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Abstract
We study a relation between coupling introduced by Ebeling (Kodai Math J 29:319-
336, 2006) and the polytope duality among families of K3 surfaces.
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1 Introduction

A notion of coupling is introduced by Ebeling (2006) as a tone-down of the duality of
weight systems by Kobayashi (2008). It is proved that the duality is also “polar dual”,
in the sense that certain rational polytopes associated to weight systems are dual. In
Ebeling (2006), there is given a list of coupling pairs for 95 weight systems of simple
K3 hypersurface singularities classified by Yonemura (1990), and it is proved that the
duality induces Saito’s duality, which is a relation between the zeta functions of the
Milnor fibre of the singularities. It is interesting to note that these dualities translate a
famous mirror symmetry.

Instead of rational polytopes, we are interested in Batyrev’s toric mirror symmetry
(Batyrev 1994) for integral polytopes in this article. As a generalisation of Arnold’s
strange duality for unimodal singularities, Ebeling and Takahashi (2011) defined a
notion of strange duality for invertible polynomials. It is studied by Mase and Ueda
(2015) that the strange duality for bimodal singularities defined by invertible polyno-
mials extends to the polytope duality among families of K3 surfaces.

The polytope duality is focusing on more details in geometry of K3 surfaces such
as resolution of singularities, as a compactification of some singularities in three
dimensional space which should affect the geometry of the surfaces while the polar
duality in Ebeling (2006), Kobayashi (2008) is determined only by the weight systems
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and thus, it is quite global. There are someprofiles in coupling as is explained inEbeling
(2006) from the viewpoint of mirror symmetry, in particular, in terms of the Milnor
fibres. It is expected that a study of the polar duality associated to coupling gives
another explanation to coupling by Batyrev’s mirror symmetry. In turn, we expect
some relation can be extracted between the Milnor fibres of singularities and the
geometry of associated K3 surfaces.

Motivated by this, and focusing on coupling, we consider the following problem.

Problem. Let a and b be weight systems that are coupling pair and their weighted
magic square is given by polynomials f and f ′, respectively. Determine whether or
not there exist reflexive polytopes � and �′, and projectivisations F and F ′ of f and
f ′ in the weighted projective spaces P(a) and P(b), respectively, such that they are
polytope dual in the sense that they satisfy the following conditions:

�∗ � �′, �F ⊂ � ⊂ �a, �F ′ ⊂ �′ ⊂ �b.

Here �F and �F ′ are Newton polytopes of F and F ′, respectively, and �a and �b

are polytopes that define the weighted projective spaces P(a) and P(b). Note that the
isomorphism between �∗ and �′ is that of as integral (or lattice) polytopes.

The main theorem of the article, which is proved in Sect. 5 is stated:

Theorem 5.1 Any coupling pairs in Yonemura’s list extend to the polytope dual
except the following three pairs of weight systems : (1, 3, 4, 7; 15) (self-coupling),
(1, 3, 4, 4; 12) (self-coupling), and (1, 1, 3, 5; 10) and (3, 5, 11, 19; 38). The com-
plete choice of reflexive polytopes is given in Table 1.

In Sect. 2, we recall the definitions concerning the weighted projective spaces and
the strange duality. In Sect. 3, we recall the definition of coupling. In Sect. 4, we
explain the polytope duality after recalling necessary notions of toric geometry.

2 Preliminary

AK3 surface is a compact complex 2-dimensional non-singular algebraic variety with
trivial canonical bundle and irregularity zero.

Let (a0, . . . , an) be a well-posed (n + 1)-tuple of positive integers, that is, a0 ≤
. . . ≤ an , and any n-tuples out of them are coprime. Recall that theweighted projective
space P(a) = P(a0, . . . , an) with weight a = (a0, . . . , an) is defined by

P(a) = P(a0, . . . , an) := C
n+2\{0}/ ∼,

where (x0, . . . , xn) ∼ (y0, . . . , yn) if there exists a non-zero complex number λ

such that

(y0, . . . , yn) = (λa0x0, . . . , λan xn)

holds. We call ai the weight of the variable xi , and denote it by wt xi .
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In case n = 3, we fix a system of variablesW , X , Y , Z of the weighted projective
space P(a0, a1, a2, a3) with weights

wtW = a0, wt X = a1, wt Y = a2, wt Z = a3.

We say a polynomial F in P(a0, a1, a2, a3) is an anticanonical section if F is of
degree d := a0 + a1 + a2 + a3. The tuple (a0, a1, a2, a3; d) is called a weight
system.

By Dolgachev (1982), the anticanonical sheaf of P(a) is isomorphic toOP(a)(−d).
All weight systems that give simple K3 hypersurface singularities are classified by
Yonemura (1990). Namely, if a weight a is in Yonemura’s list, general anticanonical
sections of P(a) are birational to K3 surfaces. Thus, one can consider families of K3
surfaces.

For a polynomial f in three variables, a polynomial F in the weighted projective
space P(a) is called a projectivisation of f if there exists a linear form l in P(a) such
that

f = F |l=0

holds. In this case, the form l is called a section of f for F .

3 Coupling

Recall the definition of coupling for weight systems with three entries. Let w =
(w1, w2, w3; d) and w′ = (w′

1, w′
2, w′

3; h) be weight systems, with weights being
well-posed.

A weighted magic square C for the weight systems w and w′ is a square matrix of
size 3 that satisfies relations

C t(w1 w2 w3) = t(d d d) and (w′
1 w′

2 w′
3)C = (h h h).

The pair of weight systems (w, w′) is called coupled if C is almost primitive, that is,

if |detC | =
(
d − ∑3

i=1 wi

)
h =

(
h − ∑3

i=1 w′
i

)
d hold. The pair of weight systems

(w, w′) is strongly coupled if it is coupled and the weighted magic square C has
entries zero in every column and row.

Thus, one can assign polynomials f and f ′ to C = (ci j ) in such a way that

f =
3∑

i=1

xci1 yci2 zci3, f ′ =
3∑

i=1

xc1i yc2i zc3i .

In otherwords, there exisisweight systems (a0, a1, a2, a3; d) and (b0, b1, b2, b3; h)

such that there exist i, j ∈ {0, 1, 2, 3} with properties

|detC | = hai = kb j , and tA f ′ = A f .
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Define an anticanonical section F of weight system (a0, a1, a2, a3; d) so that l is the
section of f for F , where l is a linear form defined by

l =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

wh/a0 if |detC | = ha0,

xh/a1 if |detC | = ha1,

yh/a2 if |detC | = ha2,

zh/a3 if |detC | = ha3.

Note that the choice of variables is different from the original Ebeling’s paper (Ebeling
2006). And then define a polynomial F ′ so that

tAF ′ = AF

holds. Note that F ′ is a projectivisation of f ′, and an anticanonical section in the
weighted projective space of weight system (b0, b1, b2, b3; h).

Ebeling (2006, Tables 2 and 3) gives (strongly) coupling pairs among weighted
systems in Yonemura’s list.

4 Duality of Polytopes

Let M be a lattice of rank 3, and N be its dual lattice HomZ(M, Z) that is again of
rank 3. A polytope is a convex hull of finite number of points in M ⊗R. If vertices of
a polytope � are v1, . . . , vr , we denot it by

� = Conv{v1, . . . , vr }.

We call a polytope integral if all the vertices of the polytope are in M . For a polytope
�, define the polar dual polytope �∗ by

�∗ := {y ∈ N ⊗ R | 〈y, x〉R ≥ −1 for all x ∈ �},

where 〈 , 〉 is a natural pairing N×M → Z, and 〈 , 〉R is the extension toR-coefficients.
Let � be an integral polytope that contains the origin in its interior as the only lattice
point. The polytope � is reflexive if the polar dual �∗ is also an integral polytope.

Recall an interesting property of reflexive polytopes related to K3 surfaces due to
Batyrev (1994):

Theorem 4.1 (Batyrev 1994) Denote by P� the toric 3-fold associated to an integral
polytope �. The following conditions are equivalent.

(1) The polytope � is reflexive.
(2) General anticanonical sections of P� are birational to K3 surfaces. ��

In particular, the weighted projective space P(a) with weight system a =
(a0, a1, a2, a3) in Yonemura’s list is a toric Fano 3-fold determined by a reflexive
polytope �(n) in the R-extension of the lattice
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Mn :=
{
(i, j, k, l) ∈ Z

4 | a0i + a1 j + a2k + a3l = 0
}

,

where the weight system a is assigned No. n in Yonemura’s list. The anticanonical
sections are weighted homogeneous polynomial of degree d := a0 + a1 + a2 + a3,
thus, there is a one-to-one correspondence between a lattice point (i, j, k, l) in Mn

and a rational monomial Wi+1X j+1Y k+1Zl+1. In this way, once a Z-basis is taken
for Mn , we identify lattice points in �(n) and monomials of weighted degree d.

5 Main Result

In this section, we prove the main theorem.

Theorem 5.1 Any coupling pairs in Yonemura’s list extend to the polytope dual
except the following three pairs of weight systems : (1, 3, 4, 7; 15) (self-coupling),
(1, 3, 4, 4; 12) (self-coupling), and (1, 1, 3, 5; 10) and (3, 5, 11, 19; 38). The com-
plete choice of reflexive polytopes is given in Table 1.

Remark 1 In Table 1, the reflexive polytopes� and�′ are given as a set of monomials
that are vertices of them. If there are more than one pairs, they are separated by a
dotted line and polytopes in the same row give the polytope duality. Although they are
not originally numbered, we label a number for each case treated accordingly from
the top to the bottom in Tables 2 and 3 in Ebeling (2006).

Proof Take polynomials F and F ′ that are respectively anticanonical sections of the
weighted projective spaces P(a) and P(b) as in the Tables 2 and 3 in Ebeling (2006).

Recall that a pair of reflexive polytopes � and �′ is polytope dual if relations
�F ⊂ � ⊂ �a, �F ′ ⊂ �′ ⊂ �b, and �∗ � �′ hold.

The strategy of the proof is that in each case, after taking a basis of the
lattice Mn , we observe if the Newton polytope �F of the polynomial F is reflex-
ive by a direct computation. If the polytope is not reflexive, then, we search
a reflexive polytope � satisfying inclusions �F ⊂ � ⊂ �(n) of polytopes.
The analogous observations should be made for F ′. Once one gets a candi-
date reflexive polytope � and �′, we then study whether they satisfy a relation
�∗ � �′.

The assertion is proved case by case.

5.1 No. 1–No. 10

We claim that the unique pair (�(14), �(14)∗) is polytope dual commonly for Nos. 1
to 10. Take a basis {e(n)

1 , e(n)
2 , e(n)

3 } of lattices Mn for n = 14, 28, 45, and 51 by

e(14)
1 = (−6, 1, 0, 0), e(14)

2 = (−14, 0, 1, 0), e(14)
3 = (−21, 0, 0, 1),

e(28)
1 = (−3, 1, 0, 0), e(28)

2 = (−7, 0, 1, 0), e(28)
3 = (−10, 0, 0, 1),

e(45)
1 = (−4, 1, 0, 0), e(45)

2 = (−9, 0, 1, 0), e(45)
3 = (−14, 0, 0, 1),
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Polytope Duality for Families of K3 Surfaces...

e(51)
1 = (−5, 1, 0, 0), e(51)

2 = (−12, 0, 1, 0), e(51)
3 = (−18, 0, 0, 1).

In Kobayashi and Mase (2012), it is proved that the polytopes �(n) for n =
14, 28, 45, and 51 are isomorphic to the polytope �(14) that is the convex hull of
vertices (−1,−1, 1), (−1,−1,−1), (6,−1,−1), and (−1, 2,−1) under the above
choice of basis. Since the polar dual �(14)∗ is the convex hull of vertices (1, 0, 0),
(0, 1, 0), (0, 0, 1), and (−6,−14,−21), the linear map of R3 defined by a matrix( 6 −1 −1

−1 2 −1
−1 −1 1

)
gives an isomorphism from �(14) to �(14)∗ as lattice polytopes. There-

fore, a relation �(14)∗ � �(14) holds.
Define 2-dimensional sections �1, �2, and �3 of �(14) by

�1 = Conv{(−1,−1, 0), (6,−1,−1), (−1, 2,−1)},
�2 = Conv{(−1, 0,−1), (6,−1,−1), (−1,−1, 1)},
�3 = Conv{(0,−1,−1), (−1,−1, 1), (−1, 2,−1)}.

No. 1. The Newton polytope of F = F ′ coincides with �(14).
No. 2. Since the Newton polytope of F ′, which is the convex hull of vertices
(−1,−1, 1), (−1,−1,−1), (6,−1,−1), and (−1, 2,−1), coincides with �(28),
which is isomorphic to �(14). Thus, we take �′ to be �(14). Since the polar dual
polytope of �(14) is �(14) itself, and the polynomial F is an anticanonical member of
the weight system (1, 6, 14, 21), the Newton polytope �F of F is a subpolytope of
�, we can take � to be again �(14).
No. 3. Since the Newton polytope of F ′, which is the convex hull of vertices
(−1,−1, 1), (−1,−1,−1), (6,−1,−1), and (−1, 2,−1), coincides with �(45),
which is isomorphic to �(14). Thus, we take �′ to be �(14). As in No.2, we can
take � to be �(14).
No. 4. Since the Newton polytope of F ′, which is the convex hull of vertices
(−1,−1, 1), (−1,−1,−1), (6,−1,−1), and (−1, 2,−1), coincides with �(51),
which is isomorphic to �(14). Thus, we take �′ to be �(14). As in No.2, we can
take � to be �(14).
Nos. 5, 6, and 7. The Newton polytope of F ′, which is the convex hull of vertices
(−1,−1, 0), (−1,−1, 1), (6,−1,−1), and (−1, 2,−1), contains a face�1. Since the
polar dual of �1 is a non-integral vertex (3/10, 7/10, 21/10), the Newton polytope
�F ′ is not reflexive. In order to construct a reflexive polytope �′ such that �F ′ ⊂ �′,
one may replace the face �1 of �F ′ by some sections. In other words, fixing vertices
(−1,−1, 1), (6,−1,−1), and (−1, 2,−1), we may add one or two other vertices to
the polytope�F ′ . This is done by a try and error construction with the following three
cases.
First try-out The face �1 is replaced by a section spanned by vertices (−1,−1, 0),
(6,−1,−1), and (−1, a,−1) with a = 1, 0,−1. The polar dual of this section is a
vertex v1 = 1/(a + 8)(a + 1, 7, 7(a + 1)). The vertex is a lattice point if and only if
a = −1. This means that we obtain the polytope �(14) after the construction. Thus
we may take �′ = � = �(14).
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Second try-out The face �1 is replaced by a section spanned by vertices (−1,−1, 0),
(−1, 2,−1), and (b,−1,−1) with b = 5, 4, 3, 2, 1, 0,−1. The polar dual of this
section is a vertex v2 = 1/(b + 4)(3, b + 1, 3(b + 1)). The vertex is a lattice point if
andonly ifb = −1.Thismeans thatweobtain the polytope�(14) after the construction.
Thus we may take �′ = � = �(14).
Third try-out The face �1 is replaced by a section spanned by vertices (−1,−1, 0),
(−1, a,−1), and (b,−1,−1) with a = 1, 0,−1, and b = 5, 4, 3, 2, 1, 0,−1. Note
that a = −1 if and only if b = −1 since this try-out means that we are construct-
ing a polytope that contains a section which is a subset of the triangle spanned by
(−1, 2,−1), (6,−1,−1), and (−1,−1,−1) of �(14). If a = b = −1, then, the
resulting polytope coincides with �(14), which is reflexive. Otherwise, the polar dual
of this section is a vertex v3 = 1/(a + b + 2)(a + 1, b + 1, (a + 1)(b + 1)), which is
never a lattice point. Therefore, we obtain the polytope �(14) after the construction.
Thus we may take �′ = � = �(14).
Nos. 8 and 9. The Newton polytope of F ′, which is the convex hull of vertices
(−1, 0,−1), (−1,−1, 1), (6,−1,−1), and (−1, 2,−1), contains a face �2. Since
the polar dual of �2 is a non-integral vertex (2/9 14/9, 7/9), the Newton polytope
�F ′ is not reflexive. In order to construct a reflexive polytope �′ such that �F ′ ⊂ �′,
one may replace the face �2 of �F ′ by some sections. In other words, fixing vertices
(−1,−1, 1), (6,−1,−1), and (−1, 2,−1), we may add one or two other vertices to
the polytope �F ′ . This is done by a try and error construction.

The idea to add a section two of which vertices are (−1,−1, 1) and (−1,−1, 0)
is excluded by the arguments made in Nos. 5, 6, and 7. Thus we consider that we
add a section spanned by vertices (−1,−1, 1), (−1, 0,−1), and (a,−1,−1) with
a = 5, 4, 3, 2, 1, 0,−1. This section has the polar dual spanned by a vertex v =
1/(a+3)(2, 2(a+1), a+1). The vertex v is integral if and only if a = −1. Therefore,
we may take �′ to be �(14), and � to be �(14).
No. 10. The Newton polytope of F ′, which is the convex hull of vertices (0,−1,−1),
(−1,−1, 1), (6,−1,−1), and (−1, 2,−1), contains the face �3. Since the polar dual
of�3 is a non-integral vertex (6/5, 2/5, 3/5), theNewton polytope�F ′ is not reflexive.
In order to construct a reflexive polytope �′ such that �F ′ ⊂ �′, one may replace
the face �3 of �F ′ by some sections. In other words, fixing vertices (−1,−1, 1),
(6,−1,−1), and (−1, 2,−1), we may add one or two other vertices to the polytope
�F ′ . This is done by a try and error construction.

The idea to add a section two of which vertices are (−1,−1, 1) and (−1,−1, 0)
is excluded by the arguments made in Nos. 5, 6, and 7. Thus we consider that we
add a section spanned by vertices (−1,−1, 1), (0,−1,−1), and (−1, a,−1) with
a = 1, 0,−1. This section has the polar dual spanned by a vertex v = 1/(a +
3)(2(a + 1), 2, a + 1). The vertex v is integral if and only if a = −1. Therefore, we
may take �′ to be �(14), and � to be �(14).
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5.2 No. 11–No. 14

We claim that there exist two polytope-dual pairs for Nos. 11 to 14. Take a basis
{e(n)

1 , e(n)
2 , e(n)

3 } of lattices Mn for n = 38, 50, 77, and 82 by

e(38)
1 = (−6, 1, 0, 0), e(38)

2 = (−8, 0, 1, 0), e(38)
3 = (−15, 0, 0, 1),

e(50)
1 = (−4, 1, 0, 0), e(50)

2 = (−10, 0, 1, 0), e(50)
3 = (−15, 0, 0, 1),

e(77)
1 = (−5, 1, 0, 0), e(77)

2 = (−7, 0, 1, 0), e(77)
3 = (−13, 0, 0, 1),

e(82)
1 = (−3, 1, 0, 0), e(82)

2 = (−7, 0, 1, 0), e(82)
3 = (−11, 0, 0, 1).

In Kobayashi and Mase (2012), it is proved that the polytopes �(38) and �(77), and
�(50), and �(82) are respectively isomorphic to the polytopes

�(38,77) := Conv

{
(−1,−1, 1), (−1,−1,−1),
(4,−1,−1), (0, 2,−1), (−1, 2,−1)

}
,

�(50,82) := Conv

{
(−1,−1, 1), (−1,−1,−1),
(6,−1,−1), (4, 0,−1), (−1, 2,−1)

}
.

Define polytopes �1, �′
1, and �2, �′

2 by

�1 := �(38,77),

�′
1 := Conv

{
(−1,−1, 1), (−1,−1,−1),
(5,−1,−1), (4, 0,−1), (−1, 2,−1)

}
,

�2 := Conv

{
(−1,−1, 1), (−1,−1,−1),
(6,−1,−1), (4, 0,−1), (−1, 2,−1)

}
,

�′
2 := �(50,82).

Since the polar dual polytopes�∗
1 and�∗

2 of�1 and�2 are the convex hulls of vertices
(1, 0, 0), (0, 1, 0), (0, 0, 1), (0,−2,−3), and (−6,−8,−15), respectively, (1, 0, 0),
(0, 1, 0), (0, 0, 1), (−2,−4,−7), and (−4,−10,−15), and the linear maps of R3

determinedbymatrices A1 :=
(
1 1 2
2 3 5
3 4 8

)
, and A2 := t A1 respectively give isomorphisms

from �′
1 to �∗

1 and from �′
2 to �∗

2, the relations �∗
1 � �′

1 and �∗
2 � �′

2 hold.
No. 11. The Newton polytope of F , which is the convex hull of vertices (−1,−1, 1),
(−1,−1,−1), (4,−1,−1), and (0, 2,−1), is not reflexive. Indeed, �F contains a
face � spanned by (−1,−1, 1), (−1,−1,−1), and (0, 2,−1) of which the polar dual
is a non-integral vertex 1/2(3,−1, 0). In order to construct a reflexive polytope� such
that �F ⊂ �, we have to replace the face � by a union of some sections, which is
done by add a vertex (−1, a,−1) with a = 1, 2 so that there is a new face spanned by
(−1,−1, 1), (0, 2,−1), and (−1, a,−1). The polar dual of this new face is a vertex
1/(a − 3)(2(a − 2), 2, a + 1). Thus, this vertex is an integral point if and only if
a = 1, 2.

The Newton polytope of F ′, which is the convex hull of vertices (−1,−1, 1),
(−1,−1,−1), (4, 0,−1), and (−1, 2,−1), is not reflexive. Indeed, the polytope �F ′
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contains a face �′ spanned by (−1,−1, 1), (−1,−1,−1), and (4, 0,−1) of which
the polar dual is a non-integral vertex 1/4(−1, 5, 0). In order to construct a reflexive
polytope �′ such that �F ′ ⊂ �′, we have to replace the face �′ by a union of some
sections, which is done by add a vertex (b,−1,−1) with b = 6, 5, 4, 3, 2, 1, 0,−1
so that there is a new face spanned by (−1,−1, 1), (4, 0,−1), and (b,−1,−1). The
polar dual of this new face is a vertex 1/(b− 7)(2, 2(b− 4), b+ 1). Thus, this vertex
is an integral point if and only if b = 6, 5.

By the above observation, there are two polytope-dual pairs, that is, if (a, b) =
(2, 5), then, (�1, �′

1), and if (a, b) = (1, 6), then, (�′
2, �2).

No. 12. The Newton polytope of F , which is the convex hull of vertices (−1,−1, 1),
(−1,−1,−1), (4,−1,−1), and (0, 2,−1), is isomorphic to the Newton polytope of
F that we have already studied in No. 11. Thus, we may take �1 or �2 as a reflexive
polytope �.

The Newton polytope of F ′, which is the convex hull of vertices (4, 0,−1),
(−1,−1, 1), (0,−1,−1), and (−1, 2,−1), is not reflexive. Indeed, the polytope �F ′
contains faces �1, which is spanned by (−1,−1, 1), (0,−1,−1), and (4, 0,−1), and
�2, which is spanned by (−1,−1, 1), (0,−1,−1), and (−1, 2,−1) of which the polar
duals are vertices v1 = 1/7(−2, 8,−1), and v2 = 1/5(6, 2, 3), respectively.

We have to replace the face �1 by a union of two sections, in particular, we have
to use a new face spanned by vertices (−1,−1, 1), (4, 0,−1), and (a,−1,−1) with
a = 6, 5, 4, 3, 2, 1, 0,−1. By the same argument made in No. 11 for polytope �′, we
have to take a = 6, 5.

We have to replace �2 by a union of two sections, in particular, we have to use
a new face � spanned by vertices (−1,−1, 1), (0,−1,−1), and (−1, b,−1) with
b = −1, 0, 1. The polar dual of � is a vertex 1/(b+ 3)(2(b+ 1), 2, b+ 1). Thus, this
vertex is an integral point if and only if b = −1.

Therefore, there are two polytope-dual pairs, that is, if (a, b) = (5,−1), then,
(�1, �′

1), and if (a, b) = (6,−1), then, (�′
2, �2).

No. 13. The Newton polytope of F , which is the convex hull of vertices (−1,−1, 1),
(−1,−1,−1), (4, 0,−1), and (−1, 2,−1), is isomorphic to the Newton polytope of
F ′ in No. 11. Thus, we may take �1 or �2 as a reflexive polytope �.

The Newton polytope of F ′, which is the convex hull of vertices (0, 2,−1),
(−1,−1, 1), (−1, 0,−1), and (4,−1,−1) is not reflexive. Indeed, the polytope �F ′
contains faces �1, which is spanned by (−1,−1, 1), (−1, 0,−1), and (4,−1,−1),
and �2, which is spanned by (−1,−1, 1), (−1, 0,−1), and (0, 2,−1) of which the
polar duals are vertices v1 = 1/7(2, 10, 5), and v2 = 1/3(4,−2,−1), respectively.

We have to replace the face �1 by a union of two sections, in particular, we have to
use a new face�′

1 spanned by vertices (−1,−1, 1), (−1, 0,−1), and (a,−1,−1)with
a = 4, 3, 2, 1, 0,−1. The polar dual of �′

1 is a vertex 1/(a + 3)(2, 2(a + 1), a + 1).
Thus, this vertex is an integral point if and only if a = −1.

We have to replace�2 by a union of two sections, in particular, we have to use a new
face �′

2 spanned by vertices (−1,−1, 1), (0, 2,−1), and (−1, b,−1) with b = 1, 2.
The polar dual of �′

2 is a vertex 1/(b − 2)(2(b − 2), 2, b + 1). Thus, this vertex is an
integral point if and only if b = 1, 2.

Therefore, there are two polytope-dual pairs, that is, if (a, b) = (−1, 2), then,
(�′

1, �1), and if (a, b) = (−1, 1), then, (�2, �′
2).
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No. 14. The Newton polytope of F coincides with that of F ′ in No. 12. Thus, one
may take �1 or �2 to be �. Besides, the Newton polytope of F ′ coincides with that
of F ′ in No. 13. Thus, one may take �′

1 or �′
2 to be �′. Therefore, there are two

polytope-dual pairs, that is, (�′
1, �1) and (�2, �′

2).

5.3 No. 15–No. 18

We claim that there exists a unique polytope-dual pair for Nos. 17, 18, and that two
pairs for Nos. 15, 16. Take a basis {e(n)

1 , e(n)
2 , e(n)

3 } of lattices Mn for n = 13, 20, 59,
and 72 by

e(13)
1 = (−3, 1, 0, 0), e(13)

2 = (−8, 0, 1, 0), e(13)
3 = (−12, 0, 0, 1),

e(20)
1 = (−6, 1, 0, 0), e(20)

2 = (−8, 0, 1, 0), e(20)
3 = (−9, 0, 0, 1),

e(59)
1 = (−5, 1, 0, 0), e(59)

2 = (−7, 0, 1, 0), e(59)
3 = (−8, 0, 0, 1),

e(72)
1 = (−2, 1, 0, 0), e(72)

2 = (−5, 0, 1, 0), e(72)
3 = (−7, 0, 0, 1).

In Kobayashi and Mase (2012), it is proved that the polytopes �(20) and �(59)

are isomorphic to the convex hull �(20,59) of vertices (−1,−1, 1), (−1,−1,−1),
(3,−1,−1), (0,−1, 1), and (−1, 2,−1).

Define polytopes �1, �′
1, and �2, �′

2 by

�1 := �(20,59),

�′
1 := Conv

{
(−1,−1, 1), (−1,−1,−1),
(5,−1,−1), (3,−1, 0), (−1, 2,−1)

}
,

�2 := Conv{(0,−1, 1), (−1,−1,−1), (3,−1,−1), (−1, 2,−1)},
�′

2 := �(13) = Conv

{
(−1,−1, 1), (−1,−1,−1),
(7,−1,−1), (−1, 2,−1)

}
.

Since the polar dual polytopes�∗
1 and�∗

2 of�1 and�2 are the convex hulls of vertices
(1, 0, 0), (0, 1, 0), (0, 0, 1), (0,−2,−3), and (−6,−8,−9), respectively, (0, 1, 0),
(0, 0, 1), (2, 0,−1), and (−6,−8,−9), and the linear maps of R3 determined by a

matrix
(
1 1 1
2 3 3
3 4 5

)
gives isomorphisms from �′

1 to �∗
1 and from �′

2 to �∗
2, the relations

�∗
1 � �′

1 and �∗
2 � �′

2 hold.
No. 15. The Newton polytope of F , which is the convex hull of vertices (0,−1, 1),
(−1,−1,−1), (3,−1,−1), and (−1, 2,−1), coincides with �2.

The Newton polytope of F ′, which is the convex hull of vertices (3,−1, 0),
(−1,−1, 1), (−1,−1,−1), and (−1, 2,−1), is not reflexive. Indeed, the Newton
polytope �F ′ of F ′ contains a face � spanned by vertices (3,−1, 0), (−1,−1,−1),
and (−1, 2,−1), and the polar dual of � is a non-integral vertex 1/3(−1, 0, 4). We
have to replace the face � by a union of two sections, in particular, by using vertices
(3,−1, 0) and (−1, 2,−1), we may choose an appropriate vertex of form (a,−1,−1)
with a = 7, 6, 5, 4, 3, 2, 1, 0, so that the resulting face is reflexive. The face�′ spanned
by (3,−1, 0), (−1, 2,−1) and (a,−1,−1) with a = 7, 6, 5, 4, 3, 2, 1, 0 has polar
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dual v = 1/(a−8)(3, a+1, 3(a−3)). Thus, the vertex v is a lattice point if and only
if a = 7, 5.

Therefore, there are two polytope-dual pairs, that is, if a = 5, then, (�(20) =
�1, �′

1), and if a = 7, then, (�2, �(13) = �′
2).

No. 16. The Newton polytope of F coincides with that of F in No. 15, namely, with
�2.

The Newton polytope of F ′, which is the convex hull of vertices (−1,−1, 1),
(0,−1,−1), (3,−1, 0), and (−1, 2,−1), is not reflexive. Indeed, theNewtonpolytope
�F ′ contains two faces �1 spanned by (−1,−1, 1), (0,−1,−1), and (−1, 2,−1),
and �2 spanned by (3,−1, 0), (0,−1,−1), and (−1, 2,−1), and the polar dual of
these faces are respectively, �∗

1 = 1/5(6, 2, 3), and �∗
2 = 1/8(−3,−1, 9). We have

to replace �1 and �2 by sums of other sections.
For �1, we have to use a section �′

1 spanned by (−1,−1, 1), (0,−1,−1), and
(−1, a,−1)with a = 1, 0,−1. The polar dual of �′

1 is a vertex v1 = 1/(a+3)(2(a+
1), 2, a + 1). Thus, the vertex v1 is a lattice point if and only if a = −1.

For �2, we have to use a section �′
2 spanned by (3,−1, 0), (−1, 2,−1), and

(b,−1,−1) with b = 7, 6, 5, 4, 3, 2, 1. The polar dual of �′
2 is a vertex v2 =

1/(b − 8)(3, b + 1, 3(b − 3)). Thus, the vertex v2 is a lattice point if and only if
b = 5, 7.

Therefore, there are two polytope-dual pairs, that is, if b = 5, then, (�1, �′
1), and

if b = 7, then, (�2, �′
2).

No. 17. The Newton polytope of F , which is the convex hull of vertices (−1,−1, 1),
(−1,−1,−1), (3,−1, 0), and (−1, 2,−1), coincides with that of F ′ in No. 15. Thus
the same argument can be applied to �F , so, one may take �(72) or a polytope with
a vertex (5,−1,−1) instead of a face spanned by vertices (3,−1, 0), (−1,−1,−1),
and (−1, 2,−1) as �.

The Newton polytope of F ′, which is the convex hull of vertices (0,−1, 1),
(−1,−1, 0), (3,−1,−1), and (−1, 2,−1), is not reflexive. Indeed, the polytope
�F ′ contains faces �1 spanned by (0,−1, 1), (−1,−1, 0), and (−1, 2,−1), and �2
spanned by (−1,−1, 0), (3,−1,−1), and (−1, 2,−1) of which the polar duals are
�∗
1 = 1/2(3,−1,−3), and �∗

2 = 1/7(3, 4, 12). We must replace these faces by sums
of sections by adding other vertices to �F ′ . For �1, the only possible way to add a
vertex is to adding the vertex (−1,−1, 1). For �2, there are three try-outs.
First try-out Consider a section �′

1 spanned by (−1,−1, 0), (−1, 2,−1), and
(a,−1,−1) with a = 2, 1, 0,−1. The polar dual of �′

1 is a vertex v1 = 1/(a +
4)(3, a + 1, 3(a + 1)). The vertex v1 is a lattice point if and only if a = −1.
Second try-out Consider a section �′

2 spanned by (−1,−1, 0), (3,−1,−1), and
(−1, b,−1) with b = 1, 0,−1. The polar dual of �′

2 is a vertex v2 = 1/(b + 5)(b +
1, 4, 4(b + 1)). The vertex v2 is a lattice point if and only if b = −1.
Third try-out Consider a section �′

3 spanned by (−1,−1, 0), (a,−1,−1), and
(−1, b,−1) with a = 2, 1, 0,−1 and b = 1, 0,−1. Note that a = −1 and b = −1
simultaneously occur. If a = b = −1, then, it is clear that �′

3 is reflexive. Otherwise,
the polar dual of �′

3 is a vertex v3 = 1/(a + b + 2)(b + 1, a + 1, (a + 1)(b + 1)),
which is never a lattice point. Therefore �′

3 is reflexive if and only if a = b = −1.
Therefore, the pair (�′

1, �1) is polytope-dual.
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No. 18. The Newton polytope of F , which is the convex hull of vertices (−1,−1, 1),
(0,−1,−1), (3,−1, 0), and (−1, 2,−1), coincides with that of F ′ in No. 16. Thus
the same argument in No. 16 can be applied here.

The Newton polytope of F ′, which is the convex hull of vertices (−1,−1, 0),
(0,−1, 1), (3,−1,−1), and (−1, 2,−1), coincides with that of F ′ in No. 17. Thus
the same argument in No. 17 can be applied in this case.

Therefore, the pair (�′
1, �1) is polytope-dual.

5.4 No. 19

We claim that there exist three polytope-dual pairs. Take a basis {e(78)
1 , e(78)

2 , e(78)
3 }

for a lattice M78 by

e(78)
1 = (−4, 1, 0, 0), e(78)

2 = (−6, 0, 1, 0), e(78)
3 = (−11, 0, 0, 1).

Define polytopes �1, �2, �3, �4 by

�1 := �(78) = Conv

{
(−1,−1, 1), (−1,−1,−1), (4,−1,−1),
(3, 0,−1), (0, 2,−1), (−1, 2,−1)

}
,

�2 := Conv

{
(−1,−1, 1), (−1,−1,−1), (4,−1,−1),
(3, 0,−1), (0, 2,−1), (−1, 1,−1)

}
,

�3 := Conv

{
(−1,−1, 1), (−1,−1,−1), (3,−1,−1),
(3, 0,−1), (0, 2,−1), (−1, 2,−1)

}
,

�4 := Conv

{
(−1,−1, 1), (−1,−1,−1), (3,−1,−1),
(3, 0,−1), (0, 2,−1), (−1, 1,−1)

}
.

Since the polar dual polytopes�∗
1, �∗

2, and�∗
3 of�1, �2, and�3 are the convex hulls

of vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), (−2,−2,−5), (−4,−6,−11), (0,−2,−3),
resp., (1, 0, 0), (0, 1, 0), (0, 0, 1), (−2,−2,−5), (−4,−6,−11), (1,−1,−1), resp.,
(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0,−2), (−4,−6,−11), (0,−2,−3), and the linear

map of R3 determined by a matrix
(
1 1 2
1 2 3
2 3 6

)
gives isomorphisms from �4 to �∗

1, from

�2 to �∗
2, and from �3 to �∗

3, the relations �∗
1 � �4, �∗

2 � �2, and �∗
3 � �3 hold.

The Newton polytope of F = F ′, which is the convex hull of vertices (−1,−1, 1),
(−1,−1,−1), (3, 0,−1), and (0, 2,−1), is not reflexive. Indeed, the polytope �F

contains faces �1 spanned by (−1,−1, 1), (−1,−1,−1), and (0, 2,−1), and �2
spanned by (−1,−1, 1), (−1,−1,−1), and (3, 0,−1), of which the polar duals are
non-integral vertices v1 = 1/2(3,−1, 0), and v2 = 1/3(−1, 4, 0), repsectively. For
these faces, we have to replace them by sums of other sections.

For �1, we have to use a section �′
1 spanned by (−1,−1, 1), (0, 2,−1), and

(−1, a,−1) with a = 2, 1, 0. The polar dual of �′
1 is a vertex v1 = 1/(a − 3)(2(a −

2), 2, a + 1). The vertex v1 is a lattice point if and only if a = 2, 1.
For �2, we have to use a section �′

2 spanned by (−1,−1, 1), (3, 0,−1), and
(b,−1,−1) with b = 4, 3, 2, 1, 0. The polar dual of �′

2 is a vertex v2 = 1/(b −
5)(2, 2(b − 3), b + 1). The vertex v2 is a lattice point if and only if b = 4, 3.
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Therefore, there are there polytope-dual pairs, that is, if (a, b) = (2, 4) for one side
and (a, b) = (1, 3) for the other, then, (�1, �4), if (a, b) = (1, 4) for both sides,
then, (�2, �2), if (a, b) = (2, 3) for both sides, then, (�3,�3).

5.5 No. 20

We claim that there exist two polytope-dual pairs. Take a basis {e(n)
1 , e(n)

2 , e(n)
3 } of Mn

for n = 39, 60 by

e(39)
1 = (−3, 1, 0, 0), e(39)

2 = (−5, 0, 1, 0), e(39)
3 = (−9, 0, 0, 1),

e(60)
1 = (−4, 1, 0, 0), e(60)

2 = (−6, 0, 1, 0), e(60)
3 = (−7, 0, 0, 1).

Define polytopes �1, �′
1, �2 and �′

2 by

�1 := Conv

{
(0,−1, 1), (−1,−1,−1),

(3,−1,−1), (2, 0,−1), (−1, 2,−1)

}
,

�′
1 := Conv

{
(−1,−1, 1), (−1,−1,−1),

(5,−1,−1), (0, 2,−1), (−1, 1,−1)

}
,

�2 := Conv

{
(0,−1, 1), (−1,−1,−1),

(2,−1,−1), (2, 0,−1), (−1, 2,−1)

}
,

�′
2 := �(39) = Conv

{
(−1,−1, 1), (−1,−1,−1),
(5,−1,−1), (0, 2,−1), (−1, 2,−1)

}
.

Since the polar dual polytopes �∗
1 and �∗

2 of �1 and �2 are the convex hulls of
vertices (0, 1, 0), (0, 0, 1), (−2,−2,−3), (−4,−6,−7), and (2, 0,−1), respectively,
(0, 1, 0), (0, 0, 1), (−1, 0,−1), (−4,−6,−7), and (2, 0,−1), and the linear map of

R
3 determined by a matrix

(
1 1 1
1 2 2
2 3 4

)
gives isomorphisms from �′

1 to �∗
1, and from �2

to �∗
2, the relations �∗

1 � �′
1 and �∗

2 � �′
2 hold.

The Newton polytope of F , which is the convex hull of vertices (0,−1, 1),
(−1,−1,−1), (2, 0,−1), and (−1, 2,−1), is not reflexive. Indeed, the polytope
�F contains a face � spanned by (0,−1, 1), (−1,−1,−1), and (2, 0,−1), of
which the polar dual is a non-integral vertex 1/5(−2, 6, 1). The face � has to be
replaced by a sum of other sections: consider a section �′ spanned by (0,−1, 1),
(2, 0,−1), and (a,−1,−1) with a = 3, 2, 1, 0. The polar dual of �′ is a vertex
v′ = 1/(a − 4)(2, 2(a − 2), a). Thus the vertex is a lattice point if and only if
a = 2, 3.

The Newton polytope of F ′, which is the convex hull of vertices (0, 2,−1),
(−1,−1, 1), (−1,−1,−1), and (2,−1, 0), is not reflexive. Indeed, the polytope �F ′
contains faces �1 spanned by (−1,−1, 1), (−1,−1,−1), and (0, 2,−1), and �2
spanned by (2,−1, 0), (−1,−1,−1), and (0, 2,−1), of which the polar duals are
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respectively non-lattice vertices 1/2(3,−1, 0), and 1/7(−3, 1, 9). We have to replace
these faces by sums of other sections.

For �1, consider a section �′
1 spanned by (−1,−1, 1), (0, 2,−1), and (−1, b,−1)

with b = 2, 1, 0. The polar dual of �′
1 is a vertex v1 = 1/(b − 3)(2(b − 2), 2, b + 1).

The vertex v1 is a lattice point if and only if b = 1, 2.
For �2, consider a section �′

2 spanned by (2,−1, 0), (0, 2,−1), and (b′,−1,−1)
with b′ = 5, 4, 3, 2, 1, 0. The polar dual of �′

2 is a vertex v2 = 1/(b′ −6)(3, b′, 3(b′ −
2)). The vertex v2 is a lattice point if and only if b′ = 3, 5.

Therefore, there are two polytope-dual pairs, that is, if (a, b, b′) = (3, 1, 5), then,
(�1, �′

1), and if (a, b, b′) = (2, 2, 5), then, (�2, �′
2).

5.6 No. 21

We claim that there exist two polytope-dual pairs. Take a basis {e(22)
1 , e(22)

2 , e(22)
3 } of

a lattice M22 with by

e(22)
1 = (−3, 1, 0, 0), e(22)

2 = (−5, 0, 1, 0), e(22)
3 = (−6, 0, 0, 1).

Define polytopes �1, �2 and �′
2 by

�1 := Conv{(0,−1, 1), (−1,−1,−1), (4,−1,−1), (−1, 2,−1)},

�2 := Conv

{
(0,−1, 1), (−1,−1,−1),

(2,−1,−1), (2,−1, 0), (−1, 2,−1)

}
,

�′
2 := �(22) = Conv

{
(−1,−1, 1), (−1,−1,−1),

(4,−1,−1), (0,−1, 1), (−1, 2,−1)

}
.

Since the polar dual polytopes�∗
1 and�∗

2 of�1 and�2 are the convex hulls of vertices
(0, 1, 0), (0, 0, 1), (−3,−5,−6), and (2, 0,−1), respectively, (0, 1, 0), (0, 0, 1),
(−1,−1, 0), (−3,−5,−6), and (2, 0,−1), and the linear map of R3 determined

by a matrix
(
1 1 1
1 2 2
1 2 3

)
gives isomorphisms from �1 to �∗

1, and from �′
2 to �∗

2, the

relations �∗
1 � �1 and �∗

2 � �′
2 hold.

The Newton polytope of F = F ′, which is the convex hull of vertices (0,−1, 1),
(−1,−1,−1), (2,−1, 0), and (−1, 2,−1), is not reflexive. Indeed, the polytope �F

contains a face � spannd by (2,−1, 0), (−1,−1,−1), and (−1, 2,−1) of which the
polar dual is a non-integral vertex 1/2(−1, 0, 3). We may replace the face � by a
union of other sections. Consider a section �′ spanned by (2,−1, 0), (−1, 2,−1),
and (a,−1,−1) with a = 4, 3, 2, 1, 0. The polar dual of �′ is a vertex v = 1/(a −
5)(3, a + 1, 3(a − 2)). The vertex v is a lattice point if and only if a = 2, 4.

Therefore, there are two polytope-dual pairs, that is, if a = 4, then, (�1, �1), and
if a = 2 for �, and a = 4 for �′, then, (�2, �′

2).
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5.7 No. 22–No. 24

We claim that there exist a unique polytope-dual pair for Nos. 22 and 23, and that none
for No. 24. Take a basis {e(n)

1 , e(n)
2 , e(n)

3 } of lattices Mn for n = 9 and 71 by

e(9)
1 = (−4, 1, 0, 0), e(9)

2 = (−5, 0, 1, 0), e(9)
3 = (−10, 0, 0, 1),

e(71)
1 = (−3, 1, 0, 0), e(71)

2 = (−4, 0, 1, 0), e(71)
3 = (−7, 0, 0, 1).

Define polytopes �1 and �2 by

�1 := �(9) = Conv

{
(−1,−1, 1), (−1,−1,−1),
(4,−1,−1), (−1, 3,−1)

}
,

�2 := Conv{(−1,−1, 1), (−1,−1,−1), (4,−1,−1), (−1, 1, 0)}.

Since the polar dual polytope�∗
1 of�1 is the convex hull of vertices (1, 0, 0), (0, 1, 0),

(0, 0, 1), and (−4,−5,−10), and the linearmaps ofR3 determined by amatrix
(
1 1 2
1 1 3
2 3 5

)

gives an isomorphism from �2 to �∗
1, the relation �∗

1 � �2 holds.
No. 22. The Newton polytope of F = F ′, which is the convex hull of vertices
(−1,−1, 1), (−1,−1,−1), (4,−1,−1), and (−1, 1, 0), coincides with �2. There-
fore, a pair (�1, �F ′ = �2) is polytope-dual.
No. 23. The Newton polytope of F , which is the convex hull of vertices (−1,−1, 1),
(−1,−1,−1), (4,−1,−1), and (−1, 1, 0), coincides with �2. The Newton polytope
of F ′, which is the convex hull of vertices (−1,−1, 1), (−1, 0,−1), (4,−1,−1),
and (−1, 1, 0), is not reflexive. Indeed, the polytope �F ′ contains faces �1 spanned
by (−1,−1, 1), (−1, 0,−1), and (4,−1,−1), and �2 spanned by (−1, 1, 0),
(−1, 0,−1), and (4,−1,−1), of which the polar duals are non-integral vertices
1/7(2, 10, 5), and 1/4(−1,−5, 5), respectively. We have to replace these faces by
unions of some sections. For �1, we consider the following try-outs:
First try-out Consider a section �′

1 spanned by (−1,−1, 1), (−1, 0,−1), and
(a,−1,−1) with a = 3, 2, 1, 0,−1. The polar dual of �′

1 is a vertex v1 =
1/(a + 3)(2, 2(a + 1), a + 1). The vertex v1 is a lattice point if and only if a = −1.
Second try-out Consider a section �′′

1 spanned by (−1,−1, 0), (−1, 0,−1), and
(4,−1,−1). The polar dual of �′′

1 is a non-integral vertex 1/6(1, 5, 5). Thus, it is
impossible to use this section.

For �2, consider a section �′
2 spanned by (−1, 1, 0), (4,−1,−1), and (−1, b,−1)

with b = 3, 2, 1. The polar dual of the section �′
2 is a vertex v = 1/(b − 4)(b +

1, 5, 5(b − 1)). The vertex v is a lattice point if and only if b = 3.
Therefore, a pair (�F = �2, �1) is polytope-dual.

No. 24. The Newton polytope of F = F ′, which is the convex hull of vertices
(−1,−1, 1), (−1, 0,−1), (4,−1,−1), and (−1, 1, 0), is not reflexive. It is observed
that onemight take a polytopewith vertices (−1, 2,−1), (0, 2,−1) and (−1,−1,−1)
instead of faces spanned by vertices (−1, 1, 0), (−1, 0,−1), (4,−1,−1), and
(−1,−1, 1), (−1, 0,−1), (4,−1,−1), namely, �(71).
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In the polytope �(71), the vertex (−1,−1,−1) is adjacent to three other vertices:
vertex (−1,−1, 1) with an edge e1, vertex (−1, 2,−1) with an edge e2, and vertex
(4,−1,−1) with an edge e3. On the edges e1, e2, e3, respectively, there are one,
two, and four inner lattice points. Thus, the polar dual polytope �(71)∗ must contain
a triangle as a two-dimensional face that is adjacent to other two-dimensional faces
with inner lattice points one, two, and four. However, it is easily observed that there is
no such a configuration in the polytope �(71)∗. Thus, �(71) is not self-dual, and there
does not exist a polytope-dual pair.

5.8 No. 25

We claim that there exist two polytope-dual pairs. Take a basis {e(n)
1 , e(n)

2 , e(n)
3 } of

lattices Mn for n = 37, 58 by

e(37)
1 = (−3, 1, 0, 0), e(37)

2 = (−4, 0, 1, 0), e(37)
3 = (−8, 0, 0, 1),

e(58)
1 = (−4, 1, 0, 0), e(58)

2 = (−5, 0, 1, 0), e(58)
3 = (−6, 0, 0, 1).

Define polytopes �1, �′
1, �2 and �′

2 by

�1 := Conv

{
(−1, 1, 0), (−1,−1, 0),
(−1,−1,−1), (3,−1,−1), (0,−1, 1)

}
,

�′
1 := �(37) = Conv

{
(−1,−1, 1), (−1,−1,−1),
(4,−1,−1), (3, 0,−1), (−1, 3,−1)

}
,

�2 := Conv

{
(−1, 1, 0), (−1,−1, 1),
(−1,−1,−1), (3,−1,−1), (0,−1, 1)

}
,

�′
2 := Conv

{
(−1,−1, 1), (−1,−1,−1),
(3,−1,−1), (3, 0,−1), (−1, 3,−1)

}
.

Since the polar dual polytopes �∗
1 and �∗

2 of �1 and �2 are the convex hulls of
vertices (1, 0, 0), (0, 1, 0), (0,−1, 2), (1, 0,−1), and (−4,−5,−6), respectively,
(1, 0, 0), (0, 1, 0), (0,−1, 2), (0,−1,−2), and (−4,−5,−6), and the linear map of

R
3 determined by a matrix

(
1 1 1
1 1 2
2 3 3

)
gives isomorphisms from �′

1 to �∗
1, and from �′

2

to �∗
2, the relations �∗

1 � �′
1 and �∗

2 � �′
2 hold.

The Newton polytopes of F , which is the convex hull of vertices (0,−1, 1),
(−1,−1,−1), (3,−1,−1), and (−1, 1, 0), is not reflexive. Indeed, the polytope �F

contains a face � spanned by (−1, 1, 0), (−1,−1,−1), and (0,−1, 1) of which
the polar dual is a non-integral vertex 1/3(4, 1,−2). The face � has to be replaced
by a union of other faces. In order to do this, consider a section �′ spanned by
(−1, 1, 0), (0,−1, 1), and (−1,−1, a) with a = 0, 1. The polar dual of �′ is a vertex
v = 1/(a − 2)(2(a − 1), a, 2). The vertex v is a lattice point if and only if a = 0, 1.
Moreover, we note that it is also possible to use a vertex (−1, a′,−1) with a′ = 1, 2
instead of a face spanned by vertices (0,−1, 1), (−1,−1,−1), and (−1, 1, 0) which
follows from a direct computation.
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The Newton polytopes of F ′, which is the convex hull of vertices (−1,−1, 1),
(−1,−1,−1), (3, 0,−1), and (−1, 1, 0), is not reflexive. Indeed, the polytope �F ′
contains faces �1 spanned by (−1,−1, 1), (−1,−1,−1), and (3, 0,−1), and �2
spanned by (−1, 1, 0), (−1,−1,−1), and (3, 0,−1), of which the polar duals are
respectively non-integral vertices 1/3(−1, 4, 0) and 1/5(1,−4, 8). The faces �1 and
�2 have to be replaced by unions of other sections.

For �1, consider a section �′
1 spanned by (−1,−1,−1), (3, 0,−1), and

(b,−1,−1) with b = 4, 3, 2, 1, 0. The polar dual of �′
1 is a vertex v1 = 1/(b −

5)(2, 2(b − 3), b + 1). The vertex v1 is a lattice point if and only if b = 3, 4.
For �2, consider a section �′

2 spanned by (−1, 1, 0), (3, 0,−1), and (−1, b′,−1)
with b′ = 3, 2, 1, 0. The polar dual of �′

2 is a vertex v1 = 1/(b′ − 4)(b′, 4, 4(b′ − 1)).
The vertex v2 is a lattice point if and only if b′ = 0, 3, 2.

Therefore, there are two polytope-dual pairs, that is, if (a, b, b′) = (0, 4, 3), then,
(�1, �′

1), and if (a, b, b′) = (1, 3, 3), then, (�2, �′
2).

5.9 No. 26

We claim that there exist four polytope-dual pairs. Take a basis {e(87)
1 , e(87)

2 , e(87)
3 } of

a lattice M87 by

e(87)
1 = (−3, 1, 0, 0), e(37)

2 = (−4, 0, 1, 0), e(37)
3 = (−5, 0, 0, 1).

Define polytopes �i , �′
i for i = 1, 2, 3, 4 by

�1 := Conv

{
(−1,−1, 1), (−1, 1, 0), (0,−1, 1),
(−1,−1,−1), (2,−1,−1), (2, 0,−1), (−1, 0,−1)

}
,

�′
1 := Conv

{
(−1,−1, 1), (−1, 1, 0), (0,−1, 1),
(−1,−1,−1), (2,−1,−1), (2, 0,−1), (−1, 2,−1)

}
,

�2 := Conv

{
(−1,−1, 0), (−1, 1, 0), (0,−1, 1),
(−1,−1,−1), (3,−1,−1), (2, 0,−1), (−1, 0,−1)

}
,

�′
2 := Conv

{
(−1,−1, 0), (−1, 1, 0), (0,−1, 1),
(−1,−1,−1), (3,−1,−1), (2, 0,−1), (−1, 2,−1)

}
,

�3 := Conv

{
(−1,−1, 0), (−1, 1, 0), (0,−1, 1),
(−1,−1,−1), (2,−1,−1), (2, 0,−1), (−1, 2,−1)

}
,

�′
3 := Conv

{
(−1,−1, 1), (−1, 1, 0), (0,−1, 1),
(−1,−1,−1), (3,−1,−1), (2, 0,−1), (−1, 0,−1)

}
,

�4 := Conv

{
(−1,−1, 0), (−1, 1, 0), (0,−1, 1),
(−1,−1,−1), (2,−1,−1), (2, 0,−1), (−1, 0,−1)

}
,

�′
4 := �(87) = Conv

⎧
⎨
⎩

(−1,−1, 1), (−1, 1, 0), (0,−1, 1),
(−1,−1,−1), (3,−1,−1), (2, 0,−1),
(−1, 2,−1)

⎫
⎬
⎭ .
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Since the polar dual polytopes �∗
i , i = 1, 2, 3, 4 are respectively given as follows:

�∗
1 := Conv

{
(1, 0, 0), (0, 1, 0), (0, 0, 1), (0,−1,−2),
(−1, 0,−1), (0,−1, 1), (−3,−4,−5)

}
,

�∗
2 := Conv

{
(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0,−1),
(−2,−2,−3), (0,−1, 1), (−3,−4,−5)

}
,

�∗
3 := Conv

{
(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0,−1),
(−1, 0,−1), (−2,−3,−3), (−3,−4,−5)

}
,

�∗
4 := Conv

{
(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0,−1),
(−1, 0,−1), (0,−1, 1), (−3,−4,−5)

}
,

and the linear map of R3 determined by a matrix
(
1 1 1
1 1 2
1 2 2

)
gives isomorphisms from

�′
i to �∗

i , i = 1, 2, 3, 4, the relations �∗
i � �′

i , i = 1, 2, 3, 4 hold.
The Newton polytope of F = F ′, which is the convex hull of vertices (0,−1, 1),

(−1,−1,−1), (2, 0,−1), and (−1, 1, 0), is not reflexive. Indeed, the polytope
�F contains faces �1 spanned by (−1, 1, 0), (−1,−1,−1), and (0,−1, 1), �2
spanned by (0,−1, 1), (−1,−1,−1), and (2, 0,−1), and �3 spanned by (−1, 1, 0),
(−1,−1,−1), and (2, 0,−1), of which the polar duals are respectively non-integral
vertices 1/3(4, 1,−2), 1/5(−2, 6, 1), and 1/4(1,−3, 6). These faces have to be
replaced by unions of other sections.

For �1, consider a section �′
1 spanned by (−1, 1, 0), (0,−1, 1), and (−1,−1, a)

with a = 0, 1. The polar dual of �′
1 is a vertex v1 = 1/(a − 2)(2(a − 1), a, 2). The

vertex v1 is a lattice point if and only if a = 0, 1.
For �2, consider a section �′

2 spanned by (2, 0,−1), (0,−1, 1), and (b,−1,−1)
with b = 3, 2, 1, 0. The polar dual of �′

2 is a vertex v2 = 1/(b − 4)(2, 2(b − 2), b).
The vertex v2 is a lattice point if and only if b = 2, 3.

For �3, consider a section �′
3 spanned by (−1, 1, 0), (2, 0,−1), and (−1, c,−1)

with c = 2, 1, 0. The polar dual of �′
3 is a vertex v3 = 1/(c − 3)(c, 3, 3(c − 1)). The

vertex v3 is a lattice point if and only if c = 0, 2.
Therefore, there are four polytope-dual pairs, that is, if (a, b, c) = (1, 2, 0) for one

side, and (a, b, c) = (1, 2, 2) for the other, then, (�1, �′
1); if (a, b, c) = (0, 3, 0) for

one side, and (a, b, c) = (0, 3, 2) for the other, then, (�2, �′
2); if (a, b, c) = (0, 2, 2)

for one side, and (a, b, c) = (1, 3, 0) for the other, then, (�3, �′
3); and if (a, b, c) =

(0, 2, 0) for one side, and (a, b, c) = (1, 3, 2) for the other, then, (�4, �′
4).

5.10 No. 27

We claim that there does not exist a polytope-dual pair. Take a basis {e(4)
1 , e(4)

2 , e(4)
3 }

of a lattice M4 by

e(4)
1 = (−3, 1, 0, 0), e(4)

2 = (−4, 0, 1, 0), e(4)
3 = (−4, 0, 0, 1).

By a direct computation, one has �(4)∗ �� �(4), which we say not self-dual.
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It is observed that there exist four invertible projectivisations

F1 = F ′
1 = X4 + Y 3 + Z3 + W 12, F2 = F ′

2 = X4 + Y 3 + Z3 + W 8Z ,

F3 = F ′
3 = X4 + Y 3 + Z3 + W 8Y , F4 = F ′

4 = X4 + Y 3 + Z3 + W 9X .

The Newton polytope of F1 = F ′
1, which is the convex hull of vertices (−1,−1, 2),

(−1,−1,−1), (3,−1,−1), and (−1, 2,−1), coincide with �(4).
Since F2 and F3 are symmetric in variables Y and Z , we only treat with F2. The

Newton polytope of F2 = F ′
2, which is the convex hull of vertices (−1,−1, 2),

(−1,−1, 0), (3,−1,−1), and (−1, 2,−1), is not reflexive. Indeed, the polytope �F2
contains a face � spanned by (−1,−1, 0), (−1, 2,−1), and (3,−1,−1) of which
the polar dual is non-integral vertex 1/7(3, 4, 12). The face � has to be replaced by a
union of some sections.
First try-out Consider a face �′ spanned by (−1,−1, 0), (3,−1,−1), and
(−1, a,−1) with a = 1, 0,−1. The polar dual of �′ is a vertex v′ = 1/(a + 5)(a +
1, 4, 4(a + 1)). The vertex v′ is a lattice point if and only if a = −1.
Second try-out Consider a face �′′ spanned by (−1,−1, 0), (−1, 2,−1), and
(b,−1,−1) with b = 2, 1, 0,−1. The polar dual of �′′ is a vertex v′′ = 1/(b +
4)(3, b + 1, 3(b + 1)). The vertex v′′ is a lattice point if and only if b = −1.
Third try-out Consider a face �′′′ spanned by (−1,−1, 0), (−1, a,−1), and
(b,−1,−1) with a = 1, 0,−1 and b = 2, 1, 0,−1. Note that a = −1 and b = −1
simultaneously occur. If a = b = −1, then, the resulting polytope is none other than
�(4). Otherwise, the polar dual of �′′′ is a vertex v′′′ = 1/(a + b + 2)(a + 1, b +
1, (a + 1)(b + 1)), which is never a lattice point.

Therefore, the only reflexive polytope � such that �F2 ⊂ � is �(4).
The Newton polytope of F4 = F ′

4, which is the convex hull of vertices (−1,−1, 2),
(0,−1,−1), (3,−1,−1), and (−1, 2,−1), is not reflexive. Indeed, the polytope �F4
contains a face � spanned by (−1,−1, 2), (0,−1,−1), and (−1, 2,−1), of which
the polar dual is a non-integral vertex 1/2(3, 1, 1). The face � has to be replaced by a
union of other sections. Consider a section �′ spanned by (−1,−1, 2), (0,−1,−1),
and (−1, a,−1) with a = 1, 0,−1. The polar dual of �′ is a vertex v′ = 1/(a +
4)(3(a+1), 3, a+1). The vertex v′ is a lattice point if and only if a = −1. Therefore,
the only reflexive polytope � with �F4 ⊂ � is �(4).

5.11 No. 28–No. 29

We claim that there exist two polytope-dual pairs for Nos. 28 and 29. Take a basis
{e(n)

1 , e(n)
2 , e(n)

3 } of lattices Mn for n = 12, 27 and 49 by

e(12)
1 = (−2, 1, 0, 0), e(12)

2 = (−6, 0, 1, 0), e(12)
3 = (−9, 0, 0, 1),

e(27)
1 = −(1,−7, 1, 1), e(27)

2 = −(1, 1,−2, 1), e(27)
3 = −(0, 1, 1,−1),

e(49)
1 = −(0,−7, 1, 1), e(49)

2 = −(1, 1,−2, 1), e(49)
3 = −(1, 1, 1,−1).
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In Kobayashi and Mase (2012), it is proved that the polytopes �(27) and �(49) are
isomorphic to the polytope �(27,49) with vertices (0, 0, 1), (1, 0, 0), (0, 1, 0), and
(−3,−8,−12).

Define polytopes �1, �′
1, �2 and �′

2 by

�1 := Conv{(0, 0, 1), (1, 0, 0), (0, 1, 0), (−2,−6,−9)},
�′

1 := �(12) = Conv

{
(−1,−1, 1), (−1,−1,−1),
(8,−1,−1), (−1, 2,−1)

}
,

�2 := �(49) = Conv{(0, 0, 1), (1, 0, 0), (0, 1, 0), (−3,−8,−12)},
�′

2 := Conv{(−1,−1, 1), (−1,−1,−1), (7,−1,−1), (−1, 2,−1)}.

It is direct to see that the relations �∗
1 � �′

1 and �∗
2 � �′

2 hold.
No. 28. The Newton polytope of F , which is the convex hull of vertices (1, 0, 0),
(0, 1, 0), (0, 0, 1), and (−2,−6,−9), coincides with �′

1. The Newton polytope of
F ′, which is the convex hull of vertices (−1,−1, 1), (−1,−1, 0), (7,−1,−1), and
(−1, 2,−1), is not reflexive. Indeed, the polytope �F ′ contains a face � spanned by
(−1,−1, 0), (7,−1,−1), and (−1, 2,−1) of which the polar dual is a non-integral
vertex 1/11(3, 8, 24). The face � has to be replaced by a union of other sections.
First try-out Consider a section �′ spanned by (−1,−1, 0), (7,−1,−1), and
(−1, a,−1) with a = 1, 0,−1. The polar dual of �′ is a vertex v′ = 1/(a + 9)(a +
1, 8, 8(a + 1)). The vertex v′ is a lattice point if and only if a = −1.
Second try-out Consider a section �′′ spanned by (−1,−1, 0), (−1, 2,−1), and
(b,−1,−1) with b = 6, 5, 4, 3, 2, 1, 0,−1. The polar dual of �′′ is a vertex v′′ =
1/(b + 4)(3, b + 1, 3(b + 1)). The vertex v′′ is a lattice point if and only if b = −1.
Third try-out Consider a section �′′′ spanned by (−1,−1, 0), (−1, a,−1), and
(b,−1,−1) with a = 1, 0,−1 and b = 6, 5, 4, 3, 2, 1, 0,−1. Note that a = −1
and b = −1 simultaneously occur. If a = b = −1, then, the resulting sec-
tions have lattice dual vertex. Otherwise, the polar dual of �′′′ is a vertex v′′′ =
1/(a + b + 2)(a + 1, b + 1, (a + 1)(b + 1)), which is never a lattice point.

Therefore, there are two polytope-dual pairs : (�F = �1, �′
1), and (�2, �′

2).
No. 29. The Newton polytope of F , which is the convex hull of vertices (1, 0, 0),
(0, 1, 0), (0, 0, 1), and (−2,−6,−9), coincides with �′

1. The Newton polytope of
F ′, which is the convex hull of vertices (−1,−1, 1), (0,−1,−1), (7,−1,−1), and
(−1, 2,−1), is not reflexive.

Indeed, the polytope �F ′ contains a face � spanned by (−1,−1, 1), (0,−1,−1),
and (−1, 2,−1), of which the polar dual is a non-integral vertex 1/5(6, 2, 3). The face
� has to be replaced by a union of other sections. Consider a section �′ spanned by
(−1,−1, 1), (0,−1,−1), and (−1, a,−1) with a = 1, 0,−1. The polar dual of �′
is a vertex v′ = 1/(a + 3)(2(a + 1), 2, a + 1). The vertex v′ is a lattice point if and
only if a = −1.

Note that the polytope �F ′ contains a face spanned by (−1,−1, 1), (7,−1,−1),
and (−1, 2,−1), with which is possible to be replaced by

Conv

{
(−1,−1, 1), (7,−1,−1),
(8,−1,−1)

}
+ Conv

{
(−1,−1, 1), (−1, 2,−1),
(8,−1,−1)

}
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or

Conv

{
(−1,−1, 1), (7,−1,−1),
(5, 0,−1)

}
+ Conv

{
(−1,−1, 1), (−1, 2,−1),
(5, 0,−1)

}

or

Conv

{
(−1,−1, 1), (7,−1,−1),
(2.1,−1)

}
+ Conv

{
(−1,−1, 1), (−1, 2,−1),
(2, 1,−1)

}
.

In these cases, one has to take � to be a cone of a hexagon with �∗ to have a
configuration of edges that form a lattice of type T9,3,4. However, the maximal number
of lattice points in an edge of �(12) is 8, and if we use this edge, we only construct
a configuration of edges that form a lattice of type T9,4,4. Thus, in such a case, it is
impossible to find out a corresponding polytope-dual partner �′.

Therefore, there are two polytope-dual pairs, that is, (�F = �1, �′
1), and

(�2, �′
2).

5.12 No. 30

We claim that there exist two polytope-dual pairs. Take a basis {e(n)
1 , e(n)

2 , e(n)
3 } of

lattices Mn for n = 40, 81 by

e(40)
1 = (−2, 1, 0, 0), e(40)

2 = (−4, 0, 1, 0), e(40)
3 = (−7, 0, 0, 1),

e(81)
1 = (0, 7,−1,−1), e(81)

2 = (0,−1, 2,−1), e(81)
3 = (−1,−1,−1, 1).

Define polytopes �1, �′
1, �2, �′

2 by

�1 := Conv

{
(0, 1, 0), (0, 0, 1),
(1, 1, 1), (0,−2,−3), (−2,−6,−9)

}
,

�′
1 := �(40) = Conv

{
(−1,−1, 1), (−1,−1,−1),
(6,−1,−1), (0, 2,−1), (−1, 2,−1)

}
,

�2 := Conv

{
(0, 1, 0), (0, 0, 1),
(1, 1, 1), (1, 0, 0), (−2,−6,−9)

}
,

�′
2 := Conv

{
(−1,−1, 1), (−1,−1,−1),
(6,−1,−1), (0, 2,−1), (−1, 1,−1)

}
.

Since the polar dual polytopes �∗
1 and �∗

2 of �1 and �2 are the convex hulls of
vertices (−1,−1, 1), (1,−1,−1), (−2, 2,−1), (−1, 2,−1), (8,−1,−1), resp.,
(−1,−1, 1), (1,−1,−1), (−1, 1,−1), (−1, 2,−1), (8,−1,−1), and the linear

map of R3 determined by a matrix
( 1 0 0−1 1 0

−1 0 1

)
gives isomorphisms from �′

i to �∗
i for

i = 1, 2, the relations �∗
1 � �′

1 and �∗
2 � �′

2 hold.
The Newton polytope of F , which is the convex hull of vertices (1, 1, 1), (0, 1, 0),

(0, 0, 1), and (−2,−6,−9), is not reflexive. Indeed, the polytope �F contains a face
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spanned by (0, 0, 1), (1, 1, 1), and (−1,−6,−9), of which the polar dual is a non-
integral vertex 1/2(−5, 5,−2). The face should be replaced by a sumof some sections.

Consider a section spanned by (0, 0, 1), (1, 1, 1), and (−2+a,−6+2a,−9+3a)

with a = 1, 2, 3. The polar dual of this section is a vertex v = 1/(a − 4)(−3a +
10, 3a − 10, a − 4). Thus, the vertex v is a lattice point if and only if a = 2, 3.
Namely, one can take a reflexive polytope � to be �1, i.e., a = 2 and �2, i.e., a = 3.

Besides, the Newton polytope of F ′, which is the convex hull of vertices
(−1,−1, 1), (−1, 0,−1), (5,−1,−1), and (0, 2,−1), is not reflexive. According
to the observation for �, we must take two polytopes which are isomorphic to �∗

1 and
�∗

2. Indeed, we may take �′
1 and �′

2 that clearly contain �F ′ as a subpolytope.
Therefore, there are two polytope-dual pairs : (�1, �′

1), and (�2, �′
2).

Note that taking cones over a hexagon as a polytope � is impossible since in each
candidate cases, the configurations of lattice points in their polar dual is impossible as
a subpolytope of �(40).

5.13 No. 31

We claim that there exist five polytope-dual pairs. Take a basis {e(n)
1 , e(n)

2 , e(n)
3 } of

lattices Mn for n = 11, 24 by

e(11)
1 = (2, 7,−1,−1), e(11)

2 = −(1, 1,−2, 1), e(11)
3 = −(1, 1, 1,−1),

e(24)
1 = (−2, 1, 0, 0), e(24)

2 = (−4, 0, 1, 0), e(24)
3 = (−5, 0, 0, 1).

Define polytopes �i , �′
i , i = 1, 2, 3, 4 by

�1 := �(11) = Conv{(0, 1, 0), (0, 0, 1), (2, 2, 3), (−3,−8,−12)},
�′

1 := Conv{(0,−1, 1), (−1,−1,−1), (4,−1,−1), (−1, 2,−1)},
�2 := Conv{(0, 1, 0), (0, 0, 1), (2, 2, 3), (−2,−6,−9)},
�′

2 := Conv{(0,−1, 1), (−1,−1,−1), (5,−1,−1), (−1, 2,−1)},
�3 := Conv{(0, 1, 0), (0, 0, 1), (1, 1, 2), (0,−2,−3), (−2,−6,−9)},
�′

3 := �(24) = Conv

{
(0,−1, 1), (−1,−1,−1),
(5,−1,−1), (−1,−1, 1), (−1, 2,−1)

}
,

�4 := Conv

{
(0, 1, 0), (0, 0, 1), (1, 1, 2),
(0,−2,−3), (−2,−6,−9), (−1,−2,−4)

}
,

�′
4 := Conv

{
(0,−1, 1), (−1,−1,−1), (4,−1,−1),
(3, 0,−1), (−1, 2,−1), (−1,−1, 1)

}
,

�5 := Conv

{
(0, 1, 0), (0, 0, 1), (1, 1, 2),
(0,−2,−3), (−2,−6,−9), (−2,−5,−8)

}
,

�′
5 := Conv

{
(0,−1, 1), (−1,−1,−1), (4,−1,−1),
(1, 1,−1), (−1, 2,−1), (−1,−1, 1)

}
.
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Since the polar dual polytopes �∗
i of �i , i = 1, 2, 3, 4, 5 are respectively the

convex hulls of vertices (−1,−1, 1), (2,−1,−1), (−1, 2,−1), and (7,−1,−1),
resp., (−1,−1, 1), (2,−1,−1), (−1, 2,−1), and (8,−1,−1), resp., (−1,−1, 1),
(2,−1,−1), (−1, 2,−1), (−2,−1, 1), and (8,−1,−1), resp., (−1,−1, 1),
(2,−1,−1), (−1, 2,−1), (−2,−1, 1), (5, 0,−1), and (7,−1,−1), resp. (−1,−1, 1),
(2,−1,−1), (−1, 2,−1), (−2,−1, 1), (2, 1,−1), and (7,−1,−1), and the linear

map of R3 determined by a matrix
(
1 1 1
1 2 2
1 2 3

)
gives isomorphisms from �′

i to �∗
i for

i = 1, 2, 3, 4, 5, the relations �∗
i � �′

i , i = 1, 2, 3, 4, 5 hold.
The Newton polytope of F , which is the convex hull of vertices (0, 1, 0), (0, 0, 1),

(1, 1, 2), (−2,−6,−9), is not reflexive. Indeed, the polytope �F contains a face
spanned by (1, 1, 2), (0, 1, 0), and (−2,−6,−9), of which the polar dual is a non-
integral vertex 1/5(−14,−5, 7). Consider a section spanned by (1, 1, 2), (0, 1, 0),
and (−2+ a,−6+ 2a,−9+ 3a) with a = 1, 2, 3, 4. The polar dual of this section is
a vertex v = 1/(a− 5)(2(2a− 7), a− 5, 2a− 7). The vertex v is a lattice point if and
only if a = 2, 4. Note that we can use a vertex (−1,−2,−4) or (−2,−5,−8) and
replace the face spanned by (0, 01), (0, 1, 0) and (−2,−6,−9) by either the sum

Conv

{
(0, 0, 1), (−2,−6,−9),

(−1,−2,−4)

}
+ Conv

{
(0, 0, 1), (0, 1, 0),

(−1,−2,−4)

}

or

Conv

{
(0, 0, 1), (−2,−6,−9),

(−2,−5,−8)

}
+ Conv

{
(0, 0, 1), (0, 1, 0),

(−2,−5,−8)

}
.

However, it is impossible to consider as � to be

Conv {(0, 01), (−2,−6,−9), (2, 2, 3), (0, 1, 0), v} ,

where v = (−1,−2,−4) or (−2,−5,−8) becase the polar dual polytope should
contain three incident edges of type T2,3,6 without an edge with two lattice points,
which is impossible.

Therefore, by the observation, there arefivepolytope-dual pairs, that is, (�1, �F ′ =
�′

1), (�2, �′
2), (�3, �′

3), (�4, �′
4), and (�5, �′

5).

5.14 No. 32–No. 34

We claim that there exist two polytope-dual pairs for Nos. 32 to 34. Take a basis
{e(n)

1 , e(n)
2 , e(n)

3 } of lattices Mn with for n = 6, 26, 34, and 76 by

e(6)
1 = (−2, 1, 0, 0), e(6)

2 = (−2, 0, 1, 0), e(6)
3 = (−5, 0, 0, 1),

e(26)
1 = −(1,−4, 1, 1), e(26)

2 = −(1, 1,−3, 1), e(26)
3 = −(0, 1, 1,−1),

e(34)
1 = −(1,−4, 1, 1), e(34)

2 = −(0, 1,−3, 1), e(34)
3 = −(1, 1, 1,−1),

e(76)
1 = (1, 1, 1,−1), e(76)

2 = (4, 1, 0,−1), e(76)
3 = (9,−1, 0,−1).
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In Kobayashi and Mase (2012), it is proved that the polytopes �(26) and �(34)

are isomorphic to the polytope with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), and
(−4,−5,−10).

Define polytopes �1, �̃1, �′
1, and �2, �̃2, �′

2 by

�1 := Conv{(1, 0, 0), (0, 1, 0), (0, 0, 1), (−2,−2,−5)},
�̃1 := Conv{(0, 0,−1), (2, 0,−1), (2,−1, 0), (−3, 1, 3)},
�′

1 := �(6) = Conv

{
(−1,−1, 1), (−1,−1,−1),
(4,−1,−1), (−1, 4,−1)

}
,

�2 := Conv

{
(1, 0, 0), (0, 1, 0), (0, 0, 1),
(−2,−2,−5), (−a,−(a + 1),−2(a + 1))

}
,

�̃2 := Conv

{
(0, 0,−1), (2, 0,−1), (2,−1, 0),
(−3, 1, 3), (a − 2, 1,−a + 2)

}
,

�′
2 := Conv

{
(−1,−1, 1), (−1,−1,−1), (4,−1,−1),
(−1, 3,−1), (a, 3 − a,−1)

}
,

here, a = 3, 2, 1, 0.

Since the polar dual polytopes �∗
1 and �̃∗

1 of �1 and �̃1 are the convex hulls
of vertices (−1,−1, 1), (−1,−1,−1), (4,−1,−1), and (−1, 4,−1), respectively,
(−1,−1,−1), (0, 1, 1), (0,−4, 1), and (5, 11, 1), and the linear map of R3 deter-

mined by a matrix
( −1 −3 0

−1 −2 0
−3 −6 −1

)
gives an isomorphism from �′

1 to �̃∗
1, the relations

�∗
1 = �′

1 � �̃∗
1 hold. Moreover, Since the polar dual polytopes �∗

2 and �̃∗
2 of �2

and �̃2 are convex hulls of the vertices (−1,−1, 1), (−1,−1,−1), (4,−1,−1),
(a, 3 − a,−1),and (−1, 3,−1), respectively, (−1,−1,−1), (0, 1, 1), (5, 11, 1),
(1,−1, 1), and (0, a − 3, 1), and the linear map of R

3 determined by a matrix( −1 −2 0
−1 −3 0
−3 −6 −1

)
gives an isomorphism from �′

2 to �̃∗
2, the relations �∗

2 = �′
2 � �̃∗

2

hold.
No. 32. The Newton polytope of F , which is the convex hull of vertices (1, 0, 0),
(0, 1, 0), (0, 0, 1), and (−2,−2,−5), coincides with �1. Besides, the Newton poly-
tope of F ′, which is the convex hull of vertices (−1,−1, 0), (−1, 3,−1), (−1,−1, 1),
and (4,−1,−1), is not reflexive. Indeed, the polytope �F ′ contains a face spanned
by (−1,−1, 1), (−1,−1, 0), and (−1, 3,−1), of which the polar dual is a non-
integral vertex 1/9(4, 5, 20). Thus, we consider a section spanned by (−1,−1, 0),
(4,−1,−1), and (−1, a,−1) with a = 1− 1, 0, 1, 2. The polar dual of this section is
a vertex v = 1/(a + 6)(a + 1, 5, 5(a + 1)). Thus, the vertex v is a lattice point if and
only if a = −1. Therefore, there are two polytope-dual pairs, that is, (�F = �1, �′

1),
and (�2, �′

2).
No. 33. The Newton polytope of F , which is the convex hull of vertices (1, 0, 0),
(0, 1, 0), (0, 0, 1), and (−2,−2,−5), coincides with �1. Besides, the Newton poly-
tope of F ′, which is the convex hull of vertices (−1, 0,−1), (−1, 3,−1), (−1,−1, 1),
and (4,−1,−1), is not reflexive. Indeed, the polytope �F ′ contains a face spanned
by (−1,−1, 1), (−1, 0,−1), and (4,−1,−1), of which the polar dual is a non-
integral vertex 1/7(2, 10, 5). Thus, we consider a section spanned by (−1,−1, 1),
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(−1, 0,−1), and (a,−1,−1) with a = 1−1, 0, 1, 2, 3. The polar dual of this section
is a vertex v = 1/(a+3)(2, 2(a+1), a+1). Thus, the vertex v is a lattice point if and
only if a = −1. Therefore, there are two polytope-dual pairs, that is, (�F = �1, �′

1),
and (�2, �′

2).
No. 34. The Newton polytope of F , which is the convex hull of vertices (0, 0,−1),
(2, 0,−1), (2,−1, 0), and (−3, 1, 3), coincides with �̃1. Besides, the Newton poly-
tope of F ′, which is the convex hull of vertices (−1, 0,−1), (3,−1,−1), (0, 3,−1),
and (−1,−1, 1), is not reflexive. Indeed, the polytope �F ′ contains two faces �1
spanned by (−1,−1, 1), (−1, 0,−1), and (3,−1,−1), of which the polar dual is
1/3(1, 4, 2), and �2 spanned by (−1,−1, 1), (−1, 0,−1), and (0, 3,−1), of which
the polar dual is 1/5(6,−2,−1). The face �1 is replaced by a sum of other sections
as is discussed in No.33. For the face �2, consider a section spanned by (−1,−1, 1),
(0, 3,−1), and (−1, a,−1) with a = 1, 2, 3, 4. The polar dual of this section is a
vertex v = 1/(a − 5)(2(a − 3), 2, a + 1). The vertex v is a lattice point if and only if
a = 3, 4. Therefore, there are two polytope-dual pairs, that is, (�F = �̃1, �′

1), and
(�̃2, �′

2).

5.15 No. 35–No. 37

We claim that there exists a unique polytope-dual pair for Nos. 35 to 37. Take a basis
{e(n)

1 , e(n)
2 , e(n)

3 } lattices Mn for n = 10, 46, 65, and 80 by

e(10)
1 = (−1, 1, 0, 0), e(10)

2 = (−4, 0, 1, 0), e(10)
3 = (−6, 0, 0, 1),

e(46)
1 = (1, 1, 1,−1), e(46)

2 = (2, 2,−1, 0), e(46)
3 = (11, 0,−1,−1),

e(65)
1 = (1, 0, 1,−1), e(65)

2 = (2, 1,−1, 0), e(65)
3 = (10,−1,−1,−1),

e(80)
1 = (1, 1, 1,−1), e(80)

2 = (2, 1,−1, 0), e(80)
3 = (10,−1,−1,−1).

In Kobayashi and Mase (2012), it is proved that the polytopes �(46), �(65) and
�(80) are isomorphic to the polytope �(46,65,80) with vertices (−1, 0, 0), (1,−1, 0),
(0, 0, 1), and (2, 4,−1). Let a polytope �1 be �(46,65,80) and �′

1 be the polytope
�(10) which is the convex hull of vertices (−1,−1, 1), (−1,−1,−1), (11,−1,−1),
and (−1, 2,−1). Since the polar dual polytope �∗

1 of �1 is the convex hull of ver-
tices (1,−1,−1), (1, 2, 11), (1, 2,−1), and (−1, 0,−1), and the linear map of R3

determined by a matrix
( 0 0 −1

0 −1 −4
−1 −1 −6

)
gives an isomorphism from�′

1 to�∗
1, the relation

�∗
1 � �′

1 holds.
For each case of Nos. 35, 36, 37, the Newton polytope of F , which is the convex

hull of vertices (−1, 0, 0), (1,−1, 0), (0, 0, 1), and (2, 4,−1), coincides with �1 =
�(46,65,80). Thus, there exists only one reflexive polytope � such that �F ⊂ � ⊂
�(46,65,80), which is none other than �1. The polytope �′

1 no doubt satisfies �F ′ ⊂
�′

1 = �(10). Therefore, there exists only one polytope-dual pair (�1, �′
1).
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5.16 No. 38–No. 40

We claim that there exist two polytope-dual pairs for Nos. 38 and 40, and that none
for No. 39. Take a basis {e(n)

1 , e(n)
2 , e(n)

3 } of lattices Mn for n = 42, 68, 83, and 92 by

e(42)
1 = (−1, 1, 0, 0), e(42)

2 = (−3, 0, 1, 0), e(42)
3 = (−5, 0, 0, 1),

e(68)
1 = (1, 0, 1,−1), e(68)

2 = (3, 1, 0,−1), e(68)
3 = (9,−1,−1,−1),

e(83)
1 = (1, 1, 1,−1), e(83)

2 = (3, 3, 0,−1), e(83)
3 = (10, 1,−1,−1),

e(92)
1 = (1, 1, 1,−1), e(92)

2 = (3, 2, 0,−1), e(92)
3 = (10, 0,−1,−1).

Define polytopes �1, �′
1, �2, �′

2, �̃3, �3, and �′
3 by

�1 := Conv{(−1, 0, 0), (0, 0, 1), (−1, 2, 0), (−1, 3,−1), (2,−1, 0)},
�′

1 := �(42) = Conv

{
(−1,−1, 1), (−1,−1,−1),
(9,−1,−1), (0, 2,−1), (−1, 2,−1)

}
,

�2 := �(68) = Conv

{
(−1, 0, 0), (0, 0, 1),
(−2, 4,−1), (−1, 3,−1), (2,−1, 0)

}
,

�′
2 := Conv

{
(−1,−1, 1), (−1,−1,−1),
(9,−1,−1), (0, 2,−1), (−1, 1,−1)

}
,

�̃3 := Conv{(−1, 0, 0), (1,−1, 1), (−1, 2, 0), (−2, 4,−1), (2,−1, 0)},
�3 := �(83) = Conv

{
(−1, 0, 0), (0, 0, 1),
(−2, 4,−1), (2,−1, 0), (1,−1, 1)

}
,

�′
3 := Conv

{
(−1,−1, 1), (−1,−1,−1),
(9,−1,−1), (3, 1,−1), (−1, 2,−1)

}
.

Since the polar dual polytopes �∗
1 and �∗

2 of �1 and �2, and �̃∗
3 and �∗

3 of �̃3 and
�3 are respectively the convex hulls of vertices (−1,−1,−1), (1, 0, 0), (1, 3, 9),
(1, 3,−1), and (1, 0,−1), resp. (−1,−1,−1), (1, 1, 3), (1, 3, 9), (1, 3,−1), and
(1, 0,−1), resp. (−1,−1,−1), (1, 0,−1), (1, 3, 11), (1, 3, 1), and (1, 0,−2), resp.
(−1,−1,−1), (1, 0,−1), (1, 3, 11), (1, 3, 1), and (1, 1,−1), and the linear maps of

R
3 determined by matrices

(
0 0 −1
0 −1 −3

−1 −2 −5

)
, and

( 0 0 −1
0 −1 −4

−1 −2 −6

)
give isomorphisms from

�′
1 to �∗

1 and from �′
2 to �∗

2, respectively from �′
1 to �̃∗

3 and from �′
3 to �∗

3, the
relations �∗

1 � �′
1 and �∗

2 � �′
2, and �̃∗

3 � �′
1 and �∗

3 � �′
3 hold.

No. 38. The Newton polytope of F ,which is the convex hull of vertices (−1, 0, 0),
(0, 0, 1), (−1, 3,−1), and (2,−1, 0), is not reflexive. Indeed, the polytope �F con-
tains a face spanned by (−1, 0, 0), (0, 0, 1), and (−1, 3,−1), of which the polar dual
is a non-integral vertex 1/3(−3,−1,−3). Since the complement of the set of lattice
points in edges of �F in that of �(68) consists of two lattice points (−1, 2, 0) and
(−2, 4,−1), there are only two polytopes possibly to be considered:
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Case 1 The polytope � is spanned by (−1, 0, 0), (0, 0, 1), (−1, 2, 0), (−1, 3,−1),
and (2,−1, 0), namely � = �1. In this case, relations �F ′ ⊂ �∗

1 = �′
1 ⊆ �(42)

clearly hold.
Case 2 The polytope� is spanned by (−1, 0, 0), (0, 0, 1), (−2, 4,−1), (−1, 3,−1),
and (2,−1, 0), namely � = �2 = �(68). In this case, relations �F ′ ⊂ �∗

2 = �′
2 ⊂

�(42) clearly hold.
Therefore there are two polytope-dual pairs : (�1, �(42) = �′

1), and (�(68) =
�2, �′

2).
No. 39. The Newton polytope of F , which is the convex hull of vertices (−1, 0, 0),
(1,−3, 1), (−2, 4,−1), and (2,−1, 0), is easily seen to be reflexive. Besides, the
Newton polytope of F ′, which is the convex hull of vertices (−1,−1, 1), (0,−1,−1),
(6, 0,−1), and (−1, 2,−1), is not reflexive. It is observed that for any reflexive poly-
tope� such that�F ⊂ � ⊂ �(92), the polar dual polytope�∗ should be a tetrahedron
of which each edge contains 3 lattice points. However, there does not exist a reflexive
polytope �′ such that �F ′ ⊂ �′ ⊂ �(42) that contains a vertex which is adjacent to
three vertices between which the edges contain 3 lattice points. Thus, in this case, no
pair is polytope-dual.
No. 40. The Newton polytope of F , which is the convex hull of vertices (−1, 0, 0),
(1,−1, 1), (−2, 4,−1), and (2,−1, 0), is not reflexive. Indeed, the polytope �F

contains a face spanned by (−1, 0, 0), (1,−1, 1), and (−2, 4,−1), of which the polar
dual is a non-integral vertex 1/3(3,−1,−7). Since the complement of the set of lattice
points in edges of �F in that of �(68) consists of two lattice points (−1, 2, 0) and
(0, 0, 1), there are only two polytopes possibly to be considered:
Case 1 The polytope� is spanned by (−1, 0, 0), (1,−1, 1), (−1, 2, 0), (−2, 4,−1),
and (2,−1, 0), namely � = �1. In this case, relations �F ′ ⊂ �∗

1 = �′
1 ⊆ �(42)

clearly hold.
Case 2 The polytope � is spanned by (−1, 0, 0), (0, 0, 1), (−2, 4,−1), (2,−1, 0),
and (1,−1, 1), namely � = �3 = �(83). In this case, relations �F ′ ⊂ �∗

3 = �′
3 ⊂

�(42) clearly hold.
Therefore, ther are two polytope-dual pairs : (�̃1, �(42) = �′

1), and (�(83) =
�3, �′

3).

5.17 No. 41–No. 43

We claim that there exist two polytope-dual pairs for Nos. 41 and 43, and that a unique
pair for No. 42. Take a basis {e(n)

1 , e(n)
2 , e(n)

3 } of lattices Mn with for n = 25, 43, 48,
and 88 by

e(25)
1 = (−1, 1, 0, 0), e(25)

2 = (−3, 0, 1, 0), e(25)
3 = (−4, 0, 0, 1),

e(43)
1 = −(1,−8, 1, 1), e(43)

2 = (0,−1, 2,−1), e(43)
3 = −(1, 1, 1,−1),

e(48)
1 = (0, 8,−1,−1), e(48)

2 = −(1, 1,−2, 1), e(48)
3 = −(1, 1, 1,−1),

e(88)
1 = (0, 4,−1,−1), e(88)

2 = (−1,−1, 2,−1), e(88)
3 = (−1, 0,−1, 1).
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Define polytopes �1, �′
1, �2, and �′

2 by

�1 := Conv{(1, 0, 0), (0, 1, 0), (0, 0, 1), (−2,−6,−9)},
�′

1 := Conv{(−1,−1, 1), (−1,−1,−1), (8,−1,−1), (−1, 2,−1)},
�2 := Conv{(1, 0, 0), (0, 1, 0), (0, 0, 1), (0,−2,−3), (−1,−3,−4)},

�′
2 := �(25) = Conv

{
(−1,−1, 1), (−1,−1,−1),
(8,−1,−1), (0,−1, 1), (−1, 2,−1)

}
.

Since the polar dual polytopes �∗
i for i = 1, 2 are the convex hulls of vertices

(−1,−1, 1), (−1,−1,−1), (8,−1,−1), and (−1, 2,−1), respectively, (−1,−1, 1),
(−1,−1,−1), (8,−1,−1), (0,−1, 1), and (−1, 2,−1), the relations �∗

1 = �′
1 and

�∗
2 = �′

2 clearly hold.
Nos. 41 and 43. The Newton polytope of F , which is the convex hull of vertices
(1, 0, 0), (0, 1, 0), (0, 0, 1), and (−1,−3,−4), is not reflexive. Indeed, the polytope
�F contains a face spanned by (1, 0, 0), (0, 1, 0), and (−1,−3,−4), of which the
polar dual is a non-integral vertex (−1,−1, 5/4). Since the complement of the set
of lattice points on edges of �F in that of �(43) are three points (1 − a,−2a,−3a)

with a = 1, 2, 3, we consider a section � spanned by (0, 1, 0), (−1,−3,−4), and
(1 − a,−2a,−3a) with a = 1, 2, 3. The polar dual of the section � is a vertex
v = 1/(a − 4)(−4(a − 1),−(a − 4), 2a − 5). The vertex v is a lattice point if
and only if a = 1, 3. Note that if a = 3, the polytope is �1, and if a = 1, it is
�2. The Newton polytope of F ′, which is the convex hull of vertices (−1,−1, 1),
(−1, 0,−1), (8,−1,−1), and (−1, 2,−1), is not reflexive. Indeed, the polytope �F ′
contains a face spanned by (−1,−1, 1), (−1, 0,−1), and (8,−1,−1), of which the
polar dual is a non-integral vertex 1/11(2, 18, 9). It is clear that both �′

1 and �′
2 are

reflexive polytopes that satisfy relations �F ′ ⊂ �′ ⊂ �(25). Therefore, there are two
polytope-dual pairs : (�(43) = �1, �′

1), and (�2, �′
2).

No. 42. The Newton polytope of F , which is the convex hull of vertices (1, 0, 0),
(0, 1, 0), (0, 0, 1), and (−1,−3,−4), is not reflexive. Indeed, the polytope �F con-
tains a face spanned by (1, 0, 0), (0, 1, 0), and (−1,−3,−4) of which the polar dual is
a non-integral vertex (−1,−1, 5/4). Since the complement of the set of lattice points
on edges of �F in those of �(88) are three points (−1,−3,−5), (1 − a,−2a,−3a)

with a = 1, 2, consider the following sections:
Case 1 Section spanned by (−1,−3,−4), (1, 0, 0), and (−1,−3,−5) has the polar
dual (−1, 2/3, 0), which is not integral.
Case 2 Section spanned by (−1,−3,−4), (0, 1, 0), and (1 − a,−2a,−3a) with
a = 1, 2 has the polar dual v = 1/(a − 4)(−4(a − 1),−(a − 4), 2a − 5). The
vertex v is a lattice point if and only if a = 1. Therefore, there are two possibilities:
�(88) or �2. The polar dual of �(88) contains a vertex (9,−1,−1). However, the
polytope �(25) does not contain the vertex. Therefore, �(88) cannot be a polar-dual.
It is directly checked that relations �F ′ ⊂ �′

2 ⊂ �(25) hold. Therefore, the pair
(�2, �′

2) is polytope-dual.
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5.18 No. 44

We claim that there exists a unique polytope-dual pair. Take a basis {e(n)
1 , e(n)

2 , e(n)
3 }

of lattices Mn for n = 7 and 64 by

e(7)
1 = (−1, 1, 0, 0), e(7)

2 = (−2, 0, 1, 0), e(7)
3 = (−4, 0, 0, 1),

e(64)
1 = (−1, 5,−1,−1), e(64)

2 = (0,−1, 2,−1), e(64)
3 = (−1,−1, 1, 0).

Define polytopes �1 and �′
1 by

�1 := Conv{(1, 0, 0), (0,−1, 1), (0, 0, 1), (−1, 2,−6)},
�′

1 := �(7) = Conv

{
(−1,−1, 1), (−1,−1,−1),
(7,−1,−1), (−1, 3,−1)

}
.

Since the polar dual polytope�∗
1 is the convex hull of vertices (−1, 2, 1), (−1, 0,−1),

(7, 0,−1), and (−1,−4,−1), and the linear map of R
3 determined by a matrix( 1 0 0

0 −1 0
0 1 1

)
gives an isomorphism from �′

1 to �∗
1, the relation �∗

1 = �′
1 holds.

TheNewton polytope of F , which is the convex hull of vertices (1, 0, 0), (0,−1, 1),
(0, 0, 1), and (−1, 2,−6), coincideswith�1. Since the complement of the set of lattice
points on edges of�F in those of�(64) consists of the only point (0, 1, 0), the possible
� is either �1 or �(64). The polar dual of �(64) contains a vertex (9,−1,−1), which
does not belong to �(7). Therefore, � = �1. It is directly checked that the polar dual
�∗ = �′

1 coincides with �(7). Therefore, the pair (�F = �1, �′
1) is polytope-dual.

5.19 No. 45

We claim that there exists a unique polytope-dual pair. Take a basis {e(n)
1 , e(n)

2 , e(n)
3 }

of lattices Mn for n = 35 and 66 by

e(35)
1 = (7, 0,−1,−1), e(35)

2 = (6,−1, 0,−1), e(35)
3 = (−1,−1,−1, 1),

e(66)
1 = (−1, 1, 0, 0), e(66)

2 = (−2, 0, 1, 0), e(66)
3 = (−3, 0, 0, 1).

Define polytopes �1 and �′
1 by

�1 := Conv{(0, 0, 1), (0, 1, 0), (2,−2,−1), (3,−4,−2), (−2, 2,−1)},
�′

1 := Conv

{
(−1, 1, 0), (0,−1, 1),
(−1,−1, 1), (−1,−1,−1), (6,−1,−1)

}
.

Since the polar dual polytope �∗
1 is the convex hull of vertices (−1,−1, 1),

(0,−1,−1), (−2,−1,−1), (−1, 0,−1), and (7, 6,−1), and the linear map of R3

determined by a matrix
( −1 −1 0

−2 −2 1
−4 −3 0

)
gives an isomorphism from �′

1 to �∗
1, the relation

�∗
1 = �′

1 holds.
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The Newton polytope of F , which is the convex hull of vertices (0, 0, 1), (0, 1, 0),
(3,−4,−2), and (−1, 1, 0), is not reflexive. Indeed, the polytope contains two faces
�1 spanned by (−1, 1, 0), (0, 1, 0), and (3,−4,−2), of which the polar dual is a non-
integral vertex (0,−1, 2/5), and �2 spanned by (0, 01), (0, 1, 0), and (3,−4,−2),
of which the polar dual is a non-integral vertex (−7/3,−1,−1). For �1, one has to
make a union of two sections by adding the vertex (−2, 2,−1). For �2, consider the
section spanned by (0, 1, 0), (0, 0, 1), and (2,−2,−1). The polar dual of this section
is (−2,−1,−1), which does not belong to �(66). Therefore, the only possibility is
� = �1. It is directly checked that �F ′ ⊂ �′

1 ⊂ �(35). Therefore, the pair (�1, �′
1)

is polytope-dual.

5.20 No. 46–No. 47

We claim that there exists a unique polytope-dual pair for Nos. 46 and 47. Take a basis
{e(n)

1 , e(n)
2 , e(n)

3 } of lattices Mn for n = 21, 30 and 86 by

e(21)
1 = (−1, 1, 0, 0), e(21)

2 = (−1, 0, 1, 0), e(21)
3 = (−2, 0, 0, 1),

e(30)
1 = (0, 4,−1,−1), e(30)

2 = (−1,−1, 4,−1), e(30)
3 = −(1, 1, 1,−1),

e(86)
1 = (4, 0,−1,−1), e(86)

2 = (3,−1,−1, 0), e(86)
3 = (0,−1, 2,−1).

Define polytopes �1, �′
1, �2 and �′

2 by

�1 := Conv{(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 1, 0), (2,−3,−1)},
�′

1 := Conv

{
(−1,−1, 1), (−1,−1,−1), (4,−1,−1),
(−1, 4,−1), (−1, 2, 0), (2,−1, 0)

}
,

�2 := Conv {(1, 0, 0), (0, 1, 0), (0, 0, 1), (−2,−2,−5)} ,

�′
2 := Conv{(−1,−1, 1), (−1,−1,−1), (4,−1,−1), (−1, 4,−1)}.

Since the polar dual polytopes�∗
1 and�∗

2 are the convex hulls of vertices (0,−1,−1),
(−1,−1,−1), (−1,−1, 2), (0,−1, 4), (5, 4,−1), (−1, 0,−1), res., (−1,−1,−1),
(−1,−1, 1), (4,−1,−1), (−1, 4,−1), and the linear map of R3 determined by a

matrix
( −1 −1 1

−1 −1 0
−3 −2 0

)
gives an isomorphism from �′

1 to �∗
1, the relations �∗

1 � �′
1 and

�∗
2 = �′

2 hold.
No. 46. The Newton polytope of F , which is the convex hull of vertices (0, 0, 1),
(0, 1, 0), (2,−3,−1), and (−1, 1, 0), is not reflexive. Indeed, the polytope �F con-
tains a face spanned by (0, 1, 0), (0, 0, 1), and (2,−3,−1), of which the polar dual is
(−5/2,−1,−1). Since the complement of the set of lattice points on edges of �F in
those of �(86) consists of the only (1, 0, 0), the only possible � is �(86) = �1.
It is directly checked that relations �F ′ ⊂ �′

1 = �(86). Therefore, the pair
(�(86) = �1, �′

1) is polytope-dual.
No. 47. The Newton polytope of F , which is the convex hull of vertices (1, 0, 0),
(0, 1, 0), (0, 0, 1), and (−1,−1,−2), is not reflexive. Indeed, the polytope �F con-
tains a face spanned by (1, 0, 0), (0, 1, 0), and (−1,−1,−2), of which the polar
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dual is (−1,−1, 3/2). Since the complement of the set of lattice points on edges
of �F in those of �(30) consists of the only (−2,−2,−5), the only possible � is
�(30) = �2. It is directly checked that relations �F ′ ⊂ �′

2 ⊂ �(21). Therefore, the
pair (�(30) = �2, �′

2) is polytope-dual.

5.21 No. 48–No. 49

We claim that there exists a unique polytope-dual pair. Take a basis {e(n)
1 , e(n)

2 , e(n)
3 }

of lattices Mn for n = 5, 56 and 73 by

e(5)
1 = (−1, 1, 0, 0), e(5)

2 = (−1, 0, 1, 0), e(5)
3 = (−3, 0, 0, 1),

e(56)
1 = (−1, 0, 2,−1), e(56)

2 = (−1,−1, 0, 1), e(56)
3 = (5,−1,−1,−1),

e(73)
1 = (−1,−1, 4,−1), e(73)

2 = (−1,−1,−1, 1), e(73)
3 = (5, 0,−1,−1).

In Kobayashi and Mase (2012), it is proved that the polytopes �(56) and �(73)

are isomorphic to the polytope �(56,73) with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1),
and (−1,−3,−1), under the above choice of basis. Let �1 be �(56,73), and �′

1 be
the polytope �(5) which is the convex hull of vertices (−1,−1, 1), (−1,−1,−1),
(5,−1,−1), and (−1, 5,−1). Since the polar dual polytope �∗

1 of �1 is the convex
hull of vertices (−1,−1,−1), (−1, 1,−1), (5,−1,−1), and (−1,−1, 5), and the

linear map of R3 determined by a matrix
(
1 0 0
0 0 1
0 1 0

)
gives an isomorphism from �′

1 to

�∗
1, the relation �∗

1 � �′
1 holds.

Nos. 48 and 49. In both cases, the Newton polytope of F , which is the convex hull
of vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), and (−1,−3,−1), coincides with �1. It is
directly checked that the Newton polytope of F ′ is a subpolytope of �′

1. Therefore,
the pair (�F = �1, �′

1) is the only polytope-dual.

5.22 No. 50

We claim that there exists a unique polytope-dual pair. Take a basis {e(n)
1 , e(n)

2 , e(n)
3 }

of lattices Mn for n = 1 and 52 by

e(1)
1 = (−1, 1, 0, 0), e(1)

2 = (−1, 0, 1, 0), e(1)
3 = (−1, 0, 0, 1),

e(52)
1 = (−1, 2,−1, 0), e(52)

2 = (−1,−1, 3,−1), e(52)
3 = (−1,−1,−1, 2).

Define polytopes �1 and �′
1 by

�1 := �(52) = Conv{(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1,−1,−1)},
�′

1 := �(1) = Conv{(−1,−1, 3), (−1,−1,−1), (3,−1,−1), (−1, 3,−1)}.

Since the polar dual polytope �∗
1 of �1 is the convex hull of vertices (−1,−1, 3),

(−1,−1,−1), (3,−1,−1), and (−1, 3,−1), the relation �∗
1 = �′

1 clearly holds.
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The Newton polytope of F , which is the convex hull of vertices (1, 0, 0), (0, 1, 0),
(0, 0, 1), and (−1,−1,−1), coincides with �1. Thus, � = �F = �(52) = �1
is the only possible reflexive polytope. The polar dual �′

1 coincides with �(1) and
thus the Newton polytope �F ′ of F ′ is a subpolytope of �′

1. Therefore, the pair
(�F = �1, �(1) = �′

1) is polytope-dual.

5.23 No. 51

We claim that there exist sixteen polytope-dual pairs. Take a basis {e(n)
1 , e(n)

2 , e(n)
3 } of

the lattice M32 by

e(32)
1 = (−1, 0, 3,−1), e(32)

2 = (0,−1, 3,−1), e(32)
3 = (−1,−1,−1, 1).

Define polytopes �i,a and �i ′,a with i = 1, 2 by

�1,a := Conv

{
(0, 0, 1), (1, 0, 0), (0, 1, 0), (−4, 3,−2),
(−a + 3, a − 4,−2), (2,−2,−1)

}
,

�1′,a := Conv

{
(0, 0, 1), (2,−2,−1), (0, 1, 0), (−2, 2,−1),
(−a + 3, a − 4,−2), (3,−4,−2)

}
,

�2,a := Conv

{
(0, 0, 1), (1, 0, 0), (−2, 2,−1), (−4, 3,−2),
(−a + 3, a − 4,−2), (2,−2,−1)

}
,

�2′,a := Conv

{
(0, 0, 1), (1, 0, 0), (0, 1, 0), (−2, 2,−1),
(−a + 3, a − 4,−2), (3,−4,−2)

}
,

where a = 0, 1, . . . , 7.

Since the polar dual polytopes �∗
1,a and �∗

2,a of �1,a and �2,a are respectively the
convex hulls of vertices (−1,−1, 1), (−1,−1,−1), (0,−1,−1), (3, 3,−1), (a −
1, a,−1), and (−1, 0,−1); and (−1,−1, 1), (−1,−2,−1), (0,−1,−1), (3, 3,−1),
(a − 1, a,−1) and (−1, 0,−1), and the linear map of R3 determined by a matrix( −1 −2 −1

0 −1 −1
−1 −1 1

)
gives an isomorphism from �′

i,a to �∗
i,a , the relation �∗

i,a � �′
i,a for

i = 1, 2 holds.
The Newton polytope of F = F ′, which is the convex hull of vertices (1, 0, 0),

(−4, 3,−2), (0, 0, 1), and (2,−2,−1), is not reflexive. Indeed, the polytope �F

contains a face spanned by (1, 0, 0), (0, 0, 1), and (−4, 3,−2), of which the polar
dual is a non-integral vertex (−1,−7/3,−1).

Since the complement of the set of lattice points on edges of �F in those of �(32)

consists of (2,−2,−1), (1, 0, 0), and (−a + 3, a − 4,−2) with a = 0, 1, . . . , 7,
it is clear that we just need to consider polytopes of form �1,a and �2,a with a =
0, 1, . . . , 7. And for each a, we can find a polytope-dual partner.

Therefore, the claims are verified. ��
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6 Closing Remarks

As ismentioned inEbeling (2006), almost allmirror symmetric pairs ofweight systems
in the sense of Belcastro (2002) are also strongly coupled. We would like to study not
only the full families of K3 surfaces, but families of K3 surfaces associated to reflexive
polytopes � and �′ obtained in Theorem 5.1. More precisely, it is interesting to study
a relation with a lattice duality (Dolgachev 1996) and the coupling.
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