
Psychonomic Bulletin and Review
https://doi.org/10.3758/s13423-020-01814-8

THEORETICAL REVIEW

The truth revisited: Bayesian analysis of individual differences
in the truth effect

Martin Schnuerch1 · Lena Nadarevic1 · Jeffrey N. Rouder2

Accepted: 5 September 2020
© The Author(s) 2020

Abstract
The repetition-induced truth effect refers to a phenomenon where people rate repeated statements as more likely true than
novel statements. In this paper, we document qualitative individual differences in the effect. While the overwhelming
majority of participants display the usual positive truth effect, a minority are the opposite—they reliably discount the validity
of repeated statements, what we refer to as negative truth effect. We examine eight truth-effect data sets where individual-
level data are curated. These sets are composed of 1105 individuals performing 38,904 judgments. Through Bayes factor
model comparison, we show that reliable negative truth effects occur in five of the eight data sets. The negative truth effect
is informative because it seems unreasonable that the mechanisms mediating the positive truth effect are the same that lead
to a discounting of repeated statements’ validity. Moreover, the presence of qualitative differences motivates a different type
of analysis of individual differences based on ordinal (i.e., Which sign does the effect have?) rather than metric measures.
To our knowledge, this paper reports the first such reliable qualitative differences in a cognitive task.

Keywords Individual differences · Qualitative differences · Truth effect · Hierarchical models · Bayesian model comparison

In the usual course of experimental psychology, we often
understand phenomena by computing the mean effect.
This mean effect may be used to compute effect sizes
or statistical tests, and the resulting inferences are about
the mean level in the population. In our view, this focus
on the mean makes sense when all people experience a
phenomenon in a qualitatively similar way. For example,
suppose we ask people to identify a briefly presented and
subsequently masked letter. In this case, increasing the
stimulus duration of the letter should affect every individual
in the same direction, namely that longer durations
correspond to better performance. It seems implausible in
fact for any person’s true performance to decrease with
increasing stimulus duration, and it is in this sense where
we can be almost sure that a phenomenon affects people
in a qualitatively similar manner, that recourse to the mean
seems judicious.
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What happens if a treatment affects different people
differently? A good example might be the effect of aspirin.
For most people, the drug aspirin safely relieves pain. Yet,
a minority of the population are allergic to aspirin, and for
these people the allergic reaction may be serious. In this
case, questions about the mean response seem unimportant.
Instead, the important questions are what proportion of the
population is allergic and what are the separate mechanisms
of pain relief and allergic reactions.

The question of whether the overall mean is useful
hinges on whether an effect is qualitatively consistent across
individuals. In the first example, it seems implausible that
increasing the stimulus duration of a briefly flashed and
subsequently masked object could decrease identification
for anyone. For this example, the average performance gain
as a function of stimulus duration seems a reasonable target
for inquiry. For the aspirin example, however, average gain
in pain relief seems far less helpful.

The key methodological question is how to tell if an
effect is qualitatively consistent across a set of participants.
Progress on this question has been made by Haaf and
Rouder and colleagues (Thiele et al., 2017; Haaf & Rouder,
2017, 2019). We will review their approach subsequently,
but for now, their research has yielded a startling finding.
When it comes to performance tasks, it seems that people
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don’t qualitatively differ. For example, nobody truly
responds quicker to incongruent items in Stroop, Simon,
or flanker tasks. Indeed, we are previously unaware of any
case where substantial qualitative differences appear in a
performance task. And this paper is the first we are aware of
that shows such differences.

In this paper, we explore individual differences in a
truth-judgment task. More precisely, the target of inquiry
is a popular psychological effect, the repetition-induced
truth effect. In a typical truth-effect task, participants rate
how likely it is that a particular statement is true. The
critical manipulation is repeating some statements, and
these repeated statements are more likely rated as true than
novel ones. The real-world impact of the truth effect is
obvious: If a lie is repeated, it is more likely to be believed.

The question we ask is whether all people are susceptible
to what we call a positive truth effect where repeated
statements are judged as more valid than novel ones. The
alternative is that some people have a true negative truth
effect where they tend to discount the validity of repeated
statements.

We find that researchers often stake out positions about
individual differences a priori, and believe them with a
surprising degree of confidence. One position we encounter
is what we call the arbitrary diversity hypothesis (Rouder
& Haaf, 2020). Accordingly, the human condition is so
diverse that there must be people who deviate in all
behaviors. Indeed, while it may be plausible to ascribe
stringent constraint in low-level cognitive behaviors such as
perception and attention, it seems far less plausible that such
constraint holds in high-level tasks like judging the truth
of a statement. Different people almost surely use different
processes, heuristics, anchors, and values in making such
judgments. Despite the intuitive appeal of the arbitrary
diversity hypothesis, we think it is a mistake to put too
much stock in it a priori. The reasons are because (a) it
is an empirical question, and (b) it precludes notions of
lawfulness and constraint. Moreover, even if we noticed
diversity in behavior, would we not be obligated to try to
find deeper invariances that are preserved? For example,
rational choice theory does this through expectation of
subjective utility. We might disagree on utilities, but we all
maximize our own. The arbitrary diversity hypothesis, if
taken as the last word, is throwing out the baby with the bath
water. We would prefer that researchers test this hypothesis
carefully in data, and that is our goal with the truth effect.

We analyze data from eight previous experiments
spanning 1105 participants and 38,904 trials. We show
to our surprise that in all the data sets where variation
is detectable, there are some people who have a reliably
negative truth effect. Most people show a positive truth
effect, but a small minority truly discount the validity of
repeated information.

The truth effect

Repeatedly encountering a piece of information is likely
to increase the subjective belief in its validity. This
phenomenon has been known—and used—for thousands
of years. Around 150 BC, the Roman politician Cato
reportedly concluded each of his speeches with the
same sentence: “Carthago delenda est” (Carthage must
be destroyed). It seems that he succeeded in convincing
the Roman Senate to approve of his proposition: In
146 BC, Carthage was destroyed. Cato’s strategy might
have resonated well with French military leader Napoleon
Bonaparte, who conquered large parts of Europe in the early
19th century. According to Bonaparte, “there is only one
figure in rhetoric of serious importance, namely, repetition”
(Le Bon, 1895, p. 125). Roughly 100 years later, Nazi
German Minister of Propaganda Joseph Goebbels made use
of this rhetorical device; “Repeat a lie often enough and
it becomes the truth”, is typically attributed to Goebbels
(Stafford, 2016).

The effect of repetition on the perception of a proposi-
tion’s truth is a well-documented phenomenon in experi-
mental psychology. In a seminal study, Hasher et al. (1977)
asked participants to provide truth ratings for trivia state-
ments in successive sessions. Critically, some of the state-
ments were repeated across sessions while others were
novel. The authors found validity ratings for repeated state-
ments to increase, independent of the statements’ actual
validity, while ratings for novel statements did not change.

Over the past 40 years, the truth effect has been
replicated numerous times (Dechêne et al., 2010; Unkelbach
et al., 2019). It has been shown to be robust across
different experimental designs, material, and instructions.
Even explicit warnings about the effect do not eliminate
it, but only reduce it (Nadarevic & Aßfalg, 2017). The
consequences of such a robust cognitive bias are evident:
If used strategically, repeated dissemination increases belief
even in false information (Unkelbach et al., 2019; Lazer
et al., 2018; Pennycook et al., 2018).

Meta-analytic results indicate that the truth effect is sta-
ble across studies, and is medium in size (Cohen’s d ≈
0.50; Dechêne et al., 2010). Consequently, the truth effect
has been well established for the average of individuals.
In contrast, we are aware of only a small number of pub-
lished studies on individual differences (Arkes et al., 1991;
Boehm, 1994; Brashier et al., 2017; De Keersmaecker
et al., 2020; Newman et al., 2020; Parks & Toth, 2006).
All of these studies assessed the covariation of individ-
ual truth effects and certain person-specific variables (e.g.,
age, need for cognition, and cognitive style). Yet, corre-
lational analyses do not address the main question here,
namely: Are individual differences only quantitative, or
qualitative?
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Quantitative differences occur if all participants provide
somewhat higher truth ratings for repeated than for novel
statements. We might reasonably assume a common process
underlying the effects in this case, and the mean might
even be an adequate representation for understanding this
process. The assumption is less reasonable, however, if
differences are qualitative, that is, if some participants were
to depreciate the validity of repeated statements. Indeed,
qualitative individual differences are precedented in the
domain of truth judgments (i.e., belief polarization; Cook &
Lewandowsky, 2016). Is it still the same process that leads
some people to increase their belief in repeated statements
and others to decrease it? If qualitative differences can be
shown, this has theoretical implications. A theory of the
truth effect would have to account for both the increase
and the decrease in beliefs due to repetition. Therefore, to
gain constraint on theory, a fundamental question in the
analysis of the repetition-induced truth effect is what Haaf
and Rouder (2017) coined the “Does everybody?” question:
Does everybody show a positive truth effect?

This fundamental question comes with a methodological
challenge: Even if we observe a negative truth effect for
some individuals, this observation might reflect sampling
noise rather than true qualitative differences. How do we
assess whether people truly differ and, if so, whether these
differences are qualitative? To answer these questions, we
follow the strategy proposed by Haaf and Rouder (2017,
2019). We develop a set of hierarchical Bayesian models
that represent different structures of individual differences.
By means of model comparison, we then directly assess
the evidence from data about the nature of individual
differences.

In the following, we provide a brief description of
the eight data sets that we reanalyze in this study. We
then develop the statistical models of individual-differences
structures and outline the procedure to quantify evidence for
these models. With model comparison, we find a surprising
result: Across many of the data sets, there is a small
proportion of individuals that show a negative truth effect.

Data sets

We reanalyzed eight data sets from previous truth-effect
experiments, all of which are publicly available from the
Open Science Framework (OSF).1 Six of the sets have
been published in peer-reviewed articles; two have been
published only on OSF. Detailed information about the data
and the experiments can be obtained from Appendix A.

1Set 1: https://osf.io/6wv4z/; Set 2: https://osf.io/3uaj7/; Sets 3 & 4:
https://osf.io/5pfa2/; Sets 5 & 6: https://osf.io/eut35/; Set 7: https://osf.
io/b4szp/; Set 8: https://osf.io/txf46/

All data sets are based on a common experimental
design with three phases. Phase 1 is the exposure phase:
Participants see a number of trivia statements and, typically,
assign each statement to a semantic domain (e.g., biology,
geography, sports) or rate each for interest. Phase 2 is a
retention interval, in which participants may perform an
unrelated task. This phase can range from a few minutes
to several days. Phase 3 is the critical judgment phase
where participants rate the validity of statements. Ratings
are typically given on a Likert scale, for example, from 1
(“definitely false”) to 6 (“definitely true”). Critically, half
of the statements have been presented during the exposure
phase and half are new. The truth effect is measured as the
difference between mean truth ratings for repeated and for
new statements, Mrep − Mnew.

For an overview of sample characteristics and results of
the eight data sets, see Table 1. For the sake of comparison,
we rescaled truth ratings to range from −1 (“definitely
false”) to 1 (“definitely true”). As a consequence, the
truth effect can range from −2 to 2. If all repeated
statements received truth ratings of 1 while all new were
rated as −1, the resulting truth effect would be 2. An
effect of −2, in contrast, would indicate a perfect reversal
of the truth effect. Zero represents the absence of any
effect.

Figures 1 and 2 (left columns) show the individual truth
effects in all eight data sets (black line). Individuals are
sorted by the size of their effect, going from the most
negative to the most positive. The red line indicates if the
individual effect is below 0, that is, negative observed truth
effects. The grey-shaded area surrounding the line denotes
95% confidence intervals. The average effect across all
people is given by the dashed horizontal line. In all data sets,
we observe considerable differences between individual
participants.

Statistical models

The main substantive question is whether individual
differences are quantitative or qualitative. Our strategy in
answering this question is to implement each of these
positions in statistical models, and then compare the models
in light of data with Bayes factors. The specific models
come from Haaf and Rouder (2017), and, consequently, we
provide only a brief overview here. Let Yijk denote the
truth judgment of the ith person (i = 1, . . . , I ) for the j th
statement (j = 1, . . . , J ) in condition k (k = 1, 2 for new
versus repeated, respectively). Note that not every statement
j is necessarily seen by each participant i. Consequently,
the data sets do not contain Yijk for every possible
combination of i, j , and k. This fact presents no problem in
analysis.

https://osf.io/6wv4z/
https://osf.io/3uaj7/
https://osf.io/5pfa2/
https://osf.io/eut35/
https://osf.io/b4szp/
https://osf.io/b4szp/
https://osf.io/txf46/
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Table 1 Summary of the data sets

Set Source N I Mean effect* t Test Cohen’s d

1 Nadarevic et al. (2012) 267 20 0.20 (0.34) t(266) = 9.47 0.58
2 Nadarevic and Rinnewitz (2011) 139 20 0.28 (0.36) t(138) = 9.16 0.78
3 Nadarevic and Aßfalg (2017), Exp. 1 33 88 0.11 (0.10) t(32) = 6.54 1.14
4 Nadarevic and Aßfalg (2017), Exp. 2 98 80 0.20 (0.23) t(97) = 8.61 0.87
5 Nadarevic and Erdfelder (2014), Exp. 1 85 88 0.05 (0.10) t(84) = 5.09 0.55
6 Nadarevic and Erdfelder (2014), Exp. 2 35 88 0.07 (0.17) t(34) = 2.51 0.42
7 Brashier et al. (2020), Exp. 1 52 120 0.09 (0.12) t(51) = 5.52 0.77
8 Pennycook et al. (2018), Exp. 1 396 20 0.14 (0.27) t(395) = 10.08 0.51

Note. N = Number of participants; I = Number of statements rated per participant; t values and degrees of freedom are based on paired t tests.
*Standard deviation is given in parentheses.
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Fig. 1 Observed (left column) and estimated (right column) individual truth effects for data sets 1–4, ordered by observed effect size. On the
left side, the shaded area denotes individual 95% confidence intervals. The dashed line represents average observed effects. On the right side,
the shaded area denotes the 95% credible interval. The grey line represents observed truth effects. Negative observed and estimated effects (i.e.,
higher truth ratings for novel than for repeated statements) are denoted by red color on both sides



Psychon Bull Rev

−0.5

−0.2

0.0

0.2

0.5

1 85Participants

O
bs

er
ve

d 
Ef

fe
ct

Set 5

Observed

−0.5

−0.2

0.0

0.2

0.5

1 85Participants

Es
tim

at
ed

 E
ffe

ct
 θ

i

Set 5

Model Estimates

−0.5

0.0

0.5

1.0

1 35Participants

O
bs

er
ve

d 
Ef

fe
ct

Set 6

−0.5

0.0

0.5

1.0

1 35Participants

Es
tim

at
ed

 E
ffe

ct
 θ

i

Set 6

−1.0

−0.5

0.0

0.5

1.0

1 52Participants

O
bs

er
ve

d 
Ef

fe
ct

Set 7

−1.0

−0.5

0.0

0.5

1.0

1 52Participants

Es
tim

at
ed

 E
ffe

ct
 θ

i

Set 7

−1.0

0.0

1.0

2.0

1 396Participants

O
bs

er
ve

d 
Ef

fe
ct

Set 8

−1.0

0.0

1.0

2.0

1 396Participants

Es
tim

at
ed

 E
ffe

ct
 θ

i

Set 8

Fig. 2 Observed (left column) and estimated (right column) individual truth effects for data sets 5–8, ordered by observed effect size. On the
left side, the shaded area denotes individual 95% confidence intervals. The dashed line represents average observed effects. On the right side,
the shaded area denotes the 95% credible interval. The grey line represents observed truth effects. Negative observed and estimated effects (i.e.,
higher truth ratings for novel than for repeated statements) are denoted by red color on both sides

We specify the following linear model on the dependent
variable:

Yijk
ind∼ Normal(μ + αi + tj β + xkθi, σ 2). (1)

In this model, μ denotes the grand mean intercept and αi

is a person-specific deviation from this grand mean. The
term tj codes the truth status of the j th statement, which
can either be 0 if it is false, or 1 if it is true. Hence,
β denotes the effect of a statement’s factual truth on the
judgment. The term xk codes the repetition condition, which
can either be 0 if the statement is new or 1 if it is repeated.
Consequently, θi denotes the ith individual’s truth effect,

and this parameter is the main target of inquiry. The last
term, σ 2, denotes the sampling variance of observed values.
The main theoretical positions about individual differences
motivate the following four models on θi :

Unconstrainedmodel

The unconstrained model, Mu, does not impose any
constraints on the individual effects. It may be used to
capture qualitative individual differences:

Mu: θi
iid∼ Normal(ν, δ2). (2)
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In this model, ν and δ2 denote the mean and variance
of individual effects. These group-level parameters are
estimated from the data.

Positive-effects model

The positive-effects model, M+, is less flexible. It only
allows for positive individual effects:

M+: θi
iid∼ Normal+(ν, δ2). (3)

The distribution denoted by Normal+ is a truncated normal
with a lower bound at zero.2 Thus, the model naturally
incorporates the constraint that individuals may differ but
they are all in the same predicted direction. Substantively,
this model implies that differences are quantitative, but not
qualitative.

Common-effect model

The critical specification in the common-effect model,M1,
is that all individuals share one common effect:

M1: θi = ν. (4)

Accordingly, there are no true individual differences in
the truth effect. Any observed variation would thus be due
to sampling noise.

Null Model

The final model is a null model,M0, where there is no truth
effect at all:

M0: θi = 0. (5)

Accordingly, any observed effects of statement repetition
are due to sampling noise.

Figure 3 (left column) illustrates the four models. On
the x-axis, the true effect of a hypothetical participant
is shown, θ1. On the y-axis, the true effect of a second
participant is shown, θ2. The null model specifies that both
effects are 0, thus, the model is represented by a point
at the origin. The common-effect model does not restrict
true effects to one value, but specifies that all individual
effects are identical. This is represented by the diagonal
line. No equality constraints are imposed in the positive-
effects model, but all true individual effects are defined as
larger than zero. Accordingly, θ1 and θ2 are free to vary in
the upper-right quadrant. Finally, the unconstrained model
puts no restrictions on individual effects; the model for the

2Note that some model parameters are labeled equivalently across
models. This is to indicate that these parameters carry the same
substantive interpretation (e.g., δ2 represents individual variability
both in the context ofMU andM+).
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Fig. 3 Illustration of the four models (left column) on θi and
corresponding predictions (right column) for two hypothetical
participants

two hypothetical participants is represented by a bivariate
normal centered at the origin.

Prior specification

We implement these models in the Bayesian framework,
and, as such, priors are needed on parameters. For some
parameters, those that are common in all four models, the
priors may be set without undue influence on the posteriors
or model comparison statistics. These specifications are
provided in Appendix B. For other parameters, however,
those that vary across models (θi , ν, δ2), prior settings are
important and are discussed here.

We follow the common g-prior specification approach
(Zellner, 1986), which is based on placing priors on effect
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sizes. The setup is described in detail in Haaf and Rouder
(2017) and Rouder et al. (2012). Let gθ be a signal-to-
noise ratio defined as gθ = δ2/σ 2. This is an effect-size
description of θ ; it describes how much true variability there
is across people relative to the variability in observations.
With this parameter, we may write θi ∼ Normal(ν, gθσ

2).
Priors are needed on ν and gθ . The prior on ν is also scaled
to the variability in observations: ν ∼ Normal(0, gνσ

2), and
there is a new parameter gν . Priors on these g parameters
are Inverse-χ2 distributions with one degree of freedom and
a scale parameter r2:

gν ∼ Inverse-χ2(r2ν ),

gθ ∼ Inverse-χ2(r2θ ).
(6)

Researchers need to set the scales of these priors before
the analysis. We advocate that doing so should rely on
substantive considerations rather than statistical arguments.
Here is our line of thought: In our experience, on a
standardized scale of −1 to 1, truth judgments’ trial-by-trial
variability covers about a quarter of the scale, that is, σ =
0.50. As a reference, on a scale from 1 to 6, this corresponds
to a standard deviation of σ = 1.50. When specifying r , it
is helpful to consider that it represents an expectation about
the variability of the parameter relative to σ . For example,
a value of rθ = 1 encodes the belief that the variability
of person-specific truth effects (i.e., δ) is comparable to the
trial-by-trial variability. Likewise, rθ = 1/2 or rθ = 2
represent the expectation that δ scales about half or about
twice as large as σ , respectively. Figure 4 illustrates the
effect of different choices of rθ . It shows the resulting

0 0.25 0.5 0.75 1
δ

rθ
2 1/16 1/4 1

Fig. 4 Prior distributions on δ, the variability of θi , for different scale
settings. A trial-by-trial variation of σ = 0.50 is assumed

prior distributions on the variability of θi conditional on a
trial-by-trial variability of σ = 0.50.

Based on this information, how do we choose the scale
parameters? The average truth effect is of medium size,
Cohen’s d = 0.50 (Dechêne et al., 2010). Assuming σ =
0.50, the expected observed effect on a rating scale of −1
to 1 is thus 0.25. We find it reasonable to expect that
the variability of this effect is of a comparable magnitude.
Therefore, we define the scales of our g priors on θi and ν

such that they place most weight on values around half the
trial-by-trial variability, that is, r2ν = r2θ = (1/2)2.

Model comparison

The models may be used to answer the main substantive
question about qualitative individual differences. One
approach is simply to estimate individual effects (θi) in
the full model. Yet, we think this approach is ultimately
unhelpful. The problem is that whether there are qualitative
differences between individuals is a global property rather
than an individual one. One may know that someone
must be negative without the ability to identify who.
Consequently, individual estimates are not helpful in
themselves. And population-level mean effects are not
helpful either as they do not address the distinction between
qualitative and quantitative individual differences. Hence,
the key to assessment here may be made with model
comparison and not with estimation.

A leading approach to model comparison in Bayesian
analysis is the Bayes factor (Jeffreys, 1935, 1961). Bayes
factors measure the relative strength of evidence for models
by comparing how well these models predict the data
(Rouder & Morey, 2017; Kass & Raftery, 1995). Figure 3
(right column) illustrates the predictions that the different
models make for observed data of the two hypothetical
participants. These predictions are noisy versions of the
structure on true values. The more flexible a model is,
that is, the fewer restrictions it imposes on the structure of
individual differences, the more diffuse are its predictions.
Hence, models are penalized for flexibility.

Analysis for the null model, the common-effect model,
and the unconstrained model have been developed by
Rouder et al. (2012). Their approach is implemented in
the BayesFactor package (Morey & Rouder, 2015) in R
(R Core Team, 2019), which allows for fast and accurate
calculation of Bayes factors for three of the four models.
This development, however, does not apply to the positive-
effects model. Therefore, we calculated the Bayes factors
between the positive-effects and the unconstrained model
using the encompassing prior method proposed by Klugkist
and colleagues (Klugkist & Hoijtink, 2007; Klugkist
et al., 2005). The combination of these two approaches is
straightforward (e.g., Haaf & Rouder, 2017, 2019).
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Evidence for qualitative differences

Model convergence

Posterior distributions for all parameters in the uncon-
strained model are obtained by Markov chain Monte Carlo
(MCMC) sampling within the BayesFactor package. We
checked model convergence by inspecting MCMC chains
and computing autocorrelations for critical parameters (i.e.,
ν, θ , gν , and gθ ). As in previous applications, the models
converged fast and the chains mixed well. The autocorre-
lations for even the slowest converging parameters were
inconsequential compared to the large number of posterior
samples (10,000).

Estimation

Individual truth effect estimates from the unconstrained
model for all eight data sets are shown in the right columns
of Figs. 1 and 2. The black line denotes the posterior
means of θi for each participant. The grey band around
this line is the 95% credible interval, that is, an interval
that contains 95% of the posterior samples. The grey line
represents observed individual truth effects and the ordering
is obtained from these observed values (see left columns).

The first aspect to note is the effect of the hierarchical
model specification on individual estimates. The effect is
called shrinkage: Individual estimates inform each other
and thus, outliers are pulled (shrunk) toward the mean.
This shrinkage is clearly visible in the estimates; there is
less variability than in the observed effects. Note that the
credible intervals are much smoother than the individual
confidence intervals of observed effects (left column),
reflecting regularization from the homogeneous variance
specification. The second aspect to note is that even
with the shrunk estimates, considerable true individual
differences remain. And the third aspect, perhaps the most
consequential, is that some of these shrunk estimates are
negative.

Model comparison

Table 2 summarizes the results of the Bayes factor model
comparison for the eight data sets. In each column, an
asterisk marks the preferred model, the one for which the
data provided the most evidence. The other cells in each
column show the Bayes factors between the remaining
models and this preferred model. Because these remaining
models are less preferred, the Bayes factors are always less
than one, mostly by many orders of magnitude.

In five data sets, we find strong evidence for qualitative
differences: In sets 1, 2, 4, 6, and 8, the Bayes factors in
favor of the unconstrained modelMu are at least 1000-to-1
over the next leading competitor. As Mu is the only model
that allows for qualitative individual differences, the Bayes
factors provide compelling evidence for them. In these data
sets, there must be some individuals with a true negative
truth effect.

In the remaining three data sets, in contrast, we do not
find evidence for this negativity. Interestingly, the preferred
model in sets 3, 5, and 7 is not M+, which allows for
quantitative individual differences. Instead, it isM1, which
specifies a common effect without individual differences.
In sets 3 and 5, there is strong evidence for the common-
effect model; the Bayes factors in favor of M1 are at least
three orders of magnitude over the next competitor. In set 7,
in contrast, the evidence is fairly ambiguous, indicating that
the data do not contain sufficient resolution to adjudicate
among the different models. In summary, whenever we find
individual differences, they are qualitative in nature rather
than quantitative.

We find strong evidence for these differences in five data
sets. In at least two, however, we find evidence against them.
How do these two data sets, sets 3 and 5, differ from the
others? Looking for a psychological explanation, we note
that in both sets the judgment phase was administered after
a 1-week retention interval, whereas it took place within one
experimental session in all other sets. If this difference was
systematic, the influence of retention-interval length could

Table 2 Bayes factor model comparison

Data set

Model 1 2 3 4 5 6 7 8

M0 3.4e-58 5.2e-57 4.6e-08 1.8e-124 9.2e-05 2.9e-07 4.3e-07 5.4e-41

M1 1.4e-20 1.1e-16 * 1.1e-49 * 6.1e-05 * 3.1e-09

M+ 1.2e-03 1.1e-03 2.4e-03 1.0e-03 1.6e-07 9.3e-04 2.3e-05 1.2e-03

Mu * * 2.2e-03 * 1.5e-04 * 2.0e-03 *

Note. The preferred model for each data set is indicated by an asterisk. Remaining cells contain Bayes factors for each model against the preferred
model.M0 = null model;M1 = common-effect model;M+ = positive-effects model;Mu = unconstrained model.
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tell us something about the nature of individual differences.
It is possible that differences in cognitive performance
(e.g., source recollection; Begg et al., 1992) rather than
personality underlie qualitative differences in truth effects,
and that these cognitive differences are affected for example
by the length of the retention interval. Alternatively,
however, there could be simple statistical reasons for this
result: Data set 3 is rather small, thus allowing for strong
influence of shrinkage and making it difficult to evidence
true individual differences should they exist. Therefore, we
should be careful not to overinterpret the results. Any post
hoc explanation should be addressed and critically tested in
future experiments.

Classifying individuals

Who are these individuals that depreciate the validity of
repeated statements? Posterior means, such as those in
Figs. 1 and 2, do not provide enough information for
classification because classification should depend on the
underlying variability. A better approach to classifying
individuals with truly negative truth effects is to assess the
posterior probability that an individual’s estimate is less
than 0.

Figure 5 shows the posterior probability of a positive
truth effect for each individual, that is, P(θi > 0|Data). The
red color denotes individuals with negative posterior means
of θi . To classify people, we may define a threshold denoting
a desired level of certainty. If the posterior probability that θi

is either positive or negative exceeds this threshold, we may
classify the individual accordingly. Figure 5 contains three
possible thresholds (denoted by the dotted lines) based on a
probability of 10-to-1, 3-to-1, and 2-to-1. For the purposes
of this article, we decided to classify individuals based on
a probability of at least 3-to-1. Individuals with P(θi >

0|Data) ≥ .75 are classified as positive truthers. In contrast,
individuals with P(θi > 0|Data) ≤ .25 are classified as
negative truthers. The remaining participants with .25 <

P(θi > 0|Data) < .75 are classified as undecided.
We acknowledge that the choice of a particular threshold

is somewhat arbitrary. For our choice, in those data sets
that showed strong evidence for qualitative individual
differences, 69.30% of all participants are classified as
positive truthers; only 1.28% are classified as negative
truthers, leaving 29.41% as undecided. In set 6, we cannot
define anyone as a negative truther with the desired level of
certainty. This result shows that finding differences based
on classification may be difficult even when a more global
approach—model comparison—yields strong evidence that
these differences exist.

A somewhat complimentary state-of-affairs occurs for
sets 3 and 5. We found strong evidence for the absence

of individual differences in these data sets. Yet, while
no individuals classify as negative truthers, we still find
22.88% to be undecided. Thus, classification may find
differences even when model comparison indicates that
these differences are unwarranted.

The two scenarios illustrate the difficulty with classifi-
cation: When we apply a classification approach, we may
classify individuals as different even when there are no true
individual differences. This state occurs because classifi-
cation is local to the individual, and as such, it is more
susceptible to noise than Bayes factor assessment of global
patterns. Conversely, we may know from the Bayes factor
global assessment that a set may have at least one individual
with a true negative effect. Yet, based on individual poste-
rior probabilities, it may be difficult to know which one that
is. Note that this conflict between conclusions drawn from
a classification approach and those from model comparison
remains regardless of the particular classification threshold
(see Fig. 5).

The aim of this paper is the global assessment of
individual difference patterns in truth-effect experiments.
If our overriding goal was to classify people, we could
construct a latent-class classification model. In such a
model, the normal in the unconstrained model could be
replaced with a mixture of two states. One state would
cover the positive truthers; and the distribution would be
limited to positive true values. The other would cover the
negative truthers, and the distribution would be limited
to negative true values. If there is little mass toward
zero, the model would have the effect of cleaving people
clearly into two groups. A good example here is Houpt
and Fifić (2017), who used this latent-class approach to
classify people as using either serial or parallel processing
in a systems factorial setting. The development of such a
model is beyond the scope of this paper, but may prove
useful in understanding the relationship between individual
differences in the truth effect and other variables.

Prevalence of qualitative differences

Instead of classifying individuals, we may take a more
global perspective and ask how prevalent the negative truth
effect is. To that end, we are no longer interested in who the
negative truthers are, but rather how large the proportion of
negative truthers in the population is. In the unconstrained
model, we defined θi ∼ Normal(ν, δ2). Based on posterior
estimates for ν and δ2, we can thus estimate the area of this
distribution that is below 0. This area represents an estimate
for the prevalence of qualitative differences, that is, the
expected proportion of negative truthers in the population.

A posterior estimate of this probability may be obtained
using the MCMC outputs. For each posterior sample of ν
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Fig. 5 Individual posterior probabilities of a positive truth effect. Participants are ordered by observed effect size. The red line denotes individuals
with negative posterior means (see Figs. 1 and 2)

and δ2, we obtain a posterior sample for the proportion of
negative truthers. These samples converge to the appropriate
posterior distribution, and the mean serves as a suitable
estimate. Figure 6 shows the posterior mean and 95%
credible interval for data sets 1, 2, 4, 6, and 8. The expected
proportion is around .20 in all sets and the lower limit
of all credible intervals is well above 0. This estimate is
compatible with the model comparison results for these

data sets, which yielded strong evidence for qualitative
individual differences.

The analysis indicates that, given that there are quali-
tative individual differences, we can expect a substantial
proportion of individuals to show a negative truth effect.
This notwithstanding, we caution the reader not to over-
interpret these results. One issue that is present is an
undue dependency in this calculation on prior settings. The
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Fig. 6 Posterior means and 95% credible intervals for the proportion
of negative individual effects

problem manifests on the prior of gθ . The Inverse-χ2 dis-
tribution has no mass on small values (see Fig. 4, lower
tail), and as a result, values of θi may spread to a larger
degree than is compatible with the data. We find that while
the probability estimates are robust to different values of the
prior scale r2θ for data sets with demonstrable individual dif-
ferences (data sets 1, 2, 4, 6, and 8; see Fig. 6), they are
unduly dependent on r2θ when there is a lack of resolution to
detect such differences (data sets 3, 5, and 7).

Sensitivity to prior settings

The Bayesian analysis presented herein requires the analyst
to set the prior scale r2 on the signal-to-noise ratio g.
The dependence of Bayesian analysis on prior settings is
frequently criticized as posing a threat as it provides for
uncounted researcher degrees of freedom (Simmons et al.,
2011). Indeed, it seems reasonable to require that for the
same data set, different researchers should reach the same
conclusions. Yet, almost all Bayesians note that priors have
effects on inference. To align Bayesian inference with the
above desideratum, many Bayesian analysts actively seek
to minimize the effects of prior settings (e.g.,Aitkin, 1991,
Gelman et al., 2004, Kruschke, 2013, Spiegelhalter et al.,
2002).

We do not subscribe to the view that minimization
of prior effects is necessary or even laudable. In fact,

all reasonable statistical procedures that we are aware of
require the researcher to make decisions that will affect the
inference (e.g., choosing the sample size). The choice of
prior settings is important because it affects the predictions
that models make about data. Therefore, these settings that
affect the predictive accuracy of a model should affect our
opinions about it in light of data.

Thus, when different researchers use different priors,
they may reach different opinions about the data. Rouder
et al. (2016) argue that so long as various prior settings are
justifiable, the variation in results should be embraced as
the legitimate diversity of opinion. When reasonable prior
settings result in conflicting conclusions, we may infer that
the data do not afford the precision to adjudicate among
competing positions.

With this argument in mind, we may assess whether
reasonable variation in prior settings affects Bayes factor
conclusions about the nature of individual differences in the
truth effect for the current data. To that end, we repeated
the above analysis with a number of different prior settings.
The critical settings are rν and rθ , which code the scale of
effects. In the original analysis, we set rν and rθ to 0.50 in
value, meaning that we expected the variation in ν and θ to
be about half the variation in repeated observations. Here,
we allow each of these settings to be this value, half this
value, and twice this value; and the factorial combination
yields nine possible settings (see Table 3). We computed the
Bayes factors for all models for all nine settings for all data
sets to understand how reasonable variation in prior settings
affects inference.

For seven of eight data sets, model comparison was
unaffected by reasonable variation in prior settings. As an
illustration, the results for two data sets are depicted in
Fig. 7. The figure shows the Bayes factors for all models
relative to the preferred one in the previous analysis. On
the right is data set 7, the most concerning. Here, the
common-effect model is preferred only by a negligible
amount depending on the prior setting, indicating a lack of
a clear verdict between the models. This lack of resolution
holds only for this data set. The left panel shows the case
for data set 6, and we chose this set because, outside of
data set 7, Bayes factors were most dependent on prior
settings. Even so, the unconstrained model is preferred over

Table 3 Prior settings for sensitivity analysis

Prior setting

Parameter A B C D E F G H *

rν 1/4 1/4 1/4 1/2 1/2 1 1 1 1/2

rθ 1/4 1/2 1 1/4 1 1/4 1/2 1 1/2

Note. The asterisk codes the prior setting used in the previous analysis.



Psychon Bull Rev

0

−2

−4

−6

−8

−10

A B C D E F G H *

Prior Setting

O
rd

er
 o

f M
ag

ni
tu

de

Set 6
0

−2

−4

−6

−8

−10

A B C D E F G H *

Prior Setting

O
rd

er
 o

f M
ag

ni
tu

de

Set 7

Null Common Positive Unconstrained

Fig. 7 Sensitivity of Bayes factor model comparison to different prior settings. Shown are Bayes factors for each model against the preferred
model. The asterisk denotes the prior setting used in the previous analysis. Details for each prior setting are shown in Table 3

all other models by at least a factor of 100 across the
range of reasonable prior settings. In the remaining data sets
(not shown), there is even more stability of Bayes factors
across the ranges. Hence, across reasonable variation in
prior settings, data sets 1, 2, 4, 6, and 8 show strong evidence
for qualitative individual differences. In a similar fashion,
the common-effect model is clearly preferred for all prior
settings in data sets 3 and 5. Overall, the results presented
here are robust to a wide range of reasonable prior opinion.

General discussion

In this paper, we show a surprising finding. Although the
truth effect is reliably obtained across many data sets,
the effect itself is inconsistent across people. We are
confident that in most experiments some people truly judge
repeated statements as more valid than novel ones, while
others truly judge them as less so. This effect is not just
noise—the models indicate that this inconsistency occurs
above and beyond trial-by-trial variation. What makes the
finding surprising to us is that the result is in contrast to
previous work with these individual-difference models. The
modal result is that “everybody does”, that is, there are
no qualitative individual differences in common cognitive
effects such as Stroop and Flanker effects (Haaf and Rouder,
2017, 2019). In the repetition-induced truth effect, these
differences exist, and they occur consistently across several
data sets.

Does the presence of qualitative individual differences
inform current cognitive theories of the truth effect? We
think it should. A number of theoretical explanations have
been proposed for the repetition-induced truth effect, for
example, the recognition account (Bacon, 1979), the source-
dissociation hypothesis (Arkes et al., 1991), the familiarity

account (Begg et al., 1992), processing fluency (Reber &
Schwarz, 1999), or the referential theory (Unkelbach &
Rom, 2017). These accounts assume different underlying
cognitive mechanisms, yet, they all make the same
core prediction: repetition increases perceived validity.
Unkelbach et al. (2019) summarize thusly: “No matter
which mental processes may underlie the repetition-induced
truth effect, on a functional level, repetition increases
subjective truth” (p. 5). We argue, based on our analysis,
that this statement is too general. In fact, we show what
Davis-Stober and Regenwetter (2019) call the paradox of
converging evidence: Across data sets, we find converging
evidence that the statement holds on the mean level—
yet, at the same time, we accumulate strong evidence that
it doesn’t hold for everybody. Consequently, our results
present converging evidence against theoretical positions
that do not account for negative truthers.

This paper constitutes a first step by providing an
answer to the fundamental question if there are qualitative
individual differences in the truth effect. Having established
such differences, the next step is to understand why
they occur. One salient finding in this domain is that
the overall truth effect can be reversed, that is, made
negative, by certain experimental manipulations. Unkelbach
and colleagues started with the proposition that easy-to-
process statements are naturally more likely to be true
(Unkelbach, 2007; Unkelbach & Stahl, 2009; see also
Reber & Unkelbach, 2010; Unkelbach, 2006). In a set
of creative experiments, these researchers reversed the
correlation between fluency and truth, making difficult-to-
read statements more likely to be true. With this correlation
reversed, they observed a negative truth effect, that is,
repeated statements, which are easier to process than novel
statements, were now judged more likely to be false (but see
Silva et al., 2016). One wonders if some participants have
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learned in their natural environment that ease-of-processing
correlates with falseness, thus resulting in the observed
qualitative individual differences.

Likewise, differences in memory ability might account
for some of the individual differences patterns. We are
most intrigued by the finding that there was evidence
against individual differences in data sets where the
interval between exposure and judgment lasted several
days. Why would individual differences be attenuated or
absent with increasing retention intervals? We suspect such
a finding reflects an explicit memory-based effect (i.e.,
source recollection or memory for presented statements). As
overall memory performance declines with increasing delay
between exposure and judgment phase, these differences
may diminish and, correspondingly, individual differences
in the truth effect may disappear.

These post hoc explanations presented above are of
course speculative. They form hypotheses to be addressed
in future research. Based on our results, a promising way to
examine the underlying mechanisms and possible covariates
of individual differences in the truth effect is with a latent-
class approach. Unlike correlational approaches, it relies on
ordinal (i.e., In which direction is the effect?) rather than
metric (i.e., How large is the effect?) measures. Given the
strong evidence for qualitative individual differences in the
majority of data sets, questions about who differs, when they
differ, and why they differ are suitable to test and inform
theories of the repetition-induced truth effect.
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Appendix A: Description of data sets

Set 1

Set 1 contains data from an unpublished study by Nadarevic
et al. (2012) on the association of personality traits and
the truth effect. In this web-based study, participants were
presented with 20 trivia statements, half of which were
true, and half were false. Participants were informed that
statements could be either true or false, and asked to assign
each to one of five knowledge categories. In a subsequent
phase, participants completed a number of personality
questionnaires. Finally, participants were again presented
with 20 trivia statements and asked to provide a truth rating
on a scale from 1 to 5 for each statement. Ten of these
statements had been presented in phase 1, the other ten
statements were new. In total, 267 participants completed
the study. Mean truth ratings for repeated statements were
higher than for new statements, Mrep − Mnew = 0.20 (SD

= 0.34). A two-sided t test for paired samples revealed a
significant truth effect, t (266) = 9.47, p < .001, Cohen’s
d = 0.58.

Set 2

Data set 2 is from Nadarevic and Rinnewitz (2011). In
the exposure phase, participants were asked to assign
20 unknown trivia statements to one of five knowledge
categories. After completing a personality questionnaire in
the retention phase, participants were asked to provide truth
ratings for 20 statements on a scale from 1 to 5. Ten of
these statements were repeated from the exposure phase,
the others were new. As an experimental manipulation, one
group of participants was instructed to respond intuitively,
while the other was asked to think carefully about each truth
judgment. This manipulation did not have any systematic
effect on truth judgments, however. Therefore, we did not
include the factor condition in the analysis. The total sample
comprised 139 participants. On average, truth judgments for
repeated statements were higher than for new statements,
Mrep − Mnew = 0.28 (SD = 0.36). This difference is
statistically significant, t (138) = 9.16, p < .001, Cohen’s
d = 0.78.

Set 3

Data set 3 is based on Experiment 1 in Nadarevic and
Aßfalg (2017) who investigated the influence of warnings
on the truth effect. For the analysis, we only included data
from the control group, which received standard instructions
and no warnings. The sample comprises 33 students who
participated in the lab-based study. In phase 1, participants
assigned 98 statements (including ten buffer statements) to

https://github.com/PerceptionAndCognitionLab/hc-truth/tree/public
https://github.com/PerceptionAndCognitionLab/hc-truth/tree/public
http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
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knowledge categories. After a 1-week retention interval,
they returned to the lab and provided truth statements on a
scale from 1 to 6 for 44 statements from phase 1 and 44
new statements. Truth statements for repeated items were
significantly higher than for new statements,Mrep−Mnew =
0.11 (SD = 0.10), t (32) = 6.54, p < .001, Cohen’s
d = 1.14.

Set 4

For set 4, we used data from Nadarevic and Aßfalg’s
(Nadarevic & Aßfalg, 2017) Experiment 2. It was identical
to the first experiment with the exception that the exposure
phase was directly followed by the judgment phase and
participants rated 80 statements, half of which were
repeated. As in the previous data set, we only included
the control condition in the analysis. The set contains 98
participants. On the mean level, there is a significant truth
effect: Mrep − Mnew = 0.20 (SD = 0.23), t (97) = 8.61,
p < .001, Cohen’s d = 0.87.

Set 5

Data set 5 is based on Experiment 1 reported in Nadarevic
and Erdfelder (2014). The authors investigated the influence
of phase 1 task and retention interval between exposure
and judgment phase on the truth effect. Unlike in the
previous experiments, participants were asked to rate the
statements’ validity already in phase 1. In two subsequent
truth-judgment phases, participants rated the statements
again: One was administered after 10 min (phase 2), another
one after 1 week (phase 3). Half of the statements from
phase 1 were repeated in phase 2, the other half was repeated
in phase 3. Truth judgments in phase 1 and a retention
interval of several days is a commonly used setting in truth-
effect experiments (e.g., Hasher et al., 1977). In contrast,
rating the statements’ truth in phase 1 and again after a short
retention interval does not lead to a truth effect. Therefore,
we only included truth judgments from phase 3 in the
analysis. The sample comprised 85 participants and 88 truth
judgments on a scale from 1 to 6 per participant. Analysis of
mean truth ratings for repeated and new statements revealed
a significant truth effect: Mrep − Mnew = 0.05 (SD = 0.10),
t (84) = 5.09, p < .001, Cohen’s d = 0.55.

Set 6

Set 6 contains data from Experiment 2 in Nadarevic and
Erdfelder (2014). Participants were assigned to one of two
experimental conditions. In one condition, as in Experiment
1, participants rated the truth of each statement in phase 1.
In the other condition, participants assigned the statements
to knowledge categories. After a 10-min retention interval,

participants in both groups provided truth statements for 88
statements, half of which were repeated from phase 1. We
only included data from the category-rating condition in the
analysis. The sample comprised 35 participants. Average
truth ratings for repeated statements were significantly
higher than for new statements, Mrep −Mnew = 0.07 (SD =
0.17), t (34) = 2.50, p = .017, Cohen’s d = 0.42.

Set 7

Data set 7 is based on Experiment 1 reported in Brashier
et al. (2020). Similar to Nadarevic and Erdfelder (2014)
Experiment 2, participants initially rated 60 statements
either for truthfulness or for interest on a scale from 1 to 6.
In the judgment phase, they provided truth ratings for these
statements and 60 additional statements. We included the
data from the interest-rating condition in the analysis. The
data set contains 52 participants. The average difference in
truth ratings wasMrep−Mnew = 0.09 (SD = 0.12), revealing
a significant truth effect: t (51) = 5.52, p < .001, Cohen’s
d = 0.77.

Set 8

For the last data set, we included data from Experiment
1 reported in Pennycook et al. (2018). Participants rated
the interestingness of 14 trivia statements in the first
phase. After a short retention interval, participants rated
the same statements and 14 additional statements in terms
of truthfulness on a scale from 1 to 6. Eight of these 28
statements were likely to be known by all participants, the
other 20 statements were largely unknown. In the reanalysis,
we included truth ratings for the 20 unknown statements.
We excluded 13 participants due to missings that occurred
during the judgment phase. The final data set comprises
396 participants. On average, truth judgments for repeated
statements were higher than for new statements, Mrep −
Mnew = 0.14 (SD = 0.27), revealing a significant truth
effect: t (395) = 10.08, p < .001, Cohen’s d = 0.51.

Appendix B: Prior specifications

The parameters αi , β, μ, and σ 2 are common to all models.
We place a noninformative and scale-invariant prior called
Jeffreys prior (Jeffreys, 1961) on the non-effect parameters
μ and σ 2:

π(μ, σ 2) ∝ 1

σ 2
. (7)

Priors on the remaining parameters are defined as
functions of σ 2, the variance of the observed variable. We
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specify the following prior for person-specific intercepts

αi
iid∼ Normal(0, gασ 2),

gα ∼ Inverse-χ2(r2α).
(8)

We expected the variability in people’s individual
baselines to be about twice as large as the inter-trial
variability. Therefore, we set r2α = 22. Note that the inverse-
χ2 distribution has a heavy tail and, given sufficient data,
will be overruled if the observed variability is larger than
expected.

We apply a similar reasoning to the effect of factual truth,
β. We define

β ∼ Normal(0, gβσ 2),

gβ ∼ Inverse-χ2(r2β),
(9)

and set r2β = 22. Sensitivity analyses revealed that results

did not differ meaningfully for any choice of r2α, r2β ∈
[0.25, 16].
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