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1. The Representations of U( V, W) 

If V and W are two separable Hilbert spaces, U(V, W) is defined to be subgroup of 
GL(V @ W), the group of all invertible bounded operators of the Hilbert space V @ W, 
which leaves the Hermitian form defined by the operator 

on V ~ W invariant. 
Thus A e U(V, W), if and only if J A * -  i j - x  = .4. With respect to the decomposition 

V ~ W let A be expressed as 

:). 
Then A e U(V, W) if and only if 

a a * - b b * = l  a * a - c * c = l ,  

d d * - c c * =  1 d ' d - b ' b =  1, 

a c * - M * = O  a * b - c * d = O .  

In particular, a and d are invertible operators. Therefore, ,4 can be expressed as a 
product 
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Let Urcs(V, IV) be the subgroup of U(V, IV) consisting of these elements 

for which b: W--* Vand c: V--. Ware Hilbert-Schmidt operators. Since the Hilbert- 
Schmidt operators form a two-sided ideal in the space of the bounded operators, 
Ur,~(V, W) is a subgroup of U(V, W). Now 

d- lcc*d*- 1 = 1 - d-  ld*- l and d*- lb*bd- 1 = 1 - d*- td-  1. 

Therefore, two inequalities must hold 

IId-lcll < 1 and Ilbd-tll < 1. 

Consider two elements A1 and A2 of Ur,,(V, W) and the third element A 3 = AIA2 with 

(ai bi'~ i = 1 , 2 , 3 .  Ai 
c~ ,iJ' 

Then d~ l d3d ~ ~ = 1 + d~ ~ cxb2d ~ 1 is of the form 1 + traceclass, which guarantees the 
determinant of d?Xdad~ ~ to be defined. The inequalities Ird~-XCxlJ < 1 and 
IIb2d~- 1 II < 1 show that det(d[ ld3d ~ 1) cannot be zero. 

Then c(Ax, A2):= det-l(d? ld3d ~ 1) is a cocycle, which induces a central extension 

Llr,s(V, W):= { ( ( :  ~ ) , z ) , w i t h z ~ = d e t ( 1 - d * - X b * b d - ~ ' }  

of Ur¢s(V, W). Indeed by direct calculation one shows 

c(A1, Az)c(A1A2, A3)  = c(A1, AzA3)c(A2, A3) 

for arbitrary elements A1, A2, A3 of U~¢s(V, W). 

1.1. Remark. If W is finite dimensional, the cocycle is induced by the function 

on U(V, W) and, therefore, is trivial. Due to the symmetry of U(V, W) in V and W the 
same is true, if V is finite dimensional. So in these cases it is not necessary to consider 
central extensions of U(V, W). 

The subject of this section is the discussion of the unitary lowest weight 
representations of Urcs(V, IV), namely the irreducible components of the k-fold tensor 
product of the so called 'Segal-Shale-Weil representations' [1]. In the finite 
dimensional case, all results are known, however, not with those algebraic methods 
which will be used in this note. 

In the infinite dimensional case, we first define a representation of the correspond- 
ing Lie algebra and then we show that this representation may be lifted to a 
representation of the group. 
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For any Hilbert space H let L(H) denote the Lie algebra of bounded operators of H 
and C(H) the subalgebra of all compact operators of H. Let Lres(V , 140 denote the 
subalgebra of L(V ~b W), which consists of elements of the form 

b and c being Hilbert-Schmidt operators. Let Ax and A 2 be two elements of 
Lres(V, W), written again as 

cl dl,]' c2 dz " 

The cocycle y(A1, A2):= tr(czb ~ -Clbz)  induces a central extension Lr~s(V, W) of 
L,~s(v, w). 

1.2. Remark. On the Lie algebra level it is obvious, that if either V or W are finite 
dimensional then the cocycle y is a boundary and therefore trivial. Indeed, if V is finite 
dimensional, it is the boundary of the functional 

(~ ~) ---, tr(a) 

and if W is finite dimensional, it is the boundary of the functional 

( :  ~) ---, - tr(d), 

because tr(b~cz- b2cl)= - t r ( c l b z -  c2b~) holds and the trace of a commutant is 
zero. 

The 'Segal-Shale-Weil representation' is in some sense the transformation of the 
canonical representation of the Lie algebra L(H) for some Hilbert space H on the 
vector space of the symmetric algebra over this Hilbert space. So let us first consider 
this representation. 

Let H be a separable Hilbert space. Let S"(H) denote the Hilbert space completion 
of the vector space of n-powers of the symmetric algebra of H with the Hermitian 
form: 

(hlh2"' "h,, h'~h'2""h',) = ~ I-I (h,,~,), h',), 
o i = l  

where the sum is over all permutations a of (1, 2 . . . . .  n). 
Define S(H):= O.~S"(H)  endowed with the final topology defined by the 

inclusions i.: S"(H) ~ S(H). Let S(H) be the Hilbert space completion of,~(H). Let S(H) 
be I-I. S"(H) with the initial topology defined by the projections p.: S(H) --* S"(/-/). S(H) 
and S(H) are the antilinear dual spaces of each other and ~(/-/) ~_ S(H) ~_ S(H) with 
continuous and dense inclusions. 
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For any h ~ H let a*(h): S(H) ---} S(H) denote the continuous operator of multiplica- 
tion with h. This operator is, of course, also a continuous operator on ~(/-/). So the 
adjoint of this operator a(h) is a continuous operator on both S(H) and ~(H). It is well 
known that they obey the following commutation relations 

[a*(h), a*(h')] = 0 = [a(h), a(h')] 

[a(h), a*(h')] = (h, h ')l .  

The operators a*(h) and a(h) can be used to construct the canonical representation of 
L(H) on S(H). Let {hi}ie~ be any orthonormal basis of H. For any operator aEL(H) 
set 

dF(a) := .~. a*(hi)a(hj)(h i, ahj). 
t,J 

This sum converges only pointwise, dF(a) does not depend on the choice of the 
orthonormal basis, because a*(h) is linear in h and a(h) is antilinear in h. dF(a) maps 
S"(H) into S"(H) and the norm of this map is smaller than nllall. Therefore, dF(a) is 
continuous on S(H) and ~(n). 

Let us now construct the representation of £,res(V, I40. We denote by I~ the 
corresponding antilinear Hilbert space of W and for all w e W by # the corresponding 
element of • Choose two orthonormal basis {vi}i~ and {wi}i~N of V and W 
respectively. Now a representation di ~ of Lres(V, W) on S(V@ I~) and S(VE)I~) 
respectively is defined by 

:= ~., a*(vi)a(vj)(vi, av j ) -  
i , j  

- ~  a*(fvi)a(Fvj)(wi, dwi) + 
i , j  

+ ~_, a*(Fvi)a*(vj)(vj, bwi) -  
i,./ 

- Z  a(v,)a(;vj)(wi, cv,) + z 1. 
i , j  

This sum converges only pointwise, a and d are bounded operators, hence 

a ((0 
is continuous, b and c are Hilbert-Schmidt operators, hence 

is continuous. Because of the linearity of a*(v) and a(;v) and the antilinearity of a(v) and 
a*(#) in v and w, respectively, dF does not depend on the choice of the orthonormal 
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basis. For all Hilbert-Schmidt operators b: W ~  V we will also denote the element 
Ei.jvi ® ~v~(vi, bw~) of SI(V) ® S1(I7¢) by b. Then 

((; ;)0) 
is represented by the operator of multiplication with b and 

((0 c :)0) 
is represented by the adjoint operator of multiplication with -c* .  The diagonal 
elements 

((; 
are represented by the canonical representation of a minus the canonical represen- 
tation of d t plus z times the identity. If b and c are finite rank operators direct 
calculation shows dF to be a representation. By continuity, it follows that dF is a 
representation of E~(V, W) (see A. Carey and S. Ruijsenaars I-2]). 

1.3. Remark. This representation could be thought of as the transformed canonical 
representation of Lres(V, W) on S(Vt~ W). However, the transformation: 

a*(w) ~ -a(Cv) and a(w) ---, a*(~v) 

is not defined on elements of the form 

(0 ° 0) 
of Lr,(V, W), if d is not of trace-class. Thus renormalisation makes it necessary to 
consider the central extension L~,~(V, W) of L,~(V, IV). 

We will prove now that dr" can be lifted to a representation of tTre~(V, W). The 
elements of this group can be thought of as linear symmetries of the free Boson fields 
over V~  I~. Under this point of view, the question arises which symmetries can be 
implemented into a given representation of the canonical commutation relations 
(CCR) corresponding to this free Boson fields. There is an extensive literature on this 
question (see, for example, [3-5]). For all bounded operators 

whose component d is invertible and for all z e U(C), the product decomposition 

,c 
1 1)( a-bd-O :)(d:Ic ~) 
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determines completely the representation map 

~((: :)z) 
:=exp(dF( ( :  bdo'), O))F((a-bJ -lc :), z)exp(dI-'((dO, c :),0). 

The middle component is defined to be the canonical representation of a - bd-lc 
times the canonical representation of dr- 1 times z. 

is a continuous operator on ~(VG frO, which intertwines with dF by 

C :),) ~'C: ::)z) 
=dr ' ( (~ O~(a' b'~(1 tr(cb')) 1). 

Note that 

is a continuous operator on both S(V~ g/) and S(V@ frO, which intertwines with dF 
by 

=d~((O O~(a' b'~(a -~ 0 z). 

Here 

is a continuous operator on S (V~  if'), which intertwines with d~" by 
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1.4. LEMMA 

exp(a ((  °)) 
is a continuous operator from S(V~ I711) into S(V~ I~') if Ilbll < 1. 

is a continuous operator from S(VO 17V) into S(V~) I~),/f Ilcll < 1. 

Proof. Let x • SP(V) ® Sq(VV) and x' • SP'(V) ® Sq'(I~) be two elements of S(V~) I~'). 
By definition of the Hermitian product it follows that 

For all Hilbert-Schmidt operators b: W ~  V let b also denote the element 
Ei,~ vi ® f~j(vi, bwj) of S(VO W). The inequality above implies 

Let pn(b*b) be the sum of the nth powers of the eigenvalues of b'b, pn(b*b) = tr((b*b)') 
and for each partition 2 p~(b*b), the corresponding polynomial in such power sums 
(see Macdonald [6]). By a combinatorial calculation (l/n!)2(b ", b ~) is equal to 

z; lP~(b*b) = h~(b*b), 
141 =n 

the nth complete symmetric function in the eigenvalues of b*b. Set fl for 

1 
iibll2 tr(b*b). 

Then the inequality p~(b*b) <. flllbll 2~ is obvious. This implies 

h'(b*b)<~( fl+n)n ''b''2~ 

and, finally, 

p p + q 1 --  Ilbll 2 ]  (x, x). 
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This shows the first part of the lemma. The operators of the second part are just the 
adjoint operators of the operators in the first part. This completes the proof. [] 

Now in the product decomposition of F the first factor can either be an operator of 
~:(V@ I~) or an operator from S(V(9 I710 into S(V~ gO, the second factor can be an 
operator of ~(V~ if') or an operator of ~(V0) l/T/), and the third factor can be an 
operator from ~(V~ if') into S(V~ fir) or an operator of S(V~ I~). Thus, the image 
of r" consists either of continuous operators from ~(V@ fir) into S(V~ ~ or 
continuous operators from S(V~ I711) into S(V~ if') or, of course, of continuous 
operators from S(V(3 I70 into S(V~)if'), In the following, the actual intended 
meaning should be clear from the context. 

1.5. LEMMA. The composition of two such operators is compatible with the group 
multiplication in Ores(V,, I40. 

Proof. Due to the intertwining property with dr" by definition ~" is a representation 
of the operators of the form 

( ( :  ~ ) , z ) o n S ( V ~ 3 1 ~ ,  

and a representation of the operators of the form 

( ( ;  : ) , z ) ,  onS(V0) ff',. 

With regard to the product decomposition in the definition of dF, it remains to show 
that 

F ( ( 1  c : ) , I ) F ( ( ;  b l ) , l ) = F ( ( l c  1 bcb),det- l ( l+cb)) ,  

if Ilcl[ < 1 and IIb[I < 1. To do this it suffices to show that 

\ \  -tcbc 1 + tcb) det-l(1 + tcb) , 

if Ilcll < 1 and Iltbll < 1. The left side is equal to 

e x p ( d F ( (  -tbc- tcbc ttcbb) ' -tr(tcb,)). 

Each factor in the product decomposition of [" satisfies 

d ~  
d--t F(g(t)) = dP(~(t)g-l(t)P(g(t)). 
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Combined with the intertwining property of dF and 1~ this implies 

d~ \ \  -tcbc 1 + tcb/ det-t(1 + tcb) 

tb + tcb)). ((1 -tbc + tcb)' det-x(1 =dF((Zcbb; cbb)'-tr(cb')F\\-tebc 1 

As continuous operators from S(V@ if') into ~(V@ I4') for each n and m, both sides 
are bounded operators from S"(VO ITV) into SIn(V@ I~'). Both sides are, moreover, 
holomorphic in t and have the same derivatives at the point t = 0, so they must be 
equal. [] 

1.6. THEOREM. The representation dI" of Lfes(V, W) can be lifted to a unitary 
representation of Ures(V, W) on S(V~ lye). 

Proof Define 0: L,.es(V, I4I) --', Lr,s(V, W), 

( ( :  ~ ) , z ) . _ . _ ( ( l o  O'S(a* c*'~(1 N) 

to be the involution of I, res(V, W), whose fixpoints are elements of the Lie algebra of 
/.Tr~s(V, W). The two meanings of d F - - o n  one side the image is an operator of 
S(V@ ~') and on the other side an operator of ~(V@ if') and conversely--are related 
by 

dF(0(-  A)) = (dF(A))* 

for all A eL,~e~(V, W). Let 19 be the corresponding group involution: 

((: ;)0 
+((: . -  -l]\b" d') 1(; _:) a c t ( l -  - - 

Then 

0(((: :)z) 
gives 

((;-c*d*-t)(a*-c*d*-~b* 0)( 1 ~) ) 
1 0 d*  - d * - X b *  ' ~ " 

So each factor in the product decomposition of P obeys r"(19(A-1)) = (r'(A))*, if on 
one side F represents operators of the adjoint spaces of the other side. This implies 

F(A: ~) = (F(A))* 

for all A e LT~,~(V, I40. Combined with the preceding lemmas this guarantees that 
LT~,~(V, W) is represented by isometric embeddings of S(V~ I~) into S(V@ IYv'). Such 
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isometric operators extend uniquely to isometric operators of S(V@ fie). The 
preceding lemma shows the composition of two such continuous operators to be 
compatible with the group multiplication on the dense subspace S(VG fie) and, 
therefore, on the whole space S(V~  fie). This concludes the proof of the theorem. 

[] 

((: 
Let h~(l~, 

((: 
Let  hr es ( l"~ 
the form 

((: 

The closure in g(V~ fie) of any invariant subspacc of S(V~  fie) is an invariant 
subspace of g(V~ ff¢) with respect to the action of L~(V, W). 

To determine the minimal weights, which occur in the k-fold tensor product of this 
representation, let us first define what we mean by minimal weight representation. Fix 
two orthonormal basis {v~}i~ ~ resp. {w~}i~ ~ of Vresp. W. All the definitions, we give 
now with respect to V carry over to the corresponding situation for W. For all n e N let 
V~ be the subspace of V, which is spanned by the vectors vl, . . . ,  v n. Let b-(V) be the 
subalgebra of L(V), which maps V~ into V n for all n ~ ~. b +(V) is the adjoint subalgebra 
of L(V). n-(I.I) is defined to be the subalgebra of L(V), which maps V 1 into 0 and V~ + 1 
into V~ for all n e N. n+(V) is the adjoint subalgebra. Let/~(V, W) be the subalgebra of 
L~(V, W), whose elements are of the form 

~), z), aeb-(V), deb  +(W), z~C. 

IV) be the subalgebra of Lres(V, W), whose elements are of the form 

~), 0), ae  n-(V), de  n +(W). 

I41) be the maximal Abelian subalgebra of L~,(V, W), whose elements are of 

z) 
with a being diagonal with respect to {v~}i~ and d being diagonal with respect to 
{w~}i~ N. A weight is an equivalence class of irreducible representations of/~res(V, W), 
and a weight of a representation is the equivalence class of an irreducible subrepresen- 
tation of/~r,(V, I4I). All irreducible integrable unitary representations of hr,s(V, W) are 
classified by integers {m~}~ ~, {nl}i~ ~ and no. mi describes the action on v~, n~ describes 
the action on w~ and nc is the central charge. Only a finite number of the m~'s and the 
n~'s are different from zero. Otherwise, the action would not be defined on all elements 
of/~res(V, W). The subalgebra hrS,(V, W) of Lr~(V, W) induces an order on the unitary 
weights of/~re~(V, W): 

,,c) o 

if and only if m~ >/mj and n,. ~< n j, whenever i ~< j. 
A minimal weight vector of a representation, is a weight vector, which is annihilated 

by all elements of hZ~(I~, IV). 
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To describe the k-fold tensor product of S(V~ I~'), we will use the following 
isomorphisms: 

g(v  ¢¢) ® ... ® g(ve  ¢¢) -_ g(v  -_g(v® ¢¢® 

Set 

S~,:= S"(v®ck@ ff ,®~k) and S~'q:= Sv(v®ck)®Sq(17V®Ck). 

S~, = Gv+~=,S~ v'q is a finite sum. So the Fr6chet spaces gk:= I-I, S~, and IIv.q S~'q are 
canonically isomorphic. 

There are canonical embeddings of Lie algebras: 

gl(k, C) ~ Lr~(V® C ~, W® C k) and 

L(IO, L(W) ~ Lr~(V, W) - .  Lr~(V® C k, W® Ok). 

We identify image and preimage of this embeddings and of the corresponding group 
embeddings. Let el . . . . .  e k be the canonical orthonormal basis of C k. Set 

L 
v l ® e l  "'" v l ® e u  

A~(v) := det " " , 

v~,®e~ ""  v~,®e~, 

Av(~ ) := det ' , 

such that both A.(v) and Av(~) are in S~. Now 

O ~ k ,  

O ~ v ~ k ,  

a]'(v) • - l ,e N o  . . . . .  A, (w), # + v ~< k, a, ,  

are minimal weight vectors of Sk. The corresponding weight is 

mi=~ a~, n , = - ~  fl, and nc=k. 
I~>~i v>.i 

This leads to the following lemma. 

1.7. LEMMA. For all weights ({m,}i~N, {n,},~, no) ~< 0, with 

n c >/min{i[ m J = O for allj > i} + min{i I nj = O for allj > i}, 

there is a minimal weight vector in S.o. 

Kashiwara and Vergne [7] showed, that if Vand Ware finite dimensional, these are 
all minimal weight vectors and the representation of U(V, W) is completely reducible. 
We want to extend these results to the infinite dimensional case. 

Now let E be the set of all equivalence classes of irreducible unitary representations 
of U(k, C), and for all 2 ~ E let V~ be a representative. With respect to the maximal total 
subalgebra of gl(k, C) of all diagonal matrices, the weights of gl(k, C) can be described 
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by k numbers n~ . . . . .  nk. The Borel subalgebra b-  of all upper-triangular matrices 
induces an order on the weight space: (n~ .... , nk) <~ 0 if and only ifn~/> n2 t> "" t> nk. 
The equivalence classes of irreducible unitary representations of U(k, C) are isomor- 
phic to the equivalence classes of all unitary lowest weight representations, and these 
classes are isomorphic to all integral weights, which are smaller than zero. So Z can be 
identified with this set. 

For a unitary representation H of U(k, C) let L~(H) be the Hilbert space of 
HOMu(k,c)(V a, H) with the Hermitian form (a, b) := tr(a*b). In case the vector space 
H is only a locally convex vector space, let L~(H) be the corresponding locally convex 
vector space. 

Let / tk  be the kernel of all operators 

with c: V~  Wan arbitrary Hilbert-Schmidt operator. Set c~a: V---, W for the finite 
rank operator, which maps vj onto w~ and is zero otherwise. Set 

Hk =/4k c~ Sk and H~ 'q = Hk n S~ 'q. 

The subspace//k:=/~k c~ ~k is dense in Hk, because Hk is an invariant closed subspace 
with respect to 

and 

o) 

0 0 0) 
U(k, C) and 0res(V, IV) commute as subgroups of 0ros(V® C k, W® Ck). Hence 

L~(Sk) is a unitary representation of 0 ~ ( 7 ,  W) and L~(Sk) is a representation of 
Lr~(7, I4'). Moreover, L~(Hk) is a unitary representation of U(V) × U(W). 

Let e,,~, 1 ~ ~, v ~ k be the canonical basis of gl(k, C). Set 

P~'v:=~a*(v'®eu'a(v~®ev)=dr'(( 0 : )0 ) ,  

and 

0)0) Q~.~:= - ~  a*(fv~ ® ~v)a(fvj ® ou) = dr" 1 ®eu,v 

for all 1 ~< #, v ~< k. From the definition of dI" it follows, that the Pu,. and Qu.~ satisfy 
the relations 

dI'(eu,v) = P..~ + Qu,v, P.*~ = Pu,v and Q*,v = Qv,~. 
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1.8. LEMMA. For all 2~E set p(A):=E~>~on~ and q(2) :=-En,  gon~. Then 
Lx(H~ 'q) = 0 if p # p(,t) or q # q(2). Lx(H~ (~)'~)) is an irreducible representation of 
c(v) × c(w). 

Proof. 

~a* (v j ® e . ) a* ( fa ,®~ . )dF( (  0 ~ ) , 0 )  
~,~ \ \c id  

= - .~ .  a*(v~ ® G,)a(vj ® eJa*(f~ i ® e,)a(f~i ® ev) 
l,J,¥ 

k 

= ~_. P,.~Q~., .  

From the definition it follows, that H~ 'a must be a subset of the kernel of the operators 
E~= 1P~.J2~,, for all 1 ~</a ~< k. Now let v be a minimal weight vector with respect to 
the action of gl(k, C). Then (Pv,, + Qv,Av = 0 for all 1 ~< v < # ~< k. It follows that 

- P * :  = Q~,~v. If v is an element of H~ 'q it therefore has to obey 

Now PI,~ is a positive operator and Q~,~ a negative operator. So PL~QL,v must be 
zero. Now it follows, that for all veV, we  Wa(v®el)a(f~®~l)v = 0. Using this 
methods for the other operators P.,~ iteratively (# = 1, . . . ,  k) one finally gets 
P.,. Q...v = 0 for all # = 1 . . . . .  k. Now (P.,. + Q...)v must be equal to n.v. On the 
other hand, the P., .  are positive operators and the Q.,. are negative operators. This 
gives 

P...v = n~v, Q~.~v = O, if n. >/O, 

P~.,v = O, Q~,,~,v = n~,v, if n. ~< O. 

This implies 

k k 

P,,,.v = p(2)v and - ~ Q~,,~,v = q(2), 
g=l g=l 

which is equivalent to v ~ H~ (x)'~(x) and the first part of the lemma is proved. 
Let C~+ and C ~_ be the span of all e,, such that n, > 0 and n~ < 0, respectively. To 

prove the second part, it suffices to show that the subspace of Hk m)'qt~) of all minimal 
weight vectors with weight 2 is irreducible with respect to the action of C(V) x C(W). 
The proof of the first part of the lemma shows, that this space is a subspace of 
Sm)(V® C k) ® Sq(~)(l~® ~2k), which is, of course, an irreducible representation of 
C(V) x C(W) x gl(C k) x gl(Ck). Thus, the minimal weight vectors are irreducible with 
respect to COO x C(W). This concludes the proof of the lemma. [] 

1.9. PROPOSITION. L~(Sk) is an irreducible representation Of Lres(V, W). La(Sk) is an 
irreducible unitary representation of Ores(V, W). 
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Proof Set 

P : = d F ( ( ~  00),0 ) and Q : = d F ( ( ~  _01),0 ). 

Each closed subspace of S~, which is invariant with respect to P and Q contains its 
orthogonal components in Sk p'q. So every invariant subspace of L~(Sk) meets 
L~(Ilk) = L~(H~ta}'q{~)), because all operators of the form 

reduce p and q by one. Due to the preceeding lemma it then must contain this space. 
By the unitarity of the representation of t_7~(V, W) on L~(Sk) now it follows, that L~(Sk) 
is an irreducible representation of r ,~(~ W). 

1.10. THEOREM. Sk is completely reducible into unitary lowest weioht represen- 
tations of  [_I~(I~, W). The decomposition is explicitly 9iven by Sk = ~a~r. ( ~  ® L~(Sk) 
(completion of  the infinite sum). The L~(Sk) are all distinct. 

Proof It remains to show, that the Lz(Sk) are lowest weight representations and are 
all distinct. Now let 

Pl = nl, ql = 0, if n i ~> 0, 

Pi=O, q i = - - n i ,  ifni~<0. 

Now A~'-P2(v)A~z-t'3(v) . . .  A,ek(v)A~k-q~-'(~)A1~-'-qk-Z(~v) -. • A~'(~) is a minimal 
weight vector with respect to the action of both Lr,(V, I4 0 and gl(k, C). The map 

2 ~((px . . . . .  Pk, 0 , . . . ) ,  (--qk . . . . .  --qx, 0 . . . .  ), k) 

from X into the weights of L~,s(V, I4') is injective. So all Lx(Sk) are distinct. [] 

1.11. Remark. In [8] and in [9, 10] it was shown that all unitary lowest weight 
representations of U(I~, W) are contained in Sk for some k, if V and W are finite 
dimensional. If V or W is not finite dimensional in all weights ({mi}i~ ~, {ni},~ ~, no), 
only a finite number of the re'is and the n;s are different from zero. The embeddings of 
finite dimensional groups U(V', W') into Oros(l~, I41) then guarantee that all unitary 
lowest weight representations of Ures(V,, W) are contained in some Sk. 

2. The Representations of Sp(V) 

In this part we determine the decomposition of the tensor products of the 'Segal- 
Shale-Weil representation' of the metaplectic group. Let us first recall the definition 
of the symplectic group of some Hilbert space E This definition is due to Shale [3], 
who found the corresponding representation, but our point of view is more inspired 
by the work of G. Segal [1]. 

Let V be a complex Hilbert space and Va the corresponding real Hilbert space. 
Then the complexification of VR is canonically isomorphic to V@ V. Hence, all real 
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linear operators of Vn can be thought of as complex linear operators of V~) V,, which 
commute with the complex conjugation induced by VR. Let 2: V--* Vand 2: ~'~ V be 
the canonical antilinear isomorphisms. Then complex conjugation is expressed as 

The symplectic group is defined to be the subgroup of GL(VR), which leaves the 
antisymmetric nondegenerated form induced by the multiplication with i in V 
invariant. The operator of multiplication with i in V induces of course the operator 

Hence Sp(V) is the commutant of A in U(V, ~'). 
Set Spres(V):= Sp(I0 c~ U~os(V, ~'). In the definition of the cocycle c(Al, A2) of the 

central extension of Ure,(V, ~') it was shown that d?td3d~ 1 is of the form 
1 + d?~clbzd21, d?Icxb2d21 is a trace class operator with norm smaller than 1. 
Hence the cocycle c'(A1, A2) := det- t/2(d~- ld3d ~ t) is well defined. Let 

be the central extension of Sp,,,(V} induced by this cocycle. 

2.1. Remark. If V is finite dimensional this central extension is trivial over a double 
covering group of Sp(V), the metaplectic group of V (see e.g. Segal [1] and Kashiwara 
and Vergne [7-1). 

Set Ar,,(V) for the corresponding subalgebra of L,r,~(V, V). It consists of all elements 

((: :)z) 
which satisfy 

This is equivalent to b = b t, C = C*, d = -a ' .  The following map 

:--- .~. a*(v,)a(vj)(v,, avj) + 
l , J  

1 
+~ a*(vi)a*(vj)(v~, b~)  - 

1 a(v~)a(v~)(~j, cvl) + ~ 1 
. .  
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from .~,~s(V) into the continuous operators of S(lv') defnes a representation of-~,,s{ V). 
This sum converges only pointwise. Because of the linearity of a*(v) and the 
antilinearity of a(v) in v, dF does not depend on the choice of the orthonormal basis 
{vi}i~.  The arguments for dr" being a representation of Lr~,(V, W) carry over to the 
Lie algebra .~,,s(V) showing again dF to be a representation. 

All bounded operators 

(~ ~ ) o f V ~ V  

which satisfy 

(~ --2*'~(a b ~ * ( O  - ' 

are elements of the complexification of Sp(V). If d is invertible there exists a product 
decomposition 

(I 0 bdl-')(a-bJ-'c Od)(d],c 01) 
inside the complexification of Sp(l/). Indeed by straightforward calculation one gets 
that bd- ~ and d-1c are symmetric and that a - bd-~c is equal to d t-~. If d is invertible 
this product decomposition, hence determines completely the representation map on 
the complexifieation of Spres(V) 

:=exp(dF((00 b d o t ) , O ) ) F ( ( a - b d - l c  : ) , z ) e x p ( d F ( ( d O _ l c  00),0))" 

The middle side is defined to be the canonical representation ofd t-' (which is equal to 
a - bd- lc) times z. The intertwining properties of F and dr" are the same as in the 
chapter before. 

2.2. LEMMA 

is a continuous operator from rS(V) into S(V) if 

<10xp(d ((: :)0)) 
is a continuous operator from S(V) into S(V), if Ilcll < 1. 
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The proof is analogous to the proof of Lemma 1.4 after changing p,(b*b) into 
½tr((b*b)") and fl into 1/2 lib [I 2)tr(b*b). For all x ~ SP(IO this yields the estimate 

(exp(b)x, exp(b)x) ~< p +p fl 1 -[Ibll] (x, x). 

The preceding lemma shows again that the image of F consists either of continuous 
operators from S(V) into S(V) or of continuous operators from S(V) into ;S(V) or, of 
course, of continuous operators from S(V0) ~ into S(V0) I~'). The actual intended 
meaning should be clear from the context. 

2.3. LEMMA. The composition of two such operators is compatible with the oroup 
multiplication in Sp~¢~(V). 

This lemma and the following theorem are given without proof, because the 
arguments are analogous of those of Lemma 1.5 and Theorem 1.6. 

2.4. THEOREM. The representation dF of A~¢~(V) can be lifted to a unitary 
representation of Sp~¢s(V) on S(V). 

2.5. Remark. Consider 

1 

as an element of U(V@ V). Let U also denote the canonical representation of U on 
S(V@ V). The intertwining relations 

Ua*(v)U -1 = a*(Uv), ve V,, 

Ua(v)U- 1 = a(U*- ~v), v E V 

lead to the following relation between the representation dr'[.,,,(v, f0 of the subalgebra 
,~res(V) of Lr~s(V, ~ on S(VO I0 and the 2-fold tensor product dF~,,,(v) of the 
representation of A~s(V) on S(V~ V): 

So these representations are unitarily equivalent. 

To determine the minimal weights which occur in the k-fold tensor product of this 
representation, let us first define what we mean by minimal weight representation of 
Spres(V). Fix an orthonormal basis {o~}i~ of V. Let h~s(V) be the subalgebra of 
,~res(V), whose elements are of the form 

((: o)0)o n   
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Let/~res(V) be the maximal Abelian subalgebra of .~res(V), whose elements are of the 
form 

((00o)z) 
with a diagonal with respect to {v~} iE ~. A weight is an equivalence class of irreducible 
representations of h'r~s(V), and a weight of a representation is the equivalence class of 
an irreducible subrepresentation of h'res(V). All irreducible integrable unitary represen- 
tations of hrs,(V) are classified by integers {ms} i~ N and n~. rn i describes the action on vi 
and no~2 is the central charge. Only a finite number of the m~'s are different from zero. 
Otherwise, the action would again not be defined on all elements of hr~s(V). The 
subalgebra h~s(V) of .~e~(V) induce an order on the unitary weights of h~(V): 

({mi}ia~, no) <~ 0 if and only ifm~ >i mj whenever i ~<j. 

A minimal weight vector of a representation is a weight vector which is annihilated by 
all elements of fir~(V). 

TO describe the k-fold tensor product of S(V) we will use the following 
isomorphisms 

g v) ® . . .®  g v) -_ g v® c 

Set S~, := S"(V@ C*). 
The complexification of the Lie algebra of O(k, R) is so(k, C). There are canonical 

embeddings of Lie algebras: 

so(k, C) --* ,Tk,,~(V® C k) and L(V) ~ .~,,s(V) ~ Ares(V® Ck). 

We identify image and preimage of this embeddings and of the corresponding group 
embeddings. 

Now let Y. be the set of all equivalence classes of irreducible unitary representations 
of O(k, R) and for all 2 e E  let again Vz denote a representative. For a unitary 
representation H of O(k, R) let L~(H) be the Hilbert space of HOMotk. n)(Va, H) with 
the Hermitian form (a, b ) :=  tr(a*b). In case the vector space H is only a locally 
convex vector space, let L~(H) be the corresponding locally convex vector space. 

Let Hk be the kernel of all operators 

with c: V~ Van arbitrary Hilbert-Schmidt operator. Let c~.j be the sum of the finite 
rank operators from V to V,, which maps oj onto ~, and v~ onto ~j, respectively and 
which are zero otherwise. Set Hk =/]kc~ Sk and H~ =/tkc~ S~. The subspace 
/-/k :=/4k c~ Sk is dense in H,, because/~k is an invariant closed subspace of Sk with 
respect to the action of 
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The subgroups O(k, R) and Spree(V) of Spr~s(v ® C k) commute. Hence, La(Sk) is a 

representation of ,~ , (V)  and Lx(S~) a unitary representation of Sp,~(V). Moreover, 

Lz(It k) is a representation of L(V) and L~(Hk) a unitary representation of U(V). 
In order to investigate these representations, we follow the discussion of Kashiwara 

and Vergne [7]. In the case k = 21 + 1, O(k, R) is the direct product of SO(k, R) and Zz 
and an element of E is determined by two irreducible representations of these groups. 
We will use the decomposition C k = C z 09 C ~ • C in order to express the elements of 

gl(k, C) and so(k, C). 

Set d := 0 

0 

and 

O(k, C) := {g e GL(k, C) 1 9'Jg = J }, 

SO(k, C) := {g e O(k, C) 1 det(g) = 1 }, 

so(k, C):= {x e sl(k, C) [ x'J + .Ix = 0}. 

By definition the elements of so(k, C) are of the form 

hi) m a t 

t _ e  ~ 

with b and c being skew symmetric. We consider the Borel subalgebra 

b~ := - a  t , a upper triangular 

- -  e t 

and the Cartan subalgebra 

h~o :-- - a t , a diagonal . 

0 

Then the irreducible representations of SO(k, IR) are parametrized by the lowest 
weight (ml . . . . .  ml), with rn 1 t> m 2 >/--" rn~ >/O. Thus, I~ is parametrized by ). = (ml, 
. . . .  m~, e). e e Z2 describes the representation of Z2. 

Let xl . . . . .  xt, y~ . . . . .  yt, t be the canonical basis of C k. The transformation from the 
natural bilinear form of C ~ to J can be chosen to be unitary and this basis becomes 
orthonormal. Thus, the commutation relations of the creation and annihilation 
operators are obvious. In this notation the representation d r  of ,~r,s(V) on Sk 
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= 

c( Li p=1 

a*("i Q xp)Q(Uj 0 xp) + a*("i Q YJa(uj 0 Yp) 

> 

C"i9 aVj> 

+C 
i,i 

f U*(Ui 0 t)U*(Ui (3 t) + i a*(Ui 0 X&*(Uj 0 Yp) <Uj, hi) - 
p=l > 

-& ( ) ( .o ) .;, a U, Q t U U, x t + 1 U(Ui@ Xp)U(Uj@ Yp) 
> 

(Vj, CUi) + i 1 

Let e,,,l < p, v < I be the canonical basis of gl(l, C). df is a representation of so&, C) 
as a subalgebra of A,,,( V@ C“). Let dT denote the canonical representation of gl(k, C) 
on S,, which is an extension of the first representation. 
Set 

A p,y:= dl-’ 

, 

, 

and 

. 

0 ep.v 0 
B PPV := dr (i 0 0 

0 0 

0 ii ) 

0 

0 0 0 
D (1.v := dT Ii 0 ep,” 0 11 , 

0 

By definition, the following relations are valid: 

* 

Set 

~~=A~:~(~~~~~~~:::‘!c~~~~=H. 

... u1 QXl, Ul QYp+l -.. 
A,(x, y, t):= dct . . . . . . . . . . . 1 3 

. . . u,-,0X,, Uk-s@yy+l ‘.’ uk-,@yl, 
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0 ~ p ~ < l .  

A ~ ( x ) " ' A ~ ( x )  and A~(x) " " A~(x)A~(x, y, t) 

are minimal weight vectors of Sk-Their weights are ({mi}i~ ~, no), with 

= ~Ej>>.iot~ and 1 + 5"~j>~io~j, respectively, if i ~< #, 
mi [0, i f i > / ~  

and nc = k. 
In the case k = 21, we choose the decomposition C k = C z ~) C ~ in order to express 

the elements of gl(k, C) and so(k, C). With 

the elements of so(k, C) are of the form 

(~ __ha,), b, c skew symmetric. 

We take a Borel subalgebra 

and a Cartan subalgebra 

hso :={(  0 _Od), adiagonal}. 

an irreducible representation of SO(k, R) is parametrized by its lowest weight with 
respect to b~, i.e. (m 1 . . . . .  m~) with ml ~> "'"/> rnl- 1/> Im~l. In this case, O(k, R) is the 
semi-direct product of SO(k, N) and Z 2. In case m~ ¢ 0 the representations 
m I = + -[mll of SO(k, R) induces only one irreducible representation of O(k, R). 
Otherwise it extends to two irreducible representations. Hence, E is parametrized by 

(m~ . . . . .  ml, e), m~>>,'">~ml>~O, eeZ2 and (rot . . . .  ,mt, 1)=(ml,. . . ,mz,-1) 
if ml # O. 

Let x~ . . . .  , x,, yt . . . . .  y, be the canonical basis of C k, which is again orthonormal. In 
this notation the representation dr" of ,~,~s(V) on S~ transforms to 

= ~ ( ~ , = 1  a*(v'®x~')a(vj®x~')+a*(vi®y~')a(vj®Y")) <v''avJ)+ 

+~(~= a*(v,®x~)a*(v~®y.))(vj, b~,)- 

--~(~'~,=1 a(vi®xl"a(v2®Yt'))(vj'cvi>+21" 
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Let dF denote the canonical representation of gl(k, C) on Sk which is an extension of 
the first representation. Set 

A~,~:= dF ( ( e0  '~ ~ ) ) '  

e~,v 

( ( ~  e~ , ,~  
B~,~ := dF 0 JJ' 

°~,~:= d r ( ( ~  e 0 ) ) "  

By definition the following relations are valid: 

A*,~ = A~,~,, D*,~ = D~,~,, 

Set 

B*~ = c . , . .  

( v l ® x l  "'" v l~x~ l  
A,(x) :=det  " , l~<~t~<l, 

v~®x~ "'" v~®x , /  

V l ® X 1  " ' "  Vl ® Xl, Vl ® yZ+ 1 

A~(x, y):= det " " " 

\vk-~®Xl "'" v~_,®xz, vk-~®y~+l 

• -. v~. ®.yl/, 

"'" v~-~ ® yl/ 

and 

Kashiwara and Vergne [-7] showed for finite dimensional V that these are all 
minimal weight vectors and the representation of Sp(V) is completely reducible. Again 
we want to extend these results to the infinite dimensional case. 

Let b~ be the Borel algebra of gl(k, C) of the form 

d , a upper triangular, d downer triangular 

f ,  

( (  0 bd)'auppertriangular'dd°wnertriangular }' 

when k is odd and even, respectively. 

2.6. LEMMA. For all weights ({mi}ie~ , no) <~ O, with n c >i min{il n j = O for allj > i} 
and nc/2 >>. min{i I nj = 0, 1 for all j > i} there is a minimal weight vector in Sn~" 

0 ~</~ < 1. 
The elements A~l(x) • "A~,~(x) and A~l(x) • "A~(x)A~(x,y) are minimal weight 

vectors of Sk. Their weights are ({mi} i~ ~, n,), with 

= ~Ej>~i~j and 1 + Zj~>i~, respectively, if i ~</~, 
mi tO ' if i > # ,  

and nc = k. This leads to the following. 
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2.7. LEMMA. All minimal weight vectors v with respect to b~o in I~k, which corresponds 
to one 2 ~ E are also minimal weight vectors with respect to b~. 

Proof. I only give the proof for k odd and leave it to the reader to carry over the 

proof to the case k even. For  all it = 1 . . . .  , l 

- ~  a*(v~®x~)a*(vj® y~ )d[ ' ( (  0 00),0 ) 
i , j  Ci, j  

= ~ a*(vj ® y.)a(vj ® t)a*(vi ® xu)a(vl ® t) + 
i , j  

+Z 
i , j ,v 

a*(vj ® y,)a(vj ® yv)a*(vi ® xu)a(vi ® x~) + 

+ ~" a*(vj ® yz)a(vy ® xv)a*(vi ® x~)a(vl ® Yv)-  
i , j ,v 

-- ~ a*(vg ® yz)[a(vg @ x0, a*(vi ® xz)]a(vi ® yv) 
i , j ,v 

1 

= FuE # -- D~,.~, + ~ D~,,vA~,,v + CI,,.B~,,~. 
v = l  

By definition, Hk has to be a subset of the kernel of all these operators. Now let v be a 
minimal weight with respect to b~ with weight (ml . . . . .  m~). This implies 

* (E~, - F~,)v = 0 for all/~ = 1 . . . . .  l, 

(Az ,~ -D~, . )v=O for a l l l  ~<p<v~< l ,  

(B~,~ - B~,.)v = 0 for all #, v 

and 

(Au,~ - Du.u)v = m~v. 

Hence, v must be in the kernel of 

1 

D x , I ( A I , 1  - -  1) + F1F ~ + B*xBj.x + ~ DI.~D*v + B~,xBv,I.* 
v = 2  

This implies ~v, Dx,I(A1,1 - 1)v) ~ 0. If mx >~ 1 this condition implies A m y  = mlv, 
because A1,1 and DI,~ are positive. If ml = 0 there are two possibilities: 

A~,~v = O and Da,lv = O or A~,lV = V and D~,av = v. 

This implies 

D l , l ( A l a - - 1 ) v = 0  and E ~ v = F * v = O ,  

A~.vv=Dv,~v=O f o r v >  1 and B~,~v=B~,lv=O. 

Using this methods iteratively for # = 1 . . . . .  l, one finally gets 

D~,,#(Au, u - 1)v = O, E~,v = F*v = O, 

Au,vv=D~, .v=O for a l l ~ < v ,  and B.,~v=O for a l l~ ,v .  
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This implies that v is the sum of minimal weight vectors with respect to b~. Now let v 
be such a minimal weight vector with weight (a~ . . . . .  at, d~ . . . . .  d~, h). 
These nonnegative integers must obey the following inequalities: 
al >1 "'" >~ at >1 h >1 d r >1 ... >~ d~ >>. O, since they represent a minimal weight of a 
unitary representation of U(k, C). Now we have 

-~"  a*(vi®t)a*(vj® t )d[ ' ( (  ~x\Ci,j 00) '0)  

= ~. a*(v~ ® t)a(v~ ® t)a*(v i ® t)a(v~ ® t ) -  
l,J 

- ~  a*(vi ® t)[a(vi ® t), a*(vj ® t)]a(vj ® t)+ 
~,J 

+ 2 ~ a*(vi ® t)a(vi ® x~)a*(vj ® t)a(vj ® y~) 
i,j,# 

! 
H ( H - I ) + 2  ~, * * = E~ F u. 

#=1 

So v lies also in the kernel of this operator and there are only two cases 
(i) h = 0: This implies dv = 0 and at = m~. 
(2) h = 1: Then d,(a v - 1) = 0 implies 

0, ifm~/> 1 fray, i fm~>t l  
d~= 1, i fm~=O'  a ~ = ( 1 ,  i fm~=O 

In case k is even, the second case only occurs if mr = O. These two minimal weights 
corresponds to different representations of O(k, R), because - 1  e O(k, R) is repre- 
sented differently. This concludes the proof. [] 

2.8. COROLLARY. For all 2 ~ Z, there is at most one n ~ N such that La(H~) ~ O. 
Lz(Hk) is an irreducible representation of C(V). 

Proof. The preceding lemma implies the first statement. S~ is of course an 
irreducible representation of gl(k C) x C(V). Hence, the preceding lemma implies also 
the second statement. [] 

2.9. PROPOSITION. Lz(Sk) is an irreducible representation of ~.r©s(V). Lz(Sk) is an 
irreducible unitary representation of SPves(V ). 

Proof. Set 

Each closed subspace of SR, which is invariant with respect to N contains its 
orthogonal components in S~,. So every invariant subspace of La(Sk) meets L;.(Hk), 
because all operators of the form 

Oo) o ) 
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reduce n by two. Due to the preceding lemma it then must contain this space. By the 
unitarity of the representation of Spr~(V) on L~(Sk) it now follows that Lx(gk) is an 
irreducible representation of -~r~(V). [] 

2.10. THEOREM. S k is completely reducible in unitary lowest weight representations 
of Sp~(l/). The decomposition is explicitly given by 

Sk = ~ (~'~ ® Lx(Sk) (completion of the infinite sum). 
2eZ 

The Lx(Sk) are all distinct. 
Proof. It remains to show that the L~(Sk) are lowest weight representations and are 

all distinct. If 2 = (ml . . . . .  ml, ( -  1)Z "~) the vector A~ '~-'~(x)AT ~- ~(x)-.  • AT"(x) is a 
minimal weight vector with respect to b~ and b~(V) which corresponds to 2. The 
corresponding weight is ((ml . . . . .  mr, 0 . . . .  ), k). 

If 2 = (m~ . . . . .  m~, ( -  1) t +~"), let # be the greatest integer, such that m~ # 0. Then 

AT"- '~(x)a~  '~-"~(x) • . .  A~'.-  ~(x)A.(x, y) 

and 

A7' - " ~ ( x ) A T - " ( x )  • • • a ~ -  '(x)A,,(x, y, t), 

respectively, are minimal weight vectors with respect to b~ 
corresponds to 2. The corresponding weight of ,~r,s(V) is 

and /~Ls(l/), which 

(( m l . . . . .  m j, 1 . . . . .  1 , 0 . . . .  ), k). 
k - j  -, 

2.11. Remark. Enright and Parthasarathy [9] et al. [11-10] showed that all 
unitary lowest weight representations of Sp(V) are contained in Sk for some k, if V is 
finite dimensional. If V is not finite dimensional in all weights ({mi}i~N, no), only a 
finite number of the mi's are different from zero. The embeddings of finite dimensional 
groups Sp(V') into Spres(V) then guarantee that all unitary lowest weight represen- 
tations of Spres(V) are contained in some Sk. 
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