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Abstract: The truth value of any new piece of information is not only investigated by media platforms,
but also debated intensely on internet forums. Forum users are fighting back against misinformation,
by informally flagging suspicious posts as false or misleading in their comments. We propose
extracting posts informally flagged by Reddit users as a means to narrow down the list of potential
instances of disinformation. To identify these flags, we built a dictionary enhanced with part of
speech tags and dependency parsing to filter out specific phrases. Our rule-based approach performs
similarly to machine learning models, but offers more transparency and interactivity. Posts matched
by our technique are presented in a publicly accessible, daily updated, and customizable dashboard.
This paper offers a descriptive analysis of which topics, venues, and time periods were linked to
perceived misinformation in the first half of 2020, and compares user flagged sources with an external
dataset of unreliable news websites. Using this method can help researchers understand how truth
and falsehood are perceived in the subreddit communities, and to identify new false narratives before
they spread through the larger population.

Keywords: disinformation; user labeling; Reddit; natural language processing; dashboard

1. Introduction

Tracking misinformation has become a task with rapidly increasing importance in
recent years. Massive disinformation campaigns influencing the U.S. 2016 elections and
the Brexit referendum have suggested that the spread of false information can have a
large scale political impact [1,2]. Even outside a U.S. or UK context, in the last five years,
democratic regimes have become more vulnerable to foreign influence efforts directed
to sow mistrust in authorities [3–5]. Particularly during the COVID-19 pandemic, false
information can influence the well-being and life of many. In the midst of rising infection
rates, narratives misrepresenting official responses to the virus are among the most com-
mon in recent news [6]. The problem has become so widespread that the World Health
Organization is talking about an “infodemic” (information epidemic) accompanying the
spread of COVID-19 [7], and scientists have called for an interdisciplinary approach to
battle misinformation [8].

For all these reasons, it is crucial to be able to detect false information in real time,
shortly after it is produced and distributed. However, traditional fact checking requires
trained journalists carefully examining each piece of information and labeling it individ-
ually. This is hard to do when facing a firehose of falsehood [9] directed by malicious or
uninformed actors toward the online public sphere. Existing automated disinformation
detection tools are often tested on pre-labeled datasets, and it is not clear how precise they
can detect disinformation on unseen topics and how often the labels need to be updated.
In contrast, user comments represent a self-perpetuating stream of labels that can be used
to complement existing methods.

From media studies, we know that audiences are not just passive recipients of informa-
tion [10,11]. Especially in online communication, we observe how social media and internet
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forum users are often actively involved in removing, reporting, or commenting on posts
that they suspect present false information. Fact checking and reporting of misinformation
are then not performed by software or external experts, but rather by the community
itself. In fact, while much research is involved with the spread of misinformation [12–19],
the prevention of misinformation from the user side is rarely considered. The aim of our
research is to operationalize and analyze one central mechanism of gatekeeping from the
user side called informal flagging.

This paper looks into the possibility of externalizing some of the labeling to users of
online platforms and aims to build an easy accessible online tool to help investigate Reddit
users’ claims of disinformation. Reddit is one of the largest platforms for news sharing,
but it is less often studied in comparison to Twitter. Reddit is the ideal platform to perform
this task for several reasons: its content is fully accessible and can be easily scraped (unlike
Facebook), it is a decentralized platform covering a large number of topics and diverse
perspectives from all around the world (unlike blogs, news websites or magazines), it does
not limit the character input of its posts (unlike Twitter), it contains posts with links to
external websites (that can be fact checked), and it has been the target of disinformation
campaigns in the past [20].

We develop a rule-based natural language processing model that can extract and
filter posts and comments (using keywords), and detect user flags among the comments
(using part of speech tags and dependency parsing). We test the precision and recall scores
of our model against a simple keyword matcher and two supervised machine learning
models, on a manually labeled set of comments. While it was developed with Reddit in
mind, our model is very flexible. It can be customized by adding or removing keywords or
dependency rules. It can be applied to any website that has a similar structure to Reddit
(text comments replying to posts), since it takes only the content of the comment as input.

For monitoring new Reddit posts, we created a Python+Plotly/Dash powered dash-
board freely available online (see Section 7). It shows daily descriptive statistics about
flagged posts and permits the user to filter and cluster the posts. The dashboard is named
STROO? (short for “Is it true?”), as a reference to the Reddit mascot [21], the alien SNOO
(short for “What’s new?”). This dashboard is updated daily, and it can serve as a source for
researchers, journalists, or fact checkers to analyze the content and spread of information
online. It illustrates both the merits and the downfalls of using informal flags to detect
false information spread online.

2. Previous Research
2.1. Scope and Consequences of Online Misinformation

False information is ubiquitous, persistent, and potentially harmful. Rumors tend
to intensify in periods of crisis, when there is a lack of official information [22]. False
information spreads faster [23], is richer in emotional cues [24,25], and resurfaces more
often [26] compared to true information on online platforms. Additionally, there is research
claiming negative behavioral effects of exposure to disinformation and misinformation.
A current example is the COVID-19 pandemic. Belief in COVID-19 related conspiracy
narratives was found to increase non-compliance with public safety regulations [27–29],
and exposure to media narratives downplaying the importance of the virus was linked to a
larger number of COVID-19 cases and deaths at a regional level [30]. This is exacerbated by
online platforms providing an easy channel for the spread of misinformation. On Twitter,
estimates of misinformation range from 15 to 25 percent of tweets related to a specific
topic [31,32]. Online social networks have reacted to such trends. Reddit, after public
backlash regarding their laissez-faire handling of hate speech and misinformation on their
platform, has started closing controversial subreddits [33] and investigating claims of
coordinated misinformation, especially around COVID-19 [34]. Facebook after a scourge
of scandals is now applying automated misinformation detection [35]. However, to our
knowledge, no standardized approach to combating nor detection has been established.
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2.2. Measures against Misinformation

One option to combat the spread of misinformation has been to use automated tools
by employing linguistic methods, machine learning, and network-based methods [36].
Supervised machine learning is very popular for this task, but it requires labeled data for
training, validating, and testing the model. There is no established way to obtain labels.
Some researchers propose to use existing annotated datasets, either to label articles [19,37],
specific claims and rumors [38], websites and domains [12,16,24] or even users that function
as sources for (mis)information [13]. Other researchers employ manual classification on a
subset of the data [14]. Still others rely on weakly labeled datasets, such as websites known
to post disinformation [15]. All in all, applying even automated approaches for combating
misinformation is resource heavy and expensive, and both false positives as well as false
negatives abound.

On the other hand, when facing scarce resources and uncertainty, crowd based so-
lutions have been applied on different domains, ranging from Cancer Research [39], Lin-
guistics [40], and Organizational Learning [41]. Particularly regarding the detection of
misinformation, recent results involving the decentralized ability of crowds have been
promising. Rand and Pennycook [42] have found that, even when accounting for partisan
bias, crowd estimates of trustworthy news sources are strongly correlated with expert esti-
mates. Furthermore, studies presenting news stories to participants report that the majority
of true stories are correctly found to be true by the participants and 80% of fabricated news
are found to be false [43]. Finally, Becker and colleagues [44] have shown that, if given
an incentive, participants estimate the correctness of news on average more accurately
when involved in a group context than when asked alone. Classical simulation studies
of learning would generally be consistent with such findings by highlighting the value of
consensus as opposed to polarization, since polarization undermines the ability to detect
true information [45].

2.3. Capturing User Interaction

Aforementioned studies demonstrate the demand for tracking misinformation, the tech-
nical ability to do so, and evidence of crowd based solutions that allows leveraging user
interaction. However, the question remains: how can one discern user interaction re-
garding misinformation from interaction which is completely atopical? While providing
simulations, algorithmic solutions, and experimental evidence, the literature has not, to our
knowledge, accounted for specific user interaction patterns that may prevent misinforma-
tion. This point is vital, as it allows for generalizing from experimental evidence to a real
life context. The crowdsourcing studies cited above, while impressive, use an artificial
setting (like Amazon Mechanical Turk) and offer incentives to participants. In an actual
online setting, users sanction misinformation without the necessity for reward from re-
searchers. Crowdsourced data are generated through an obtrusive procedure, recruiting
people specifically for the task of labeling. In a realistic setting, participants may belong
to a community where they interact with other users. However, in order to understand
whether the results of experimental studies hold in real life, one needs to first identify
relevant actions: when do users react to misinformation and when are they silent. Our
study allows such an identification with a relatively simple dictionary-based NLP method.

Only a few recent studies from Eastern European newspaper forums [17,46] attempt
to use replies to online newspaper articles as labels for detecting content posted by non-
genuine users (trolls). Such an approach gives a more realistic account of the process within
online platforms that function as gated communities [47]. In such cases, users are not only
consumers of information but actively fight and prevent the spread of specific information,
functioning as gatekeepers. This is in line with Lazarsfeld’s classic theory of the two step flow
of communication [10], in which the people’s role in mediated communication is not merely
to function as homogeneous masses that are easily manipulated, but to criticize, reinterpret,
and spread information they receive from mass media in their own communities. While
acknowledging the increased agency afforded to the public, this theory was criticized by
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Bratich [11] as painting audiences as merely reactive to stimuli originating from the media,
rather than active subjects capable of original cultural production. While we acknowledge
that Reddit is a good illustration of the active audience model, rich in original content and
subcultural spaces, we choose to focus in our research on the reactive aspect of Reddit users:
not only sharing articles from news websites, but also interpreting them as purveyors of
true or false information.

Our approach builds on these contributions and offers several advantages. Placed
within the theoretical disinformation framework [48], this work operationalizes the concept
of user flagging: a specific type of commenting (e.g., “fake news!”) to label Reddit posts
as illegitimate, and thus to warn other users and moderators about the presence of false
information that may breach the community standards. By identifying such flags, we can
not only capture a type of interaction specific to online platforms, but also measure the
effectiveness of user comments in detecting fake news. The promise of such an approach
is consistent with previous literature on crowdsourcing, or harnessing decentralization
for resource gathering [40]. If true information is a scarce resource and expert feedback is
expensive, simple user feedback might help to detect misinformation.

This paper presents a linguistic model integrated in a dashboard that presents data
about user-flagged posts from Reddit in real time, therefore measuring Reddit users’ own
ability to handle misinformation during a pandemic. In the following sections, we describe
our pipeline for collecting and processing the data, a test of our model against alternative
approaches, as well as some descriptive analyses, including a comparison between web
domains flagged by Reddit users and web domains flagged by professional fact checkers.

3. Data Collection

We collect posts and comments (text and metadata) from Reddit using the Pushshift
API [49] with Python 3.6. We follow the hierarchical structure of Reddit in our data
collection mechanism. On Reddit, comments are nested in posts (also called submissions),
which are nested in subreddits (discussion groups hosting online communities focused on
particular topics).

Reddit users can subscribe to one or more subreddits. They can post in a subreddit,
or they can comment on posts from other users. In subreddits focused on news and politics,
usually a user will post a link to an article from an external website, and choose a title for
their post, which is not always identical to the original article title. It is mostly through
these posts that false information can creep in, and through the replies to these posts
(comments) that other users can point out that this has happened.

3.1. Data Collection: Selecting Subreddits

The immense amount of data available on Reddit—more than 130,000 subreddits and
10 million posts and comments per month [50]—means that a preselection is required. At
the same time, the data collection needs to reflect the dynamic nature of Reddit, as new
subreddits emerge periodically. The general idea at the start of the project was to select
subreddits that are relevant for the spread of misinformation around COVID-19. Therefore,
we daily scrape posts matching COVID-19 related terms (all terms in Appendix B). The fo-
cus is on high-engagement subreddits where real world issues are discussed. We retain the
subreddits that meet the following conditions: the primary language is English, a minimum
of 10,000 subscribers, a minimum 10 daily coronavirus-related posts, most posts share
a link to an external website, and there is at least one comment per post (in average).
The remaining subreddits are manually categorized into 10 groups, and the entertainment
focused subreddits are discarded. Remaining categories are: coronavirus, news, politics,
ideological, local, science, technology, health, and business. Each week, we check if new
subreddits fit the criteria, classify, and include them in the list.

It is of course possible that many Reddit posts share information as part of images or
videos. Previous research has shown the usefulness of combining features from textual
data with features from visual data when detecting fake news [51]. We use only links
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because we want to focus on the sharing of news from external websites, which can be
matched to lists of websites known for spreading false information. While including image
recognition may be a further expansion to the dashboard, it is currently outside of our
resource capacities.

3.2. Data Collection: Selecting Posts

From each subreddit, we collect all user posts daily, for further inspection (including
ones removed by moderators). We retain the following variables for each post: title, author,
link to Reddit URL, link to external site, date and time of post, rating/score, number of
comments replying to post, and removal status. Because the status of a post can change
(number of comments, removal status), we always scrape three days behind every day.

3.3. Data Collection: Selecting Comments

The number of comments can exponentially increase the size of the dataset. Therefore,
we only select the comments from posts that share a link to a website (excluding images or
a videos). We select the first 1000 first-level comments (direct replies to a post), assuming
that, if flagging does not occur in the first 1000, it will probably not occur later. We retain
the following variables for each comment: comment body (text), author, rating, date, and
time it was published.

4. NLP Model for Detecting Informal Flags

Our approach to detecting posts suspicious of presenting false information is to inspect
the text content of the comments that are direct replies to posts from the selected subreddits.
This is not a simple task, and requires using several Natural Language Processing methods,
with increased levels of complexity: keyword filtering < tokenization < lemmatisation
< part of speech (POS) tagging and dependency parsing < sentence embedding (for
clustering). In other studies, manual coding was employed to obtain the flags [17,46].
In this paper, we attempt to create a set of lexical and grammatical rules to determine
whether a comment is likely a flag or not. The steps are illustrated in Figure 1 and described
in the following subsections.

4.1. Keyword Filtering

The initial dataset of scraped comments is very large: 17 million comments from
January to June 2020, increasing by more than 2 million comments each month. Before a
computationally expensive matching method can be used, it is necessary to filter out
irrelevant comments (as most comments are not informal flags). To reduce the amount of
data to a manageable level, we retain all comments containing at least one keyword related
to different types of false information. We operationalize the text of the informal flag by
developing a set of six broad categories:

• disinformation or misinformation
• fake or false news
• misleading or clickbait
• unreliable
• propaganda
• bullshit/bs

The categories were selected to cover a wide definition of content associated with
false information. They were developed based on terminology used in previous re-
search [3,4,8,9,23,48,52], while also keeping in mind the less formal communication style
on Reddit (hence the sixth category). The exact terms used for each category can be in-
spected at the end of Appendix B. Based on our observations from qualitatively inspecting
a subset of the comments matching these keywords (in March-May 2020), we noticed the
particularities of each type of flagging. The six categories capture different intensities
(“misleading” is weaker than “fake news”, and often refers to the title of the post), targets
(“misinformation” refers often to the content, “unreliable” and “propaganda” often to
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the source), intentions (“propaganda” assumes intention, “false news” not necessarily),
or levels of ambiguity (“bullshit” may signal disbelief as well as displeasure). In the final
dashboard, these categories can be activated or deactivated, allowing each user to select
their own definition of false information.

Comments 
(replies)

Keyword Filtering 
Comment contains at least one of the follwing words:

"disinformation","misinformation","malinformation","falsehood","fabrication",
"fake","false","bogus","fabricated","manipulated","manipulative","inaccurate",

"bullshit","bs","clickbait","misleading","editorialized","sensationalized","sensationalist",
"untrustworthy","unreliable","unverified","propaganda"

Sentence Tokenizer

POS + Dependency + Vocabulary matcher

LEMMA:
{"article" or "title" 
or "this" or 
"source"}

DEPENDENCY: 
nsubj

+
any word
except 

negation

LEMMA:
{"disinformation",  
"propaganda", 
"clickbait","falsehood"}

DEPENDENCY: 
{dobj or attr}

Post 
(submission)

PATTERN SVO: Subject + Verb + Object

Word Tokenizer
Lemmatization, POS, Dependency

comment is "flag"

At least one pattern in 
one sentence matches? Yes

comment is "not flag"

No

KEYWORD 1
Subject

WILDCARD KEYWORD 2
Verb

any word
except 

negation

(0-5 matches)(single match)

+ + +

WILDCARD KEYWORD 3
Object

(0-5 matches)(single match) (single match)

LEMMA:
{"be" or "feel" or 
"seem" or 
"sound"}

DEPENDENCY: 
root

LEMMA:
{"fake" or "false" or 
"bogus" or 
"fabricated"}

DEPENDENCY: 
{amod or attr}

+
any word
except 

negation

PATTERN AO: Attribute + Object

KEYWORD 1
Attribute

WILDCARD KEYWORD 2
Object

(0-5 matches)(single match)

+

(single match)

LEMMA:
{"news" or "title" or 
"information"}

DEPENDENCY: root

POS: {noun or propn}

Figure 1. NLP processing pipeline. Only 2 out of 21 matching patterns shown. The Pattern SVO starts with a word with
the grammatical function of subject that has the lemma “article”, “title”, “this”, or “source” (including plurals), optionally
followed by one to five non-negative words, followed by the root node in the dependency structure with the lemma “be” or
“feel” or “seem” or “sound”, optionally followed by one to five non-negative words, and ending with a word that has the
grammatical function of a direct object, with the lemma “disinformation” or “propaganda” or “clickbait” or “falsehood”.
It can match phrases such as “These articles sure feel like some sort of disinformation”. Not all keywords are shown in the
graph, see Appendix B.
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4.2. POS Matching on Sentences

Keywords alone are not sufficient to establish whether a comment is an informal flag
or not. Comments that are just discussing false information are mixed with those where
a clear accusation is made. Enhancing the text data with syntactic and morphological
information can help make this difference.

Comments were split into sentences. Then, we created a set of patterns, based on a
vocabulary and grammar of the informal flag, and checked if they match each sentence.
We use the POS tagger and dependency matcher for the English language from the Python
package spaCy (https://spacy.io) to parse each sentence from each comment.

4.3. The Vocabulary and Grammar of Flagging

In this step, we combine the keyword filtering with the POS matching. A pattern for
flag detection is a specific keyword related to misinformation (e.g., “fake news”) embedded
in a grammatical structure (e.g., “This is fake news”). A flag is a comment where at least
one sentence matches our pattern. For example, the ideal type of the informal flag is
a simple phrase of the form SUBJECT + VERB + (ATTRIBUTE) + OBJECT, where the
main clause contains the verb. “This is fake news” would match the pattern, and so
would “This is disinformation”. “This is great news”, however, would not since “great
news” is not part of our vocabulary concerning misinformation. In addition, while “Looks
like false news” would not match this particular pattern, it would match the pattern
VERB + (ATTRIBUTE) + OBJECT. Negations (“Post is not false.”) or multiple clauses
(“They doubt that the source is unreliable”) do not match the pattern.

Dependency parsing is particularly useful because it codifies syntactic relationships
between words, and thus we can filter out matches where the relationship is different.
For example, a phrase like “Fake news is an overused trope” would not match because
“news” is the subject, while a phrase like “This is fake news!” will match because “news” is
the object. We identify 20 phrase structures that will help identify informal flags. A sim-
plified example for patterns Subject–Verb–Object (SVO) and Attribute–Object (AO) is
presented in Figure 1; phrases matching all patterns are shown in Table 1.

Table 1. Examples of matched phrases for each pattern of POS matcher (notation: s = subject; v = verb; o = object;
a = attribute; n = negation; i = ”I”; y = ”you”; st = ”stop”).

Patterns Examples of Matched Phrases Freq

o, ao Fake news! Clickbait! 35.8%
svo, svao The whole post is disinformation. This has to be fake news. 27.0%
sva, svna, svna2 Title is misleading. Source is not reliable. 15.5%
nao Not a reliable source. Not a correct headline! 12.4%
vo, vao Looks like false news. Smells like propaganda 3.2%
stvo, stvao Quit spreading misinformation. Stop posting fake news. 2.8%
ivo, ivao I call bullshit. I’m calling bs. 2.0%
yvo, yvao You are spreading falsehoods. You’re posting false information. 0.4%
ivsva, ivsvo, ivsvao I think this is propaganda. I know that the title is false. 0.3%
svsv, svsav This is how fake news spreads. This is what fake news looks like. 0.1%

Total All patterns 100.0%

We also built a vocabulary of subjects, verbs, objects, and attributes to plug into
these patterns. The full vocabulary is defined as a Python class and can be inspected in
Appendix B. We distinguish between the six types of flagging mentioned in the previous
subsection, depending on the main keyword used in the object (e.g., “disinformation”) or
attribute (e.g., “fake”) part of the vocabulary.

The method can be overall described as POS and dependency tree enhanced skip-gram
detection, but we shorten it to POS matcher. We mention skip-gram detection because
the model allows the presence of (up to five) additional words between the predefined
positions, matching longer phrases.

https://spacy.io
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To summarize a typical sequence of our data collection and processing pipeline:

1. We extract all posts from subreddits that we track every day at midnight.
2. Further filtering is performed to remove comments that are sarcastic, or those replying

to posts that share articles directly referencing false information. Common procedures
for sarcasm detections use rule-based, statistical, or deep learning methods [53],
and more recently transfer learning from sentiment to neural models has shown good
results [54]. Because it is not the main focus of the paper, we use a relatively simple
rule-based method, contained in a regular expression (full regex in Appendix B). It is
by no means a perfect sarcasm filter, but it does manage to remove the more obvious
forms (such as “Oh, this must be ’fake’ news \s”).

3. We extract the top 1000 comments, and match each sentence of each comment to
our keyword-flag syntax patterns. If at least one match is present in a comment,
the comment is marked as a flag (Figure 1).

4. Finally, all sentences that match the POS pattern are added to the database of matches.
This database is updated daily, and serves as the main input in the dashboard.

The final POS matcher contains 21 patterns (named in Table 1). The POS matcher
is a rule-based technique. It requires human input to define the rules. Building the
patterns was an iterative process. We wrote down a list of ideal sentences that clearly
signal informal flagging (such as “this post is fake news”, “not a reliable source”, “title is
clickbait”). We analyzed the syntax of these sentences and set the specific dependency types
(e.g., “title” should be the subject of the sentence, and not the object). The patterns were
expanded to allow wildcards between the matched words (e.g., “This article is undoubtedly
and clearly false.”). Negation preceding a keyword was set to not match the pattern for
certain keywords (“source is not misleading”), but two patterns were created for relevant
negations that should match (“source is not reliable”). Then, we tested the patterns on
the list of ideal sentences. We also tested them on a list of sentences generated by us that
contain the keywords, but are not likely to be flags (e.g., “propaganda is bad”, “they always
talk about fake news”). Next, we tweaked the patterns (added or removed keywords or
part of speech restrictions) to maximize the correct identification of the ideal sentences and
minimize the identification of non-flag sentences. Finally, we matched the patterns to the
most common sentences extracted from the comments in our dataset (from January to July).
We made minor adjustments based on the data (removed a few patterns that had very few
matches, removed some keywords that were picking up many non-flags).

We validate the POS matcher by comparing its performance to the simple keyword
matcher, and then we test it against two ML models (on a separate test set of comments
written after July 2020). We present the results in the following subsection.

4.4. Evaluation of the POS Matcher

To assess the performance of our POS matcher, we compare it against the baseline
keyword filtering model (see Section 4.1), to check if our method shows any improvement
in precision. Then, results from two machine learning models are compared to results from
applying the POS matcher on a test set of newer, unseen data, to check if our transparent
rule-based method performs similarly to more opaque automated classification methods.

4.4.1. Manual Labeling

To provide labels, manual annotations were performed. In total, 1500 comments
were manually labeled, out of which 1455 were retained for validation and model testing.
We annotated three different sets of comments (see Table 2).

We selected a stratified random sample of 600 comments from the full set of 221,750
comments (from January to July 2020) that match the keywords. For each of the six
keyword groups (misleading, propaganda, fake news, unreliable, disinformation, bullshit),
we randomly selected 100 comments. These 600 annotated comments serve as part of
the validation set for the POS matcher. They also serve as a training set for the machine
learning models we test against it.
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Table 2. Description of the three manually annotated sets of comments used to validate and test the POS matcher.

Set 1 Set 2 Set 3 Total

Period January–July 2020 January–July 2020 August–October 2020
Extracted from keyword matches POS matches keyword matches
N (number of comments) 600 600 300 1500
Valid N 573 591 291 1455

Used for:
Training set
for ML models

Test set
for ML models

Additional use:
Validation set for
POS matcher

Validation set
for POS matcher

We annotated an additional 600 comments randomly sampled from the 2603 comments
(from January to July 2020) that match the POS + vocabulary patterns (again, 100 from
each of the six flag types). The extra 600 comments were included to have a larger base
to report precision for the POS patterns in the validation process. They are not used in
training the machine learning models, to avoid bias in favor of our POS model. Training
the ML models is only done on the first 600 comments (that match the keywords, but not
necessarily the POS patterns).

Finally, we annotated 300 comments (6 × 50) from the full set of 522,320 comments
(from August to October 2020) that match the keywords. These comments serve as the test
set when comparing the performance of our POS matcher against two machine learning
models. These comments were created in a time period that does not overlap with the time
period in which we developed the POS matcher; therefore, we can argue that it serves as a
true test set, with data that could not have influenced the way we built the POS patterns.

Two coders independently judged whether each comment is an informal flag (positive
class) for false information, not an informal flag (negative class), or uncertain. Annotation
was done on complete comments (many containing multiple sentences), and the coders
had access to other contextual information (post title, web domain shared in post), to be
able to properly judge if a comment is a flag or not. The inter-rater agreement was 83%,
with Cohen’s Kappa = 0.63. The coders re-classified all disagreements by consensus, and 45
uncertain comments were excluded. In the end, 51% of comments were labeled as flags,
and 49% as non flags.

All manual annotations were performed after the POS matcher was completed.

4.4.2. Comparison with Simple Keyword Filtering

We validate our POS matcher by comparing its performance to the initial keyword
matcher. We expect the precision of the POS matcher to exceed that of the keyword matcher,
as it was designed for this purpose. In other words, we expect that the sentences identified
by the POS matcher are much more likely to signal an informal flag than the sentences
identified by the keyword matcher.

For this comparison, the manual classification will serve as a ground truth. We can
compute the precision of the keyword filtered comments as in Equation (1). Precision is
computed by dividing the number of comments matching the keywords correctly identified
(through manual labeling) as informal flags by the total number of comments matching the
keywords. A low number for precision would mean that many comments are incorrectly
identified as flags through keywords.

In a similar fashion, the precision of the POS matcher is defined in Equation (2), as the
number of comments matching POS patterns correctly identified (through manual labeling)
as informal flags divided by the total number of comments matching the POS patterns.
Using these measures, we can check if the POS matcher is more precise than the simple
keyword matcher:

precisionkeyword =
|matches keywords ∩manually labeled as f lags|

|matches keywords| (1)
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precisionPOS =
|matches POS ∩manually labeled as f lags|

|matches POS | (2)

We can also compute a recall measure for the POS matcher, as in Equation (3). Re-
call can be interpreted as the percentage of the informal flags (manually classified as such)
matched by the POS patterns. A low number here would mean overlooking some com-
ments that are informal flags. Recall for the keyword matcher is not computed because
it is by definition equal to 1, as only comments that match the keywords were selected
for the manual classification. It is likely that the true recall for the keyword matcher
would have been lower than 1 if we would have sampled from the full set of comments.
However, sampling from the non-filtered dataset would have highly increased the level
of noise because most comments are not informal flags for misinformation. With a very
small denominator, the precision measure could not have been computed with any degree
of certainty.

There is a trade-off between precision and recall. The F1 score for the POS matcher in
Equation (4) is an overall measure of performance, balancing both precision and recall:

recallPOS =
|matches POS ∩manually labeled as f lags|

|manually labeled as f lags| (3)

F1POS =
2 ∗ precisionPOS ∗ recallPOS

precisionPOS + recallPOS
(4)

Performance metrics are presented in Table 3. The precision of the baseline keyword
model is low for four out of six keyword groups. Less than 30% of comments that match
keywords from the groups “fake news”, “disinformation”, “unreliable”, and “bullshit”
were manually labeled as informal flags. Only for the “misleading” group the precision of
the keyword model is relatively high (0.83).

Table 3. Classification Diagnostics. Precision and recall for Keyword and POS matchers.

Flag Type prec_KEYWORD Precision_POS Recall_POS F1_POS n_Comments

misleading 0.83 0.99 0.44 0.61 233
propaganda 0.51 0.87 0.48 0.62 248
fake news 0.27 0.73 0.54 0.62 257
unreliable 0.15 0.67 0.36 0.47 204
disinformation 0.29 0.65 0.32 0.43 216
bullshit 0.23 0.52 0.50 0.51 241

When using the POS matching, there is a significant increase in precision for all
flag types. Overall, three quarters of matched sentences belong to comments that were
manually classified as flags. The increase in precision is particularly large for “fake news”
(from 0.27 to 0.73), “unreliable” (from 0.15 to 0.67), and ”dis/misinformation” (from 0.29 to
0.65). The recall values of the POS matcher are lower than the precision, ranging from 0.32
for “disinformation” to 0.62 for “propaganda”. Overall, more than half of the comments
manually classified as flags match the POS patterns.

For the dashboard to provide meaningful information, we favor precision over recall,
to reduce the prevalence of false positives in the matched results, and the POS matcher
shows a greatly improved precision. In future versions, we will strive to improve recall by
examining the mismatches and altering the POS patterns.

4.4.3. Comparison with Machine Learning Models

Finally, we compare the POS matcher with two machine learning models: regularized
logistic regression (with L1/L2 penalty) and random forests. Logistic regression is an
additive model, while random forests are ensembles of classification trees that find several
combinations of features (such as the co-presence of several words in a comment) associated
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with the desired outcome (in our case, whether a comment is an informal flag for false
information or not).

The train/test split ratio is approximately 2:1. The training set for the ML models
consists of all the valid 573 manually annotated comments (labeled set 1) that match the
keywords. All the comments in the training set were posted on Reddit from January to July
2020. As a test set, we use the 291 manually annotated comments (labeled set 3) posted
after July (from August to October 2020). We used this splitting strategy to make sure that
the way we built our POS matcher was not in any way influenced by the data in the test
set. Not one comment from the test set existed when the POS matcher was finalized.

In the ML models, the comment word counts are used as features in a bag of words
approach. We fit the two machine learning models with 5-fold cross-validation, to find
the optimal value of the hyperparameters (number of variables sampled for each tree for
random forests; penalty and L1/L2 mix for regularized regression). We compute the final
diagnostics on the same test set of 291 comments.

Classification diagnostics on the test set (Table 4) show that, while the machine learning
models perform somewhat better (F1 scores of 0.64 and 0.61 compared to 0.55 for the POS
matcher), the difference is not very large, and the POS matcher performs slightly better
than the regularized regression in terms of precision (0.73 compared to 0.62) and slightly
worse than the random forest (0.78). We favor precision over recall (reducing the number of
non-flags matched as flags at the price of overlooking some unmatched flags), and believe
recall can be improved by adding more matching patterns, while ML performance might
only significantly improve with a larger labeled set. We thus find support for not dismissing
the POS matcher as an adequate, if imperfect method to use as the default in the dashboard
showing perceived false information on Reddit. We describe the dashboard in detail in
Section 7.

Table 4. Classification diagnostics on the test set for POS matcher and two machine learning models.

POS Matcher L1/L2 Logistic Regression Random Forests

accuracy 0.72 0.70 0.76
precision 0.73 0.62 0.78
recall 0.45 0.60 0.54
F1 0.55 0.61 0.64
AUC-ROC 0.67 0.68 0.72

ncomments 291 291 291

5. Results

In this section, we present a few exploratory analyses on the dataset of posts flagged
as false information detected with the POS matcher described in Sections 4.2 and 4.3.
The Plotly/Dash dashboard described in Section 7 was used to analyze the data.

5.1. Informal Flagging: Trends and Peaks

Between 1 January and 30 June 2020, over 3 million posts and 17 million comments
were retrieved using the API. More than 500 thousand comments (3% of all comments)
matched the flag keywords. The POS matcher retrieved 33,609 potentially flagged posts.
Each day, an average of 184 new posts are retrieved using the POS matcher (see Table 5).
We will refer to these as flagged posts in the following paragraphs.
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Table 5. Descriptive statistics on Reddit data extracted from 1 January to 30 June 2020.

N N/Month N/Week N/Day

posts 3,395,847 565,974 147,645.52 18,658.50
comments 17,254,621 2,875,770 750,200.91 94,805.61
keyword matches 522,320 87,053 22,709.57 2869.89
POS matches 33,609 5,601 1,461.26 184.66

Overall, about a quarter of flagged posts come from dedicated Coronavirus subreddits,
another quarter from generic political subreddits, less than 20% from generic news subred-
dits, 12% from local (U.S. regions or non-U.S. English speaking countries) subreddits, 9%
from ideological subreddits, and 6% from other subreddits. In addition, 47% of flagged
submissions are COVID-related.

The month with the highest number of flagged posts was March 2020, with over
10,000 flagged posts. Flagged posts from the Coronavirus related subreddits have peaked
at the beginning of March, decreasing ever since (Figure 2a). This however reflects the fact
that the number of overall scraped posts was highest in that period. When looking at the
percentage of posts that were flagged, the pattern is strikingly different (Figure 2b).

(a)

(b)

Figure 2. Evolution of posts flagged as false information, by subreddit type—figures extracted from
the dashboard. Each point represents one week of data collection. (a) top: raw counts; (b) bottom:
percent of posts.
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In most weeks, less than 5% of posts are flagged as false information (number varies
from one subreddit to another). There are, however, three weeks showing discontinuities,
with higher peaks than all other weeks. The first is a week at the end of January, with ap-
proximately 8% of posts flagged, around the time of the U.S. President’s impeachment
trial (most frequent words not common to other weeks: impeachment, Bolton, vote, trial,
witnesses). The second period is at the end of February, with approximately 16% of posts
flagged, with topics featuring the Democratic primaries, and violence in India (most fre-
quent words: Delhi, democratic, Pence, woman, workers). The third period is at the end of
April, and features sexual assault allegations against the former Vice President of the U.S.
and accusations that COVID-19 started from a laboratory in China (most frequent words:
evidence, assault, Reade, deaths, lab).

5.2. Informal Flagging: "Lone Wolf" or "Brigading"?

Flagging is not often a group activity. In our dataset, 82% of posts were flagged only
once, 10% flagged twice, and only 8% flagged more than three times. We present in Figure 3
two rare examples of posts flagged more than 10 times.

Figure 3. Two examples of post flagged multiple times, from the dashboard.

5.3. Informal Flagging: How Do Redditors Flag When They Flag?

The six types of flagging do not occur with the same frequency. In terms of the
language, “bullshit” is the most commonly used expression (36% of all flags), followed by
variations on “misleading” (25%), “fake news” (23%), and “propaganda” (12%). The terms
“disinformation” and “misinformation” appear in less than 3% of cases, and ”unreliable” in
less than 1% of comments.
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5.4. Informal Flagging: Topic Clustering

These data were collected during the COVID-19 crisis. To understand which major
subtopics referring to this crisis tend to be flagged as false information, we first isolated
the posts strictly about the virus (using a regular expression given in Appendix B). Then,
we used the dashboard to run a K-means cluster analysis (described in Section 7.3) with
three topics (see Figure 4). Looking at word frequencies per topic, we can distinguish
three topics:

1. a topic about the U.S. president and the Government’s response to the pandemic,
2. a topic about China, and
3. the largest topic about COVID-19 generic information: reports on deaths, infected,

and health concerns.

Given the evolution of the pandemic, it is no surprise that the China topic is decreasing
in prevalence (from 44% in January to 8% in June), while the other two are increasing in
relative terms.

Figure 4. Results of cluster analysis on sentence embeddings (2D scatterplot). The axes are the
first two principal components. Most frequent words/cluster: CL1 (left): trump, says, president,
pandemic, response, trump’s, white, house, donald; CL2 (up): china, chinese, wuhan, new, virus,
cases, says, lockdown; CL3 (right): new, says, people, pandemic, cases, virus, patients, health,
deaths, death.

5.5. Comparison to Fact Checking Websites

Assessing the truth value of the information flagged as false is beyond the scope
of this paper but will be dealt with in future research. However, we offer a preview,
by comparing our results with those from an external dataset. The organization known
as NewsGuard (https://www.newsguardtech.com) evaluates news websites in terms of
credibility and transparency. Recently, they published a list of untrustworthy websites,
and it is currently numbering 369 web domains, as of 29 November 2020. We shall refer to
them as suspicious websites.

From January to June 2020, news pieces from 153 of these domains were shared
on Reddit. The subreddit with the most suspicious websites referenced (71 domains) is,
unsurprisingly, r/conspiracy, followed by r/Coronavirus (62 domains), but they also
make an appearance (40–50 domains) on the major news and politics subreddits: r/news,
r/POLITIC, r/politics, or r/worldnews.

https://www.newsguardtech.com
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It is important to note that more than 50% of suspicious websites were flagged at least
once by Reddit users (compared to only 7% of all other domains). However, they were
not flagged very often. Out of 23,076 articles shared on Reddit from these suspicious
websites in the first half of 2020, only 830 were flagged (3.6% of all comments), according
to our POS matcher. This is slightly higher than the percentage of flagged posts from
all other websites (2.8%). A post is 1.29 times more likely to be flagged if it belongs to a
suspicious website than if it does not. However, the list of suspicious websites provided
by NewsGuard cannot be considered exhaustive. Future research is needed to establish
whether there are confounding variables or whether the ’fake news detector’ of Reddit
users is properly tuned.

6. Discussion

We agree that, for the task of detecting false information, “tools should be designed
to augment human judgement, not replace it.” [36]. Our project aims to fulfill this goal,
by narrowing down the list of potential false information to posts flagged as false by
members of online communities. Using this method, we highlight what can be considered
an informal vote of non-confidence from parts of an online community toward individual
posts. Aggregating such information in real time can then be used as a barometer of
how much misinformation is perceived by users at a specific time. Such a technology is
complementary to expert based fact-checking. We also agree that the methods should
be fully transparent, and our patterns can be easily inspected and modified even by less
technical users.

Our tool does not require training on manually labeled data and is less vulnerable to
the particularities of a specific training set. It is highly customizable and can be adapted
to any internet forum where news are discussed. It performs better than a keyword
filtering model, and not significantly worse than machine learning models. Our model
extracts labels in real time, by unobtrusively tapping into the actual behavior of online
platform users.

There are several limitations to this method. We are aware that it is a rather simple
model of text analysis. However, compared to novel developments in Natural Language
Processing and Deep Learning, we find our approach to be more conductive for user
transparency, especially for users who might not have a background in machine learning.
Efficient machine learning requires a large amount of costly manual labeling for training
data, and it is sensitive to concept drift. The simple vocabulary and matchers can be easily
changed to accommodate new patterns or to remove irrelevant ones. The qualitative deriva-
tion of the keywords for the POS matcher was the chosen way to operationalize flagging,
as we are currently not aware of any literature defining online sanctioning behavior in a
consistent manner. Therefore, this method may not capture "flagging" exhaustively, as the
recall measures show. It does, however, leave the possibility of improvement by adjusting
the vocabulary or rules.

It should be kept in mind that the model is potentially detecting user-perceived false
information, and not necessarily actual false information. Reddit users are probably less
informed compared to professional fact checkers and have their own ideological lenses
by which they judge a piece of news as true or false. The Reddit demographics are highly
skewed toward young and male [50], and their evaluations might not reflect the views of
the general U.S. population. Online anonymity can encourage antisocial behavior; therefore,
some informal flagging may not be done in full honesty, especially if it is infiltrated by
bots and paid trolls [20]. In addition, given Reddit’s meme-centric ethos and creativity,
irony, and sarcasm cannot always be filtered out. The intensity of an informal flag can
vary (from “absolutely false” to “slightly misleading”), and so does the target of the flag
(from the content of article, to the source referenced, or Reddit user). In addition, in terms
of flagging accuracy, not all subreddits are created equal. There is a risk that malevolent
actors become aware that their content is being flagged, and attempt to break the algorithm
by “flooding the zone” with false flags. This is why future research should also take into
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consideration user reputation and their tenure on the platform, and to find a way to filter
out the false flaggers.

That being said, even if many of the flagged posts are not objectively presenting
false information, the dataset of user flags can be used by social scientists to study how
perception about what is true and what is false online emerges and changes over time.
As an example, sociologists have long theorized that actors with ambivalent traits con-
cerning valuation can receive sanctions from an audience for not adhering to role-based
expectations [55,56]. This in turn may enhance conformity and reduce innovations in a
field. However, which acts of communication constitute sanctions and which do not is
something that has not been systematically analyzed. In a similar manner, Bratich [11] has
argued for revising classical communication models of audience interaction, so that the
active production of meaning as well as the influence of the audience on media production
can be included. Our analysis in this respect not only traces flags, therefore including
an active process of meaning generation. It is also possible for researchers to use these
techniques to trace how the production of posts might change as a consequence of flagging.

Within this project, we are building a dataset that is made public, and we are providing
the source code for the data collection and for recreating the dashboard (see Section 8).
The next steps will involve bringing more external data from known datasets of fact checked
information, and further inquiries into the relationship between the veracity (reflected
by expert reviews) and credibility (reflected by user flagging) of news published online,
as well as the effects of being flagged on posting behavior.

When detecting whether flagging correctly predicts false information (based on reports
of fact checkers), more information should be considered as possible moderators. Previous
research shows that a wider range of features can be used to predict disinformation or
propaganda, such as metadata [17,46], emotional cues [24,25], or visual data [51]. Useful
metadata can include the weekday and time of posting, the time spent by the user on the
platform, the rating of the post or comment, and the concentration or dispersion of user
posts among subreddits. Emotional signals, extracted through sentiment scores, might help
in separating between flag types or types of false information. The memes and other images
shared on these forums can be also mined for useful features. More advanced deep learning
models [53,54] can be incorporated to filter out sarcastic comments.

Finally, we aim to expand the current approach to problems beyond the current
COVID-19 pandemic and online contexts different from Reddit. The model only depends
on the text content of a reply to a post, so it can be easily adapted to other online platforms,
including Twitter or online newspaper websites. The dictionary and rules are fully cus-
tomizable, as long as the input text is in the English language (although similar tools can be
created for other languages). We hope the tool will be of use to academics, journalists, fact
checkers, data scientists, medical experts, Reddit users and moderators, and all members
of society.

7. Materials and Methods
7.1. Data Analysis Dashboard

We created and are maintaining a dashboard for monitoring flagged posts. It covers
posts from 1 January 2020 to the present (currently: 28 October 2020). This tool is built
using Python 3.6 and the User Interface is provided by the package Dash, which relies on
the package Plotly for creating interactive charts. The dash app is built on top of Flask.
The Flask application runs on a Ubuntu virtual machine, and is served using Gunicorn
and Nginx.

The user interface is separated in two columns. The left column is meant for filtering
the dataset (for all tables and graph). On the left column, users can select the period
(from week A to week B), the type of flags (“disinformation”, “fake news”, “clickbait”,
“unreliable”, “bullshit” and “propaganda”). There is also an option to display only COVID-
19 related posts.
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The right column shows tables and graphs. The file with matched sentences (flags
identified with the POS matcher) is the main input file. This file is aggregated at different
levels (posts, subreddits, authors of posts, domain of linked URL in post), and each resulting
dataset has its own separate tab on the right column of the UI. We briefly describe each of
the six tabs and their potential uses for data analysis. A full flowchart of the dashboard can
be found in Appendix A.

7.2. Dashboard: Flags

This tab uses the non-aggregated dataset of sentences matched as informal flags.
It contains frequency tables. It serves mainly to check and validate the results of the
instrument (if the sentences are really flags), to show the most common flags (information
which can also be used to find potential bot activity), and to show the latest flags and the
subreddit in which they were employed.

7.3. Dashboard: Posts (Submissions) and Clustering

In the second tab, the flags are aggregated at a post level and the latest 10 to 100
posts are shown. Information displayed includes the title of flagged article, date when it
was published, whether it was removed by moderators and the wording of the comments
identified as user flags. It links to the Reddit post and the original article. Users can filter
out posts from specific subreddits or posts with multiple flags. For two examples of heavily
flagged posts, see Figure 3. This is the most important tab of the dashboard because it can
be a starting point for fact checking the users’ claims of disinformation.

The fourth tab is used to cluster posts into topics. When analyzing a large number
of posts titles, it can be useful to filter by topic. The dashboard allows the user to run
a predefined unsupervised machine learning algorithm (see Appendix A for a diagram
of the pipeline). First, sentence embeddings are calculated for each flagged post title.
The Universal Sentence Encoder [57] was chosen because it is specifically tuned to sentences
rather than words, and most tiles consist of a single sentence. It generates sentence vectors
with 512 elements. Then, the dimensionality of the data are reduced using Principal
Component Analysis, and the top 5 components are chosen. Finally, the five principal
components are included as variables in a K-mean cluster analysis to group each post
in a single category (cluster). The user can choose the number of clusters (from 1 to 10,
default is 3), and after that the most frequent words in each category are shown, to help
label each cluster. The user can also inspect the post titles closest to each cluster’s centroid.
This method is an alternative to more complex approaches [19] for grouping COVID-19
related news pieces.

7.4. Dashboard: Subreddits, Domains, Authors

In Tabs 3, 5, and 6 of the dashboard (Figure A1), the data are aggregated at the subred-
dit, domain, and author level. The subreddit tab presents the frequency and percentage
of flagged posts in each subreddit over time. It can show the concentration of flagged
disinformation in certain subreddits and temporal peaks. A screenshot of the third tab is
presented in Figure 5.

The domain tab shows the most often flagged web domains, and it can be used to
investigate the websites that might be spreading false information. Finally, the ”authors”
tab shows the most flagged users (as percent of total submisions). This can be useful to
detect potential coordinated activity by groups of non-genuine users [52], social bots, or
trolls that might stand out for having an unusually high number of flagged comments.
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Figure 5. Screenshot of the dashboard analyzing posts flagged by users as disinformation on Reddit.

8. Data Availability Statement

The syntax, source code, and data used in this paper are made available in a publicly
accessible repository (https://figshare.com/).

8.1. Manual Annotation Files

Two .csv files containing the manual annotations (described in Section 4.4.1) used in
the training and test set for the ML models are uploaded on Figshare. All 1500 annotations
are provided. DOI:10.6084/m9.figshare.13315259

8.2. Descriptive Analyses

A Jupyter Notebook file where descriptive statistics from Section 5 are computed was
uploaded on Figshare. DOI:10.6084/m9.figshare.13174145

8.3. Source Code of Dashboard

Snippets from the POS matcher can be found in Appendix B. The full Python source
code for the (dash/plotly) dashboard, as well as the data that it uses, was uploaded on
Figshare. DOI:10.6084/m9.figshare.13174136

8.4. Testing Dashboard

The dashboard is still in the development stage, but fully functional at the time of writ-
ing. The dashboard can be tested by accessing the following link: http://134.155.109.58.
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Appendix A. Data Processing Flowchart for Dashboard

This chart shows which dataset the tabs in the dashboard are using.
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Figure A1. Data processing flowchart for dashboard.
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Appendix B. Vocabulary, POS, Dependency Classes, and Matching Patterns

All code is Python 3.6 code.

Listing 1. The vocabulary Python classes.

### Vocabulary
### The~class containing all keywords to match.
class voc:

# Words to be matched as subjects.
class subj:

### Nouns
article = [’article’,’submission’,’sub’,’post’]
title = [’title’,’headline’,’header’]
source = [’source’,’website’,’site’,’url’,’link’]
### Pronouns
fpers = [’i’,’me’,’we’]
secpers = [’you’]
this = [’it’,’this’,’that’,’here’]

# Words to be matched as predicates
class pred:

be = [’be’]
feel = [’look’,’sound’,’feel’,’seem’,’smell’,’stink’]
think = [’guess’,’think’,’beleive’,’say’,’know’,’feel’, ’suspect’]
beleive = [’beleive’,’fall’,’buy’]
call = [’call’]
stop = [’stop’,’quit’,’refrain’,’do’]
report = [’flag’,’report’,’remove’]
spread = [’spread’,’propagate’,’spew’,’distribute’,
’promote’,’post’,’submit’]

# Words to be matched as objects
class obj:

news = [’news’,’information’,’info’]
disinfo = [’disinformation’,’misinformation’,’malinformation’]
clickbait = [’clickbait’,’innacuracy’,’innacuracies’]
falsehood = [’falsehood’,’fabrication’]
bs = [’bullshit’,’bs’]
propaganda = [’propaganda’]

# Words to be matched as attributes
class attr:

false = [’fake’,’false’,’bogus’,’fabricated’, ’manipulated’,
’manipulative’, ’inaccurate’]
misleading = [’misleading’,’mislead’,’editorialized’,’editorialize’,
’clickbait’,’sensationalized’,’sensationalize’, ’sensationalist’]
unreliable = [’untrustworthy’,’unreliable’,’unverified’]
bs = [’bullshit’,’bs’]
propaganda = [’propaganda’]
real = [’real’,’true’,’correct’]
reliable = [’reliable’,’verified’,’credible’]

# Negative words
class neg: # Negations

neg = [’not’,’no’]

### Non-negative wildcard
NONEGWC = [{"LEMMA":{"NOT_IN":v.neg.neg},"OP":"?"}]

Listing 2. The POS and dependency Python/SpaCy classes.

### POS tags
class pos:

nouns = [’NOUN’,’PROPN’]
adjs = [’ADJ’]

### Dependency tree values
class deps:

root = ["ROOT"]
predicates = ["ROOT","xcomp"]
subjects = ["nsubj","nsubjpass"]
objects = ["dobj","pobj","attr","acomp",

"oprd","conj","compound","nsubjpass"]
attributes = [’amod’] + objects
neg = ["neg","det"]

An example on how the vocabulary is plugged in the patterns along with POS tags
and dependencies (Patterns SVO and AO shown):
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Listing 3. Python/SpaCy matching patterns for informal flags.

# Pattern SVO (Subject + Verb + Object)
#
# Match examples: This is disinformation ; Article must be propaganda ; Title seems clickbait
pattern_svo = \
## Subject
[{"DEP":{"IN":deps.subjects}, "OP":"+", # Match on dependency

"LOWER":{"IN":v.subj.this + v.subj.article + \ # Match on lowercase keyword
v.subj.title + v.subj.source}},

*NONEGWC*5, # Wildcard (0 to 5 times)
## Predicate/Verb
{"DEP":{"IN": deps.predicates}, # Match on dependency

"LEMMA":{"IN":v.pred.be + v.pred.feel}}, # Match on lemma of keyword

*NONEGWC*5, # Wildcard (0 to 5 times)
## Object
{"DEP":{"IN":deps.objects}, "OP":"+", # Match on dependency

"LEMMA":{"IN":v.obj.disinfo + v.obj.clickbait + # Match on lemma of keyword
v.obj.propaganda + v.obj.bs + v.obj.falsehood}}]

# Pattern AO (Attribute + Object)
#
# Match examples: Fake news! False information!
pattern_ao = \
## Attribute
[{"DEP":{"IN":deps.attributes}, "OP":"+", # Match on dependency

"LEMMA":{"IN":v.attr.false + v.attr.misleading +# Match on lemma of keyword
v.attr.unreliable + v.attr.propaganda + v.attr.bs}}

*NONEGWC*5, # Wildcard (0 to 5 times)
## Object
{"DEP":"ROOT", "POS":{"IN": pos.nouns}, "OP":"+", # Match on dependency & POS

"LEMMA":{"IN":v.obj.news + v.subj.article + # Match on lemma of keyword
v.subj.source + v.subj.title}}]

Listing 4. Regular expressions.

### Regex to filter COVID 19 related posts/submissions (\b refers to word boundary)
###
covid_regex =
’china_flu|\bcorona|\bcovid|\bvirus|\bpandem|\bepidem|\bcrisis|
\blockdown|\bquarantin|\bisolation|\bsocial distanc|\bdeaths|
\bdeath toll|\binfect|\bspread|\bpatient|\bhospital|\bvaccin|
\bsymptom|\bventilators|\bmasks|\bmedical suppl|\bcdc|
\bworld health organization|\bchloroquine|\bhydroxychlor’

### Regex to filter sarcastic submissions
###
sarcasm_regex = "\\\s\\b|\\/s\\b"
# use of scare quotes (e.g., "fake" news)
irony_regex = ’|’.join(’"’ + s \

for s in voc.attr.false + voc.obj.disinfo + voc.attr.propaganda])
joking_regex = ’\\bjk\\b’
sarcasm_and_irony_regex = sarcasm_regex + ’|’ + irony_regex + ’|’ + joking_regex

### Regex to match flags on keywords (\b refers to word boundary)
###
flag_regex =
’\bdisinformation|\bmisinformation|\bmalinformation|
\bfake|\bfalse|\bbogus|\bfabricated|\bmanipulated|\bmanipulative|\binaccurate|
\bfalsehood|\bfabrication|
\bbullshit|\bbs|
\bclickbait|\bmisleading|\b|\beditorialized|\bsensationalized|\bsensationalist|
\buntrustworthy|\bunreliable|\bunverified|
\bpropaganda’

Creating a matcher for each of the six types of informal flags: disinformation, fake
news, bullshit, misleading, unreliable, and propaganda, using the classes for keywords
defined at the beginning of the appendix (Listing 1).
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Listing 5. Matchers for each type of informal flag.

flagtypematcher.add("disinformation",None,
[{"LOWER":{"IN":v.obj.disinfo}}])

flagtypematcher.add("fakenews",None,
[{"LOWER":{"IN":v.obj.falsehood+v.attr.false}}])

flagtypematcher.add("bs",None,
[{"LOWER":{"IN":v.obj.bs}}])

flagtypematcher.add("misleading",None,
[{"LOWER":{"IN":v.attr.misleading+v.obj.clickbait}}])

flagtypematcher.add("unreliable",None,
[{"LOWER":{"IN":v.attr.unreliable}}])

flagtypematcher.add("propaganda",None,
[{"LOWER":{"IN":v.obj.propaganda}}])
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