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Abstract

We extend the canonical income process with persistent and transitory risk

to shock distributions with left-skewness and excess kurtosis, to which we refer as

higher-order risk. We estimate our extended income process by GMM for household

data from the United States. We find countercyclical variance and procyclical

skewness of persistent shocks. All shock distributions are highly leptokurtic. The

existing tax and transfer system reduces dispersion and left-skewness of shocks.

We then show that in a standard incomplete-markets life-cycle model, first, higher-

order risk has sizable welfare implications, which depend crucially on risk attitudes

of households; second, higher-order risk matters quantitatively for the welfare costs

of cyclical idiosyncratic risk; third, higher-order risk has non-trivial implications

for the degree of self-insurance against both transitory and persistent shocks.
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�Universitat Autònoma de Barcelona, MOVE, and Barcelona GSE; Edifici B, Campus UAB, 08193

Bellaterra, Spain; chris.busch@movebarcelona.eu; www.chrisbusch.eu
�Goethe University Frankfurt; SAFE; CEPR; Netspar; MEA; ZEW; House of Finance, Theodor-

W.-Adorno-Platz 3, 60629 Frankfurt am Main; Germany; alexander.ludwig@econ.uni-frankfurt.de;
www.alexander-ludwig.com



1 Introduction

It has long been established in the empirical macroeconomics literature that individual

income risk varies with the aggregate state of the economy, and that this has impor-

tant implications for the evaluation of many macroeconomic questions that pertain to

the business cycle. The traditional way to capture cyclical changes of individual risk in

macroeconomic analyses is to model idiosyncratic shocks with a larger variance in aggre-

gate contractions. However, a growing body of recent empirical evidence challenges this

focus on the variance, and emphasizes important deviations of the distribution of individ-

ual income changes from a (implicitly assumed) Gaussian distribution, namely non-zero

skewness and high kurtosis. We refer to these deviations as capturing higher-order income

risk.1

The first contribution of this paper is a novel parametric approach to estimate id-

iosyncratic labor income risk and its cyclicality. Within our estimation framework we can

transparently identify skewness and kurtosis of both transitory and persistent shocks. To

achieve this, we extend the canonical income process to account for higher-order risk.2

We estimate the process for household level labor income and for post government income

(after taxes and transfers) using household panel data from the United States.

The second contribution is that we systematically evaluate the role of higher-order risk

for three fundamental, and related, questions that pertain to (cyclical) idiosyncratic risk.

First, does higher-order idiosyncratic risk have (economically relevant) implications for

welfare? Second, does cyclical higher-order idiosyncratic risk matter for the welfare costs

of business cycles? Third, does higher-order idiosyncratic risk matter for self-insurance

through savings? The answer to all three questions turns out to be yes. Our tool is

a standard incomplete-markets life-cycle model, in which households face an exogenous

income process estimated on post government income in the United States which features

the estimated variance, skewness, and kurtosis of transitory and persistent income shocks.

In the estimation of our income process we do not impose any parametric distribu-

tion function on the transitory and persistent components. We characterize both shocks

by their central moments and estimate those by the Generalized Method of Moments

(GMM). Other than traditionally done in similar estimations, we do not base the esti-

mation solely on the variance-covariance matrix of incomes. Instead, we use the second

to fourth central moments and co-moments. This allows us to identify variance, skew-

ness, and kurtosis of the distributions of the shock components. Through this we draw

1Of course, a stochastic income process does not necessarily measure risk. In our model analysis the
estimated income process is exogenous to agents, and thus within the model the shocks of the stochastic
process represent risk.

2Modelling individual (or household) income dynamics as a combination of transitory and persistent
components dates back at least to Gottschalk and Moffitt (1994). It then became a standard input in
life cycle household models of consumption and savings.
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a richer image of income dynamics within the otherwise traditional transitory-persistent

framework.

Our estimation procedure extends the approach taken in Storesletten et al. (2004),

who estimate an income process with state-contingent variance of the persistent income

shock. They analyze household-level income including government transfers from the

Panel Study of Income Dynamics and find that the variance is higher in contractions,

i.e., they find countercyclical variance.3 Their identification of the state-dependent vari-

ance builds on the observation that persistent shocks accumulate over the life cycle such

that the distribution of labor incomes observed for a given cohort widens as this cohort

ages. This implies that cohorts that experienced different macroeconomic histories will

feature different cross-sectional age-specific variances of labor incomes—if the variance

of income shocks varies systematically over the business cycle.4 In our extended version

of the estimator, we allow the second to fourth central moments to be state-contingent.

Identification follows from the fact that the accumulated second to fourth central moments

differ across cohorts if these cohorts experience different macroeconomic histories—again,

if these moments differ systematically over the business cycle.5 It is important to note

that we include the third and fourth central moments in a way that does not affect the

identification of the second moments and the persistence of the shocks, which we identify

using only the variance-covariance moment conditions. We then hold persistence and sec-

ond moments fixed and use the additional moment conditions only to identify the third

and fourth central moments of the shocks.

We apply the estimation to survey data from the Panel Study of Income Dynamics

(PSID). The survey allows us to control for a rich set of household-level information and

to take into account several relevant transfer components. We estimate two separate

income processes at the household level: one for joint labor income, and one for income

after taxes and transfers. Comparison of the corresponding estimates is informative about

the success of the existing tax and transfer scheme to dampen risk and its cyclicality.

We find that both transitory and persistent shocks to pre-government earnings feature

strong left-skewness, and that persistent shocks are significantly cyclical: in contractions,

their distribution is more dispersed and more left-skewed. We also find that the existing

tax and transfer system insures against both types of income shocks. The distribution of

both shocks to post-government income (after taxes and transfers) is compressed relative

to the respective shocks to pre-government income, but persistent shocks remain signifi-

cantly cyclical. Finally, we find strong excess kurtosis of transitory and persistent shocks.

It is higher for post- than for pre-government earnings suggesting that after redistribution

3This terminology has been introduced in the macroeconomic asset pricing literature, see Mankiw
(1986), Constantinides and Duffie (1996), and Storesletten, Telmer, and Yaron (2007).

4History here refers to a sequence of expansions and contractions.
5Note that we do not base identification on the stardardized moments (the coefficients of skewness

and kurtosis), which unlike the central moments do not simply accumulate while a cohort ages.
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more mass is concentrated in the center relative to the tails of the distribution. These

findings are in line with recent empirical evidence as summarized below.

In our quantitative model, agents receive stochastic income following the estimated

process throughout their working life, after which they enter a retirement phase and

receive income through a pay-as-you-go pension system. The shocks of the income process

are drawn from a parametric distribution function,6 which we fit to the estimated central

moments of the transitory and persistent shocks. The distribution of persistent shocks

varies systematically over the business cycle as estimated in the data. We are interested

in the role of cyclical changes in idiosyncratic risk, and in the relevance of higher-order

risk, and thus we normalize all shocks in levels, which implies that the economy does

not feature aggregate risk. The only means of self-insurance against income risk is a

risk-free asset. Agents have recursive preferences over consumption a la Epstein and Zin

(1989, 1991), and Weil (1989), which allows us to separately control the intertemporal

elasticity of substitution and risk aversion of households. We then assess whether the

estimated deviation of shocks from log-Normal shocks is relevant from a macroeconomic

perspective.

First, does higher-order risk have economically relevant welfare implications relative

to a world with log-Normal shocks?—Yes. We evaluate welfare from an ex ante perspec-

tive and show that the direction of welfare effects depends on relative risk attitudes of

households (relative risk aversion, relative prudence, and relative temperance). When

risk attitudes are strong, the introduction of higher-order risk has sizable negative wel-

fare implications; when risk attitudes are weak (specifically, for log utility), the welfare

effect can be positive. The dominant economic mechanism driving the welfare results is

an expected reallocation of consumption over the life-cycle. When facing riskier income,

risk-averse agents have more precautionary savings, and thus less consumption at young

ages.7

Second, does higher-order risk matter for the welfare costs of business cycles?—Yes.

Since Lucas (1987, 2003) argued in a representative agent framework that the gains of

smoothing the business cycle beyond what the existing tax and transfer system does

would be small, several studies (summarized in Section 2) emphasized the role of both

ex-ante and ex-post heterogeneity for the welfare costs of business cycles. We follow up

on this, and explore the implications of cyclical higher-order income risk. When we take

into account excess kurtosis and skewness fluctuations, we find welfare costs of business

cycles computed as a consumption equivalent variation which are 0.3%p (for relative risk

6We use the Flexible Generalized Lambda Distribution developed by Freimer et al. (1988).
7It turns out that the mechanical relationship between the distribution of shocks in logs and the

distribution of shocks in levels is important for the results: introducing left-skewness in logs (while
holding the variance in logs constant) leads to a reduction of the variance in levels. In other words, the
introduction of third-order risk (left-skewness) mechanically reduces second-order risk (variance) when
characterizing the distribution in levels. Thus, parts of the results can be understood by the convention
of characterizing risk by the distribution in logs.
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aversion of 2) to 6.4%p (for relative risk aversion of 4) larger than under log-Normal

shocks.

Third, does the presence of higher-order risk affect the degree of self-insurance?—Yes.

We employ a measure of self-insurance motivated by Blundell et al. (2008), who suggest

to evaluate the degree of partial insurance against income shocks by identifying transitory

and permanent shocks to income and estimate the pass-through of the identified shocks

to consumption changes. In the context of our model based analysis, we follow Kaplan

and Violante (2010), who study how much of the empirically estimated partial insurance

can be generated in a standard incomplete markets model. Our results show that when

incorporating higher-order risk, the model can be brought closer to the empirical estimates

because the pass-through of income shocks to consumption is weaker. However, we also

find that this does not actually represent better insurance against negative shocks. In

a scenario with higher-order risk agents have more precautionary savings (relative to

a scenario in which they face Normal shocks), which implies that consumption reacts

weaker to positive transitory and persistent shocks. Negative shocks actually translate

stronger into negative consumption changes, because the higher savings do not suffice

to smooth out shocks which are more pronounced relative to Normal shocks. Therefore,

we caution against using only the insurance coefficient introduced in the literature by

Blundell et al. (2008) for the analysis of the degree of partial insurance against income

risk.

Before delving into the quantitative analysis, we analyze the effects of higher-order

risk in a simple two-period model, in which agents face risky second period income. We

analytically derive the implications of higher-order risk for life-time utility and precau-

tionary savings. We explore in detail how risk attitudes of households matter delivering

two main insights. First, larger higher-order risk (in particular: left-skewness) can have

positive welfare implications (with log-utility), and second and related, the reaction of

precautionary savings to larger higher-order risk is ambiguous. These results do not

depend on a parametric assumption for the distribution of shocks and prove useful for

interpreting the quantitative results.

The remainder of the paper is structured as follows. Section 2 places our analysis in

the literature. Section 3 provides guidance for the analysis by discussing the role of higher-

order risk in a simple two-period model. Section 4 first presents our empirical approach,

and discusses identification of the income process. The remainder of the section presents

the results of applying our approach to US earnings data from the PSID. Section 6

introduces the quantitative model to analyze the economic implications of higher-order

income risk, Section 7 discusses the quantitative results, and Section 8 concludes.
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2 Relation to the Literature

On the empirical side, many studies analyze (residual) income inequality over time.

Prominent examples for the United States are Gottschalk and Moffitt (1994), Heath-

cote et al. (2010), and Moffitt and Gottschalk (2011) who document the development of

residual inequality over the past decades. The focus of our study is on the systematic

variation of the distribution of income changes over the business cycle. In a seminal

contribution, Storesletten et al. (2004) estimate a countercyclical variance of persistent

shocks to household-level income using PSID data. Building on the conceptual framework

of Storesletten et al. (2004), Bayer and Juessen (2012) focus on residual hourly wages

(at the household level) and estimate countercyclical dispersion of persistent shocks in

the United States (PSID). Our empirical approach nests Storesletten et al. (2004) as a

special case. Specifically, comparing our estimates to theirs, we find a similar magnitude

of the cyclicality of dispersion.

Recently, Guvenen et al. (2014) stress that the focus on the variance of log income

changes alone misses the main characteristic of how individual risk varies with the aggre-

gate state of the economy. They use an extensive administrative dataset from US social

security records for males. Their findings suggest that individual downside risk is larger

in a contraction, while upside risk is smaller—this is reflected in a more pronounced

left-skewness of the distribution of earnings changes, while the variance is unchanged

over the business cycle. Related, Busch et al. (2018) conduct a non-parametric analysis

of individual and household earnings dynamics in Germany, Sweden, and the US. They

find qualitatively the same dynamics as we do: individual and household-level earnings

changes are more left-skewed in contractionary times, which suggests increased downside

risk in contractions.

In follow-up work to Guvenen et al. (2014), Guvenen et al. (2016) document that, in a

given year, most individuals experience very small earnings changes, while some workers

experience very large changes of their earnings. This is summarized by a high kurto-

sis—relative to what the conventional assumption of log-normality implies. Druedahl

and Munk-Nielsen (2018) use a regression tree approach to document similar dynamics

for Danish males. Turning again to households, Arellano et al. (2017) document rich

deviations from the canonical income process for household-level earnings in the United

States (using survey data from the PSID) and Norway (using administrative data); to

which De Nardi et al. (2019) add additional evidence for the Netherlands (using ad-

ministrative data). Relative to those recent papers on income dynamics, we stick to the

transitory-persistent decomposition of the canonical income process and extend it by con-

sidering the second to fourth moments of all shocks. Motivated by the recent empirical

evidence, we allow the third moment of the persistent shocks to vary with the aggregate

state of the economy, similar to Huggett and Kaplan (2016). One other recent paper is
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Angelopoulos et al. (2019), who adapt a version of our GMM estimator to document

procyclical skewness of persistent shocks in Great Britain using data from the British

Household Panel Study.

Recently, the new evidence on richer earnings dynamics found its way into macroe-

conomic studies. For example, Golosov et al. (2016) allow for time-varying skewness

of idiosyncratic risk in a study of optimal fiscal policy. Our paper is part of a growing

literature that explicitly analyzes the implications of the new insights on richer earnings

dynamics for macroeconomic questions. Catherine (2019) analyzes the implications of

procyclical skewness of idiosyncratic income risk for the equity premium. McKay (2017)

links procyclical skewness to aggregate consumption dynamics. Civale et al. (2017) ana-

lyze implications of left-skewed and leptokurtic idiosyncratic shocks for the interest rate

and aggregate savings in an otherwise standard Aiyagari economy. Closest to our pa-

per is De Nardi et al. (2019), who apply the estimation of Arellano et al. (2017) to

household-level income data from the PSID. They then feed this fitted income process

into an otherwise standard incomplete markets model to study the role of richer earnings

dynamics for consumption insurance and the welfare costs of idiosyncratic risk in com-

parison to a standard income process with log-normal shocks. Our analysis differs in two

ways from theirs. First, they do not consider cyclicality of idiosyncratic risk, which is our

main focus. Second, our analysis provides a transparent link of non-Gaussian moments

of the distribution of shocks to macroeconomic implications.

Our analysis of the role of higher-order risk for the welfare costs of business cycles

speaks to a rich literature that evolved after Lucas (1987). Imrohoroglu (1989) was the

first study that analyzed the role of idiosyncratic risk and incomplete markets for the

welfare costs of business cycles. Following up on her analysis, several studies emphasize

in particular the role of unemployment risk (e.g., Krusell and Smith 1999, Krusell et al.

2009, Krebs, 2003, 2007, and Beaudry and Pages 2001). Dolmas (1998) and Epaulard and

Pommeret (2003) both consider Epstein-Zin-Weil preferences, which is also the preference

specification employed by us.8 Closest to our paper is Storesletten et al. (2001), who

analyze the welfare consequences of cyclical idiosyncratic risk in an incomplete markets

model. They represent idiosyncratic risk by the income process with cyclical variance of

persistent shocks as estimated in Storesletten et al. (2004). In the same fashion, we take

our estimated income process as an exogenous income process in an incomplete markets

model and assess the role of systematic changes of this risk over the business cycle.

8Epaulard and Pommeret (2003) study the relationship between cyclical variation and growth in an
endogenous growth model, which is a strand of the literature we do not talk to. For an overview of
studies that analyze the relationship between business cycles and growth see Barlevy (2005).
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3 Higher-Order Risk in a Two-Period Model

3.1 Setup

Endowments. A household lives for two periods denoted by j ∈ {0, 1}. At period 0

the household is endowed with an exogenous income of y0. Period 1 income is risky, y1 =

exp(ε), for some random variable ε with distribution function Ψ(ε), which features higher-

order income risk. Households are born with zero assets and, in the general formulation

of the model, have access to a risk-free savings technology with interest factor R = 1.

Denoting by a1 savings in period 1, the budget constraints in the two periods are

a1 = y0 − c0, c1 ≤ a1 + y1.

Preferences. We consider additively separable preferences over consumption cj in the

two periods of life, j ∈ {0, 1}. Period 0 consumption enters directly into utility, whereas

risky period 1 consumption is transformed by function v(c1, θ,Ψ), where θ parameterizes

risk attitudes, and Ψ is the distribution function of income shocks ε.

Per-period utility takes a power form, and we adopt recursive preferences9 a la Epstein

and Zin (1989, 1991), and Weil (1989):10

U =





1
1−γ

(
c

1− 1
γ

0 + v (c1, θ,Ψ)1− 1
γ

)
for γ 6= 1

ln (c0) + ln (v (c1, θ,Ψ)) for γ = 1.

(1)

Thus, γ can be interpreted as the inter-temporal elasticity of substitution between c0

and v(·), where v(·) represents the certainty equivalent from consumption in the second

period, which is given by

v(c1, θ,Ψ) =





(∫
c1(ε)1−θdΨ(ε)

) 1
1−θ =

(
E
[
c1−θ

1

]) 1
1−θ for θ 6= 1

exp
(∫

ln(c1(ε))dΨ(ε)
)

= exp (E [ln(c1)]) for θ = 1.
(2)

9In the two-period model the notion of recursive preferences is not strictly speaking correct. We
introduce this terminology here as we adopt Epstein-Zin-Weil preferences in the quantitative life-cycle
model.

10Notice that our representation of Epstein-Zin-Weil preferences, which goes back to Selden (1978,
1979), is a monotone transformation of the standard Epstein-Zin-Weil aggregator

V =





(
c
1− 1

γ

0 + v(c1, θ,Ψ)1−
1
γ

) 1

1− 1
γ

for γ 6= 1

c0 · v(c1, θ,Ψ) for γ = 1,

where U = 1
1− 1

γ

V 1− 1
γ if γ 6= 1 and U = ln(V ) if γ = 1.
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The specification of preferences gives standard CRRA (constant relative risk aversion)

preferences if the measure of the IES γ and the measure of risk aversion θ are recipro-

cals: θ = 1
γ
. Note that we assume an interest rate of zero and no discounting of second-

period utility, which implies that there is no life-cycle savings motive in this model.

3.2 Analysis

3.2.1 Hand-to-Mouth Consumers

We first analyze the role of higher-order risk for hand-to-mouth consumers. To this end,

we shut down access to the risk-free savings technology and introduce the additional

constraint

a1 = 0. (3)

CRRA Preferences. We first focus on CRRA preferences and set θ = 1
γ
. In the

notation, we retain parameters γ and θ to separately illustrate the role of risk aversion.

Consequently, the utility function simplifies to

U =





c
1− 1

γ
0

1− 1
γ

+
E[c1−θ1 ]

1− 1
γ

for θ = 1
γ
6= 1

ln(c0) + E[ln(c1)] for θ = γ = 1.

Now consider a fourth-order Taylor series approximation of the objective function

around the mean of second period consumption, µc1 = E[c1]. After some transformations,

cf. Appendix A.1 and in line with, e.g., Eeckhoudt and Schlesinger (2006), we find that

U ≈ c
1− 1

γ

0

1− 1
γ

+

(
1

1− 1
γ

− θ

2
µc2 +

θ(1 + θ)

6
µc3 −

θ(1 + θ)(2 + θ)

24
µc4

)
, (4)

where we impose the restriction µc1 = 1 for expositional reasons (which is irrelevant

for the results pertaining to second- to fourth-order risk discussed here). Note that

under the assumption of the binding constraint (3), the central moments11 of the level of

consumption µck, k = 1, . . . , 4 coincide with the respective moments µ
exp(ε)
k , k = 1, . . . , 4,

of second period income exp(ε).

We make the following observations using the expression in (4). First, consider chang-

ing one of the central moments of the distribution while holding the others constant. An

increase of the variance, µc2, or of the fourth central moment, µc4, or a reduction of the

third central moment, µc3, leads to expected utility losses. Note that changing the third

central moment while holding the variance fixed implies changing the shape of the dis-

11The kth central moment of variable x is given by µxk = E (x− µx1)
k
.
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tribution as summarized by the coefficient of skewness. Similarly, changing the fourth

central moment while holding variance fixed implies changing the relative size of the

center and tails of the distribution, as summarized by the coefficient of kurtosis. In the

remainder of the analysis, whenever we speak of an increase of risk, we refer to a change

of the distribution of shocks that entails at least one of these changes (increasing second

or fourth central moments, or decreasing the third central moment). Second, the utility

consequences of changes of risk are governed by relative risk attitudes,12 which in case

of the employed power utility function are all pinned down by θ. Stronger relative risk

aversion θ implies stronger adverse effects of increasing variance; stronger relative pru-

dence 1 + θ implies stronger adverse effects of increasing negative skewness; and stronger

relative temperance 2 + θ implies stronger adverse effects of increasing kurtosis. Impor-

tantly, the role of higher-order risk increases exponentially in θ: the weight attributed to

risk attitudes on the variance is θ, on the third moment is θ(1 + θ) and on the fourth

moment is θ(1 + θ)(2 + θ). Third, for given θ the relative importance of risk decreases in

the order of risk, which is captured by the weight terms of the Taylor approximation.

These observations play a crucial role for our quantitative evaluation. In particular,

while our estimates presented in Section 5.2 imply a pronounced left-skewness and a

strong excess kurtosis, which may lead to sizeable welfare losses, the overall effect depends

on the utility weight of this risk, which depends on the calibration of θ.

Logs vs. Levels. While the transformation from logs to levels is natural, it has non-

trivial implications for the welfare effects of higher-order risk: the higher-order moments

of the shocks in levels, exp(ε), rather than of the shocks in logs, ε, are relevant for utility

consequences. Consider a mean preserving (thus E[exp(ε)] = 1) change of idiosyncratic

risk. When introducing left-skewness in logs, probability mass is shifted to the left,

which reduces the variance of the shocks in levels. Without adjustment, the mean of

the distribution in levels would be lower, so the distribution needs to be shifted up,

which increases the mean in logs. Similarly, a higher variance or higher kurtosis of the

distribution in logs increases the variance in levels. Without adjustment, the mean of the

distribution in levels would be higher, so it needs to be shifted down. In the special case

of log utility (θ = 1
γ

= 1), what matters for expected lifetime utility is the mean of the

distribution in logs: U = ln(c1) + E[ln(c2)]. This gives the following

Proposition 1. Suppose that the utility function is logarithmic (θ = 1
γ

= 1) and that

there is no savings technology (binding constraint (3)). Then a mean-preserving reduction

of skewness (‘more negative skewness’) leads to utility gains, whereas a mean-preserving

increase of variance or kurtosis lead to utility losses in expectation.

12The relative risk attitude of order n is given by − un(c)
un−1(c)c, where un(c) denotes the nth derivative

of the per-period utility function u(c).
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Proof. The formal proof is given in Appendix A.2.

Proposition 1 thus establishes that higher-order income risk in terms of the logs of the

income process, specifically a reduction of skewness (increase of left-skewness), may in

fact lead to welfare gains rather than losses. While this may appear counter-intuitive at

first glance, the reason is the transformation of the shocks from logs, which are typically

modelled and estimated, to levels, which eventually matters for welfare.13 In Appendix B

we provide a numerical illustration by considering a discrete three-point distribution. We

show how changing moment µεi by holding other moments constant can be conceptualized

and how this affects the conclusions on the welfare implications of higher-order risk.

Epstein-Zin-Weil Preferences. We now consider the general case where γ 6= 1
θ
. By

the analogous steps to the CRRA case we can approximate the certainty equivalent (2)

as

v(c1, θ,Ψ) =

(∫
c1(ε)1−θdΨ(ε)

) 1
1−θ

(5)

≈
(

1 + (1− θ)
(
−θ

2
µc2 +

θ(1 + θ)

6
µc3 −

θ(1 + θ)(2 + θ)

24
µc4

)) 1
1−θ

.

Since v(g(c1, θ,Ψ)), for g(c1, θ,Ψ) =
∫
c1(ε)1−θdΨ(ε) is decreasing in g(·) for θ > 1 and

increasing in g(·) for θ < 1 we observe that an increase of risk of order 2− 4 reduces the

certainty equivalent and thus the previous results for the CRRA case readily extend.

3.2.2 Precautionary Savings

We now relax constraint (3) and instead assume that households have access to a risk-free

savings technology.

CRRA Preferences. Using the budget constraint, we can write utility for θ = 1
γ
6= 1

as

U =
(y0 − a1)1− 1

γ

1− 1
γ

+
E
[
(exp(ε) + a1)1−θ

]

1− 1
γ

.

13Due to this re-transformation our findings are related to, but not the same, as first-order stochastic
dominance, see Rothschild and Stiglitz (1970, 1971). Stochastic dominance refers to random variables
in levels, in our case exp(ε). Obviously, increasing the variance (or kurtosis) of exp(ε), while holding
the mean constant at E[exp(ε)] = 1, has direct negative utility consequences. In this case utility is U =
ln(y0) + E[ln(exp(ε))], which for the maintained normalization E[exp(ε)] = 1 we could approximate as

U ≈ ln(y0)− 1

2
µ
exp(ε)
2 +

1

3
µ
exp(ε)
3 − 1

4
µ
exp(ε)
4

from which the utility effects of increasing the variance or the kurtosis or decreasing the skewness are
obviously all negative.
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The Euler equation of the maximization problem is given by (cf. standard results from

the literature on risk, e.g., Eeckhoudt and Schlesinger, 2008)

(y0 − a1)−
1
γ = E

[
(exp(ε) + a1)−θ

]
(6)

≈ (1 + a1)−θ +
θ(1 + θ)

2
(1 + a1)−(2+θ) µ

exp(ε)
2

− θ(1 + θ)(2 + θ)

6
(1 + a1)−(3+θ) µ

exp(ε)
3

+
θ(1 + θ)(2 + θ)(3 + θ)

24
(1 + a1)−(4+θ) µ

exp(ε)
4 .

Notice that the LHS is increasing in a1 and the RHS is decreasing in a1 if µ
exp(ε)
3 is small

enough relative to µ
exp(ε)
2 and µ

exp(ε)
4 .14 Now consider the effect of an increase of risk

of the income shock exp(ε) (through increasing the second or fourth central moment, or

reducing the third central moment). An increase of the variance increases the RHS, scaled

by the product of the measures of relative prudence and relative risk aversion θ · (1 + θ).

A reduction of the third central moment increases the RHS, additionally scaled by the

measure of relative temperance (2 + θ). Finally, an increase of the fourth central moment

increases the RHS, additionally scaled by the measure of relative edginess (3 + θ).15

Similar to what we saw in equation (4), the second to fourth moments are scaled by

additional weight factors 1
2(1+a1)2+θ

, 1
6(1+a1)3+θ

, and 1
24(1+a1)4+θ

respectively.

Therefore, an increase of risk will for a given a1 increase the RHS, which will be

offset by an increase of savings a1.16 This result is very intuitive: ordinary and high-

order income risk increases precautionary savings, through which households reduce the

adverse utility consequences of this risk. The intensity of the behavioral reaction crucially

depends on the risk attitudes governed by θ (cf. RHS), as well as on the inter-temporal

elasticity of substitution γ (cf. LHS).

Epstein-Zin-Weil Preferences. In the general case where γ 6= 1
θ
, we can use the

resource constraint and write utility as

U =
(y0 − a1)1− 1

γ

1− 1
γ

+

(
E
[
(exp(ε) + a1)1−θ

]) 1− 1
γ

1−θ

1− 1
γ

.

Observe that now the first-order condition is given by

(y0 − a1)−
1
γ = v(c1, θ,Ψ)θ−

1
γE
[
(exp(ε) + a1)−θ

]
. (7)

14The RHS is deacreasing in a1 iff µ
exp(ε)
3 ≤ 3

(3+θ) (1 + a1)µ
exp(ε)
2 + (4+θ)

4 (1 + a1)
−1
µ
exp(ε)
4 .

15The term edginess was coined by Lajeri-Chaherli (2004).
16Formally, it is straightforward to show this by taking the total differential of (6), cf. Appendix A.5.
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In the sequel, we follow Kimball and Weil (2009) and assume that the marginal utility

of saving, the RHS of (7), is a decreasing function of a1 (just as earlier established for

CRRA utility), which establishes uniqueness of the solution. With this assumption we

obtain the next proposition, as in Kimball and Weil (2009):

Proposition 2. For θ 6= 1
γ

an increase of (higher-order) risk leads to an increase of

savings if γ ≤ 1 or if 1 < γ ≤ 1
θ
.

Proof. Propositions 5 and 6 in Kimball and Weil (2009) and Appendix A.6.

Thus, with a low IES (γ ≤ 1), which since Hall (1988) most macroeconomists re-

gard as a reasonable calibration, increasing risk leads to increasing savings. With a

high IES (γ > 1), however, precautionary savings behavior may not arise if risk at-

titudes are also strong (γ > 1
θ
). For a given degree of risk (µ

exp(ε)
2 , µ

exp(ε)
3 , µ

exp(ε)
4 ),

the utility delivery from expected second period consumption as measured by the cer-

tainty equivalent is smaller, the stronger risk attitudes are. An increase of (higher-order)

risk (µ
exp(ε)
2 , µ

exp(ε)
3 , µ

exp(ε)
4 ) implies a reduction of the certainty equivalent. This reduction

is stronger if risk attitudes are stronger so that with a high IES the household may prefer

to consume in the first period rather than to save for the second period and thus savings

may decrease in response to the increase of risk.17

4 Canonical Income Process with Higher-Order Risk

4.1 The Income Process

Let log income of household i of age j in year t be

yijt = f (Xijt, Yt) + ỹijt, (8)

where f (Xijt, Yt) is the deterministic component of income, i.e., the part that can be

explained by observable individual and aggregate characteristics, Xijt and Yt, respectively,

and ỹijt is the residual part of income, which is assumed to be orthogonal to f (Xijt, Yt).

The deterministic component f (Xijt, Yt) is a linear combination of a cubic in age j,

fage(j), the log of household size, year fixed effects, and an education premium fEP (t) for

college education, which we allow to vary over years t:

f (Xijt, Yt) = β0t + fage (j) + 1eit=cfEP (t) + βsize log (hhsizeijt) (9)

where fage (j) = βage1 j + βage2 j2 + βage3 j3, fEP (t) = βEP0 + βEP1 t + βEP2 t2, and 1eit=c is an

indicator function that takes on value 1 for college-educated households.

17Parts of this intuition is also discussed in Krueger and Ludwig (2019) for changes of second-order
risk.
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Residual income ỹijt is the main object of interest in the analysis. We model ỹijt as

the sum of three components: a persistent component zijt, an i.i.d. transitory shock εijt,

and a idiosyncratic fixed effect χi. The idiosyncratic fixed effect is a shock drawn once

upon entering the labor market from a distribution18 which is the same for every cohort.

The persistent component is modeled as an AR(1) process with innovation ηijt:

ỹijt = χi + zijt + εijt, where εijt ∼
iid
Fε, χi ∼

iid
Fχ (10a)

zijt = ρzij−1t−1 + ηijt, where ηijt ∼
id
Fη (s (t)) , (10b)

where Fχ, Fε, and Fη (s (t)) denote the density functions of χ, εijt, and ηijt, respectively.

We allow the density function of the persistent shock to depend on the aggregate state of

the economy in period t, denoted by s(t). This income process is exactly the canonical

income process (e.g., Moffitt and Gottschalk, 2011). Unlike the canonical case, we do not

(implicitly) assume that the shocks to the log income process are symmetric. Instead of

only focussing on the variance of the shocks, we are interested in estimating the second

to fourth central moments of the density functions, and denote those by µx2 , µx3 , and µx4 :19

µxk = E
[
(x− E [x])k

]
for x ∈ {χ, ε, η(s)} . (11)

As in Storesletten et al. (2004), the economy can be in one of two aggregate states,

indicated by 1s(t)=E, which is 1 if year t is an expansion (denoted by E) and 0 if year t

is a contraction (denoted by C). This gives central moment k ∈ {2, 3, 4} as

µηk (s (t)) = 1s(t)=Eµ
η,E
k +

(
1− 1s(t)=E

)
µη,Ck (12)

We assume that upon entering the labor market, in addition to drawing the fixed

effect χi, each worker draws the first realizations of transitory and persistent shocks, εit

and ηit, from the distributions Fε and Fη (s (t)), respectively. Thus, the moments of the

distribution of the persistent component for the cohort entering in year t at age j = 0

are µk(zi0t) = µηk(s(t)).

4.2 GMM Approach to Estimation

We follow the common approach in the literature and estimate (8) and (10) in two steps.

In the first step, we estimate (8), which yields residuals ỹijt. In the second step, we

18Thus, we are estimating a random effects model.
19One potential disadvantage of using central moments to characterize the shocks in the income process

is that they are hard to interpret by themselves. However, in the samples we use, the central moments
of the cross-sectional income distribution are strongly correlated with percentile-based counterparts to
those moments. We are thus confident that the estimated central moments—and the implied standardized
moments skewness and kurtosis—do capture the salient features of the distribution.
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estimate the parameters of the stochastic process (10) by fitting cross-sectional moments

of the distribution of residual (log) income. As is standard, the variance terms of all

components of (10) can be identified by the variance-covariance matrix. Similarly, the

third and fourth central moments can be identified by third and fourth central moments

and co-moments. Let θ =
(
ρ, µχ2 , µ

ε
2, µ

η,E
2 , µη,C2 , µχ3 , µ

ε
3, µ

η,E
3 , µη,C3 , µχ4 , µ

ε
4, µ

η,E
4 , µη,C4

)
be the

vector of second-stage parameters, and let st summarize the history of aggregate states

up to year t.20 We denote central moments by µk (·) and co-moments by µkl (·), where

µk (ỹijt; θ) = E
[
(ỹijt − E [ỹijt])

k |st
]

(13a)

µkl (ỹijt, ỹij+1t+1; θ) = E
[
(ỹijt − E [ỹijt])

k (ỹij+1t+1 − E [ỹij+1t+1])l |st
]
. (13b)

The imposed process implies the following moments of the distribution of residual income

at age j in year t:

µ2(ỹijt; θ) = µχ2 + µε2 + µ2(zijt) (14a)

µ11 (ỹijt, ỹij+1t+1; θ) = µχ2 + ρµ2(zijt) (14b)

µ3 (ỹijt; θ) = µχ3 + µε3 + µ3(zijt) (14c)

µ21 (ỹijt, ỹij+1t+1; θ) = µχ3 + ρµ3(zijt) (14d)

µ4 (ỹijt; θ) = µχ4 + µε4 + µ4(zijt) + 6 (µχ2µ
ε
2 + (µχ2 + µε2)µ2(zijt)) (14e)

µ31 (ỹijt, ỹij+1t+1; θ) = µχ4 + ρµ4(zijt) + 3 (µχ2µ
ε
2 + (µχ2 + ρ (µχ2 + µε2))µ2(zijt)) , (14f)

where the second to fourth central moments of zijt are given recursively by

µ2(zijt) =ρ2µ2(zij−1t−1) + µη2(s(t)) (15a)

µ3(zijt) =ρ3µ3(zij−1t−1) + µη3(s(t)) (15b)

µ4(zijt) =ρ4µ4(zij−1t−1) + 6ρ2µ2(zij−1t−1)µη2(s(t)) + µη4(s(t)). (15c)

20Note that we need to condition only on st, not on st+1, because period t+ 1 shocks are uncorrelated
with all shocks accumulated up to period t.
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Denote the empirical moments by m2(·), m3(·), m4(·), m11(·), m21(·), and m31(·).
This gives the following set of moment conditions employed in the GMM estimation:

E
[
m2 (ỹijt)− µ2 (ỹijt; θ) |st

]
= 0 (16a)

E
[
m11 (ỹijt, ỹij+1t+1)− µ11 (ỹijt, ỹij+1t+1; θ) |st

]
= 0 (16b)

E
[
m3 (ỹijt)− µ3 (ỹijt; θ) |st

]
= 0 (16c)

E
[
m21 (ỹijt, ỹij+1t+1)− µ21 (ỹijt, ỹij+1t+1; θ) |st

]
= 0 (16d)

E
[
m4 (ỹijt)− µ4 (ỹijt; θ) |st

]
= 0 (16e)

E
[
m31 (ỹijt, ỹij+1t+1)− µ31 (ỹijt, ỹij+1t+1; θ) |st

]
= 0. (16f)

Huggett and Kaplan (2016) use a similar strategy based on second and third central

moments and co-moments, without resorting to pre-sample aggregate information in the

spirit of Storesletten et al. (2004) as we do.

Identification

The use of cross-sectional moments for identification allows us to exploit macroeconomic

information that predates the micro panel, thereby incorporating more business cycles

in the analysis than covered by the sample, as pointed out by Storesletten et al. (2004).

Consider the persistent component of the income process in equation (10b): the variance

of the innovations accumulate as a cohort ages, as can be seen from the theoretical

moment in equation (14a). If the innovation variance is higher in contractionary years,

then a cohort that lived through more contractions will have a higher income variance at

a given age than a cohort at the same age that lived through fewer contractions, if the

persistence is high.

Our extension of Storesletten et al. (2004) is based on the insight that a similar

accumulation holds for the other central moments, as seen in equations (14c) and (14e).

Consider the third central moment. If for a given dispersion the probability of a large

negative/positive income shock was higher/lower during a contractionary period, then

the skewness of the shock in a contractionary period would be smaller (more negative)

than in an expansion, i.e., µη,C3 < µη,E3 . Comparing again two cohorts when they reach

a certain age, this would imply a more negative cross-sectional third central moment for

the cohort that worked through more contractions.

As seen in (14a), the sum (µχ2 + µε2) is identified as the intercept of the variance profile

over age. The same holds for (µχ3 + µε3) in (14c), which is identified via the age profile of

the third central moment. Considering the sum in (14a), we see that the magnitude of

the increase of the cross-sectional variance over age identifies the variance of persistent

shocks. The difference between µη,C2 and µη,E2 is identified by the difference of the cross-

sectional variance of different cohorts of the same age. Likewise, the difference between
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µη,C3 and µη,E3 is identified by the difference of the cross-sectional third central moment

of different cohorts.21

Now consider the expressions for variance and covariance in equations (14a) and (14b).

The difference between the two expressions identifies µχ2 separately from µε2. Likewise,

the difference between the expressions for the third central moment and co-moment,

equations (14c) and (14d), identifies µχ3 separately from µε3. Given ρ and the variance

parameters µx2 for x ∈ {χ, ε, η(s)}, equations (14e) and (14f) identify the fourth central

moments µx4 for x ∈ {χ, ε, η(s)} in the same fashion as for the second and third central

moments.

Instead of estimating all parameters simultaneously, we use moment conditions (16a)

and (16b) to estimate the variance parameters and the persistence ρ. Given an estimate

for ρ, we then use moment conditions (16c) and (16d) to estimate the third central

moments. Likewise, given estimates for ρ and the variance parameters, we use moment

conditions (16e) and (16f) to estimate the fourth central moments.

4.3 Discretization of the Estimated Process

For the quantitative evaluation in Section 6 we fit a discrete income process that fea-

tures the estimated distributional characteristics of the shocks ε and η(s). Given that

this approach extends beyond our specific analysis in Section 6, we discuss the general

procedure here, with details provided in Online Appendix A.

We proceed in two steps. First, for each shock we fit a parametric distribution func-

tion, the Flexible Generalized Lambda Distribution (FGLD) developed by Freimer et al.

(1988), to match the estimated moments of the shock distribution. The FGLD is char-

acterized by its quantile function Q(p;λ), where λ is a vector of four parameters. For

each shock x ∈ {ε, η(s)}, we follow Lakhany and Mausser (2000) and Su (2007) and

fit these parameters such that the fitted FGLD matches the estimated first four central

moments {µxi }4
i=1 of the distributions Fε and Fη(s). The quantile function for location

parameter λ1, scale parameter λ2 tail index parameters λ3, λ4
22 is given by

Q(p;λ) = F−1(p;λ) = x = λ1 +
1

λ2

(
pλ3 − 1

λ3

− (1− p)λ4 − 1

λ4

)
(17)

We choose λ3, λ4 jointly to fit the third and fourth central moments by solving

min
λ3,λ4

4∑

i=3

(µi(λ3, λ4)− µ̂i)2 s.t. min{λ3, λ4} > −
1

4

21Note that by restricting the transitory shocks to not vary over the business cycle we do not bias the
estimated cyclicality of persistent shocks, which is identified via accumulated shock distributions.

22The parametric constraints are λ2 > 0, and min{λ3, λ4} > − 1
4 .
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where µ̂i is the point estimate of the ith moment, and µi(·) denotes the central moment of

the FGLD. Next, we determine λ2 to match the variance and λ1 to match the mean, both

in closed form. Second, we approximate the shocks by spanning equidistant grids for the

respective random variable x ∈ {ε, η(s)} and by assigning to each grid point probabilities

from the integrated probability density function of the respective FGLD.

5 Estimation of the Income Process

5.1 Data and Sample Selection

We use data from the Panel Study of Income Dynamics (PSID), which interviews house-

holds in the United States annually from 1968 to 1997 and every other year since then.

The representative core sample consists of about 2,000 households in each wave, and

we use data from 1977–2012.23 We estimate the extended canonical income process at

the household level for both pre- and post-government household income. Household

pre-government income is defined as labor income before taxes, which we calculate as

the sum of head and spouse annual labor income. Post-government income is defined as

household labor income plus transfers minus taxes. As measure of labor income we use

annual total labor income which includes income from wages and salaries, bonuses, and

the labor part of self-employment income. We impute taxes using Taxsim, and add 50%

of the estimated payroll taxes to the sum of head and spouse labor incomes to obtain pre-

government income. We aggregate transfers to the household level and include measures

of unemployment benefits, workers’ compensation, combined old-age social security and

disability insurance (OASI), supplemental security income, aid to families with dependent

children (AFDC), food stamps, and other welfare.

We deflate all nominal values with the annual CPI, and select households if the house-

hold head is between 25 and 60 years of age. The minimum of household pre- and post-

government income needs to be above a constant threshold, which is defined as the income

from working 520 hours at half the minimum wage.

Central moments (especially of higher order) are imprecisely estimated in small sam-

ples. We therefore estimate the moments for a given year and age group based on a

sample from a five-year window over age, which also smoothes the age profiles of these

moments.

Defining Business Cycles. In order to implement the estimator we need to classify

years as contractions or expansions. We initiate our definition on NBER peaks and

trough data. Given the sluggish synchronization of labor market outcomes with the

macroeconomic indicators that the NBER takes into account, we expand the dating based

23We do not use earlier waves because of poor coverage of income transfers before the 1977 wave.
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on mean earnings of males in the the PSID. The relevant time period is 1942–2012. Given

the dating of peaks and troughs, we classify a year as a contraction if (i) it completely is

in a contractionary period which is defined as the time from peak to trough, (ii) if the

peak is in the first half of the year and the contraction continues into the next year, (iii)

if a contraction started before the year and the trough is in the second half of the year.

All years that are not classified as contraction are classified as expansions. This gives

the following years as contractions: 1945, 1949, 1953, 1957, 1960, 1970, 1974, 1980–83,

1990–91, 2001–02, 2008–10, and 2012.

5.2 Estimation Results: Cyclical Idiosyncratic Income Risk

We now turn to the estimation results for household pre-government labor income (be-

fore taxes and transfers) and household post-government labor income (after taxes and

transfers). We use the number of observations that contribute to an empirical moment

as weights for the moment conditions. As additional moment conditions we add the av-

erages over years of the second to fourth central moments of 1-5 year income changes.

This ensures that the estimated income process is consistent both with moments of the

cross-sectional distribution and with moments of income changes. We give a collective

weight of 10% to the average moments of changes. In addition to the structure imposed

so far, we hold the kurtosis of η fixed over the business cycle. Let αi denote the ith

standardized moment: αi = µi/µ
i/2
2 . Assuming αη4 (s (t)) = αη4 implies µη,C4 = αη4

(
µη,C2

)2

and µη,E4 = αη4

(
µη,E2

)2

. This leaves us with 12 parameters that need to be estimated.

We add a linear time trend to the third central moment of transitory shocks in order

to accomodate for a low-frequency change of the cross-sectional distribution. We report

here the time average of the implied moment. For inference, we apply a block bootstrap

procedure and resample households, which preserves the autocorrelation structure of the

original sample. We draw 500 bootstrap samples. Table 1 shows the estimates, and

Figure 1 shows the fit over age and time of the estimated process for post government

income, which we use in the quantitative analysis in Section 7.

Cyclical Dispersion. The first panel of Table 1 reports the persistence of the AR(1)

component of income along with the estimates of the variances of the several components

of the income process estimated jointly. We estimate persistence parameters (ρ) of .96

and .97 for pre and post government income, respectively. The estimated variances of

all components of the income process for post-government income are smaller than their

counterparts for pre-government income. This is consistent with an interpretation that

the existing tax and transfer system effectively dampens the idiosyncratic risk faced

by households. Both for pre-government and post-government income the estimated

processes imply a countercyclical variance of persistent shocks: in aggregate downturns,
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Table 1: Estimation Results for Pre- and Post Government Income

Estimated Central Moments Implied Standardized Moments
HH Pre HH Post HH Pre HH Post

ρ 0.9602 0.9684
[0.9464; 0.9782] [0.9632; 1.0000]

µχ2 0.1592 0.1077
[0.1405; 0.1821] [0.0912; 0.1250]

µε2 0.1043 0.0752
[0.0972; 0.1146] [0.0716; 0.0856]

µη,C2 0.0375 0.0223
[0.0273; 0.0477] [0.0049; 0.0234]

µη,E2 0.0152 0.0085
[0.0087; 0.0199] [0.0046; 0.0120]

µχ3 −0.1130 −0.0522 −1.78 −1.48
[−0.1293;−0.0472] [−0.0546;−0.0019]

µε3 −0.1516 −0.0866 −4.50 −4.20
[−0.3055;−0.1891] [−0.2206;−0.1433]

µη,C3 −0.0331 −0.0164 −4.56 −4.93
[−0.0622;−0.0302] [−0.0314;−0.0101]

µη,E3 −0.0046 −0.0012 −2.47 −1.51
[−0.0055; 0.0102] [−0.0024; 0.0054]

µχ4 0.0620 0.0180 2.45 1.55
[0.0000; 0.0469] [0; 0.0172]

µε4 0.4244 0.2297 38.98 40.65
[0.3724; 0.4992] [0.2024; 0.2767]

µη,C4 0.1357 0.0665 96.55 134.11
[0.0614; 0.1447] [0.0153; 0.0632]

µη,C∗4 0.0222 0.0097 96.55 134.11

Notes: Table shows estimated central moments for household earnings (HH Pre) and household income

after taxes and transfers (HH Post). Brackets show 5th and 95th percentiles of 500 bootstrap estimates.
∗µη,C4 not separately estimated.
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Figure 1: Fit of Estimated Process for Post-Government Earnings

(a) Age profiles of moments of the cross-sectional distribution

(b) Year profiles of moments of the cross-sectional distribution

Notes: Shows empirical profiles of the cross-sectional distribution moments (“Data”) and the counterpart
of these moments implied by the estimated income process (“Estimated”). The displayed age profiles for
each age show the average moment over years; the year profiles for each year show the average moment
over age.
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the cross-sectional distribution of shocks is more dispersed. The countercyclicality we

estimate for post-government income is quantitatively similar to the one estimated by

Storesletten et al. (2004): the estimated standard deviation of persistent shocks is 62%

higher in aggregate contractions.

Cyclical Skewness. The second panel of Table 1 reports the third central moments.

We find that all shock components estimated for pre-government and post-government

income processes have negative third central moments, implying negative skewness of

shocks. Comparing the post-government income process to the pre-government income

process, the third central moments are smaller in magnitude, as expected from the re-

duced dispersion. For both pre and post government income, the third central moment

of persistent shocks is significantly negative in contractions; point estimates of the third

central moments of persistent shocks in expansions are also negative, however not sta-

tistically different from zero. The second and third central moments together translate

into the third standardized moment, the coefficient of skewness, which is informative

about the shape of the distribution and shown in the last two columns of Table 1. The

cyclicality of the third central moment is stronger relative to the cyclicality of the second

moment, which translates into the standardized moment displaying pro-cyclicality. Thus,

aggregate contractions are periods in which negative persistent shocks become relatively

more pronounced.

Excess Kurtosis. The third panel of Table 1 reports the fourth central moments. We

restrict the kurtosis of persistent shocks to not vary with the aggregate state of the econ-

omy, i.e., αη3(s(t) = C) = αη3(s(t) = E). Again, the last two columns of Table 1 list the

implied standardized fourth moments (coefficients of kurtosis). The fixed effects are very

imprecisely estimated; the point estimates imply relatively flat distributions (compared

to a Normal distribtion, which has a kurtosis of 3): the implied kurtosis coefficient at the

point estimates is 2.5 for pre-government income, and 1.55 for post-government income.

The transitory and persistent shocks are estimated to display very pronounced excess

kurtosis of about 39 and 97 for pre-government earnings, and about 41 and 134 for post-

government earnings. These estimates imply that the distribution of post-government

income shocks is more concentrated in the center, while some households experience

shocks that are more extreme relative to the overall more compressed distribution. Note

that while these estimates of kurtosis seem extreme at first glance, they imply a good

fit of the cross-sectional distribution over age and over years as shown in Figure 1. Fur-

thermore, the estimated income process is in line with the average kurtosis of income

changes.

21



6 A Quantitative Model

6.1 The Economy

We now set up a quantitative version of the simple two-period model of Section 3 by

extending it to a standard multi-period life-cycle model with a stochastic earnings process,

a zero borrowing constraint, a fixed retirement age, and an earnings-related retirement

income.

Endowments. Households earnings are exogenous and consist of a deterministic age

profile and a stochastic income component with transitory and persistent shocks. The

distribution of persistent shocks varies with the aggregate state s ∈ {C,E}, which fol-

lows a Markov process with time-invariant transition matrix Πs. We abstract from the

aggregate effects of fluctuations on wages and interest rates by holding both constant.

Thus, there is no aggregate risk, but cyclical idiosyncratic risk.

Households live from age j = 0 to age j = J . They retire at the exogenously given

retirement age jr. Labor income net of taxes and transfers at age j ∈ {0, . . . , jr − 1} in

aggregate state s is given by

y(z, ε, j; s) = ej · exp(z(s) + ε), (18)

where ej is the deterministic age profile, ε is the transitory income shock, drawn iid from

distribution F̃ε, and z(s) is the persistent income component which obeys

z′(s′) =




ρz + η′, where η′ ∼

iid
F̃η(s

′) for j < jr

z for j ≥ jr,
(19)

where ρ is the autocorrelation coefficient and η′ is the persistent income shock, drawn

from distribution F̃η(s
′) that depends on aggregate state s. We assume that the initial

draws are exp(ε0) = exp(z0) = 1. In retirement, j ∈ {jr, . . . , J}, households earn a fixed

earnings related pension income yj = b(zj). Thus, pension payments are contingent on

the last income state before retirement.24 Households have access to a risk-free savings

technology with rate of return r, and face a zero borrowing constraint. Thus, the dynamic

budget constraint is

a′(z, ε, j; s) = a(1 + r) + y(z, ε, j; s)− c ≥ 0. (20)

24With this specification we approximate the average indexed monthly earnings (AIME) of the US
pension system.
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Preferences and Household Problem. Households born into the economy at his-

tory st, date t maximize recursive utility by solving a consumption-savings problem every

period. They discount the future at factor β > 0. The state variables of the household’s

problem are age j, asset holdings a, the persistent income state z, the transitory shock ε,

and the aggregate state of the economy s. The recursive problem of households is

Vj(a, z, ε; s) = max
c,a′





(
(1− β̃)c1− 1

γ + β̃ (v(Vj+1(a′, z′, ε′; s′)))1− 1
γ

) 1

1− 1
γ γ 6= 1

exp
{

(1− β̃) ln c+ β̃ ln (v(Vj+1(a′, z′, ε′; s′)))
}

otherwise

s.t. (18), (19), and (20),

where β̃ = β
1+β

denotes the relative utility weight on the certainty equivalent v(Vj+1)

from next period’s continuation utility Vj+1(·), which is

v(Vj+1(a′, z′, ε′; s′)) =





(
Ej
[
Vj+1(a′, z′, ε′; s′)1−θ]) 1

1−θ θ 6= 1

exp (Ej [lnVj+1(a′, z′, ε′; s′)]) otherwise.

Parameter γ denotes the inter-temporal elasticity of substitution between utility from

age j consumption cj and the certainty equivalent from the continuation utility v(Vj+1(·)).
Given γ, parameter θ pins down the relative risk attitudes of households as discussed in

Section 3. Conditional expectations are defined with respect to the realization of next

period’s aggregate state of the economy s′, transitory income shock ε′, and persistent

income shock η′.

We solve for the household policy and value functions using the method of endogenous

gridpoints. We aggregate using explicit aggregation characterizing and iterating forward

on the cross-sectional distribution Φj(aj, zj, ε; s), which follows from the initial distribu-

tion Φ0(a0, z0, ε0; s) and the transition function of the distribution Gj(aj, zj, εj; s). The

latter is induced by the exogenous laws of motion for z, s, the exogenous distribution of ε,

and the endogenous transitions a′j(aj, zj, εj; s).

6.2 Calibration

Aggregate Shock Process. Based on our classification of time periods as contractions

and expansions for the US economy, we estimate a Markov transition process on this data.

This gives the aggregate transition matrix for s ∈ {C,E}:

π(s′ | s) =

[
0.388 1− 0.388

1− 0.769 0.769

]
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with associated stationary invariant distribution Πs = [0.274, 0.726]′. Thus the per-

sistence of staying in a contraction and the corresponding unconditional probability of

contractions is much lower than for expansions.

Age Bins and Age Productivity. Each model period corresponds to one life year.

Consistent with our empirical specification, households are assumed to start working at

age 25 (model age j = 0) and retire at age 60 (model age j = 35).

In the economic model, we abstract from heterogeneity along the dimensions of ed-

ucation, labor market experience, or household size. We calibrate the age productivity

process ej by the fitted age polynomial fage(j) of the first stage estimation of the earn-

ings process for household post government earnings. We take the weighted average of

college and non-college age earnings profiles that display the usual hump-shaped pat-

tern, cf. Appendix C.3, and normalize it such that average productivity is equal to

one, 1
jr

∑jr−1
j=0 ej = 1.

Idiosyncratic Shock Processes. The most important element of the calibration in the

context of our analysis is the specification of the distribution functions of the idosyncratic

shocks. We use the Flexible Generalized Lambda Distribution (FGLD) to form a discrete

approximation of the estimated transitory and persistent shocks as discussed in Section

4.3. We consider three alternative parameterizations of the FGLD with the following

restrictions on central moments (and parameters) to which we refer to as distribution

scenarios :25

1. NORM: FGLD with moments of Normal distribution; µ̂3 = 0, µ̂4
µ̂22

= 3, λ3 = λ4

2. LK: FGLD with excess kurtosis; µ̂3 = 0, λ3 = λ4

3. LKSW: FGLD with excess kurtosis and left-skewness; no restrictions apply.

Thus, scenario NORM features symmetric shock distributions with the estimated vari-

ance and a kurtosis of 3,26 scenario LK features leptokurtic shock distributions with the

estimated second and fourth moments, and scenario LKSW adds the estimated negative

third moments to LK. Figure 2 shows the log distribution functions for the distributions of

the persistent shock η(s). Panel (a) shows the distribution in scenario NORM in contrac-

tions and expansions, illustrating the counter-cyclical variance. Panels (b) and (c) show

25We also impose a minimum post-government household income that remains unchanged across sce-
narios, i.e., when moving from the scenario with normally distributed shocks to the scenario with, say,
leptokurtic shocks, the lowest level of income that households can reach is by construction unchanged.
This minimum income is expressed relative to average income. We then adjust incomes such that average
income (before multiplying with the age profile) remains 1.

26One apparent drawback of the FGLD is that it does not nest the normal distribution. In our
computations we also consider a scenario in which we draw shocks from the normal distribution and
discretize it using standard Gaussian Quadrature methods. Results are numerically almost identical to
those obtained for FGLD distribution NORM. This is documented in Appendix D.1.
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the distributions in scenarios LK and LKSW, respectively. Relative to scenario NORM,

the distributions in scenarios LK and LKSW have more mass in the center and are more

spread out in the tails. The comparison between the distributions in scenario LKSW

in Panel (c) and scenario LK in Panel (b) further illustrates the effects of left-skewness

and the increasing left-skewness in contractions. Appendix C.1 reports the estimated,

fitted, and discretized moments, as well as the parameter vectors λ for all shocks under

the three scenarios NORM, LK, LKSW. In all three distribution scenarios we scale down

the transitory shocks because part of the estimated variance is likely due to measurement

error.27

Figure 2: Discretized Log Distribution Functions: Persistent Shock

(a) NORM (b) LK

(c) LKSW

Notes: Discretized log distribution functions for the persistent shock η. NORM: FGLD with moments

of the normal distribution, LK: FGLD with excess kurtosis, LKSW: FGLD with additional left-skewness

(in logs). Markers denote the grid points used in the discretized distribution. Log density is the base 10

logarithm of the PDF.

27Following Huggett and Kaplan (2016) we assume that one third of the estimated variance of the
transitory shock is measurement error and reduce the targeted variance accordingly. We assume that
this measurement error is symmetric and accordingly adjust the third and fourth central moments such
that the implied coefficients of skewness and kurtosis are unchanged.
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In Section 3 we emphasize that it is crucially important to see how earnings processes

estimated in logs translate into levels of the earnings distribution. Appendix C.3 shows

central moments 2-4 in logs and levels that result from our parametrization.

Pension System. Social security benefits follow a fixed replacement schedule that ap-

proximates the current US bend point formula. We approximate average indexed monthly

earnings (AIME) by the realization of the persistent income shock before entering into

retirement zjr−1. We then apply the bend point formula contained in Appendix C.2

and denote the according model equivalent to the primary insurance amount (PIA)

by p(zjr−1). To achieve budget clearing of the pension system, pension payments are

further scaled by the aggregate indexation factor % so that individual pension income

is b(zjr−1) = % · p(zjr−1). As to contributions to the pension system, we compute the

average contribution rate from the data giving τ p = 11.7% (which is close to the current

legislation featuring a marginal contribution rate of τ p = 12.4%). The base for pension

contributions in our model is average gross earnings. Since earnings processes in the

model are based on net wages—net of all taxes and transfers—and since we normalize

average net wages to one, average gross wages are 1
1−τp−τ , where τ is some average labor

income tax rate (including transfers). We compute τ from the data giving τ = 16.88%.

Since average labor productivity is normalized to one, since the means of the shocks zj, εj

are equal to one, and since the total population in age group j is also normalized to one,

efficiency weighted aggregate labor in the economy is equal to jr − 1. The number of

pensioners is J − jr + 1. The pension budget is therefore given by

τ p · 1

1− τ − τ p · (jr − 1) = % ·
∫
p(zjr−1)dΦ(zjr−1) · (J − jr + 1) .

We calibrate % in each distribution scenario so that the pension budget clears. Since

contributions obey a linear tax schedule and by our normalization of income, aggregate

contributions are constant across all scenarios. Recalibrating % therefore implies that

also average pension income is the same across all scenarios. Table C.5 in Appendix C.2

provides the accordingly calibrated values of %.

Initial Assets and Interest Rate. For simplicity, we assume that all households are

born with the same initial assets a0 = ā0. We compute those from the average asset to

net earnings data at age 25, which we calculate from PSID data as 0.89. We set the

annual interest rate of the risk-free asset to r = 4.2%, based on Siegel (2002).

6.2.1 Preferences

As we show in Section 3, risk attitudes play a crucial role for the welfare effects of

higher-order income risk and for the precautionary savings motive. For each model vari-
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ant we therefore consider four alternative parameterizations and vary θ ∈ {1, 2, 3, 4}.
Throughout, we consider risk-sensitive preferences (Tallarini 2000) and accordingly set

the inter-temporal elasticity of substitution to γ = 1.28 For each θ ∈ {1, 2, 3, 4}, we

determine endogenously the discount factor β to match life-cycle asset profiles scaled by

net earnings, which we compute from PSID data. Since our model is not designed to

match saving patterns in retirement (there is neither survival risk nor a bequest motive),

we match assets for ages 25-60, the working period in our model. This calibration is done

for distribution scenario LKSW, and we then hold the calibrated discount factor constant

when moving across distribution scenarios, i.e., in the scenarios NORM and LK, for each

calibration of θ.

Calibrated discount factors range from 0.971 for θ = 1 to 0.965 for θ = 4, see Ta-

ble 2, which summarizes the calibration of the model. The reason for the decline of the

calibrated discount factor in θ is that increasing θ leads to higher precautionary savings

which is offset in the calibration by lowering β so that the life-cycle savings motive is less

potent.

Table 2: Calibrated Parameters

Working period 25 (j = 0) to 60 (j = jr − 1)
Maximum age 80
IES γ = 1
RA θ ∈ {1, 2, 3, 4}
Discount factor (2nd stage) β ∈ {0.971, 0.970, 0.967, 0.965}
Interest rate r = 0.042
Pension contribution rate τ p[%] = 11.7%
Pension benefit level See Table C.5
Average tax rate τ [%] = 16.8%
Aggregate shocks π(s′ = c | s = c) = 0.38, π(s′ = e | s = e) = 0.77
Initial ass. / inc. ā0 = 0.89

Notes: Calibration parameters. IES: inter-temporal elasticity of substitution, RA: coefficient of risk

aversion. The discount factor β is calibrated endogenously to match asset to income data from the

PSID. The pension benefit level parameter % is calibrated such that the pension budget clears.

28Cooper and Zhu (2016) estimate a portfolio choice model where agents have Epstein-Zin-Weil pref-
erences, and face the canonical income process with log Normal shocks. They estimate a risk aversion
of 4.4 and an IES of 0.6. We choose an IES of 1 as a natural benchmark. This is also very convenient
when we decompose the welfare effects as described in Appendix A.7.
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7 The Quantitative Role of Higher-Order Income Risk

7.1 Welfare Implications of Higher-Order Income Risk

In order to assess the welfare implications of higher-order income risk, we ask which world

households would prefer to be born into. Taking this ex ante perspective, we accordingly

define the Utilitarian social welfare function as the expected life-time utility function of

households born with initial assets a0 = ā0, idiosyncratic persistent income state z0 = 0,

and transitory shock ε = 0, weighted over aggregate states s, where the Pareto weight is

the stationary invariant distribution Πs:

W =
∑

s

ΠsV0(a0 = ā0, z0 = 0, ε = 0; s).

We then quantify the welfare gain of being born into the world with higher-order

risk by calculating the consumption equivalent variation (CEV) that households need to

receive in the world without higher-order risk (distribution scenario NORM) in order to

be indifferent to a world with higher-order risk (distribution scenarios LK and LKSW,

respectively). Given the homotheticity of the utility function, the CEV is

gic =
W i

WNORM
− 1.

We distinguish between three different channels through which idiosyncratic risk

translates into utility consequences evaluated from this ex-ante perspective. While we

hold mean income constant, consumption is endogenous. When facing different (distri-

bution) scenarios, households make different savings decisions, and thus realize different

mean consumption, i.e., consumption averaged across age and the cross-section. We

call the welfare consequence of this change of mean consumption the mean effect, gmeanc ,

which is proportional to changes in mean consumption. We in turn refer to utility con-

sequences of changes in the distribution around mean consumption as the distribution

effect, gdistrc , which we decompose into two components: the utility consequences of,

first, the change of the distribution of mean consumption over the life-cycle, the life-

cycle distribution effect, glcdc , and, second, the change of the cross-sectional distribution

of consumption around the mean life-cycle profile, the cross-sectional distribution ef-

fect, gcsdc . We accordingly decompose the total CEV of moving from scenario NORM to

scenario i ∈ {LK,LKSW} as (cf. Appendix A.7 for explicit expressions)

gic = gi,meanc + gi,lcdc + gi,csdc .

Table 3 summarizes the welfare implications of higher-order income risk by showing

the CEV and its decomposition. Scenario LK leads to welfare losses because of the
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high variance and kurtosis of the earnings distribution in levels, cf. Table C.6, whereas

scenario LKSW leads to welfare gains when risk attitudes are weak. This is consistent

with our analytical findings in Proposition 1. With stronger risk attitudes, however,

welfare losses show up for scenario LKSW, because the increasing variance and the high

kurtosis dominate the welfare effects.

Table 3: Welfare Implications of Higher-Order Income Risk: CEV in %

CEV gc gmeanc glcdc gcsdc
Risk Aversion, θ = 1

LK -1.084 0.400 -1.474 -0.010
LKSW 0.371 -0.154 0.506 0.019

Risk Aversion, θ = 2
LK -1.595 0.450 -2.035 -0.010
LKSW -0.386 -0.161 -0.256 0.031

Risk Aversion, θ = 3
LK -3.919 0.682 -4.557 -0.044
LKSW -4.488 0.318 -4.751 -0.055

Risk Aversion, θ = 4
LK -9.399 1.247 -10.472 -0.174
LKSW -12.474 1.211 -13.392 -0.294

Notes: Welfare gains (positive numbers) and losses (negative numbers) of higher-order income risk,
expressed as a Consumption Equivalent Variation (CEV) in scenario NORM that makes households
indifferent to scenarios LK and LKSW, respectively. gc: total CEV, gmeanc : CEV from changes of mean
consumption, glcdc : CEV from changes in the distribution of consumption over the life-cycle, gcsdc : CEV
from changes in the cross-sectional distribution of consumption, where gc = gmeanc + glcdc + gcsdc .

The main force for the welfare results is the redistribution of consumption over the life-

cycle reflected in glcdc . This is a consequence of increased precautionary savings as reflected

in Panel (a) of Figure 3, which displays mean log consumption over the life-cycle.29

Consumption in scenarios LK and LKSW is lower when young and higher when old

compared to scenario NORM. In welfare terms lower consumption when young dominates

higher consumption when old due to discounting. The mean effect gmeanc instead is mostly

positive because the increased consumption when old dominates (exceptions are results

for LKSW for θ = 1 and θ = 2). In sum, total welfare losses for scenario LKSW range from

about 0.4% (i.e., small gains) for θ = 1 to −12.5% for strong risk attitudes with θ = 4.

Panels (b) to (d) of Figure 3 show the second to fourth central moments of the

consumption distribution over the life-cycle, which are relevant for the cross-sectional

distribution effect gcsdc . To interpret it observe that the variance of log consumption is

29Here we show the profile for a high risk aversion parameter of θ = 4, because in this calibration the
effects are most evident visually. Qualitatively, they are the same in the other risk aversion calibrations.
Note that consumption is monotonically increasing over the life-cycle and thus does not display the
typical hump-shaped profile. One reason is that our model with no mortality risk is not a good model
for life-cycle consumption behavior in retirement.
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Figure 3: Central Moments of Log Consumption by Age: Strong Risk Attitudes, θ = 4

(a) Mean of Log (b) Variance of Log

(c) Third Central Moment of Log (d) Fourth Central Moment of Log

Notes: Moments of cross-sectional distribution of log consumption over the life-cycle for each scenario
of shock distributions. NORM: FGLD with moments of the normal distribution, LK: FGLD with excess
kurtosis, LKSW: FGLD with excess kurtosis and left-skewness (in logs).

lower in scenario LKSW than in scenario NORM for most ages, whereas the third central

moment is initially negative and the kurtosis of the log consumption distribution is higher

at all ages.30 The lower variance contributes positively to gcsdc , which dominates for low

risk aversion, whereas the negative skewness and the excess kurtosis contribute negatively,

and dominate for strong risk attitudes.

7.2 Welfare Costs of Cyclical Idiosyncratic Risk

Next, we quantify the utility consequences of cyclical idiosyncratic risk. To this end,

for each scenario we evaluate the welfare implications for households of facing the actual

30The Gini coefficient for assets features the same ranking as the variance of log consumption. E.g., for
a risk aversion of 4 it is at 0.35 in scenario NORM, at 0.37 in scenario LK and at 0.34 in scenario LKSW.
Throughout it is substantially lower than in the data. One reason is that we ignore ex-ante heterogeneity
in productivity (fixed productivity types), as well as heterogeneity in initial asset holdings at labor market
entry.
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cyclical income process relative to a counterfactual income process in which we shut down

the cyclical variation of the distribution. We then calculate the CEV necessary in the

non-cyclical scenario to make households indifferent to the cyclical scenario. By holding

mean wages and interest rates constant over the cycle, the welfare effects of cyclical risk

we report constitute a lower bound for each scenario.31

As before,W i denotes the social welfare function in the cyclical risk scenario, whileW i,ncr

denotes the social welfare function in the no cyclical risk scenario. We next compute for

all scenarios i ∈ {NORM,LK,LKSW}:

gi,crc =
W i

W i,ncr
− 1.

As with the role of higher order income risk per se, we further decompose the total CEV

from cyclical risk into its components, i.e., we compute for scenario i ∈ {NORM,LK,LKSW}

gi,crc = gi,cr,meanc + gi,cr,lcdc + gi,cr,csdc .

When computing welfare in the non-cyclical scenario W i,ncr we assume that house-

holds always draw from the “expansion-distribution” of the scenario rather than taking

a weighted average of shock distributions for expansions and contractions.32 There are

two reasons for this. First and more importantly, it is conceptually not clear what char-

acterizes an “average” distribution, once other moments than the variance are taken into

account. Second, we avoid any potential inaccuracies that would arise from our dis-

cretization methods. To the extent that some average distribution represents a better

non-cyclical counterfactual scenario, the pure effect of cyclical idiosyncratic risk is over-

stated in our analysis.33 However, we are mainly interested in the difference of welfare

costs of cyclical income risk across scenarios, i.e., the “difference in difference” compar-

ison between gi,crc and gNORM,cr
c , i.e., ∆gi,crc = gi,crc − gNORM,cr

c for i ∈ {LK,LKSW}.
Thus, our approach to “normalize” the economy without cyclical idiosyncratic risk is of

second order importance as long as it is consistent across scenarios.

31Note that the direct effect of business cycles is typically found to be small. For example, Storesletten
et al. (2001) find the direct effect to be an order of magnitude smaller than the role of cyclical varia-
tion in idiosyncratic risk. However, there can be indirect utility “interactions” between aggregate and
idiosyncratic risk, which may be large (Harenberg and Ludwig 2019), and which we abstract from here
to focus on the role of the idiosyncratic shock distribution.

32When using log-Normal distributions of shocks, a typical approach in the literature is to consider an
average distribution, which features the average of expansion and contraction variances, see for example
Storesletten et al. (2001).

33Indeed, Storesletten et al. (2001) find welfare costs of cyclical risk of about 1.3%. They consider
CRRA preferences with θ = 2. In one of our sensitivity checks below, we also consider CRRA preferences
with θ = 2. In this case we obtain welfare costs of about 2.6%. Besides other differences between our
model and theirs, one reason for the higher welfare costs in our analysis lies in the different approach to
characterizing the non-cyclical scenario.
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Table 4 reports the results on the welfare costs of cyclical idiosyncratic risk in sce-

narios NORM, LK, and LKSW. First, note that consistent with our theoretical analysis

of Section 3 in each scenario the welfare costs of business cycles increase monotonically

in θ. Second, as for the welfare costs of higher-order risk, the main contributor to the

welfare consequences is the redistribution of consumption over the life-cycle as quantified

by glcdc . Third, mean effects are positive. Recall that a negative glcdc is a consequence of

the counter-clockwise tilting of the consumption profile because of increased precaution-

ary savings. Higher savings increase consumption in the middle of the life-cycle, which

pushes up mean consumption. As previously, on average over the life-cycle this second

effect dominates.

Consistent with the previously documented result (and with our theoretical analysis of

Section 3) that with logarithmic utility the total welfare effect from higher-order income

risk is negative for scenario LK and positive for scenario LKSW, we now correspondingly

find that welfare losses from cyclical idiosyncratic risk are about 0.25%p higher in sce-

nario LK than in scenario NORM and about 0.28%p lower in scenario LKSW (last column

in first panel of Table 4). Similarly, with moderate risk attitudes (risk aversion of 2), the

welfare implications of cyclical income risk in scenario LKSW are only mildly higher than

those obtained in scenario NORM. With strong risk attitudes (θ = 4), the welfare losses

compared to scenario NORM are significantly higher: They are about 6.4%p higher in

scenario LKSW.

We can thus conclude that the welfare effects of cyclical risk are strongly underesti-

mated in conventional approaches based on Gaussian distributions of innovations if risk

attitudes are strong (levels of θ of 3 or 4).

7.3 Insurance Against Idiosyncratic Risk

Finally, we adopt concepts developed in the literature on consumption insurance (Blundell

et al. 2008; Kaplan and Violante 2010) to ask how households are self-insured against

income shocks xj(s) ∈ {εj, ηj(s)} and how this insurance varies across scenarios. In the

model, the transitory and persistent shocks are directly observed and thus we adopt the

measure of Kaplan and Violante (2010) to our setting with cyclical risk. Conditional

on today’s aggregate state s, the insurance coefficient φxj (s) is given as the share of the

variance of next period’s shock xj+1(s′) that does not translate into consumption growth,

and thus the pass-through coefficient 1− φxj (s) is the coefficient of a linear regression of

consumption growth on shock x, which captures how strongly the shock translates into

consumption:

1− φxj (s) =
cov(∆ ln (cj+1(s′ | s)) , xj+1(s′))

var(xj+1(s′))
, (21)
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Table 4: Welfare Effects of Cyclical Idiosyncratic Risk

CEV gc gmeanc glcdc gcsdc ∆gc
Risk Aversion, θ = 1

NORM -1.720 0.499 -2.175 -0.044 0
LK -1.966 0.579 -2.506 -0.039 -0.246
LKSW -1.443 0.398 -1.806 -0.035 0.277

Risk Aversion, θ = 2
NORM -3.263 0.898 -4.038 -0.123 0
LK -3.534 0.912 -4.337 -0.109 -0.271
LKSW -3.516 0.823 -4.228 -0.111 -0.253

Risk Aversion, θ = 3
NORM -4.607 1.229 -5.638 -0.198 0
LK -5.968 1.288 -7.06 -0.196 -1.361
LKSW -7.177 1.379 -8.313 -0.243 -2.570

Risk Aversion, θ = 4
NORM -5.758 1.515 -7.009 -0.264 0
LK -9.738 1.731 -11.146 -0.322 -3.980
LKSW -12.171 1.944 -13.686 -0.429 -6.413

Notes: Welfare gains (positive numbers) and losses (negative numbers) of cyclical idiosyncratic risk ex-
pressed as Consumption Equivalent Variation (CEV) in the non-cyclical scenario that makes households
indifferent to the cyclical scenario. Displayed for scenarios NORM, LK, and LKSW. gc: total CEV,
gmeanc : CEV from changes of mean consumption, glcdc : CEV from changes in the distribution of con-
sumption over the life-cycle, gcsdc : CEV from changes in the cross-sectional distribution of consumption,
where gc = gmeanc + glcdc + gcsdc . ∆gc = gic − gNORMc , for i ∈ {LK,LKSW}: difference in percentage
points relative to scenario NORM.

for ∆ ln (cj(s
′ | s)) = ln (cj+1(s′ | s))− ln (cj(s)).

Figure 4 reports the insurance coefficients φxj for all ages j ∈ {0, . . . , J}, as a weighted

average of the coefficients in contractions and expansions34 for the transitory shock ε

in Panel (a) and for the persistent shock η(s) in Panel (b). Results are quantitatively

similar for different values of risk attitudes, so we discuss only the numbers for θ = 4. For

scenario LKSW, consumption insurance against both transitory and persistent shocks is

improved relative to scenario NORM as measured by the φ-coefficients. This is a direct

consequence of increased precautionary savings, which lead to shocks translating less into

consumption. Insurance in scenario LK is worse (coefficients for transitory shocks shift

down by about 4%p compared to distribution NORM): the shocks (in levels) are more

dispersed and insurance through increased precautionary savings is not strong enough to

offset the direct consequences of higher risk.

Do the higher insurance coefficients in scenario LKSW really represent better insur-

ance, though? Arguably, better insurance would mean that negative shocks translate less

into consumption. This is not the case as can be illustrated by one simple decomposition

34We weigh with the stationary invariant distribution Πs.
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Figure 4: Insurance Coefficients: Strong Risk Attitudes, θ = 4

(a) Transitory Shock (b) Persistent Shock

Notes: Figures show the degree of consumption insurance against transitory and persistent shocks sep-
arately by age.

of the pass-through of shocks to consumption changes in equation (21). Consider the

aggregate (integrating over age and averaging over states s) pass-through coefficient for

shock x ∈ η, ε:

1− φx =
E [∆ ln(c(·))x]− E [∆ ln(c(·))]E [x]

var(x)

=
E [∆ ln(c(·))x|x > 0]

var(x)
+
E [∆ ln(c(·))x|x < 0]

var(x)
− E [∆ ln(c(·))]E [x]

var(x)
. (22)

The first two components of the sum in equation (22) give the contribution to the

overall pass-through coefficient of comovements of consumption with positive and neg-

ative shocks, respectively. Table 5 shows the aggregate pass-through coefficient of the

economy along with the contributions of its components. As already learned from Fig-

ure 4, the aggregate pass-through of both transitory and persistent shocks is smaller in

scenario LKSW (insurance coefficient is larger). Now consider the contribution of posi-

tive and negative shocks to the aggregate pass-through coefficient. In scenario NORM,

negative transitory shocks do not translate into negative consumption changes: comove-

ments with negative realizations of ε contribute −3.4% to the pass-through coefficient.

In scenario LKSW, the (negative) consumption reaction to negative shocks is important:

30.2% of the pass-through coefficient are accounted for by negative transitory shocks

leading to negative consumption adjustments. At the same time, consumption reacts less

strongly to positive changes. Thus, the fact that the aggregate pass-through is smaller

(the insurance coefficient is larger) is indeed explained by increased precautionary sav-

ings. However, built-up savings do not suffice to smooth out the negative shocks in

scenario LKSW as well as they do in scenario NORM.
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Table 5: Aggregate Pass-Through and its Decomposition, θ = 4

Transitory Shock 1− φε E[∆c · ε, ε < 0] E[∆c · ε, ε > 0] −E[∆c] · E[ε]
NORM 0.055 -0.034 0.898 0.136
LKSW 0.047 0.302 0.525 0.173
Persistent Shock 1− φη E[∆c · η, η < 0] E[∆c · η, η > 0] −E[∆c] · E[η]
NORM 0.395 0.395 0.586 0.019
LKSW 0.353 0.514 0.458 0.028

Notes: Table shows aggregate consumption pass-through coefficient (1-insurance coefficient), and its
decomposition into components according to equation 22. Values are expressed as shares of total pass-
through. ∆c = ∆ ln(c(·)).

For persistent shocks, the same mechanics are at work. In scenario NORM, about 40%

of the pass-through coefficient is generated by consumption reductions with negative

shocks, while about 59% come from consumption increases with positive shocks. In

scenario LKSW, negative shocks pass-through more (51% of overall), and positive shocks

pass-through less (46%). So for both transitory and persistent shocks, the reduction of

the pass-through (increase of insurance coefficient) when moving from scenario NORM

to scenario LKSW is driven by an increased propensity to save, while at the same time

negative shocks actually translate more into consumption.

We can thus conclude that in an economy with higher-order income risk aggregate

insurance (or pass-through) coefficients are imprecise measures of insurance against risk,

if one plausibly has in mind that better insurance means that negative shocks translate

less into consumption.

7.4 Sensitivity Analysis

7.4.1 General Equilibrium

In the analyses presented so far we consider a partial equilibrium framework where in-

terest rates and average wages are constant. The increased precautionary savings from

higher-order risk documented above may lead to a higher capital stock which in a general

equilibrium would increase wages and lower returns on savings. To investigate the ro-

bustness of our findings with respect to this feedback, we consider a general equilibrium

variant of our model, where we treat scenario LKSW with cyclical risk as a baseline for

each level of risk aversion when (re)calibrating the model in general equilibrium.

In this baseline net wages are normalized to one and the interest rate is calibrated

to r[%] = 4.2%. As a first step, we make this choice consistent with a standard static

representative firm problem in general equilibrium and accordingly compute the implied

parameters of the aggregate production function. As a second step, we hold constant these

parameters and compute the equilibrium interest rate and wage rate for each considered

35



scenario. A detailed description of this procedure is provided in Appendix C.4. The

equilibrium wage and return rates vary little across the different scenarios. The reason

for the modest differences lies in the life cycle structure of the economy. Consider moving

from scenario NORM with cyclical risk to scenario LKSW with cyclical risk. While young

agents have higher precautionary savings when facing higher-order risk, these savings

will be dis-saved at old age. The aggregate savings of the economy will thus not change

strongly.

For brevity of the exposition of the sensitivity analysis, we focus on the welfare costs of

cyclical idiosyncratic risk, and on the comparison of scenario NORM to scenario LKSW.

Column 2 of Table 6 shows the welfare costs of cyclical risk next to the baseline results,

which are repeated in column 1. The percentage point difference of the CEV between

scenario LKSW and scenario NORM is almost identical in the general equilibrium version

of the model. For instance, for θ = 4 the difference now stands at −6.00%p, compared

to −6.41%p. We therefore conclude that our main findings are robust in general equilib-

rium.

A detailed summary of the results in a format corresponding to Table 4 is contained

in Appendix D.2. Again, the main negative welfare effect comes from the life cycle

distribution effect glcdc . However, the effect is weaker, because the higher wage rate and the

lower interest rate in the cyclical economy mute the precautionary savings response. This

also implies a weaker (positive) mean effect in general equilibrium: the mean consumption

difference between the cyclical and non-cyclical worlds is smaller compared to the partial

equilibrium benchmark.

Table 6: Total CEV gc of Cyclical Idiosyncratic Risk: Sensitivity Analyses

Baseline GE CRRA BC IR
Risk Aversion, θ = 1

NORM -1.720 -1.018 -1.720 -1.893 -1.905
LKSW -1.443 -0.884 -1.443 -1.612 -1.611

Risk Aversion, θ = 2
NORM -3.263 -2.000 -2.552 -3.609 -3.627
LKSW -3.516 -2.367 -2.564 -4.293 -3.972

Risk Aversion, θ = 3
NORM -4.607 -2.872 -3.335 -5.113 -5.123
LKSW -7.177 -5.282 -4.456 -9.725 -8.253

Risk Aversion, θ = 4
NORM -5.758 -3.611 -4.072 -6.404 -6.399
LKSW -12.171 -9.619 -7.530 -17.14 -14.283

Notes: Total welfare gains (positive numbers) and losses (negative numbers) of cyclical idiosyncratic
risk expressed as Consumption Equivalent Variation (CEV) gc in the distribution scenario NORM and
the leptokurtic and left-skewed scenario LKSW. CRRA: CRRA utility, BC: “borrowing constraints”, IR:
interest rate, GE: general equilibrium.
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7.4.2 Other Sensitivity Analyses

We last consider the sensitivity of our results with respect to selected modeling and

calibration assumptions. Specifically, we consider an expected utility formulation with

CRRA preferences where we restrict θ = 1
γ
, we analyze the role of borrowing constraints

in the model, and we investigate how results are affected by our choice of the interest rate.

Again, Table 6 summarizes the results and further details are contained in Appendix D.2.

CRRA Utility. Assuming CRRA preferences with θ = 1
γ

we conduct experiments

for θ ∈ {2, 3, 4}, since for θ = 1 results are of course as before. As in our previous

baseline analysis, we recalibrate discount factor β for each value of θ. For θ ∈ {2, 3, 4}
we obtain β ∈ {0.982, 0.990, 0.995} and thus, in contrast to our experiments with EZW

utility, the calibrated discount factor is increasing in θ. With increasing risk attitudes θ

the precautionary savings motive is strengthened, while the simultaneous reduction of

the IES γ = 1
θ

reduces life-cycle savings. The second effect turns out to dominate so

that calibration calls for less impatience in order to hold the average asset accumulation

unchanged.

Column 3 of Table 6 summarizes the results on the welfare effects of cyclical idiosyn-

cratic risk for this alternative choice of preferences. In comparison to Table 4 we observe

a lower increase of welfare losses from cyclical idiosyncratic risk when risk aversion is

increased (the IES is decreased). Likewise, our difference in difference comparison to

scenario NORM shows that higher-order income risk still substantially matters for the

welfare costs of cyclical idiosyncratic risk, but less than with EZW preferences. The rea-

son is that with a lower IES the overall consumption profile is smoother and thus reacts

less to changes in risk. Thus, the simultaneous reduction of the IES when relative risk

attitudes are strengthened confounds the welfare analysis.

The Role of Borrowing Constraints. In our baseline calibration households start

their economic life with positive assets and calibrated impatience is relatively strong. As

a consequence, very few households are borrowing constrained (numerically, the fraction

is basically zero in all scenarios). We now investigate the sensitivity of our results with

regard to the role of the borrowing constraint by setting initial assets to 0. In this exper-

iment, we do not recalibrate because we aim at disentangling the role of the constraint.

As a consequence of zero initial assets, the fraction of borrowing constrained hand-

to-mouth consumers increases strongly. For θ = 1, roughly 6.6% of all households are

constrained in scenario NORM and 4.0% in scenario LKSW. Column 4 of Table 6 shows

that this leads to higher overall welfare losses from cyclical idiosyncratic risk and an

increasing importance for higher-order risk. For θ = 4 the difference in the CEV between

scenarios LKSW and NORM is about −10.7%p, compared to −6.4%p reported in Table 4.
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Thus, borrowing constraints increase the role played by higher-order income risk for the

welfare losses from cyclical idiosyncratic risk.

Lower Interest Rate. Next, rather than assuming an annual interest rate of 4.2% we

reduce it to 2%. We recalibrate the discount factor β in all four experiments for θ ∈
{1, 2, 3, 4}, which gives β ∈ {0.990, 0.988, 0.986, 0.983} and thus the discount factors are

higher because lower returns reduce life-cycle savings which is offset in calibration by

stronger patience. While the role played by higher-order income risk for the welfare

losses from cyclical idiosyncratic risk is slightly increased, the difference to the baseline

calibration is modest.

8 Conclusion

In this paper we first develop a novel Generalized Method of Moments estimator of higher-

order income risk, that starts out with the canonical income process, which captures the

salient features of labor income risk as a combination of persistent and transitory income

shocks. We show how the second to fourth central moments of the distributions of the

shocks can be estimated. We apply our method to household-level earnings income from

the Panel Study of Income Dynamics. Our estimates imply that the distribution of

persistent income shocks exhibits strong cyclicality: the variance is countercyclical, while

the third central moment is procyclical. All shock components exhibit strong excess

kurtosis. We then estimate the process for post-government household income. The

estimates imply that both transitory and persistent income shocks are dampened and

cyclicality is reduced by the existing tax and transfer system.

In the second part of the paper we show that the identified deviation from log-Normal

shocks, i.e., higher-order risk, has important macroeconomic implications. We set up

a standard quantitative life-cycle model in which households face an exogenous income

process which features transitory and persistent shocks. Households can self-insure by

means of saving in a risk-free asset. In the calibration of the income process, we use

a parametric distribution function (the Flexible Generalized Lambda distribution) to

implement shocks with higher-order risk, which we fit to the estimates of the central

moments. We then discretize the obtained shock distributions.

We find that, first, higher-order risk has relevant implications for welfare. Second,

the presence of higher-order risk matters for the welfare costs of business cycles. Third,

higher-order income risk affects the degree of consumption self-insurance, because house-

holds increase their precautionary savings, and thus the pass-through of income shocks

to consumption is reduced. However, a decomposition of the pass-through coefficient

reveals that this does not imply better insurance in the presence of higher-order risk:

increased savings do not suffice to insure against increased downside risk, and therefore
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the pass-through of negative shocks is actually stronger than under Normal shocks with

the same dispersion. We therefore caution against using only the insurance coefficient

for the analysis of the degree of partial insurance against income risk and view it as an

interesting avenue for future research to dig deeper into this finding by combining our

analysis with consumption data.
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A Analytical Appendix

A.1 Derivation of Equation (4)

Take a fourth order Taylor series expansion of the age 1 subperiod utility function

around c1 = µc1 to get

U ≈ c
1− 1

γ

0

1− 1
γ

+
1

1− 1
γ

(
µc

1−θ

1 + E
[
(1− θ)µc−θ1 (c1 − µc1)− (1− θ)θ

2
µc
−(1+θ)

1 (c1 − µc1)2

+
(1− θ)θ(1 + θ)

6
µc
−(2+θ)

1 (c1 − µc1)3 − (1− θ)θ(1 + θ)(2 + θ)

24
µc
−(3+θ)

1 (c1 − µc1)4

])

Under constraint (3) and the additional assumption that E[exp(ε)] = 1 we obtain µc1 = 1.

Also impose that θ = 1
γ
. Using these conditions in the above we obtain (4).

A.2 Formal Proof of Proposition 1

Proof. Let µε1 = EΨ[ε] =
∫
εdΨ, µεi =

∫
(ε− µε1)i dΨ for i > 1, and let EΨ[exp(ε)] =∫

exp(ε)dΨ = 1. Denote by Ψ̃δi(ε) a mean preserving (constant µε1) distribution function

that is obtained from Ψ(ε) by changing central moment µεi holding all other moments µε¬i
for i > 1 constant. Also, define the random variable ε̃δi = ε+∆δi , which is obtained from ε

by shifting all realizations by the constant ∆δi . Let the normalization EΨ̃δi [exp(ε̃δi)] =

EΨ̃δi [exp(ε + ∆δi)] =
∫

exp(ε + ∆δi)dΨ̃δi = exp(∆δi)
∫

exp(ε)dΨ̃i = 1 define the shift

parameter ∆δi = − ln
(∫

exp(ε)dΨ̃i
)

. Finally, observe that EΨ̃δi [ε+ ∆δi ] = EΨ̃[ε] + ∆δi =

EΨ[ε]+∆δi since µε1 is held constant. With logarithmic utility and binding constraint (3),

the expected utility difference across distributions Ψ and Ψ̃δi is thus ∆U = (U | Ψ)− (U |
Ψ̃) = ∆δi and thus exclusively driven by the shift parameter. We then get the following:

� Shifting probability mass from the center to the tails, either by increasing the vari-

ance (i = 2) or kurtosis (i = 4) holding constant all µε¬i for i > 1 increases
∫

exp(ε)dΨ̃i

above one which follows from Jensen’s inequality for convex functions. Thus ∆δi <

0.

� Shifting probability mass from the right tail to the left tail decreasing the skew-

ness (i = 3) (i.e., making the distribution more left-skewed), holding constant all µε¬i
for i > 1 decreases

∫
exp(ε)dΨ̃i below one which follows from Jensen’s inequality

for convex functions. Thus ∆δi > 0.
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A.3 Derivation of Equation (5)

Rewrite (2) as

v(c1, θ,Ψ) =

(∫
g̃(c1(ε))dΨ(ε)

) 1
1−θ

, where g̃(c1(ε)) = c1(ε)1−θ.

Take a fourth order Taylor series expansion of g̃(c1(ε)) around µc1, noticing that c1 =

exp(ε) and E[exp(ε)] = 1 to get

E[g̃(c1(ε))] ≈ 1 + (1− θ)
(
−1

2
θµ

exp(ε)
2 +

1

6
θ(1 + θ)µ

exp(ε)
3 − 1

24
θ(1 + θ)(2 + θ)µ

exp(ε)
4

)

and thus the certainty equivalent is approximated as in equation (5).

A.4 Derivation of Equation (6)

Take a fourth order Taylor series expansion of the RHS of the first-order condition

around E[exp(ε)] = 1 to get

RHS ≈ E
[
(1 + a1)−θ − θ (1 + a1)−(1+θ) (exp(ε)− 1) +

θ(1 + θ)

2
(exp(ε)− 1)2

−θ(1 + θ)(2 + θ)

6
(1 + a1)−(3+θ) (exp(ε)− 1)3

+
θ(1 + θ)(2 + θ)(3 + θ)

24
(1 + a1)−(4+θ) (exp(ε)− 1)4

]

= (1 + a1)−θ +
θ(1 + θ)

2
(1 + a1)−(2+θ) µ

exp(ε)
2 − θ(1 + θ)(2 + θ)

6
(1 + a1)−(3+θ) µ

exp(ε)
3

+
θ(1 + θ)(2 + θ)(3 + θ)

24
(1 + a1)−(4+θ) µ

exp(ε)
4 .

A.5 Precautionary Savings for CRRA Utility

Rewrite the first-order condition, equation (6), as an implicit function

e
(
a1, µ

exp(ε)
i

)
= (y0 − a1)−

1
γ − (1 + a1)−θ − θ(1 + θ)

2
(1 + a1)−(2+θ) µ

exp(ε)
2

+
θ(1 + θ)(2 + θ)

6
(1 + a1)−(3+θ) µ

exp(ε)
3

− θ(1 + θ)(2 + θ)(3 + θ)

24
(1 + a1)−(4+θ) µ

exp(ε)
4 = 0

and from the total differential of e(·) note that

da1

dµ
exp(ε)
i

= −
∂e(·)

∂µ
exp(ε)
i

∂e(·)
∂a1
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Note that since µ
exp(ε)
2 > 0, µ

exp(ε)
3 < 0, µ

exp(ε)
4 > 0 we have ∂e(·)

∂a1
> 0, which reflects that

the marginal utility of savings is decreasing in a1. Also note that ∂e(·)
∂µ

exp(ε)
i

< 0 for i = 2, 4

and ∂e(·)
∂µ

exp(ε)
3

> 0. Thus, da1

dµ
exp(ε)
i

> 0 for i = 2, 4 and da1

dµ
exp(ε)
3

< 0.

A.6 Proof of Proposition 2

We proof the proposition using an alternative strategy to Kimball and Weil (2009). As

in their analysis, we assume that the marginal utility of saving, the RHS of (7), is a

decreasing function of a1. Our proof is adopted from Krueger and Ludwig (2019).

Proof. Rewrite the RHS of the first-order condition in (7) as

RHS = v(c1, θ,Ψ)θ−
1
γ f(c1, θ,Ψ) (23)

= v(c1, θ,Ψ)1− 1
γ

E
[
(exp(ε) + a1)−θ

]

E
[
(exp(ε) + a1)1−θ

]

= v(c1, θ,Ψ)1− 1
γ h(c1, θ,Ψ). (24)

where f(c1, θ,Ψ) = E
[
(exp(ε) + a1)−θ

]
and h(c1, θ,Ψ) = f(c1,θ,Ψ)

g(c1,θ,Ψ)
, where g(c1, θ,Ψ) =

E
[
(exp(ε) + a1)1−θ

]
. Consider the following case distinction:

1. γ = 1: Then the RHS is simply from (24)

RHS = h(c1, θ,Ψ)

giving rise to the following case distinction with respect to θ (throughout, we assume

that θ > 0, θ <∞):

(a) θ ∈ (0, 1]: h(·) is the ratio of function f(·) which is strictly convex in exp(ε) in

the numerator and function g(·) which is concave in exp(ε) in the denominator

(the denominator equals 1 for θ = 1). Thus, an increase of (higher-order) risk

increases h(·).
(b) θ > 1: h(·) is the ratio of two strictly convex functions f(·), g(·) in exp(ε),

where the degree of convexity is stronger in the numerator than in the denom-

inator (the exponent in the numerator is θ and in the denominator it is 1− θ).
Thus, an increase of (higher-order) risk increases h(·).

Thus, an increase of (higher-order) risk unambiguously increases the RHS in (24),

increasing precautionary savings.

2. γ < 1: For the behavior of h(·) the same logic as in item 1 applies. Furthermore,

an increase of risk decreases v (·), which, for γ < 1, increases v (·)1− 1
γ , since 1− 1

γ
<
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0. Thus, an increase of risk unambiguously increases the RHS in (24), increasing

precautionary savings.

3. γ > 1: We obtain the following case distinction from (23):

(a) θ ≤ 1
γ
: An increase of risk increases v(·)θ− 1

γ (respectively leaves it unchanged

at 1 if θ = 1
γ
), so that an increase of risk unambiguously increases the RHS

in (23), increasing precautionary savings.

(b) θ > 1
γ
: the overall effect is ambiguous.

A.7 Decomposition of Consumption Equivalent Variations

We evaluate the welfare implications of higher-order risk by computing the consumption

equivalent variation (CEV) that makes households that live in the world with shock

distributions NORM indifferent to live with shock distributions i ∈ {LK,LKSW}.

A.7.1 Decomposition in the 2-Period Model

We start with the decomposition for the two-period model of Section 3, which extends to

the quantitative model in a straightforward fashion, as we show in the next subsection.

Under the convenient transformation35 of utility V =
[(

1− 1
γ

)
U
] 1

1− 1
γ we compute

gic =
V (Ci)

V (CNORM)
− 1 (25)

and thus the respective CEVs are defined as the percentage consumption loss in each

period from the respective distribution with higher order risk relative to the distribu-

tion NORM.

We further decompose the CEV into mean and distribution effects. The mean effect

is the welfare effect stemming from changes in average consumption and the distribu-

tion effect captures changes in the distribution of consumption. Formally, let E[Ci] =
1
2

(
ci0 +

∫
ci1(ε)dΨi(ε)

)
for i ∈ {NORM,LK,LKSW}. Denote by δic = E[Ci]

E[CNORM ]
− 1

the percent change of consumption for i ∈ {LK,LKSW}. Then, the distribution effect

corrects for the percentage change of mean consumption and is thus given by

gdistr
i

c =
V
(

Ci

1+δic

)

V (CNORM)
− 1 =

1 + gic
1 + δic

− 1. (26)

35I.e., we retransform to the standard EZW functional, cf. Footnote 10.
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The corresponding mean effect is accordingly

gmean
i

c = gic − gdistr
i

c =
1 + gic
1 + δic

δic ≈ δic. (27)

The distribution effect itself captures two changes. The first reflects the utility dif-

ference stemming from the change of the average life-cycle consumption profile, which

we refer to as the life-cycle distribution effect. The second captures the utility change

stemming from the change of the cross-sectional distribution of stochastic second pe-

riod consumption, which we accordingly refer to as the cross-sectional distribution effect.

Thus, we can rewrite gdistr
i

c as

gdistr
i

c = glcd
i

c + gcsd
i

c (28)

for the CEV stemming from the life-cycle redistribution (lcd) and cross-sectional distri-

bution (csd) effect.

To compute the gcsd
i

c , first let E[Ci | j] denote the age j specific mean consumption,

i.e., E[Ci | j = 0] = ci0 and E[Ci | j = 1] =
∫
ci1(ε)dΨi(ε). Next compute the age j specific

consumption growth rate as δc
i

j = E[Ci|j]
E[CNORM |j] for i ∈ {LK,LKSW}. Then compute the

utility in distribution scenario i ∈ {LK,LKSW} after correcting for mean consumption

growth as

Ṽ i =

((
1

1 + δc
i

0

)1− 1
γ

ci
1− 1

γ

0 +

(
1

1 + δc
i

1

)1− 1
γ

v(ci1, θ,Ψ
i)1− 1

γ

) 1

1− 1
γ

,

which for γ = 1 simplifies to

Ṽ i =
1

1 + δc
i

0

1

1 + δc
i

1

· ci0 · v(ci1, θ,Ψ
i) =

1

1 + δc
i

0

1

1 + δc
i

1

V i.

Having corrected for the percent change of age-specific mean consumption, the CEV from

the cross-sectional distribution effect is then

gcsd
i

c =
Ṽ i

V (CNORM)
− 1 =

1 + gic
1 + δic

− 1 (29)

and thus the life-cycle distribution effect follows as

glcd
i

c = gdistr
i

c − gcsdic . (30)
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A.7.2 Decomposition in the Full Life Cycle Model

The decomposition into the mean and distribution effect is analogous to the two-period

model, where average consumption is given by

E[Ci] =
1

J + 1

J∑

j=0

∫
cij(aj, zj; s)dΨi

j(aj, zj; s)

for i ∈ {NORM,LK,LKSW}, where cij(aj, zj; s) is the consumption policy function in

distribution i and Φi
j(aj, zj; s) is the cross-sectional distribution.

To compute the cross-sectional distribution effect, let, as above, the age j specific

consumption growth rate be δc
i

j = E[Ci|j]
E[CNORM |j] for i ∈ {LK,LKSW}, where now E[Ci |

j] =
∫
cij(aj, zj; s)dΦi

j(aj, zj; s). Next, observe that

Ṽ i
J =

(
(1− β̂)

(
ciJ
δc
i

J

)1− 1
γ

) 1

1− 1
γ

=
1

δc
i

J

V B
J

v
(
Ṽ i
J

)
=

1

δc
i

J

v
(
V i
J

)
.

and thus

Ṽ i
J−1 =


(1− β̃)

(
1

δc
i

J−1

)1− 1
γ (
ciJ−1

)1− 1
γ + β̃

(
v
(
Ṽ i
J

))1− 1
γ




1

1− 1
γ

which extends to any period j as

Ṽ i
j =


(1− β̃)

(
cij

δc
i

j

)1− 1
γ

+ β̃
(
v
(
Ṽ i
j+1

))1− 1
γ




1

1− 1
γ

.

With the parametric restriction γ = 1 the decomposition simplifies. For γ = 1 we get

Ṽ i
J = exp

(
(1− β̃) ln

(
ciJ
δc
i

J

))
=

(
1

δc
i

J

)1−β̃
V i
J
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and thus

Ṽ i
J−1 = exp

(
(1− β̃) ln

(
ciJ−1

δc
i

J−1

)
+ β̃ ln

(
v
(
Ṽ i
J

)))

= exp

(
(1− β̃) ln

(
1

δc
i

J−1

)
+ (1− β̃) ln

(
ciJ−1

)
+ β̃(1− β̃) ln

(
1

δc
i

J

)
+ β̃ ln

(
v
(
V i
J

))
)

=

((
1

δc
i

J−1

)(
1

δc
i

J

)β̃)1−β̃

V i
J

Continuing along these lines we get

Ṽ i
0 =




J∏

j=0

(
1

δc
i

j

)β̃j



1−β̃

V i
0 .

With this construction we can now decompose the CEV into the cross-sectional and the

life-cycle distribution effects using (29) and (30).

B Discretization of the FGLD

For each Flexible Generalized Lambda Distribution (FGLD) our discretization procedure

is as follows:

1. Determine the endpoints of a grid Gx̃ from the quantile function of the FGLD for

a small probability π̃1 = ε such that

x̃1 = Q(π̃1)

x̃n = Q(1− π̃1).

2. Build grid Gx̃ by drawing n equidistant nodes on the interval [x̃1, x̃n].

3. For x̃i ∈ Gx̃, i = 1, n− 1 compute auxiliary gridpoint ¯̃xi = x̃i+1+x̃i
2

.

4. On all ˜̃xi compute cumulative probability pi from the quantile function of the FGLD.

Since the quantile function of the FGLD maps ˜̃xi = Q(pi), this requires a numerical

solver to compute pi = Q−1(˜̃xi).

5. Now assign to gridpoint x̃1 the probability π1 = p1 and to all gridpoints i, i =

2, . . . , n−1, the probability πi = pi−pi−1 and to gridpoint x̃n the probability 1−pn−1.
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C Calibration Appendix

C.1 Moments of the FGLD Distribution

Tables C.1– C.3 summarize the moments for distributions NORM, LK, and LKSW, and

Table C.4 contains the corresponding parameters of λ of the fitted FGLD distributions.

Table C.1: Moments: Distribution NORM

Moment µ̂2 µ̂3 µ̂4

Transitory Shock:
target 0.05 0 0.008
fitted 0.05 0 0.008
discrete 0.05 0 0.008
Persistent Shock—Contraction:
target 0.022 0 0.001
fitted 0.022 0 0.001
discrete 0.022 0 0.001
Persistent Shock—Expansion:

target 0.009 0 0
fitted 0.009 0 0
discrete 0.009 0 0

Notes: This table shows the target central moment together with the central moment of the fitted

FGLD, and of the discretized FGLD for the distribution NORM, cf. Section 6.2.

Table C.2: Moments: Distribution LK

Moment µ̂2 µ̂3 µ̂4

Transitory Shock:
target 0.05 0 0.219
fitted 0.05 0 0.219
discrete 0.05 0 0.219
Persistent Shock—Contraction:
target 0.022 0 0.061
fitted 0.022 0 0.061
discrete 0.022 0 0.061
Persistent Shock—Expansion:

target 0.009 0 0.008
fitted 0.009 0 0.008
discrete 0.009 0 0.008

Notes: This table shows the etarget central moment together with the central moment of the fitted

FGLD, and of the discretized FGLD for the distribution LK, cf. Section 6.2.

47



Table C.3: Moments: Distribution LKSW

Moment µ̂2 µ̂3 µ̂4

Transitory Shock:
target 0.05 -0.047 0.102
fitted 0.05 -0.047 0.102
discrete 0.051 -0.051 0.107
Persistent Shock—Contraction:
target 0.022 -0.016 0.066
fitted 0.022 -0.016 0.066
discrete 0.023 -0.02 0.07
Persistent Shock—Expansion:

target 0.009 -0.001 0.01
fitted 0.009 -0.001 0.01
discrete 0.009 -0.002 0.01

Notes: This table shows the target central moment together with the central moment of the fitted

FGLD, and of the discretized FGLD for the distribution LKSW, cf. Section 6.2.

Table C.4: Fitted Parameters of FGLD

Parameter λ̂1 λ̂2 λ̂3 λ̂4

NORM
Transitory: 1.000 0.359 5.203 5.203
Pers.—Contraction: 1.000 0.539 5.203 5.203
Pers.—Expansion: 1.000 0.871 5.203 5.203

LK
Transitory: 1.000 0.002 173.309 173.309
Pers.—Contraction: 1.000 0.002 244.954 244.954
Pers.—Expansion: 1.000 0.003 220.344 220.344

LKSW
Transitory: 0.197 0.008 92.959 57.755
Pers.—Contraction: 0.425 0.002 289.898 225.714
Pers.—Expansion: 0.894 0.003 275.612 256.735

Notes: This table shows the estimated λ-values for the fitted FGLD for distributions NORM, LK and

LKSW, cf. Section 6.2.

C.2 The Bend Point Formula and the Pension Indexation Fac-

tor

Approximating the AIME with the last income state before entering into retirement zjr−1

the primary insurance amount according to the bend point formula is determined as

follows:
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p(zjr−1) =





s1zjr−1 for zjr−1 < b1

s1b1 + s2 (zjr−1 − b1) for b1 ≤ zjr−1 < b2

s1b1 + s2 (b2 − b1) + s3 (zhr−1 − b2) for b2 ≤ zjr−1 < b3

s1b1 + s2 (b2 − b1) + s3 (b3 − b2) for zjr−1 ≥ b3

Table C.5 contains the calibrated values of the pension indexation factor %, which is

required to clear the budget of the pension system.

Table C.5: Pension Indexation Factor %

CR NCR
NORM 0.6817 0.6692
LK 0.7007 0.6787
LKSW 0.6866 0.6758

Notes: Calibrated pension benefit level % under a balanced budget. CR: cyclical risk, NCR: no cyclical
risk.

C.3 Moments of the Earnings Process

Table C.6 shows cross-sectional central moments of the earnings distribution in logs and

levels at labor market entry (age 25) and exit (age 60). We observe that all distributions

are skewed to the right in levels and that, despite left skewness in logs, right skewness

of distribution LKSW is higher in levels than of distribution NORM. Furthermore, the

variance is initially lower in distribution LKSW than in distribution NORM.36 Both

features constitute a source of welfare gains from higher-order income risk, whereas the

higher kurtosis in levels and the increasing variance work against it. Finally, skewness and

in particular kurtosis in levels under distribution LK are extremely high. Left-skewness

in logs in distribution LKSW substantially reduces both moments.

Figures C.1 and C.2 summarize the calibration of the earnings process during the

working period and the pension income in retirement for central moments 1-4 of the

earnings distribution in levels and logs, respectively.

36By construction, the variance of the log earnings distribution is the same across distribution scenarios.
The difference of 0.01 showing up at age 60 is due to numerical inaccuracies of coarse grids for assets a
and the persistent income state z.
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Table C.6: Moments of the Earnings Distribution in Logs and Levels

Logs Levels
Age 25 (j = 0)

NORM LK LKSW NORM LK LKSW
µ2 0.06 0.06 0.06 0.06 0.36 0.05
µ3 0 0 -0.06 0.01 4.44 0.09
µ4 0.01 0.24 0.13 0.01 129.43 0.41

Age 60 (j = 35)
µ2 0.23 0.24 0.24 0.25 0.86 0.3
µ3 0 0 -0.12 0.21 27.52 1.12
µ4 0.15 0.56 0.47 0.5 27889.82 27.85

Notes: Moments of cross-sectional distribution of log earnings and earnings at ages 25 (j = 0) and 60

(j = 35) for each scenario of shock distributions. NORM: FGLD with moments of the normal distribution,

LK: FGLD with excess kurtosis, LKSW: FGLD with excess kurtosis and left-skewness (in logs).

Figure C.1: Moments of Life-Cycle Earnings by Age: Logs

(a) Mean of Logs (b) Variance of Logs

(c) Third Central Moment of Logs (d) Fourth Central Moment of Logs

Notes: Figures show moments of cross-sectional distribution of log earnings over the life-cycle for each
scenario of shock distributions. NORM: FGLD with moments of the normal distribution, LK: FGLD
with excess kurtosis, LKSW: FGLD with excess kurtosis and left-skewness (in logs).
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Figure C.2: Moments of Life-Cycle Earnings by Age: Levels

(a) Mean (b) Variance

(c) Third Central Moment (d) Fourth Central Moment

Notes: Figures show moments of cross-sectional distribution of earnings over the life-cycle for each
scenario of shock distributions. NORM: FGLD with moments of the normal distribution, LK: FGLD
with excess kurtosis (in logs), LKSW: FGLD with excess kurtosis and left-skewness (in logs).
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C.4 Calibration in the General Equilibrium Variant of the Model

First, we determine parameters of the production function of a representative firm such

that the baseline model (distribution LKSW and risk scenario CR) in which the aggregate

net wage level is normalized to wn = 1 and the rate of return of r[%] = 4.2% is consistent

with a general equilibrium interpretation. Second, we hold constant these parameters in

all other scenarios and determine wages and interest rates endogenously.

Assuming Cobb-Douglas production with capital elasticity α and a technology level Υ

output of the representative firm is

Y = ΥKαL1−α.

Denoting by k = K
L

the capital intensity and assuming a constant depreciation rate of δ

the first-order conditions are given by

r = Υαkα−1 − δ (31a)

w = Υ(1− α)kα, (31b)

which also implies that

w

r + δ
=

1− α
α

k. (32)

Assuming capital market clearing in a closed economy so that aggregate assets are equal

to the capital stock K = A, and knowing that aggregate efficient labor in our economy is

normalized to L = hr − 1, we can compute k = A
hr−1

, and given prices r and w = 1
1−τ−τp

(since net wages wn = 1) the implied depreciation rate follows from using this in (32) as

δ =
w

1−α
α
k
− r =

1
1−τ−τp

1−α
α

A
hr−1

− r

as well as the implied technology level follows from (31a) as

Υ =
r + δ

α
k1−α =

r + δ

α

(
A

hr − 1

)1−α
.

Table C.7 summarizes this calibration. The calibrated depreciation rate is low, which

is not surprising giving our target of a wealth to income ratio from the data and an

interest rate of 4.2%.

Having determined the parameters δ,Υ in the economy CR/LKSW for each level of

risk aversion as summarized in Table C.7 we then hold constant δ,Υ in all other economies

and iterate on the interest rate until market clearing. In each iteration, we compute wages
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Table C.7: Technology Level and Depreciation Rate in General Equilibrium Variant

Parameter
θ δ Υ
1 0.0159 0.9234
2 0.0163 0.9252
3 0.0167 0.9271
4 0.0171 0.9293

Notes: Calibrated depreciation rate δ and technology level Υ in the general equilibrium variant of the
model.

given the interest rate from (32) and (31b) as

w = Υ
1

1−α (1− α)

(
α

r + δ

) α
1−α

and net wages as wn = (1− τ p − τ)w.

Table C.8 shows the general equilibrium prices for each distribution scenario, and for

the two versions with and without cyclical idiosyncratic risk. In the economy with cyclical

risk, there are additional precautionary savings which in general equilibrium increases the

capital stock increasing wages and decreasing returns. Thus wage rates are higher, and

returns are lower. Furthermore, this difference in net wages and returns between increases

in risk aversion θ because the precautionary savings reaction is stronger with higher risk

aversion.

Table C.8: Aggregate Prices in General Equilibrium Model

Variable wn r
CR NCR CR NCR

Risk Aversion, θ = 1
NORM 1.0009 0.9979 0.0419 0.0422
LK 1.0033 1 0.0416 0.042
LKSW 1 0.9976 0.042 0.0423

Risk Aversion, θ = 4
NORM 0.9911 0.9815 0.0431 0.0443
LK 1 0.9876 0.042 0.0435
LKSW 1 0.9856 0.042 0.0438

Notes: Net wage wn and return r in the general equilibrium variants of the model. CR: cyclical idiosyn-
cratic risk, NCR: no cyclical idiosyncratic risk.
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D Additional Results

D.1 Comparison to the Normal Distribution

Table D.1 documents the CEV in distribution NORM (an FGLD with zero skewness and

a kurtosis of 3) to one where shocks are drawn from a normal distribution using standard

Gaussian Quadrature methods. Differences are very small.

Table D.1: Welfare Effects of Cyclical Idiosyncratic Risk: FGLD(NORM) versus Normal
Distribution

CEV gc gmeanc glcdc gcsdc
Risk Aversion, θ = 1
NORM -1.72 0.499 -2.175 -0.044
NORMAL -1.722 0.5 -2.176 -0.045
Risk Aversion, θ = 2
NORM -3.263 0.898 -4.038 -0.123
NORMAL -3.268 0.898 -4.043 -0.123
Risk Aversion, θ = 3
NORM -4.607 1.229 -5.638 -0.198
NORMAL -4.615 1.23 -5.646 -0.199
Risk Aversion, θ = 4
NORM -5.758 1.515 -7.009 -0.264
NORMAL -5.767 1.516 -7.018 -0.265

Notes: Welfare gains (positive numbers) and losses (negative numbers) of cyclical idiosyncratic risk
expressed as consumption equivalent variation (CEV) for FGLD distribution NORM and the normal
distribution, NORMAL. gc: total CEV, gmeanc : CEV from changes of mean consumption, glcdc : CEV
from changes in the distribution of consumption over the life-cycle, gcsdc : CEV from changes in the
cross-sectional distribution of consumption, where gc = gmeanc + glcdc + gcsdc .

D.2 Sensitivity Analyses

The main text summarizes the results of our sensitivity analyses in Table 6. The sub-

sequent tables D.2 to D.5 contain further details. This underscores the robustness of

our findings also with respect to the dominant role played by the life-cycle distribution

effect glcdc .
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Table D.2: Welfare Effects of Cyclical Idiosyncratic Risk: General Equilibrium Model

CEV gc gmeanc glcdc gcsdc ∆gc
Risk Aversion, θ = 1

NORM -1.018 0.226 -1.2 -0.044 0
LK -1.196 0.281 -1.439 -0.038 -0.178
LKSW -0.884 0.18 -1.03 -0.035 0.134

Risk Aversion, θ = 2
NORM -2 0.416 -2.294 -0.122 0
LK -2.257 0.426 -2.575 -0.108 -0.257
LKSW -2.367 0.381 -2.639 -0.11 -0.367

Risk Aversion, θ = 3
NORM -2.872 0.582 -3.258 -0.196 0
LK -4.191 0.619 -4.616 -0.194 -1.319
LKSW -5.282 0.664 -5.704 -0.242 -2.41

Risk Aversion, θ = 4
NORM -3.611 0.735 -4.082 -0.264 0
LK -7.394 0.861 -7.934 -0.321 -3.783
LKSW -9.619 0.984 -10.17 -0.433 -6.008

Notes: Welfare gains (positive numbers) and losses (negative numbers) in general equilibrium of cycli-
cal idiosyncratic risk expressed as Consumption Equivalent Variation (CEV) in the distribution with
normal moments NORM, the leptokurtic distribution LK and the leptokurtic and left-skewed distribu-
tion LKSW. gc: total CEV, gmeanc : CEV from changes of mean consumption, glcdc : CEV from changes
in the distribution of consumption over the life-cycle, gcsdc : CEV from changes in the cross-sectional
distribution of consumption, where gc = gmeanc + glcdc + gcsdc . ∆gc = gic− gNORMc , for i ∈ {LK,LKSW}:
change in percentage points relative to distribution NORM.
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Table D.3: Welfare Effects of Cyclical Idiosyncratic Risk: CRRA Preferences

CEV gc gmeanc glcdc gcsdc ∆gc
Risk Aversion, θ = 2

NORM -2.552 0.709 -3.139 -0.122 0
LK -2.813 0.756 -3.456 -0.113 -0.261
LKSW -2.564 0.626 -3.074 -0.115 -0.012

Risk Aversion, θ = 3
NORM -3.335 0.901 -4.035 -0.201 0
LK -4.055 0.966 -4.803 -0.218 -0.72
LKSW -4.456 0.937 -5.121 -0.272 -1.121

Risk Aversion, θ = 4
NORM -4.072 1.081 -4.876 -0.277 0
LK -6.081 1.243 -6.91 -0.414 -2.009
LKSW -7.53 1.337 -8.267 -0.6 -3.458

Notes: Welfare gains (positive numbers) and losses (negative numbers) for CRRA utility where θ = 1
ρ

of cyclical idiosyncratic risk expressed as Consumption Equivalent Variation (CEV) in the distribution
with normal moments NORM, the leptokurtic distribution LK and the leptokurtic and left-skewed distri-
bution LKSW. gc: total CEV, gmeanc : CEV from changes of mean consumption, glcdc : CEV from changes
in the distribution of consumption over the life-cycle, gcsdc : CEV from changes in the cross-sectional
distribution of consumption, where gc = gmeanc + glcdc + gcsdc . ∆gc = gic− gNORMc , for i ∈ {LK,LKSW}:
change in percentage points relative to distribution NORM.
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Table D.4: Welfare Effects of Cyclical Idiosyncratic Risk: Zero Initial Assets

CEV gc gmeanc glcdc gcsdc ∆gc
Risk Aversion, θ = 1

NORM -1.893 0.54 -2.317 -0.116 0
LK -2.139 0.622 -2.706 -0.055 -0.246
LKSW -1.612 0.439 -2.001 -0.05 0.281

Risk Aversion, θ = 2
NORM -3.609 0.965 -4.326 -0.248 0
LK -4.091 0.999 -4.938 -0.152 -0.482
LKSW -4.293 0.932 -5.035 -0.19 -0.684

Risk Aversion, θ = 3
NORM -5.113 1.314 -6.06 -0.367 0
LK -7.685 1.445 -8.83 -0.299 -2.572
LKSW -9.725 1.573 -10.812 -0.486 -4.612

Risk Aversion, θ = 4
NORM -6.404 1.61 -7.528 -0.485 0
LK -13.586 1.914 -14.924 -0.577 -7.182
LKSW -17.14 2.112 -18.314 -0.939 -10.736

Notes: Welfare gains (positive numbers) and losses (negative numbers) with zero initial assets of cycli-
cal idiosyncratic risk expressed as Consumption Equivalent Variation (CEV) in the distribution with
normal moments NORM, the leptokurtic distribution LK and the leptokurtic and left-skewed distribu-
tion LKSW. gc: total CEV, gmeanc : CEV from changes of mean consumption, glcdc : CEV from changes
in the distribution of consumption over the life-cycle, gcsdc : CEV from changes in the cross-sectional
distribution of consumption, where gc = gmeanc + glcdc + gcsdc . ∆gc = gic− gNORMc , for i ∈ {LK,LKSW}:
change in percentage points relative to distribution NORM.
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Table D.5: Welfare Effects of Cyclical Idiosyncratic Risk: Lower Rate of Return

CEV gc gmeanc glcdc gcsdc ∆gc
Risk Aversion, θ = 1

NORM -1.905 0.24 -2.11 -0.035 0
LK -2.158 0.274 -2.406 -0.025 -0.253
LKSW -1.611 0.193 -1.777 -0.027 0.294

Risk Aversion, θ = 2
NORM -3.627 0.436 -3.958 -0.105 0
LK -3.945 0.445 -4.3 -0.09 -0.318
LKSW -3.972 0.411 -4.285 -0.098 -0.345

Risk Aversion, θ = 3
NORM -5.123 0.603 -5.554 -0.172 0
LK -6.786 0.65 -7.26 -0.177 -1.663
LKSW -8.253 0.711 -8.732 -0.232 -3.13

Risk Aversion, θ = 4
NORM -6.399 0.751 -6.919 -0.231 0
LK -11.362 0.904 -11.955 -0.311 -4.963
LKSW -14.283 1.027 -14.863 -0.446 -7.884

Notes: Welfare gains (positive numbers) and losses (negative numbers) with a lower rate of return
of r[%] = 2% of cyclical idiosyncratic risk expressed as Consumption Equivalent Variation (CEV) in
the distribution with normal moments NORM, the leptokurtic distribution LK and the leptokurtic and
left-skewed distribution LKSW. gc: total CEV, gmeanc : CEV from changes of mean consumption, glcdc :
CEV from changes in the distribution of consumption over the life-cycle, gcsdc : CEV from changes in
the cross-sectional distribution of consumption, where gc = gmeanc + glcdc + gcsdc . ∆gc = gic − gNORMc ,
for i ∈ {LK,LKSW}: change in percentage points relative to distribution NORM.
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Online Appendix

(Not for Publication)

”Higher-Order Income Risk over the Business Cycle”

(Christopher Busch and Alexander Ludwig)

A Fitting Moments of the FGLD

This online appendix describes how we fit the Flexible Generalized Lambda Distribution

(FGLD). The quantile function is

Q(p;λ) = F−1(p;λ) = x = λ1 +
1

λ2

(
pλ3 − 1

λ3

− (1− p)λ4 − 1

λ4

)
(A.1)

where λ1 is a location and λ2 is a scale parameter, λ3, λ4 in turn are tail index parameters.1

We will need to use the relationship between the quantile function and the probability

density function (PDF). Noticing that x = F−1(p) = Q(p) and F (x) = p we can derive the

PDF f(x) from the quantile function Q(p) by

f(x) = f(Q(p)) =
∂F (x)

∂x
=

∂p

∂Q(p)
=

1
∂Q(p)
∂p

. (A.2)

Differentiating (A.1) we therefore find the PDF to be

f(x) = f(Q(p)) =
λ2

pλ3−1 + (1− p)λ4−1
. (A.3)

Lakhany and Mausser (2000) and Su (2007) describe how to estimate the parameters

of (A.1) using moments of the distribution. The kth raw moment of a random variable X is

given as

E
[
Xk
]

=

∫ ∞

−∞
xkf(x)dx, k ≥ 1

where f(x) is the distribution function. Setting k = 1 gives the expected value µ1 = E[X].

1The parametric constraints are λ2 > 0, and min{λ3, λ4} > − 1
4 .
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The kth central moment is defined as

E
[
(X − µ1)k

]
=

∫ ∞

−∞
(x− µ1)k f(x)dx, k ≥ 1.

We can use binomial expansion to write central moments in terms of raw moments as

E
[
(X − µ1)k

]
= E

[
k∑

j=0

(
k

j

)
(−1)j (X)k−j µj1

]
(A.4)

where
(
k
j

)
are binomial coefficients.

Now apply the same logic to evaluate the kth raw moment of a percentile function. Use

variable substitution p = Q−1(p) = F (x), noticing that Q−1(−∞) = 0 and Q−1(∞) = 1 so

that the integration bounds change. Furthermore, use (A.2) giving f(x) = dp
dQ(p)

to rewrite

∫ ∞

−∞
xkf(x)dx =

∫ 1

0

Q(p)k
dp

dQ(p)
dQ(p) =

∫ 1

0

Q(p)kdp. (A.5)

Hence the kth raw moment using quantile functions is given by

E
[
Xk
]

=

∫ 1

0

Q(p)kdp.

Next, observe that (A.1) can be rewritten as

Q(p) = F−1(p) = x = λ1 −
1

λ2λ3

+
1

λ2λ4

+
1

λ2

(
pλ3

λ3

− (1− p)λ4
λ4

)

= a+ bQ̃(p).

Let X be the random variable with quantile function Q(p) and let Y be the random variable

with quantile function Q̃(p). We then have

E[X] = a+ bE[Y ], k = 1

E
[
(X − E[X])k

]
= bkE

[
(Y − E[Y ])k

]
, k > 1

for the kth central moments. In what follows, we denote the raw moments of Y by ν,

hence νk = EY k. Using (A.4) we thus get for the first four central moments (recalling

2



that
(
n
k

)
= n!

k!(n−k)!
, with

(
n
n

)
=
(
n
0

)
= 1):

µ1 = E[X] = a+ bE[Y ] = a+ bν1

= λ1 −
1

λ2λ3

+
1

λ2λ4

+
1

λ2

ν1.

For the remaining moments, we rewrite (A.4) to get

E
[
(Y − E[Y ])k

]
= E

[
k∑

j=0

(
k

j

)
(−1)j (Y )k−j ν(1)j

]

=

[
k∑

j=0

(
k

j

)
(−1)j E

[
(Y )k−j

]
ν(1)j

]

We can therefore write explicitly

µ2 = b2
(
E[Y 2]− (E[Y ])2

)
=

1

λ2
2

(ν2 − ν2
1)

µ3 = b3E

[
3∑

j=0

(
3

j

)
(−1)j (Y )3−j (ν1)j

]

= b3E
[
Y 3 − 3Y 2ν1 + 3Y ν2

1 − ν3
1

]

=
1

λ3
2

(
ν3 − 3ν1ν2 + 2ν3

1

]

µ4 = b4E

[
4∑

j=0

(
4

j

)
(−1)j (Y )4−j (ν1)j

]

= b4E
[
Y 4 − 4Y 3ν1 + 6Y 2ν2

1 − 4Y ν3
1 + ν4

1

]

=
1

λ4
2

(
ν4 − 4ν1ν3 + 6ν2

1ν2 − 3ν4
1

)
.

Finally, we need to determine expressions for the raw moments of Y . To this end, we

have to evaluate

E
[
Y k
]

= νk =

∫ 1

0

Q̃(p)kdp =

∫ 1

0

(
pλ3

λ3

− (1− p)λ4
λ4

)k
dp

3



Again using binomial expansion, we can rewrite this integral as

νk =

∫ 1

0

k∑

j=0

(
k

j

)
(−1)j

(
pλ3

λ3

)k−j
−
(

(1− p)λ4
λ4

)j
dp

=
k∑

j=0

(
k

j

)
(−1)j

λk−j3 λj4

∫ 1

0

(
pλ3(k−j) − (1− p)λ4j

)
dp

=
k∑

j=0

(
k

j

)
(−1)j

λk−j3 λj4
β (λ3(k − j) + 1, λ4j + 1) ,

where β(·, ·) is the β-function. Observe that the β-function is only well defined if all argu-

ments are positive. This requires that

λ3(k − j) + 1 > 0 and λ4j + 1 > 0

for all k, j. This equality can only be binding if λ3, λ4 < 0. Since j ≤ k we can rewrite the

above inequality as

min(λ3, λ4) > −1

k
.

Observe that the RHS in the above is decreasing in k. Therefore, if we target at matching

moments up to k = 4, the constraint reads as min(λ3, λ4) > −1
4
.
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We can also write out νk, for k = 1, . . . , 4 explicitly as functions of λ3, λ4 as:

ν1 =
1∑

j=0

(
1

j

)
(−1)j

λ1−j
3 λj4

β (λ3(1− j) + 1, λ4j + 1)

=
1

λ3

β (λ3 + 1, 1)− 1

λ4

β (1, λ4 + 1)

=
1

λ3(λ3 + 1)
− 1

λ4(λ4 + 1)

ν2 =
2∑

j=0

(
2

j

)
(−1)j

λ2−j
3 λj4

β (λ3(2− j) + 1, λ4j + 1) = ν1(λ3, λ4)

=
1

λ2
3

β (2λ3 + 1, 1)− 2
1

λ3λ4

β (λ3 + 1, λ4 + 1) +
1

λ2
4

β (1, 2λ4 + 1)

=
1

λ2
3 (2λ3 + 1)

+
1

λ2
4 (2λ4 + 1)

− 2
1

λ3λ4

β (λ3 + 1, λ4 + 1) = ν2(λ3, λ4)

ν3 =
3∑

j=0

(
3

j

)
(−1)j

λ3−j
3 λj4

β (λ3(3− j) + 1, λ4j + 1)

=
1

λ3
3

β (3λ3 + 1, 1)− 3

λ2
3λ4

β (2λ3 + 1, λ4 + 1) +
3

λ3λ2
4

β (λ3 + 1, 2λ4 + 1)− 1

λ3
4

β (1, 3λ4 + 1)

=
1

λ3
3(3λ3 + 1)

− 1

λ3
4(3λ4 + 1)

− 3

λ2
3λ4

β (2λ3 + 1, λ4 + 1) +
3

λ3λ2
4

β (λ3 + 1, 2λ4 + 1) = ν3(λ3, λ4)

ν4 =
4∑

j=0

(
4

j

)
(−1)j

λ4−j
3 λj4

β (λ3(4− j) + 1, λ4j + 1)

=
1

λ4
3

β (4λ3 + 1, 1)− 4

λ3
3λ4

β (3λ3 + 1, 2λ4 + 1) +
6

λ2
3λ

2
4

β (2λ3 + 1, 2λ4 + 1)− 4

λ3λ3
4

β (λ3 + 1, 3λ4 + 1) +

1

λ4
4

β (1, 4λ4 + 1)

=
1

λ4
3(4λ3 + 1)

+
1

λ4
4(4λ4 + 1)

− 4

λ3
3λ4

β (3λ3 + 1, 2λ4 + 1)− 4

λ3λ3
4

β (λ3 + 1, 3λ4 + 1) +

6

λ2
3λ

2
4

β (2λ3 + 1, 2λ4 + 1) = ν4(λ3, λ4).

From the above observe that the third and fourth central moments µ3, µ4 of random

variable X are only functions of λ3, λ4. Therefore, the procedure is to determine λ3, λ4

jointly to target µ3, µ4 under the parameter restriction min(λ3, λ4) > −1
4
. Next, we can

successively determine λ2 from targeting µ2 and, finally, λ1 by targeting µ1.
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B A Numerical Example of the Two-Period Model

In this online appendix, we present a quantitative illustration of the two-period model in

order to show that higher-order income risk (in logs) may indeed lead to lower precaution-

ary savings and utility gains. Specifically, we consider three different parameterizations of

discrete PDFs Ψ(ε) based on Proposition B.1: NORM is a symmetric distribution with a kur-

tosis of α4 = 3 as for a normal distribution. Distribution LK is also symmetric but strongly

leptokurtic with a kurtosis of α4 = 30, and distribution LKSW additionally introduces left-

skewness of α3 = −5. For all distributions we set the variance µε2 = 0.5. Throughout we

normalize such that E[exp(ε)] = 1. To investigate the role of higher-order risk attitudes we

consider two parametrizations with θ ∈ {1, 4}. Throughout, we set the IES γ equal to 1,

thus we focus on risk sensitive preferences.

B.1 Shocks

The shock ε in this two-period model is taken to be discrete. Specifically, we consider a

simple lottery such that ε ∈ {εl, ε0, εh} with εl < ε0 < εh and respective probabilities {(1−
p) · q, p, (1− p) · (1− q)}. This simple structure enables us to derive a parametrization with

a closed form representation for the variance, skewness and kurtosis of the shock process, as

stated in the following proposition:2

Proposition B.0 Let ε ∈ {εl, ε0, εh}, drawn with respective probabilities {(1 − p) ·
q, p, (1− p) · (1− q)}. Then, if and only if α4 > 1 and, for α3 6= 0 in addition

1. either α3 ∈ (0,
√
α4 − 1)

2. or α3 ∈ (−√α4 − 1, 0),

2Our approach extends Ebert (2015), who analyzes skewness using a two-point distribution, to the fourth
moment.
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we match µ2, α3, α4, with the normalization E[exp(ε)] = 1 by choosing

q =
1

2





+1
2

√
1−

4
α4
α23
−4

4
α4
α23
−3

if α3 > 0

−1
2

√
1−

4
α4
α23
−4

4
α4
α23
−3

if α3 < 0

0.5 if α3 = 0

p =





1− (2q−1)2

q(1−q)α2
3

if α3 6= 0

1− 1
α4

if α3 = 0

∆ε =





√
µ2α3

2q−1
if α3 6= 0

2
√
µ2
√
α4 if α3 = 0,

and

εl = − ln [p exp ((1− q)∆ε) + (1− p) (q + (1− q) exp(∆ε))]

ε0 = εl + (1− q)∆ε

εh = εl + ∆ε.

Proof. See Section B.5.

This representation of risk is useful because it enables us to transparently illustrate how

higher-order income risk affects the distribution using a very simple structure with a closed-

form solution from payoffs to the respective moments of higher-order income risk.

The upper part of Table B.1 summarizes the moments for the calibration of ε for these

three distributions. The lower part shows how this translates into respective moments in level

of the innovation, exp(ε). Going from distribution NORM to distribution LK we observe

that not only the kurtosis increases strongly but also the variance. Simultaneously, the

distribution becomes more skewed to the right. Thus, whether the higher kurtosis of the

innovation ε also leads to welfare losses (or a strong increase in precautionary savings)

depends on whether the effects on the variance and kurtosis dominate those on the skewness,

cf. equations (4) and (6).

In turn, going from distribution NORM to distribution LKSW we observe that the dis-

tribution is now more skewed to the left and features a higher kurtosis. However, at the

same time, the variance goes down quite strongly. Thus, whether the simultaneously higher

kurtosis and lower skewness (or: increased left-skewness) of the innovation ε relative to distri-

bution NORM lead to welfare losses (or a strong increase in precautionary savings) depends
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on whether the effects on the skewness and kurtosis dominate those on the variance, again

see equations (4) and (6).

Table B.1: 2-Period Model: Shocks, standardized moments

Moments of Innovation in Logs, ε
µε2 αε3 αε4

NORM 0.5 0 3
LK 0.5 0 30
LKSW 0.5 -5 30
Moments of Innovation in Levels, exp(ε)

µ
exp(ε)
2 α

exp(ε)
3 α

exp(ε)
4

NORM 0.5868 1.4885 3.7882
LK 11.6316 7.5458 57.9669
LKSW 0.1039 0.5684 4.8371

Notes: Standardized moments of the discrete shock distribution.

Table B.2: 2-Period Model: Shocks, central moments

Moments of Innovation in Logs, ε
µε2 µε3 µε4

NORM 0.5 0 0.75
LK 0.5 0 7.5
LKSW 0.5 -1.7678 7.5
Moments of Innovation in Levels, exp(ε)

µ
exp(ε)
2 µ

exp(ε)
3 µ

exp(ε)
4

NORM 0.5868 0.6691 1.3045
LK 11.6316 299.3406 7842.5727
LKSW 0.1039 0.0190 0.0523

Notes: Central moments of the discrete shock distribution.

Figure B.1 plots the the corresponding PDFs Ψ(ε). Relative to NORM, the distribution

LK leads to a fanning out of the shocks. As can be seen for the realization of exp(ε0) this

induces a shift of the shock realizations to the left such that E[ε] is reduced from −0.24

to −0.57. Moving from distribution LK to distribution LKSW by additionally introducing

skewness shifts the probability mass to the left tail such that E[ε] increases to −0.11. From

this observation we know from Proposition 1 that with logarithmic utility (θ = 1), we have

welfare losses from the symmetric and leptokurtic distribution LK and welfare gains for the

additionally left skewed distribution LKSW if households do not have access to a savings

8



technology.

Figure B.1: Distribution of ε

Notes: Distribution function of the discrete shock with three points as in Proposition B.1 under the three

scenarios NORM, LK, and LKSW.

B.2 Allocations

Table B.3 reports results on allocations, assuming that households have access to a sav-

ings technology. Increasing risk attitude coefficient θ leads to more precautionary savings

and reduces the differences in precautionary savings across scenarios. Holding θ constant,

compared to the distribution NORM we observe more precautionary savings for distribu-

tion LK and thus the effects of increased variance and kurtosis dominate the effects of higher

skewness. In contrast, with θ constant we observe less precautionary savings for distribu-

tion LKSW and thus the effects of the lower variance dominate the effects of higher kurtosis

and left-skewness.

Table B.4 displays the welfare consequence if there is no access to a savings technology

under binding constraint (3) in column NST and with access in column ST. First, with θ = 1,

the distribution LKSW leads to utility gains. Thus, for our shock parametrization, the pos-

itive welfare effects of lower skewness dominate the losses of an increased kurtosis. This

is true for both scenarios NST, cf. Proposition 1, as well as for scenario ST. Second, un-

der NST utility consequences are strongly increasing in θ, as we learned from equation (4).

Third, both gains and losses decrease in scenario ST compared to scenario NST. The rea-
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Table B.3: Results from 2-Period Model: Allocations

c0 E[c1] a1

Risk Aversion, θ = 1
NORM 0.837 1.162 0.162
LK 0.773 1.226 0.226
LKSW 0.895 1.104 0.104
Risk Aversion, θ = 4
NORM 0.671 1.328 0.328
LK 0.662 1.337 0.337
LKSW 0.614 1.385 0.385

Notes: Allocations in the two-period model.

son is the precautionary savings response, which reduces utility losses from risk in both the

denominator and the numerator of the CEV calculation. Fourth, as a consequence of the

precautionary savings response, absolute values of the CEV are lower with higher risk aver-

sion in scenario ST. This shows that the utility consequences of higher-order risk, expressed

in terms of CEVs, may be non-monotonic in the degree of risk aversion.

Table B.4: Results from 2-Period Model: CEV

NST ST
Risk Aversion, θ = 1
LK -14.82% -11.75%
LKSW 7.03% 6.76%
Risk Aversion, θ = 4
LK -66.20% -3.22%
LKSW -65.35% 5.66%

Notes: CEV relative to NORM. NST: no access to savings technology. ST: assess to savings technology.

B.3 Decomposition of Consumption Equivalent Variations

Table B.5 reports the results for the decomposition of the CEV, for sake of brevity only

for θ = 1 and with access to a savings technology (ST). With this calibration, most of the

changes appear in the cross-sectional distribution effect.
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Table B.5: Results from 2-Period Model: Decomposition of CEV for Log Utility

CEV gc gmeanc glcdc gcsdc
Baseline
LK -11.75% 0 -2.35% -9.40%
LKSW 6.76% 0 2.16% 4.59%
Impatience
LK -11.04% 0 -9.82% -1.22%
LKSW -4.10% 0 -10.50% 6.40%
Positive Interest Rate
LK -5.56% 2.65% -4.92% -3.30%
LKSW 1.70% 2.63% -4.85% 3.93%
Borrowing Constraint
LK -5.04% 0.34% -0.65% -4.73%
LKSW 2.26% 0.13% -0.26% 2.38%

Notes: CEV relative to NORM for θ = 1, ρ = 1 for scenario ST. LK: leptokurtik distribution, LKSW:

leptokurtik and skewed distribution.

B.4 Additional Model Elements

For the remaining exercises we add step by step model elements included in the quantitative

model. Throughout, we take θ = 1
ρ

= 1 and only analyze the welfare consequences in terms

of the consumption equivalent variation. Results are contained in the remaining rows of

Table B.5 .

Impatience. We first add a period discount factor β of 0.96, such that the discount factor

accounting for the 40-year periodicity is 0.9640 ≈ 0.19. This introduces a life-cycle savings

motive into the model and preferences now write as (for ρ 6= 1)

U =
1

1− ρ

(
(1− β̃)c

1− 1
ρ

0 + β̃v (c1, θ,Ψ)1− 1
ρ

)
,

where β̃ = β
1+β

and β is the raw time discount factor. As a consequence of discounting, the

life-cycle distribution effect becomes more potent. Households now take on debt to finance

consumption when young. Given the riskiness of second period consumption, borrowing

is much lower in distributions LK and LKSW than in distribution NORM. Therefore, the

life-cycle distribution effect is strongly negative.

Positive Returns. Next, we also assume a positive interest rate on savings with an annual

raw interest rate of 2%. Given the length of each model period of 40 real life years, this
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corresponds to R = 1.0240 ≈ 2.2. Thus, the budget constraints now write as

a1 = y0 − c0, c1 ≤ a1 ·R + y1.

Table B.5 shows that now the mean effect is non-zero. The reason is that savings are inter-

temporally shifted at a non-zero rate so that average consumption increases. Results also

show that the aforementioned life-cycle effects are muted. Still the life-cycle distribution

effects are negative.

Borrowing Constraints. Next, we add occasionally binding borrowing constraints at

zero borrowing, i.e., we add the constraint

a1 ≥ 0.

For the chosen parametrization this constraint turns out to be binding only in scenario NORM.

Since households are thus worse off in NORM relative to the other scenarios, welfare losses

in distribution LK decrease and gains in distribution LKSW increase.

Throughout all these scenarios, we observe that the cross-sectional distribution effect is

negative in scenario LK, and positive in scenario LKSW.

B.5 Proof of Proposition B.1

Proof. Take ε0 = µ1, thus

µ1 = pε0 + (1− p) (qεl + (1− q)εh)
= pµ1 + (1− p) (qεl + (1− q)εh)

⇔ µ1 = qεl + (1− q)εh.

Now, let εh = εl + ∆ε to get

µ1 = qεl + (1− q) (εl + ∆ε)

= εl + (1− q)∆ε.
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For the variance we get

µ2 = (1− p)
(
q(εl − µ1)2 + (1− q)(εh − µ1)2

)

= (1− p)
(
q (εl − (εl + (1− q)∆ε))

2 + (1− q) (εh − (εl + (1− q)∆ε))
2)

= (1− p)
(
q(1− q)2 + (1− q)q2

)
∆2
ε

= (1− p)q(1− q)∆2
ε.

For the third central moment µ3 we get

µ3 = (1− p)
(
q(εl − µ1)3 + (1− q)(εh − µ1)3

)

= (1− p)
(
q (εl − (εl + (1− q)∆ε))

3 + (1− q) (εh − (εl + (1− q)∆ε))
3)

= (1− p)
(
−q(1− q)3 + (1− q)q3

)
∆3
ε

= (1− p)q(1− q)
(
−(1− q)2 + q2

)
∆3
ε

= (1− p)q(1− q)(2q − 1)∆3
ε

and we can thus write the skewness α3 as

α3 =
µ3√
µ2

3 =
2q − 1√

(1− p)q(1− q)
.

For the fourth central moment µ4 we get

µ4 = (1− p)
(
q(εl − µ1)4 + (1− q)(εh − µ1)4

)

= (1− p)
(
q (εl − (εl + (1− q)∆ε))

4 + (1− q) (εh − (εl + (1− q)∆ε))
4)

= (1− p)
(
q(1− q)4 + (1− q)q4

)
∆4
ε

= (1− p)q(1− q)
(
(1− q)3 + q3

)
∆4
ε

= (1− p)q(1− q)
(
(1− 2q + q2)(1− q) + q3

)
∆4
ε

= (1− p)q(1− q)
(
1− 3q + 3q2

)
∆4
ε

and can therefore write the kurtosis as

α4 =
µ4

µ2
2

=
3q2 − 3q + 1

(1− p)q(1− q) .
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To summarize, the terms we seek to match are

µ2 = (1− p)q(1− q)∆2
ε, (B.6a)

α3 =
2q − 1√

(1− p)q(1− q)
, (B.6b)

α4 =
3q2 − 3q + 1

(1− p)q(1− q) . (B.6c)

To obtain α4 > 0 we require p ∈ (0, 1), q ∈ (0, 1) and

q2 − q +
1

3
> 0

⇔
(
q − 1

2

)2

> − 1

12

which always holds.

Let us next characterize the solution according to the following case distinction:

1. α3 = 0. Then we obviously have q = 1 − q = 0.5. We can accordingly rewrite (B.6a)

and (B.6c) as

µ2 = (1− p)1

4
∆2
ε,

α4 =
1

(1− p) ,

and therefore

q =
1

2

p = 1− 1

α4

∆ε = 2
√
µ2

√
α4

characterizes the solution. Notice that α4 > 0 and thus p < 1. To get p > 0 we require

1− 1

α4

> 0 ⇔ α4 > 1.

2. α3 6= 0. From (B.6a) we get

(1− p)q(1− q) =
µ2

∆2
ε

14



Using this in (B.6b) and (B.6c) we get

α3 =
(2q − 1)∆ε√

µ2

, (B.7a)

α4 =
(3q2 − 3q + 1)∆2

ε

µ2

. (B.7b)

Now use (B.7a) in (B.7b) to get

(3q2 − 3q + 1)

(2q − 1)2
=
α4

α2
3

⇔ (3q2 − 3q + 1) =
α4

α2
3

(
4q2 − 4q + 1

)

⇔ q2

(
4
α4

α2
3

− 3

)
− q

(
4
α4

α2
3

− 3

)
+
α4

α2
3

− 1 = 0

⇔ q2 − q +

α4

α2
3
− 1

4α4

α2
3
− 3

= 0

and thus

q± =
1

2
± 1

2

√√√√√√
1−

4α4

α2
3
− 4

4α4

α2
3
− 3

︸ ︷︷ ︸
=Ψ

(B.8)

Thus, the first restriction for q± ∈ (0, 1) is that Ψ > 0. Consider the following case

distinction:

(a) 4α4

α2
3
− 3 > 0 ⇔ α4

α2
3
> 3

4
: Then

1−
4α4

α2
3
− 4

4α4

α2
3
− 3

> 0

⇔ 4
α4

α2
3

− 3 > 4
α4

α2
3

− 4

⇔ 4 > 3

and thus for α4

α2
3
> 3

4
we get Ψ > 0.

(b) 4α4

α2
3
− 3 < 0 ⇔ α4

α2
3
< 3

4
then we obviously get a contradiction.

Thus, we require α4 >
3
4
α2

3.

Next, for both the positive and the negative root, we further require Ψ < 1. Again

15



investigate the case α4 >
3
4
α2

3. We get

1−
4α4

α2
3
− 4

4α4

α2
3
− 3

< 1

⇔
4α4

α2
3
− 4

4α4

α2
3
− 3

> 0

⇔ 4
α4

α2
3

− 4 > 0

⇔ α4

α2
3

> 1

and thus a necessary and sufficient condition for q± ∈ (0, 1) is:

α4 > α2
3. (B.9)

Since α3 = (2q−1)∆ε√
µ2

and since ∆ε > 0 (by construction) and
√
µ2 > 0 we choose the

positive root q? = q+ for a right-skewed distribution with α3 > 0 and the negative

root q? = q− to model a left-skewed with α3 < 0.

We next get from (B.7a) that

∆ε =

√
µ2α3

2q? − 1

and from (B.6a) that

p = 1− µ2

q?(1− q?)∆2
ε

= 1− (2q? − 1)2

q?(1− q?)α2
3

. (B.10)

We have already established that under condition (B.9) q? ∈ (0, 1). Next, we need

to establish conditions such that p ∈ (0, 1). From (B.10) we observe that q? ∈ (0, 1)

gives p < 1. Also observe that p > 0 is equivalent to

α2
3 >

(2q? − 1)2

q?(1− q?) (B.11)

(a) Case α3 < 0: Recall that for this case we take the negative root q?−, where

q?− =
1

2
− 1

2

√
Ψ > 0.

for Ψ ∈ (0, 1) iff α4 > α2
3. Thus the case α3 < 0 implies that α3 > −

√
α4. Next
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observe that

(2q? − 1)2 = (1−
√

Ψ− 1)2 = Ψ

and

q?(1− q?) =

(
1

2
− 1

2

√
Ψ

)(
1

2
+

1

2

√
Ψ

)

=
1

4
− 1

4
Ψ =

1

4
(1−Ψ) .

Thus condition (B.11) can be rewritten as

α2
3 >

(2q? − 1)2

q?(1− q?) =
4Ψ

1−Ψ

⇔ α2
3(1−Ψ) > 4Ψ

⇔ α2
3

4α4

α2
3
− 4

4α4

α2
3
− 3

> 4

(
1−

4α4

α2
3
− 4

4α4

α2
3
− 3

)

⇔ α2
3

(
α4

α2
3

− 1

)
> 4

α4

α2
3

− 3−
(

4
α4

α2
3

− 4

)

⇔ α4 − α2
3 > 1

⇔ α3 > −
√
α4 − 1, since α3 < 0

which also implies that we require α4 > 1. Since −√α4 − 1 > −√α4 we thus

obtain as a necessary and sufficient condition for the case α3 < 0

α4 > 1 and α3 > −
√
α4 − 1 (B.12)

to get q ∈ (0, 1
2
), p ∈ (0, 1) and ∆ε > 0.

(b) Case α3 > 0: Recall that for this case we take the positive root q?+ where

q?+ =
1

2
+

1

2

√
Ψ > 0.

for Ψ ∈ (0, 1) iff α4 > α2
3 and thus α3 <

√
α4. Thus

(2q? − 1)2 = Ψ
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and

q?(1− q?) =

(
1

2
+

1

2

√
Ψ

)(
1

2
− 1

2

√
Ψ

)

=
1

4
− 1

4
Ψ =

1

4
(1−Ψ) .

and following the steps above we thus get

α4 − α2
3 > 1

⇔ α3 <
√
α4 − 1,

Since
√
α4 − 1 <

√
α4 we thus obtain as a necessary and sufficient condition for

the case α3 > 0

α4 > 1 and α3 <
√
α4 − 1 (B.13)

to get q ∈ (1
2
, 1), p ∈ (0, 1) and ∆ε > 0.

Finally, for εl given, the mean of the exponent of the random variable x is given by

E [exp(x)] = p exp (εl + (1− q)∆ε) + (1− p) (q exp (εl) + (1− q) exp (εl + ∆ε))

= exp(εl) [p exp ((1− q)∆ε) + (1− p) (q + (1− q) exp (∆ε))] .

Normalizing E [exp(x)] = 1 we thus get

εl = − ln [p exp ((1− q)∆ε) + (1− p) (q + (1− q) exp (∆ε))] .
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