count of job
ID of completed job
data is valid

shift out data from fifo
66



The ATOLL System Area Network

nter-

ovided,

been

ng in

bit

l bits.

ignor-

of the
Figure 3-12.Requester interface signals

3.4.7 Device initialization

A few initialization and debug registers have been placed into the synchronization i

face. The registers reside on a separate page, because some critical functions are pr

which should only be accessible from a privileged user/administrator. They have

moved out of the ATOLL core, since they cannot assume that a stable clock is runni

the core. Also the configuration of the ATOLL core clock is located here. Only four 64

registers are allocated in total, split up into 32 bit low/high parts.

Figure 3-13 gives an overview about each register and the meaning of its individua

Not all bits are used, these are grayed out. In addition, some registers are read only,

ing write accesses to them. The given address offset is relative to the base address

whole ATOLL device.

app2rdp_data [63:0]

app_bytecnt [11:0]

app_adr [63:0]
app_cmd [3:0]

app2rdp_data_rdy

app2rdp_rdy4data

rsm_busy
app_adr_ld

rdp2app_data [63:0]
rdp2app_data_rdy

rdp2app_rdy4data

general

write data to PCI-X

read data from PCI-X

rsm = requester state machine
app = application
rdp = requester data path

P
C

I-
X

 in
te

rf
ac

e

AT
O

LL
 c

or
e

start address
PCI-X bus command

number of bytes

write data
data is ready

requester can accept data

read data

app can accept data

data is ready

load address, start job
requester is busy
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Figure 3-13.Device initialization and debug registers

reset
reg 0 low
read/write

31 0

hp_res_n[3:0]63 32
pll
reg 0 high

offset: 40000h
read/write

lp_res_n[3:0]
np_res_n[3:0]

pi_res_n

xbar_res_n
clk_sel_res_n

not_used

feedback cnt[5:0]
for XO-PLL

avoid_glitch

slave_select [1:0]

master/slave_select

not_used

n/a
reg 1 low
read/write

31 0

63 32
status
reg 1 high

offset: 40008h
read only

not_used

pcix_mode

PCI-DLL lock

not_used

ifc_bus64

pcix_66m

pcix_100m

pcix_133m

bist_start_low
reg 2 low
read/write

31 0

63 32
bist_start_high
reg 2 high

offset: 40010h
read/write

not_used

PCI-DLL bypass

xxx port 0
bist_start [9:0]xxx port 1

bist_start [9:0]

xxx port 2
bist_start [9:0]

xxx port 3
bist_start [9:0]synch. int. (Mst-Wr)

synch. int. (Mst-Rd)

synch. int. (Slv-Wr)

bist_ok_low
reg 3 low
read only

31 0

63 32
bist_ok_high
reg 3 high

offset: 40018h
read only

not_used

xxx port 0
bist_ok [9:0]xxx port 1

bist_ok [9:0]

xxx port 2
bist_ok [9:0]

xxx port 3
bist_ok [9:0]synch. int. (Mst-Wr)

synch. int. (Mst-Rd)

synch. int. (Slv-Wr)
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Reset register

besides the global power-on reset signal, each major block of ATOLL has b

assigned a unique reset signal. This offers the possibility to reset a specific p

the device without reinitializing the whole chip. The abbreviations stand for: h

port (hp), network port (np), link port (lp ), port interconnect (pi ), crossbar

(xbar ) and clock logic (clk_sel ).

PLL register

the ATOLL clock logic includes a configurable Phase Locked Loop (PLL) to set

internal clock to anywhere within 175-350 MHz, in steps of 14 MHz. The 6

feedback counter configures the clock frequency. Besides running a chip wit

own clock, there is the possibility to take one of the four incoming clocks from

links as main clock signal. Which one is selected viaslave_select [1:0] .

The signalmaster/slave_select is then used to switch between the mast

and the selected slave (link) clock. Another signal can be set to make sure this

sition is made without glitches on the clock signal.

Status register

The lower 5 bits sample some status bits set by the PCI-X interface. It detec

system start-up, if it runs in PCI or PCI-X mode, whether it sits on a 64 bit bus,

which PCI bus frequency is configured. The signalPCI-DLL lock is set, when

the on-chip Digital Locked Loop (DLL) has adjusted the PCI clock to a fixed clo

tree delay, as specified in the PCI-X specification.

BIST start register

All SRAM memory cells have a Built-In Self Test (BIST) logic attached. It chec

the memory for erroneous bits by successive reads/writes of certain bit patt

This is done normally via the JTAG test logic, which is used to check chips for m

ufacturing faults. But these registers provide an additional way to run the BIST

via software. Setting the start bits triggers the internal control engine of the B

logic to run through all memory cells. Each bit controls one of the 43 SRAM c

in the ATOLL chip.

All cells within a 10 bit word of xxx port 0/1/2/3 are in the same order

([0:9]): hp_pio_snd, hp_pio_rcv, hp_dma_snd, hp_dma_rcv, np_snd, np_rcv_

np_rcv_buf1, lp_in, lp_out_buf0, lp_out_buf1.

Three bits are used to control the three SRAMs in the synchronization interface

additional bit is used to bypass the PCI-DLL.
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These bits are the corresponding signals to the BIST start bits. Due to different

of the SRAMs some checks are faster than others. But after 10 us all SRAM

tested, and all 43 bits should be set. Any bits remaining unset flag a flawed SR

3.5 Port interconnect
Figure 3-14.Structure of the port interconnect
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The port interconnect multiplexes the four ATOLL core data paths described in “Sync

nization interface” on page 60 between all four host ports: Slave-Write, Slave-R

Master-Write and Master-Read. It temporary buffers data in FIFOs to ease the imple

tation as an IC. The data nets would otherwise travel a long distance across the chip

the host ports to the synchronization interface, making the task of a physical implem

tion extremely difficult. And some additional pipeline stages on each path give the p

bility to assemble a few data words in this module, even if the path is blocked fur

ahead.

The implementation of both Slave paths is straight forward. An incoming address

the synchronization interface is decoded to find out the target host port. This can be

by analyzing only 2 bits of the address, according to “Address space layout” on pag

In case of the Slave-Write path, the addressed host port then pops the data from the

If data should be read from one of the host ports, the addressed host port starts deli

data, until the Slave-Read path deasserts the valid signal for the address, thus end

transfer. Both data paths also handle requests for the control/status registers.

In case of both Master paths, the access to them must be multiplexed between a

ports. Each path contains an arbiter, which observes request signals from the host

It grants the data path to only one host port, and releases the grant, if the request si

deasserted. This is forced by a host port itself after a specific amount of cycles to pr

one host port blocking the access to the data path. Arbitration is done based on

round-robin schedule policy. The Master-Write path is multiplexed between 8 reque

since two individual units inside each host port need to write data out to memory.

main unit is the one receiving messages in DMA mode, spooling data out to buffer reg

residing in main memory. The other unit mirrors relevant status information into mem

removing the need to poll the device for it. These status packets consist of only four 6

data words, thus the impact on the overall data throughput is relative small.

3.5.1 ATOLL control and status registers

A separate module1 hosts the control/status registers needed for managing the us

ATOLL. These are registers configuring the global state of the device, as well as hos

specific registers. Since they control important settings of the device, these reg

should not be visible nor accessible to the normal user. They are normally controlle

a supervisor, mostly via an administration interface. These registers provide the follo

functionality:

1.  designed and implemented by Prof. Dr. Ulrich Brüning
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• link driver control

• start/stop of DMA engines

• interrupt generation (mask & clearance)

• global counter

• debug control of the crossbar

• additional status information

All registers can be split into four categories: control, status, debug and extension

registers are aligned to cache line boundaries of eight 64 bit words. This is to preve

CPU from fetching more than one register with each access, possibly loading severa

isters into prefetch buffers in the system’s chipset. Though all registers are free o

effects, this decision was made to ensure that a user always gets the up to date sta

register.

In Table 3-1, all control registers are listed with their address offset relative to the de

base address, their mode (read/write, read-only) and whether they use 32 or 64 b

status registers make various status information visible to the user of the device. Th

listed in Table 3-2 in the same manner as in the previous table.

The internal crossbar offers the possibility to observe its status and to insert/pull ou

data in case of severe problems. Table 3-3 lists the eight registers, their use is des

in detail in the ATOLL Hardware Reference Manual [67].

Table 3-1.Control registers of ATOLL

register name offset mode, width comment

hw_cntl 20000h r/w, 32 hardware control, link enable, DMA engines

cnt_load 20040h r/w, 64 global counter load

hp_cntl 20080h r/w, 64 host port specific control

hp_dma_thres 200C0h r/w, 32 threshold value to determine receive mode (DMA/PIO

irq_timeout 20100h r/w, 32 IRQ time-out value

irq_mask 20140h r/w, 32 IRQ mask setting

irq_clear 20180h r/w, 32 IRQ clearance

hp_timeout 201C0h r/w, 32 host port time-out value for PIO mode
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Finally, two more registers are used as extension to the above set of registers to c

the debugging of the crossbar and to read/write data on 8 general purpose pins of th

as listed in Table 3-4.

In the following, all registers are described in detail. They are listed in groups of fu

tional classes, rather than in the strict sequence given in the tables.

Table 3-2.Status registers of ATOLL

register name offset mode, width comment

hw_state 20200h ro, 32 hardware state, clock configuration, DMA engines

cnt 20240h ro, 64 global counter value

hp_state 20280h ro, 32 host port specific status, last mode of access

lp_retry 202C0h ro, 32 link port retry counter

hp_irq_case 20340h ro, 32 host port IRQ cases, out of buffer space

irq_case 20380h ro, 32 global IRQ cases, link error, clock failure

Table 3-3.Debug registers of ATOLL

register name offset mode, width comment

debug_xbar0 20400h r/w, 64 debug info from crossbar port 0

debug_xbar1 20440h r/w, 64 debug info from crossbar port 1

debug_xbar2 20480h r/w, 64 debug info from crossbar port 2

debug_xbar3 204C0h r/w, 64 debug info from crossbar port 3

debug_xbar4 20500h r/w, 64 debug info from crossbar port 4

debug_xbar5 20540h r/w, 64 debug info from crossbar port 5

debug_xbar6 20580h r/w, 64 debug info from crossbar port 6

debug_xbar7 205C0h r/w, 64 debug info from crossbar port 7

Table 3-4.Extension registers of ATOLL

register name offset mode, width comment

debug_cntl 20600h r/w, 32 control of crossbar debug

gp_io 20640h r/w, 32 8 general purpose I/O pins
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Figure 3-15.Hardware control/status and global counter

Figure 3-15 depicts the hardware control/status register, as well as the global counte

isters. The latter is simply an internal counter, which is running with the internal ATO

core clock. A write access to thecnt_load register loads the written value into the counte

The hardware control/status registers assemble various configuration bits, which ar

described in more detail:

• hw_cntl[7:0] enables the DMA engines inside the four host ports. The lower four b

control the DMA engines in the receive unit, whereas the upper four bits control 

send DMA units. These bits are helpful, if the context of the host ports should be

switched, e.g. in case the device is multiplexed between several user processes

hw_cntl
reg 0
read/write

31 0

offset: 20000h

hp[x] enable

not_used63

DMA rcv
hp[x] enable
DMA snd

[x] = [3:0]

lp[x]
loopback

link retry
mux [1:0]

link[x]
driver
enable

xbar debug
mode enable

hw_state
reg 8
read-only

31 0

offset: 20200h

hp[x] DMA

not_used63

snd idle
hp[x] DMA
rcv idle

[x] = [3:0]

link[x]
activelink[x]

PLL lockXO PLL lock

internal PLL lock

clk phase synch.

cnt_load
reg 1
read/write

31 0

offset: 20040h

63

load written value
into 64 bit global counter

cnt
reg 9
read-only

31 0

offset: 20240h

63

64 bit global counter,
running with internal core clock
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• hw_cntl[15:12] controls a loopback mode of the link ports. Message data norma

sent over the link is then fed back into the device via the input path of the link po

This is helpful to isolate cable failure from internal chip problems

• hw_cntl[17:16] controls the generation of an interrupt based on link bit errors. Bi

errors force a link packet retransmission by the link port. This event is signaled by

link port, and accumulated in internal 4 bit counters.link_retry mux[1:0] determines

the significant bit of the accumulator, that triggers an interrupt. So one can configu

in a way that an interrupt is generated after 1, 2, 4 or 8 link packet retransmissio

• hw_cntl[23:20] enables the LVDS driver I/O cells, so link data is driven over the

cable

• hw_cntl[31] is used to activate a special mode for the crossbar debug registers

• hw_state[7:0] signals idling DMA engines in the host ports. This is useful to wait fo

completion of DMA jobs, after the DMA engines have been disabled. By accident,

bits for send/receive have been switched in relation to thehw_cntl bits

• hw_state[23:20] are set, if the corresponding link is active

• hw_state[27:24] are set, if the corresponding link PLL is locked

• hw_state[30:28] are set, if the two PLLs for the main ATOLL core clock are locked

The highest bit is set, if the phases of two clock signals are synchronizes, when

main clock should be switched from the on-chip clock signal to a link clock

Figure 3-16 shows the registers to control the host ports. Their meaning is as follow

• hp_cntl[3:0] determines the update frequency of status information written out by

PIO receive unit inside a host port. After n words have been received from the n

work and pushed into the 64 word data FIFO, the unit triggers an update of the m

rored FIFO fill level in main memory. To span the whole range of the FIFO, the 4

value is multiplied by 4, so updates can occur after 4, 8, 12, 16, ..., 60 words. If s

0, this mechanism is disabled. Setting this value is a trade-off between the need f

to date status information and limiting the bandwidth used for updates. The last w

of a message frame (header or data) always triggers the update, so one is inform

enough or all remaining data is available

• hp_cntl[7:4] does the same job, but for the PIO send module. If the fill level of th

FIFO varies by the threshold value, an update is triggered. Also writing the last w

of the data frame triggers an update
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• hp_cntl[31:8] have the same meaning likehp_cntl[7:0], but for the other host ports

Figure 3-16.Host port specific control/status registers

• hp_cntl[56, 48, 40, 32] can be used to disable the immediate forwarding of data

written into the PIO send data FIFO towards the network. If set, the PIO send un

waits, until all data of the message is written to the FIFO. This prevents the inse

of incomplete messages into the network in case the user process is interrupted

mal process scheduling, interrupt service) or simply crashes due to an error in the

gram code

• the 8 bit values specified in thehp_dma_thres register are used to determine the

mode used to receive a message. This threshold value is compared to the length

incoming message in the receive part of a host port, or more specific, to the leng

hp_cntl
reg 2 low
read/write

31 0

63 32
hp_cntl
reg 2 high

offset: 20080hread/write

hp[0] rcv

hp[0] PIO

not_used

hp_dma_thres
reg 3
read/write

31 0

offset: 200C0h

not_used63

hp[0] DMA

updatehp[0] snd
update

hp[1] rcv
updatehp[1] snd

update

hp[2] rcv
updatehp[2] snd

update

hp[3] rcv
updatehp[3] snd

update

snd complete
hp[1] PIO
snd complete

hp[2] PIO
snd complete

hp[3] PIO
snd complete

thresholdhp[1] DMA
threshold

hp[2] DMA
thresholdhp[3] DMA

threshold

hp_timeout
reg 7
read/write

31 0

offset: 201C0h

not_used63

hp[0] PIO
timeouthp[1] PIO

timeout

hp[2] PIO
timeouthp[3] PIO

timeout

hp_state
reg 10
read-only

31 0

offset: 20280h

not_used63

hp[0] PIO
rcv tags

hp[0] PIO
snd last
mode

hp[1] PIO
rcv tags

hp[1] PIO
snd last
mode

hp[2] PIO
rcv tags

hp[2] PIO
snd last
mode

hp[3] PIO
rcv tags

hp[3] PIO
snd last
mode
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the data frame. It is forwarded to the DMA-receive unit, if the length is greater or

equal to the threshold value. So setting it to 0 pipes all messages to the DMA-re

unit, disabling the PIO mode for receiving messages. Since length and threshold

specified in terms of 64 bit data words, the largest message to be received via the

mode is 254*8=2032 byte large, if the threshold is set to FFh

Figure 3-17.Loading the PIO-receive time-out counter

• thehp_timeout register specifies an upper limit for the time data has been pushe

into the data FIFO in the PIO-receive unit without reading it. This mechanism sh

prevent data to clog in the host port and to block a path backwards into the netw

An internal 32 bit counter is loaded with the 8 bit time-out value each time a data

word is shifted in or out of the FIFO. To span a large time segment, each second b

the upper 16 bit is loaded with a bit from the time-out value, as shown in Figure 3-

This makes it possible to configure a time-out of up to 5.7 s, with steps of 262 us

assuming a 4 ns clock cycle. Each cycle nothing happens, the counter is decreme

If it runs down to 0, an interrupt is generated to force the host to pull the data ou

the host port

• thehp_state register provides some information about the status of the PIO unit.

case of an interrupted or incomplete PIO-based message transfer, one must be a

recover the situation, avoiding the need to reset the complete device. So driver s

ware needs to be able to detect, in which state the PIO unit was left by a user pro

In case of the PIO-Send module, this register shows the mode of the last access

unit. More specific, it shows the tags of the last data word written to the FIFO.

According to the tags, driver software is able to complete the message by writin

missing data to the FIFO. In case of the PIO-Receive unit, one simply sees the ta

the data word at the head of the FIFO. So software is able to pull out the rest of a

sage one by one. The 4 bit tags are {Last, Data, Header, Route}, according to the

frames a message is composed of, and an additional bit to mark the last word o

frame

timeout value
07

31 16

32 bit timeout counter

123456

0

1

0...00

1 1 1 0 0 0 0

1 1 1 1 0 0 0 000000000
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Figure 3-18.Interrupt registers

Figure 3-18 gives an overview about all registers related to the generation of interr

There are various sources for interrupt generation, and a user is able to mask those

tions, which should not result in a system interrupt. Each register is described in det

the following:

• the irq_timeout register is used in case the host system has crashed and is not ab

serve an interrupt. In such a case, the node should not block communication in th

of the cluster by letting pending incoming messages block paths backwards into

irq_timeout
reg 4
read/write

31 0

offset: 20100h

not_used63

32 bit IRQ timeout value

irq_mask
reg 5
read/write

31 0

offset: 20140h

not_used63

mask bits corresponding to irq_case

irq_clear
reg 6
read/write

31 0

offset: 20180h

not_used63

clear corresponding IRQ bit in irq_case

hp_irq_case
reg 13
read-only

31 0

offset: 20340h

not_used63

hp[0] irq case
hp[1] irq case

hp[2] irq case
hp[3] irq case

hp[x] irq case[4:0] = unused hp[x] irq case[6] = data region full
hp[x] irq case[7] = desc. table fullhp[x] irq case[5] = access to empty fifo

irq_case
reg 14
read-only

31 0

offset: 20380h

not_used63

lp[x]

xbar-in

xbar-out
retryhp[x]

PIO rcv
error

hp[x]
DMA rcv
error

link[x]
cable
plugged

link[x]
cable
removed

link[x]
clock
active

link[x]
clock
failure
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network. In case of such a severe system failure, the device should simply consum

incoming data traffic. So every time an interrupt request is signaled by the devic

internal counter is loaded with this time-out value. If it runs down to 0 without an

reaction from the host side, it is assumed that the host is down. This information

then flagged to all units

• the irq_mask register is used to mask specific interrupt sources. The bits corresp

to the IRQ bits in theirq_case register. An interrupt is masked, when its bit is set to

• the irq_clear register is utilized to clear a corresponding interrupt in theirq_case

register. Writing a 1 to a bit clears the interrupt

• thehp_irq_case register offers some more information in case an interrupt is gen

ated by a host port. It flags a read access to an empty data FIFO in the PIO-rece

unit. In case of the DMA-receive module, two data buffers in main memory can b

filled to a level, where no more messages can be written out to memory. These ar

descriptor table and the data region. These events are flagged by this register. T

remaining 5 bits of a byte used for each host port were used in previous version

late modifications rendered them unnecessary

All possible interrupts are flagged by theirq_case register. The specific bits are

described in the following:

• irq_case[3:2] are set if error conditions occur in one of the input or the output pa

of the crossbar

• irq_case[7:4] flag an amount of bit errors and link packet retransmissions on a li

The actual limit for the generation of this interrupt is controlled via the two

lp_retry_mux bits in thehw_cntl register

• irq_case[11:8] are used to flag an error in the PIO-receive units of a host port. T

were intended to be the ‘logical OR’ of all possible PIO error conditions, which a

then specified in thehp_irq_case in detail. But due to late modifications all but one

error condition were dropped, so these bits are basically the same as thehp[x] irq

case[5] bits, showing a read access to an empty PIO-receive data FIFO

• irq_case[15:12] show a general error in the DMA-receive units of a host port. Th

are the ‘logic OR’ of the two error conditions specified in thehp_irq_case register

• irq_case[23:20] andirq_case[19:16] observe the status of link active signals and

are set, if a link cable is plugged or unplugged
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• irq_case[31:28] andirq_case[27:24] observe the status of the associated link cloc

and flag their activity or failure

Figure 3-19.Link retry register

The lp_retry status register, as shown in Figure 3-19, provides for each link the valu

an 8 bit accumulator counting bit errors on links and the corresponding link pa

retransmissions. They can be used to measure bit error rates over a greater time r

Besides the registers presented over the last pages, there are other, less importa

which are not described in detail here. There is an additional registergp_io to control

8 general purpose I/O pins. And some registers are used to debug the internal status

crossbar. More specific information about them can be looked up in the ATOLL H

ware Reference Manual [67].

In the following, a typical interrupt service sequence is given:

• assuming the descriptor table of host port 3 is full and the receiving part is not ab

spool out a new message to memory, the host port would flag this event to the in

rupt control unit

• this unit compares the event with the corresponding bit in theirq_mask register to

make sure the event is not masked

• it then raises the interrupt line, which is driven out to the PCI-X bus by the PCI-X b

interface

• a system trap calls the ATOLL driver software to deal with the interrupt

• the driver software checks theirq_case register to figure out the reason for the inte

rupt

• it allocates memory space for the descriptor table, either by enlarging it or movin

messages in a temporary buffer

lp_retry
reg 11
read-only

31 0

offset: 202C0h

not_used63

lp[0] retry
counterlp[1] retry

counter

lp[2] retry
counterlp[3] retry

counter
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• the interrupt is then cleared by the software by writing to the corresponding bit of

irq_clear register. The host port resumes processing messages as soon as there

again free slots in the descriptor table

3.6 Host port
Figure 3-20.Structure of the host port

The host port [68]1 is the main building block of the ATOLL chip. It is responsible fo

data transfer from or to the network, either by PIO or DMA. Each host port has a s

working set of some status and control registers needed to access data structures r

in main memory. Data paths for sending and receiving messages are strictly sepa

offering the possibility of multiple concurrent data transfers into and out of the netw

Each mode is also handled separately, so four unique modules are used to hand

1.  Berthold Lehmann implemented an early simulation model of the host port
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transfer: PIO-send, PIO-receive, DMA-send and DMA-receive. Another unit keeps

working set and interfaces with all transfer modules. A sixth module called replicat

responsible to update relevant status information residing in main memory. This gi

CPU fast and cachable access to information without the need to frequently po

device. Finally, two units are used to control the access of the host port to the interf

network port. In case of sending messages, the access must be multiplexed betwe

PIO- and DMA-send units. For incoming messages, one must forward them either t

PIO- or the DMA-receive unit. This decision is configurable and relies on the size o

incoming message. Figure 3-20 depicts the overall structure of a host port.

Figure 3-21.Interface between host and network port.

The interfaces towards the port interconnect correspond to the ones between the por

connect and the synchronization interface described earlier. So DMA-receive and

cator use a Master-Write interface, DMA-send uses the Master-Read interface, PIO

the Slave-Write interface, and the PIO-receive unit utilizes a Slave-Read interface. O

network port side, the data protocol is even more simple. A stream of tagged 64 bit w

is transferred via the previously mentioned two-way handshake signaling. Two inde

dent interfaces handle incoming and outgoing data traffic in parallel. Figure 3-21 de

the interface signals. The tags associate each data word with one of the frames

ATOLL message, and additionally mark the last word of a frame.

3.6.1 Address layout

Each host port occupies 4 consecutive 8 Kbyte pages in the address space of the A

device, as described earlier in “Address space layout” on page 56. These are used to

fer data in PIO mode by read/write accesses to specific addresses. For the DMA-

data transfer, only a small working set is controlled via this address area. Figure

shows the general use of each page, whereas the detailed address layout of each s

page is described later in the corresponding sections. As stated earlier, ATOLL

8 Kbyte pages, but leaves the upper 4 Kbyte unused. Different pages might need dif

memory control/caching options, and this layout offers the possibility to support a w

variety of architectures with different page sizes.

data [63:0] data

valid
stop

is_last
is_data

is_header
is_route

data is valid

last word of a frame
data frame
header frame
routing frame

no space for data
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Figure 3-22.Host port address layout

3.6.2 PIO-send unit

Programmed I/O is intended as a fast and efficient way to communicate small amou

data. A lot of parallel applications tend to transfer only a few bytes per message, spre

global parameters or exchanging border values of a grid-based computation. A D

based data transfer involves copying data into buffers, setting up a job descriptor and

ing for the device to complete the job. This overhead can be ignored for larger mess

but adds up for small ones, significantly decreasing performance. So a method is n

to transfer a few words with nearly no overhead at all. These ideas led to the imple

tation of the PIO-send mechanism found in the ATOLL chip.

Figure 3-23.Mapping a linear address sequence to a FIFO

host port base address

4 Kbyte

+02000h

+06000h

+04000h

8 Kbyte page
PIO-send

unused

unused

send
control

PIO-receive

unused

control
receive

unused

writes to a

D0
D1
D2
D3

0000h
0008h
0010h
0018h

data pushed in order

linear address
sequence

D
0

D
1

D
2

D
3

into send fifo
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The FIFO for keeping the data to be sent is directly made accessible to the user. The

X bus is most efficiently used with burst transfers, combining as much data as pos

into a single transaction. So pushing data into the FIFO is done by writing the data

linear sequence of addresses. This gives the data the possibility to assemble itself i

and chipset write buffers to form a large burst transfer. Since the PCI-X bus delivers

strictly in order, there is no chance of data getting mixed up by out of order delivery.

mechanism is shown in Figure 3-23.

Figure 3-24.Layout of PIO-send page

But in addition to the raw data, the PIO-send unit also needs to know the specific ta

the data word, according to the framing of ATOLL messages. This is done by provi

different regions inside the page for each frame. And since also each last word of a

must be marked, there are some addresses for only the last words of a frame. Mo

message is normally payload data, so this area has been assigned the largest

region. All address areas are depicted in Figure 3-24, together with their start offset

tive to the page base address and their size in terms of 64 bit words. Since the FIFO

depth of 64 words, all areas are sufficient to serve the largest bursts possible.

Figure 3-25 gives an overview about the structure of the PIO-send module. Apart

normal message data, this module also processes data which should be written in

status/control register file of the host port. So incoming data is first analyzed, and

handed over to the register file or pushed into the send FIFO. As soon as data is p

into the FIFO, control logic requests the access to the network port. If the acce

page base address

+0200h

routing
64 words

header
64 words

+0400h
data

256 words
+0C00h

last routing
32 words

+0D00h
last header

32 words
+0E00h

last data
32 words

+0F00h
unused

32 words

4 Kbyte page
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granted, data is forwarded to the network port. This immediate forwarding of the mes

can be delayed until a full message has been written to the FIFO by the configuratio

in thehp_cntl register described earlier. A separate unit is monitoring the fill level of

FIFO and passes this information on to the replicator and the register file. Assum

message with one routing word, 4 header words and 8 data words, a typical seque

sending a message via the PIO mode is as follows:

• first, the user checks the FIFO fill level to make sure, that there is enough space l

keep all message data

• the single routing word is written to the ‘last routing’ area

• 3 header words are written to the ‘header’ area, the 4.word to ‘last header’

• 7 data words are written to the ‘data’ area, the 8.word to ‘last data’

Figure 3-25.Structure of the PIO-send unit

3.6.3 PIO-receive unit

First versions of the PIO-receive unit implemented the same method as used by the

send module, mapping the data FIFO to a set of contiguous address areas. But pro

come up with this approach, when one considers prefetching data from the FIFO at

ous levels (chipset, CPU cache). Declaring the PIO-receive page as prefetchable is

sary to enable efficient data transfer between the device and the CPU. But one ca

assure that data prefetched is also consumed by the CPU. E.g., in case of an interrup

message
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prefetched data might get lost, since a read access to the FIFO always pops the d

of the FIFO as side effect. So a subsequent reload of previously prefetched data res

delivery of wrong data.

Figure 3-26.Utilizing a ring puffer for PIO-receive

To deal with this problem one needs to remove the side effect of the read access. T

fore, the decision was made to give the user direct control over the deletion of data

the FIFO. This is done by treating the FIFO as a pointer-controlled ring buffer base

RAM (in fact, that is exactly the implementation method for large FIFOs in ATOLL).

data is pushed into the FIFO by the interfacing network port, advancing the write po

of the ring buffer. A user is able to read data from the ring buffer, and frees up the acc

slots of the ring buffer by writing a new value of the read pointer to the unit. This me

anism is shown in Figure 3-26.

Figure 3-27.Layout of PIO-receive page

The page assigned to the PIO-receive module now references the ring buffer, where

buffer is continuously mapped all over the page, as depicted in Figure 3-27. This is si

done by taking the lower 6 bits of the start address as offset into the ring buffer. This

0 63
data fifo

usedfree

write ptrread ptr

data from
network

a push advances
the write ptr
automatically

the CPU directly
reads data by
accessing
relevant slots

after reading data,
the CPU advances
the read ptr by
updating its value

page base address

+0200h

ring buffer
64 words

ring buffer
64 words

ring buffer
64 words

... all addresses
are mapped to
ring buffer ...

+0E00h

+0400h
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enables a user to read across the upper border from word 63 to word 0 without inte

tion. The first address is taken as start offset, then the unit delivers data as long

transaction is valid.

Figure 3-28.Structure of the PIO-receive unit

Figure 3-28 shows the structure of the PIO-receive unit. An incoming address is first

lyzed to detect, if the read request targets the register file or the data FIFO. In case

register file, the relevant offset is simply forwarded and data is returned on the next c

When addressing the ring buffer, data is popped from it until the transaction is ended

internally, the pop operation is done using a temporary FIFO pointer. The read po

which is also used to determine the fill level of the FIFO, is left untouched, until i

explicitly updated by a write access to its entry in the host port register file.

3.6.4 Data structures for DMA-based communication

DMA-based communication is a good way to offload work from the main CPU. The C

communicates with the device via a set of data structures and job descriptors, w

exactly describe the work the device should do. There are two main data areas resid

main memory for DMA-based communication in ATOLL, called data region (DR) a

descriptor table (DT). The data region is simply a place to assemble message data,

is to be send into the network by the device. This data region is needed, since ATOL

only deal with physical addresses, and not with the virtual addresses of the sourc

address
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locations in the user’s virtual address space. Though this is not impossible to imple

as demonstrated by Quadrics QsNet, its complex implementation was abandoned

first version of ATOLL. So ATOLL needs a pinned-down memory area to tempor

buffer the message payload.

Figure 3-29.Data region

Figure 3-29 depicts the layout of a data region. A base address marks the begin

whereas an upper bound marks the end of the area. Read and write pointers are u

index into this region, which is used as ring buffer. In contrast to header and data pay

the routing information of a message is normally static. At system start, all routing p

to all other nodes are computed and remain fixed during the application run. So to pr

the copying of the same data again and again into the data region, the decision was

to provide a small static area to keep the routing table. This is done by defining a l

bound, which is used as next offset in case data hits the upper bound. Separat

regions exist for sending and receiving data, with the receiving data region lacking a l

bound. It is simply not needed, since incoming messages have no routing informat

The second data area is the descriptor table, which keeps fix-sized job descriptors fo

DMA message. The job descriptors consist of four 64 bit words. Three words are us

describe the three message frames, their offset relative to the base address of th

region and their length. The 4.word is an additional tag, which can be utilized by the

ware to distinguish between different protocols or message types.

Figure 3-30 shows the layout of a job descriptor. The offsets point to the associated

data, relative to the base address of the data region. Lengths are given in terms of

words. The upper byte of the routing length is used as an additional command byte

rently, only one special command is encoded. By setting the lowest bit of this byte

one can mark a job as non-consuming. This means that data is read from the data

as normal, but the read pointer is not advanced afterwards. This offers the possibi

routing table

free

header/data

DR base addr

lower bound

upper bound

read ptr

write ptr

free
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reference the data again. This method can be used to implement broadcasts on the s

side by copying the payload just once into the data region and referencing it with mu

descriptors.

Figure 3-30.Job descriptor

The command byte is used on the sending side only. When receiving a message, th

is used as a status byte to flag special events associated with the message. In the

version of ATOLL, only the lowest bit is used to mark incomplete messages. This e

occurs, when the number of words received from the network differs from the mes

length information, which is always at the start of the header frame of a message.

this can occur, when a user process core dumps while sending a message in PIO

and the driver software completes the message, but not with the right number of w

Similar to the data region, there are separate descriptor tables for the DMA-send a

DMA-receive units. As described earlier, a host port generates an interrupt when

resources are exhausted on the receiving side. Driver software should then always f

a large amount of memory space to make sure that messages waiting to be received

block the network.

3.6.5 Status/control registers

The status/control registers needed for a host port are stored in a separate register

interfaces with all other components of a host port to gather the status data neede

spreads out the control information to the units. A separate page is used for the sen

the receive part, but only nearly a dozen of registers are implemented for each page

of them store the base addresses and offsets needed for DMA-based message t

whereas only a few are needed to control the PIO mode.

Table 3-5 lists all registers of the send page. The offsets are relative to the page

address. All registers are 64 bit words, but not all bits might be relevant. Only the

routing:

header:

data:

offset length

tag

cmd
byte

03163 23

offset

offset

length

length
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addresses occupy all 64 bits, the other offsets are 32 bit wide. And the fill level of the

send FIFO fits into the lower 6 bits of the associated register.

Table 3-6 lists all registers of the receive page. The DMA registers are almost the sa

for the send page, except the unnecessary lower bound register for the data region

Besides the fill level of the PIO-receive data FIFO, the receive page also includes a

ister for the FIFO read pointer. Writing a new value to it is equivalent to shifting out

previously read data words. Each host port has also read access to the internal

counter, which is located in the supervisor initialization registers described earlier.

Table 3-5.Send status/control registers of a host port

register name offset mode, width comment

snd_DT_base 0000h r/w, 64 base address of the DT

snd_DT_read_ptr 0008h r/w, 32 read pointer of the DT

snd_DT_write_ptr 0010h r/w, 32 write pointer of the DT

snd_DT_upper_bound 0018h r/w, 32 upper bound of the DT

snd_DR_base 0020h r/w, 64 base address of the DR

snd_DR_lower_bound 0028h r/w, 32 lower bound of the DR

snd_DR_read_ptr 0030h r/w, 32 read pointer of the DR

snd_DR_write_ptr 0038h r/w, 32 write pointer of the DR

snd_DR_upper_bound 0040h r/w, 32 upper bound of the DR

snd_repl_base 0048h r/w, 64 base address of the replicator

snd_fifo_fill_level 0800h ro, 6 fill level of the PIO-send data FIFO

Table 3-6.Receive status/control registers of a host port

register name offset mode, width comment

rcv_DT_base 0000h r/w, 64 base address of the DT

rcv_DT_read_ptr 0008h r/w, 32 read pointer of the DT

rcv_DT_write_ptr 0010h r/w, 32 write pointer of the DT

rcv_DT_upper_bound 0018h r/w, 32 upper bound of the DT

rcv_DR_base 0020h r/w, 64 base address of the DR

rcv_DR_read_ptr 0028h r/w, 32 read pointer of the DR

rcv_DR_write_ptr 0030h r/w, 32 write pointer of the DR

rcv_DR_upper_bound 0038h r/w, 32 upper bound of the DR

rcv_fifo_fill_level 0800h ro, 6 fill level of the PIO-receive data FIFO

rcv_fifo_read_ptr 0808h r/w, 6 read pointer of the PIO-receive data FIFO

semaphore FC00h r/w, 64 semaphore, set on read as side effect

cnt FE00h ro, 64 global counter
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simply spread out to all host ports, so user applications can e.g. precisely time c

ATOLL library calls.

Another special feature is the semaphore register. It is intended to be utilized in ca

host port needs to be multiplexed between several applications. This is normally no

case for production-type clusters, since performance is degraded significantly. B

might make sense for application development or debugging purposes. A write a

simply writes the specified data to the register. But a read access returns the stored

and, as side effect, sets all bits to 1. So one could initialize the semaphore by writin

to it. When several user processes try to read the register, only one gets the 0 as va

others see all bits set to 1. So the one with the 0 has acquired the semaphore, all

must wait, until the locking application frees it by writing a 0 back to the register.

3.6.6 DMA-send unit

Figure 3-31.Control flow of sending a DMA message

The DMA-send unit is responsible to observe the data areas for sending messages,

process all valid entries in the send descriptor table. If a job is available, it loads

descriptor, and subsequently loads all message frame data. As soon as requested

returning from the PCI-X interface it is forwarded to the network port. Figure 3-31 sh

the general control flow of sending a message via the DMA mode, for both the user a

cation and the DMA-send unit. The application triggers the DMA-send control logic

writing new values of the write pointers for DT & DR into the host port. These are c

write header & data
to data region

create new job descriptor
in descriptor table

update DT & DR write
pointers in host port

write data

write desc.

trigger host port

application DMA-send unit

load the job desc.
from DT

load desc.

load all 3 frames from DR
and forward it to network

load message

update DT & DR read
pointers in host port

free memory
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tinuously monitored by the host port. As soon as read and write pointers of the desc

table are unequal, a valid job entry is present and processed.

Figure 3-32.Structure of the DMA-send unit

Figure 3-32 depicts the structure of the DMA-send unit. It is split up into two subdesi

One part is responsible for requesting data from memory, labeled with ‘job creatio

the figure. As described earlier, the Master-Read interface implements a split phase

action scheme, where blocks of up to 32 words can be requested. Each job is assi

unique ID, with up to 8 jobs in progress. The ‘job creation’ part now keeps copies o

relevant status/control registers in a working set module. This working set is continuo

updated from the status/control register file of the host port.

As soon as an entry is detected in the descriptor table, it is requested from memor

stored in the working set. Step by step the ‘job creation’ part now computes the

addresses from fixed base addresses and the offsets given in the descriptor. A set

is then generated to fetch all frame data from memory. The associated job IDs are p

into a job queue. This is necessary since multiple host ports might request data in an

trary sequence. So each host port must keep the jobs it has requested to match the

the ID of returning jobs.
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The second part is called ‘job completion’ and is responsible to accept the data the

part has requested. It therefore monitors the IDs of incoming jobs to detect the on

should process. Incoming data is then placed in a FIFO, marked with its correspo

tags. As soon as data is in the FIFO, this part requests access to the network p

granted, data is transferred towards the network. Since the FIFO can only store

64 words, the unit cannot request more data. Doing so could cause all data paths

blocked in case the path towards the network is not available. This can happen whe

the PIO-send unit is transferring a message, or the path through the crossbar is oc

by a message just passing through the ATOLL chip.

3.6.7 DMA-receive unit

Figure 3-33.Control flow of the DMA-receive unit

The DMA-receive unit is the counterpart to the DMA-send unit. It gets message data

the network port and spools this data out to the DMA data structures in main mem

Figure 3-33 shows the main control sequence of the unit. An incoming message co

of the header and the data frame, since the routing frame is no more needed.

Similar to the DMA-send unit, the DMA-receive module keeps the relevant registers

small working set. It then writes header and data out to memory. After all message

has been processed, it assembles a descriptor pointing to the data spooled out to m

This job descriptor is then stored in the receive DT, which is monitored by the user a

cation. The write pointers of both DT & DR are updated to reflect the newly arrived m

sage.

DMA-receive unit

spool header out to.
memory

store header

spool data out to memory

store data

write desc. to DT
update write ptrs

store desc.
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Figure 3-34.Structure of the DMA-receive unit

Figure 3-34 gives an overview about the structure of the DMA-receive module. Incom

data is first stored in a FIFO. Addresses are computed for each data word from the re

values of the working set. Prior to handing data over to the Master-Write interface o

port interconnect, the control logic makes sure, that enough memory space is availa

store the message in the DMA-receive data structures. If this is not the case, the un

erates an interrupt and waits, until software frees up memory and updates the releva

pointers of DT & DR.

Though each data word is transferred with its address, it makes no sense to mix mu

data streams from several active DMA-receive units on a word-by-word basis. So as

as data enters the FIFO from the network side, the unit requests exclusive access

port interconnect. If granted, it keeps the request up until no more data is available.

then the request is deasserted, and other host ports might get access to the port in

nect. This way a strong fragmentation of the data stream is avoided, with the proba

to assemble larger burst transfers.

3.6.8 Replicator

The replicator is used to avoid polling status registers of the ATOLL device, which co

degrade overall system performance by interfering with data transfer bursts. Those

ters needed by application software are automatically written out to a separate port
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main memory. There are 8 registers in total written out, separated in two group

4 registers, one for send and one for receive operations. An update consists

4 registers of each block. New register values are handed over to the replicator, and

tional trigger signals force it to update the values in memory.

The replicator utilizes the same Master-Write interface of the port interconnect a

DMA-receive unit. Table 3-7 shows the layout of the mirrored registers in main mem

Each host port can be assigned a unique base address for its replicator through th

ciated register in its control/status register file. The offsets given are relative to this

address. Though located in normal main memory, those locations are declared as

only, since they should not be altered by software (except initialization at system star

The read and write pointers of the DMA modes are updated on each change. This i

true for the semaphore and the read pointer of the PIO-receive FIFO. But as descri

previous sections, the update frequency of the FIFO fill level can be configured. So w

utilizing these registers in the replication area one must keep in mind, that the real

might differ from the mirrored one by up to the threshold value. E.g., if an update is m

every 8 words and the mirrored FIFO fill level is 32, then the real FIFO fill level ins

the host port can be in the range 25-39. And even worse, there can be pending u

waiting to be transferred to main memory in the device. This might happen if the

paths are congested due to multiple active host ports.

So before interpreting the value in the replication area, an application should rea

value directly from the device once to make sure, that it is the same as the mirrored

And while doing calculations with these values, e.g. to check if the PIO-send FIFO

enough space left for a message to send, the software should take the thresho

account.

Table 3-7.Layout of the replicator area

register name offset mode, width comment

snd_DT_read_ptr 0000h ro, 32 read pointer of the send DT

snd_DR_read_ptr 0008h ro, 32 read pointer of the send DR

snd_fifo_fill_level 0010h ro, 6 fill level of the PIO-send data FIFO

semaphore 0018h ro, 64 current semaphore value

rcv_DT_write_ptr 0020h ro, 32 write pointer of the receive DT

rcv_DR_write_ptr 0028h ro, 32 write pointer of the receive DR

rcv_fifo_fill_level 0030h ro, 6 fill level of the PIO-receive data FIFO

rcv_fifo_read_ptr 0038h ro, 6 read pointer of the PIO-receive data FIFO
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3.7 Network port

The network port is converting the tagged data stream of 64 bit words into a byte-

stream according to the link protocol defined for ATOLL and vice versa. It is split i

two separate units for sending and receiving messages. There is no interaction be

those two units, so they both can process messages concurrently. The sending pa

generates CRC values for error detection later in each network stage.

3.7.1 Message frames and link protocol

As stated earlier, an ATOLL message consists of three frames: routing, header and

The routing frame is consumed while the message is routed towards its destinatio

only header and data frame enter the receiving path of a network port. Each frame co

of several link packets, which can consist of up to 64 data bytes. Only full 64 words

used to form a message, so the number of data bytes is always a multiple of 8. At lea

data word must be in every frame to ease the implementation.

Figure 3-35.Message frames

Figure 3-35 gives an overview about the framing of ATOLL messages and the link

tocol used for the byte-wide data stream in the network. Separate control bytes are

to enclose the normal message data bytes and to ensure a correct framing. An add

ninth bit is used to distinguish between control and data bytes (0 = data, 1 = cntl).

There are 4 control bytes used at the network port to build up the framing of message

• SOF (Start Of Frame) is the 1.byte of a new frame

message:

routingframes:

SOP

header data

R H D

EOM

CRCEOP... R SOP ... H EOP

H CRC... H EOP

SOP D... EOP

D D...
multiple link packets
per frame possible

frames start with
a SOP byte

the last link packet
ends with an EOM byte

CRC bytes protect
message data

H H D D

CRC

CRC
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• a CRC value is computed for each link packet in the header and data frames. It 

appended to the end of the link packet

• EOP (End Of Packet) marks the end of a link packet

• EOM (End Of Message) marks the end of the whole message, and replaces the

byte of the last link packet

Link packets in the routing frame do not have a CRC value attached, since one mus

on bit errors in routing bytes immediately. This is handled by using an error detec

code for routing bytes, which is discussed in detail later on.

Each frame can be composed of several link packets, but the normal case should b

a single link packet is enough for the routing and the header frame. E.g., 64 routing

are sufficient to define routing paths in a 2D grid of 32 x 32 = 1024 nodes. A special

straint exists for the header frame. The 1.word of it must be the length of the mes

given as separate 32 bit values for header and data frame. The 2.word must be th

This is necessary to give the host port at the receiving side the possibility to check a

omously, if the message should be received in PIO or DMA mode. As stated earlier

decision is made based on the length of the message and a configurable thresho

DMA-send unit automatically ensures this constraint, but e.g. software utilizing the P

send mode has to take care of this constraint, too.

3.7.2 Send path

Figure 3-36.Structure of the send network port unit
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Figure 3-36 depicts the overall structure of the send unit of the network port. It ca

viewed as a 3-stage pipeline consisting of an input, a processing and an output stag

host port delivers a stream of tagged 64 bit words. This data is temporary stored in a

FIFO. The following processing stage now shifts out the data word by word and for

stream of bytes, tagged with the cntl/data flag bit. It inserts control bytes according t

link protocol where necessary. A CRC generator computes the CRC value of the

cessed data. After a full link packet has been processed, this CRC value is append

the link packet is completed by an EOP or EOM control byte. This stream of link da

pushed into an output FIFO, which keeps the data until it is transferred towards the c

bar.

3.7.3 Receive path

Figure 3-37 shows the structure of the receive unit inside the network port. It basi

consists of the same 3-stage processing pipeline as the send part, but only in the op

direction. Data assembles in a small input FIFO. The following protocol stage strip

the control bytes from the link data stream. It rebuilds a stream of tagged 64 bit w

There might be some unused routing bytes left at the head of the message. This ha

e.g. when only 3 network hops are needed. Since frames are made of multiple

words, 5 bytes are unused. These are simply dropped until the header frame begin

Figure 3-37.Structure of the receive network port unit

The output stage is a bit more complex than in the send unit. Incoming link packets m

be marked as corrupted, since transmission errors were discovered somewhere alo

path the message took through the network. These packets end with a special error c

byte EOP_ERR (End Of Packet ERRor), instead of the normal EOP byte. Since

packets are automatically retransmitted to the network stage which detected the err
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same link packet follows the corrupted one in the data stream. So the corrupted link p

needs to be filtered out at the receive unit of the network port. This means data pu

into the output stage cannot be forwarded to the host port prior to the complete rece

of a correct link packet.

Providing only one output FIFO would result in a significant performance penalty, s

the data stream would be repeatedly stopped and restarted. This would happen

pushing data into the FIFO and popping data from it cannot be overlapped. In case o

neous link packets one would otherwise need to keep track of which words to transfe

which ones to delete.

To keep data flowing a second FIFO was implemented, and the data path switches o

link packet between them. This way, the normal operation of this unit is as follows:

• a link packet is processed and pushed into FIFO 0

• after making sure it is valid, the next incoming packet is pushed into FIFO 1 and

control logic of the output stage is ordered to forward the data in FIFO 0

• while the second link packet is processed, the first one is transferred to the host

• after finishing the second packet, FIFO 0 is empty again and roles are switched 

Simulations showed a significant gain in sustained throughput of the unit using two o

FIFOs instead of just one. In case of only one FIFO, a few wait cycles were introduc

the network port. But even more serious was that these short periods of blockages

data stream triggered the flow control of previous links, causing larger idle times on

links along the data path.

3.8 Crossbar

The crossbar [69]1 is a full-duplex 4x4 switch, providing an all-to-all connection betwe

the 4 network ports on one side and the 4 link ports on the other side. It is mad

8 identical crossbar ports, which again are split up into an input and an output uni

additional debug interface observes the status of the crossbar and can be utilized to r

major failures, like deadlocks or misrouted messages. The overall structure of the cro

is shown in Figure 3-38.

The input unit of a crossbar port strips off the first routing byte of an incoming mess

and sets the request for the addressed crossbar port. This can be any of the 8 ports,

1.  designed and implemented by Prof. Dr. Ulrich Brüning and Jörg Kluge
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ing itself. It then waits for the other side to grant the access and forwards data, unt

end of the message is reached. To not monopolize a specific crossbar port, each inp

deasserts a request for at least 3 cycles between back-to-back messages. This giv

ports a chance to request the port.

Figure 3-38.Structure of the crossbar

The output unit of a crossbar port arbitrates its data path in a fair round-robin fas

Once a request is served, data flows into the unit and is buffered in a small FIFO.

following unit signals its ability to accept data, the message is transferred out of the c

bar. All interfaces use the two-way handshaking introduced earlier.

The additional debug interface observes the status of the crossbar and can be acces

the debug registers listed in “ATOLL control and status registers” on page 71.

detailed implementation of the crossbar and the use of the debug interface is beyo

scope of this document. Further information can be looked up in the ATOLL Hardw

Reference Manual [67].
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3.9 Link port

The link port is the gateway to the network. It directly drives and receives signals ove

link cables. As all other top-level building blocks of ATOLL, it is also split up into ind

pendent units for sending and receiving data. Its main task is to ensure proper and

free transmission of data. This includes a reverse flow control protocol to prevent b

overflow on the receiving side in case of blocked data paths.

A unique feature of an ATOLL link is its per-link error detection and correction. In co

trast to the end-to-end error detection and software-driven retransmission found in

networks, ATOLL link packets are checked in each network stage. Retransmissi

completely handled by hardware and occurs immediately on the link the error was i

duced. This provides an extremely fast way to solve the issue of rare bit errors due to

ronmental influences on the link cables.

3.9.1 Link protocol

Two types of bytes make up the link data stream: data and control bytes. They are d

entiated by an additional ninth bit. Data bytes itself can be separated into two cla

routing bytes and normal payload bytes for the header and data frames. A routing b

special, since it carries the information of the output port its message should take

next crossbar. A bit error in a routing byte would result in catastrophic failure of the

work. The message would take a different path then specified, causing it to arrive at a

destination, or even worse, let it end somewhere in a network stage due to missing ro

information. So one must react immediately in case of errors in routing bytes, the no

CRC link packet protection scheme of the other two frames is useless here.

Therefore, the upper bit of a routing byte is a parity bit calculated from the remain

7 bits. This offers the opportunity to detect a single-bit error immediately. Such a fa

bit is replaced with a special CANCEL control byte, signalizing all other downstre

units that this routing link packet is to be ignored. It is then retransmitted just like

other erroneous link packet.

Table 3-8 gives an overview about the format and encoding of all data and control b

The first two rows show the encoding of normal data and routing bytes, whereby bitd[8]

is the bit distinguishing between data and control bytes. The rest of the table depic

encoding of all 11 control bytes used in the ATOLL link protocol.
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Since only data bytes are protected by link packet CRCs or parity bits, another me

had to be found for the control bytes. They are protected by a hamming code, which

error correcting code (ECC). So an error is not only detected, but also corrected on th

This is accomplished by using 3 bits of the byte as parity bits, marked asp[2:0] in the

table. The parity bits are encoded as follows:

p[0] = XOR(d[6], d[4], d[2])

p[1] = XOR(d[6], d[5], d[2])

p[2] = XOR(d[6], d[5], d[4])

Using this hamming code, a correct control byte can be identified byp[2:0] = 000. Any

nonzero value of the parity bits points to the erroneous bit position, which is then sim

inverted to correct a single-bit error. E.g. a value of011 for the parity bits identifies bit

d[2] as incorrect.

The control bytes SOF, EOM, EOP, EOP_ERR and CANCEL were described earlier

IDLE byte is simply used as filler, since a byte is transmitted on each clock edge o

link. STOP and CONT are the bytes used for the reverse flow control. POSACK

NEGACK are used by a receiving link port to signal the sender a good or a bad

packet. The RETRANS byte is used to lead any retransmitted link packet.

Table 3-8.Encoding of data and control bytes

hex d[8] d[7] d[6] d[5] d[4] d[3] d[2] d[1] d[0] comment

0xx 0 - - - - - - - - normal data byte

0xx 0 par - - - - - - - routing byte with parity bit

d[5] d[4] d[3] d[2] d[1] p[2] d[0] p[1] p[0] ECC bit positions, hamming code

1FF 1 1 1 1 1 1 1 1 1 IDLE (filler byte)

100 1 0 0 0 0 0 0 0 0 SOF (Start Of Frame)

107 1 0 0 0 0 0 1 1 1 EOM (End Of Message)

119 1 0 0 0 1 1 0 0 1 EOP (End Of Packet)

11E 1 0 0 0 1 1 1 1 0 EOP_ERR (End Of Packet ERRor)

12A 1 0 0 1 0 1 0 1 0 STOP (STOP sending of data)

12D 1 0 0 1 0 1 1 0 1 CONT (CONTinue sending data)

133 1 0 0 1 1 0 0 1 1 POSACK (POSitive ACKnowledge)

134 1 0 0 1 1 0 1 0 0 NEGACK (NEGative ACKnowledge)

14B 1 0 1 0 0 1 0 1 1 RETRANS (RETRANSmit link packet)

14C 1 0 1 0 0 1 1 0 0 CANCEL (CANCEL routing)
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3.9.2 Output port

Figure 3-39.Structure of the output link port

Figure 3-39 gives an overview about the structure of the link port output unit. It is spli

into 4 areas according to the different tasks it should manage. The input path gets me

data from the crossbar and stores it temporary in a small input FIFO. Control logic

forwards each link packet towards the output path, storing data in another FIFO.

The retransmit path is responsible to keep a copy of each link packet sent over the l

the receiving side signals a corrupted packet, this unit can retransmit the erroneous p

Since the acknowledge from the other side has a certain delay (error detecting logic,

propagation time), it would be a waste of bandwidth to wait for it after each single

packet. So the retransmit path has two identical retransmit buffers to be able to

2 packets in parallel.

During the unit waits for the acknowledgment of the first packet, a second one ca

transmitted. Thus transmission and acknowledgment of link packets is overlapped,

ing the possibility to operate the link at full capacity. Sometimes it happens that s

packets are transferred, e.g. routing or header packets with only 1-2 words. If both b
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are filled and wait for their corresponding acknowledge, the input path is stopped as

as one of the buffers is free again.

Figure 3-40.Reverse flow control mechanism

Figure 3-40 shows how the reverse flow control path is utilized to insert control bytes

the opposite data stream of a full-duplex link:

• A: the FIFO on the receiving side runs full, because the path is blocked further a

• B: the input path requests its associated output path to send a STOP signal

• C: the STOP byte is inserted into the data stream on the opposite path of a link

• D: the input path of the sender filters out the STOP byte and signals its receptio

the output path

• E: the sending output path recognizes the STOP request and stops transmission

message data. Instead, it sends only IDLE fillers

The same procedure happens in case the blockage of the path is removed and th

can again store data. This is signaled by sending a CONT control byte. This mecha

is also used for the acknowledgment of link packets. The checking input path reque

send a POSACK or NEGACK byte, which is filtered out at the other side. So the rev

flow control path of the output unit is responsible for the insertion of these four con

bytes into the link data stream. Additional arbiter and datapath logic multiplex the ac

to the link cable between the three subunits of the output path.
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3.9.3 Input port

Figure 3-41.Structure of the input link port

The structure of the input path of the link port is shown in Figure 3-41. It can be vie

as a pipeline of 3 stages: data synchronization, error checking & decode and sto

Since all ATOLL chips have their own internal clock signal, one must first synchron

the incoming data to the clock of the receiving node. An additional tenth signal line is

in the cable to transfer the clock. This is done at half the rate to prevent the introdu

of noise onto the data wires. This clock signal is now recovered by a PLL and used to

data into a dual-clock data FIFO. Only non-ILDE bytes are pushed into the FIFO to

vent an overflow by a slightly faster running sender. The output port makes sure, th

least 1 IDLE byte is sent per 64 byte link packet.

The second stage decodes all control bytes and filters out flow control signals, which

to be forwarded to the corresponding output path (STOP, CONT, etc.). It checks ro

bytes for parity errors, possibly corrects bit errors of control bytes by using the hamm

code, and checks the CRC of link packets. For debugging purposes, a multiplexer c

used to choose between the data from the cable and the data sent out by the link por

offers the possibility to run the link port in a kind of loopback mode.

Finally, data is pushed into a large FIFO. This FIFO is observed by some control lo

which triggers the sending of STOP and CONT control bytes to stop and restart the

data stream. The FIFO can store up to 256 bytes, and the data stream is halted, wh

filled to 50 %. For a short period of time data is still coming into the link port, since

request needs some time to arrive at the opposite side. This configuration is enou

support links of up to 25 m. Falling again under the 50 % mark triggers the request to

a CONT byte.
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4Implementation

The implementation of the ATOLL architecture as an Application Specific Integrated

cuit (ASIC) [70] has been a huge challenge. With the complexity and the aggressive

of integration, the task of implementing the ATOLL chip is comparable to high-end c

mercial chip developments at major semiconductor companies. The goal could on

attained by following a carefully planned project schedule, maximizing the producti

of the manpower at our disposal. Other big hurdles have been the restricted fina

budget and the limited access to chip development tools. Normally, ASIC projects o

size are heavily supported by the technology and tool vendors to help the design

solving critical issues. The available support from this side for the ATOLL project w

very limited. But despite all these obstacles, the design team was able to ship the

transistor layout to production in February 2002, almost 3 years after implementin

first simulation modules.

The Europractice IC Service1, which is funded by the European Union (EU), is normal

the only way for European research labs and universities to fabricate a few proto

chips to validate the practicability of their ideas. The only available state-of-the

CMOS process at the time the project was planned was the 0.18 um process from

Taiwan. So this technology has been chosen for the implementation of ATOLL. M

Electronic Design Automation (EDA) tools used for the chip development were

acquired via Europractice. Almost all the tools are developed by Synopsys, Inc.

Cadence Design Systems, Inc., two of the leading EDA companies.

The ATOLL ASIC is a standard cell based design. Using such pre-configured cell lib

ies, containing logic gates like AND, OR, NAND, NOR, NOT, DFF, etc. in different siz

with several driving strengths, speeds up the design time, since one has not to dea

traditional VLSI design techniques. But the disadvantage is the loss of performan

terms of speed and greater power consumption, since these cell libraries are ofte

conservative to ensure proper function in silicon. Europractice offers such a library fo

UMC process from Virtual Silicon Technologies, Inc. (VST).

1.  www.europractice.imec.be
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To concentrate on the development of the logic unique to ATOLL, several comm

used building blocks were integrated by using external Intellectual Property (IP) c

These cells are:

• a PCI-X interface, donated by Synopsys

• DFF-based fifo structures, included in the DesignWare IP library from Synopsys

• RAMs of different sizes, generated by a RAM compiler from VST

• two kinds of PLLs, generated by a PLL compiler from VST

• three special full-custom I/O cells (PCI-X, LVDS-IN, LVDS-OUT), developed by a

analog expert team from the University of Kaiserslautern

4.1 Design Flow

The design flow [71] pretty much follows the standard ASIC design flow used over

last decade to design digital ICs. The size of the design and its aggressive target freq

would have been better manageable with some of the new EDA tools targeting hig

designs. These new tools merge the logical and physical design steps, providing a

implementation and more predictable results. Examples are Physical Compiler from

opsys and Physically Knowledgeable Synthesis (PKS) from Cadence. But these

were not part of the Europractice tool packages at the start of the implementation p

Cadence PKS tools have been made available lately, though.

So a design flow had to be established from the accessible tools. Where necessary

tional tools, e.g. for design entry and HDL linting, were acquired to further enhance

ductivity, if affordable. Figure 4-1 depicts the overall design flow, the tools used for e

step and the design formats exchanged between them. Since the design team had

no knowledge of backend design (placement & routing of standard cells) and to fu

reduce the workload, it was chosen to draw on the backend service offered by IMEC

gium for Europractice customers. Each of the illustrated steps is described in detail

following sections.
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Figure 4-1.ATOLL design flow

4.2 Design entry

The whole design has been implemented using the Verilog HDL on Register-Tra

Level (RTL). This is achieved by specifying the behavior of the logic in a cycle-accu

manner. The design process followed a mixed bottom-up, top-down approach. Fro

top-level of the chip, a hierarchy of modules has been implemented. A step-by-step r

ment of module interfaces and the logic inside functional units has given early feed

on the consequences of design decisions and sometimes led to the rearrangement

for better performance. Other modules have been designed the same time by m

basic functional units into larger and more complex blocks.

design entry/
RTL coding

functional
simulation

logic synthesis

test insertion

floorplanning
place & route

gate-level
simulation

IPO/ECO
optimization

tape out
to UMC

Verilog HDL
HDL Designer (Mentor): design entry
Verification Navigator (TransEDA): HDL linting

NC-Sim (Cadence): Verilog simulation

Design Compiler (Synopsys): logic synthesis
Primetime (Synopsys): static timing analysis

DfT Compiler (Synopsys): scan insertion
BSD Compiler (Synopsys): boundary scan (JTAG)
TetraMAX (Synopsys): ATPG

Apollo II (Avant!): floorplan, place & route
Star-RCXT (Avant!): parasitic extraction

Floorplan Manager (Synopsys):
post-layout optimization

NC-Sim (Cadence): Verilog simulation

Verilog RTL

Verilog netlist

SDF, PDEF

GDSII

set_load

Verilog RTL

Verilog netlist

Verilog netlist

Verilog
netlist

SDF: Standard Delay Format
PDEF: Physical Design Exchange Format
set_load: net capacitances
GDSII: polygon layer masks
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To deal with the large design hierarchy and to enhance its visualization, the decisio

made to use a schematic-based design entry tool. After evaluating several alternativ

HDL Designer Series from Mentor Graphics was chosen. It offers good visualiza

opportunities, multiple entry formats (schematics, state machines, truth tables, HDL

and team-based design management. Its RCS-based version management has b

lized to prevent conflicting modifications to the design, as well as to provide the abilit

fall back to previous versions of modules.

For an efficient implementation of complex control logic as Finite State Machines (FS

a custom developed tool called FSMDesigner [72] has been used. Its optimized HDL

generation proved to be a valuable help to deal with complex, hard to implement co

logic. The most obvious advantage was to be able to debug control logic at the

abstract level of FSMs, compared to plain HDL code. This provided a fast turnaro

time while debugging the design. Regarding the fact that most of the functional bugs

discovered in the control part of a unit, this helped to save weeks of development tim

a late stage of the design, the state machine editor of the HDL Designer Series wa

instead, after having figured out how to apply our special implementation style for F

to it.

4.2.1 RTL coding

Since the level of expertise in writing Verilog RTL code varied a lot inside the des

team, a way had to be found to make sure that all designers produce quality code,

could be easily merged into the whole design. A set of rules and guidelines [73] for

ing Verilog code was established, similar to the Reuse Methodology Manual [74], w

is widely used in industry. To automate the compliance checking of the code, a sp

HDL linting tool was acquired, called VN-Check. This tool is part of the larger Verific

tion Navigator (VN) tool suite from TransEDA. A rule database was implemented

each time a designer wanted to check in new code, it was first passed through the

This proved to be a fast and efficient way to catch a lot of coding errors, which norm

cause problems later in the flow. E.g., it ensured a consistent clocking and reset m

avoided unwanted latches, and forced designers to follow a consistent naming styl

4.2.2 Clock and reset logic

Besides the implementation of the architecture, the clock and reset logic1 of an ASIC is

always a critical factor. The whole chip integrates 6 different clock domains: PC

ATOLL and 4 link domains. The PCI-X clock is generated by logic on the host m

1.  designed and implemented by Patrick Schulz for ATOLL
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board. Based on the system configuration, it can be set to 33/66/100/133 MHz. A

chip Delay Locked Loop (DLL)1 has been implemented to provide a fixed clock tr

delay, as requested by the PCI-X specification. The main ATOLL clock is generate

an on-chip oscillator, which uses an external crystal residing on the network card ne

the ASIC. It is then internally multiplied by a PLL. The multiply factor is configurabl

so one can run the chip from 175 MHz up to 350 MHz. The stepping width for the PL

14 MHz. This offers the possibility to tweak the clock frequency of the ASIC up to

physical limit, since the assumptions made during the design process, e.g. bad s

voltage and high temperature, are often far too pessimistic. Finally, to sample data co

over a link from another node, the clock is sent over the link as additional signal line.

is done at half the rate of the original clock to prevent unnecessary noise on the cab

the receiving side, this clock signal is again doubled, phase-aligned and inverted to s

incoming data into a synchronization fifo. This fifo is then read with the internal ATO

clock.

Figure 4-2.A dual-clock synchronization fifo

All signals crossing a clock domain border must be synchronized into the receiving c

domain. Sampling an asynchronous signal can result in metastability of flipflops, le

them oscillate for a certain amount of time. The probability of metastability can

reduced by sampling an asynchronous signal multiple times. For modern technolog

double-sampling is sufficient to ensure proper function of logic.

1.  designed and implemented by Prof. Dr. Ulrich Brüning
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So passing data or control signals across a clock domain border is simply done by

two flipflops in a pipelined fashion. Where it is necessary to pass signals in opposite d

tions, e.g. the two-way handshake signals, a dual-clock fifo structure is utilized to s

transfer data. Some things [75] have to be observed while designing such a dual-

fifo. Basically, the push and pop interfaces are driven by different clocks. Data is st

in a pointer-controlled RAM, with the write pointer residing in the push interface, and

read pointer controlled by the pop interface. Internally, these pointers are then syn

nized to the opposite interface to calculate the fifo fill level and to generate the approp

control flags (full, empty, etc.). Using normal binary-coded pointers could result in a

ure, since sampling a value which is just incremented from 0111 to 1000 could res

any possible bit combination. This is avoided by using a gray-code for the pointers, a

ing only one bit to change on each transition. This could result in sampling an old

but not a completely wrong one. Figure 4-2 depicts the structure of such a dual-clock

4.3 Functional simulation

Regarding the size of the design, simulation runtime was a major issue. Therefore,

to running any simulations, a benchmark was set up to compare the performance

simulators accessible: Verilog XL, NC-Sim (both Cadence), VCS (Synopsys), and M

elsim (Mentor). The compiling simulators NC-Sim and VCS clearly dominated the in

preting XL and Modelsim. Since more licenses were available for NC-Sim, it was ch

as main simulator for both RTL and gate-level simulations.

4.3.1 Simulation testbed

Figure 4-3.Testbed for the ATOLL ASIC

To test the ATOLL ASIC in an environment as close to its real use as possible, a tes1

has been set up to simulate a network of 2 PCs connected by the ATOLL networ

1.  implemented with the help of Patrick Schulz
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shown in Figure 4-3. The two ATOLL ASICs are connected back-to-back by their 4 lin

On the host side, Synopsys PCI-X FlexModels were used. These are a set of bus

tional models (BFM), configured to act as the central components of a PC node:

• a Master BFM is used to model the CPU

• a Slave BFM is used to model main memory

• a Monitor BFM is used to check all ongoing bus transactions for PCI-X complian

Several Verilog tasks have been developed to control the simulation via the Master B

They also encapsulate all calls to the FlexModel BFMs, so higher-level testbenches d

have to deal with the control of single PCI-X bus cycles. Some examples for such

are:

• atoll_init initializes the ATOLL ASIC, sets up data structures in main memory

• send_dma: assembles message data in main memory, enqueues a new send d

tor into the descriptor table, and triggers the DMA engine inside the ATOLL ASIC

process the currently generated DMA job

• receive_pio: receives a message by Programmed I/O

Summarizing, 22 Verilog tasks with more than 2.000 lines of code have been im

mented. Using these basic tasks as a kind of “testbench API”, several top-level

benches have been developed. They are used to test the implementation for corre

and to sort out all functional bugs. The implemented tasks could serve as a starting

for the development of a low-level ATOLL message layer. They issue a sequence of

store operations to control the various features for message transfer, very similar

algorithms software would need to implement.

4.3.2 Verification strategy

A specific verification strategy was chosen to be followed throughout the verification

cess to coordinate all simulation efforts. This method [76] is called ‘shotgun & sn

rifle’, according to its dual-way approach. A set of specific corner-case testbench

used to test all the critical issues the designers can think of (‘sniper shots’). These

benches are small and use fixed parameters to call the basic tasks. On the other side

testbenches use a large sequence of tasks with random parameters (e.g., message

to send data on, DMA or PIO mode, etc.) to cover large portions of the verification s

(‘shotgun’). In total, 11 ‘sniper’ testbenches and one large parameterized ‘shotgun’

bench were implemented, together about 15.000 lines of code.
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4.3.3 Runtime issues

Memory usage of the simulator is surprisingly low, the compiled design uses

63 Mbyte in total. But it has been a problem after starting to write dumps for analysis

poses. When dumping the whole design, the code inflates to more than 1 Gbyte, ca

the machine to swap memory pages. This slows down the simulation significantly. Du

ing has been limited to the first levels of hierarchy to overcome this performance d

While debugging errors buried deeply in the design hierarchy, a second run of the er

ous testbench has recorded only the events from some specific modules.

The small corner-case testbenches run only for some minutes. But the large regr

testbenches simulate sending/receiving thousands of messages of random size

random combination of network interfaces and links. They run for days, and even w

limiting the dump to 3-5 levels of hierarchy, the dump files still grow to several Gb

after a day. So the decision has been made to turn off dumping at all for these testbe

to run them as fast as possible.

The ability to write checkpoints of the simulation out to disk to be able to restart it fr

a point just before an error occurred would have been very helpful. But unfortunately

FlexModels from Synopsys can not be restarted from a checkpoint written by NC-

So one has to rerun the whole testbench to write a dump containing the occurred

even if it happens after several days. Since this methodology would have disrupte

time schedule of the whole project, a workaround has been found in stopping the re

sion test after two days. The testbench is then started over and over again with mo

random numbers (Verilog random numbers are semi-random, the same simulatio

always generate the same sequence of random numbers).

Though one run of such a regression testbench runs for 48 hours, it simulates only

110 ms of real time. About 50.000 messages are sent in such a run, with a data pa

from a few bytes up to 4 Kbyte. The small ‘sniper shot’ testbenches caught about 80

all functional bugs found. Once they ran without errors, the regression tests still fo

some bugs, but the error rate dropped rapidly in the first weeks of simulation.

After several (about 15) runs of the large ‘shotgun’ testbenches completed without e

the decision was made to declare the design to be stable enough to be implemented

icon. Table 4-1 shows some simulation statistics.
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4.4 Logic synthesis

Setting up a synthesis flow for such a large design is a non-trivial task. Since the w

design is too large to be synthesized in one top-down compile, the design had to be b

down in smaller parts using a “Divide & Conquer” approach. Several methods are

known for using Design Compiler from Synopsys for such large designs, somet

referred to as bottom-up or compile-characterize-write script-recompile flow.

4.4.1 Automated synthesis flow

All these mixed top-down/bottom-up flows require a lot of scripting and data mana

ment to efficiently constrain and compile subdesigns, which are then glued togethe

higher-level modules. Every major ASIC company has set up its own flow based on

configured scripts and custom compile strategies. In 1998, Synopsys introduced a

command line mode for their tools, significantly enhancing the ability to implem

custom procedures and functions. This enhancement and the need for a stable an

to-use synthesis flow resulted in the release of a feature called Automated Chip Syn

(ACS) [77]. ACS is a set of TCL procedures intended to automate the bottom-up co

lation of large designs. It automatically partitions the design, propagates constraints

the hierarchy, writes out compile scripts for each partition, and finally generates a M

file to control the whole synthesis flow of the design. It reduces the setup of the flo

specifying only top-level constraints and a few scripts to drive the ACS flow. Rec

benchmarks [78] show that ACS produces good results in terms of timing and area

pared to other methods. The fact that it is based on TCL procedures makes it highly

figurable. That proved to be a major advantage, as it was necessary to patch one

procedure to work around a serious bug.

The 3 main procedures of ACS are:

• acs_compile_design: does a hierarchical compile of the design using user-specifi

top-level constraints

Table 4-1.Testbench statistics

‘sniper shot’ ‘shotgun’

runtime 10-30 min 48 h

no. of simulated messages 250 50.000

started after ... every design modification all the time

no. of total runs 60-80 50-60
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• acs_recompile_design: extracts timing constraints from a previous ACS run, and

uses them to run a full compile on the RTL design

• acs_refine_design: extracts timing constraints from a previous ACS run, and use

them to run an incremental compile on the current netlist

Figure 4-4.Synthesis flow

Those three commands were used in the above order to establish a base netlist for

refinements. Top-level compiles were then used to clean up the netlist, globally opti

remaining critical paths and prepare the netlist for layout. Figure 4-4 depicts the ov

synthesis flow used for the ATOLL ASIC.

4.4.2 Timing closure

At the beginning, the design was pad-limited (around 380 functional I/O pads), w

means that the area of the chip is determined by the area needed to place all I/O ce

by the size of the core logic. So area was not a major constraint during synthesis

core logic. Timing was more critical, especially in the PCI-X clock domain. Very early

ACS compile

top-level constraintsRTL design

hierarchical full compile of RTL to extract
partition I/O constraints

ACS recompile hier. full compile of RTL using extracted
I/O constraints from the previous netlist

ACS refine hier. incremental compile of netlist using
constraints from the recompile run

top-down
incr. compile

flat top-down incremental compile to work on
critical paths and reduce area

scan/JTAG
insertion

insertion of scan chains and
boundary scan (JTAG) logic

top-down
incr. compile

flat top-down incremental compile to fix critical paths
introduced by test insertion, clean up netlist

to layout
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the design flow some basic compile runs on parts of the RTL design were used to c

if any parts would be a major problem regarding timing closure. Based on these ru

lot of Verilog modules have been rewritten. E.g. pipeline stages were inserted, and

functional blocks were broken down into several smaller ones. This proved to be

advantage for the further work, since once started with the whole synthesis flow, it

never necessary to go back to RTL coding.

Traditional logic synthesis tools know the logical structure of a design, and have f

detailed information about the timing of standard cells. They lack any information a

the physical implementation of a design, since this is done at a later stage of the w

flow. To calculate the delay of logic paths and find an optimal netlist composed of in

connected standard cells, tools need to estimate the effect of nets in terms of leng

delay introduced by them. Library vendors provide with each cell library a set of wire l

models. A wire load model is a way to predict the load, and with it the delay, of nets b

on a statistical evaluation of previously implemented designs using the same techno

But since designs might differ a lot, these estimations can be very imprecise. This w

major concern with older technologies when cell delays dominated the wire delays

with technologies of 0.18 um or even smaller geometries, this proportion has cha

dramatically. The result is that the physical implementation has a huge impact on the

all performance of a design.

Figure 4-5.Logic synthesis lacks physical information

Wire load models are often a set of tables containing net lengths/delays, indexed b

fanout (the number of cells driven by the net) of the net. Different tables are provide

modules of different size. So a synthesis tool treats nets of the same level of hierarc

same way. Assuming a placed design composed of two modules, as shown in Figur

this can lead to mispredicted net lengths:

• thoughnet_0 andnet_1 are part of the same module, their lengths differ a lot

• alsonet_2 andnet_3 both run between both modules, but the cells connected to th

are placed very differently

reg_a
cell_a

reg_b

reg_c
net_0

net_1 net_2

module A module Bcell_b

net_3

treated the same way!
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These inaccuracies get even worse the larger the design is. To enhance the accura

can generate so-called custom wire load models, which are specific to the design i

mented. They were generated for ATOLL from a trial layout. But it turned out that e

these custom wire load models still were inexact. Dealing with very high-fanout nets

was another crucial issue.

Figure 4-6.Improvement of timing slack and cell area

Figure 4-6 shows the timing and area results after each step of the synthesis flow

numbers are given separately for each of the two major clock domains, PCI-X

ATOLL. The upper diagram depicts the Worst Negative Slack (WNS), which is the lo

path with the largest timing violation. The lower one shows the Total Negative S
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(TNS), which is the sum of all violated paths. Additionally, it lists the number of stand

cells used to implement the design as a gate-level netlist.

The WNS in the PCI-X domain remains stable over the 3 ACS runs, since the PCI-X

is precompiled via encrypted synthesis scripts. These scripts are delivered by Syn

together with the encrypted Verilog source code. The resulting netlist is read in at

and protected against modification until the first top-down incremental compile. H

ever, the TNS in the PCI-X domain shrinks a bit, because the synchronization logic i

facing the PCI-X core to the rest of the chip lies outside the protected PCI-X core.

WNS and TNS of the ATOLL domain are significantly reduced during the ACS runs, w

a temporary larger WNS for the second run. This is a consequence of too pessimisti

straints extracted from the first trial, misleading the recompile step. The first top-d

incremental compile then improves timing of the PCI-X part a lot, whereas most opt

zations possible for the ATOLL domain seem to have been done by the ACS runs.

insertion than adds some slack, mostly because of inserting the JTAG boundary sca

into paths to/from I/O pads. These paths are critical, especially paths through the P

pads. The number of cells shrinks significantly with the ACS refine step and the

incremental compile on the gate-level netlist. The last steps only make local optimiza

with little impact on overall cell count.

Though timing and area improve a lot over the whole flow, there are still some viol

paths in the netlist at the end. This is caused by very strict and pessimistic constrai

some parts of the design. An early version of the flow finished with no slack at all,

was too optimistic regarding net lengths and load capacitances at some places.

post-layout timings differed a lot from the pre-layout numbers, which caused post-la

optimization to fail. The constraints and also the wire load models were then tightene

some critical modules. Most of the violated paths run through I/O pads. Since they a

top-level, the tool wrongly estimated a long net between the pad and the core logic

since these nets are quite short after layout, the pre-layout slack was accepted.

Another interesting fact is that the TNS of the PCI-X domain at the end is still twice

TNS of the ATOLL domain, though the PCI-X part is only about 10 % of the who

design. The reason for this unbalanced ratio is the fact that the PCI-X part includes

of tightly constraint I/O pads, which are still violated after synthesis. On the other h

the ATOLL core logic is connected to LVDS pads with less stringent constraints, so fe

violations occur in it.
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4.4.3 Design for testability

Several factors can cause errors in ASIC production. The amount of fully functional c

compared to the total number of dies, is called yield and typically varies between 40-

of the whole production volume. To efficiently sort out the good from the bad chips

adds on-chip test logic, which is utilized to test silicon dies before they are package

mounted on Printed Circuit Boards (PCB). Separate tests are used to isolate errors

packages and PCBs. The whole area is often referred to as Design for Testability (

and its whole variety of methods and applications is beyond the scope of this docu

An in-depth discussion of the DfT methods1 used for ATOLL can be looked up in addi

tional literature [80], this section will give only a broad overview.

ATOLL contains three types of test logic:

• full scan using multiplexed flipflop scan style

• JTAG-compliant boundary scan

• Built-In Self Test (BIST) for all RAMs

Full scan means that all registers in the design are replaced with scannable DFFs.

can be switched via ascan_enable signal into scan mode, forming a large chain of sc

flipflops. Figure 4-7 depicts the internal structure of such a scan DFF.

Figure 4-7.Multiplexed flipflop scan style

ATOLL contains 4 full scan chains, which are partitioned according to the different cl

domains. Only the flipflops driven by the 4 link clocks are assembled in one chain, s

each link clock domain only drives about 160 DFFs. One chain is used for the PC

clock domain, and the other 2 scan chains link up all registers of the main ATOLL cl

1.  implemented by Patrick Schulz
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Start- and endpoint of these chains are some general purpose I/O cells, which a

timing critical and can tolerate some additional load. Table 4-2 lists all full scan cha

Not all DFFs can be linked up in the scan chains, e.g. if they are driven by a noncon

lable clock. But these are only a few, e.g. the DFFs in the test and clock logic. In t

about 98.5 % of all DFFs are scanned. The unbalanced lengths of the scan chains

the time needed for testing. But this can be accepted due to the low production vo

targeted for the ATOLL chip.

Boundary scan logic [81] is used to drive specific values out of the chip via the I/O c

This is utilized for board-level tests, using a standardized JTAG interface. Internal lo

called Test Access Point (TAP) controller, provides the signals used to control the bo

ary scan logic. The boundary scan cells are located between the I/O cell ring and th

logic. JTAG is quite popular for this task, since it only needs 5 additional I/O pads to

data in and out of the chip. Besides the described task, it is also used in ATOLL to co

the BIST logic.

The internal BIST logic [82]1 is used to test all 43 instantiated RAM macros in th

ATOLL chip. It uses a 12-N-March algorithm to repeatedly write 0’s and 1’s to ea

RAM cell to detect any faulty bit cells. As stated earlier, it is fully controllable and obse

able through either the JTAG TAP controller or supervisor registers. Normally, the B

is run together with the board-level test, just after board production. The software-

trolled BIST is intended for checking boards, which show unstable behavior while in

4.5 Layout generation

As mentioned earlier, the IMEC IC Backend Service group was hired to do the layou

Place & Route of a design is a difficult and crucial step in the design flow and needs

of experience and knowledge about the tools and the technology. Since this know

was not present in the local design group, it was not feasible to learn this task in an ac

able amount of time, without further extending the time frame of the project.

Table 4-2.Internal scan chains

scan chain clock domain number of DFFs

0: GP_IO[7] -> GP_IO[3] ATOLL 20.965

1: GP_IO[6] -> GP_IO[2] ATOLL 20.965

2: GP_IO[5] -> GP_IO[1] PCI-X 4.617

3: GP_IO[4] -> GP_IO[0] 4 link clocks 660

1.  implemented by Erich Krause
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In addition to handing over the gate-level netlist to the backend team for layout pre

tion, some more data is necessary to ensure an efficient and optimal implement

Since the ATOLL design has some aggressive timing goals, the layout flow was care

planned. A smooth and close collaboration of the layout step with synthesis is an im

tant factor to keep the amount of post-layout optimization steps at a minimum. From

cussions with other ASIC designers who did timing-critical chips and various litera

about high-end ASIC design it was figured out that three things are crucial for reac

timing closure:

• a well considered floorplan1 for placing macros and top-level blocks

• using custom wire load models for precise prediction of wire delays during synth

• a timing-driven layout flow to optimize critical paths during cell placement and w

routing

Figure 4-8.Floorplan used for the ATOLL ASIC

Figure 4-8 depicts the floorplan used for the ATOLL ASIC. But it needed some tim

convince the layout team at IMEC to use it. The default method used for most of their

tomers is to preplace only the RAM macros, and let the tool place all cells freely. A

1.  designed with the help of Prof. Dr. Ulrich Brüning

NI 0 NI 1 NI 2 NI 3

Xbar, Links

PCI-X, Interface

81-118 I/Os
per side

5,8 mm

boundary scan logic ring

LVDS I/Os
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NC
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GND

NI = host & network port
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analyzing first layout trials it became clear that this default methodology may work

the typical small- to -medium-sized designs done at IMEC, which have modest tim

requirements. But it is not suited for the kind of timing-critical and large designs like

ATOLL chip. Since the top level of the chip is well structured, it really paid off to bri

in the knowledge about the logical structure of the design. The core area was sep

into the 6 regions shown in the floorplan. During placement, cells contained in the lo

structure associated with these regions were allowed to be placed only within their re

with allowing only some small exceptions to avoid highly congested areas. All 43 R

macros were preplaced according to the floorplan, along with some other critical c

E.g., the DFFs driving the LVDS outputs were preplaced, making sure that the s

between single bits of the same link is as low as possible.

The usage of custom wire load models proved to be an advantage, as described

But still after several runs to finetune them, there were parts of the design, where pre

post-layout net delays varied significantly. This inaccuracy is an inherent problem o

use of wire load models to estimate net lengths, and it gets worse the larger a des

However, a lot of violated paths could be optimized by buffer insertion or cell siz

during post-layout optimization.

To overcome the gap between constraint-driven logic synthesis and physical la

newer versions of Place & Route tools offer the possibility to bring in some knowle

about the timing of a design. A timing-aware placement of cells then greatly enhance

performance of the layout, since the tool focuses on the optimal layout of critical p

Unfortunately, the backend team could not use this type of flow for the ATOLL ch

Trying to use a timing-driven placement, the tool constantly crashed and never finis

So one had to fall back to the conventional wire length-driven flow, which optimizes

lengths between all cells, whether they are part of a critical path or not. This was the

cause for the large amount of post-layout optimization steps.

4.5.1 Post-layout optimization

After the design is placed and routed, one needs to analyze the timing of the layout,

it might vary a lot from the netlist version produced by synthesis. Several standard

data formats exist to hand over data between different design tools. The following

was delivered by the backend team for timing analysis and post-layout optimization

• the gate-level netlist, now containing buffer trees for all clock and reset nets

• extracted point-to-point timing of cells in the Standard Delay Format (SDF)
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• extracted capacitive load information of nets (set_load commands for the synthe

tool)

• physical cell locations in the Physical Design Exchange Format (PDEF)

This data is fed back into the synthesis tool, which is used to run a so-called In-Place

mization (IPO) or Engineering Change Order (ECO). Since the synthesis tool is

aware of the real cell and net delays, it can calculate the exact timing of each path a

to optimize the ones that do not meet the timing goal. The following methods are us

do this:

• cell upsizing is used to enhance the driving capability of a gate by replacing a ce

with the same logic function, but a higher driving strength. This speeds up the p

but also increases area

• cell downsizing is done by replacing a cell with a lower drive version of it. This can

useful to reduce the load of nets driving this cell, or to save power

• buffer insertion is used to break up long nets, resulting in reduced load and faster

sition times for driving cells

• buffer removal is done when synthesis has added too many buffers to a path, fro

which some are unnecessary

Figure 4-9.Improving a timing-violated path

Figure 4-9 shows an example of how the timing delay of a path can be halved by

modifications. E.g. some mispredictions lead to excessive cell delays of nearly

Upsizing those cells or splitting huge net loads can significantly speed up the logic. E

SDFRPQ1 INVD1 INVD2 INVD1 INVD1

0,37 0,76 0,79 0,62 0,37 1,90

delay in ns
net cap. in pF

0,02 0,13 0,47 0,10 0,10

total = 7,56 ns !!!

AOI22D1 NAN4D1
MUXB2D1

SDFRPB1

1,80 0,80 0,15

0,40 0,25 0,06 0,01

INVD1

SDFRPQ1

0,43

0,03

INVD2

0,15

BUFD16 INVD1INVD20

0,17 0,18 0,40

0,09 0,32 0,47

INVD1 AOI22D1
BUFD12

NAN4D4

0,29 0,30 0,23 0,63

0,10 0,07 0,03 0,31 0,25

total = 3,73 ns

INVD1
MUXB2D1

SDFRPB1

0,80 0,15

0,06 0,01

upsize!
insert! insert! upsize!
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cially during the first IPO iterations such drastically improvements were made to par

the design. In case of buffer insertion, the synthesis tool does not rely on wire load m

to predict the length of newly created nets. Since cell locations are known from the P

information, a basic routing algorithm is used to calculate the net length based on th

tance between both cells.

Figure 4-10.Timing optimization during IPO/ECO
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After all possible optimizations are done, the new gate-level netlist is again transferr

the layout tool. An ECO step then compares the old and the new version of the n

making the necessary changes. During this process it might be necessary to move u

cells, since their area increased. This has again side effects on all surrounding logic

ing to different net lengths and loads. So timing data can again vary between the r

of the IPO during synthesis and after the ECO done bye the layout tool. But normall

difference shrinks and the timing converges towards the goal.

All in all, 6 post-layout iterations were done for the ATOLL ASIC. Figure 4-10 show

how the global WNS and TNS improve from one optimization step to the next. An E

result refers to the timing after updating the layout, whereas IPO refers to the num

achieved after running an optimization in the synthesis tool. According to Figure 4-6

first layout is done on a slightly violated netlist with 1,10 ns WNS and 700 ns TNS. N

bers after the first layout called ECO1 are much worse. The WNS increases by a fac

9, and the TNS even by 30. During all following iterations, the timing bounces up

down between ECO and IPO runs.

The first 3 iterations reduce the timing slack a lot, but at the expense of area. In the

part of the diagram, the cell utilization is given. The core area of an ASIC is subdiv

into rows of cell slots, and the ratio of occupied vs. total slots is referred to as cell uti

tion. The higher this value, the more difficult is the task of a layout tool to run an EC

since it is very limited in its decisions where to place and move cells and where to r

nets. This effect is visualized by the relative small improvements made from ECO

ECO3. After running IPO3 in the synthesis tool, the cell utilization had grown to 95

The layout tool then refused to run an ECO on the netlist delivered by IPO3, since a

areas of the chip were so heavily congested, that no more nets could be routed th

them.

The decision was made to enlarge the die by adding 12 ‘not connected’ (NC) dumm

cells to each side of the I/O ring. Since an ECO can only be run on a fixed core area,

Place & Route had to be done, referred to as ECO4 in the diagram. Cell utiliza

dropped below 70 %, but on the other side all cells were newly placed, resulting in s

more timing slack. But the remaining iterations shrinked the TNS below 1.000 ns. S

paths remained violated and could not be optimized to meet their timing goal.

An in-depth analysis showed, that most of these violated timing paths run throug

PCI-X I/O cells. Some of the boundary scan logic was replaced during the die enla

ment in a bad way, resulting in some very long paths. These paths were optimized

by buffer insertion and excessive cell upsizing, but about 20 paths still have a slack
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2 ns. The worst slack in the ATOLL clock domain was about 1.4 ns, with only a han

of paths above 0.5 ns slack.

Since the deadline for the design submission to fabrication was reached after ru

ECO6, the decision was made to accept the remaining slack and go into production

decision is backed by two facts:

• the ATOLL core clock is configurable, so it can be tailored to the real capabilities

the chips

• all design steps were done based on worst-case technology data. In terms of th

library used for ATOLL this means 125 C temperature, 1.62 V core voltage (inste

of 1.8 V nominal) and a bad process factor. In reality, things are not that bad. As

ing real world conditions (70-80 C, 1.8 V), timing should be about 20 % better th

estimated by the Static Timing Analysis (STA) tools

4.5.2 Post-layout simulation

A simulation of the gate-level netlist with annotated SDF cell delays was execute

ensure that no logic got lost somewhere in the design flow, as happened at one

during the ACS synthesis runs. Another issue was the validation of the critical clock

reset logic, e.g. the PCI-X DLL, which includes a chain of delay elements. The same

benches as for RTL simulation were used, just replacing the RTL design with the

level netlist. However, a few modifications were needed to get the simulation up and

ning. E.g., all DFFs are annotated with setup/hold timing checks. This is a problem

DFFs on clock domain borders, since the incoming asynchronous data will trigger s

hold violations during simulation. Resulting metastable data outputs are suppress

double-sampling these signals, as described earlier. But the simulation models d

reflect this behavior. They propagate an ‘x’ (unknown) value, causing the whole sim

tion to fail. This problem was solved by extracting a list of the affected DFFs during s

thesis. A Perl script then was used to find the related entries in the SDF data and to d

the relevant timing checks.

Early versions of the netlist, which still had some timing violations, were used

reduced clock speed to run one of the large regression testbenches. Of course, it w

nificantly slower than the RTL simulation. But the testbench ran for nearly two days w

out failure.
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5Performance Evaluation

Besides the aggressive scale of integration, implementing a high performance ne

was the primary goal of the ATOLL development. Two types of metrics are importan

the field of Cluster Computing. Message latency measures the time needed to sen

from one node of the cluster to another one. It lies in the range of a few microsecond

modern networks and is the dominant performance metric for applications with a

grain communication behavior. If a user application tends to exchange only a few b

but this at a fast rate, the network should not slow down the program.

The second important factor is the sustained bandwidth a network can provide. It

sures the actual data rate on a network link, compared to the physical bandwidth lim

well developed network should come very close to the physical limit, proving to m

efficient use of the network resources. Bandwidth is usually measured by setting up a

tinuous data stream with a fixed message size, sending the same message hund

even thousands of times. Summing up the total amount of data sent and dividing it b

time needed erases start-up effects and is the preferred method to measure the so

sustained bandwidth of a network.

Those two metrics are usually measured on the application level. So no distinction is

between the performance of software and hardware. And usually the network hard

accounts for only a small part of the number, especially regarding latency. E.g. a ty

parallel cluster application linked to the MPI message passing library may ca

MPI_send function. This function implements only a high-level MPI layer and calls

mid-level point-to-point abstraction layer. This again can call a low-level ATOLL ha

ware layer. The system architecture of a cluster is also an important factor. The CP

interface, the memory controller and the I/O bridge can have a great impact on the p

mance of the whole system.

Since the performance of an ATOLL-equipped cluster can only be measured on a rea

tem, this chapter focuses on measuring the performance of only the network part. No

parisons are made to other network solutions, since it would be unfair to com

ATOLL’s network-only numbers to full application-level numbers of other networ

Hardware-only performance values have not been published for other implementa
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Some performance measurements regarding the ATOLL software can be looked up

dissertation of Mathias Waack [83].

All presented performance measurements were derived from simulations of the en

ment specified in “Simulation testbed” on page 112. Numbers are given first for a si

host port in use. But since the multiple-interface architecture is a defining featur

ATOLL, both metrics are also given for two and all four host ports in parallel use. T

provides an insight into the applicability of the ATOLL network for clustering dual-

quad-CPU machines.

5.1 Latency

The latency is measured both for PIO- and DMA-based message transfer. Since it u

scales linearly with an increasing message size, it is only quantified for relative small

sages. Latency is measured from the first access to the ATOLL device on the se

node until the last data transfer on the receiving side. For the PIO mode this means t

timing the transfer, when the first routing word is written to the PIO send fifo. The tran

is complete, when the last data word is read from the PIO receive fifo. Regarding

DMA mode, the measurement begins with triggering the DMA engine inside the host

by updating the relevant descriptor table pointer. And it ends with the receiving host

updating the relevant pointers in the replication area. This means that the assemb

messages in the data structures residing in main memory is not included in the time

cess. Since the copying of message data into and out of the buffers in memory can b

overlapped with the send/receive operations controlled by the ATOLL device, this

proper reduction of the latency measurement onto the crucial part of the whole oper

Figure 5-1.Latency for a single host port in use

Figure 5-1 depicts the one-way latency for a single host port in use. Latency starts at

2,4 us for a message size of 32 byte. It then slightly increases with the size. Surpris

message
size [byte]

time [us]

2

4

6

32 64 96 128

x
2,6

x
2,9

x
3,3

x
2,4

DMA mode
x3,6 PIO mode

x
3,1
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the difference between PIO and DMA mode is almost negligible. At first glance,

could assume that the PIO mode would be slightly faster, since it directly writes data

the network on the sending side. Reading data from memory in DMA mode has s

more latency. But this is outweighed by the need to break up the PIO mode send ope

into 6 different PCI-X cycles, according to the PIO send address layout (3 fram

3 additional accesses for each last word of a frame). Some additional latency is adde

on the receiving side, since the complete reception of a message is not immediately

fied to the host CPU. The CPU polls the fifo fill level with a certain frequency, about

access each 0,3 us.

On the other hand, DMA mode needs only 3 PCI-X read transactions on the sendin

(descriptor, routing, header & data combined). Once data enters the ATOLL chip, it is

warded quite fast towards the network. E.g. it needs about 0,24 us for the first byte

message from the PCI-X bus to show up on the network link.

Figure 5-2.Latency for multiple host ports in use

Figure 5-2 shows that the number of active host ports in parallel has only a minor e

on message latency. Only DMA mode transfers were used. E.g. a15 % increase in la

for all four host ports in use is an acceptable value, compared to a single host port. F

investigation revealed that the multiple accesses to the PCI-X bus from different

ports were smoothly interleaved by the logic in the port interconnect and the synch

zation interface. During an active PCI-X transfer, several read requests can queue

the related data paths and can be started as soon as the current transfer is finished. T

time between back-to-back PCI-X transfers also depends on the performance of th

arbiter. The simulation used 6 PCI-X cycles to switch control of the bus, a similar v

should be found in real implementations.

message
size [byte]

time [us]

2
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6

32 64 96 128

x
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3,3

x
2,4

1 HP
x3,6
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x
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All in all, the latency numbers taken from simulation are very promising. Even w

operating in a quad-CPU node system with multiple message transfers in parallel, la

is remarkable low. This should distinguish ATOLL from other networks, which are ty

cally multiplexed in software when installed inside a SMP node.

5.2 Bandwidth

Measuring the bandwidth of a network is normally done for very large messages. But

ulating the sending of a 1 Mbyte message, and this even 10-100 times, was not pra

in the described simulation environment. It would have required weeks of simula

runtime. So instead, messages between 1-4 Kbyte are used, repeated 10 times in

This should deliver a good insight into the performance of the ATOLL network regard

bandwidth.

Figure 5-3.Bandwidth for a single host port in DMA mode

Figure 5-3 depicts the bandwidth of DMA-based message transfer for a single active

port. Reaching 213 Mbyte/s for a 4 Kbyte message is a very good number. These v

will decrease by 5-15 % when adding software overhead, but they should still be

competitive. The bandwidth asymptotically approaches a maximum sustained band

of 225-230 Mbyte/s, or about 90 % of the theoretical maximum bandwidth. This sho

good utilization of internal data paths.

Figure 5-4 gives an insight into the bandwidth for multiple host ports in use. Simila

latency, the impact of multiple parallel message transfers is relatively low. Bandw

drops by only 9 % with all four host ports sending 4 Kbyte messages. The reason fo

good scalability of the ATOLL device is the same as for latency. Multiple message tr

fers are handled very efficiently by the internal logic. The requests from all host por
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read data from main memory are queued and served with minimum overhead. The b

neck is the PCI-X bus, but with its physical bandwidth of 1 Gbyte/s it is still able to k

all requesters busy. Regarding the internal conversion of a 64 bit data stream into a

wide link protocol in the network port, it is sufficient for a host port to deliver one d

word on each eighth cycle. This rate can be almost hold up, even for all host ports

Figure 5-4.Bandwidth for a multiple host ports in use

5.3 Resource Utilization

During the functional simulation of the ATOLL chip implementation, an efficient utiliz

tion of internal resources was a major goal, besides the validation of the logic. Early

ulations brought up some bottlenecks resulting from too few on-chip resources, w

then were resolved by enlarging fifo structures or performing similar enhancement

Figure 5-5.Network link utilization
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One major resource is the network link. Its efficient use is a crucial factor of overall

formance. So one driving force behind the definition of the link protocol was to keep

control overhead for sending packets as low as possible. The amount of control byt

defined in the link protocol for message framing, reverse flow control and pa

acknowledgment, is kept to the minimum possible.

Figure 5-5 shows the link utilization, given as rate between raw message data vs

bytes sent over the link for a message. Control overhead is quite high below a me

size of 1 Kbyte and makes up for about a third of link traffic. But utilization quick

exceeds 90 % and approaches a maximum value of nearly 95 % for large messag

Control bytes account for only a small portion of link overhead. Most of the wasted b

width is caused by small link packets, which normally appear at the head of a mes

The maximum size of 64 bytes is almost never used by link packets belonging to the

ing and header frames. Most of the messages sent via the ATOLL network should m

to get along with 1-3 data words (up to 24 data bytes). These consecutive link pa

introduce some idle time in the link ports, since only 2 packets can be in transit a

time. After both retransmission buffers have been filled, the link port waits for the pos

acknowledgment of the first packet. Only when the POSACK control byte for this pa

has been received, the buffer is freed and the next packet can be transmitted.

Figure 5-6.Idle time introduced by small link packets

Though only about 20 idle cycles are introduced when sending two back-to-back

packets with 16 byte payload, this short period of a blocked data path propagates in

directions along the link. E.g. it causes the delayed issue of a read request to main m

in the host port due to the lack of space in the main send data fifo. Figure 5-6 depic

situation mentioned, showing the idle time introduced by a late acknowledgment

But this situation is a rare event in the ATOLL architecture and the additional resou

1. link packet (16 byte)2. link packet (16 byte)3. link packet (64 byte)

link out

link in

t

idle time!

1. POSACK2. POSACK
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needed for more retransmission buffers far outweighed the gain. So the decision

made to get along with two buffers.

While message data travels through several top-level units in the ATOLL device, it is

porary stored in multiple data fifos spread all over the architecture. So a data path

the PCI-X bus towards the network can be seen as a very deep pipeline, with

40 register stages in total. The size of the fifos is tailored to provide a steady and co

uous data stream. It should be prevented that any of the main units runs out of data

a message transfer is started.

Figure 5-7.Fifo fill level variation

Figure 5-7 lists the variation of the fifo fill level along the data path for the DMA-se

mode. It is measured while sending a relatively large message. The numbers displa

imum and maximum fullness, once then message transfer has started. One can see

first two fifos still run empty during transmission. Only a fraction of the total PCI-X ban

width is used by a single path, so it is not necessary to keep these fifos filled. The

one gets towards the network, the higher is the average fill level of fifos. Once started

last 3 fifos never run out of data during a message transfer. The fill level still varies a

mainly just after the operation started. But once a few data words have been proces

contiguous data stream keeps all units busy.

All performance measurements were done assuming no network contention. In re

this assumption is of course too optimistic. So performance numbers will also dec

due to network congestion. But the performance values presented in this chapter d

strate that the ATOLL architecture is capable of maximizing most internal resources

network is no more the communication bottleneck in a cluster equipped with the ATO

network. Instead, the interface to the host system, in this case the PCI-X bus, is the

ing factor. One can overcome this limitation only by locating the network interface clo

to the CPU, e.g. on the system bus. But as mentioned earlier, this restricts the use

NI to a single microprocessor architecture.

synch.
interface
requester

port
interconnect
MasterRead.

host port
DMA-send

network
port
send

link port
sendunit

fill level
variation

0-48 % 0-75 % 14-93 % 24-88 % 32-92 %
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6Conclusions

Clusters are emerging as a competitive alternative to Vector or MPP supercomput

the field of High Performance Computing. The excellent price/performance ratio of m

market PC technology makes it very attractive to assemble lots of desktop compute

tie them together with a high performance network. These Beowulf computers sta

show up in rankings like the Top500 supercomputer list, and are even more popul

assembling small- to medium-sized clusters of 32-256 nodes.

The key component is a fast network. A new class of so-called System Area Netw

emerged, since the traditional LAN/WAN technology was quickly identified as a per

mance bottleneck. SANs like Myrinet, SCI and QsNet offer message latencies in the

of 5-15 us and sustained bandwidths in the range of 100-300 Mbyte/s. But the price

formance ratio of most networks is still too high to gain a broader acceptance of these

SANs. So the majority of clusters is still equipped with standard Ethernet technolog

Recent trends in PC technology pose new problems to SANs. E.g. SMP desktop co

ers are becoming available at a price advantage, compared to multiple single

machines. New clusters are often assembled with dual-CPU nodes. This offers a

advantage, together with less requirements for area, administration and power usag

the next generation of microprocessor technology will even make 4-8 CPU SMP nod

attractive node option, mostly based on better SMP support by CPUs.

To sum up, current SAN technology has helped Cluster Computing to make a big ste

ward, but there is still plenty of room for improvements in performance and cost.

6.1 The ATOLL SAN

This dissertation introduces a novel SAN version of the ATOLL architecture, deri

from a first MPP version of the architecture. It integrates all necessary components

network into one single chip, including the switch. ATOLL provides support for not o

one, but four network interfaces by an aggressive replication of resources. Four byte

link interfaces running at 250 MHz offer the possibility to directly connect nodes in

ferent topologies, without the need for any external switching hardware.
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ATOLL offers a sophisticated mechanism to dynamically choose between PIO-

DMA-based message transfer. This supports extremely low start-up latency for s

messages through a Programmed I/O interface, as well as high sustained bandwi

large messages by autonomous DMA engines inside each host port. An efficient no

tion mechanism avoids the use of costly interrupts by a cache-coherent polling of s

registers in main memory. The consecutive sending/receiving of messages can be d

an overlapping fashion, keeping the utilization of internal resources at a very high l

An error detection and correction protocol avoids end-to-end control of data trans

sions. Bit errors introduced by environmental effects are discovered and solved

packet retransmission mechanism on each link. On the host side, a state-of-the-art

interface offers up to 1 Gbyte/s of I/O bandwidth. This is needed to serve the bandw

requirements of the ATOLL core, which has a bisection bandwidth of 2 Gbyte/s on

network side.

Early performance evaluations promise extremely low latency and a very compe

sustained bandwidth of ATOLL. Multiple data transfers via all four host ports can be

ported with a negligible performance impact. This will be an outstanding feature of a c

ter composed out of SMP nodes, which are equipped with the ATOLL network card

Besides redesigning the architecture of ATOLL towards a SAN, this disserta

describes also the implementation of the ATOLL ASIC. Its sheer size and comple

posed a lot of problems, which were solved by a well-planned design flow and a so

ticated design methodology. Despite not quite reaching the timing goal, a transistor l

of the chip was shipped to prototype production in February 2002. It is expected tha

real chips can be operated at about 90 % of the targeted clock frequency.

The ATOLL ASIC is one of the most complex and fastest chips ever implemented

European university. Recently, the design has won the third place in the design co

organized at the Design, Automation & Test in Europe (DATE) conference1, the premier

European event for electronic design.

6.2 Future work

The future development of a second generation of ATOLL will be greatly influenced

technology trends in the whole computer industry. Upcoming interconnect standard

InfiniBand target the server-to-server connection. But it is still questionable, if it w

really take over the whole range of I/O as predicted. Other emerging standards like

1.  www.date-conference.com
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from Intel are still in the specification phase, but might become a serious contende

InfiniBand in the area of low-level I/O connectivity, as needed for graphics, I/O dev

(keyboard, mouse, modem), etc. InfiniBand might be restricted to the fields now kn

as Storage Area Networks, replacing such technologies as Fiber Channel and all

tions of SCSI. But how both technologies coexist is still part of an ongoing discus

[84]. On the other hand, recent optimizations have been specified for existing tech

gies like PCI-X. The next generation of PCI-X, as specified in the upcoming v2.0 sp

fication, will support dual- or quad-pumped data busses, raising the maximal phy

bandwidth to 4 Gbyte/s.

Of course, the definition of the next generation architecture will be also greatly influen

by the experiences users gain with the first generation of ATOLL. E.g. the PIO m

takes up significant resources inside the chip. If the performance gain, compared

DMA mode, is not large enough to justify the additional resources, it might be an alte

tive to drop it and use the free resources for a better implementation of the DMA m

Mainly there are two options for the development of the next version of ATOLL. A sm

and easier to manage option is a so-called technology shrink. It is normally don

making only minor modifications to the overall architecture, but implementing it in

newest technology. So within 1-2 years, one could again implement almost the

architecture by the following steps:

• using a 0.10 um CMOS technology, targeting a core frequency of 500-700 MHz

• going from parallel copper cables to serial fiber links. The reduced pin count nee

would also offer the possibility to increase the number of link interfaces to 6-8

• moving from a PCI-X v1.0 bus interface to a PCI-X v2.0 interface offering up to

4 Gbyte/s

• enlarging internal RAM/fifo structures to provide more buffer space

These enhancements would help to keep up with the progress in desktop techn

resulting in a network with three or four times the performance of the current version.

is a possible alternative if no major design flaws are detected during the widespread

of the first version.

A more challenging approach would be a major redesign of the whole architecture

current one is efficient but not very flexible. Adding new features is almost imposs

due to the fixed implementation of all control logic in hardware. The current trend in

design is moving towards so-called Systems-on-a-Chip (SoC) designs. Rather

designing all necessary logic from scratch, one assembles pre-build IP blocks into a
139
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system. These blocks can be bus interfaces, like the PCI-X interface already us

ATOLL. But a lot of microprocessor cores are also available, e.g. MIPS, ARM, Power

etc. So one could take advantage of the millions of transistors modern IC techno

offers by a mixture of soft- and hardmacros, which are glued together by some amou

self-implemented logic. Recent market surveys have shown that the current percent

chip area used by IP cells is about 20-30 %. Some reports [85] predict that this nu

increases to 80-90 % within the next 5 years. This way, the implementation effort c

be kept manageable, since most of the logic comes as completely verified transisto

out. More concentration could be devoted to the definition of the overall architecture

its fine tuning for highest performance.

The architecture would head towards the ones of Myrinet, QsNet or the IBM SP netw

which all have a programmable microprocessor as the key component of the NIC

ATOLL would offer the whole system combined on a single chip. And with toda

advanced technology, even multiple controllers could be implemented. This cou

used to split up the work into a host and a network side, avoiding any bottlenecks i

duced by off-loading too much work onto a single controller.

Both options have their pros and cons. But it shows that the ATOLL architecture ha

potential to compete with the most advanced commercial solutions in the SAN mark

the future.
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	Table of Contents
	1 Introduction
	While in Desktop Computing the latest improvements in performance of computer hardware seem to ha...
	1.1 Cluster Computing
	Cluster Computing[1], [2] has established itself as a serious alternative to Massive Parallel Pro...
	1.1.1 Trends
	The first so-called Beowulf cluster [5] was assembled by the team around Donald Becker and Thomas...
	Besides PC clusters, several companies build clusters out of small- to medium-scale SMP machines....
	The current trend is to move away from traditional supercomputers to more cost-efficient cluster ...

	1.1.2 Managing large installations
	But since the number of nodes inside a typical cluster grows fast, it becomes more complicated to...

	1.1.3 Driving factors and future directions
	Figure�1-2 depicts all fields of development that contribute to the increasing use of clusters fo...


	1.2 System Area Networks
	A fast network is the key component of a high performance cluster. First installations used tradi...
	1.2.1 The need for a new class of networks
	To be competitive in the field of High Performance Computing clusters need to be equipped with ne...
	E.g., ATM is tuned for wide area connections with its relatively small packet size of 53�bytes an...
	With almost two orders of magnitude between system bus and network bandwidth clusters with standa...

	1.2.2 Emerging from existing technology
	This new class of networks was named System Area Networks (SAN) to point out their different appl...
	At the end of the 90’s, several SANs were introduced and widely used in clusters. Networks like M...


	1.3 ASIC Design
	The development of logic circuits as Application Specific Integrated Circuits (ASIC) continues at...
	1.3.1 Using 10+ million transistors
	ASIC designers face more and more the problem to be able to make use of all the potential transis...
	Designers steadily increase the level of abstraction for modeling logic circuits to enhance their...
	While ASICs approach the 100�million transistor count and clock frequencies of multiple GHz, desi...

	1.3.2 Timing closure
	The IC design flow used over the last years is split into two separate steps, called frontend and...
	These timing mispredictions force the designer to iterate several times between frontend and back...

	1.3.3 Power dissipation
	With frequencies beyond 1�GHz and more than 10�million transistors on chip, current microprocesso...
	Several techniques are used to reduce the power consumption of ICs. The problem is being attacked...
	IC designers attack the problem at several abstraction levels. For very high frequencies of 1�GHz...

	1.3.4 Verification bottleneck
	Another major problem is to validate the design before shipping the layout to the chip manufactur...
	Verification is needed at all levels of the design flow. From high-level simulations of abstract ...


	1.4 Contributions
	This dissertation introduces a major redesign of the ATOLL architecture for a high performance Sy...
	Besides discussing the architecture, it also describes the implementation of the design in a stat...
	Extensive simulations were done to prove the functional correctness of the design and to make sur...
	Though the author is responsible for the largest part of design and implementation work regarding...

	1.5 Organization
	The dissertation is organized in six chapters. This first chapter introduced Cluster Computing an...


	2 System Area Networks
	The network is the most critical component of a cluster. Its capabilities and performance directl...
	2.1 Wide/Local Area Networks
	According to recent cluster rankings, about half of all clusters are still equipped with standard...
	2.1.1 User-level message layers
	First clusters running MPI/PVM applications used a normal TCP/IP layer to communicate over Fast E...
	Implementations like U-Net [19], GAMMA [20] and Fast Messages [21] all provide a low-level Applic...
	Table�2-1 shows that user-level libraries can reduce latency by 50-75�%, compared to TCP/IP perfo...
	A few other LAN/WANs have been tested as cluster interconnect, but proved to be as inefficient as...


	2.2 Design goals
	Before several cluster interconnects are presented in detail, this section gives an overview of t...
	Several decisions must be made when designing a cluster interconnect. The most important is unden...
	2.2.1 Price versus performance
	In the last few years clusters of PCs have gained huge popularity due to the extreme low prices o...

	2.2.2 Scalability
	Scalability is another crucial issue. It refers to the networks ability to scale almost linear wi...
	But clusters are more dynamic. Often a small system is set up to test, if the cluster fits to the...

	2.2.3 Reliability
	Applications for parallel computing can be roughly divided into two main classes, scientific and ...
	First, cluster interconnects with their short range physical layers have proven to be almost erro...


	2.3 General architecture
	A general design decision must be made between a dumb NI, which is controlled and managed by the ...
	Advantages of both methods can be glued together by adding a dedicated communication processor to...
	2.3.1 Shared memory vs. distributed memory
	The first decision of a designer of cluster interconnects is the memory (programming) model to be...
	Figure�2-2 shows an example of a write operation to remote memory, where the NI resides on the I/...
	1. the CPU writes the message data to a shared memory region, which virtual memory address is map...
	2. the NI indexes an address translation table with the write address to determine the destinatio...
	3. the destination node receives the data, and uses the address to write data to local memory. If...
	A lot of work has to be done by the NI, if the virtual shared memory is intended to be cache-cohe...
	In the distributed memory model, message passing software makes the network visible to applicatio...

	2.3.2 NI location
	The location of the NI inside a system has a great impact on its performance and usability. In ge...
	As depicted in Figure�2-3, there are three possible locations for the NI:
	NI-1
	An interesting solution is support for communication at the instruction set level inside a microp...
	NI-2
	Assuming a high performance system bus design, this location is an ideal place for a network inte...
	NI-3
	Most current interconnects have I/O bus interfaces, mainly PCI. The reason is the great acceptanc...
	Most interconnects presented in this chapter use the I/O bus as their interface to the host.


	2.4 Design details
	In the following, a closer look is taken at some specific implementation details. Small modificat...
	A general rule of thumb could be: Keep the frequent case simple and fast. For example, mechanisms...
	The term link protocol is used for the layout of messages, which are transmitted over the physica...
	2.4.1 Physical layer
	Choosing the right physical medium of a channel is a trade-off between raw data rate, availabilit...
	Another trend to observe is the replacement of medium-fast parallel links with high-speed serial ...
	One of the main reasons for using serial connections is the reduced pin count on switches. Latest...
	But recent developments have made it possible to transmit signals via copper cables at rates of 1...

	2.4.2 Switching
	The term switching refers to the transfer method of how data is forwarded from the source to the ...
	In Figure�2-6 (a), packet p0 just arrived at the switch through port 1 and is placed into the pac...
	Newer SANs like ServerNet, Myrinet and QsNet use cut-through switching (also referred to as wormh...

	2.4.3 Routing
	The address header of a message carries the information needed by routing hardware inside a switc...
	In Figure�2-7 (a), an example of wormhole routing [35] is given. A message enters a switch on por...
	In Figure�2-7 (b), a switch containing a complete routing table is shown. For each destination no...
	A problem for both routing mechanisms is the avoidance of deadlocks. A deadlock appears when seve...

	2.4.4 Flow control
	Flow control [37] is used to avoid buffer overruns inside link end points, which can result in th...

	2.4.5 Error detection and correction
	Though todays physical layers have very low error rates, the network must offer some mechanisms f...


	2.5 Data transfer
	Efficient transfer of message data between the nodes main memory and the NI is a critical factor ...
	2.5.1 Programmed I/O versus Direct Memory Access
	Message data can be transferred in two ways: Programmed I/O (PIO), where the processor copies dat...
	Several factors influence the performance of both mechanisms. The simplest PIO implementation wri...
	To sum it up, PIO is superior to DMA for small messages up to a certain size where the copy overh...

	2.5.2 Control transfer
	If DMA is used for transferring message data, another critical design choice is the mechanism on ...
	Another solution is to interrupt the CPU. But this results in a context switch to kernel mode, wh...

	2.5.3 Collective operations
	So far, we have only presented mechanisms to send or receive messages in a point-to- point manner...
	Networks with a shared bus like Fast Ethernet can easily broadcast data, whereas the integration ...


	2.6 SCI
	SCI (Scalable Coherent Interface) [40] is an IEEE standard (ANSI/IEEE Std 1596-1992) finally appr...
	2.6.1 Targeting DSM systems
	Several goals influenced the standardization of SCI as a Distributed Shared Memory (DSM) network....
	In the following, the main concepts behind SCI are presented:

	2.6.2 The Dolphin SCI adapter
	The SCI standard was intended to specify an open interface to provide interoperability across mul...
	Figure�2-10 depicts the block diagram of the two main chips on the NIC, the PCI-SCI- Bridge (PSB)...
	The latest version of the PSB (PSB66) offers a 64�bit/66�MHz PCI interface, and the most recent L...

	2.6.3 Remarks
	SCI has been used successfully as interconnect in DSM systems, but is less efficient in a cluster...
	Another bottleneck is the limited ability to form scalable networks. A popular topology for SCI i...
	All this led to a relatively low acceptance of SCI as cluster interconnect. While other technolog...


	2.7 ServerNet
	In 1995, Tandem introduced one of the first commercially available implementation of a SAN called...
	With ServerNet, Tandem, a major computer manufacturer in the business area, addressed one of the ...
	2.7.1 Scalability and reliability
	With scalable I/O bandwidth as the primary goal, ServerNet consists of two main components: endno...

	2.7.2 Link technology
	ServerNet is a full duplex, wormhole switched network. The first implementation uses 9�bit parall...

	2.7.3 Data transfer
	The basic data transfer mechanism supported is a DMA-based remote memory read/write. An endnode c...
	The address can be viewed as a virtual ServerNet address. The lower 12�bits are the page offset, ...
	A main feature of ServerNet is its support for guaranteed and error free in-order delivery of dat...

	2.7.4 Switches
	ServerNet I offers 6 port switches, which can be connected in an arbitrary topology. Router II, t...

	2.7.5 Software
	The good reliability of the ServerNet hardware makes it possible to implement low overhead protoc...
	To provide an easy way of managing the network, a special sort of packets is defined called In Ba...

	2.7.6 Remarks
	Though it is hard to find detailed performance numbers, ServerNet technology seems to be a very r...
	ServerNet implements a lot of properties, which are extremely useful for cluster computing: error...


	2.8 Myrinet
	Myrinet [48] is a SAN evolved from supercomputer technology and the main product of Myricom, a co...
	The Myrinet technology is based on two earlier research projects, namely Mosaic and Atomic LAN by...
	2.8.1 NIC architecture
	Regarding the link and packet layer, Myrinet is very similar to ServerNet (or vice versa). They d...
	More than other SAN developers Myricom has continuously improved the architecture and the hardwar...

	2.8.2 Transport layer and switches
	Data packets can be of any length and are forwarded using cut-through switching. They consist of ...
	On the link level, the trailing CRC is computed in each network stage and substituted for the pre...
	Latest Myrinet switch technology [50] is build around a single crossbar chip with 16 ports, calle...

	2.8.3 Software and performance
	As mentioned before, all Myrinet specifications are open and public. The device driver code and t...
	The performance of the Myrinet network is highly depended on the software layer used to access th...
	Over the last two years, Myricom has developed with the GM message layer [55] a quite stable and ...

	2.8.4 Remarks
	The great flexibility of the hardware due to the programmable LANai microcontroller is one of the...
	Bottlenecks like slow onboard SRAM or LANai chips have been removed, early versions of low-perfor...


	2.9 QsNet
	QsNet [57] is a SAN developed by Quadrics Supercomputers World Ltd. Similar to other SANs, QsNet ...
	2.9.1 NIC architecture
	The third generation of the Elan ASIC is the key component of the QsNet NIC. Its architecture is ...

	2.9.2 Switches and topology
	Besides the NIC, two different switches (16 and 128 port) are used to connect QsNet nodes into a ...
	Source-path routing is used to deliver network packets to their destination. The sender attaches ...

	2.9.3 Programming interface and performance
	Figure�2-16 shows the overall structure of the programming interface for a QsNet network. A layer...
	The unique feature of QsNet is its ability to directly send data from a process virtual address s...
	QsNet currently leads all SANs in performance, due to its advanced hardware support of message pa...

	2.9.4 Remarks
	Though it offers the best performance of todays SANs, QsNet has not attracted the level of attent...


	2.10 IBM SP Switch2
	Though a proprietary network not intended for the PC cluster market, the Switch2 interconnect [59...
	To remain one of the top HPC manufacturers, IBM developed with the second generation of SP Switch...
	Though due to its proprietary interface not usable for general cluster computing, its technology ...
	2.10.1 NIC architecture
	Figure�2-17 depicts the top-level architecture of the SP Switch2 host adapter. As shown in the fi...
	The node architecture is highly decoupled to allow several data transmissions to occur at the sam...
	The general purpose PowerPC 740 microprocessor offloads a lot of tasks from the host CPU. It basi...
	Additional to the message transfers, the Switch2 offers some advanced features. On is the generat...

	2.10.2 Network switches
	SP machines are mostly connected in a bidirectional multistage interconnection network (BMIN) top...
	SP switches use source-path wormhole routing with a credit-based flow control scheme to prevent b...
	Each output port has two output queues assigned, one low- and one high-priority queue. High-prior...

	2.10.3 Remarks
	The new generation of IBM’s SP Switch technology offers enough performance to let clusters of RS/...
	Up to 350�Mbyte/s sustained bandwidth has been measured for MPI applications. A relative high lat...
	Features like multicast and adaptive routing have not been implemented with such a level of hardw...


	2.11 Infiniband
	I/O bandwidth is more and more becoming a limited resource in todays server systems. To overcome ...
	To overcome the architectural limitations of bus-based approaches, several major computer vendors...
	Companies like IBM [62] and Intel heavily push the development of IB hardware. First products are...
	2.11.1 Architecture
	Figure�2-18 depicts the general architecture of an IB network. It contains the four building bloc...
	The foundation of communication in an InfiniBand fabric is the ability to queue up a set of jobs ...
	Applications can set up multiple QPs, each one independent from the others. A send job specifies ...
	InfiniBand supports connection oriented and datagram communication. A connected service establish...

	2.11.2 Protocol stack
	The specification separates IB into several layers, as shown in Figure�2-19: transport, network, ...
	Physical layer
	The physical layer specifies how single bits are put on the wire to form symbols. It defines cont...
	Link layer
	The link layer describes the packet format and protocols for packet operation. This includes flow...
	Figure�2-20 depicts the IB data packet format and which layer utilizes which part of the packet t...
	Network layer
	The network layer implements the protocol to route packets between subnets. It uses the Global Ro...
	Transport layer
	The transport layer is responsible to deliver a packet to the proper QP and to instruct the QP on...
	A Software Transport Interface is defined on how to configure, access and operate IB communicatio...

	2.11.3 Remarks
	The aggressive goal of InfiniBand to completely take over the whole I/O and server connectivity m...
	On the other hand, competing solutions can try to present an InfiniBand software interface to app...



	3 The ATOLL System Area Network
	The idea to develop a new System Area Network was driven by the need for a high performance clust...
	So a large scale integration of all components was a major factor guiding the process of specific...
	3.1 A new SAN architecture: ATOLL
	The main idea behind this approach was formulated earlier within another context. The first versi...
	Most internal structures have been redesigned, due to the different environment of the MPP and th...
	The number of host and link interfaces is a trade-off between the goal to provide as much perform...
	The upper limit for the number of host interfaces is given by the amount of resources needed to i...
	3.1.1 Design details of ATOLL
	Some of the major design decisions are a natural consequence of the experiences with other soluti...
	A unique technique to detect and immediately correct transmission errors on links has been implem...
	The mechanisms for data transfer between the host and the NI were driven by the fact that the per...
	Some advanced features had to be omitted to keep the complexity at a manageable level. It would h...
	In the following, the major features and mechanisms for the ATOLL System Area Network are summari...
	The rest of this chapter will introduce the architecture of the ATOLL network chip. The main focu...


	3.2 Top-level architecture
	ATOLL is a true 64�bit architecture. All addresses used by the device to access data structures i...
	In the following, a brief overview of each functional unit is given:
	PCI-X interface
	the PCI-X interface is used to communicate with the host system. It can act as bus master or slav...
	Synchronization interface
	since the core of ATOLL runs with a higher clock frequency than the PCI-X interface, all control ...
	Port interconnect
	the port interconnect multiplexes the access to the PCI-X interface between all four host ports. ...
	Host port
	a host port contains all logic to enable PIO- and DMA-based message transfer. A small interchange...
	Network port
	the network port converts a stream of tagged 64�bit datawords from the hostport into a 9�bit-wide...
	Crossbar
	the crossbar is a full-duplex 8x8 port switch. It interprets routing bytes of incoming messages t...
	Link port
	the link port provides a full-duplex interface to the network. It prevents buffer overrun by ensu...
	The whole architecture is optimized to provide the highest level of sustained bandwidth and an ex...
	3.2.1 Address space layout
	The whole ATOLL device requests an PCI-X address space of 1�Mbyte at system start- up. Only the f...
	Another reason for separate pages is the level of protection for different address areas. The use...
	In all 8�Kbyte pages only the lower 4�Kbyte part is used. The upper 4�Kbyte are left unused. And ...
	The page for the initialization and debug registers at address 40000h was appended in a late stag...
	The layout of the different pages is discussed in detail later in this chapter, at the appropriat...


	3.3 PCI-X interface
	The PCI-X bus interface module used in the ATOLL chip is an external IP cell from Synopsys, Inc [...
	DW_pcix_ifc
	the DW_pcix_ifc module contains the PCI bus interface. It performs multiplexing of outgoing addre...
	DW_pcix_com
	the DW_pcix_com module implements the Completer logic. It is responsible for all actions necessar...
	DW_pcix_req
	the DW_pcix_req module contains the Requester logic. It controls all bus master transactions trig...
	DW_pcix_config
	the DW_pcix_config module implements the PCI configuration space, as defined by the PCI bus speci...
	The complexity of the PCI-X bus interface is quite high, since it implements all the special prot...
	In the following, the main parameters are given, which were defined during generation of an IP ce...

	3.4 Synchronization interface
	The synchronization interface connects the PCI-X bus module to the ATOLL core logic. On the PCI-X...
	3.4.1 Completer interface
	The completer interface needs to separate read and write accesses, and interacts with the Slave-W...
	For write transactions, the completer stores the start address and pushes all incoming data into ...
	In case of a read request, the address is immediately forwarded to the ATOLL core to request the ...
	Since the Slave-Read path on the ATOLL side delivers a data word on each second cycle, the ratio ...
	For both transfer directions the completer interface is also responsible to convert a 64�bit data...

	3.4.2 Slave-Write data path
	On the ATOLL side, the Slave-Write path is plain simple. As soon as an address-length pair is han...

	3.4.3 Slave-Read data path
	The Completer delivers the address, a valid signal and the byte count for a read access. In case ...
	Figure�3-8 depicts the interface signals to the ATOLL core. In case the core delivers data too fa...

	3.4.4 Master-Write data path
	When acting as bus master, the ATOLL device tries to transfer data in bursts as large as possible...
	The control logic of the Master-Write data path pushes incoming data into a FIFO. It stores the f...

	3.4.5 Master-Read data path
	Reading data from main memory requires more complex logic. To implement an efficient utilization ...
	Since multiple host ports might request data, each job is assigned one of 8�job IDs to be able to...
	The control logic of the Master-Read path keeps outstanding jobs in an internal queue. Incoming d...

	3.4.6 Requester interface
	The requester unit needs to multiplex the access to the PCI-X interface between the Master-Write ...
	In contrast to the completer interface, the conversion of 64�bit data into 32�bit data is perform...

	3.4.7 Device initialization
	A few initialization and debug registers have been placed into the synchronization interface. The...
	Figure�3-13 gives an overview about each register and the meaning of its individual bits. Not all...
	Reset register
	besides the global power-on reset signal, each major block of ATOLL has been assigned a unique re...
	PLL register
	the ATOLL clock logic includes a configurable Phase Locked Loop (PLL) to set the internal clock t...
	Status register
	The lower 5�bits sample some status bits set by the PCI-X interface. It detects at system start-u...
	BIST start register
	All SRAM memory cells have a Built-In Self Test (BIST) logic attached. It checks the memory for e...
	BIST ok register
	These bits are the corresponding signals to the BIST start bits. Due to different sizes of the SR...


	3.5 Port interconnect
	The port interconnect multiplexes the four ATOLL core data paths described in “Synchronization in...
	The implementation of both Slave paths is straight forward. An incoming address from the synchron...
	In case of both Master paths, the access to them must be multiplexed between all host ports. Each...
	3.5.1 ATOLL control and status registers
	A separate module hosts the control/status registers needed for managing the use of ATOLL. These ...
	All registers can be split into four categories: control, status, debug and extension. The regist...
	In Table�3-1, all control registers are listed with their address offset relative to the device b...
	The internal crossbar offers the possibility to observe its status and to insert/pull out link da...
	Finally, two more registers are used as extension to the above set of registers to control the de...
	In the following, all registers are described in detail. They are listed in groups of functional ...
	Figure�3-15 depicts the hardware control/status register, as well as the global counter registers...
	Figure�3-16 shows the registers to control the host ports. Their meaning is as follows:
	Figure�3-18 gives an overview about all registers related to the generation of interrupts. There ...
	All possible interrupts are flagged by the irq_case register. The specific bits are described in ...
	The lp_retry status register, as shown in Figure�3-19, provides for each link the value of an 8�b...
	Besides the registers presented over the last pages, there are other, less important ones, which ...
	In the following, a typical interrupt service sequence is given:


	3.6 Host port
	The host port [68] is the main building block of the ATOLL chip. It is responsible for data trans...
	The interfaces towards the port interconnect correspond to the ones between the port interconnect...
	3.6.1 Address layout
	Each host port occupies 4�consecutive 8�Kbyte pages in the address space of the ATOLL device, as ...

	3.6.2 PIO-send unit
	Programmed I/O is intended as a fast and efficient way to communicate small amounts of data. A lo...
	The FIFO for keeping the data to be sent is directly made accessible to the user. The PCI- X bus ...
	But in addition to the raw data, the PIO-send unit also needs to know the specific tags of the da...
	Figure�3-25 gives an overview about the structure of the PIO-send module. Apart from normal messa...

	3.6.3 PIO-receive unit
	First versions of the PIO-receive unit implemented the same method as used by the PIO- send modul...
	To deal with this problem one needs to remove the side effect of the read access. Therefore, the ...
	The page assigned to the PIO-receive module now references the ring buffer, whereby the buffer is...
	Figure�3-28 shows the structure of the PIO-receive unit. An incoming address is first analyzed to...

	3.6.4 Data structures for DMA-based communication
	DMA-based communication is a good way to offload work from the main CPU. The CPU communicates wit...
	Figure�3-29 depicts the layout of a data region. A base address marks the beginning, whereas an u...
	The second data area is the descriptor table, which keeps fix-sized job descriptors for each DMA ...
	Figure�3-30 shows the layout of a job descriptor. The offsets point to the associated frame data,...
	The command byte is used on the sending side only. When receiving a message, this byte is used as...
	Similar to the data region, there are separate descriptor tables for the DMA-send and the DMA-rec...

	3.6.5 Status/control registers
	The status/control registers needed for a host port are stored in a separate register file. It in...
	Table�3-5 lists all registers of the send page. The offsets are relative to the page base address...
	Table�3-6 lists all registers of the receive page. The DMA registers are almost the same as for t...
	Besides the fill level of the PIO-receive data FIFO, the receive page also includes a register fo...
	Another special feature is the semaphore register. It is intended to be utilized in case the host...

	3.6.6 DMA-send unit
	The DMA-send unit is responsible to observe the data areas for sending messages, and to process a...
	Figure�3-32 depicts the structure of the DMA-send unit. It is split up into two subdesigns. One p...
	As soon as an entry is detected in the descriptor table, it is requested from memory and stored i...
	The second part is called ‘job completion’ and is responsible to accept the data the other part h...

	3.6.7 DMA-receive unit
	The DMA-receive unit is the counterpart to the DMA-send unit. It gets message data from the netwo...
	Similar to the DMA-send unit, the DMA-receive module keeps the relevant registers in a small work...
	Figure�3-34 gives an overview about the structure of the DMA-receive module. Incoming data is fir...
	Though each data word is transferred with its address, it makes no sense to mix multiple data str...

	3.6.8 Replicator
	The replicator is used to avoid polling status registers of the ATOLL device, which could degrade...
	The replicator utilizes the same Master-Write interface of the port interconnect as the DMA-recei...
	The read and write pointers of the DMA modes are updated on each change. This is also true for th...
	So before interpreting the value in the replication area, an application should read the value di...


	3.7 Network port
	The network port is converting the tagged data stream of 64�bit words into a byte-wide stream acc...
	3.7.1 Message frames and link protocol
	As stated earlier, an ATOLL message consists of three frames: routing, header and data. The routi...
	Figure�3-35 gives an overview about the framing of ATOLL messages and the link protocol used for ...
	There are 4�control bytes used at the network port to build up the framing of message data:
	Link packets in the routing frame do not have a CRC value attached, since one must react on bit e...
	Each frame can be composed of several link packets, but the normal case should be that a single l...

	3.7.2 Send path
	Figure�3-36 depicts the overall structure of the send unit of the network port. It can be viewed ...

	3.7.3 Receive path
	Figure�3-37 shows the structure of the receive unit inside the network port. It basically consist...
	The output stage is a bit more complex than in the send unit. Incoming link packets might be mark...
	Providing only one output FIFO would result in a significant performance penalty, since the data ...
	To keep data flowing a second FIFO was implemented, and the data path switches on each link packe...
	Simulations showed a significant gain in sustained throughput of the unit using two output FIFOs ...


	3.8 Crossbar
	The crossbar [69] is a full-duplex 4x4 switch, providing an all-to-all connection between the 4�n...
	The input unit of a crossbar port strips off the first routing byte of an incoming message and se...
	The output unit of a crossbar port arbitrates its data path in a fair round-robin fashion. Once a...
	The additional debug interface observes the status of the crossbar and can be accessed via the de...

	3.9 Link port
	The link port is the gateway to the network. It directly drives and receives signals over the lin...
	A unique feature of an ATOLL link is its per-link error detection and correction. In contrast to ...
	3.9.1 Link protocol
	Two types of bytes make up the link data stream: data and control bytes. They are differentiated ...
	Therefore, the upper bit of a routing byte is a parity bit calculated from the remaining 7�bits. ...
	Table�3-8 gives an overview about the format and encoding of all data and control bytes. The firs...
	Since only data bytes are protected by link packet CRCs or parity bits, another method had to be ...
	Using this hamming code, a correct control byte can be identified by p[2:0] = 000. Any nonzero va...
	The control bytes SOF, EOM, EOP, EOP_ERR and CANCEL were described earlier. The IDLE byte is simp...

	3.9.2 Output port
	Figure�3-39 gives an overview about the structure of the link port output unit. It is split up in...
	The retransmit path is responsible to keep a copy of each link packet sent over the link. If the ...
	During the unit waits for the acknowledgment of the first packet, a second one can be transmitted...
	Figure�3-40 shows how the reverse flow control path is utilized to insert control bytes into the ...
	The same procedure happens in case the blockage of the path is removed and the FIFO can again sto...

	3.9.3 Input port
	The structure of the input path of the link port is shown in Figure�3-41. It can be viewed as a p...
	The second stage decodes all control bytes and filters out flow control signals, which need to be...
	Finally, data is pushed into a large FIFO. This FIFO is observed by some control logic, which tri...



	4 Implementation
	The implementation of the ATOLL architecture as an Application Specific Integrated Circuit (ASIC)...
	The Europractice IC Service, which is funded by the European Union (EU), is normally the only way...
	The ATOLL ASIC is a standard cell based design. Using such pre-configured cell libraries, contain...
	To concentrate on the development of the logic unique to ATOLL, several commonly used building bl...
	4.1 Design Flow
	The design flow [71] pretty much follows the standard ASIC design flow used over the last decade ...
	So a design flow had to be established from the accessible tools. Where necessary, additional too...

	4.2 Design entry
	The whole design has been implemented using the Verilog HDL on Register-Transfer Level (RTL). Thi...
	To deal with the large design hierarchy and to enhance its visualization, the decision was made t...
	For an efficient implementation of complex control logic as Finite State Machines (FSM), a custom...
	4.2.1 RTL coding
	Since the level of expertise in writing Verilog RTL code varied a lot inside the design team, a w...

	4.2.2 Clock and reset logic
	Besides the implementation of the architecture, the clock and reset logic of an ASIC is always a ...
	All signals crossing a clock domain border must be synchronized into the receiving clock domain. ...
	So passing data or control signals across a clock domain border is simply done by using two flipf...


	4.3 Functional simulation
	Regarding the size of the design, simulation runtime was a major issue. Therefore, prior to runni...
	4.3.1 Simulation testbed
	To test the ATOLL ASIC in an environment as close to its real use as possible, a testbed has been...
	Several Verilog tasks have been developed to control the simulation via the Master BFM. They also...
	Summarizing, 22�Verilog tasks with more than 2.000�lines of code have been implemented. Using the...

	4.3.2 Verification strategy
	A specific verification strategy was chosen to be followed throughout the verification process to...

	4.3.3 Runtime issues
	Memory usage of the simulator is surprisingly low, the compiled design uses only 63�Mbyte in tota...
	The small corner-case testbenches run only for some minutes. But the large regression testbenches...
	The ability to write checkpoints of the simulation out to disk to be able to restart it from a po...
	Though one run of such a regression testbench runs for 48�hours, it simulates only about 110�ms o...
	After several (about 15) runs of the large ‘shotgun’ testbenches completed without errors, the de...


	4.4 Logic synthesis
	Setting up a synthesis flow for such a large design is a non-trivial task. Since the whole design...
	4.4.1 Automated synthesis flow
	All these mixed top-down/bottom-up flows require a lot of scripting and data management to effici...
	The 3�main procedures of ACS are:
	Those three commands were used in the above order to establish a base netlist for further refinem...

	4.4.2 Timing closure
	At the beginning, the design was pad-limited (around 380�functional I/O pads), which means that t...
	Traditional logic synthesis tools know the logical structure of a design, and have fairly detaile...
	Wire load models are often a set of tables containing net lengths/delays, indexed by the fanout (...
	These inaccuracies get even worse the larger the design is. To enhance the accuracy, one can gene...
	Figure�4-6 shows the timing and area results after each step of the synthesis flow. The numbers a...
	The WNS in the PCI-X domain remains stable over the 3�ACS runs, since the PCI-X core is precompil...
	WNS and TNS of the ATOLL domain are significantly reduced during the ACS runs, with a temporary l...
	Though timing and area improve a lot over the whole flow, there are still some violated paths in ...
	Another interesting fact is that the TNS of the PCI-X domain at the end is still twice the TNS of...

	4.4.3 Design for testability
	Several factors can cause errors in ASIC production. The amount of fully functional chips, compar...
	ATOLL contains three types of test logic:
	Full scan means that all registers in the design are replaced with scannable DFFs. These can be s...
	ATOLL contains 4�full scan chains, which are partitioned according to the different clock domains...
	Not all DFFs can be linked up in the scan chains, e.g. if they are driven by a noncontrollable cl...
	Boundary scan logic [81] is used to drive specific values out of the chip via the I/O cells. This...
	The internal BIST logic [82] is used to test all 43�instantiated RAM macros in the ATOLL chip. It...


	4.5 Layout generation
	As mentioned earlier, the IMEC IC Backend Service group was hired to do the layout job. Place & R...
	In addition to handing over the gate-level netlist to the backend team for layout preparation, so...
	Figure�4-8 depicts the floorplan used for the ATOLL ASIC. But it needed some time to convince the...
	The usage of custom wire load models proved to be an advantage, as described earlier. But still a...
	To overcome the gap between constraint-driven logic synthesis and physical layout, newer versions...
	4.5.1 Post-layout optimization
	After the design is placed and routed, one needs to analyze the timing of the layout, since it mi...
	This data is fed back into the synthesis tool, which is used to run a so-called In-Place Optimiza...
	Figure�4-9 shows an example of how the timing delay of a path can be halved by these modification...
	After all possible optimizations are done, the new gate-level netlist is again transferred to the...
	All in all, 6�post-layout iterations were done for the ATOLL ASIC. Figure�4-10 shows, how the glo...
	The first 3�iterations reduce the timing slack a lot, but at the expense of area. In the lower pa...
	The decision was made to enlarge the die by adding 12�‘not connected’ (NC) dummy I/O cells to eac...
	An in-depth analysis showed, that most of these violated timing paths run through the PCI-X I/O c...
	Since the deadline for the design submission to fabrication was reached after running ECO6, the d...

	4.5.2 Post-layout simulation
	A simulation of the gate-level netlist with annotated SDF cell delays was executed to ensure that...
	Early versions of the netlist, which still had some timing violations, were used at a reduced clo...



	5 Performance Evaluation
	Besides the aggressive scale of integration, implementing a high performance network was the prim...
	The second important factor is the sustained bandwidth a network can provide. It measures the act...
	Those two metrics are usually measured on the application level. So no distinction is made betwee...
	Since the performance of an ATOLL-equipped cluster can only be measured on a real system, this ch...
	All presented performance measurements were derived from simulations of the environment specified...
	5.1 Latency
	The latency is measured both for PIO- and DMA-based message transfer. Since it usually scales lin...
	Figure�5-1 depicts the one-way latency for a single host port in use. Latency starts at about 2,4...
	On the other hand, DMA mode needs only 3�PCI-X read transactions on the sending side (descriptor,...
	Figure�5-2 shows that the number of active host ports in parallel has only a minor effect on mess...
	All in all, the latency numbers taken from simulation are very promising. Even when operating in ...

	5.2 Bandwidth
	Measuring the bandwidth of a network is normally done for very large messages. But simulating the...
	Figure�5-3 depicts the bandwidth of DMA-based message transfer for a single active host port. Rea...
	Figure�5-4 gives an insight into the bandwidth for multiple host ports in use. Similar to latency...

	5.3 Resource Utilization
	During the functional simulation of the ATOLL chip implementation, an efficient utilization of in...
	One major resource is the network link. Its efficient use is a crucial factor of overall performa...
	Figure�5-5 shows the link utilization, given as rate between raw message data vs. total bytes sen...
	Control bytes account for only a small portion of link overhead. Most of the wasted bandwidth is ...
	Though only about 20�idle cycles are introduced when sending two back-to-back link packets with 1...
	While message data travels through several top-level units in the ATOLL device, it is temporary s...
	Figure�5-7 lists the variation of the fifo fill level along the data path for the DMA-send mode. ...
	All performance measurements were done assuming no network contention. In reality, this assumptio...


	6 Conclusions
	Clusters are emerging as a competitive alternative to Vector or MPP supercomputers in the field o...
	The key component is a fast network. A new class of so-called System Area Networks emerged, since...
	Recent trends in PC technology pose new problems to SANs. E.g. SMP desktop computers are becoming...
	To sum up, current SAN technology has helped Cluster Computing to make a big step forward, but th...
	6.1 The ATOLL SAN
	This dissertation introduces a novel SAN version of the ATOLL architecture, derived from a first ...
	ATOLL offers a sophisticated mechanism to dynamically choose between PIO- and DMA-based message t...
	An error detection and correction protocol avoids end-to-end control of data transmissions. Bit e...
	Early performance evaluations promise extremely low latency and a very competitive sustained band...
	Besides redesigning the architecture of ATOLL towards a SAN, this dissertation describes also the...
	The ATOLL ASIC is one of the most complex and fastest chips ever implemented by a European univer...

	6.2 Future work
	The future development of a second generation of ATOLL will be greatly influenced by technology t...
	Of course, the definition of the next generation architecture will be also greatly influenced by ...
	Mainly there are two options for the development of the next version of ATOLL. A small and easier...
	These enhancements would help to keep up with the progress in desktop technology, resulting in a ...
	A more challenging approach would be a major redesign of the whole architecture. The current one ...
	The architecture would head towards the ones of Myrinet, QsNet or the IBM SP network, which all h...
	Both options have their pros and cons. But it shows that the ATOLL architecture has the potential...
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