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Abstract

Most school systems grant teachers and school principals considerable discretion in

grade retention decisions. This paper argues that schools can exploit this discretion

by selectively retaining students to reduce class size which potentially has important

implications for public spending on education and affected students. To this end, I

build a model in which class size is subject to a class size cap, with teachers and

school principals determining the share of students to be retained. This leads to a set

of empirical predictions that can be tested with minimal data requirements. Testing

these predictions using administrative data for German primary schools yields strong

evidence of schools strategically using grade retention to reduce class size.
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1 Introduction

Grade retention is an important feature of many school systems around the world. According

to PISA 2009, an average of 13 percent of 15-year-old students across OECD countries report

having repeated a grade at least once (OECD, 2011). The primary intent of grade retention

is to allow low-achieving students to catch up to grade-level requirements (Eurydice, 2011).

But grade retention is also thought of as an incentive device that can increase study effort

(Jacob, 2005). Yet, holding students back a grade comes at considerable costs. These include

the public expenses for an additional year of education and the indirect costs for retained

students in the form of potentially negative effects of retention, e.g. through a delayed labor

market entry or reduced self-esteem.1 The OECD estimates that the financial resources

devoted to grade retention represent between 10 and 12 percent of total expenditures on

primary and secondary education in Belgium, the Netherlands, Portugal, and Spain (and

4 to 10 percent in Brazil, Germany, Italy, and the US) (OECD, 2011). In the empirical

literature consensus is lacking as to whether these costs outweigh the benefits of grade

retention.2

While the net-benefits of grade retention remains a controversial topic in research and

policy, it is generally taken for granted that teachers and school principals make retention

decisions in an effort to help the affected student. In this paper, I challenge this prevailing

view and explore a different motive for retaining students. More specifically, I analyze

whether decisions to retain students are partly a result of strategic considerations by teachers

and school principals to reduce class size. Shifting students across grades by retaining them

allows schools to affect the size of their classes and it is well know that teachers generally

1Other harmful effects might arise from stigmatization, reduced expectations for academic performance
on the part of teachers and parents, as well as the challenges of adjusting to a new peer group (Schwerdt
et al., 2017).

2Recent studies with causal identification strategies include Jacob and Lefgren (2004, 2009); Manacorda
(2012); Gary-Bobo et al. (2016); Fruehwirth et al. (2016); Eren et al. (2017); Schwerdt et al. (2017); Cockx
et al. (2019). In contrast to earlier studies that did not take into account selection on unobservables, these
studies generally find more positive short-run effects of grade retention. In the long run, however, effects on
high school completion and test scores seem to be neutral or negative.
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prefer smaller classes.3 School principals might prefer smaller classes largely because teachers

and parents have a preference for them. Rules that set school budgets as a function of the

number of classes rather than total enrollment reinforce this preference. This paper examines

if schools respond to these incentives by exploiting their discretion in grade retention decisions

to minimize class size.

The paper is divided into two parts. The first part derives testable implications of

strategic grade retention. To this end, I set up a model for retention decisions by teachers

and school principals in a school system with maximum class size rules (or class size caps)

where the number of classes changes whenever enrollment falls below or exceeds a particular

threshold. In this setting, individual retention decisions can result in disproportionate class

size changes for enrollment levels in the vicinity of the threshold. Based on this idea, I

derive two testable implications. The first is an inverted-U relationship between end-of-year

retention rates and current enrollment within two consecutive multiples of the class size

cap, i.e. for enrollment levels with the same predicted number of classes. The inverted-U

arises from the interaction of two effects: for enrollment just below (above) a multiple of

the class size cap not retaining any students increases (decreases) the probability that the

class is split (merged) in the next grade, thereby decreasing expected class size. However,

retained students also leave their initial class. This class size reducing effect of grade retention

dominates in medium sized classes with enrollment sufficiently above or below the class size

cap where the probability for a change in the number of classes is low.

The second testable implication relates to the relationship between retention rates and

enrollment in the grade below. To add another class or avoid having to merge classes for

next year’s cohort, retention rates for the current cohort should increase as enrollment in

the grade below gets closer to the class size cap. This results in an U-shaped relationship

between retention rates and enrollment in the grade below for enrollment levels within two

consecutive multiples of the class size cap.

3For example, reducing class size is the number one spending priority reported by teachers across the
OCED (OECD, 2019).
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In the second part of the paper, I test these implications with administrative data for

all public primary schools in Saxony, a German federal state, for the school years 2004/2005

through 2014/2015. Consistent with strategic grade retention, I find support for both pre-

dictions: There is a pronounced inverted-U relationship between retention rates and current

enrollment as well as a U-shaped relationship between retention rates and enrollment in the

grade below. These patterns also hold within rather than between schools and are strongest

in first grade, where the potential for strategic manipulation and its benefits for schools are

largest. In addition, the inverted-U relationship between retention rates and current enroll-

ment does not hold in the last grade of primary school, where my model does not predict

it. These findings reinforce my confidence that what I measure is indeed strategic grade

retention rather than the result of student sorting at specific enrollment levels. Further-

more, strategic grade retention is more pronounced when changing the number of retained

students affects the probability of classes being merged rather than being split, a finding

best accommodated by loss aversion.

Testing more formally for strategic grade retention yields that retention rates in grade

1 increased by more than 0.6 percentage points (27 percent) when this was expected to

decrease next cohort’s class size. Students held back due to these strategic considerations

are estimated to account for approximately 8.3 percent of all retained students in first grade.

Conversely, first grade retention rates drop by more than 0.2 percentage points (9 percent)

when retaining fewer students is expected to decrease class size in the next grade (when

current enrollment is close to the class size cap). Without this strategic non-retention, the

average retention rate in first grade would have been approximately 4.9 percent higher.

This paper makes two important contributions. To the best of my knowledge, it is the

first to point out the role that class size considerations play in retention decisions and also

demonstrates it empirically. From a policy perspective this can be important for two reasons.

First, the manipulation of enrollment around class size caps through strategic grade retention

results in the need to fund additional classes. Especially in primary schools, which are
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generally small with relatively few classes,4 each additional class and the required teaching

staff substantially increases a school’s budget and thereby public spending on education.

These practices also allocate a larger share of public resources to those schools which are

willing to manipulate the class size rule. Second, grade retention itself is a costly policy

affecting children in many school systems around the world. Rather than manipulating

enrollment, it is reasonable to assume that school authorities would want to ensure that

children are retained if and only if they can be expected to benefit from it. On the one hand

to avoid the public and individual costs of retaining students who are unlikely to benefit

from it, but also to ensure that students who potentially benefit from repeating a grade are

indeed retained.

The second contribution is that the empirical predictions I derive allow researchers to test

for strategic grade retention in many contexts. For instance, almost all European countries

allow grade retention, and of those countries with explicit grade retention policies, all grant

teachers and principals considerable discretion in grade retention decisions (Eurydice, 2011).5

Moreover, class size caps are used in most public school systems to form classes and determine

school budgets. Testing my empirical predictions also does not require detailed student-level

data or information on teachers, which are often unavailable to researchers. Instead, only

school-grade-year level data on total enrollment, the number of classes, and number of grade

repeaters is required. This information is typically recorded for administrative purposes and,

hence, should be easily available to researchers.

This paper is most closely related to two studies that analyze how individual schools and

school districts respond to maximum class size rules. The study by Urquiola and Verhoogen

(2009) sets up a model for profit-maximizing schools that are subject to a class size cap.

Their model predicts that schools at the class size cap adjust prices or enrollment to avoid

4There are on average only 1.76 classes per grade in Saxon primary schools and the corresponding number
for the US is 2.89 (U.S. Department of Education, National Center for Education Statistics, Schools and
Staffing Survey, 2007)

5The only two countries where, according to legislation, students progress to the next year automatically,
regardless of academic performance are Iceland and Norway. The United Kingdom is another exception:
There are no regulations on grade retention, but grade retention is virtually nonexistent.
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adding an additional classroom. They find support for this prediction in data for Chilean

private schools. Their findings are very different from mine, because, unlike the special case of

Chile’s highly liberalized education system, I analyze public schools. These schools are almost

exclusively financed through taxes, and therefore not only face very different incentives

compared to private schools but are also the most common type of school. The second

study by Cohen-Zada et al. (2013) investigates the public secondary school system in Israel,

where schools have a per-student funding budget. They show that local school authorities

selectively manipulate the maximum class-size rule in order to place weaker students in

smaller classes.

My paper also contributes to the literature on several forms of strategic manipulation

by schools and teachers. In early work, Jacob and Levitt (2003) provide evidence of a

high prevalence of test score manipulation in Chicago elementary schools that responds

strongly to relatively small changes in incentives for teachers. For the same schools, Jacob

(2005) further shows that teachers responded to the introduction of high stakes testing by

strategically increasing special education placements and preemptively retaining students.

Outside of the United States, Angrist et al. (2018) finds that small classes increase test score

manipulation in Southern Italy due to teachers shirking when they transcribe answer sheets.

This paper demonstrates teacher and school manipulation to not only be limited to contexts

where schools are held accountable for the performance of their students.

More generally, this paper relates to a vast literature on the principal-agent problem that

studies how to design institutions in order to align the incentives of principals ( 6= school

principals) and economic agents (see e.g., Fama, 1980; Laffont and Martimort, 2002). In the

case of grade retention, school authorities, which are responsible for the allocation of funds

across schools, act as principals. They must delegate grade retention decisions to teachers

and school principals (the agents). A conflict in the objectives of agent and principal arises

because individual schools prefer smaller classes (more resources) while school authorities

must allocate funding across all schools according to certain objectives. This conflict is not

5



easily resolved since school authorities do not observe individual student ability, and hence,

can not judge the validity of schools’ retention decisions.

The rest of the paper is organized as follows. The next section presents a stylized model

of teacher’s and principal’s retention decisions and derives testable implications. Section 3

presents some institutional background on primary schools in Saxony. Section 4 describes

the data used. Section 5 tests the model’s implications and Section 6 concludes.

2 The Model

Below I outline a highly stylized model of grade retention that illustrates how different incen-

tives to retain students for teachers and school principals arise through class size thresholds.

This yields a set of intuitive predictions that can be tested empirically. I tailor the model

to the school system in Germany, where teachers typically follow the same class for several

grades. However, it would be simple to expand the framework to other settings such as the

US, where teachers typically remain at the the same grade level.

2.1 Teachers’ Decision to Retain Students

I start with teachers who are generally responsible for grading and recommending students

for grade retention since they observe a student’s daily behavior. To simplify the exposition,

consider a cohort in a particular school that is taught by the same teachers for two consec-

utive periods: lower grade (L) and higher grade (H). This is consistent with many school

systems where teachers follow the same class through multiple grades. A cohort consists

of a continuum of students of mass SL in lower grade and class size in each grade is deter-

mined by a class size cap of Ψ according to the following formula, commonly referred to as

“Maimonides Rule”:

CSgt =
Sgt

ceil[Sgt

Ψ
]

(1)

where t denotes the school year, g ∈ {L,H}, and the ceil[.] function takes the greatest
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integer greater than or equal to the given argument.

At the end of lower grade, teachers can choose the fraction of students to be retained in

L (= λL). For concreteness, I assume that the fraction of retained students is subject to the

following constraint:

0 ≤ λL ≤ π + πCSL ≤ 1 (2)

where π, π > 0. The functional form of this constraint can be derived from an underlying

process where class size negatively affects student achievement and teachers only retain

students with academic skills below a certain threshold. This captures the idea that teachers

have professional ethics and are expected to follow guidelines that prescribe only retaining

students who can not be expected to perform to certain academic standards in the next

grade.6

Even if no student is retained in lower grade, the number of students in a cohort is likely

to change from lower to higher grade. For example, students can switch schools and retained

students in higher grade stay in the same grade, joining next year’s cohort. I denote the

mass of students that join or leave a cohort in higher grade by φ and assume that it follows

a uniform distribution with E(φ) = 0 and density 1/2θ.7, 8 Here θ can be interpreted as the

maximum number of students that can be expected to join a cohort as it progresses to the

next grade. Total enrollment in higher grade is then given by

SH = (1− λL)SL + φ (3)

6It also entails that teachers have to justify retention decisions to the school principal who sometimes
even makes the final decision. To see why this might limit a teacher’s ability to retain students, note that
principals should generally prefer lower retention rates because retained students also increase class size for
the next cohort (who stays longer in school) if the number of classes does not change. In the next section, I
study what the prospect of changing next cohort’s class size implies for school principals’ retention decision
for the current cohort.

7Note that φ does not include the number of students who leave a cohort between lower and higher grade
because they are retained in lower grade. However, φ does include students from the previous cohort who
were retained in higher grade (i.e. λHSH,t−1) as given.

8Making different distributional assumptions about φ yields identical predictions but comes with much
added complexity.
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and expected class size in higher grade, as a function of the fraction of retained students

in lower grade, can be expressed as

E[CSH(λ)] = P (merge|λL)× E [CSH(λL)|merge]

+ P (split|λL)× E [CSH(λL)|split]

+ P (same|λL)× E [CSH(λL)|same]

(4)

where merge, split, and same denote a decrease, increase, or no change in the number

of classes for a cohort from lower to higher grade, respectively.9

I abstract from all other determinants of teachers’ utility and assume that the problem

facing teachers is to minimize class size in the higher grade by choosing the fraction of

students to retain in lower grade. Because of the shock φ, teachers do not know the realization

of SH when the retention decision is made. Therefore, they minimize expected class size in

higher grade

minimize
λL

E[CSH(λL)] (5)

subject to constraint (2).

With a slight abuse of notation, define bSLc and dSLe as multiples of the class size cap

Ψ satisfying

bSLc = xΨ < SL ≤ (x+ 1)Ψ = dSLe for x ∈ {0, 1, . . . , n} (6)

such that the interval

(bSLc , dSLe] (7)

delimits enrollment segments within which the number of classes is constant. I can then

state the proposition that characterizes retention decisions of teachers.

9To avoid clutter, I do not write explicitly the dependence of P (.|λ), CSH(λL), and λL on SL, θ, and φ
but this dependence should be understood.
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Proposition 1 Either retention rates always increase monotonically with class size or there

exist critical enrollment levels ST (θ) and S
T

(θ) such that

• For bSLc < SL ≤ ST (θ) it is optimal not to retain any students

• For ST (θ) < SL < S
T

(θ) it is optimal to retain the maximum share of students possible

and retention rates increases monotonically with class size

• For S
T

(θ) ≤ SL ≤ dSLe it is optimal not to retain any students

The proof is in the Appendix. Proposition 1 states that within enrollment segments where

the number of classes stays constant, there are critical lower and upper enrollment levels.

For enrollment between these critical levels, teachers retain more students as enrollment

increases. In schools with enrollment below (above) the lower (upper) critical level, however,

no student should be retained. Importantly, these critical values are a function of θ, i.e.

the number of students that can be expected to join or a leave a cohort between lower and

higher grade irrespective of the teacher’s retention decisions.

The intuition for these critical levels is as follows. Consider the case of a cohort with

enrollment below or equal to Ψ, which has only one class. For this cohort expected class size

in higher grade is equal to

E[CSH(λL)] = P (split|λL)× E [CSH(λL)|split]

+ P (same|λL)× E [CSH(λL)|same]
(8)

Regardless of the fraction of retained students, the probability for the class being split in

the next grade is negligible if enrollment is sufficiently below the class size cap and expected

class size in the next grade is simply E [CSH(λL)|same]. Since class size is reduced by

retaining more students if the number of classes stays the same (∂E[CSH(λL)|same]
∂λL

< 0), it is

thus optimal for teachers to retain as many students as possible. However, with enrollment

moving closer to the class size cap, the probability of enrollment crossing the class size cap

(which implies a class size reduction by approximately half its current size) becomes positive
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and increases with fewer retained students (∂P (split|λL)
∂λL

> 0). At some point, the latter effect

dominates the class size reducing effect of retaining more students. In order to increase the

chances of enrollment crossing the class size cap next grade it is optimal not to retain any

students. The intuition for the lower critical level (ST (θ)) is very similar and, therefore,

omitted.

Proposition 1 is not directly testable because I do not observe the critical enrollment

levels ST (θ) and S
T

(θ) for a particular school. But retention rates for enrollment above

ST (θ) and below S
T

(θ) are always predicted to be zero. Therefore, aggregating over schools

with different values for θ (i.e. schools with more or less fluctuation in enrollment between

grades) and, hence, different critical levels, yields the following testable implication:

Testable Implication 1 If teachers make retention decisions to minimize expected class

size, there is an inverted-U relationship between retention rates and current enrollment for

enrollment levels within two consecutive multiples of the class size cap in grades lower than

the last grade of primary school.

It is worth considering what my model predicts for grade retention in the final grade

of primary school. In that case, teachers’ future class size is unaffected by their retention

decisions as they will be assigned to a new first grade class next year. Hence, if teachers

generally use grade retention as a remedial intervention to help poorly performing students

and class size has a negative effect on student achievement, we should expect a monotonically

positive relationship between the retention rate and enrollment within enrollment segments,

but no inverted-U. This gives the second testable implication:

Testable Implication 2 If teachers make retention decisions to minimize their expected

class size, there is no inverted-U relationship between retention rates and enrollment within

two consecutive multiples of the class size cap in the last grade of primary school.

So far I have mostly abstracted from the behavior of school principals, though their

incentives not to retain students whenever current enrollment is close to the class size cap
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are similar to those of teachers. Hence, the previous testable implications can also be shown

to be consistent with strategic grade retention on the part of school principals.10 Implications

1 and 2, therefore, do not allow to test whether it is teachers or school principals who retain

strategically. When discussing the empirical results, I will always refer to schools as acting

strategically instead.

2.2 Principals’ Decision to Retain Students

While teachers are usually best equipped to judge the chances of students to be successful

in the next grade, it is oftentimes school principals who make the final retention decision.

In this section, I describe their optimization problem and the resulting testable implications

for the relationship between retention rates and enrollment for the next year’s cohort. To fix

ideas, assume that students again spend lower and higher grade in the same school. However,

students can only be retained in the higher grade and, if not retained in higher grade, they

leave the school at the end of the school year.11 Hence, I focus on the effect that retained

students in higher grades have on the class size for next year’s cohort in higher grade.12

Class size in higher grade is subject to the same maximum class size rule in (1). Let λH

denote the share of students who are retained in grade H at the end of school year t − 1.

φ still captures the mass of students that join or leave a cohort between lower and higher

grade (but now excludes retained students in higher grade). Total enrollment in the higher

10In contrast to teachers, however, showing this is complicated by the fact that school principals should
also take into account the effect of retaining students for next year’s cohort (see the discussion in footnote
6). Hence, for enrollment levels where the probability for the current cohort’s class to be split or merged
is negligible, it is not clear why school principals should retain any students. Assuming that they have
a preference for retaining weak students or that teachers exert some pressure to retain students, however,
yields testable implication 1.

11Here one can think of higher grade as the last grade in primary school.
12It is straightforward to include retention decisions in lower grades and allow students to spend more

grades in the same school, but this would come at the cost of complexity that distracts from the main
mechanism without additional insights.
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grade in school year t is then given by

SH,t = SL,t−1 + λHSH,t−1 + φ (9)

The expected class size in the higher grade as a function of the fraction of retained

students in the previous year can be expressed as

E[CSH,t(λ)] = P (merge|λH)× E [CSH,t(λH)|merge]

+ P (split|λH)× E [CSH,t(λH)|split]

+ P (same|λH)× E [CSH,t(λH)|same]

(10)

Similar to teachers, school principals only retain students with insufficient academic skills

such that the share of retained students is subject to (2). In contrast to teachers, however,

principals take into account the effect that grade retention has on next cohort’s class size.

Thus, their optimization problem is

minimize
λH

E[CSH,t(λH)] (11)

Subject to constraint (2). Solving this problem then yields the following proposition

Proposition 2 Within a given grade level, retention rates are either a constant function

of next year’s enrollment or there exist critical enrollment levels for next year’s enrollment

SP (θ) and S
P

(θ) such that

• For bSLc < SL ≤ SP (θ) it is optimal to retain the maximum share of students possible.

• For SP (θ) < SL < S
P

(θ) it is optimal not to retain any students

• For S
P

(θ) ≤ SL ≤ dSLe it is optimal to retain the maximum share of students possible

The proof is in the appendix. Similar to the first proposition, Proposition 2 states that,

within enrollment segments where the number of classes stays constant, there exist critical
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lower and upper enrollment levels. However, the predicted relationship between current

retention rates and enrollment for next year’s cohort is exactly opposite to that between

retention rates and current enrollment. For next year’s enrollment between these critical

levels, principals have no incentive to retain any students. But for next year’s enrollment

below (above) the lower (upper) critical level, principals have an incentive to retain as many

students as possible. Again, these critical values are a function of θ.

The intuition is as follows. Consider a school where enrollment in lower grade is just

above Ψ with two classes. For this cohort the probability that enrollment will be larger than

two times the class size cap in the next grade is equal to zero. Expected class size in higher

grade is then given by

E[CSH(λ)] = P (merge|λH)× E [CSH(λH)|merge]

+ P (same|λH)× E [CSH(λH)|same]
(12)

Regardless of the fraction of retained students in the previous year’s cohort, the proba-

bility for the two classes being merged next grade is negligible if enrollment is sufficiently

above the class size cap. Expected class size in the next grade is simply E [CSH(λH)|same]

and class size increases with more retained students from the previous cohort joining the

class in higher grade (∂E[CSH(λ)|same]
∂λ

> 0). Consequently, it is optimal for school principals

to not retain any students in the previous year. As enrollment decreases, the probability of

enrollment falling below the class size cap next grade (which implies that class size is roughly

doubled) becomes positive. However, the probability of this happening can be lowered by

retaining more students in the previous year (∂P (merge|λH)
∂λH

< 0). At some point, the latter

effect dominates the effect that retained students increase the size of the receiving class. It

becomes optimal to retain as many students as possible in order to increase the chances of

enrollment staying above the class size cap next grade. The intuition for the upper critical

level, S
P

(θ), is very similar and therefore omitted.

Analogous to Proposition 1, aggregating over schools with different critical levels, yields
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the following testable implication:

Testable Implication 3 If school principals make retention decisions to minimize expected

class size, there is a U-shaped relationship between current retention rates and next year’s

enrollment for enrollment levels within two consecutive multiples of the class size cap.

Note that this model can easily be adopted to other school systems where teachers teach

the same grade level (as in the US). Similar to school principals, teachers would in that case

try to minimize next cohort’s class size, rather than next year’s class size of the current

cohort. This results in the same prediction for the relationship between current retention

rates and next year’s enrollment as in testable implication 3.

3 Institutional Context

To test the implications of my model, I focus the empirical analysis on Saxony, a German

federal state. Generally, all federal states in Germany run their own educational systems, but

states agree on some common standards such that many features are shared across states.

This is especially true for primary education. As a result, most characteristics of primary

schooling in Saxony are similar to all other German federal states.

Public primary schools are administered at the municipality level, but funded mostly by

the state in Germany.13 Similar to most countries, school funding in Saxony is a function of

the number of classes in a grade. This number is determined by enrollment and maximum

class size rules. For school years between 2004-05 and 2014-15, the maximum class size

was set at 28 students (for ease of discussion I subsequently refer to an academic year

by the calendar year in which it begins). Hence, whenever a class exceeded 28 students,

a new class had to be formed. Furthermore, a lower limit for class size was set at 15

students.14 Noncompliance with the class size rule requires approval by the school ministry

13The state funds all personnel expenses which account for more than 80 percent of the school budget
(Statistisches Bundesamt, 2018). Municipalities are responsible to fund material expenses.

14Compared to most other German federal states, Saxony has unique lower and upper class size limits
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and is generally limited to one school year.

Primary school in Saxony is obligatory, free of charge, and spans grades 1-4 with no

explicit ability tracking.15 School entry is determined by a cut-off date set at June 30th.

Children turning six before this cut-off start school at the beginning of the same school year.

Children born after the cut-off are enrolled in the next school year. However, children may be

sent to school in the year before or after they become eligible depending on their maturity.16

Allocation of children to primary schools is determined by place of residence with little

choice for parents, since primary schools have well-defined catchment areas that generally

do not overlap. However, parents who are not satisfied with their assigned school have two

options to change schools. First, they may send their child to a private school. In practice,

however, very few parents resort to this option: private primary schools are extremely rare

in Germany.17 The second option, sending the child to a different public school, is only

possible with the approval of the school principal and the Saxon School Ministry (Sächsische

Schulordnung, 2004). Importantly, class teachers generally follow the same class from first

through the last grade in primary school.

A state wide promotion policy establishes that students have to repeat a grade in primary

school if they fail any subject.18 However, this policy leaves teachers and school principles

with considerable room for discretion; grading is not based on standardized tests and students

that apply to all primary schools. This is crucial as the class size limits in other federal states often depend
on the student composition, with specific information on which exact class size threshold applies to each
school not generally available. For example, in Saarland, the class size cap is a function of the number of
students with insufficient German proficiency in a given grade, while in Hamburg the cap depends on the
social index of the school’s catchment area.

15While Germany is known for early ability tracking, this happens only when students leave primary school
after fourth grade and enroll at one of three different secondary schooling tracks (Gymnasium, Realschule,
or Hauptschule) or for special needs students in primary school.

16Early school entry is possible upon parental request, subject to the school principal’s agreement. Prin-
cipals base their assessment on the results of a medical- and in some cases a psychological examination of
the child, in addition to discussion with the parents. Equally, principals may decide to defer school entry for
another year.

17In 2006, there were only 624 of these schools which accounted for 3.7 percent of all primary schools
in Germany (Autorengruppe Bildungsberichterstattung, 2016). Almost all of these schools were board-
ing schools, religious schools, or schools offering specialized pedagogic approaches, like Waldorf education
(Cortina et al., 2008).

18Failing a subject amounts to scoring worse than a four (“ausreichend”) on a scale from one (“sehr gut”)
to six (“ungenügend”), where one is the best possible score.
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who fail a subject can be exempted from repeating a grade under certain conditions. For

example, a student failing one of the core subjects German, mathematics, or Sachunterricht

(a mix of science and history) can be exempted from repeating a grade if her teacher expects

the student to meet the academic requirements in the next grade based on her learning and

working behavior.19 Additionally, it is not possible to fail first grade because students are

not yet graded. Still, students can be retained with parental approval if their teacher judges

their proficiency in some subject to be insufficient and retention rates in primary school are

highest in first grade. The decision of whether a student is retained or eligible for exemptions

is made by the class council (i.e., the “Klassenkonferenz”) — a panel comprising the school

principal and all the staff who teach a student’s class.

4 Data

I draw on administrative school records provided by the statistical office of Saxony to test

my model’s implications. These data include enrollment, the number of classes, and the

number of retained students on the school-grade-year level for all 818 public primary schools

in Saxony between the 2004 and 2014 school years. Since all these variables are measured

at the school-grade-year level, the terms retention rate and class size should always be

understood as the respective school-grade-year average.

I impose three set of restrictions on these data. First, I drop all school-year observations

with zero classes. These are schools that formed multi-grade classes, typically because en-

rollment was too low to form separate classes for each grade. Second, I drop schools that

serve as so-called dyslexic centers (“LRS-Stützpunkte”). These schools draw in all children

diagnosed with a reading and writing disability (dyslexia) from the surrounding schools in

grade three. Dyslexic children then spend two years in special classes in grade three before

returning to their original school in grade four. These schools are excluded because class for-

19Other exemptions apply to students who have a selective achievement deficit (e.g. dyslexia), changed
schools in the previous school year, or suffered from a long period of illness.
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mation does not seem to be subject to the same class size rules that apply to regular schools.

Third, all first grade observations for the year 2014 have to be excluded because next year’s

enrollment needs to be observed for each school-grade-year observation. These restrictions

result in 26 percent of the initial data being dropped. The final estimation sample includes

718 schools with 29,434 school-grade-year observations for a total of 1,033,940 student-grade

observations.

Table 1 presents some descriptive statistics for my sample. The average class size is 19.90

and each school has an average 35.13 of students per grade. Grade repetition rates decrease

in higher grades. Whereas 2.24 percent of all students are retained in first grade, only 0.77

percent repeat fourth grade.

[Table 1 about here]

In Table A.1 in the appendix, I investigate the dynamics of enrollment by calculating

autocorrelations of enrollment in first grade. These vary from 0.79 to 0.88 indicating high

enrollment persistence within schools (panel A of Table A.1). However, enrollment growth

shows no persistence with all autocorrelations of an order larger than one being close to zero

(panel B of Table A.1). Taken together, these two patterns are consistent with enrollment

fluctuating randomly around a school’s average enrollment level without school-specific linear

trends.20

To get a sense of the magnitude of enrollment variation within schools, panel A of Table

2 decomposes the variance of enrollment into total, between-, and within-school parts sepa-

rately for each grade. Unsurprisingly, most of the variation in enrollment is between schools.

Nevertheless, the within-school standard deviation is around 7, which amounts to more than

18% of the average enrollment level. This indicates substantial variation in first grade en-

rollment within schools over time. Panel B further decomposes the within-school enrollment

20Formally, these results are consistent with the following data generating process for enrollment in first
grade

Si1t = Si1 + ei1t

where Si1t is first grade enrollment at school i in year t; Si1 is a school specific intercept, and eit is an error
term with no autocorrelation.
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variation into between- and within-cohort parts. The latter measures the variation in cohort

size as cohorts transition to the next higher grade, i.e. the variation in cohort size resulting

from student movement due to grade retention or students changing schools. Comparing

columns 3 and 4 shows that there is some within-cohort variation (with a SD between 1.31

and 1.85), but that it only makes up a small share of the total enrollment variation within

schools. Further, student movement within-cohorts is largest between grades 2 and 3, most

likely due to students transferring to dyslexic centers after grade 2.

[Table 2 about here]

These features of the data, within-school and within-cohort variation in enrollment, are

important for the analysis below for two reasons. First, given the extent of within-school

variation in enrollment, schools face different incentives to retain students over time. This

allows to conduct some of the analyses below conditional on school fixed effects. Under the

assumption that the student composition within schools stays constant over time, alternative

explanations for the results from these school fixed effects models, such as sorting of students

at specific enrollment levels, can be ruled out. Second, within-cohort changes between grade

levels is a necessary condition for the testable implications derived above.21 Without the

possibility of students joining a class in higher grade, for example, teachers have no incentive

to refrain from retaining students for enrollment levels just below the next closest multiple

of the closest class size cap.22

21Recall the term φ in (3) and (9), which denotes the number of students that join or leave a cohort in
higher grade.

22Note that in this case the probability that enrollment in the next higher grade in the subsequent year
will exceed the next closest larger multiple of the class size cap is zero and classes are never split in higher
grade.
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5 Results

5.1 Compliance with class size rules

Before testing for strategic grade retention, I document compliance with the class size rule

in Saxon primary schools in Figure 1. The upper panel plots the average class size and rule

based predictions against enrollment in grade 1. Actual class size follows the rule reasonably

closely but the drops in actual class size at multiples of the class size cap are rounded as

some classes are split before crossing the maximum class size of 28.

The lower panel of Figure 1 shows the distribution of enrollment with a one-student bin

size. Vertical lines indicate the class size cutoffs. The data do not reveal any evidence for

stacking at enrollments that are multiples of the maximum class size rule, limiting concerns

about systematic sorting around the class size thresholds. Similar to what Argaw and Puhani

(2018) document for the German state of Hesse, enrollment seems to follow a multimodal

distribution with the density close to the thresholds being smaller than it is further away.

This suggests that school catchment areas are designed to make it more likely that classes,

once formed in first grade, can be continued in the following years. Figure 1 also shows that

data for enrollment above 112 students are relatively sparse. In the appendix, I report the

same figures for grades 2-4, which show very similar compliance with the class size rules and

distributions of enrollment in higher grades.

[Figure 1 about here]

While Figure 1 demonstrates strong compliance with the class size rule in first grade, a

necessary condition for the mechanism discussed in Section 2 to have any practical relevance

requires schools to also comply with the rule dynamically, i.e. that the number of classes

for a given cohort responds to changes in enrollment between grades. To test this, panel A

of Table 3 reports the results from regressions of an indicator for whether a new class was

added between two grades for the same cohort on an indicator for whether the addition of the
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new class was predicted by the class size rule. The estimates for all grade levels are strongly

significant suggesting that schools change existing classes between all grades according to

the class size rule. However, the number of changes are substantially lower than what would

be predicted for a school with perfect flexibility and compliance. For instance, in only about

41 percent of the cases where changes in enrollment should have prompted the addition

of a new class between grade 1 and 2, was a new class actually formed. Panel B reports

analogous results for the actual and predicted reduction of classes between two grades for

the same cohort. Again, the results suggests that schools merge classes between all grades,

but substantially less often than mandated by the class size rule.

[Table 3 about here]

5.2 Evidence for strategic grade retention

I now take my testable implications to the data. I review each implication and present

empirical results.

The first testable implication is that retention rates should be lower whenever enrollment

is close to the class size cap in grades 1 through 3, but not in grade 4 (to ease discussion,

I will refer to enrollment’s next closest class size cap as simply the class size cap). Figure

2 plots retention rates against enrollment for each grade, with the solid line plotting fitted

values from a local polynomial regression within enrollment segments. A clear inverted-

U relationship within enrollment segments is evident for grades 1 through 3. This is in

accordance with fewer students being retained whenever enrollment is close to the class size

cap. The pattern seems most pronounced in grade 1 and around the first two cutoffs, which

account for the largest part of my data.23 Notably, no inverted-U pattern is evident in grade

4.

[Figure 2 about here]

23Observations with enrollment below 84 students make up more than 98 percent of my data.
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A possible concern with this figure is that the drop in retention rates for enrollment levels

just below the class size cap may reflect low compliance with the class size rule. Figure 1

shows that, for enrollment levels below the class size cap, classes are often split before

reaching the maximum class size. The drop in retention rates could therefore, potentially

be attributed to the positive effect of smaller classes on student achievement. To examine

this possibility, Figure 3 plots average retention rates against class size. Retention rates for

classes with 28 students in grades 1 and 29 students in grades 2-3 fall considerably below the

fitted linear trend line. This suggests that the downward-sloping portion of the inverted-U

pattern in Figure 2 does not just reflect lower retention rates because of smaller classes but

could be explained by strategic grade retention.

[Figure 3 about here]

Next, I investigate whether retention decisions are made to influence next year’s class

size in the same grade. Strategic behavior by school principals predicts that if next year’s

enrollment is close to the class size cap, current retention rates should increase to push

enrollment above the class size cap to trigger the formation of a new class or avoid the

merging of classes. In contrast to the previous prediction this should also hold in grade 4.

Figure 4, which plots current retention rates against next year’s enrollment, shows strong

evidence of this. Since the patterns are very similar for all grades, I only show results

pooled across grades.24 Within enrollment segments, there is clear evidence of a U-shaped

pattern. Interestingly, apart from the upward sloping portion just below the next class size

cap, retention rates appear to be declining in next year’s enrollment. This might stem from

teacher retaining more students to place them in smaller classes next year. I investigate this

pattern in more detail further below.

[Figure 4 about here]

24In the appendix, I report separate results for each grade.
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A further concern with the figures above is that the observed patterns could be driven by

systematic sorting of students into schools with different enrollment levels. This potential

explanation is difficult to reconcile with the apparent opposite relationships observed between

the retention rate with current and next year’s enrollment. However, to rule out sorting of

students as a potential explanation, I next look at whether the observed patterns also hold

within the same school, where the student composition can reasonably be assumed to stay

constant.

Table 4 reports the main results for strategic grade retention, where the implications are

tested simultaneously. All presented results are based on regressions weighted by enrollment

that control for grade and cohort fixed effects. Column 1 reports results from a simple re-

gression of the retention rate on class size. The coefficient for class size is not statistically

significant and small in magnitude. Once school fixed effects are controlled for in column

2, however, the coefficient increases more than sixfold and turns strongly statistically sig-

nificant.25 A one-student increase in class size is associated with a 0.046 percentage point

increase in the retention rate. The contrast between columns 1 and 2 suggests that differences

in class size across schools are strongly related to the composition of students. Students who

are more likely to be retained seem to attend schools with smaller classes. This is in line

with previous research for Germany showing that school administrators use class size in a

compensatory manner, whereby classes are generally smaller in schools with weaker students

(Bach and Sievert, 2019, 2018).26 This demonstrates the importance of using variation in

enrollment and class size within rather than between schools, since the latter is likely related

to the composition of students.

In the third column, the class size effect is allowed to differ across grades. Estimated

effects in second and third grades do not differ statistically significantly from that in grade 1.

They are smaller in magnitude but still statistically significantly larger than zero. The effect

in the last grade of primary school, however, differs substantially from those in lower grades

25The results for the specifications in columns 3-7 without school fixed effects are reported in Table A.2.
26Wößmann and West (2006) show that this pattern also holds for many other countries.
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and even reverses sign in specifications with additional controls. This is also confirmed by

the graphical evidence in the lower right part of Figure 3. Since retaining a student in the

last grade does not reduce her teacher’s class size next year, the absence of a positive effect

of class size on retention rates is consistent with the notion that class size considerations

matter in retention decisions. In turn, this suggests that the positive relationship between

retention rates and class size observed in lower grades may not just result from lower student

achievement in larger classes.

In column 4, an additionally control for differences in the size of the current class and

the size of the class that a retained student enters next year (denoted by CSgt − CSg,t+1)

is included. The coefficient on this difference has a statistically significant negative sign

and the coefficients for the current class size decrease somewhat.27 This suggests that the

coefficients in column 3 partly capture that students are retained more often when doing so

places them in a smaller class next year, as this is more likely in larger classes. In line with

the finding that class size in grade four has no effect on retention rates, this further cautions

against attributing the positive effect of class size on retention rates in column 2 solely to

the negative impact of class size on student achievement. Importantly, it also suggests that

previous estimates of the effect of class size on retention rates are likely to overstate the

negative impact of class size on student achievement (see e.g., Argaw and Puhani, 2018;

Bach and Sievert, 2019; Gary-Bobo and Mahjoub, 2013).

[Table 4 about here]

To more directly test the hypothesis that schools use their discretion in retention decisions

to minimize their expected class size, I include in column 5 the distance between current

enrollment and the next closest positive multiple of the class size cap, denoted by dist(Sgt).
28

27The estimated effect of the class size difference is very similar for specifications reported in columns
4-6. Only in column 7, where I additionally control for whether current and next year’s enrollment is above
the closest multiple of the class size cap, does the effect disappear (see below for a detailed discussion of this
specification). This is because the combination of these two variables is highly collinear with CSgt−CSg,t+1

as a result of the class size cap.
28Formally dist(Sgt) ≡

{
|Sgt − xΨ|

∣∣x ∈ N+,minx
[
|Sgt − xΨ|

]}
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The model predicts that retention rates should be lower for enrollment levels close to the class

size cap because this minimizes (maximizes) the probability that classes are merged (split)

in the next grade. In line with this prediction, the estimated coefficient for the distance

between enrollment and the class size cap is significantly positive, implying fewer retained

students in classes with enrollment levels closer to the class size cap.

According to my second prediction the distance to the class size cap should have different

effects on retention rates across grades. In particular, there is no incentive to retain fewer

students closer to the class size cap in the last grade of primary school because classes will

be dissolved as students move to a secondary school after fourth grade. To test this, I allow

the effect of current enrollment’s distance to the class size cap to differ by grade level in

column 6. Consistent with the visual evidence in Figure 3, the pooled effect across grades

in column 4 is mostly driven by the effect in grade 1. While the effects for grade 2 and

3 are statistically significantly smaller, they still indicate that more students are retained

closer to the class size cap. Importantly, the sign of the effect is reversed in grade 4, thus

providing further evidence that the observed patterns in lower grades stem from class size

considerations. There are two potential explanations for why the effect is largest in grade 1.

First, changes in class size right after grade 1 will be longer lasting compared to changes in

higher grades. Hence, the incentive for teachers to strategically use grade retention should

also be strongest in grade 1. Second, note that the inverted-U pattern is really a result of

teachers not retaining students who they would otherwise retain if enrollment were not close

the the class size cap. Since first grade students are not yet graded in Saxony, teachers’

discretion to not retain these weak students is also largest in grade 1.

The final testable implication for strategic grate retention concerns the relationship be-

tween current retention rates in a given grade and enrollment in the subsequent year. If

schools retain students to maximize the number of classes, thus minimizing class size, we

should observe more retained students this year if enrollment in the next year in the same

grade is close to the class size cap. To test this, I include in column 5 the distance between
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next year’s enrollment and the class size cap. In column 6, the effect is allowed to differ

across grades. The results are again supportive of strategic grade retention. The estimated

effect in column 5 is positive and statistically significant. Column 6 reveals that this effect

is mostly driven by grades 1 and 3. However, the effect is uniformly positive for all grades,

albeit not statistically significantly. The most likely explanation for the strong effect in first

grade is again that changing the number of classes earlier (i.e. right from the start) will

result in more persistent reductions in class size. Furthermore, school principals might be

more hesitant to split up or merge already existing classes because of the possibly perceived

negative impact of breaking up peer relationships and expected resistance from parents. This

might explain stronger manipulation of retention rates in first grade as this would affect the

number of classes before they have been formed. The strong effect in grade 3 could follow a

similar logic since some schools always form new classes after second grade. Hence, for these

schools adding a new class in grade 3 comes at no cost, in terms of the perceived negative

impacts of splitting up existing classes. Unfortunately, I cannot identify these schools in my

data and no official statistics on the number of schools that (by default) form new classes

after second grade are available.

In the last column of Table 4, I further allow the distance effects to differ below and

above the closest multiple of the class size cap. The coefficients for these interaction terms

indicate that effects are not symmetric and substantially larger for enrollment levels where

retention decisions affect the probability that classes are merged and hence the number of

classes reduced next year (i.e. for dist(Sgt) > 0 and dist(Sg,t+1) > 0). This findings is best

accommodated by loss aversion (Kahneman and Tversky, 1979) in the sense that the threat

of a reduction in the number of classes (and the associated increase in class size) provides

a stronger incentive than a potential increase in the number of classes (and the associated

decrease in class size). Reducing the number of classes often implies that some teachers are

either assigned to a new class or have to switch schools. The latter is particularly likely to

outweigh the perceived benefits for teachers and school principals of hiring a new teacher if
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the number of classes is increased.

In Appendix A, I provide further visual evidence for the inverted-U relationship between

retention rates and current enrollment as well as the U-shaped relationship between retention

rates and next year’s enrollment even after controlling for school fixed effects and class size.

To show this graphically, I estimated models similar to those reported in column 6 of Table 4

separately for each grade. However, I omitted the distance between current and next year’s

enrollment to the class size cap, and instead included polynomials of varying degrees of

normalized current and next year’s enrollment (see the figure notes for a detailed description

of the procedure).29 Figures A.4 and A.5 plot predicted values based on the estimated

polynomial coefficients against normalized enrollment. In line with the regression results,

the clearest evidence for an inverted-U relationship between grade retention and current

enrollment is in grade 1. For the effect of next year’s enrollment, the U-shaped relationship

is most pronounced in grades 1 and 3.

In summary, the reported patterns provide strong evidence that class size considerations

affect retention decisions. To gain a better sense of the magnitude of these effects, I next

replace the distance variables in Table 4 with an indicator variable, which takes on a value

of one if the respective distance is smaller than a particular threshold. Since the choice of

threshold is arbitrary, Table 5 presents estimates for five models with different thresholds (1-

5). The coefficients on these threshold indicators suggests that between 0.2 to 0.4 percentage

points (8.9 - 18 percent) fewer students are retained if current enrollment is close to the class

size cap in grade 1. For next year’s enrollment, the magnitude of the implied effect is

considerably larger and ranges from 0.6 to 1.1 percentage points. Relative to the average

retention rate of 2.24 in first grade, this implies an increase in retained students in the range

of 27-50 percent for next year’s enrollment levels close to the class size cap.

To further quantify these effects, I multiply the effects in the last column of Table 5

by the respective share of school-grade-year observations with enrollment levels within five

29Normalizing amounts to substracting the next lower multiple of the class size from enrollment to ensure
that normalized enrollment lies between 1 and 28.
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students of the class size cap. Diving this number by the grade-level specific retention rate

provides a measure for the share of students whose retention decisions has been revised due

to strategic considerations among all retained students. Table 6 reports the results of these

back-of-the-envelop calculations. The point estimates suggest that without students who are

strategically not retained, retention rates in first grade would be approximately 5 percent

larger. Conversely, 8.3 percent of all retained students in grade 1 and 3 seem to have been

retained to reduce class size.

[Table 5 about here]

Bach and Sievert (2019) point out that grade retention introduces spurious compositional

effects in within-school comparisons that rely on variation in cohort size. The reason is that

previously retained students mechanically make up a smaller share of students in larger

cohorts. Since students in Saxon primary schools can be retained only once, this could

bias any estimated effects of cohort size on retention rates.30 To see this, note that only

students who have not been previously retained can potentially be retained in the future. As

these students account for a larger share in larger cohorts, this results in a spurious positive

effect of cohort size on retention rates. To rule out that any of my effects are driven by

these mechanics, I perform an additional robustness check; instead of using the share of

retained students among all students in a grade as the dependent variable, I use the fraction

of retained students among the students who have not been retained before. This measure

should be unaffected by the mechanical relationship between cohort size and retention rates.

Tables A.3 and A.4 in the appendix present analogous results to those in Tables 4 and 5

using this alternative outcome variable. Reassuringly, the results remain almost unchanged.

If at all, the effects on the distance variables become more pronounced while the coefficient

for class size decreases slightly (as expected).

30If students fail a grade for a second time in primary school, they are generally classified as students
with special needs and transferred to special-needs schools (i.e, “Sonderschulen”).
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6 Conclusion

This paper derives a novel set of empirical predictions that allow researchers to test whether

teachers and school principals strategically retain students to lower class size. These pre-

dictions are based on differences in incentives to retain students that arise through class

size caps. To test these predictions only requires commonly available data on total enroll-

ment, the number of classes, and the number of grade repeaters at the school-grade-year

level. These minimal data requirements should allow researchers to test for strategic grade

retention in most school systems that allow for grade retention and form classes according

to maximum class size rules.

Testing these predictions with 10 years of administrative data for all public primary

schools in Saxony, I find strong evidence that class size considerations impact on retention

decisions; within schools, retention rates in one cohort increase if this can trigger the forma-

tion of a new class for the next cohort, and they drop if this increases the probability that

current classes are split up or not merged next grade. Both results are consistent with grade

retention decisions being made strategically to lower class size. These effects are strongest

in first grade, where the potential for strategic manipulation and its benefits for schools are

largest. My results suggest that approximately 8.3 percent of all held back students in grade

1 and 3 were retained to lower class size in the next cohort (i.e. push next year’s enrollment

above the class size cap). In reverse, retention rates in first grade would have been approx-

imately 4.9 percent higher if it were not for strategic non-retention of students in cohorts

with enrollment close to the class size cap.

Importantly, these results likely understate the extent to which class size considerations

matter for retention decisions. This study only identifies strategic grade retention for en-

rollment levels close to the class size cap, where retention decisions can affect the number of

classes. However, when teachers follow the same class for more than one grade, they always

have an incentive to retain as many students as possible if this does not result in changing

the number of classes. Further research is needed to investigate to what extent retention
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decisions are driven by teachers’ concern for student achievement as opposed to the size of

their class in these instances as well. This paper provides suggestive evidence for the latter;

there is a reversal in the relationship between class size and retention rates between lower

grades and the last grade of primary school which coincides with a change in the incentives

for teachers to retain students. To further test these implications data on standardized test

scores are needed.

Overall, this study underscores the need to understand educational interventions in the

broader context of optimizing behavior by teachers and school principals who adapt to

specific regulations. These strategic behaviors may or may not be in conflict with other

pedagogical goals. In particular, my results inform the debate on the effectiveness of grade

retention, by identifying potentially important unintended consequences of granting schools

discretion in retention decisions. These can include an increase in school spending on ad-

ditional classes, as well as the implications for students whose retention decision may be

revised because of class size considerations. The latter seems a particularly promising topic

for future research.
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überblick. Rowohlt Taschenbuch.

Eren, O., Depew, B., and Barnes, S. (2017). Test-based promotion policies, dropping out,
and juvenile crime. Journal of Public Economics, 153(C):9–31.

Eurydice (2011). Grade retention during compulsory education in Europe: Regulations and
statistics . Technical report.

Fama, E. F. (1980). Agency problems and the theory of the firm. Journal of Political
Economy, 88(2):288–307.

Fruehwirth, J. C., Navarro, S., and Takahashi, Y. (2016). How the timing of grade retention
affects outcomes: Identification and estimation of time-varying treatment effects. Journal
of Labor Economics, 34(4):979–1021.

Gary-Bobo, R. J. and Mahjoub, M.-B. (2013). Estimation of Class-Size Effects, Using Mai-
monides’ Rule and Other Instruments: the Case of French Junior High Schools. Annals
of Economics and Statistics, (111/112):193–225.
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Tables

Table 1: Descriptive Statistics

Avg. classes per grade 1.76

Avg. students per grade 35.13

Avg. class size 19.97

Grade retention rates (in %)

Grade 1 2.24

Grade 2 1.73

Grade 3 1.38

Grade 4 0.77

Number of observations

Schools 718

School-grade-year obs. 29,434

Student-grade obs. 1,033,940

Notes: The sample includes all public pri-

mary schools in the state of Saxony for

the 2004-2014 school years. Excluded

are school-grade-year observations with zero

classes and schools that serve as dyslexic

centers.
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Table 2: Variance Decomposition of Enrollment

(1) (2) (3) (4)

Panel A: Between- and within-school

Std. Dev.

Mean Total Between Within

Grade 1 37.25 18.00 16.48 7.07

Grade 2 36.30 17.28 15.69 7.13

Grade 3 33.73 16.19 14.52 7.14

Grade 4 33.24 15.87 14.04 7.45

Panel B: Between- and within-cohort

Std. Dev.

Mean Total Between Within

Grades 1-2 36.77 7.17 7.05 1.31

Grades 2-3 35.01 7.32 7.08 1.85

Grades 3-4 33.48 7.35 7.20 1.45

Notes: Panel A reports results from a decomposition of the total grade-specific variance of enroll-

ment into the parts of the variance within and between schools. Results are obtained using the

relationship

1

Ng

N∑
i=1

2014∑
c=2001

(Sigc − S̄g)2 =
1

Ng

N∑
i=1

2014∑
c=2001

(Sigc − S̄igc)
2 +

1

Ng

N∑
i=1

Cig(S̄ig − S̄g)2 (i)

where S is enrollment, i =, 1, 2, . . . , N is a school indicator, c = 2001, 2002, . . . , 2014 is a cohort

indicator, and g = 1, 2, 3, 4 is a grade indicator. The variable Ng is the total number of school-year

observations for grade g and Cig is the number of cohorts observed in grade g at school i. Panel

B reports results from a decomposition of the within-school variance of enrollment into the parts

of the variance within and between cohorts. Results are obtained using the relationship

1∑g+1
j=g Nj

N∑
i=1

2014∑
c=2001

g+1∑
j=g

(
Sijc −

∑g+1
j=g S̄ij

2

)2

=
1∑g+1

j=g Nj

N∑
i=1

2014∑
c=2001

g+1∑
j=g

(
Sijc −

∑g+1
j=g S̄ijc

2

)2

+
1∑g+1

j=g Nj

N∑
i=1

2014∑
c=2001

Gic

(∑g+1
j=g S̄ijc

2
−
∑g+1

j=g S̄ij

2

)2

(ii)

where Gic is the number of grades cohort c is observed in at school i.

33



Table 3: Predicted and Actual Division/Merger of Classes

Grade 1-2 Grade 2-3 Grade 3-4 Grade 1-4

(1) (2) (3) (4)

Panel A: Division of classes

#classesPgt < #classesPg+1,t+1 0.411*** 0.541*** 0.357*** 0.600***

(0.055) (0.062) (0.040) (0.053)

Panel B: Merging of classes

#classesPgt > #classesPg+1,t+1 0.326*** 0.593*** 0.384*** 0.701***

(0.045) (0.031) (0.044) (0.027)

Cohort FE X X X X

School FE X X X X

N 7368 7365 7362 5942

Notes: The table presents estimates of changes in the number of classes in

response to changes in the predicted number of classes for a given cohort.

Observations are at the school-cohort-grade level and weighted by enrollment.

The sample includes all public primary schools in the 2004 through 2014 school

years in Saxony with at least one class. In panel A, the dependent variable

is an indicator for whether a new class was added for a cohort between the

grades indicated in the column header. In Panel B, the dependent variable is

an indicator for whether a class was removed for a cohort between the grades

indicated in the column header. #classesPgt refers to the predicted number of

classes in grade g and school year t based on the class size rule. School and

cohort fixed effects are included in all specifications. Robust standard errors

clustered at the school level are reported in parentheses.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 4: The Effect of Class Size and Enrollment on Grade Retention

OLS School Fixed Effects

(1) (2) (3) (4) (5) (6) (7)

Class size 0.007 0.046*** 0.066*** 0.048*** 0.051*** 0.051*** 0.051***

(0.007) (0.006) (0.012) (0.013) (0.014) (0.014) (0.017)

× grade 2 -0.016 -0.016 -0.017 -0.018 -0.019

(0.013) (0.014) (0.014) (0.014) (0.014)

× grade 3 -0.005 -0.005 -0.008 -0.009 -0.007

(0.014) (0.014) (0.014) (0.014) (0.014)

× grade 4 -0.057*** -0.058*** -0.059*** -0.059*** -0.057***

(0.015) (0.015) (0.015) (0.015) (0.015)

CSgt − CSg,t+1 0.018*** 0.016*** 0.016*** -0.002

(0.005) (0.005) (0.005) (0.009)

|dist(Sgt)| 0.016*** 0.046*** 0.031***

(0.004) (0.010) (0.011)

× grade 2 -0.038*** -0.038***

(0.012) (0.012)

× grade 3 -0.029** -0.029**

(0.012) (0.012)

× grade 4 -0.056*** -0.056***

(0.011) (0.011)

|dist(Sgt)| × 1{dist(Sgt) > 0} 0.026***

(0.009)

|dist(Sg,t+1)| -0.025*** -0.054*** -0.035***

(0.005) (0.010) (0.011)

× grade 2 0.052*** 0.052***

(0.012) (0.012)

× grade 3 0.019 0.020*

(0.012) (0.012)

× grade 4 0.048*** 0.049***

(0.012) (0.012)

|dist(Sg,t+1)| × 1{dist(Sg,t+1) > 0} -0.042***

(0.011)

Grade FE X X X X X X X

Cohort FE X X X X X X X

School FE X X X X X X

N 29,434 29,434 29,434 29,434 29,434 29,434 29,434

Notes: The dependent variable is the percentage of students who are retained at the end of grade g in school

year t. Observations are at the school-cohort-grade level and weighted by enrollment. The sample includes all

public primary schools in the school years 2004 through 2014 in Saxony with at least one class. CSgt − CSg,t+1

is the difference in class size between year t and t + 1 in grade g. |dist(Sgt)| is the absolute difference between

enrollment in grade g in year t and the next closest positive multiple of the class size cap. 1{dist(St,g) > 0} is

an indicator variable for whether the distance between Sgt and the next closest positive multiple of the class size

cap is positive. Grade and cohort fixed effects are included in all specifications. The model in column 7 further

includes the indicator variables 1{dist(Sgt) ≤ 0} and 1{dist(Sg,t+1) ≤ 0}. Robust standard errors clustered at

the school level are reported in parentheses.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 5: The Effect of Class Size and Enrollment Thresholds on Grade Retention

i = 1 i = 2 i = 3 i = 4 i = 5

(1) (2) (3) (4) (5)

1{dist(Sgt)| ≤ i} -0.205 -0.398*** -0.357*** -0.366*** -0.350***

(0.140) (0.120) (0.101) (0.086) (0.079)

× grade 2 0.329* 0.439*** 0.370*** 0.345*** 0.281***

(0.195) (0.150) (0.129) (0.112) (0.100)

× grade 3 -0.017 0.325** 0.296** 0.319*** 0.255**

(0.177) (0.141) (0.126) (0.110) (0.099)

× grade 4 0.280 0.486*** 0.449*** 0.480*** 0.498***

(0.176) (0.145) (0.124) (0.104) (0.096)

1{dist(Sg,t+1) ≤ i} 1.050*** 0.816*** 0.767*** 0.622*** 0.583***

(0.188) (0.125) (0.101) (0.090) (0.082)

× grade 2 -0.804*** -0.622*** -0.580*** -0.458*** -0.477***

(0.227) (0.151) (0.120) (0.106) (0.099)

× grade 3 -0.224 -0.154 -0.231* -0.132 -0.227**

(0.233) (0.154) (0.124) (0.108) (0.102)

× grade 4 -0.920*** -0.649*** -0.592*** -0.466*** -0.444***

(0.214) (0.153) (0.120) (0.105) (0.095)

Grade FE X X X X X

Cohort FE X X X X X

School FE X X X X X

N 29,434 29,434 29,434 29,434 29,434

Notes: Each column reports results from a separate regression where the

dependent variable is the percentage of students who are retained at the end

of grade g in school year t. Observations are at the school-cohort-grade level

and weighted by enrollment. The sample includes all public primary schools

in the school years 2004 through 2014 in Saxony with at least one class.

CSgt−CSg,t+1 is the difference in class size between year t and t+ 1 in grade

g. dist(Sgt) is the absolute difference between enrollment in year t in grade g

and the next closest positive multiple of the class size cap. Grade and cohort

fixed effects are included in all specifications. Further controls include class

size, its interaction with the grade level, and CSgt−CSg,t+1. Robust standard

errors clustered at the school level are reported in parentheses.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 6: The Extent of Grade Retention Manipulation Among All Retained Students

Grade 1 Grade 2 Grade 3 Grade 4

(1) (2) (3) (4)

Strategic non-retention (% of retained students) -4.94 -1.23 -2.29 5.92

Strategic retention (% of retained students) 8.29 1.83 8.34 5.50

Notes: Results in the first row are obtained by multiplying the grade-specific coefficients

for 1{dist(Sgt)| ≤ 5} (from the last column of Table 5) by the share of school-grade-year

observations with dist(Sgt) ≤ 5, and dividing by the grade-specific average retention rate

(see, Table 1). Results in the second row are obtained similarly by multiplying the grade-

specific coefficients for 1{dist(Sg,t+1) ≤ 5} by the share of school-grade-year observations

with dist(Sg,t+1) ≤ 5, and dividing by the grade-specific average retention rate.
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Figures

Figure 1: Maximum Class Size Rules
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Notes: The figure shows actual average class size and class size predicted by Maimonides’ Rule
using data for students enrolled under a class size cap of 28.
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Figure 2: Grade Retention and Current Enrollment
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Notes: Graph plots averages retention rates. The solid line plots fitted values of local polynomial
regressions (using Stata’s lpoly command with the default setting, i.e. epanechnikov kernel and
degree 0) estimated separately over the following intervals [0, 28], [29, 56], [57, 84], and [85, 112].
Observations with enrollment above 112 are omitted.

39



Figure 3: Grade Retention and Class Size
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Notes: Each point in the graph is a class size bin constructed by rounding down class size to the
next integer. The solid line shows a linear fit estimated over the interval [16, 27]. The figure omits
observations below the minimum class size limit of 15.
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Figure 4: Grade Retention and Next Cohort’s Enrollment
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Notes: Graph plots averages retention rates. The solid line plots fitted values of local polynomial
regressions (using Stata’s lpoly command with the default setting, i.e. epanechnikov kernel and
degree 0) estimated separately over the following intervals [0, 28], [29, 56], [57, 84], and [85, 112].
Observations with enrollment above 112 are omitted.
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Appendix

A Additional Tables and Figures

Table A.1: Autocorrelation Matrix of Enrollment and Changes in Enrollment in First
Grade

Panel A: Correlation(Si1n, Si1m)

n = t t-1 t-2 t-3 t-4 t-5 t-6 t-7

m =

t 1

t− 1 0.883∗∗∗ 1

t− 2 0.866∗∗∗ 0.879∗∗∗ 1

t− 3 0.855∗∗∗ 0.862∗∗∗ 0.876∗∗∗ 1

t− 4 0.845∗∗∗ 0.850∗∗∗ 0.859∗∗∗ 0.873∗∗∗ 1

t− 5 0.819∗∗∗ 0.838∗∗∗ 0.846∗∗∗ 0.855∗∗∗ 0.873∗∗∗ 1

t− 6 0.801∗∗∗ 0.816∗∗∗ 0.835∗∗∗ 0.846∗∗∗ 0.855∗∗∗ 0.874∗∗∗ 1

t− 7 0.789∗∗∗ 0.794∗∗∗ 0.811∗∗∗ 0.831∗∗∗ 0.842∗∗∗ 0.854∗∗∗ 0.871∗∗∗ 1

Panel B: Correlation(∆Si1n, ∆Si1m)

n = t t-1 t-2 t-3 t-4 t-5 t-6 t-7

m =

t 1

t− 1 -0.426∗∗∗ 1

t− 2 -0.0156 -0.428∗∗∗ 1

t− 3 -0.00274 -0.0113 -0.430∗∗∗ 1

t− 4 0.0616∗∗∗ 0.00439 -0.0105 -0.425∗∗∗ 1

t− 5 -0.00341 0.0406∗ 0.0156 -0.0253 -0.417∗∗∗ 1

t− 6 -0.0211 0.00994 0.0279 0.0129 -0.0144 -0.419∗∗∗ 1

t− 7 -0.00608 -0.0134 0.000786 0.0368 0.000978 0.00383 -0.434∗∗∗ 1

Notes: Si1t is 1st grade enrollment in school i and year t. ∆Sigt is the difference in Si1t

between year t and t− 1.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A.2: The Effect of Class Size and Enrollment on Grade Retention: Full OLS Results

OLS

(1) (2) (3) (4) (5) (6)

Class size 0.007 0.028** -0.003 -0.001 -0.000 0.003

(0.007) (0.014) (0.016) (0.016) (0.016) (0.018)

× grade 2 -0.022 -0.022 -0.023* -0.025* -0.025*

(0.014) (0.014) (0.014) (0.014) (0.014)

× grade 3 -0.004 -0.006 -0.009 -0.010 -0.009

(0.014) (0.014) (0.014) (0.015) (0.015)

× grade 4 -0.057*** -0.059*** -0.061*** -0.061*** -0.060***

(0.015) (0.015) (0.015) (0.015) (0.015)

CSgt − CSg,t+1 0.046*** 0.044*** 0.044*** 0.026***

(0.006) (0.006) (0.006) (0.009)

|dist(Sgt)| 0.019*** 0.049*** 0.032***

(0.005) (0.010) (0.012)

× grade 2 -0.035*** -0.035***

(0.012) (0.012)

× grade 3 -0.030** -0.030**

(0.013) (0.013)

× grade 4 -0.057*** -0.057***

(0.011) (0.011)

|dist(Sgt)| × 1{dist(Sgt) > 0} 0.031***

(0.010)

|dist(St+1,g)| -0.025*** -0.050*** -0.034***

(0.005) (0.011) (0.012)

× grade 2 0.051*** 0.052***

(0.012) (0.012)

× grade 3 0.011 0.012

(0.012) (0.012)

× grade 4 0.042*** 0.044***

(0.012) (0.012)

|dist(Sg,t+1)| × 1{dist(Sg,t+1) > 0} -0.035***

(0.011)

Grade FE X X X X X X

Cohort FE X X X X X X

N 29,434 29,434 29,434 29,434 29,434 29,434

Notes: The dependent variable is the percentage of students who are retained at the end of grade g

in school year t. Observations are at the school-cohort-grade level and weighted by enrollment. The

sample includes all public primary schools in the school years 2004 through 2014 in Saxony with at

least one class. CSgt−CSg,t+1 is the difference in class size between year t and t+1 in grade g. dist(Sgt)

is the absolute difference between enrollment in year t in grade g and the next closest multiple of the

class size cap. Grade and cohort fixed effects are included in all specifications. The model in column

7 further includes the indicator variables 1{dist(Sgt) ≤ 0} and 1{dist(Sg,t+1) ≤ 0}. Robust standard

errors clustered at the school level are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table A.3: The Effect of Class Size and Enrollment on an Alternative Measure of Grade Retention

OLS School Fixed Effects

(1) (2) (3) (4) (5) (6) (7)

Class size 0.005 0.046*** 0.065*** 0.046*** 0.049*** 0.050*** 0.048***

(0.007) (0.006) (0.012) (0.014) (0.014) (0.014) (0.018)

× grade 2 -0.016 -0.016 -0.017 -0.018 -0.018

(0.014) (0.014) (0.014) (0.014) (0.014)

× grade 3 -0.002 -0.003 -0.005 -0.006 -0.004

(0.015) (0.015) (0.015) (0.015) (0.015)

× grade 4 -0.058*** -0.058*** -0.059*** -0.059*** -0.057***

(0.016) (0.016) (0.016) (0.016) (0.016)

CSgt − CSg,t+1 0.019*** 0.016*** 0.017*** -0.002

(0.006) (0.006) (0.006) (0.010)

|dist(St,g)| 0.015*** 0.046*** 0.031***

(0.005) (0.010) (0.011)

× grade 2 -0.039*** -0.039***

(0.013) (0.013)

× grade 3 -0.029** -0.029**

(0.012) (0.012)

× grade 4 -0.059*** -0.059***

(0.012) (0.012)

|dist(Sgt)| × 1{dist(St,g) > 0} 0.027***

(0.010)

|dist(St+1,g)| -0.027*** -0.056*** -0.036***

(0.005) (0.011) (0.012)

× grade 2 0.053*** 0.054***

(0.012) (0.012)

× grade 3 0.018 0.019

(0.012) (0.012)

× grade 4 0.048*** 0.049***

(0.012) (0.012)

|dist(Sg,t+1)| × 1{dist(Sg,t+1) > 0} -0.044***

(0.012)

Grade FE X X X X X X X

Cohort FE X X X X X X X

School FE X X X X X X

N 29,434 29,434 29,434 29,434 29,434 29,434 29,434

Notes: The dependent variable is the percentage of students who are retained at the end of grade g in school year

t among the students who have not been retained before. Observations are at the school-cohort-grade level and

weighted by enrollment. The sample includes all public primary schools in the school years 2004 through 2014

in Saxony with at least one class. CSgt − CSg,t+1 is the difference in class size between year t and t+ 1 in grade

g. dist(Sgt) is the difference between enrollment in year t in grade g and the next closest positive multiple of the

class size cap. 1{dist(St,g) > 0} is an indicator variable for whether the distance between Sgt and the next closest

positive multiple of the class size cap is positive. The model in column 7 further includes the indicator variables

1{dist(Stg) ≤ 0} and 1{dist(Sg,t+1) ≤ 0}. Grade and cohort fixed effects are included in all specifications. Robust

standard errors clustered at the school level are reported in parentheses.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A.4: The Effect of Class Size and Enrollment Thresholds on an Alternative
Measure of Grade Retention

i = 1 i = 2 i = 3 i = 4 i = 5

(1) (2) (3) (4) (5)

1{dist(Sgt)| ≤ i} -0.211 -0.404*** -0.366*** -0.372*** -0.358***

(0.147) (0.125) (0.104) (0.090) (0.082)

× grade 2 0.328 0.451*** 0.383*** 0.357*** 0.291***

(0.203) (0.155) (0.133) (0.116) (0.104)

× grade 3 -0.038 0.327** 0.304** 0.327*** 0.260**

(0.186) (0.148) (0.132) (0.115) (0.104)

× grade 4 0.294 0.502*** 0.477*** 0.508*** 0.530***

(0.185) (0.152) (0.131) (0.110) (0.101)

1{dist(Sg,t+1)| ≤ i} 1.092*** 0.842*** 0.794*** 0.648*** 0.604***

(0.195) (0.129) (0.105) (0.093) (0.085)

× grade 2 -0.830*** -0.636*** -0.594*** -0.469*** -0.488***

(0.236) (0.158) (0.125) (0.110) (0.103)

× grade 3 -0.200 -0.125 -0.215* -0.116 -0.217**

(0.244) (0.161) (0.129) (0.113) (0.107)

× grade 4 -0.928*** -0.641*** -0.592*** -0.465*** -0.439***

(0.223) (0.160) (0.125) (0.110) (0.099)

Grade FE X X X X X

Cohort FE X X X X X

School FE X X X X X

N 29,434 29,434 29,434 29,434 29,434

Notes: The dependent variable is the percentage of students who are retained

at the end of grade g in school year t among the students who have not

been retained before. Observations are at the school-cohort-grade level and

weighted by enrollment. The sample includes all public primary schools in

the school years 2004 through 2014 in Saxony with at least one class. CSgt−
CSg,t+1,g is the difference in class size between year t and t + 1 in grade g.

dist(Sgt) is the absolute difference between enrollment in year t in grade g

and the next closest positive multiple of the class size cap. Grade and cohort

fixed effects are included in all specifications. Further controls include class

size, its interaction with the grade level, and CSgt−CSg,t+1. Robust standard

errors clustered at the school level are reported in parentheses.

* p < 0.10, ** p < 0.05, *** p < 0.01
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Figure A.1: Maximum Class Size Rules and Enrollment
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Notes: The figure shows actual average class size and class size predicted by Maimonides’ Rule
using data for students enrolled under a class size cap of 28.
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Figure A.2: The Distribution of Class Size
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Figure A.3: Retention Rates and Next Cohort’s Enrollment by Grade

0
2

4
6

P
er

ce
nt

 re
ta

in
ed

 in
 g

ra
de

 1
 in

 y
ea

r t

28 56 84 112
Enrollment in grade 1 in year t+1 w/o grade repeater from year t

Panel A. Grade 1

0
1

2
3

4
5

P
er

ce
nt

 re
ta

in
ed

 in
 g

ra
de

 2
 in

 y
ea

r t

28 56 84 112
Enrollment in grade 2 in year t+1 w/o grade repeater from year t

Panel B. Grade 2

0
2

4
6

8
P

er
ce

nt
 re

ta
in

ed
 in

 g
ra

de
 3

 in
 y

ea
r t

28 56 84 112
Enrollment in grade 3 in year t+1 w/o grade repeater from year t

Panel C. Grade 3

0
1

2
3

4
5

P
er

ce
nt

 re
ta

in
ed

 in
 g

ra
de

 4
 in

 y
ea

r t

28 56 84 112
Enrollment in grade 4 in year t+1 w/o grade repeater from year t

Panel D. Grade 4

Notes: Graphs plot averages retention rates. The solid line plots fitted values of local polynomial
regressions (using Stata’s lpoly command with the default setting, i.e. epanechnikov kernel and
degree 0) estimated separately over the following intervals [0, 28], [29, 56], [57, 84], and [85, 112].
Observations with enrollment above 112 are omitted.
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Figure A.4: Predicted Grade Retention and Current Enrollment
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Notes: The figure plots the following polynomial functions of varying degrees k against normalized enrollment S̃igt (= Sigt −
bSigtc)

ŷigt =

k∑
j=1

(γ̂j S̃
j
igt)−

k∑
j=1

(γ̂j14j)

where the γ̂j are obtained by estimating the following model separately for each grade g

yigt = β0 +

k∑
j=1

(γj S̃
j
igt) +

k∑
j=1

(δj S̃
j
ig,t+1) + β1CSigt + β2(CSigt − CSig,t+1) + ηi + µgt+ εigt

where yigt is the retention rate at school i at the end of grade g in year t; CSigt is class size; ηi and µgt are school and cohort
fixed effects, respectively.
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Figure A.5: Predicted Grade Retention and Next Cohort’s Enrollment
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Notes: The figure plots the following polynomial functions of varying degrees k against normalized enrollment S̃ig,t+1 (=
Sig,t+1 − bSig,t+1c)

ŷigt =

k∑
j=1

(δ̂j S̃
j
igt)−

k∑
j=1

(δ̂j14j)

where the δ̂j are obtained by estimating the following model separately for each grade g

yigt = β0 +
k∑

j=1

(γj S̃
j
igt) +

k∑
j=1

(δj S̃
j
ig,t+1) + β1CSigt + β2(CSigt − CSig,t+1) + ηi + µgt+ εigt

where yigt is the retention rate at school i at the end of grade g in year t; CSigt is class size; ηi and µgt are school and cohort
fixed effects, respectively.
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B Proofs

B.1 Proof Proposition 1

To simplify the proof of Proposition 1, I rule out enrollment levels for which the probability

of a class being split and being merged next grade are both positive. To this end, I restrict

the support width of SH to be strictly smaller than Ψ. The support width of SH is given by

the maximum number of students that can join and leave a cohort between lower and higher

grade

θ︸︷︷︸
max. #students joining a cohort

+ θ︸︷︷︸
max. #students leaving a cohort

+
(
π + πΨ

)
SL︸ ︷︷ ︸

max. #students retained in L

= support width of SH

(B.13)

Setting (B.13) to be smaller than the class size cap places the following restriction on the

parameters θ, π, and π:

θ <
(1− πSL)Ψ− πSL

2
(B.14)

Recall that the sum of π and πCSL determine the fraction of students that can be

retained. Therefore, π and π are likely to be very small relative to Ψ.31 Hence, (B.14)

effectively restricts the maximum number of students joining or leaving a class (= θ) to be

smaller than roughly half the class size cap.

Without loss of generality restrict SL to the interval(
bSLc , dSLe

]
(B.15)

and partition this set into the following three non-overlapping intervals(
bSLc ,

bSLc+ θ

1− π − πCSL

]
, (B.16)( bSLc+ θ

1− π + πCSL
, dSLe − θ

)
, (B.17)[

dSLe − θ, dSLe
]

(B.18)

such that P (merge|λL) and P (split|λL) can only take positive values for enrollment levels

over the intervals (B.16) and (B.18), respectively. Using (1), (3), (4), and the distributional

assumption for φ yields the following expressions for expected class size in higher grade for

31From Table 1 it can be seen that on average 2.5 % of all students repeat grade 1.
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each interval

E
[
CSH(λL)

∣∣∣SL ≤ bSLc+ θ

1− π − πCSL

]
= min

{
1,
bSLc − (1− λL)SL + θ

2θ

}(
1

dSLe /Ψ− 1

)(
bSLc+ (1− λL)SL − θ

2

)

+max

{
0,
−bSLc+ (1− λL)SL + θ

2θ

}(
1

dSLe /Ψ

)(
bSLc+ (1− λL)SL + θ

2

) (B.19)

E
[
CSH(λL)

∣∣∣ bSLc+ θ

1− π − πCSL
< SL ≤ dSLe − θ

]
=

(1− λL)SL
dSLe /Ψ

(B.20)

E
[
CSH(λL)

∣∣∣SL ≥ dSLe − θ]
= max

{
0,
−dSLe+ (1− λL)SL + θ

2θ

}(
1

dSLe /Ψ + 1

)(
dSLe+ (1− λL)SL + θ

2

)

+min

{
1,
dSLe − (1− λL)SL + θ

2θ

}(
1

dSLe /Ψ

)(
dSLe+ (1− λL)SL − θ

2

) (B.21)

It is useful to first prove two lemmas, which state that teachers either retain the maximum

share of students possible or no students at all.

Lemma 1 Teachers choose λL = π + πCSH for enrollment SL such that:

bSLc+ θ

1− π − πCSL
< SL < dSLe − θ (L1.1)

Proof:

It follows directly from (B.20) that E[CSH(λL)] is minimized by retaining the maximum

fraction of students possible (i.e. λL = πS+πCSL) for enrollment levels that satisfy (L1.1).�

Lemma 2 Teachers either choose λL = 0 or λL = π + πCSH for enrollment SL such that:

dSLe − θ < SL ≤ dSLe (L2.1)

52



or

bSLc < SL <
bSLc+ θ

1− π − πCSL
(L2.2)

Proof:

I begin with the proof for part (L2.1) of Lemma 2. Suppose (L2.1) holds for SL and denote

by λL the share of retained students for SL for which P (split|λL > λL) = 0 and P (split|λL ≤
λL) > 0. By (B.21) expected class size for λL > λL is

E
[
CSH(λ)

∣∣∣λL > λL

]
=

(
1

dSLe /Ψ

)(
dSLe+ (1− λL)SL − θ

2

)
(B.22)

From (B.21) it directly follows that expected class size is minimized by retaining the

maximum share of students possible for λ > λL.

Taking the first and second derivative of (B.21) w.r.t. λL for λL < λL yields

∂E[CSH(λL)]

∂λL

∣∣∣∣
λL<λL

=

(( 1

dSLe /Ψ + 1

)( 2

4θ

)(
− (1− λL)SL − θ

)
+
( 1

dSLe /Ψ

)( 2

4θ

)(
(1− λL)SL − θ

))
SL

(B.23)

∂2E[CSH(λL)]

∂λ2

∣∣∣∣
λL<λL

=
2

4θ

(( 1

dSLe /Ψ + 1

)
−
( 1

dSLe /Ψ

))
SL (B.24)

Since (B.24) is negative, it follows that E[CSL(λL)] is a concave function of λ on the

interval [0, λL) and expected class is minimized for λL = 0 or λL = λ. However, if λL = λL

yields a lower expected class size than λL = 0 and λL < π + πCSL, expected class size can

be even further decreased by increasing λL to π + πCSL. This completes the proof for part

(L2.1) of Lemma 2. The proof for part (L2.2) is analogous to that of (L2.1) and therefore

omitted.�

To complete the proof of Proposition 1, I next show that for enrollment levels in the two

intervals (B.16) and (B.18) either (i) it is always optimal to retain the maximum share of

students possible or (ii) there exist a unique enrollment cutoff for each interval at which it

becomes optimal not to retain any students.
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Case 1: S ≥ dSLe − θ

From Lemma 1 and 2 we know that teachers either choose λL = 0 or λL = π + πCSL.

Therefore, we only need to check which of the two choices of λL yield the smaller expected

class size. I distinguish two subcases. First, suppose that

SL ≥
dSLe − θ

(1− π + πCSL)

Then using (B.21), we get

E[CSH(0)]− E[CSH(π + πCSL)]

=

(
−dSLe+ SL + θ

2θ

)(
1

dSLe /Ψ + 1

)(
dSLe+ SL + θ

2

)

+

(
dSLe − SL + θ

2θ

)(
1

dSLe /Ψ

)(
dSLe+ SL − θ

2

)

−

(
−dSLe+ (1− π − πCSL)SL + θ

2θ

)(
1

dSLe /Ψ + 1

)(
dSLe+ (1− π − πCSL)SL + θ

2

)

−

(
dSLe − (1− π − πCSL)SL + θ

2θ

)(
1

dSLe /Ψ

)(
dSLe+ (1− π − πCSL)SL − θ

2

)
(B.25)

Taking the first derivative w.r.t. SL yields

∂
{
E[CSH(0)]− E[CSH(π + πCSL)]

}
∂SL

=
( 1

2θ

)( SL + θ

dSLe /Ψ + 1
+
−SL + θ

dSLe /Ψ

− (1− π − πCSH)
((1− π − πCSL)SL + θ

dSLe /Ψ + 1
+
−(1− π − πCSL)SL + θ

dSLe /Ψ

))

+
πCSL

2θ

(
(1− π − πCSL)SL + θ

dSLe /Ψ + 1
+
−(1− π − πCSL)SL + θ

dSLe /Ψ

)
(B.26)

It is straightforward to show that (B.26) is strictly negative if (B.14) holds.
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For the second subcase, suppose that

SL <
dSHe − θ

1− π + πCSL

Again, using (B.21) we get

E[CSH(0)]− E[CSH(π + πCSL)]

=

(
−dSLe+ SL + θ

2θ

)(
1

dSLe /Ψ + 1

)(
dSLe+ SL + θ

2

)

+

(
dSLe − SL + θ

2θ

)(
1

dSLe /Ψ

)(
dSLe+ SL − θ

2

)

−

(
1

dSLe /Ψ

)(
dSLe+ (1− π − πCSL)SL − θ

2

)
(B.27)

Taking the first derivative w.r.t. SL yields

∂
{
E[CSH(0)]− E[CSH(π + πCSL)]

}
∂SL

=
( 1

2θ

)( SL + θ

dSLe /Ψ + 1
+
−SL + θ

dSLe /Ψ

)
− 1− π − 2πCSL

2 dSLe /Ψ

(B.28)

which can also be shown to be strictly negative if (B.14) holds.32

Since (B.26) and (B.28) are both strictly negative, it follows that if there exists an

enrollment level S
T

for which

E[CSH(0)]− E[CSH(π + πCSL)] = 0

it must be unique and for SL < S
T

it is optimal to retain the maximum share of students

possible and for SL > S
T

it is optimal to retain no students.

32 A further assumption needed for (B.28) to be strictly negative is that π + 2πCSL ≤ 1. For this
inequality not to hold, retention rates would have to be unrealistically large and, therefore, it is of second
empirical relevance.
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Case 2: SL <
bSLc+θ

1−π−πCSL

I follow the same arguments as in the proof of case 1 and distinguish two subcases. Starting

with SL < bSLc+ θ and using (B.19), we get

E[CSH(0)]− E[CSH(π + πCSL)]

=

(
bSLc − SL + θ

2θ

)(
1

dSLe /Ψ− 1

)(
bSLc+ SL − θ

2

)

+

(
−bSLc+ SL + θ

2θ

)(
1

dSLe /Ψ

)(
bSLc+ SL + θ

2

)

−

(
bSLc − (1− π − πCSL)SL + θ

2θ

)(
1

dSLe /Ψ− 1

)(
bSLc+ (1− π − πCSL)SL − θ

2

)

−

(
−bSLc+ (1− π − πCSL)SL + θ

2θ

)(
1

dSLe /Ψ

)(
bSLc+ (1− π − πCSL)SL + θ

2

)
(B.29)

It is straightforward to show that (B.29) is strictly negative if the following inequality

holds

SL

(
1− π + πCSL

2

)
> θ

(
2SL
Ψ

+ 1

)
(B.30)

For this inequality not to hold, the fraction of students that can be retained (π+ πCSL)

and θ would have to be unrealistically large relative to SL and, therefore, it is of second em-

pirical relevance. Hence, for SL <
bSLc+θ

1−π−πCSL
it is always optimal not to retain any students.

For the second subcase, suppose that

SL ≥
bSLc+ 1 + θ

1− π − πCSL
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Again, using (B.19) we get

E[CSH(0)]− E[CSH(λ)|π + πCSL]

=

(
1

dSLe /Ψ

)(
bSLc+ SL + θ

2

)

−

(
bSLc − (1− π − πCSL)SL + θ

2θ

)(
1

dSLe /Ψ− 1

)(
bSLc+ (1− π − πCSL)SL − θ

2

)

−

(
−bSLc+ (1− π − πCSL)SL + θ

2θ

)(
1

dSLe /Ψ

)(
bSLc+ (1− π − πCSL)SL + θ

2

)
(B.31)

it is easy to see that E[CSH(0)] is always smaller for SL ≥ bSLc+1+θ
1−π−πCSL

than it is for

SL < bSLc + θ. Hence, it follows that (B.31) is strictly negative and therefore optimal not

to retain any students.�

B.2 Proof Proposition 3

Analogous to the proof of Proposition 1, I rule out enrollment levels for which the probability

of a class being split and being merged next grade are both positive by restricting the support

width of SH,t to be strictly smaller than Ψ. The support width of SH,t is given by the

maximum number of students that can join and leave a cohort between lower and higher

grade

2θ +
(
π + πΨ

)
SH,t−1 = support width of SH,t (B.32)

Setting (B.32) to be smaller than the class size cap places the following restriction on the

parameters θ, π, and π

θ <
(1− πSH,t−1)Ψ− πSH,t−1

2
(B.33)

which, following the same arguments as in the discussion of B.14, effectively restricts the

maximum number of students joining or leaving a class (= θ) to be smaller than roughly

half the class size cap.

Without loss of generality restrict SL,t−1 to the interval(
bSL,t−1c , dSL,t−1e

]
(B.34)
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and partition this set into the following three non-overlapping intervals(
bSL,t−1c , bSL,t−1c+ θ

]
, (B.35)(

bSL,t−1c+ θ, dSL,t−1e − θ − (π + πCSH,t−1)SH,t−1

)
, (B.36)[

dSL,t−1e − θ − (π + πCSH,t−1)SH,t−1, dSL,t−1e
]

(B.37)

such that P (merge|λH) and P (split|λH) can only take positive values for enrollment levels

over the intervals (B.35) and (B.37), respectively. Using (1), (9), (10), and the distributional

assumption for φ yields the following expressions for expected class size in higher grade for

each interval

E
[
CSHt(λH)

∣∣∣SL,t−1 ≤ bSL,t−1c+ θ
]

= max

{
0,
bSL,t−1c − SL,t−1 − λHSH,t−1 + θ

2θ

}(
1

dSLe /Ψ− 1

)(
bSL,t−1c+ SL,t−1 + λHSH,t−1 − θ

2

)

+min

{
1,
−bSL,t−1c+ SL,t−1 + λHSH,t−1 + θ

2θ

}(
1

dSLe /Ψ

)(
bSL,t−1c+ SL,t−1 + λHSH,t−1 + θ

2

)
(B.38)

E
[
CSHt(λH)

∣∣∣ bSL,t−1c+θ < SL,t−1 < dSL,t−1e−θ−(π+πCSH,t−1)SH,t−1

]
=
SL,t−1 + λHSH,t−1

dSL,t−1e /Ψ
(B.39)

E
[
CSHt(λH)

∣∣∣SL,t−1 ≥ dSL,t−1e − θ − (π + πCSH,t−1)SH,t−1

]
= max

{
0,
−dSLe+ SL,t−1 + λHSH,t−1 + θ

2θ

}(
1

dSLe /Ψ + 1

)(
dSLe+ SL,t−1 + λHSH,t−1 + θ

2

)

+min

{
1,
dSLe − SL,t−1 − λHSH,t−1 + θ

2θ

}(
1

dSLe /Ψ

)(
dSLe+ SL,t−1 + λHSH,t−1 − θ

2

)
(B.40)

It is again useful to first prove two lemmas, which state that principals either retain the

maximum share of students possible or no students at all.

Lemma 3 Principals choose λH = 0 for enrollment SL,t−1 such that:

bSL,t−1c+ θ < SL,t−1 < dSL,t−1e − θ − (π + πCSH,t−1)SH,t−1 (L3.1)
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Proof:

It follows directly from (B.39).�

Lemma 4 Teachers either choose λH = 0 or λH = π+πCSH,t−1 for enrollment SL,t−1 such

that:

dSL,t−1e − θ − (π + πCSH,t−1)SH,t−1 < SL,t−1 ≤ dSL,t−1e (L4.1)

or

bSL,t−1c < SL,t−1 < bSL,t−1c+ θ (L4.2)

Proof:

I begin with the proof for part (L4.1) of Lemma 4. Suppose (L4.1) holds for SL,t−1 and

denote by λH the share of retained students for SL,t−1 for which P (split|λH < λH) = 0 and

P (split|λH ≥ λH) > 0. By (B.40) it directly follows that expected class size for λH < λH is

minimized by retaining the minimum share of students possible.

Taking the first and second derivative of (B.40) w.r.t. λH for λH ≥ λH yields

∂E[CSH,t(λH)]

∂λH

∣∣∣∣
λH≥λH

=
( 1

dSLe /Ψ + 1

)( 2

4θ

)(
SL,t−1 + λHSH,t−1 + θ

)
SH,t−1

+
( 1

dSLe /Ψ

)( 2

4θ

)(
− SL,t−1 − λHSH,t−1 + θ

)
SH,t−1

(B.41)

∂2E[CSH(λH)]

∂λ2

∣∣∣∣
λH<λH

=
2

4θ

(( 1

dSLe /Ψ + 1

)
−
( 1

dSLe /Ψ

))
SL,t−1 (B.42)

Since (B.42) is negative, it follows that E[CSL(λH)] is a concave function of λH on the in-

terval [0, λH) and expected class is minimized for λH = 0 or λH = λH . However, if λH = λH

yields a lower expected class size than λH = 0 and λH < π + πCSH , expected class size can

be even further decreased by increasing λH to π + πCSH . This completes the proof for part

(L4.1) of Lemma 4. The proof for part (L4.2) is analogous to that of (L4.1) and therefore

omitted.�

To complete the proof of Proposition 3, I next show that for enrollment levels in the two

intervals (B.35) and (B.37) either (i) it is always optimal to retain the maximum share of
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students possible or (ii) there exist a unique enrollment cutoff for each interval at which it

becomes optimal not to retain any students.

Case 1: SL,t−1 ≥ dSL,t−1e − θ − (π + πCSH,t−1)SH,t−1

From Lemma 3 and 4 we know that principals either choose λH = 0 or λH = π + πCSH,t−1.

Therefore, we only need to check which of the two choices of λH yield the smaller expected

class size for SL,t−1. I distinguish two subcases. First, suppose that SL,t−1 ≥ dSL,t−1e − θ.
Then using (B.40) we get

E[CSHt(0)]− E[CSHt(π + πCSH,t−1)]

=

(
−dSL,t−1e+ SL,t−1 + θ

2θ

)(
1

dSLe /Ψ + 1

)(
dSL,t−1e+ SL,t−1 + θ

2

)
+

(
dSL,t−1e − SL,t−1 + θ

2θ

)(
1

dSL,t−1e /Ψ

)(
dSL,t−1e+ SL,t−1 − θ

2

)
−
(
−dSL,t−1e+ SL,t−1 + λHSH,t−1 + θ

2θ

)(
1

dSL,t−1e /Ψ + 1

)(
dSL,t−1e+ SL,t−1 + λHSH,t−1 + θ

2

)
−
(
dSL,t−1e − SL,t−1 − λHSH,t−1 + θ

2θ

)(
1

dSL,t−1e /Ψ

)(
dSL,t−1e+ SL,t−1 + λHSH,t−1 − θ

2

)
(B.43)

Taking the first derivative w.r.t. SL,t−1 yields

∂
{
E[CSHt(0)]− E[CSHt(π + πCSH,t−1)]

}
∂SL,t−1

=
((π + πCSH,t−1)SH,t−1

2θ

)(
− 1

dSLe /Ψ + 1
+

1

dSL,t−1e /Ψ

) (B.44)

which is strictly positive.

For the second subcase, suppose that

SL,t−1 ∈
[
dSL,t−1e − θ − (π + πCSH,t−1)SH,t−1, dSLe − θ

)
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Again, using (B.40) we get

E[CSHt(0)]− E[CSHt(π + πCSH,t−1)]

=

(
1

dSL,t−1e /Ψ

)(
dSL,t−1e+ SL,t−1 − θ

2

)
−
(
−dSL,t−1e+ SL,t−1 + λHSH,t−1 + θ

2θ

)(
1

dSL,t−1e /Ψ + 1

)(
dSL,t−1e+ SL,t−1 + λHSH,t−1 + θ

2

)
−
(
dSL,t−1e − SL,t−1 − λHSH,t−1 + θ

2θ

)(
1

dSL,t−1e /Ψ

)(
dSL,t−1e+ SL,t−1 + λHSH,t−1 − θ

2

)
(B.45)

Taking the first derivative w.r.t. SL,t−1 yields

∂
{
E[CSHt(0)]− E[CSHt(π + πCSH,t−1)]

}
∂SL,t−1

=

(
1

dSL,t−1e /Ψ

)(
1

2

)
−
(
SL,t−1

2θ

)(
SL,t−1 + λHSH,t−1 + θ

dSL,t−1e /Ψ + 1

)
−
(
SL,t−1

2θ

)(
−SL,t−1 − λHSH,t−1 + θ

dSL,t−1e /Ψ

)
(B.46)

which can also be shown to be strictly positive. Since (B.44) and (B.46) are both strictly

positive, it follows that if there exists an enrollment level S
P

for which

E[CSHt(0)]− E[CSHt(π + πCSH,t−1)] = 0

it must be unique and for SL,t−1 > S
P

it is optimal to retain the maximum share of

students possible and for SL,t−1 < S
P

it is optimal to retain no students.

Case 2: SL,t−1 < bSL,t−1c+ θ

Next, suppose SL,t−1 < bSL,t−1c + θ. I follow the same arguments as in the proof of Case 1

and distinguish two subcases. Starting with

SL,t−1 < bSL,t−1c+ θ − (π + πCSH,t−1)SH,t−1
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using (B.38), we then get

E[CSHt(0)]− E[CSHt(π + πCSH,t−1)]

=
bSL,t−1c − SL,t−1 + θ

2θ

(
1

dSLe /Ψ− 1

)(
bSL,t−1c+ SL,t−1 − θ

2

)
+
−bSL,t−1c+ SL,t−1 + θ

2θ

(
1

dSLe /Ψ

)(
bSL,t−1c+ SL,t−1 + θ

2

)
− bSL,t−1c − SL,t−1 − λHSH,t−1 + θ

2θ

(
1

dSLe /Ψ− 1

)(
bSL,t−1c+ SL,t−1 + λHSH,t−1 − θ

2

)
− −bSL,t−1c+ SL,t−1 + λHSH,t−1 + θ

2θ

(
1

dSLe /Ψ

)(
bSL,t−1c+ SL,t−1 + λHSH,t−1 + θ

2

)
(B.47)

It is straightforward to show that (B.47) is strictly positive if

Ψ ≥ 2SL,t−1

SL,t−1 + θ − 2
(B.48)

which is satisfied for any realistic values for the class size cap (Ψ) as long as there are no

extremely small cohorts (i.e., SL,t−1 + θ ≥ 3). Hence, it is optimal to retain the maximum

share of students possible.

For the second case, suppose that

SL,t−1 ∈
(
bSL,t−1c+ θ − (π + πCSH,t−1)SH,t−1, bSLtc+ θ

]
Again, using (B.38) we get

E[CSHt(0)]− E[CSHt(π + πCSH,t−1)]

=
bSL,t−1c − SL,t−1 + θ

2θ

(
1

dSLe /Ψ− 1

)(
bSL,t−1c+ SL,t−1 − θ

2

)
+
−bSL,t−1c+ SL,t−1 + θ

2θ

(
1

dSLe /Ψ

)(
bSL,t−1c+ SL,t−1 + θ

2

)
−
(

1

dSLe /Ψ

)(
bSL,t−1c+ SL,t−1 + λHSH,t−1 + θ

2

)
(B.49)

It is easy to see that (B.49) is strictly larger than (B.47), from which it follows that it is

optimal to retain the maximum share of student possible.�
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