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Abstract

We consider the law of the perpetual integral of a standard Markov process, deriving
sufficient and necessary conditions for finiteness both with positive probability and prob-
ability one, and prove a zero-one law. The proofs involve defining the class of super-finite
sets and proving several facts about them. Using these results we prove a collection of
similar theorems for finite-time path integrals over transient standard Markov processes.
We also prove two related results for Lévy processes with local times.

Our theorems on path integrals have significance for weak stable SDE solutions, and
we construct this connection explicitly, highlighting the way that the solution process
behaviour is influenced by the law of the path integrals. We lastly develop a characteri-
sation of avoidable sets for stable processes in the form of a summation test, expanding
upon an existing potential theoretic result.

Zusammenfassung

Wir betrachten die Verteilung des Perpetual Integrals eines Standard-Markov-Prozesses,
leiten ausreichende und notwendige Bedingungen für die Endlichkeit sowohl mit positiver
Wahrscheinlichkeit als auch mit der Wahrscheinlichkeit eins ab und beweisen ein Zero-
One Law. Bei den Beweisen geht es darum, die Klasse der super-finite Mengen zu
definieren und mehrere Fakten über sie zu beweisen. Anhand dieser Ergebnisse beweisen
wir eine Sammlung ähnlicher Sätze für endliche Path Integrals über transiente Standard-
Markov-Prozesse. Wir beweisen auch zwei verwandte Ergebnisse für Lévy-Prozesse mit
Local Times.

Unsere Sätze über Path Integrals haben Bedeutung für schwach stabile SDE-Lösun-
gen, und wir konstruieren diese Verbindung explizit, indem wir die Art und Weise her-
vorheben, wie das Verhalten des Lösungsprozesses durch der Path Integrals beeinflusst
wird. Zuletzt entwickeln wir eine Charakterisierung vermeidbarer Mengen für stabile
Prozesse in Form eines Summationstests, wobei wir auf ein vorhandenes potenzielles
theoretisches Ergebnis aufbauen.
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and patience made this thesis possible. I count myself very fortunate to have worked
with him these past four years, and his confidence in my work has been exceptionally
valuable to me. Thanks also go to Prof. Dr. Andreas Kyprianou for fruitful and enjoyable
discussions during my stay in Bath.

Special thanks go to Dr. Philip Weißmann and Dr. Stefan Lindt, whom I count not
just as talented colleagues but as friends, and who inspired and encouraged me while
we shared an office. My thanks also to all colleagues at Universität Mannheim, in
particular Dr. Quan Shi and Dr. Helmut Pitters, for frequent mathematical discussions
and for cultivating a positive and relaxed atmosphere.

My deepest heartfelt thanks to my family and to friends near and far for their support,
confidence, and for walking every step of this journey with me. Their importance to me
cannot be overstated.

Finally I would like to thank the Heidelberg-Mannheim RTG 1953 funded by the Deutsche
Forschungsgesellschaft for supporting my research financially and for providing an out-
standing professional environment in which to work.

Enough with exposition!
Get to the heart of it, no matter
what you started with.

ii



Contents

1 Introduction 1
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Collaborative Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 4
2.1 Markov Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
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1 Introduction

The greatest achievement in probability theory of the last century is the development
of a rigorous mathematical framework for studying what remain essentially intuitive
concepts. In the world of stochastic processes this joining of intuition and rigour is
typified in the Brownian motion, an astounding object whose properties and behaviour
have had a hand in the development of almost every part of modern stochastic process
research.

In this thesis two classes of stochastic process will be studied, both of which count the
Brownian motion as a member. The first are Markov processes, some examples of which
were already studied in the 19th century, and which formalise an intuitive property of
‘forgetfulness’ or homogeneity in time. The second are stable processes, a family of
Markov processes which share many properties with the Brownian motion, including
stationary and independent increments and a form of self-similarity, but which can have
discontinuous paths.

For X a stochastic process, and f a nonnegative measurable function, the path integrals
over f(X) are defined as ∫ t

0
f(Xs) ds, t ∈ [0,∞].

The collection of path integrals is a real-valued stochastic process in its own right, and
its behaviour can be studied in relation to that of X and f . The terminal value of the
path integral process is given by ∫ ∞

0
f(Xs) ds,

and is called the perpetual integral over f(X). While path integrals have been extensively
studied for the Brownian motion they are less well understood for stable processes, and
for general Markov processes there is still much to learn. Most research on path and
perpetual integrals relies on assumptions ensuring their behaviour adheres to a zero-one
law, and one aim of this thesis is to present general theorems on those objects which
don’t fall into such a strict regime. Perpetual integrals are major objects in probabilistic
potential theory, appearing in the definition of the potential of measurable f ,

Uf(x) = Ex
[ ∫ ∞

0
f(Xs) ds

]
,
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and in all parts of this thesis we shall make heavy use of the varied and powerful theory
of potentials for Markov process.

An object related to path integrals is the stochastic integral∫ t

0
f(Zs−) dXs, t ∈ [0,∞],

where Z is another stochastic process. When X is a stable process, stochastic inte-
grals and path integrals are very closely linked, and in this thesis we shall exploit that
connection to develop some theorems that bridge both worlds.

1.1 Outline

Chapter 2: Preliminaries

We introduce the families of Markov, Lévy, and stable processes, make clear and precise
the tools we shall use, and establish some basic properties. We then lay some foun-
dational potential theory for Markov processes, following the lead of Blumenthal and
Getoor [5], and present some more specialised results for Lévy processes as given in
Bertoin [2] and Sato [39], paying particular attention to the strange world of capaci-
ties.

Chapter 3: Perpetual Integral Tests

This chapter is mostly dedicated to proving a characterisation of the perpetual integral
of a standard Markov process under the action of a general measurable function, which
unlike previous results is not a zero-one law. To do so we develop the theory of super-
finite sets, prove a series of technical lemmas that describe the properties of these sets,
and thereby construct the main theorem. From that theorem we deduce two similar
results, one for the almost sure case and the other a zero-one law.

Chapter 4: Path Integral Tests

The results of this chapter are chipped from the block of Chapter 3 and provide a
counterpoint to - and extension of - the well-known zero-one law for path integrals of
the Brownian motion, which was proven by Engelbert and Schmidt [15] in 1981. We
present sufficient and necessary conditions for the probability

Px
(∫ t

0
f(Xs) ds <∞ for every t < ζ

)
to be either positive or equal one in the cases that X is either a transient standard
Markov process or a Lévy process on R with local times, and give more specific result
in the case that X is a transient stable process.
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Chapter 5: Stable SDEs

We prove general existence criteria for weak solutions to the driftless stable SDE

dZt = σ(Zt−) dXt, Z0 = z,

building upon the work of Zanzotto [44, 45, 46] and Kallenberg [27], and draw a connec-
tion to the stable process results of Chapter 4.

Chapter 6: Avoidable Sets

We prove a summation test which provides a necessary and sufficient condition for a set
to be avoidable for the d-dimensional isotropic transient stable process. This work is
based on the Wiener Criterion for thin sets, and is proven here using only probabilistic
methods.

1.2 Collaborative Work

The results of §3.2 and §3.5 were developed and refined in collaboration with Leif Döring
of Universität Mannheim and Andreas Kyprianou of Bath University. The results for
standard Markov processes in Chapter 4 are collaborative work with Leif Döring and
Quan Shi of Universität Mannheim. The results of §4.3 and Chapter 6, and much of the
discussion in §2.6, would not have been possible without the invaluable input of Mateusz
Kwaśnicki of Wroc law University of Science and Technology.
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2 Preliminaries

Stochastic processes are mathematical models of random phenomena which move through
time, and their uses are rich and extensive. The central rôle of this thesis is played by a
particular class of continuous-time stochastic processes called strong Markov processes,
which have their origins in the works of A. Markov in the first decade of the twentieth
century, and for whom they are also named.

The first section of this background will define a Markov process in a general setting,
closely following the definition of Blumenthal and Getoor [5], and discuss the strong
Markov property. The second section will introduce a broad family of Markov processes
called Lévy processes, and the third will narrow the focus to those satisfying a particular
scaling property, which are called stable processes. The fourth section will establish some
objects from potential theory, an area of analysis that has long had a fruitful relationship
with Markov processes, beginning in its modern form with the works of Doob and Hunt
from the 1950s, and expertly presented in Blumenthal and Getoor [5]. The fifth and
sixth sections will look more closely at the potential theory of Lévy processes, following
the presentation in Bertoin [2] and Sato [39].

2.1 Markov Processes

A Markov process is a stochastic process that formally describes the intuitive Markov
property:

(Markov property)
If the present state of a system is known, then the conditional
future behaviour of the system is independent of any additional
information about the past.

Markov processes are well suited to modelling systems which are largely ‘memoryless’.
Take for example the flight of a dandelion seed through the air. If the current position of
the seed were known, and its movement could be accurately and precisely modelled, then
any additional information about where the seed had previously been - mathematically,
the past of the process - would be irrelevent to predicting its future, since the seed has no
way of changing its behaviour based on past experience. Many physical phenomena also
have this memoryless property, but any system with longer-term memory - for example,
a model of human behaviour - is not Markovian.
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There is a delicate point hidden in the intutive Markov property: whether or not the
‘present state’ of a system includes the information of how long it has been running.
Markov processes in which the observer also knows the run-time are called time inhomo-
geneous, because the behaviour of the system can change with time while preserving the
Markov property, whereas processes in which the run-time is hidden from the observer
are called time homogenous.

First Definitions

We shall need the following ingredients to build the definition of a Markov process:

(i) A measurable space (E, E), and ∆ an additional point not in E. Let E∆ = E∪{∆}
denote the augmentation of E with the additional point, and let E∆ be the σ-
algebra in E∆ generated by E , that is, the smallest σ-algebra in E∆ containing
E .

(ii) The space Ω of paths ω : [0,∞]→ E∆ such that ω(∞) = ∆, and if ω(t) = ∆ then
ω(s) = ∆ for all s ≥ t. In addition an element ω∆ of Ω satisfying ω∆(t) = ∆ for
all t.

(iii) A family (Xt, t ∈ [0,∞]) of coordinate maps Xt : Ω→ E∆, that satisfy

Xt(ω) = ωt for all t ∈ [0,∞].

(iv) The canonical filtration Ft = σ(Xs, 0 ≤ s ≤ t) and F = σ(Xs, s ∈ [0,∞]) of X
satisfying the natural conditions.

(v) A family (θt, t ∈ [0,∞]) of translation maps θt : Ω→ Ω : ω 7→ (ωt+s, s ≥ 0).

(vi) A family of probability measures (Px, x ∈ E∆) on (Ω,F).

Definition 2.1.1. The collection X = (Ω,F ,Ft, Xt, θt,Px) is called a (time homoge-
neous) canonical Markov process with state space (E, E) and cemetary state ∆ if the
following two conditions simultaneously hold.

Condition 1 (Regularity)

(a) For each t ∈ [0,∞) and each B ∈ E, the map

: E → [0, 1], x 7→ Px(Xt ∈ B)

is E-measurable.1

(b) P∆(X0 = ∆) = 1.

Condition 2 (Markov property)
For all x ∈ E∆, t, s ∈ [0,∞], and f ∈ bE∆,

Ex[f(Xt+s)|Ft] = EXt [f(Xs)] Px-almost surely.

1When the σ-algebra on the second space is not explicitly named, it is the Borel σ-algebra on [−∞,∞].

5



In particular, for all B ∈ E∆,

Px(Xt+s ∈ B|Ft) = PXt(Xs ∈ B) Px-almost surely.

Here is an intuitive way of thinking about Definition 2.1.1 and the ingredients (i) - (vi).
The function

t 7→ Xt

is the random trajectory of a particle moving through the space E. Under the law Px
the particle is issued from the point x, and at some random time in [0,∞] it leaves E
and attains a cemetary state ∆, where it remains for all time. The random time

ζ : Ω→ [0,∞]

: ω 7→ inf{t > 0 : Xt(ω) = ∆}

is called the lifetime of X. The translation operators θt have the effect of shifting the ω
in time, and for all s, t ∈ [0,∞], B ∈ E∆,

Px(Xt+s ∈ B) = Px(Xt ◦ θs ∈ B).

The regularity condition is a technical necessity which also has the following far more
useful form, from Blumenthal and Getoor [5] Theorem I(3.6)(a): the map x 7→ Ex[Y ]
is E∆-measurable for all Y ∈ bF . This in particular means that for any Y ∈ F and
B ∈ B(R),

x 7→ Px(Y ∈ B) (2.1)

is E∆-measurable.

It is worth now taking a moment to broaden the definition of a Markov process, because
although the canonical process allows for a nice intuitive interpretation, it can bloat
proofs and obscure other properties of the process. Blumenthal and Getoor [5] Theorem
I(4.3) shows that the following coincides with the usual definition of a Markov process,
given in Definition I(3.1) of the same book.

Take (i) - (v) as above, and let (A,A) be a measurable space with a distinguished point
a∆. Let (Yt, t ∈ [0,∞]) be a family of maps Yt : A→ E∆ such that

(i) Yt(a∆) = ∆ for all t;

(ii) for all a ∈ A, if Yt(a) = ∆ then Ys(a) = ∆ for all s ≥ t;

(iii) for all a ∈ A, Y∞(a) = ∆.

Let (Py, y ∈ E∆) be a family of probability measures on (A,A), and let

π : A→ Ω

: a 7→
(
Yt(a), t ∈ [0,∞]

)
.

Define a new family of measures (P̃y, y ∈ E∆) on (Ω,F) by P̃y = Py ◦ π−1.
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Definition 2.1.2. We say that Y is a Markov process with law (Py, y ∈ E∆), state
space (E, E) and cemetary state ∆ if (Ω,F ,Ft, θt, Xt, P̃y) is a canonical Markov process
with state space (E, E) and cemetary state ∆.

If Y is a Markov process with law (Py, y ∈ E∆) then for x ∈ E∆, t, s ∈ [0,∞], and
f ∈ bE∆,

Ex[f(Yt+s)|Gt] = EYt [f(Ys)] Px-almost surely,

where Gt = σ(Ys, 0 ≤ s ≤ t).

From this moment on the term ‘canonical’ will no longer be used, but it should be
understood that every Markov process Y defined on a measurable space (A,A) and a
family of probability measures (Px, x ∈ E∆) can be thought of as a canonical Markov
process via the correspondence above.

In the next section we shall introduce Markov processes for which the entire family (Px,
x ∈ E∆) can be defined by a single measure Py for a fixed y ∈ E. One reason for
Definition 2.1.2 will be to allow several of these Markov processes to be defined on the
same probability space (Ω,F ,Py). This is not possible for canonical processes since in
that case the behaviour of the process is entirely defined by the laws Py.

Let X = (Ω,F ,Ft, Xt, θt,Px) be a Markov process. The family of probability laws (Px,
x ∈ E∆) on (Ω,F) has some interesting properties. Let us introduce a slight change in
notation. Define

Pt(x,A) = Px(Xt ∈ A), t ∈ [0,∞], x ∈ E∆, A ∈ E∆. (2.2)

Then for t, s ∈ [0,∞],

Pt+s(x,A) = Ex[Px(Xt+s ∈ A|Ft)] = Ex[PXt(Xs ∈ A)] =

∫
Ps(y,A)Pt(x, dy).

This relationship is called the Chapman-Kolmogorov equation, and is the centrepiece of
the following definition.

Definition 2.1.3. Let (M,M) be a measurable space. Then a function Pt(x,A) defined
for t ∈ [0,∞), x ∈M , and A ∈M is called a Markovian semigroup on (M,M) if

(i) A 7→ Pt(x,A) is a probability measure on M for all t, x;

(ii) x 7→ Pt(x,A) is M-measurable for all t, A;

(iii) Pt(x,A) satisfies the Chapman-Kolmogorov equation

Pt+s(x,A) =

∫
Ps(y,A)Pt(x, dy)

for all t, s ∈ [0,∞), x ∈M , and A ∈M.

If (i) is replaced by A 7→ Pt(x,A) being a sub-probability measure, then Pt(x,A) is
instead called a sub-Markovian semigroup.
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Lemma 2.1.4. Let X be a Markov process on (E, E). Then (2.2) defines a Markovian
semigroup on (E∆, E∆). Restricting this function to (E, E) we obtain a sub-Markovian
semigroup

Pt(x,A) = Px(Xt ∈ A), t ∈ [0,∞), x ∈ E, A ∈ E .

This sub-Markovian semigroup Pt(x,A) is called the transition function of X.

Two Markov processes on the same state space (E, E) are said to be equivalent if they
have the same transition function.

Strong Markov Processes

We are now ready to extend our foundations a little further, by introducing a new class
of random variables which will be a key component of many of the proofs that follow
later.

Definition 2.1.5. A random variable T : Ω→ [0,∞] is called a stopping time (for X)
if {T ≤ t} ∈ Ft for all t ∈ [0,∞).

Intuitively a stopping time is a random time which announces its arrival: the observer
of a process can see that a stopping time has been reached at that stopping time. The
classic example of a random time which is not a stopping time is the final time a process
attains a certain value x, because in most cases one cannot know whether a time t at
which Xt = x was the final time until reaching time ζ.

Stopping times are useful for us because they motivate a family of Markov processes
which retain the Markov property when restarted at stopping times, called strong Markov
processes. These processes are fundamental to the work of this thesis.

Definition 2.1.6. A Markov process X = (Ω,F ,Ft, Xt, θt,Px) on (E, E) is called a
strong Markov process if for each stopping time T and f ∈ bE∆,

(i) XT is FT -measurable relative to E∗∆;

(ii) for all x ∈ E∆, and s ∈ [0,∞]

Ex[f(XT+s)|FT ] = EXT [f(Xs)] Px-almost surely.

In particular, for all B ∈ E∆,

Px(XT+s ∈ B|FT ) = PXT (Xs ∈ B) Px-almost surely.

The form of the strong Markov property below is far more versatile.

Lemma 2.1.7 ([5] Corollary I(8.6)). Let X be strong Markov. Then for every Y ∈ bF
one has

Ex[Y ◦ θT |FT ] = EXT [Y ] Px-almost surely.

for all stopping times T and all x ∈ E.
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The strong Markov property turns out to be not only remarkably powerful but also
automatic for a great many Markov processes, and for that reason is almost ubiquitous.
According to Blumenthal and Getoor [5] in early work it was not even realised that
a distinction was necessary, and the strong Markov property was more or less tacitly
assumed. But this ubiquity can be dangerous if it leads to sloppiness when using the
property, and for that reason the following corollary explicitly proves one application
which will appear often later in this thesis.

Corollary 2.1.8. Let f : E∆ → [0,∞] be a E∆-measurable function, and (fn, n ∈ N)
be a pointwise increasing sequence of functions in bE∆ with pointwise limit f . Then for
fixed t ∈ [0,∞), n ∈ N, the map

: Ω→ [0,∞], ω 7→
∫ t

0
fn(ωs) ds

is in bF . So Lemma 2.1.7 and the (conditional) monotone convergence theorem together
yield

Ex
[ ∫ t

0
f(XT+s) ds

∣∣∣FT ] = lim
n→∞

Ex
[ ∫ t

0
fn(XT+s) ds

∣∣∣FT ]
= lim

n→∞
EXT

[ ∫ t

0
fn(Xs) ds

]
= EXT

[ ∫ t

0
f(Xs) ds

]
.

From an additional application of monotone convergence we see

Ex
[ ∫ ∞

0
f(XT+s) ds

∣∣∣FT ] = lim
t→∞

Ex
[ ∫ t

0
f(XT+s) ds

∣∣∣FT ]
= lim

t→∞
EXT

[ ∫ t

0
f(Xs) ds

]
= EXT

[ ∫ ∞
0

f(Xs) ds
]
.

Standard Markov Processes

All this ground work leads us to define a family of Markov processes in the form they
shall be used in this thesis. This definition establishes a collection of sensible or intuitive
behaviours and properties which are not a part of the definition of a Markov process but
which, like the strong Markov property, are almost always assumed.

Definition 2.1.9. A Markov process X = (Ω,F ,Ft, Xt, θt,Px) with state space (E, E)
and cemetary state ∆ is called a standard Markov process if the following conditions
hold.

(i) E is a locally compact Hausdorff space with a countable base, and ∆ is adjoined
to E as the point at infinity if E is non-compact, and as an isolated point if E is
compact. Furthermore E is the Borel σ-algebra on E.

(ii) (càdlàg paths) The path functions t 7→ Xt(ω) are right continuous on [0,∞) and
have left limits on [0, ζ) almost surely.
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(iii) X is a strong Markov process.

(iv) (quasi-left-continuity) For any sequence Tn of Ft-stopping times with limit T ,
it holds that XTn → XT almost surely on {T < ζ}.

(v) (normality) {x} ∈ E and Px(X0 = x) = 1 for all x ∈ E.

Where it is clear from context we may not specifically state the state space on which X
moves. It is worth noting that E∆ is the Borel σ-algebra on E∆.

Together, normality and right-continuity of paths imply that Px(ζ > 0) = 1 for all x ∈ E.
A standard process which is quasi-left-continuous on {T <∞} is called a Hunt process.
In particular, standard processes with almost surely infinite lifetime are Hunt processes.
Sharpe [40] offers the intuitive explanation that for a Hunt process the cemetary state
∆ is essentially just a trapping point of the state space.

The assumption that E is Hausdorff ensures that compact subsets of E are closed, and
therefore E-measurable. It might be that for some of the results of this thesis this
condition can be relaxed, since many of the compact sets we shall work with are nearly
Borel - in the sense of Blumenthal and Getoor [5] Definition I(10.21) - and a great deal of
Markov potential theory works just as well for nearly Borel sets as for Borel. However,
we shall sacrifice this generality at the gain of far greater clarity of presentation.

Many works consider a more general class of Markov processes called (Borel) right pro-
cesses, which need not be quasi-left-continuous. That generalisation is also a step too far
for this thesis, though many results for standard Markov processes have direct analogues
for right processes. Sharpe’s book [40] is a comprehensive exposition of that theory, see
in particular §8 for the definition and §47 for the connection to standard processes.

The following fact is extremely useful.

Lemma 2.1.10 (Blumenthal’s zero-one law). Let X be a standard Markov process. If
A ∈ F0 then for every x ∈ E, Px(A) = 0 or 1.

Here are three additional lemmas which will be used often later.

Lemma 2.1.11 ([5] Theorem I(10.7)). Let X be a standard Markov process, and for a
set B ∈ E∆ define random times

DB := inf{t ≥ 0 : Xt ∈ B}
TB := inf{t > 0 : Xt ∈ B}
LB := sup{t ≥ 0 : Xt ∈ B}.

Then DB and TB are both stopping times, and are called the first entry time and first
hitting time of B respectively. LB is not in general a stopping time, and is called the
last exit time of B.

It is conventional to set inf ∅ =∞ and sup ∅ = 0.
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Lemma 2.1.12 ([5] Theorem I(10.19)). Let X be a standard Markov process. Take
B ∈ E∆ and µ a probability measure on (E, E). Then there exists an increasing nested
sequence (Kn) of compact subsets of B such that TKn ↓ TB Pµ-almost surely.

For a set B ∈ E∆, we shall call a point x ∈ E∆ regular for B provided

Px(TB = 0) = 1,

and irregular otherwise. From Lemma 2.1.10 we see that this probability is in {0, 1}.
The set of points x ∈ E∆ which are regular for B is denoted by Br. Right-continuity
of paths ensures that B◦ ⊆ Br ⊆ B̄, and in particular that XTK ∈ K almost surely for
compact K.

Lemma 2.1.13 ([5] Theorem I(11.4)). Let X be a standard Markov process and B ∈ E∆.
Then

(i) XTB ∈ B ∪Br almost surely on {TB <∞};

(ii) for each x ∈ E∆, the measure Px(XTB ∈ · ) is concentrated on B ∪Br.

The above lemma also holds for DB in place of TB, since a necessary requirement for
DB 6= TB to hold is that XDB = X0 ∈ B.

2.2 Lévy Processes

A general Markov process may have vastly different behaviour as it moves through dif-
ferent parts of its state space E. Lévy processes are the class of Markov processes which
have homogeneous behaviour in space as well as time. They are named for Paul Lévy,
who did significant work developing their foundations in the first half of the twentieth
century.

Definition 2.2.1. A standard Markov process X on Rd is called a Lévy process if for
all x ∈ Rd, t ∈ [0,∞), B ∈ B(Rd),

Px(Xt ∈ B) = P0(x+Xt ∈ B) (2.3)

and Px(ζ <∞) = 0.

It follows from (2.3) that knowing Px for some fixed x ∈ E is enough to determine the
entire family Px, x ∈ E∆. This in combination with Definition 2.1.2 allows us to speak
without ambiguity of a Lévy process X as a family of random variables Xt : Ω → Rd,
t ∈ [0,∞] defined on a probability space (Ω,F ,P), where conventionally P = P0.

Basic Properties

A Lévy process X has the following properties:
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(a) (Stationary increments) For any x, y ∈ Rd, 0 ≤ s ≤ t, B ∈ B(Rd),

Px(Xt −Xs ∈ B) = Ex[Px(Xt −Xs ∈ B|Fs)]
= Ex[PXs(Xt−s −X0 ∈ B)]

=

∫
Pz(Xt−s − z ∈ B)Px(Xs ∈ dz)

and applying (2.3) yields

=

∫
Py(Xt−s − y ∈ B)Px(Xs ∈ dz) = Py(Xt−s −X0 ∈ B).

In particular for any 0 ≤ r ≤ s ≤ t, x ∈ Rd, B ∈ B(Rd),

Px(Xt−r −Xs−r ∈ B) = Px(Xt−s − x ∈ B) = Px(Xt −Xs ∈ B).

(b) (Independent increments) For any x ∈ Rd, Borel sets A,B ∈ B(Rd), and times
0 ≤ s0 < s1 ≤ t0 < t1,

Px(Xt1 −Xt0 ∈ A, Xs1 −Xs2 ∈ B)

= Ex[Px(Xt1 −Xt0 ∈ A|Fs1);Xs1 −Xs0 ∈ B]

= Ex[PXs1 (Xt1−s1 −Xt0−s1 ∈ A);Xs1 −Xs0 ∈ B]

= Px(Xt1 −Xt0 ∈ A)Px(Xs1 −Xs2 ∈ B). (by stat. incr.)

(c) (Infinite divisibility) For any t > 0 and n ∈ N, the random variable Xt−X0 can
be written as the sum of n independent, identically distributed random variables,

Xt = X0 +
n∑
i=1

(
Xit/n −X(i−1)t/n

)
.

The characteristic exponent of Xt for t ≥ 0 is defined by

Ψt(θ) := − logE0

[
ei〈θ,Xt〉], θ ∈ Rd.

Due to infinite divisibility, tΨ1(θ) = Ψt(θ) for any t > 0. This motivates the definition
of the characteristic exponent of a Lévy process X as Ψ(θ) := Ψ1(θ).

Characterisations

Lévy processes are most often characterised by one of the two following classical theo-
rems. The first gives Ψ(θ) a precise expression built from a group of three objects called
a Lévy triplet.
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Definition 2.2.2. A Lévy triplet or characteristic triplet is a collection (γ, σ, π) of γ ∈
Rd, a symmetric nonnegative-definite matrix σ ∈ Rd×d, and a measure π on (Rd,B(Rd))
satisfying

π({0}) = 0,

∫
Rd

(1 ∧ |x|2)π(dx) <∞.

Theorem 2.2.3 (Lévy-Khintchine formula). Let X be a Lévy process. Then there exists
a Lévy triplet (γ, σ, π) such that

Ψ(θ) = i〈θ, γ〉+
1

2
〈θ, σθ〉+

∫
Rd

(
1− ei〈θ,x〉 + i〈θ, x〉1(|x|≤1)

)
π(dx). (2.4)

On the other hand, for any Lévy triplet (γ, σ, π) there exists a probability space (Ω,F ,P)
on which there is a Lévy process X with characteristic exponent given by Ψ in (2.4).

The second classical theorem says that any Lévy process X can be decomposed into a
sum of three independent Lévy processes, which have a particular form. In this sense
these three process classes are the building blocks of all Lévy processes. The theorem can
either be stated by constructing the processes themselves or by giving their characteristic
exponent, which Theorem 2.2.3 tells us is equivalent.

In order to state that theorem we must first give the definition of a random measure.
The presentation here is inspired by that in Çinlar [9]. Jacod and Shiryaev [26] com-
prehensively lay out the theory of random measures from a semimartingale perspective,
which is quite different but essentially equivalent. Let (E, E) be a measurable space and
(Ω,F ,P) a probability space. A random measure on (E, E) is a map µ : Ω× E → [0,∞]
such that

(i) ω 7→ µ(ω,B) is a random variable for every B ∈ E ;

(ii) B 7→ µ(ω,B) is a measure on (E, E) for every ω ∈ Ω.

The mean of µ is a deterministic measure µp on (E, E) defined by µp(B) := E[µ(B)].
The names intensity or compensator2 are also used for µp.

When discussing random measures the probability space is not usually mentioned unless
it has particular significance. A well-behaved type of random measure is the Poisson
random measure. Let (E, E , ν) be a measure space. A random measure µ on (E, E) is
called a Poisson random measure with mean ν if

(i) the random variable µ(B) is Poisson distributed with mean ν(B) for every B ∈ E ;

(ii) if B1, . . . , Bn is a finite collection of disjoint elements of E then the random variables
µ(B1), . . . , µ(Bn) are independent.

2The compensator of a random measure is also commonly defined as the unique (in a particular sense)
random measure such that E[µp(B)] = E[µ(B)] for all B ∈ E , see for example Theorem II.1.6 of Jacod
and Shiryaev [26], and this fits more naturally to the study of semimartingales. The presentation
here instead follows that of Çinlar [9] §VI, who is mostly concerned with Poisson random measures,
in which case the two definitions coincide.
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Theorem 2.2.4 (Lévy-Itô decomposition). Let (γ, σ, π) be a Lévy triplet, and (Ω,F ,P)
a probability space. Then a stochastic process X on (Ω,F ,P) with state space Rd is a
Lévy process with triplet (γ, σ, π) if and only if there exist a matrix C ∈ Rd×k, a standard
k-dimensional Brownian motion B and, independent of it, a Poisson random measure
µ on [0,∞)× Rd with mean Leb× π, both on (Ω,F ,P), such that

Xt = γt+ CBt +

∫
[0,t]×Rd

x
[
µ(ds, dx)− 1(|x|<1) ds π(dx)

]
, t ∈ [0,∞),

and σ = C>C. We can equivalently write X = X(1) + X(2) + X(3), where X(1), X(2),
and X(3) are independent Lévy processes on (Ω,F ,P) given by

(i) X
(1)
t = γt+ CBt, a d-dimensional Brownian motion with drift γ;

(ii) X
(2)
t =

∫
[0,t]×Rd

x1(|x|≥1)µ(ds, dx), a compound Poisson process;

(iii) X
(3)
t =

∫
[0,t]×Rd

x1(|x|<1)

[
µ(ds, dx)− ds π(dx)

]
, a square-integrable martingale.

2.3 Stable Processes

The grandfather of all continuous-time stochastic processes is the Brownian motion. It
is the canonical example of a martingale, a Markov process, and a self-similar process.
It was first comprehensively studied by Einstein in 1905, more than two decades before
Kolmogorov’s Grundbegriffe, and over a century later remains an absolutely fundamental
object in any study of stochastic processes.

The Lévy-Itô decomposition of Theorem 2.2.4 establishes that any Lévy process is, in a
particular sense, extended from a Brownian motion by the addition of jumps. But one
class of Lévy processes is related to Brownian motion in a different way: they share the
self-similarity property, which allows that a rescaling in time and space can result in a
process with the same law as the unscaled process.

Definition 2.3.1. A standard Markov process X on Rd is called self-similar if there
exists an α > 0 such that

(cXc−αt, t ≥ 0) under Px
(d)
= (Xt, t ≥ 0) under Pcx (2.5)

for all c > 0, x ∈ Rd. We call α the self-similarity index or simply index of X. A
self-similar Lévy process with index α is called a (strictly) α-stable process.

The class of positive self-similar Markov processes are well known for their correspon-
dence to stationary processes and Lévy processes via one or other of the surprising and
powerful Lamperti transforms, see [34] and [35]. Stable processes themselves have many
interesting properties.
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Index: For a general self-similar Markov process, α has the run of the entire real line.
Stable process however can take only α ∈ (0, 2]. The stable process with index α = 2
is the Brownian motion, and is one of only two stable processes with continuous paths,
the other being the linear drift Xt = t. All stable processes of index α ∈ (0, 1) ∪ (1, 2)
are pure jump processes.

Lévy measure: For f ∈ bB(Rd) the Lévy measure π of a stable process satisfies

πf =

∫
Rd
f(x)π(dx) =

∫
R
c|v|−α−1

∫
S
f(vu)σ(du) dv

where S is the unit sphere in Rd, c > 0 is a constant, and σ is a finite measure on S.
If X has state space R then π is absolutely continuous with respect to the Lebesgue
measure, and has density

c+x
−α−11(x>0) + c−x

−α−11(x<0)

for some constants c−, c+ ≥ 0. A Lévy process is called isotropic if its law is invariant
under all orthogonal transformations of Rd, and an isotropic stable process on Rd has
Lévy measure

π(dx) = c|x|−α−d dx (2.6)

for some constant c > 0.

Characteristic function: Self-similarity immediately yields that the characteristic
exponent of a stable process satisfies

Ψ(θ) = c−αΨ(cθ)

for θ ∈ Rd, c > 0. If X has state space R then

Ψ(θ) =


c|θ|2 if α = 2

c|θ|α
(

1− iβ tan
(
πα
2

)
sgn(θ)

)
if α ∈ (0, 1) ∪ (1, 2)

c|θ|+ iγθ if α = 1,

for some c > 0, β ∈ [−1, 1] and γ ∈ R. See Sato [39] Theorem 14.15 for the derivation,
and [39] Proposition 14.9 for the d-dimensional case.

A sum of independent α-stable processes is again α-stable. Any linear drift is a 1-stable
process, and the driftless 1-stable process is called the Cauchy process.

2.4 Potential Theory for Markov Processes

Potential theory existed first as a series of precise physical problems which had a conve-
nient mathematical expression. As the subject grew it left its practical roots behind and
became a branch of analysis in its own right, called ‘classical potential theory’.
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The relationship between Markov processes and classical potential theory was first stud-
ied in the 1930’s, and came into its own as a probabilistic subject with the works of
Doob on Brownian motion. In 1956-7 the view was greatly widened by three papers
written by Hunt [24], and although the style of presentation has changed somewhat, his
work remains central to the discipline of modern probabilistic potential theory.

Potential Operators

Let X be a standard Markov process. The operators introduced in the following defini-
tion are the bread and butter of any work on probabilistic potential theory.

Definition 2.4.1. For t ≥ 0, q ≥ 0, the q-potential of X is given by

U q(x,B) =

∫ ∞
0

e−qtPt(x,B) dt = Ex
[ ∫ ∞

0
e−qt1(Xt∈B) dt

]
for x ∈ E, B ∈ E∗

Like the transition function Pt of X, the potential is both a measure with respect to
B and a universally measurable function with respect to x. We define in addition the
transition operator Pt, the q-potential operator U q, and the q-balayage operator P qB by

Ptf(x) =

∫
E
f(y)Pt(x, dy) = Ex[f(Xt)], U qf(x) = Ex

[ ∫ ∞
0

e−qtf(Xt) dt
]
,

P qBf(x) = Ex[e−qTBf(XTB );TB < ζ]

for B ∈ E∆ and f ∈ E∗+. When q = 0 it is dropped from notation.

The 0-potential (or simply potential) U(x,B) of B ∈ E∗ is the expected amount of time
the process issued from a point x spends in B, and in this sense it is a valuable tool
for solving problems relating to the range of X. But whereas the q-potential of B ∈ E∗
always exists, there are plenty of interesting processes for which the potential of B is
infinite.

Now let f ∈ E∗+ and T be a stopping time. Then

(i) (semigroup property) PtPsf = Pt+sf for all t, s ≥ 0;

(ii) (resolvent equation) for all 0 ≤ q < r,

U q − U r = (r − q)U rU q = (r − q)U qU r;

(iii) U qf(x) = Ex
[ ∫ T

0
e−qtf(Xt) dt

]
+ Ex[e−qTU qf(XT )] for all q ≥ 0.

It follows immediately from the resolvent equation (ii) that U qf is monotone increasing
as q decreases. So by monotone convergence we can define Uf := limq↓0 U

qf for f ∈ E∗+,
regardless of whether U(x,B) is finite or infinite.

One aspect of Hunt’s potential theory for Markov processes was the idea of a close recip-
rocal relationship between two Markov processes called duality. Blumenthal and Getoor
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[5] are characteristically understated when they say that “probabilistic descriptions of
the relationship between the process and its dual are complicated”. But duality is the
correct setting for introducing potential densities, which will play a role later in this
thesis, and the situation for Lévy processes simplifies dramatically.

Definition 2.4.2. Let X̂ be a standard Markov processes on the same state space (E, E)
as X, with potential operator Û q. We say X and X̂ are in weak duality with respect to
a σ-finite measure ξ on E∗ if for all q > 0 and all f, g ∈ E∗+,∫

E
f(x)U qg(x)ξ(dx) =

∫
E
Û qf(x)g(x)ξ(dx).

If in addition the measures U q(x, ·) and Û q(x, ·) are absolutely continuous with respect
to ξ for all q > 0, x ∈ E then X and X̂ are said to be in strong duality with respect to
ξ.

The process X̂ is called the dual of X. We will most often consider processes in strong
duality, as the densities of U q and Û q have some useful properties. One in particular
inspires a class of functions called excessive functions.

Excessive Functions

Definition 2.4.3. Let 0 ≤ q <∞. A function f ∈ E∗+ is called q-excessive if

(i) e−qtPtf → f pointwise as t ↓ 0;

(ii) e−qtPtf ≤ f for every t ≥ 0.

If X and X̂ are in weak duality with respect to a measure ξ and g ∈ E∗+ is q-excessive

for X̂ then g is called q-co-excessive.

The class of q-excessive functions is sometimes denoted S q. When q = 0 a q-excessive
function is simply called excessive.

Constant nonnegative functions are q-excessive for every q ≥ 0. Excessive functions
have interesting interactions with the operators from Definition 2.4.1. For example, for
B ∈ En, if f is q-excessive then [5] Proposition II(2.8) yields that

P qBf(x) = Ex[e−qTBf(XTB );TB < ζ] ≤ f(x) (2.7)

for all x ∈ E, and in addition that P qBf is itself q-excessive. When f ≡ 1 this function
is denoted by

Φq
B(x) = Ex[e−qTB ;TB < ζ]. (2.8)

In particular, taking q = 0, ΦB(x) = Px(TB < ζ) = Px(LB > 0) is excessive as a function
in x. The next lemma concerns how excessive functions behave at the regular points Br

of a set B ∈ En.
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Lemma 2.4.4 ([5] Proposition II(2.10)). Let B ∈ En and f ∈ S q. Then for x ∈ Br,

inf{f(y) : y ∈ B} ≤ f(x) ≤ sup{f(y) : y ∈ B}.

Suppose now that f is a q-excessive function such that f ≥ 1 on some B ∈ E . By Lemma
2.4.4, f ≥ 1 on B ∪Br, and in particular f(XTB ) ≥ 1 almost surely. Thus looking again
at (2.7) we see that

f(x) ≥ Ex[e−qTBf(XTB );TB < ζ] ≥ Φq
B(x) (2.9)

for all x ∈ E. This interesting property of Φq
B is related to an aspect of classical potential

theory called balayage. In this setting Φq
B would be called the balayage of 1 onto B. If

Φq
B is lower semi-continuous it can be written

Φq
B = inf{q-excessive f : f ≥ 1 on B},

and is called the réduite of 1 on B. We shall see settings below in which Φq
B, and indeed

all q-excessive functions, are lower semi-continuous. On of the best-known references for
an introduction to balayage is §7.3 of Helms [23], and a probabilistic interpretation is
given in §VI.3 of Bliedtner and Hansen [4].

Potential Densities

The next lemma is a useful characterisation of the densities of the q-potential measures
U q and Û q.

Lemma 2.4.5. Let X, X̂ be standard Markov processes in strong duality with respect to
ξ, so that by assumption U q(x, ·) and Û q(x, ·) are absolutely continuous with respect to ξ
for every q > 0. The densities of U q, q > 0 with respect to ξ are non-negative functions
uq ∈ E∗ × E∗ such that

(i) uq(·, y) is q-excessive;

(ii) uq(x, ·) is q-co-excessive;

(iii) U qf(x) =
∫
f(y)uq(x, y)ξ(dy) and Û qf(y) =

∫
f(x)uq(x, y)ξ(dx) for all f ∈ bE∗,

all x, y ∈ E.

For q > 0 the function uq is called the q-potential density of X. The function ûq defined
by ûq(x, y) = uq(y, x) is the density of Û q(x, ·) with respect to ξ and is called the co-q-
potential density.

Existence of a potential density u for q = 0 is not immediate. But in any case it is shown
in Blumenthal and Getoor [5] VI(1.5) that for any 0 < q ≤ r,

uq(x, y) = ur(x, y) + (r − q)U qur(x, y),
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and therefore that the functions uq are monotone increasing as q decreases. So we define
u := limq↓0 u

q, which is excessive in the first variable, co-excessive in the second, and
which by monotone convergence satisfies

Uf(x) = Ex
[ ∫ ∞

0
f(Xt) dt

]
=

∫
f(y)u(x, y) ξ(dy)

for f ∈ E∗+. It may be true that u is identically infinity. But if a set B ∈ E∗ has finite
potential U(x,B), then u(x, y) < ∞ for ξ-almost every y ∈ B. An extension of this
reasoning leads to the following concepts.

Transience and Recurrence

It can be interesting to consider how a given standard Markov process behaves at large
times. Two behaviours in particular have been studied a great deal: transience and
recurrence. There is no single way to define either concept, and different but related
definitions are used in different settings. In several common cases, for example when X
is either a random walk or a Lévy processes, the two form a dichotomy.

Definition 2.4.6. Let X, X̂ be standard Markov processes in strong duality with respect
to ξ. X is called weakly transient if there exists a strictly positive function h ∈ E∗ such
that Uh is finite everywhere. In that case, for every x ∈ E, u(x, y) < ∞ for ξ-almost
every y.

Weak transience is more often simply called transience in the Markov process literature,
but we call it weak to distinguish it from the other stronger types of transience which we
shall see soon, and in particular that which is usually defined for Lévy processes.

Denote by (LSC) the condition that there exists a q > 0 such that all q-excessive functions
are lower-semicontinuous. Getoor [18] showed that under (LSC) following conditions are
equivalent:

(i) X is weakly transient

(ii) U(·,K) is bounded for all compact K;

(iii) U(·,K) <∞ for all compact K;

(iv) LK <∞ Px-almost surely for all compact K, all x ∈ E.

(2.10)

A comprehensive discussion of weak transience, and the relationships of (i)-(iv) of (2.10)
without the assumption of (LSC), can be found in §3.7 of Chung and Walsh [10]. They
show, for example, that in general either (iii) or (iv) imply (i).

It will be useful when we focus on Lévy processes to know a little more about transience
in the following specific case. X is said to have strong Feller resolvents if for all q > 0,
U qf is continuous for all f ∈ bE+ having compact support. If X has strong Feller
resolvents then it is given in [5] Exercise II(2.16) that for all q ≥ 0, any q-excessive
function is lower-semicontinuous, and thus (LSC) holds.
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Even if (LSC) does not hold, an alternative characterisation of transience also exists,
given by condition (iv) above: we shall call X transient if Px(LK < ∞) = 1 for all
compact K ∈ E , all x ∈ E, and strongly transient if Px(LK < ζ) = 1 for all compact
K ∈ E , all x ∈ E.3 Transience of X implies weak transience, which can be seen from
Getoor [18] Proposition 2.2(v), and clearly strong transience implies transience. If X is
transient and has strong Feller resolvents then [5] II(4.24) yields that

lim
t→∞

Xt = ∆ almost surely.

If the state space of X is Rd then transience is equivalent to

lim inf
t→∞

|Xt| =∞ Px-a.s., for all x ∈ E.

Properties of the range of X can also be studied in terms of the subsets of E . For a fixed
x ∈ E, a set B ∈ E is called

(i) Px-transient if Px(LB < ∞) = 1, strongly Px-transient if Px(LB < ζ) = 1, and
Px-recurrent if Px(LB < ∞) = 0. There can be sets which are neither transient
nor recurrent. It is given in §3.7 of Chung and Walsh [10] that weak transience of
X is equivalent to the condition that the state space E is a union of transient sets.

(ii) Px-thin or thin at x if Px(TB = 0) = 0. If B is Px-thin at every x ∈ E, it is simply
called thin. Blumenthal’s zero-one law gives that for any B ∈ E , Px(TB = 0) is
equal 0 or 1.

(iii) finely open if E \B is Px-thin for every x ∈ B. The finely open subsets of E form
a topology on E called the fine topology, which has many interesting properties
relating to excessive functions. A set A ∈ E is called finely closed if E \A is finely
open. Exercise II(4.9) of Blumenthal and Getoor [5] yields that A is finely closed
if and only if it contains its regular points. The same authors also explain that
by right-continuity of paths every open set is finely open, and therefore that every
closed set is finely closed.

(iv) Px-avoidable if Px(DB <∞) < 1. In this case M = E \B is called Px-supportive,
and satisfies Px(Xt ∈M for all t ∈ [0, ζ)) > 0.

(v) Px-polar if Px(TB < ∞) = 0. If B is Px-polar at every x ∈ E, it is simply called
polar.

(vi) semipolar if B is contained in a countable union of thin sets.

(vii) essentially polar if E = Rd and B is Px-polar at almost every x ∈ Rd.

Clearly every polar set is thin, and every thin set is semipolar. For some processes all
three of these concepts are equivalent, and we shall discuss this in a little more detail

3There are other forms of transience, for example m-transience or left-transience of sets as in [19, 20]
and others. But for our purposes the definitions we have given suffice.
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with respect to Lévy processes in §2.6. Subadditivity of measure yields that a finite
union of Px-thin/-polar sets is again Px-thin/-polar.

The companion concept to transience is called recurrence, and is defined as follows.

Definition 2.4.7 (Getoor [18] Proposition 2.4). Suppose E has at least two points. X
is called recurrent if it satisfies the following equivalent conditions.

(i) For each B ∈ E∗, either U(·, B) = 0 or U(·, B) =∞;

(ii) if B ∈ En is not polar, then Px(TB < ζ) = 1 for all x ∈ E;

(iii) each excessive function is constant;

(iv) if B ∈ En is not polar, then LB =∞ almost surely;

Two interesting facts can be immediately shown to hold for recurrent standard Markov
processes. The first is that if X is recurrent then it follows from (iii), and the fact that
Ex[1− e−ζ ] is excessive, that Px(ζ <∞) = 0 for all x ∈ E. That is, recurrent standard
Markov processes have almost surely infinite lifetime when issued from any point of the
state space. The second interesting fact is that if M is a Px-supportive set of recurrent
X then the excessive map x 7→ Px(TE\M < ∞) is constant ≤ Px(DE\M < ∞) < 1, and
thus by Blumenthal’s zero-one law the map x 7→ Px(TE\M = 0) ≤ Px(TE\M < ∞) < 1
is constant zero, and it therefore follows that E \M is thin.

2.5 Potential Theory for Lévy Processes

Potential theory for Lévy processes is in many ways simpler than that for general Markov
processes. The most significant work particular to Lévy processes remains Hawkes’
1979 paper [21], and Chapter II of Bertoin [2] gives a thorough modern account of the
theory.

Potential Operators

Let X be a Lévy process on Rd with characteristic exponent Ψ. Then X is automatically
in weak duality with −X with respect to Lebesgue measure, that is,∫

Rd
f(x)U qg(x) dx =

∫
Rd
Û qf(x)g(x) dx

for all q > 0 and f, g ∈ B(Rd)∗+, where

Û qf(x) =

∫
Rd
f(y)Û q(x, dy) =

∫
Rd
f(−y)U q(−x, dy).

Let (ACP) denote the condition that X and X̂ are in strong duality with respect to
Lebesgue measure, so that for each q > 0, each x ∈ Rd, the potential U q(x, · ) is abso-
lutely continuous with respect to Lebesgue measure. In that case the space-homogeneity
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of Lévy processes allows us to define uq := uq(0, ·) and see that

uq(x, y) = uq(y − x)

for all x, y ∈ Rd. It immediately follows that ûq(x) = uq(−x) for all q > 0, and
û(x) = u(−x) if X is transient. Hawkes proved several equivalent conditions for (ACP),
some of which also appear in Sato [39] Theorem 41.15, and a combination of both are
presented below.

Theorem 2.5.1 (Hawkes [21] Theorem 2.1 and Sato [39] Theorem 41.15). The following
are equivalent.

(i) condition (ACP) holds;

(ii) X has strong Feller resolvents;

(iii) for every q ≥ 0 every q-excessive function is lower-semicontinuous;

(iv) if f is bounded and universally measurable, then for q > 0, U qf is continuous;

(v) all essentially polar sets are polar.

For general Markov processes, strong Feller resolvents is a stronger assumption than
strong duality, but for Lévy processes they are equivalent. Not all Lévy processes have
strong Feller resolvents - see the example directly following Theorem 2.1 in Hawkes [21],
or Examples 41.21-3 in Sato [39]. But many do, including all Lévy processes with local
times, see Theorem 2.6.5 for more details.

Hawkes [21] also gives a sufficient condition for the conditions of Theorem 2.5.1 to hold.
X is said to have a strong Feller semigroup if for all t > 0, Ptf is continuous for all
f ∈ bE+ having compact support. This is well-defined for all Markov processes, but for
Lévy processes in particular the following holds.

Theorem 2.5.2 (Hawkes [21] Theorem 2.2 and Lemma 2.2). X has a strong Feller
semigroup if and only if Pt(x, · ) is absolutely continuous with respect to Lebesgue
measure for each t > 0. In that case the density pt of Pt is lower-semicontinuous for
each t > 0, (ACP) holds, and

uq(x) =

∫ ∞
0

e−qtpt(x) dt

for all q > 0.

Sato [39] calls the existence of a transition density pt condition (ACT), see [39] Definition
41.11 and Remark 41.20. Hawkes’ theorem tells us that all Lévy processes satisfying
(ACT) have strong Feller resolvents, including all stable processes on Rd.

Transience and Recurrence

For Lévy processes all concepts of transience that we have seen so far coincide, and form
a dichotomy with a particular type of recurrence, which is close to that of Definition
2.4.7, but not exactly the same.
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Definition 2.5.3 (Sato [39] Theorem 35.4). The following are equivalent.

(i) X is transient;

(ii) X is strongly transient;

(iii) lim
t→∞
|Xt| =∞ almost surely;

(iv) U(0,K) <∞ for every compact K;

(v)

∫ ∞
0

1K(Xs) ds <∞ a.s. for every compact K.

On the other hand, if X is not transient then the following equivalent conditions hold,
and X is called weakly recurrent.

(i) lim inf
t→∞

|Xt| = 0 a.s.;

(ii) U(0,K) =∞ for every compact K;

(iii)

∫ ∞
0

1K(Xs) ds =∞ a.s. for every compact K.

If Lévy X is weakly transient it is not weakly recurrent, and the dichotomy above tells us
that X is therefore strongly transient. What is also interesting is that for Lévy processes
the conditions of (2.10) are equivalent, without assuming anything on the q-excessive
functions. This allows us to talk of ‘transient Lévy processes’ without ambiguity.4

According to Sato [39] Exercise 44.10, a Lévy process is recurrent if and only if it is
weakly recurrent and satisfies condition (ACP). A lot of literature just uses the term
recurrence for Lévy processes, but it is worthwhile for us to make the distinction.

At the same time Sato [39] makes a further interesting distinction with respect to recur-
rence of Lévy processes, which will be of use to us, and also introduces no confusion of
terminology. A weakly recurrent Lévy process is called point recurrent if

lim sup
t→∞

1{0}(Xt) = 1.

If the above holds for 1A instead of 1{0} for any open A containing 0 then the process
is called set recurrent, a property which is clearly implied by point recurrence. Point
recurrence is the stronger form of a related property: a Lévy process hits points if {0}
is not essentially polar.5 Hitting points is not particular to either transient or recurrent
Lévy processes. For example, in one dimension both the standard Brownian motion and
the Brownian motion with a positive linear drift are Lévy processes which hit points,
but the first is point recurrent while the second is transient.

4It is worth noting that the distinction made by Sato [39] at the end of Chapter 37 between weakly
and strongly transient Lévy processes is something else, and does not feature in this work.

5In other words, Px(T{0} <∞) > 0 for a Lebesgue-positive set of x ∈ Rd.
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If a Lévy process is weakly recurrent, satisfies (ACP), and hits points, then it is recurrent
and by (iv) of Definition 2.4.7, the process is point recurrent. But even if X is not
assumed to be weakly recurrent, the following equivalence holds.

Lemma 2.5.4 (Sato [39] Theorem 43.5). Let q > 0. The following are equivalent:

(i) X hits points and {0} is regular for itself;

(ii) (ACP) holds, and uq is bounded, continuous, and positive on Rd.

If X is transient, the same holds for q = 0.

2.6 Capacity

It is possible to define much of what follows for Borel right processes in weak duality,
and indeed that is the main idea of Getoor [19] and also partially addressed in Getoor
and Sharpe [20], but the generalisation is not easy. This author is also not aware of any
modern comprehensive review of capacity theory for Markov processes in weak duality,
whereas there are excellent discussions for Lévy processes in both Bertoin [2] and Sato
[39]. Since this thesis uses capacity theory exclusively for Lévy processes, nothing is lost
by presenting it in that setting.

Let X be a Lévy process on Rd, in weak duality with X̂ = −X. For a measure µ on
(Rd,B(Rd)), we denote by µU q and µÛ q the measures

µU q(B) =

∫
U q(x,B)µ(dx), µÛ q(B) =

∫
Û q(x,B)µ(dx), (2.11)

respectively called the q-resolvent measure and q-co-resolvent measure of µ. If µ is a
Radon measure, it is uniquely determined by either µU q or µÛ q. If X satisfies (ACP)
then we define the function

U qµ(x) =

∫
uq(x, y)µ(dy) =

∫
uq(y − x)µ(dy), x ∈ Rd, (2.12)

called the potential of µ, and the equivalent for Û qµ. Because uq(x, y) is q-excessive as
a function in x, U qµ is also q-excessive, and in a similar way Û qµ is q-co-excessive. It is
important to note the distinction between µU q, which is a measure, and U qµ, which is
a function.

Potentials of measures play a role in the classical Riesz Decomposition Theorem, which is
given in its traditional form in Helms [23] §6.1, see in particular Corollary 6.19, and from a
Markov perspective in Blumenthal and Getoor [5] Theorem VI(2.11), who were building
upon the work of Hunt [24]. The following lemmas are closely related to the Riesz
Decomposition Theorem, and are useful to us because they will allow us to explicitly
prove existence of a particular measure on (Rd,B(Rd)), associated to a fixed Borel set
B, called the equilibrium measure of B.
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First, suppose that X satisfies (ACP). Because this implies that X has strong Feller re-
solvents it ensures that the following condition holds, corresponding to condition VI(2.1)
of Blumenthal and Getoor [5], see also Theorem 41.15 of Sato [39].

(C1) If q > 0 and f ∈ bB(Rd)∗ has compact support then y 7→ Û qf(y) is continuous and
bounded.

Under this assumption, the following two lemmas can be proven.

Lemma 2.6.1 ([5] Corollary VI(2.6)). Suppose that X is a Lévy process satisfying con-
dition (C1), and suppose q > 0. Let (µn) be a sequence of measures such that each U qµn
is locally integrable, the sequence (U qµn) is increasing, and f = limU qµn is also locally
integrable. Suppose further that either the supports of all the µn are contained in one
compact set K ⊆ Rd, or that limKm↑Rd P

q
Rd\Kmf = 0 almost everywhere, where the Km

are compact and increasing to Rd. Then (µn) converges weakly to a measure µ, and
f = U qµ.

Lemma 2.6.2 ([5] Proposition VI(2.10)). Suppose that X is a Lévy process satisfying
condition (C1), and suppose q > 0. A locally integrable q-excessive function f is the
q-potential U qµ of a measure µ if and only if

lim
Km↑Rd

P qRd\Kmf(x) = lim
Km↑Rd

Ex[e−qTBf(XTRd\Km
);TRd\Km <∞] = 0

for almost every x ∈ Rd, where Km ⊆ Rd are compact.

Moreover the following lemma ensures that if it exists, the representation f = U qµ of f
in Lemmas 2.6.1 and 2.6.2 is unique.

Lemma 2.6.3 ([5] Propositions VI(1.15) and VI(2.3)). Let µ be a measure and q ≥ 0.
If U qµ is locally integrable, then U qµ determines µ.

Now in addition suppose that X is transient and satisfies (ACT), which implies6 the
following condition:

(C2) If f ∈ bB(Rd)∗ has compact support then Uf and Û qf are bounded, and Ûf is
continuous.

This is condition VI(2.2) of Blumenthal and Getoor [5]. Under the assumption of (C2),
Lemmas 2.6.1 and 2.6.2 hold for q = 0.

The Capacitary Measures

We shall now introduce a representation as in Lemmas 2.6.1 and 2.6.2 for the q-excessive
function

Φq
B(x) = Ex

[
e−qTB

]
, B ∈ B(Rd).

Most of what follows here appears in §42 of Sato [39], see in particular Theorems 42.5,
42.8, and Proposition 42.13, but it is also partially inspired by §VI.4 of Blumenthal and

6See Sato [39] Exercise 44.5. The proof of the result is almost identical to that of [39] Theorem 41.15(3).
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Getoor [5]. Let B ∈ B(Rd). For every q > 0 there exists a unique Radon measure mq
B

carried by B ∪Br having q-co-resolvent measure

mq
BÛ

q(A) =

∫
A
Ex[e−qTB ] dx, A ∈ B(Rd).

The measure mq
B is called the q-capacitary measure of B, and is given by

mq
B(A) = q

∫
Rd

Êx[e−qTB ; XTB ∈ A] dx, A ∈ B(Rd). (2.13)

The q-capacity and capacity of B are defined as

Cq(B) := mq
B(Rd), C(B) := lim

q↓0
Cq(B).

A general set may have infinite capacity. But if X is transient and B ∈ B(Rd) is bounded
there exists a unique finite measure mB carried by B ∪ Br such that mB(Rd) = C(B)
and

mBÛ(A) =

∫
A
Px(TB <∞) dx, A ∈ B(Rd).

If X satisfies (ACP) then for any B ∈ B(Rd), this mq
B is the unique measure with

q-co-resolvent measure given by

Û qmq
B(x) =

∫
Rd
ûq(y − x)mq

B(dy) = Ex[e−qTB ], x ∈ Rd. (2.14)

If X is transient and B ∈ B(Rd) is bounded then (2.14) holds for q = 0 as

ÛmB(x) =

∫
Rd
û(y − x)mB(dy) = Px(TB <∞), x ∈ Rd.

The measure mB is interchangeably called the capacitary measure or equilibrium mea-
sure of B. Every Borel set has a q-capacitary measure, but a priori only bounded Borel
sets have an equilibrium measure. Whenever mB exists, C(B) = mB(Rd).

Because of the uniqueness given in Lemma 2.6.3, any measure µ which satisfies Ûµ =
Px(TB < ∞) is called the equilibrium measure of B, and Lemma 2.6.2 suggests that in
some situations unbounded B may also have a well-defined equilibrium measure. More
will be said on that in Chapter 6, see also the discussion following Definition VI(4.5) in
Blumenthal and Getoor [5].

The following lemma gives some additional properties of capacities for Lévy processes.
Take q > 0 and A,B ∈ B(Rd).

Lemma 2.6.4 (Sato [39] Proposition 42.12).

(i) If B is bounded, then Cq(B) <∞.
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(ii) If A ⊆ B then Cq(A) ≤ Cq(B).

(iii) Cq(A ∪B) + Cq(A ∩B) ≤ Cq(A) + Cq(B).

(iv) Cq(B) = inf{Cq(D) : D is open and B ⊆ D}.

(v) If Bn, n ∈ N are increasing and
⋃
nBn = B then Cq(Bn) ↑ Cq(B).

(vi) For x ∈ Rd, Cq(x+B) = Cq(B) = Cq(−B).

Properties (ii)-(iv) are those of a Choquet capacity. From (vi) it follows that for every
q > 0 one can unambiguously define the q-capacity of a single point Cq := Cq({0}) =
Cq({x}) for all x ∈ Rd.

Local Times

For t ∈ (0,∞) the occupation measure on [0, t] is the measure µt on (Rd,B(Rd)) satisfy-
ing ∫

Rd
f(x)µt(dx) =

∫ t

0
f(Xs) ds

for f ∈ E+. We say that X has local times if, for every t ∈ (0,∞), µt is absolutely
continuous with respect to Lebesgue measure. The density of each µt is denoted by
L(·, t), and the function L on Rd × [0,∞) defined by those densities is called the local
time of X. L(x, · ) is increasing for every x ∈ Rd, and increases only when X = x. That
final fact means that x 7→ L(x, t) has compact support for every t > 0 almost surely, and
that x 7→ L(x, TB−) has support on Rd \B. This in turn implies that µTB has support
on Rd \B, because the path integral is left-continuous.

The following theorem characterises local times with respect to capacity.

Theorem 2.6.5 (Bertoin [2] Theorems II.16 and V.1). Let X be a Lévy process on R.
The following are equivalent.

(i) X has local times;

(ii) Cq > 0 for all q > 0, where Cq is the capacity of a point;

(iii) condition (ACP) holds, and uq is bounded for all q > 0;

(iv) singleton sets {x} are not essentially polar that is, X hits points.

If X is transient the above holds for q ≥ 0. Other valuable perspectives on this theorem
can be found in Sato [39] Theorem 43.3 and Kyprianou [31] Theorem 7.12. If a Lévy
process on R has local times then (ACP) holds and (2.14) admits that

ûq(−x) = uq(x) =
1

Cq
Ex[e−qT{0} ], x ∈ R. (2.15)

Since X hits points, we see that Px(T{0} < ∞) > 0 for all x ∈ R, and it follows from
(2.15) that uq is positive everywhere. Since (ACP) holds we have from Theorem 2.5.1
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that uq is lower semi-continuous, and combined with positivity this yields that uq is
bounded away from zero on compact sets.

Theorem II.19 of Bertoin [2] shows that if 0 is regular for {0} then each uq is contin-
uous, and in addition in Proposition V.2 that t 7→ L(t, · ) is almost surely continuous.
This contrasts with the approach in Blumenthal and Getoor [5] Definition V(3.12) and
Sato [39] Remark 43.27, in which continuity of t 7→ L(t, · ) is included in its definition.
Furthermore there exists a condition for joint continuity of L, given as follows, taken
here from §V.3 of Bertoin [2] but which also appears in Theorem 6 at the end of Hawkes
[22].

Theorem 2.6.6 (Bertoin [2] Theorem V.15). Let X be a Lévy process on R. If∫
0+

√
− log(η(u) du <∞,

where

η(u) = Leb
({
x ∈ R :

1

π

∫ ∞
−∞

(1− cos(xθ))Re
( 1

Ψ(θ)

)
dθ < u

})
then the map (t, x) 7→ L(t, x) is almost surely continuous.

Any Lévy process with local times such that (t, x) 7→ L(t, x) is almost surely continuous
is said to have jointly continuous local times. Stable processes on R with index α ∈ (1, 2]
are one class of Lévy process with jointly continuous local times.

Hunt’s Condition

The condition that every semipolar set is polar is called (H) or Hunt’s condition, and
Getoor posed the problem, which remains open, of which Lévy processes satisfy (H).
Hunt’s condition is known to hold for symmetric Lévy processes, and for all non-trivial
stable processes on R.7 Although at first sight it appears to be quite a technical assump-
tion, interesting and powerful results can be proven for processes satisfying (H). Here
are two examples, the second of which will be of use to us in Chapter 5.

Lemma 2.6.7. Let X be a standard Markov process on (E, E), recurrent in the sense
of Definition 2.4.7, and satisfying (H). Then for any x, y ∈ E and any Px-supportive set
M ∈ E,

Py(Xt ∈M for all t > 0) = 1.

That is, the complement of M is a polar set.

Proof. In the brief discussion below Definition 2.4.7 we saw that the E \M is thin, and
thus semipolar. If in addition X satisfies (H) then E \M is polar.

7This fact is often stated, but rarely proved. For a comprehensive but slightly outdated approach see
Blumenthal and Getoor [6] - in particular the very last paragraph!
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We have seen that if X is a weakly recurrent Lévy process satisfying (ACP) then it is
recurrent in the sense of Definition 2.4.7, and in that case it follows immediately from
Lemma 2.6.7 that any supportive set is equal to the support of X, as defined in Sato
[39] Definition 24.13.

This next result was originally proven by Hunt [24], and to state it we first need to know
that a locally integrable q-excessive function f is called regular if, with probability one,
the mapping t 7→ f(Xt) is continuous whenever t 7→ Xt is continuous on [0, ζ). Getoor
[17] states that regularity of f implies the condition that whenever {Tn} is an increasing
sequence of stopping times with limit T ,

f(XTn)→ f(XT ) almost surely on {T < ζ}. (2.16)

Proposition IV(5.9) of Blumenthal and Getoor [5] gives that the two are equivalent if X
is what they term a special standard process.8 A valuable discussion of regularity can
also be found below Proposition VI(2.7) of [5].

Lemma 2.6.8. Let X be a Lévy process on Rd satisfying (ACP). Then the following
are equivalent.

(i) X satisfies condition (H).

(ii) For all q > 0, all locally integrable q-excessive functions are regular.

If X satisfies (ACT) then the same holds for q = 0, and in addition the statements above
are equivalent to the following for q ≥ 0.

(iii) Let µ be a finite measure on (Rd,B(Rd)) with compact support K. Then Uµ is
continuous if it is bounded and its restriction to K is continuous.

(iv) If f is a locally integrable q-excessive function, q ≥ 0, and ε > 0, then there
exists an open set G with C(G) < ε such that f restricted to Rd \ G is finite and
continuous.

Proof. This result is built from some more general results in Chapter VI of Blumenthal
and Getoor [5]. Condition (ACP) implies conditions (2.1) and (4.1) of that chapter,
and the first part of the lemma follows from [5] Theorem VI(4.9); condition (ACT)
implies conditions (2.2) and (4.2), which combined with (v) of Theorem 2.5.1 satisfies
the conditions of [5] Theorem VI(4.12), and the rest of the lemma follows. More detail
on the relationship of (ACP) and (ACT) with the conditions of Blumenthal and Getoor
was given above, see (C1) and (C2).

An alternative characterisation of Lemma 2.6.8 can be found in Chung and Walsh [10]
Theorem 13.80. Chung and Walsh intentionally offer a different perspective on condition

8The precise definition of a special standard process is given in Blumenthal and Getoor [5] IV(4.1),
but we make no use of it here. We can at least note that the class of special standard processes is
not contrived: all Hunt processes are special standard (see [5]§IV4), as are all standard processes
satisfying (LSC) (see Getoor [6] (4.7))
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(H), emphasising symmetry of the process X and its dual, see their Definition 13.81 and
Remark 13.82.

Any standard Markov process X satisfies (H) if and only if the killed process Xq satisfies
(H) for some q > 0, and thus (iii) of Lemma 2.6.8 is equivalent to the same condition
but on U qµ for all q ≥ 0.

Stable Processes

Now we can say a little more about stable processes on Rd. Stable processes are quite
neatly divided into three very distinct groups, each having common properties. First let
us compare those with index α < d and α > d, which for processes on R corresponds to
α ∈ (0, 1) and α ∈ (1, 2].

α < d
(i) Transient.

(ii) Points {x} are polar.
(iii) No local times.

α > d
(i) Point recurrent.
(ii) Hits points.

(iii) Has jointly cts. local times L(x, t).

The slightly awkward middle child is α = d, which on R2 is the Brownian motion. In
that case X is set recurrent, doesn’t hit points, and doesn’t have local times.

An isotropic stable process of index α < d on Rd has potential density

u(x) = const|x|α−d, (2.17)

see Example 37.19(ii) of Sato [39]. In potential theory functions of this form are called
Riesz potentials, and a discussion of Riesz potentials in that setting can be found in
Bliedtner and Hansen [4] §V.4. One final result worth mentioning is the isoperimetric
inequality, which relates capacities of compact sets to capacities of balls.

Lemma 2.6.9 (Isoperimetric inequality, Betsakos [3] Theorem 1). Let X be a symmetric
stable process of index α ∈ (0, 2), and K ⊆ Rd be a compact set with Lebesgue measure
λ(K). If B is a ball in Rd with λ(B) = λ(K) then

C(K) ≥ C(B).

Let X be a stable process on Rd. Example 42.17 of Sato [39] gives that if α < d and X
is genuinely d-dimensional then for any ball B ⊆ Rd and any a > 0,

C(aB) = ad−αC(B). (2.18)

In particular, if K ⊆ Rd is compact and we denote by Br the ball about 0 of radius
r, then it follows from the isoperimetric inequality and the formula for the volume of a
d-dimensional sphere that

C(K) ≥
(λ(K)Γ(d2 + 1)

π
d
2

) d−α
d
C(B1),
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which in 1-dimension is the far nicer

C(K) ≥
(λ(K)

2

)1−α
C(B1). (2.19)

In Example V.4.16(2), Bliedtner and Hansen [4] calculate that for α ∈ (0, 2) and α <
d,

C(B1) =
Γ(d2)

Γ(α2 )Γ((d−α2 ) + 1)
. (2.20)

This also holds for the Brownian motion when d ≥ 3, see Sato [39] Exercise 44.12.

As a final point, Lemma 2.1.12 yields that for any set B ∈ B(Rd) with an equilib-
rium measure mB there exists an increasing sequence of compact subsets Kn of B such
that

ÛmKn(x) = Px(TKn <∞) ↑ Px(TB <∞) = ÛmB(x), x ∈ Rd.

Suppose now that X is stable with index α < d, and therefore transient. It follows from
Lemma 2.6.1 - applied with q = 0, which is valid because X satisfies (ACT) and thus
condition (C2) - that mKn converges weakly to mB, and therefore that C(Kn) ↑ C(B).
In particular, this shows that Lemma 2.6.9 and (2.19) hold for all bounded B ∈ B(R) in
place of compact K.
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3 Perpetual Integral Tests

The perpetual integral over a Markov process X on state space (E, E) and nonnegative
E∆-measurable function f : E∆ → [0,∞] is the infinite time integral∫ ∞

0
f(Xs) ds.

Since the behaviour of a perpetual integral can depend on the process at every point
of its trajectory, their study requires that we understand which parts of the state space
can be reached, and how long the process is liable to stay there, which can be done via
potentials.

In what follows we shall often make use of variations of the following argument, which
relies on of the strong Markov property from Corollary 2.1.7. For T a stopping time and
x ∈ E,

Px
(∫ ∞

T
f(Xs) ds <∞; T <∞

)
= Ex

[
Ex
[
1(

∫∞
T f(Xs) ds<∞)1(T<∞)|FT

]]
= Ex

[
PXT

(∫ ∞
0

f(Xs) ds <∞
)

; T <∞
]
.

Additionally we shall often make use of the simple fact that for s ≤ t,

Px
(∫ s

0
f(Xu) du <∞

)
≥ Px

(∫ t

0
f(Xu) du <∞

)
.

From here onwards the notation f ∈ E+ will refer to a function f : E → [0,∞], f ∈ E .
Such functions are extended to (E∆, E∆) by setting f(∆) = 0, unless explicitly stated
otherwise. This assumption is extremely common in Markov process literature, and one
convenient side-effect when studying perpetual integrals is that∫ ζ

0
f(Xs) ds =

∫ ∞
0

f(Xs) ds almost surely.

For finite-time path integrals we introduce the notation

Ift =

∫ t

0
f(Xs) ds, t ∈ [0,∞), If∞ := lim

t→∞
Ift =

∫ ∞
0

f(Xs) ds. (3.1)
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We define the right-continuous inverse of (Ift , t ≥ 0) by

ϕft :=
(∫ ·

0
f(Xu) du

)−1
(t) = inf

{
s > 0 :

∫ s

0
f(Xu) du > t

}
, t ∈ [0,∞),

ϕf∞ := lim
t→∞

ϕft .
(3.2)

Each ϕft is a stopping time for X, because the filtration (Fs) is right-continuous and

{ϕft ≤ s} ∈ Fs+ε for each s ≥ 0, ε > 0. When f is unambiguous it will be dropped from
notation.

We will also be interested in the quantities

Īf := sup
t∈[0,∞):Ift <∞

Ift , ϕ̄f := sup
t∈[0,∞):ϕft<∞

ϕft .

The connection between them is that

ϕf (Īf ) = ϕf∞ and If (ϕ∞) = If (ϕ̄f ) = Īf . (3.3)

The map t 7→ It is non-decreasing, left-continuous everywhere, continuous for t ∈ [0, ϕ∞),

and constant equal to If∞ for t > ϕf∞, though that constant may be +∞. The map s 7→ ϕs
is right-continuous everywhere, and continuity of I yields that it is strictly increasing for
s ∈ [0, Īf ), and constant equal to ϕf∞ afterwards, though that constant might be +∞.
But I is not necessarily strictly increasing, and therefore ϕ is not continuous. All of these
hold for every ω ∈ Ω, rather than almost surely, because they come from properties of
the Lebesgue integral.

We shall be interested in the time-changed process (Yt, t ∈ [0,∞]) given by

Yt = X
ϕft

for t ∈ [0,∞), Y∞ = ∆, (3.4)

which moves on the same state space E as X. It will often be convenient to use notation
Xϕ = Y for the time-changed process.

It is not immediately clear how many of the properties of X are inherited by Xϕ, for
example whether it is even Markovian. In 1958 Volkonskii [41] proved that Xϕ is a
strong Markov process if ϕt(ω) is non-decreasing and right-continuous for every ω ∈ Ω
and

ϕτ+t − ϕτ = ϕt ◦ θϕτ (3.5)

for all t > 0 and all stopping times τ. We have just seen that ϕ is non-decreasing and
right-continuous. We can also verify (3.5), but only under the condition that almost
surely,

t 7→ It is continuous on the whole of [0,∞), (3.6)
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which is equivalent to assuming Ī = I∞. It makes sense that this condition is needed,
since without it Xϕ can become ‘stuck’ at a point forever - corresponding to I jump-
ing to infinity - even if it already visited that point previously, and that behaviour is
incompatible with the strong Markov property. For fixed ω ∈ Ω satisfying (3.6),

ϕτ+t(ω) = inf
{
s > 0 :

∫ s

0
f(ωu) du > τ(ω) + t

}
= inf

{
s > ϕτ(ω) :

∫ s

0
f(ωu) du > τ(ω) + t

}
.

By continuity of I, we have τ(ω) = I(ϕτ(ω)), and

= inf
{
s > ϕτ(ω) :

∫ s

0
f(ωu) du−

∫ ϕτ(ω)

0
f(ωu) du > t

}
= inf

{
s > ϕτ(ω) :

∫ s

ϕτ(ω)
f(ωu) du > t

}
= inf

{
s > ϕτ(ω) :

∫ s−ϕτ(ω)

0
f(ω̃r) dr > t

}
where ω̃ = θϕτ(ω) ◦ ω,

= inf
{
s > 0 :

∫ s

0
f(ω̃r) dr > t

}
+ ϕτ(ω) = ϕt ◦ θϕτ(ω)(ω) + ϕτ(ω).

So (3.5) holds for every ω ∈ Ω satisfying (3.6). Thus if (3.6) holds for every ω then
Xϕ is a strong Markov process, and weakening that to (3.6) holding only almost surely
doesn’t sacrifice the strong Markov property.

Moreover, assuming (3.6) almost surely, we can relate perpetual integrals over Xϕ and
X. First let f ∈ E+, σ ∈ bE and fix a time u ∈ [0, Īf ). Then we can use the substitution

t = ϕfs , which implies Ift = s for all s ∈ [0, u], to see∫ u

0
σ(X

ϕfs
) ds =

∫ ϕfu

0
σ(Xt)f(Xt) dt.

On the other hand, for any s ∈ [Īf ,∞) it holds that ϕfs = ∞,1 and therefore that

σ(X(ϕfs )) = σ(∆) = 0. So for u ∈ [Īf ,∞) we see∫ u

0
σ(X

ϕfs
) ds =

∫ Īf

0
σ(X

ϕfs
) ds =

∫ ϕf∞

0
σ(Xt)f(Xt) dt,

So either way taking limits as u→∞ yields∫ ∞
0

σ(X
ϕfs

) ds =

∫ ϕf∞

0
σ(Xt)f(Xt) dt almost surely. (3.7)

1This is only true under (3.6). If If can jump to ∞ then ϕf could be a finite constant after time Īf .
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A sufficient condition for (3.6) to hold almost surely, though not necessary, is that

It <∞ for all t ∈ [0,∞) almost surely. (3.8)

This implies (indeed is equivalent to) ϕf∞ =∞ almost surely, and from (3.7) we get∫ ∞
0

σ(X
ϕfs

) ds =

∫ ∞
0

σ(Xt)f(Xt) dt almost surely. (3.9)

This in particular will be of use to us later in this chapter.

3.1 Main Result

Döring and Kyprianou [11] proved that for X a transient Lévy process on R, f ∈ B(R)
positive and locally-integrable, and x ∈ R,

Px
(∫ ∞

0
f(Xs) ds <∞

)
= 1 ⇐⇒ Uf(x) = Ex

[ ∫ ∞
0

f(Xs) ds
]
<∞

and Px
( ∫∞

0 f(Xs) ds <∞
)

= 0 otherwise. This result was extended by Kolb and Savov
[30], who found that for f ∈ B(R)+ either continuous or ultimately non-increasing,

Px
(∫ ∞

0
f(Xs) ds <∞

)
= 1

⇐⇒ there exists a Px-transient set B such that

∫
R\B

f(y)U(x,dy) <∞,

and Px
( ∫∞

0 f(Xs) ds < ∞
)

= 0 otherwise. The central result of this section is the
following theorem, which is in the same spirit as the two above but is more general.

Theorem 3.1.1. Let X be a standard Markov process on state space E, and take f ∈ E+.
Then for fixed x ∈ E, the following are equivalent.

(i) Px
(∫ ∞

0
f(Xs) ds <∞

)
> 0;

(ii) There exists a Px-supportive set M such that∫
M
f(y)U(x, dy) <∞.

The integral in (ii) is equal

Ex
[ ∫ ∞

0
f(Xs)1M (Xs) ds

]
.

The proof of Theorem 3.1.1 is technical, and is laid out in detail in the following two
sections. But the result itself is quite intuitive: the supportive set M , which with
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positive probability contains the entire path of the process, describes the ‘safe points’ of
the state space E, in the sense that x ∈ M are exactly the issuing points of the state
space from which the perpetual integral does not attain value ∞ in finite time with
positive probability. If X is recurrent then Definition 2.4.7 gives that Borel sets have
either potential zero or infinity, and the integral test is trivial. Most applications of
Theorem 3.1.1 in later sections will be for transient standard Markov processes, but it
is worth remembering that there is no dichotomy for standard Markov processes, it is
possible for them to be neither recurrent nor transient.

3.2 Super-Finite Sets

The key to proving Theorem 3.1.1 is to define the class of ‘super-finite’ sets, which
uniformly bound Ift in a particular way, and prove properties of those sets. We will then
draw a connection between super-finite sets and supportive sets, which will be used to
complete the proof. In all of this section X is a standard Markov process on state space
(E, E), and f ∈ E+.

Definition 3.2.1. A super-finite set for (X, f) is defined in relation to an n ∈ N and
c ∈ (0, 1) by

M =
{
y ∈ E : Py

(∫ ∞
0

f(Xs) ds ≤ n
)
> c
}
.

The discussion around (2.1) allows that the pullback of (c,∞) by x 7→ Px(If∞ ≤ n) is a
set in E∆, and it is trivial to remove the ∆ point and see that M ∈ E .

This first lemma shows that if there exists some super-finite set for (X, f) then it is
possible to choose another g ∈ E+ such that the whole state space E is super-finite for
(X, g).

Lemma 3.2.2. Suppose

M =
{
y ∈ E : Py

(∫ ∞
0

f(Xs) ds ≤ n
)
> c
}

is a non-empty super-finite set for (X, f). Let g = 1M · f . Then

Py
(∫ ∞

0
g(Xs) ds ≤ 2n

)
> c2, ∀y ∈ E.

That is, the entire state space E is super-finite for (X, g).

Proof. Since g ≤ f , it also holds that Igt ≤ Ift for all t ∈ [0,∞]. Then the result holds
immediately for y ∈M , since by definition of that set

Py(Ig∞ ≤ 2n) ≥ Py(If∞ ≤ 2n) ≥ Py(If∞ ≤ n) > c > c2.
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We now prove the result for y ∈ M r. Lemma 2.1.12 gives a nested increasing sequence
of compact sets Km ⊆ M , m ∈ N, such that, Py-almost surely, TKm ↓ TM as m → ∞.
Since Py(TM = 0) = 1 it then follows that

Py
(∫ TK1

0
g(Xs) ds ≤ n

)
= Py

(
lim
m→∞

∫ TK1

TKm

g(Xs) ds ≤ n
)

= Py
( ∞⋂
m=1

{∫ TK1

TKm

g(Xs) ds ≤ n
})

= lim
m→∞

Py
(∫ TK1

TKm

g(Xs) ds ≤ n
)

≥ lim
m→∞

Py
(∫ TK1

TKm

g(Xs) ds ≤ n; TKm <∞
)

= lim
m→∞

∫
Km

Pa
(∫ TK1

0
g(Xs) ds ≤ n

)
Py(XTKm

∈ da; TKm <∞)

≥ lim
m→∞

∫
Km

Pa
(∫ ∞

0
f(Xs) ds ≤ n

)
Py(XTKm

∈ da; TKm <∞).

From Lemma 2.1.13 we have that XTKm
∈ Km ⊆M almost surely, and thus

> c · lim
m→∞

Py(TKm <∞)

= cPy(TM <∞)

= c.

In addition, since TKm converges to TM = 0 Py-almost surely,

Py(A;TKm <∞) ↑ Py(A)

for any A ∈ F . This, in combination with the inequality above, gives that there exists
a choice of j ∈ N such that

Py
(∫ TK1

0
g(Xs) ds ≤ n; TKj <∞

)
> c.

Monotonicity of the sequence of sets (Km, m ∈ N) yields TK1 ≥ TKj , and thus

Py
(∫ TKj

0
g(Xs) ds ≤ n; TKj <∞

)
> c. (3.10)

Fix this j. Next, using the strong Markov property, we get

Py
(∫ ∞

0
g(Xs) ds ≤ 2n; TKj <∞

)
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≥ Py
(∫ TKj

0
g(Xs) ds ≤ n;

∫ ∞
TKj

g(Xs) ds ≤ n; TKj <∞
)

= Ey
[
1( ∫ TKj

0 g(Xs) ds≤n
)1(TKj<∞)Ey

[
1( ∫∞

TKj
g(Xs) ds≤n

) ∣∣∣FTKj ]]
= Ey

[
1( ∫ TKj

0 g(Xs) ds≤n
)1(TKj<∞)PXTKj

(∫ ∞
0

g(Xs) ds ≤ n
)]
,

and now since Ig∞ ≤ If∞,

≥ Ey
[
1( ∫ TKj

0 g(Xs) ds≤n
)1(TKj<∞)PXTKj

(∫ ∞
0

f(Xs) ds ≤ n
)]
.

Since Kj ⊆ M the inner probability is bounded below by c. This holds even in the
extreme case Kj = M , because then M is compact and XTKj

∈ M almost surely. The

remaining expectation can also be bounded from below by c using (3.10). In total this
leads to

Py
(∫ ∞

0
g(Xs) ds ≤ 2n

)
≥ Py

(∫ ∞
0

g(Xs) ds ≤ 2n; TKj <∞
)
> c2.

And so the lemma is proven for y ∈M r. What now remains is to extend it to all y ∈ E.
In this case,

Py
(∫ ∞

0
g(Xs) ds ≤ 2n

)
= Py

(∫ ∞
0

g(Xs) ds ≤ 2n; TM <∞
)

+ Py
(∫ ∞

0
g(Xs) ds ≤ 2n; TM =∞

)
= Py

(∫ ∞
TM

g(Xs) ds ≤ 2n; TM <∞
)

+ Py(TM =∞),

equality because g has support in M ,

=

∫
E
Pa
(∫ ∞

0
g(Xs) ds ≤ 2n

)
Py(XTM ∈ da; TM <∞) + Py(TM =∞).

Lemma 2.1.13 tells us that the integrating measure is concentrated on M ∪M r, and thus
we can use what we have already proven for elements of M ∪M r to conclude that

Py
(∫ ∞

0
g(Xs) ds ≤ 2n

)
> c2Py(TM <∞) + Py(TM =∞)

≥ c2
(
Py(TM <∞) + Py(TM =∞)

)
= c2.

The next lemma prepares for the proposition that follows it. It shows that restricting
f to a super-finite set ensures that the path integral does not hit ∞ in finite time,
which is exactly condition (3.8). Its use in the next proposition will be related to the
time-changed process.
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Lemma 3.2.3. Suppose

M =
{
y ∈ E : Py

(∫ ∞
0

f(Xs) ds ≤ n
)
> c
}

is a non-empty super-finite set for (X, f). Let g = 1M · f . Then

Py
(
∃ t ∈ (0,∞) :

∫ t

0
g(Xs) ds =∞

)
= 0, ∀y ∈ E.

Proof. Fix y ∈ E and recall the stopping times

ϕgn = inf
{
t > 0 : Igt > n

}
, n ∈ N, ϕg∞ = lim

n→∞
ϕgn.

Since

ϕgn <∞ ⇔
∫ ∞

0
g(Xs) ds > n ⇔ ∃ t ∈ (0,∞) :

∫ t

0
g(Xs) ds > n, (3.11)

we obtain from Lemma 3.2.2 that for all y ∈ E,

Py(ϕ2n <∞) ≤ 1− c2. (3.12)

We then see for k, n ∈ N that

Py(ϕg2kn <∞) = Py
(
∃t > 0 :

∫ t

0
g(Xs) ds > 2kn

)
= Py

(
ϕg2n(k−1) <∞ ; ∃t′ > 0 :

∫ ϕg
2n(k−1)

+t′

ϕg
2n(k−1)

g(Xs) ds > 2n
)

= Ey
[
1(ϕg

2n(k−1)
<∞)Ey

[
1(
∃t′>0:

∫ ϕg2n(k−1)
+t′

ϕ
g
2n(k−1)

g(Xs) ds>2n
)∣∣∣Fϕg

2n(k−1)

]]

= Ey
[
1(ϕg

2n(k−1)
<∞)PXϕg

2n(k−1)

(
∃t′ > 0 :

∫ t′

0
g(Xs) ds > 2n

)]
= Ey

[
1(ϕg

2n(k−1)
<∞)PXϕg

2n(k−1)

(
ϕg2n <∞

)]
,

and by (3.12),

≤ (1− c2)Py(ϕg2n(k−1) <∞)

...

≤ (1− c2)k → 0, as k →∞.

Continuity of measures yields Py(ϕg∞ <∞) = 0, which via (3.11) implies the claim.
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The next proposition is partially motivated by ideas from Getoor [18], in particular the
proof of Lemma (3.1), used in a different fashion. It proves that super-finite sets for
(X, f) have finite f -potential.

Proposition 3.2.4. Suppose for n ∈ N, p ∈ (0, 1) that

M =
{
y ∈ E : Py

(∫ ∞
0

f(Xs) ds ≤ n

2

)
> p
}

is a non-empty super-finite set for (X, f). Then∫
M
f(x)U(y,dx) ≤ n

p2
for all y ∈ E.

Proof. With g = 1M · f we introduce the time-changed process Yt = Xϕgt
from (3.4),

where

ϕgt = inf
{
s > 0 :

∫ s

0
g(Xu) du > t

}
, t ∈ [0,∞).

Lemma 3.2.3 tells us that (3.8) and thus (3.6) are fulfilled almost surely and that there-
fore, as per the discussion at the start of the chapter concerning the work of Volkonskii
[41], Y is a strong Markov process. For this proof we will use the notation

hn(x) = Px(Ig∞ ≤ n), x ∈ E,n ∈ N. (3.13)

By Lemma 3.2.2 hn is bounded below by p2 on E.

We denote by (Pt) the transition operator of Y and by UY the corresponding potential
operator, to distinguish it from UX the potential operator of X. For each n the function
hn from (3.13) is extended to a function h on E∆ by h = hn on E and h(∆) = 0. We
then see that

Pn1E(x) = Pn(x,E)

= Px(Yn ∈ E)

= Px(Xϕn ∈ E)

= Px(ϕn < ζX)

= Px
(
∃ s < ζX such that

∫ s

0
g(Xu) du > n

)
≤ Px

(∫ ζX

0
g(Xu) du > n

)
= 1E(x)− h(x)

for all x ∈ E∆. The main part of the proof is showing that UY h is bounded above, which
coincidentally implies Y is weakly transient. Using the definition of the potential, the
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form of Pn1E above, and the semigroup property yields

UY h(x) = lim
t→∞

∫ t

0
Psh(x) ds

≤ lim
t→∞

∫ t

0

(
Ps1E(x)− PsPn1E(x)

)
ds

= lim
t→∞

(∫ t

0
Ps1E(x) ds−

∫ t

0
Ps+n1E(x) ds

)
= lim

t→∞

(∫ t

0
Ps1E(x) ds−

∫ t+n

n
Ps1E(x) ds

)
= lim

t→∞

(∫ n

0
Ps1E(x) ds−

∫ t+n

t
Ps1E(x) ds

)
≤
∫ n

0
Ps1E(x) ds

≤ n,

(3.14)

for all x ∈ E∆. It has already been noted that h is bounded below by p2 > 0 on E.
Then by monotonicity of the potential operator,

UY 1E(y) ≤ 1

p2
UY h(y) for all y ∈ E. (3.15)

Combining (3.14) and (3.15) implies

UY 1E(y) ≤ 1

p2
UY h(y) ≤ n

p2
<∞ for all y ∈ E.

What is left to show is
∫
M f(x)UX(y,dx) =

∫
E g(x)UX(y,dx) = UY 1E(y). This follows

directly from change of variables: for bounded measurable σ ∈ bE ,

UY σ(y) = Ey
[ ∫ ∞

0
σ(Ys) ds

]
= Ey

[ ∫ ∞
0

σ(Xϕgs
) ds
]
,

and we saw in (3.9) that a substitution here of t = ϕgs yields

= Ey
[ ∫ ∞

0
σ(Xt)g(Xt) dt

]
=

∫
M
σ(x)f(x)UX(y,dx).

Thus in particular∫
M
f(x)UX(y,dx) = UY 1E(y) <

n

p2
for all y ∈ E.
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Lemma 3.2.4 is a strong result for super-finite sets. All that remains to be done in order
to prove Theorem 3.1.1 is to prove that super-finite sets are also supportive. Before
doing so, another technical lemma is needed.

Lemma 3.2.5. For n ∈ N, c ∈ (0, 1), the set

B =
{
x ∈ E : Px

(∫ ∞
0

f(Xs) ds ≤ n
)
≤ c
}

contains its regular points, and is therefore also finely closed.

Proof. The definition of B is exactly that of the complement in E of some super-finite set
for (X, f). Let K ⊆ B be a compact set, so that, by right-continuity of paths, XTK ∈ K
almost surely. Then for any a ∈ E we obtain

Pa
(
If∞ ≤ n

)
= Pa

(
If∞ ≤ n; TK < ζ

)
+ Pa

(
If∞ ≤ n; TK ≥ ζ

)
≤ Pa

(∫ ∞
TK

f(Xs) ds ≤ n; TK < ζ
)

+ Pa
(
If∞ ≤ n; TK ≥ ζ

)
=

∫
Py
(
If∞ ≤ n

)
Pa(XTK ∈ dy; TK < ζ) + Pa

(
If∞ ≤ n; TK ≥ ζ

)
≤ c+ Pa(TK ≥ ζ),

(3.16)

as K ⊆ B. Since (3.16) is true for all compact sets K ⊆ B, it then holds for all a ∈ E
that

Pa
(∫ ∞

0
f(Xs) ds ≤ n

)
≤ c+ inf

K⊆B
Pa(TK ≥ ζ). (3.17)

We now argue that the second summand of the righthand side equals 0 if a is regular
for B. From Lemma 2.1.12 it follows that there exists an increasing sequence (Kn) of
compact subsets of B such that Pa(TKn ↓ TB) = 1. The fact that the stopping times
TKn are decreasing as n→∞ yields

inf
n∈N

Pa(TKn ≥ ζ) ≤ lim sup
n→∞

Ea
[
1(TKn≥ζ)

]
,

and hence, we can apply the reverse Fatou lemma to see that for the regular points
a ∈ Br,

inf
n∈N

Pa(TKn ≥ ζ) ≤ Ea
[

lim sup
n→∞

1(TKn≥ζ)
]

= Pa
(

lim sup
n→∞

TKn ≥ ζ
)

= Pa(TB ≥ ζ) = 0

But then (3.17) implies a ∈ B. Thus Br ⊆ B. Equivalence of B being finely closed and
containing its regular points is Exercise II(4.9) of Blumenthal and Getoor [5].
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We have built enough structure around super-finite sets to now prove the final proposition
of this section, which establishes that super-finite sets are supportive when the process
is issued from them.

Proposition 3.2.6. For n ∈ N, c ∈ (0, 1) the super-finite set

Mn,c =
{
y ∈ E : Py

(∫ ∞
0

f(Xs) ds ≤ n
)
> c
}

is Pz-supportive if and only if z ∈ Mn,c. In particular, if for some fixed z ∈ E it holds
that

Pz
(∫ ∞

0
f(Xs) ds <∞

)
> 0,

then there exists a super-finite set for (X, f) which is also Pz-supportive.

Proof. For ease of notation let

hn(x) = Px
(∫ ∞

0
f(Xs) ds ≤ n

)
and define

Bn,c = {x ∈ E : hn(x) ≤ c} = E \Mn,c, n ∈ N, c ∈ (0, 1)

as in Lemma 3.2.5.

Necessity of z ∈Mn,c is clear, and we shall prove sufficiency by proving the contraposi-
tive. Let us suppose for the moment that Mn,c is not Pz-supportive for some fixed choice
of n, c, that is,

Pz(DBn,c < ζ) = Pz(DE\Mn,c
< ζ) = 1.

From this we obtain that

hn(z) = Pz
(∫ ∞

0
f(Xs) ds ≤ n

)
= Pz

(∫ ∞
0

f(Xs) ds ≤ n; DBn,c < ζ
)

≤ Pz
(∫ ∞

DBn,c

f(Xs) ds ≤ n; DBn,c < ζ
)

=

∫
E
Pa
(∫ ∞

0
f(Xs) ds ≤ n

)
Pz(XDBn,c

∈ da; DBn,c < ζ).

(3.18)

Since, due to Lemma 3.2.5, the regular points for Bn,c belong to Bn,c, Lemma 2.1.13
tells us that Py(XDBn,c

∈ da; DBn,c < ζ) is concentrated on Bn,c. We can now return
to (3.18) and deduce from the definition of Bn,c that

hn(z) ≤
∫
E
Pa
(∫ ∞

0
f(Xs) ds ≤ n

)
Pz(XDBn,c

∈ da; DBn,c < ζ) ≤ c.
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To recap, we have proven that

Mn,c is not Pz-supportive ⇒ hn(z) ≤ c ⇔ z /∈Mn,c,

or, equivalently,

z ∈Mn,c ⇔ hn(z) > c ⇒ Mn,c is Pz-supportive. (3.19)

Lastly by continuity of measures Pz(
∫∞

0 f(Xs) ds <∞) > 0 implies

hn0(z) = Pz
(∫ ∞

0
f(Xs) ds ≤ n0

)
> 0

for some n0 ∈ N. Hence in this case (3.19) implies the existence of some c0 so that Mn0,c0

is Pz-supportive.

An Aside

In Theorem II(4.5) of their chapter on the fine topology Blumenthal and Getoor [5]
prove that for q > 0, the fine topology is the coarsest topology on E which makes all
q-excessive functions continuous. Lemma 3.2.5 tells us that super-finite sets are finely
open, and it therefore holds that any super-finite set

M =
{
x ∈ E : Px

(∫ ∞
0

f(Xs) ds ≤ n
)
> c
}
.

is the pullback of an open set in [0,∞) by some q-excessive function. By definition of
lower-semicontinuity if the map

x 7→ Px
(∫ ∞

0
f(Xs) ds ≤ n

)
is lower-semicontinuous then M is open, but it is not clear in general what assumptions
on X or f ensure that.

3.3 Proof of Theorem 3.1.1

Perpetual integral proofs typically have a simple and a complicated direction. The simple
direction “⇐” uses the potential expression to deduce finiteness of the expectation. In
our setting the argument goes as follows. Suppose that M is a Pz-supportive set, and
that

Ez
[ ∫ ∞

0
1M (Xs)f(Xs) ds

]
=

∫
M
f(x)U(z,dx) <∞.

Then Pz(
∫∞

0 1M (Xs)f(Xs) ds <∞) = 1, and thus

Pz
(∫ ∞

0
f(Xs) ds <∞

)
≥ Pz

(∫ ∞
0

f(Xs) ds <∞;Xs ∈M ∀s < ζ
)
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= Pz
(∫ ∞

0
1M (Xs)f(Xs) ds <∞;Xs ∈M ∀s < ζ

)
= Pz(Xs ∈M for all s < ζ) > 0.

This shows the “⇐” direction of Theorem 3.1.1.

To prove the “⇒” direction we take the super-finite supportive set from Proposition
3.2.6 and obtain the integral test from Proposition 3.2.4.

3.4 The Almost Sure Case

Without any additional assumptions we can strengthen the integral test in Theorem
3.1.1 in the case that

∫∞
0 f(Xs) ds is almost surely finite, rather than simply finite with

positive probability. This is crucially not equivalent to the condition that∫
E
f(x)U(z, dx) <∞. (3.20)

An example demonstrating this is given below the theorem proof.

Theorem 3.4.1. Let X be a standard Markov process on state space E and f ∈ E+.
Then the following are equivalent.

(i) Pz
(∫ ∞

0
f(Xs) ds <∞

)
= 1;

(ii) For every small ε > 0 there exists M ∈ E such that Pz(DE\M < ∞) ≤ ε - which
implies that M is Pz-supportive - and∫

M
f(x)U(z, dx) <∞.

Proof.

[(i)⇒(ii)]

Assuming (i) it follows that for every ε ∈ (0, 1/2) there exists an n ∈ N such that

Pz
(∫ ∞

0
f(Xs) ds ≤ n

)
> 1− ε. (3.21)

Fix these n, ε and define the super-finite set

M =
{
y ∈ E : Py

(∫ ∞
0

f(Xs) ds ≤ n
)
> ε
}
,

which by (3.21) contains z, and thus by Lemma 3.2.6 is Pz-supportive. Moreover,

Pz
(∫ ∞

0
f(Xs) ds ≤ n

)
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= Pz
(∫ ∞

0
f(Xs) ds ≤ n; DE\M =∞

)
+ Pz

(∫ ∞
0

f(Xs) ds ≤ n; DE\M <∞
)

≤ Pz(DE\M =∞) + Pz
(∫ ∞

DE\M

f(Xs) ds ≤ n; DE\M <∞
)
.

Applying the strong Markov property at DE\M and recalling that E \M contains its
regular points, which implies that XDE\M ∈ E \M almost surely on {DE\M <∞}, gives

≤ Pz(DE\M =∞) + ε.

In combination with (3.21) this yields

Py(DE\M =∞) > 1− 2ε.

Since this holds for arbitrarily small ε > 0, it remains only to note via Proposition 3.2.4
that ∫

M
f(x)U(z, dx) <∞.

[(i)⇐(ii)]

Take ε > 0 small and let M be such that Pz(DE\M <∞) ≤ ε and∫
M
f(x)U(z, dx) = Ez

[ ∫ ∞
0

f(Xs)1M (Xs) ds
]
<∞.

Then

Pz
(∫ ∞

0
f(Xs)1M (Xs) ds <∞

)
= 1.

In particular,

Pz
(∫ ∞

0
f(Xs) ds <∞

)
≥ Pz

(∫ ∞
0

f(Xs) ds <∞; DE\M =∞
)

= Pz
(∫ ∞

0
f(Xs)1M (Xs) ds <∞; DE\M =∞

)
= Pz(DE\M =∞)

> 1− ε.

This holds for arbitrarily small ε > 0, and thus Pz(
∫∞

0 f(Xs) ds <∞) = 1.

We can immedately construct an interesting corollary of Theorem 3.4.1 in the case that
f is locally bounded and U(·,K) <∞ for all compact K.

Corollary 3.4.2. Let X be a standard Markov process on state space E, suppose that E
is not compact and that U(·,K) is finite everywhere for all compact K,2 and let f ∈ E+

be bounded on compact sets. Then the following are equivalent.

2This is (iii) of (2.10), and is satisfied by transient standard Markov processes satisfying (LSC), or as
we saw in Definition 2.5.3 by all transient Lévy processes.
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(i) Pz
(∫ ∞

0
f(Xs) ds <∞

)
= 1;

(ii) For every ε > 0 there exists a set B ∈ E such that Pz(LB < ζ) ≥ 1− ε and∫
E\B

f(x)U(z, dx) <∞.

Proof. If we assume (i) then (ii) follows directly from Theorem 3.4.1 and the fact that
for any Pz-avoidable set B satisfying Pz(DB <∞) ≤ ε it holds that

Pz(LB < ζ) ≥ Pz(LB = 0) ≥ Pz(DB =∞) ≥ 1− ε.

Now suppose (ii). Proposition I(9.3) of Blumenthal and Getoor [5] gives that on the
event {t < ζ}, the random set {Xs : s ∈ [0, t]}, built from the points hit by X up to
time t, is almost surely bounded. It follows that for a random time T ∈ [0,∞) with
T < ζ almost surely, the path of X up to time T is almost surely contained in a (proper)
compact subset of E. Therefore, if (Kn) is an increasing sequence of compact sets with
limit E, it holds for fixed ε > 0 that Pz(limn→∞ TE\Kn ≥ (ζ−ε)+) = 1. Thus continuity
of measure yields

lim
n→∞

TE\Kn ≥ ζ Pz-almost surely.

The above argument only works because we have specified that the state space E is
unbounded. Fix some ε > 0, and take B the set satisfying Pz(LB < ζ) ≥ 1 − ε and∫
E\B f(x)U(z,dx) <∞. Due to continuity of measure,

Pz(LB ≥ TE\Kn) ↓ Pz(LB ≥ ζ) ≤ ε.

Then we can find a compact set K ⊆ E such that

Pz(LB < TE\K) > 1− 2ε.

Define the set M = K ∪ (E \B). This definition implies that on the event LB < TE\K ,
the process X never leaves M . That is,

Pz(DE\M =∞) ≥ Pz(LB < TE\K) > 1− 2ε.

In addition ∫
M
f(x)U(z, dx) ≤

∫
E\B

f(x)U(z,dx) + U(z,K) sup
x∈K

f(x). (3.22)

Taking (3.22) together with the integral test of (ii), boundedness of f on compact sets,
and the fact that U(z,K) <∞ implies that∫

M
f(x)U(z,dx) <∞.

Our choice of ε > 0 was arbitrary, and so the result follows from Theorem 3.4.1.
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The following example shows that in general condition (i) of Theorem 3.4.1 does not
imply the integral test (3.20) over the entire state space, although the converse implica-
tion (3.20) ⇒ (i) is clear. This example is instructive for two reasons: first, because it
concerns stable processes, and second, because the assumptions it places on f (namely
that it has compact support and is not integrable) are not contrived.

Example 3.4.3. Let X be a symmetric stable process on R of index α ∈ (0, 1). Fix a
point y ∈ R not equal zero and let ε > 0 be such that |y| > ε. Now suppose that f has
support on Bε(y) = {x : |x− y| < ε}, in order that the density u(x) = |x|α−1 of U(0,dx)
is bounded on the support of f . Then∫

R
f(x)U(0,dx) <∞ ⇔

∫
R
f(x) dx <∞.

So if we define such an f which is not integrable, for example f(x) = (x−y)−21Bε(y)(x),
it holds that

∫
R f(x)U(0,dx) = ∞. Now recall that X stays a positive distance away

from y P0-almost surely.3 It follows that

ξ := sup
t∈[0,∞)

f(Xt) <∞ P0-almost surely.

In addition, P0(LBε(y) <∞) = 1. Therefore∫ ∞
0

f(Xs) ds ≤ ξLBε(y) <∞ P0-almost surely.

3.5 A Zero-One Law

The zero-one law presented below is a nice corollary to Theorem 3.1.1, and unifies the
theorems of Döring and Kyprianou [11] and Kolb and Savov [30] which were presented
in §3.1.

Let X be a standard Markov process. We say that X has a trivial tail σ-algebra when
issued from x ∈ E if

A ∈
⋂
s≥0

σ
(
Xt, t ≥ s

)
⇒ Px(A) ∈ {0, 1}.

As an example, a Lévy process on Rd has a trivial tail σ-algebra when issued from every
x ∈ Rd.

Theorem 3.5.1. Let X be a standard Markov process on state space E with trivial tail
σ-algebra when issued from z ∈ E, and let f ∈ E+ be bounded on compact sets. Suppose
in addition that Pz(ζ =∞) = 1. Then the following are equivalent.

(i) Pz
(∫ ∞

0
f(Xs) ds <∞

)
> 0;

3This well-known fact can be proven using the density of the point of closest reach of X, see [33].

48



(ii) Pz
(∫ ∞

0
f(Xs) ds <∞

)
= 1;

(iii) There exists a Pz-transient set B such that

∫
E\B

f(x)U(z,dx) <∞.

It’s interesting to recall from Definition 2.4.7 (iv) that for X a recurrent Markov process,
the only transient sets are polar sets.

Proof.

[(iii)⇒(ii)]

By assumption,

Ez
(∫ ∞

0
1E\B(Xs)f(Xs) ds

)
=

∫
E\B

f(x)U(z, dx) <∞,

and hence ∫ ∞
0

1E\B(Xs)f(Xs) ds <∞ Pz-almost surely. (3.23)

From the definition of transience of sets, Pz(LB < ∞) = 1. Proposition I(9.3) of
Blumenthal and Getoor [5] therefore yields that the random set

S = {Xs : s ≥ 0, Xs ∈ B},

which contains the points of B reached by X, is Pz-almost surely bounded (that is,
contained within a compact set, which implies Leb(S) <∞ a.s.). Therefore - because f
is bounded on compact sets - for Pz-almost every ω ∈ Ω there exists a compact set Kω

such that f(Xs(ω)) ∈ Kω for all s ∈ S(ω). In particular,∫ ∞
0

1B(Xs(ω))f(Xs(ω)) ds ≤ sup
x∈Kω

f(x)Leb(S(ω)) <∞

for Pz-almost every ω ∈ Ω. This in combination with (3.23) implies∫ ∞
0

f(Xs) ds <∞ Pz-almost surely.

[(i)⇒(iii)]

According to Theorem 3.1.1 there exists a Pz-supportive set M with∫
M
f(x)U(z, dx) <∞.

Since M is Pz-supportive, E \M is avoidable, and

Pz(LE\M <∞) ≥ Pz(LE\M = 0) ≥ Pz(DE\M =∞) > 0.
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For any B ∈ E the event {LB <∞} is in the tail σ-algebra of X, and so by assumption
Pz(LB <∞) is a zero-one law. Therefore

Pz(LE\M <∞) = 1

and E \M is transient.
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4 Path Integral Tests

The work of Chapter 3 will be useful to us now as a tool for studying finite-time path in-
tegrals. A question of particular interest is under which conditions either of the following
hold with positive probability:

1

∫ t

0
f(Xs) ds <∞ for every t < ζ

or

2

∫ t

0
f(Xs) ds <∞ for some t > 0

These questions were first answered for the Brownian motion on R by Engelbert and
Schmidt [15] in 1981, in the form of the following zero-one law.

Theorem 4.0.1 (Engelbert and Schmidt [15] Theorem 1). Let W be a standard Brow-
nian motion on a probability space (Ω,F ,P0), and let f ∈ B(R)+. Then the following
are equivalent:

(i) P0

(∫ t

0
f(Ws) ds <∞ for every t ≥ 0

)
> 0;

(ii) P0

(∫ t

0
f(Ws) ds <∞ for every t ≥ 0

)
= 1;

(iii) For all compact K ⊆ R, ∫
K
f(y) dy <∞;

(iv) There exists a t0 > 0 such that P0

(∫ t0

0
f(Ws) ds <∞

)
= 1.

Engelbert and Schmidt also note that existence of a t0 > 0 such that

P0

(∫ t0

0
f(Ws) ds <∞

)
> 0

is not sufficient to imply (i) - (iv). We have already seen that in one dimension the
Brownian motion shares many properties with stable processes of index α ∈ (1, 2), and
in 1997 Zanzotto [44] extended Engelbert and Schmidt’s result to this class.
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Theorem 4.0.2 (Zanzotto [44] Theorem 1.4). Let X be a stable process of index α ∈
(1, 2] on a probability space (Ω,F ,P0), and let f ∈ B(R)+. Then the following are
equivalent:

(i) P0

(∫ t

0
f(Xs) ds <∞ for every t ≥ 0

)
> 0;

(ii) P0

(∫ t

0
f(Xs) ds <∞ for every t ≥ 0

)
= 1;

(iii) For all compact K ⊆ R, ∫
K
f(y) dy <∞.

Zanzotto’s proof is almost identical to the Brownian case, and is rather brief. There is
less hope of a similar approach working for α ∈ (0, 1) for two reasons: first, local times
play a crucial role in the proof and there is no substitute when they don’t exist, and
second, understanding supportive sets is far simpler for α ∈ (1, 2) because - up to a
difference of a Lebesgue-zero set - there is only one, which is R. That is what allows the
neat zero-one laws of Engelbert and Schmidt and Zanzotto, which cannot be achieved
in generality without further assumptions on f .

The theorem above also has a related local version. This local version is worth mentioning
because it provides a hope of unifying the story of transient and recurrent processes, since
those properties don’t much affect the small-time behaviour of a process X.

Lemma 4.0.3 (Zanzotto [44] Lemma 1.6). Let X be a stable process of index α ∈ (1, 2]
on a probability space (Ω,F ,P), and let f ∈ B(R)+. For a fixed x ∈ R suppose there
exists a random time τ such that

Px(0 < τ <∞) = 1 and Px
(∫ τ

0
f(Xs) ds <∞

)
> 0.

Then there exists an ε > 0 such that∫ ε

−ε
f(x+ y) dy <∞.

The results presented in this chapter are Engelbert-Schmidt-type results for more gen-
eral classes of Markov processes. First, three theorems for strongly transient Markov
processes are proven, which are counterparts to Theorem 4.0.2 and Lemma 4.0.3. They
make clear the importance of supportive sets, in particular with respect to the possi-
bility of a zero-one law. These are then used to prove two more precise theorems for
Lévy processes, the first of which concerns processes with local times that hit points
and which contains the statements of Theorems 4.0.1 and 4.0.2, and the second of which
gives a precise result for stable processes on R with α ∈ (0, 1), achievable via the Wiener
Criterion of Chapter 6.
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4.1 Transient Markov Processes

The three theorems given below are natural companions to Theorem 4.0.2 and Lemma
4.0.3. Recall from §2.4 that a standard Markov process on E is strongly transient if
all compact K have last-exit time LK < ζ Px-almost surely for all x ∈ E. In the
case that the lifetime ζ is equal +∞ almost surely, strong transience coincides with
transience.

Theorem 4.1.1. Let X be a strongly transient standard Markov process and f ∈ E+ a
non-negative measurable function. For z ∈ E, the following are equivalent:

(i) Pz
(∫ t

0
f(Xs) ds <∞ for every t < ζ

)
> 0;

(ii) There is a constant c > 0 such that for all compact K ⊆ E there exists a Pz-
supportive set MK satisfying Pz(TE\MK

= ζ) > c and∫
MK∩K

f(y)U(z, dy) <∞.

Theorem 4.1.2. Let X be a strongly transient standard Markov process and f ∈ E+.
For z ∈ E, the following are equivalent:

(i) Pz
(∫ t

0
f(Xs) ds <∞ for every t < ζ

)
= 1;

(ii) For every ε > 0 there exists a Pz-supportive set M ε satisfying Pz(TE\Mε = ζ) >
1− ε and ∫

Mε∩K
f(y)U(z, dy) <∞

for all compact K ⊆ E.

Theorem 4.1.3. Let X be a strongly transient standard Markov process and f ∈ E+.
For z ∈ E, the following are equivalent:

(i) There exists a stopping time τ such that

Pz(0 < τ < ζ) = 1 and Pz
(∫ τ

0
f(Xs) ds <∞

)
= 1

(ii) There exists Pz-thin set B such that

∫
E\B

f(y)U(z,dy) <∞.

For one argument in the proof of Theorem 4.1.3 it is important that τ is a stopping
time. But if X has the property that for all t > 0 there Pz-almost surely exists a finely
open set G containing z such that LG < t, then τ need only be a random variable. This
condition holds for example for transient Lévy processes that don’t hit points, because
the last exit times of Bε(z) are arbitrarily small.
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Proof of Theorem 4.1.1

[(i) ⇒ (ii)]

Let K1 ⊆ K2 . . . be an increasing sequence of compact sets with limit E. For n ∈ N let
LKn be the last exit time of Kn. Since X is strongly transient, it holds that Pz(LKn <
ζ) = 1 for all n, and thus

Pz
(∫ t

0
f(Xs) ds <∞ for every t < ζ

)
> 0

⇒ Pz
(∫ LKn

0
f(Xs) ds <∞ for every n ∈ N

)
> 0

⇒ ∃C > 0 s.t. Pz
(∫ LKn

0
f(Xs) ds <∞

)
> C for every n ∈ N

⇒ Pz
(∫ ∞

0
f(Xs)1Kn(Xs) ds <∞

)
> C for every n ∈ N.

(4.1)

Define fn = f1Kn . For each fn an application of Theorem 3.1.1 gives a Pz-supportive
set Mn such that ∫

Mn∩Kn
f(x)U(z,dx) =

∫
Mn

fn(x)U(z,dx) <∞.

In fact we have some control over the form of Mn. For any n ∈ N we can by the
calculation above choose an Nn ∈ N such that

Pz
(∫ ∞

0
fn(Xs) ds ≤ Nn

)
>
C

2
.

Now define the super finite sets

Mn :=
{
y ∈ E : Py

(∫ ∞
0

fn(Xs) ds ≤ Nn

)
>
C

3

}
, n ∈ N.

By (3.19), each Mn is Pz-supportive. Moreover

C

2
< Pz

(∫ ∞
0

fn(Xs) ds ≤ Nn

)
= Pz

(∫ ∞
0

fn(Xs) ds ≤ Nn; TE\Mn
<∞

)
+ Pz

(∫ ∞
0

fn(Xs) ds ≤ Nn; TE\Mn
=∞

)
≤ Pz

(∫ ∞
TE\Mn

fn(Xs) ds ≤ Nn; TE\Mn
<∞

)
+ Pz(TE\Mn

=∞)

and because E \Mn contains its regular points

≤ C

3
+ P0(TE\Mn

=∞),
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and therefore not only is each Mn supportive, but the probability of remaining in each
is uniformly bounded away from 0 because

Pz(TE\Mn
=∞) >

C

6
.

The final property of Mn to recall is from Proposition 3.2.4:∫
Mn∩Kn

f(y)U(z,dy) <∞.

Any compact set K ⊆ E is covered by the interiors of the sequence Kn. By assumption
E is locally compact, and therefore K is covered by a finite subcover of these interiors,
and in particular K is contained in Kn for some n. Hence (ii) follows.

[(i) ⇐ (ii)]

Suppose that for any compact K there exists M such that Pz(TE\M =∞) > c and

Ez
[ ∫ ∞

0
f(Xs)1M∩K(Xs) ds

]
=

∫
M∩K

f(y)U(z, dy) <∞.

LetK1,K2, . . . be an increasing sequence of compact sets with limit E, and denote byMn

the supportive sets associated to them by the above relation. Then for all n ∈ N,

Ez
[ ∫ ∞

0
f(Xs)1Mn∩Kn(Xs) ds

]
<∞ ⇒ Pz

(∫ ∞
0

f(Xs)1Mn∩Kn(Xs) ds <∞
)

= 1

⇒ Pz
(∫ ∞

0
f(Xs)1Kn(Xs) ds <∞

)
> c

⇒ Pz
(∫ TE\Kn

0
f(Xs) ds <∞

)
> c.

Thus

c ≤ lim
n→∞

Pz
(∫ TE\Kn

0
f(Xs) ds <∞

)
= Pz

(∫ TE\Kn

0
f(Xs) ds <∞ for all n ∈ N

)
.

(4.2)

Since X is strongly transient, limn→∞ TE\Kn = ζ, and thus

Pz
(∫ t

0
f(Xs) ds <∞ for all t < ζ

)
≥ c > 0.
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Proof of Theorem 4.1.2

[(i) ⇒ (ii)]

Let K1 ⊆ K2 . . . be an increasing sequence of compact sets with limit E. For n ∈ N let
LKn be the last exit time of Kn. Then since X is strongly transient,

Pz
(∫ t

0
f(Xs) ds <∞ for every t < ζ

)
= 1

⇒ Pz
(∫ LKn

0
f(Xs) ds <∞ for every n ∈ N

)
= 1

⇒ Pz
(∫ LKn

0
f(Xs) ds <∞

)
= 1 for every n ∈ N

⇒ Pz
(∫ ∞

0
f(Xs)1Kn(Xs) ds <∞

)
= 1 for every n ∈ N.

(4.3)

Now fix ε > 0 and n ∈ N. We can choose a constant Nn such that

Pz
(∫ ∞

0
f(Xs)1Kn(Xs) ds ≤ Nn

)
> 1− 2−nε.

Then write f = f1Kn and define a super-finite set for each (X, fn),

M ε
n :=

{
y ∈ E : Py

(∫ ∞
0

fn(Xs) ds ≤ Nn

)
> 2−nε

}
, n ∈ N.

By (3.19), each Mn is Pz-supportive. Moreover

1− 2−nε < Pz
(∫ ∞

0
fn(Xs) ds ≤ Nn

)
= Pz

(∫ ∞
0

fn(Xs) ds ≤ Nn; TE\Mε
n
<∞

)
+ Pz

(∫ ∞
0

fn(Xs) ds ≤ Nn; TE\Mε
n

=∞
)

≤ Pz
(∫ ∞

TE\Mε
n

fn(Xs) ds ≤ Nn; TE\Mε
n
<∞

)
+ Pz(TE\Mε

n
=∞)

≤ 2−nε+ Pz(TE\Mε
n

=∞),

and therefore not only is each M ε
n Pz-supportive, but the probability of remaining in

each is uniformly bounded away from 0 by

Pz(TE\Mε
n

=∞) > 1− 21−nε.

Now let

M ε :=
⋂
n

M ε
n.
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Then by sub-additivity of measure

Pz(TE\Mε =∞) ≥ 1−
∞∑
n=1

Pz(TE\Mε
n
<∞)

> 1− ε
∞∑
n=1

21−n

= 1− 2ε.

Moreover for any compact K, the interiors of the sets Kn form a cover of K, and since
E is locally compact there is a finite subcover of K, and this implies that there exists
an n such that K ⊆ Kn. Therefore∫

Mε∩K
f(y)U(z, dy) ≤

∫
Mε
n∩Kn

f(y)U(z,dy) <∞.

[(i) ⇐ (ii)]

Suppose that for any ε > 0 there exists a Pz-supportive set M ε satisfying Pz(TE\Mε
=

ζ) > 1− ε and ∫
Mε∩K

f(y)U(z,dy) <∞

for all compact K ⊆ E. Let K1 ⊆ K2, . . . be a nested sequence of compact sets with
limit E. Then for all n ∈ N,

Ez
[ ∫ ∞

0
f(Xs)1Mε∩Kn(Xs) ds

]
<∞ ⇒ Pz

(∫ ∞
0

f(Xs)1Mε∩Kn(Xs) ds <∞
)

= 1

⇒ Pz
(∫ ∞

0
f(Xs)1Kn(Xs) ds <∞

)
> 1− ε

⇒ Pz
(∫ TE\Kn

0
f(Xs) ds <∞

)
> 1− ε.

Thus, since X is strongly transient, limn→∞ TE\Kn = ζ and

1− ε < lim
n→∞

Pz
(∫ TE\Kn

0
f(Xs) ds <∞

)
= Pz

(∫ TE\Kn

0
f(Xs) ds <∞ for all n ∈ N

)
= Pz

(∫ t

0
f(Xs) ds <∞ for all t < ζ

)
.

(4.4)

Since ε > 0 is arbitrary it follows that

Pz
(∫ t

0
f(Xs) ds <∞ for all t < ζ

)
= 1.
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Proof of Theorem 4.1.3

[(i) ⇒ (ii)]

First we need to deal with one specific situation, which is when Pz(TE\{z} > 0) > 0
(in fact this is a zero-one law, and in this case z is called a holding point.). Since∫ τ

0 f(Xs) ds <∞, it must hold that f(z) <∞. In addition in this case E \ {z} is clearly
Pz-thin, and by transience U(z, {z}) <∞. So (i) holds, because∫

{z}
f(y)U(z, dy) = f(z)U(z, {z}) <∞.

Now suppose that Pz(TE\{z} > 0) = 0. We shall prove that there exists a Pz-thin set
B ∈ E such that z ∈ E \ B and LE\B ≤ τ with positive probability. Let µ be the finite
measure on (E, E) defined by

µ(A) = Pz(Xτ ∈ A).

We can apply Theorem I(10.16) of Blumenthal and Getoor, which tells us that there
exists a decreasing sequence of open sets Gn ∈ E such that z ∈ Gn for every n and

Pµ(TGn ∧ ζ ↑ T{z} ∧ ζ) = 1. (4.5)

For A ∈ E∆ let us introduce the stopping time T τ
A = inf{t > τ : Xt ∈ A}. This is the first

hitting time of A after τ, and just like TA it is a stopping time, but it also satisfies

Pz(T τ
A < ζ) = Pz(LA > τ).

It follows from (4.5), and the fact that τ is a stopping time, that

Pz(T τ
Gn ∧ ζ ↑ T

τ
{z} ∧ ζ) = Ez

[
Pz(T τ

Gn ∧ ζ ↑ T
τ
{z} ∧ ζ|Fτ)

]
= Ez

[
PXτ(TGn ∧ ζ ↑ T{z} ∧ ζ)

]
= Pµ(TGn ∧ ζ ↑ T{z} ∧ ζ) = 1.

(4.6)

Here is where strong transience comes into play. Clearly

T τ
{z} < ζ ⇒ T τ

Gn < ζ for every n.

But it does not follow from (4.6) alone that

T τ
Gn < ζ for every n ⇒ T τ

{z} < ζ.

We need to note that for almost every ω ∈ Ω if T τ
Gn

< ζ then also limn→∞ T
τ
Gn
≤ LG1 , and

in this case (4.5) yields that limn→∞ T
τ
Gn

= T τ
{z}. Thus we have that T τ

{z} ≤ LG1 almost
surely, and from strong transience it follows that T τ

{z} ≤ LG1 < ζ almost surely.

Moreover, transience and the strong Markov property of X tell us that Pz(T τ
{z} < ζ)

must be less than one, else we would have Pz(L{z} = ∞) = 1, which would contradict
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transience. From our discussion above this implies that there is some choice of n such
that Pz(T τ

Gn
< ζ) < 1, and therefore that

Pz(T τ
Gn ≥ ζ) = Pz(LGn ≤ τ) > 0.

Thus under the assumption of (i),

Pz
(∫ LGn

0
f(Xs) ds <∞

)
≥ Pz

(∫ LGn

0
f(Xs) ds <∞; τ ≥ LGn

)
≥ Pz

(∫ τ

0
f(Xs) ds <∞; τ ≥ LGn

)
> 0.

It therefore follows that

Pz
(∫ ∞

0
f(Xs)1Gn(Xs) ds <∞

)
> 0. (4.7)

Then Theorem 3.1.1 yields a Pz-supportive set M such that∫
M∩Gn

f(x)U(z, dx) <∞.

Since M is Pz-supportive, Blumenthal’s zero-one law gives that its complement E \M is
Pz-thin. Since Gn is open and contains z, E \Gn is Pz-thin. The union of finitely many
Pz-thin sets is again Pz-thin, and thus we define B = (E \M)∪ (E \Gn) = E \ (M ∩Gn),
which is Pz-thin and satisfies ∫

E\B
f(x)U(z,dx) <∞.

[(i) ⇐ (ii)]

Let B be the Pz-thin set from (ii). Proposition II(4.3) of Blumenthal and Getoor [5]
says that there is a compact set K ⊆ E \B such that z ∈ K and E \K is again Pz-thin.
The stopping time we shall define is

τ = TE\K .

Since E \K is Pz-thin, τ is Pz-almost surely positive. In addition it follows from strong
transience of X that TE\K ≤ LK < ζ Pz-almost surely, and so Pz(0 < τ < ζ) = 1. We
have assumed that∫

E\B
f(x)U(z, dx) = Ez

[ ∫ ∞
0

f(Xs)1E\B(Xs) ds
]
<∞.

This implies that Pz(
∫∞

0 f(Xs)1E\B(Xs) ds <∞) = 1. From K ⊆ E \B it follows that
τ ≤ TB. Therefore

Pz
(∫ τ

0
f(Xs) ds <∞

)
≥ Pz

(∫ TB

0
f(Xs) ds <∞

)
≥ Pz

(∫ ∞
0

f(Xs)1E\B(Xs) ds <∞
)

= 1.
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4.2 Lévy Processes with Local Times

The following lemma and theorem are versions of Zanzotto’s in a slightly more general
setting. They are also clear counterparts to the results of §4.1. The local time arguments
used in the proof of Lemma 4.2.1 are similar those used by Zanzotto and Engelbert and
Schmidt. The proof of Theorem 4.2.2 uses the machinery we developed in Theorem 3.4.1
in a novel way to obtain a result for X with local times which are not necessarily jointly
continuous.

Lemma 4.2.1. Let X be a Lévy process on R which has jointly continuous local times.
Let f ∈ B(R)+. Then the following are equivalent.

(i) There exists a random variable τ such that

P0(0 < τ <∞) = 1 and P0

(∫ τ

0
f(Xs) ds <∞

)
> 0;

(ii) There exists a random variable τ such that

P0(0 < τ <∞) = 1 and P0

(∫ τ

0
f(Xs) ds <∞

)
= 1;

(iii) There exists an ε > 0 such that ∫ ε

−ε
f(y) dy <∞. (4.8)

Theorem 4.2.2. Let X be a Lévy process on R which has local times1, and f ∈ B(R)+.
The following are equivalent.

(i) P0

(∫ t

0
f(Xs) ds <∞ for every t ≥ 0

)
= 1;

(ii) For all compact K ⊆ R, ∫
K
f(y)dy <∞.

If in addition X is point recurrent and has jointly continuous local times then (i) and
(ii) are also equivalent to

(iii) P0

(∫ t

0
f(Xs) ds <∞ for every t ≥ 0

)
> 0.

1Recall that equivalent conditions were given for this in Theorem 2.6.5.
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Proof of Lemma 4.2.1

First suppose (iii) and let τ = inf{s > 0 : |Xs| ≥ ε}, the first hitting time of R \ Bε,
which is P0-almost surely in (0,∞). Since τ is almost surely finite, L(τ, ·) is almost
surely continuous and finite everywhere. This yields that δ := supx∈Bε L(τ, x) <∞ P0-
a.s. Recall that the occupation measure µτ almost surely has support in Bε. Then∫ τ

0
f(Xs) ds =

∫
Bε

f(x)L(τ, x) dx ≤ δ
∫
Bε

f(x) dx <∞ P0-a.s.,

and (ii) holds.

Now suppose (i). Since L(t, 0) is strictly increasing in t, and τ is almost surely positive,
it follows that L(τ, 0) > 0 P0-almost surely. Since L is continuous in x there exists
an almost surely positive random variable γ such that infx∈Bγ L(τ, x) ≥ L(τ, 0)/2 > 0.
Thus P0-almost surely∫ τ

0
f(Xs(ω)) ds =

∫
Rd
f(x)L(x, τ) dx ≥ L(τ, 0)

2

∫
Bγ

f(x) dx.

Then by assumption it follows that
∫
Bγ
f(x) dx <∞ with positive probability. Since γ is

almost surely positive, we can choose an ε > 0 such that γ > ε with positive probability
on the event that

∫
Bγ
f(x) ds <∞, and therefore (4.8) holds for that choice of ε.

Proof of Theorem 4.2.2

This proof makes use of a type of process which we haven’t mentioned yet called a killed
Markov process which for q > 0 is denoted Xq and defined by

Xq
t =

{
Xt if t ∈ [0, τq),

∆ if t ∈ [τq,∞],

where X is a standard Markov process on E with cemetary state ∆ and τq is an indepen-
dent exponentially distributed random variable with mean 1/q. In the literature such a
process is sometimes called a q-subprocess, see for example Blumenthal and Getoor [5]
Example III(3.17). A killed Markov process is again a standard Markov process on E
with cemetary state ∆, and has transition semigroup

P qt (x,A) = Px(Xt ∈ A; t < τq) = e−qtPt(x,A) (4.9)

for A ∈ E , and from this it follows that the potential operator of Xq is U q, the q-potential
operator of X. It is worth noting that for T a stopping time,

Px(T < τq) =

∫
Px(t < τq)Px(T ∈ dt) =

∫
e−qtPx(T ∈ dt) = Ex[e−qT ]. (4.10)
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Since τq is almost surely finite, any killed Markov process is transient. But interestingly,
if X has lifetime ζ =∞ almost surely then Xq cannot be strongly transient.

[(i) ⇒ (ii)]

Fix q > 0, and let Xq be the killed process as above. Then Xq is a transient standard
Markov process on R, and since τq has support (0,∞) our assumption implies that Xq

satisfies condition (i) of Theorem 3.4.1. Fix some compact K ⊆ R and take an arbitrary
ε > 0. By Theorem 3.4.1, there exists a P0-supportive - for Xq, that is - set M ε satisfying
P0(Xq

s ∈M ε for all s < τq) > 1− ε and∫
Mε∩K

f(y)U q(0, dy) ≤
∫
Mε

f(y)U q(0, dy) <∞

for any compact K ⊆ R, and in particular for our choice of K. Let us use the notation
Bε = R \M ε. Then

P0(Xs ∈ Bε ∩K for some s < τq) = P0(Xq
s ∈ Bε ∩K for some s < τq)

≤ P0(Xq
s ∈ Bε for some s < τq)

< ε.

Now suppose Bε ∩K is non-empty, so there exists some x ∈ Bε ∩K. Then

P0(Xq
s ∈ Bε ∩K for some s ≥ 0) = P0(Xs ∈ Bε ∩K for some s < τq)

≥ P0(Xs = x for some s < τq)

= E0[e−qT{x} ] by (4.10)

where T{x} = inf{s > 0 : Xs = x},

= E−x[e−qT{0} ]

= ûq(x)Cq. by (2.15)

In the discussion below Theorem 2.6.5 we saw that because X hits points, u and û are
bounded below on compact sets. In particular there exists some c > 0 such that

P0(Xs ∈ Bε ∩K for some s < τq) ≥ ûq(x)Cq > c for all x ∈ K (and thus ∈ Bε ∩K).

This constant c is dependent on both q and K, but not upon the choice of ε. Now we
have shown that

c < P0(Xs ∈ Bε ∩K for some s < τq) < ε.

But our choice of ε is arbitrary, and we can therefore choose 0 < ε < c. The resolution of
this apparent contradiction is that in this case there does not exist any point x ∈ Bε∩K.
Thus for such ε,

∞ >

∫
Mε∩K

f(y)U q(0,dy) =

∫
K
f(y)uq(y) dy.
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Again because uq is bounded below on compacts, there is a δ > 0 such that uq(x) > δ
for x ∈ K, and thus

δ

∫
K
f(y) dy ≤

∫
K
f(y)uq(y) dy <∞.

We have proven this for one arbitary compact K, and it therefore holds for them
all.

[(i) ⇐ (ii)]

Fix q > 0. Since X has local times Theorem 2.6.5 gives that uq is bounded, and thus
for arbitrary compact K,

E0

[ ∫ ∞
0

f(Xq
s )1K(Xq

s ) ds
]

=

∫
K
f(y)uq(y) dy ≤ sup

x∈R
uq(x)

∫
K
f(y) dy <∞.

Now

E0

[ ∫ ∞
0

f(Xq
s )1K(Xq

s ) ds
]
<∞ ⇒ P0

(∫ ∞
0

f(Xq
s )1K(Xq

s ) ds <∞
)

= 1.

for all compact K. Thus by continuity of measure

P0

(∫ ∞
0

f(Xq
s ) ds <∞

)
= 1.

Since τq is independent and has support (0,∞), this implies

P0

(∫ t

0
f(Xs) ds <∞ for every t <∞

)
= 1,

and (ii) has been proven.

Now we want to prove the zero-one law in the case that X is point recurrent and has
jointly continuous local times. The implication (i) ⇒ (iii) is immediate. Suppose (iii),
which by Lemma 4.2.1 immediately gives an open set G0 containing 0 such that∫

G0

f(y) dy <∞. (4.11)

Let T{0} be the first hitting time of zero, which is almost surely finite from any issuing
point under the assumption of point recurrence, and therefore for x ∈ R,

0 < Px
(∫ T{0}

0
f(Xs) ds <∞

)
= P0

(∫ T{−x}

0
f(Xs + x) ds <∞

)
.

The hitting time T{−x} is P0-almost surely positive for x not equal zero, and therefore
Lemma 4.2.1 gives existence of an ε > 0 such that∫

Bε

f(y + x) dy <∞.
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Therefore Gx := Bε + x is an open neighbourhood Gx of x such that∫
Gx

f(y) dy <∞. (4.12)

Since this holds for all x ∈ R \ {0} we combine this with the G0 already mentioned
to get an open cover {Gx, x ∈ R} of R. Now for any compact K ⊆ R, K is covered
by {Gx, x ∈ R}, and thus is covered by a finite sub-cover, and hence via (4.11) and
(4.12), ∫

K
f(y) dy <∞.

So (ii) holds.

4.3 Stable Lévy Processes

The following theorem is a version of Theorem 4.1.3 in the case that X is a transient
stable process on R and f is ‘well-behaved’ close to the issuing point. Its proof relies on
a remarkably precise analytic description of Px-thin sets, which has its roots in potential
theory, and for which we have provided a probabilistic proof in Chapter 6.

Theorem 4.3.1. Let X be a symmetric stable process on R with index α ∈ (0, 1), and
f ∈ B(R)+. Suppose that f has an isolated monotone maximum at 0, in the sense that
there exists δ > 0 such that f is monotone increasing on (−δ, 0), monotone decreasing
on (0, δ). Then the following are equivalent.

(i) There exists a random variable τ such that

P0(0 < τ <∞) = 1 and P0

(∫ τ

0
f(Xs) ds <∞

)
= 1;

(ii) There exists ε ∈ (0, δ) such that

∫ ε

−ε
f(y)|y|α−1 dy <∞.

The maximum of f on Bδ is allowed to be +∞, so that f has an isolated pole at 0. In
fact the result is trivial when this isn’t the case.

Theorem 4.3.1 above can be directly extended to ‘almost monotone’ functions g ∈ B(R)+,
in the sense that there exists a C < ∞ such that for all |x| < δ, |g(x) − f(x)| ≤ C for
some f ∈ B(R)+ which has an isolated monotone pole at 0, by virtue of the fact that in
this case ∣∣∣∣∫ ε

−ε
g(y)|y|α−1 dy −

∫ ε

−ε
f(y)|y|α−1 dy

∣∣∣∣ ≤ 2Cεα

α

and ∣∣∣∣∫ τ

0
g(Xs) ds−

∫ τ

0
f(Xs) dy

∣∣∣∣ ≤ Cτ.
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Proof of Theorem 4.3.1

Recall from (2.17) that U(0,dy) = |y|α−1 dy, up to a constant factor which we freely
ignore. The implication (ii)⇒ (i) follows from Theorem 4.1.3 and the fact that R\(−ε, ε)
is P0-thin. Now suppose (i). Again from Theorem 4.1.3 there exists a P0-thin set B
such that ∫

R\B
f(y)U(0, dy) =

∫
R\B

f(y)|y|α−1 dy <∞.

Take ε ∈ (0, δ) and let the map g be defined by g(y) = f(y)|y|α−11(−ε,ε)(y). It is
immediately seen that g shares the same monotonicity property as f . The intuition
to have in mind is that the monotone nature of g will allow its behaviour on B to be
determined by its behaviour on R \B.

According to Corollary 6.3.2 (Wiener’s Criterion for thin sets), B satisfies

∞∑
k=1

2k(1−α)C(B ∩ Sk) <∞ (4.13)

where C is capacity and Sk = {x ∈ R : 2−(k+1) < |x| ≤ 2−k} defines a sequence of
decreasing shells of Lebesgue measure 2(2−k − 2−(k+1)) = 2−k. We saw in Lemma 2.6.9
that the isoperimetric inequality states that the α-capacity of B ∩Sk is greater or equal
that of the ball of the same volume, which following (2.19) yields

C(B ∩ Sk) ≥ C(B 1
2
λ(B∩Sk)) = 2α−1λ(B ∩ Sk)1−αC0,

where C0 = C(B1)2α−1, λ is the Lebesgue measure on R, and Br the ball about 0 of
radius r. Therefore (4.13) implies

∞∑
k=1

2k(1−α)C0λ(B ∩ Sk)1−α = C0

∞∑
k=1

(2kλ(B ∩ Sk))1−α <∞.

Since C0 <∞ and λ(Sk) = 2−k this implies

∞∑
k=1

(λ(B ∩ Sk)
λ(Sk)

)1−α
<∞.

From this convergent sum it follows that for any fixed c ∈ (0, 1) there exists N ∈ N such
that for all n ≥ N , λ(B ∩ Sn) ≤ cλ(Sn) = c2−n, and therefore that

λ(Bc ∩ Sn) ≥ (1− c)λ(Sn) = (1− c)2−n. (4.14)

We will use this relationship to bound the integral of g over B.

We shall now consider the two halves of Sn separately, using notation S+
n = Sn ∩ (0,∞),

S−n = Sn ∩ (−∞, 0). Taking advantage of the monotonicity of g, with notation ḡn =
supS+

n
g and g

n
= infS+

n
g, we see for n ≥ N that∫

B∩S+
n

g(x) dx ≤ ḡnλ(B ∩ S+
n )
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≤ ḡncλ(S+
n )

= ḡn2cλ(S+
n+1)

Using (4.14) and the fact that ḡn ≤ gn+1
,

≤ 2c

1− c
g
n+1

λ(Bc ∩ S+
n+1) ≤ 2c

1− c

∫
Bc∩S+

n+1

g(x) dx.

Exactly the same procedure works for S−n , and adding the two halves gives∫
B∩Sn

g(x) dx ≤ 2c

1− c

∫
Bc∩Sn+1

g(x) dx.

Summing over n ≥ N tells us that∫
B∩B

2−N

g(x) dx ≤ 2c

1− c

∫
Bc
g(x) dx <∞.

Let ε̃ = ε ∧ 2−N . Summing the integrals over B and R \B then yields∫ ε̃

−ε̃
f(x)|y|α−1 dx =

∫ ε̃

−ε̃
g(x) dx <∞.
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5 Stable SDEs

The (driftless) stable SDE equation with dispersion σ ∈ B(R)+ and issuing point z ∈ R
is defined to be the equation

dZt = σ(Zt−) dXt, Z0 = z. (5.1)

This equation represents the following concrete mathematical object. Let X be a stable
process on state space R and probability space P = (Ω,F ,P), and Z an R-valued
stochastic process on the same probability space satisfying P(Z0 = z) = 1 for some
z ∈ R. For B ⊆ R the collection (X,Z,P) is called a weak solution to (5.1) on B
if

Zt − z =

∫ t

0
σ(Zs−) dXs for all t < TR\B P-a.s. (5.2)

where TR\B = inf{s > 0 : Zs ∈ B}. If B = R then (X,Z,P) is called a global weak
solution (or simply a weak solution) to (5.1), and if B ( R then (X,Z,P) is called a
local weak solution to (5.1). The process X is called the driving process, and Z is called
the solution process.

If σ(z) = 0 then it is immediately seen that the almost surely constant process Zt = z for
all t ≥ 0 induces a weak solution (X,Z,P) to (5.1). This solution, if it exists, is called
the trivial solution to (5.1), and any other weak solution is called non-trivial. This
chapter is concerned with deriving conditions on σ regarding existence of non-trivial
weak solutions to (5.1).

In Theorem 4.0.1 a zero-one law on finiteness of path integrals of the Brownian motion
was given, proven by Engelbert and Schmidt [15]. In the same paper the authors made
use of a well known time-change representation of Brownian SDEs - see for example
Theorems 3.4.2 and 3.4.6 of Karatzas and Shreve [28] - to prove the following.

Theorem 5.0.1 (Engelbert and Schmidt [15] Theorem 4). Let σ ∈ B(R)+. The follow-
ing are equivalent.

(i) For every z ∈ R there exists a standard Brownian motion W and a solution process
Z, both on state space R and probability space P, such that (W,Z,P) is a non-
trivial weak solution to

dZt = σ(Zt−) dWt, Z0 = z.
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(ii)

∫
K
σ(y)−2 dy <∞ for all compact K ⊆ R.

As before, their result was extended by Zanzotto [44] to stable processes with index
α ∈ (1, 2]. But unlike before, proving the time-change representation for stable SDEs is
significantly harder than for Brownian SDEs, because it is no longer possible to argue
using quadratic variation. Despite this difficulty the resultant theorem is almost identical
in form to that for the Brownian motion.

Theorem 5.0.2 (Zanzotto [44] Theorem 2.32). Let σ ∈ B(R)+. The following are
equivalent.

(i) For every z ∈ R there exists a stable process of index α ∈ (1, 2] and a solution
process Z, both on state space R and probability space P, such that (X,Z,P) is
a non-trivial weak solution to

dZt = σ(Zt−) dXt, Z0 = z.

(ii)

∫
K
σ(y)−α dy <∞ for all compact K ⊆ R.

Zanzotto’s success in extending Theorem 5.0.1 might suggest that one could hope for
a similar result for stable processes on R with index α ∈ (0, 1). The following example
demonstrates that, on the contrary, any analagous theorem for these processes must
necessarily have a different integral test.

Example 5.0.3. Let σ(x) = |x|β and fix α ∈ (1, 2]. We have already seen that because
σ(0) = 0 the constant process Z ≡ 0 induces the trivial weak solution (X,Z,P) to

dZt = σ(Zt−) dXt, Z0 = 0, (5.3)

where X is a stable process on R of index α. The function σ is locally integrable every-
where away from 0, and so it also follows from Theorem 5.0.2 that a non-trivial solution
(X ′, Z ′,P ′) to (5.3) exists if and only if there exists some ε > 0 such that∫ ε

−ε
σ(y)−α dy =

∫ ε

−ε
|y|−αβ dy <∞,

which holds if and only if −αβ > −1, that is, β < 1/α. Thus if β < 1/α two weak
solutions to (5.3) exist, one trivial and one not.

But this cannot extend to α ∈ (0, 1). In that case if we were to take 1 ≤ β < 1/α then σ
would be Lipschitz, and thus there is at most one unique weak solution to (5.3).1 That
is, the trivial and non-trivial solutions cannot both exist. The integral condition must
therefore be different when α ∈ (0, 1).

1See Theorem 6.2.3 of Applebaum [1] to see that Lipschitz σ implies that solutions are pathwise unique.
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The condition that non-trivial weak solutions exist for all issuing points z ∈ R is quite
strong. There are two approaches to generalising this. The first is to consider the
question of existence without distinguishing between trivial and non-trivial, and the
second is to consider existence of weak solutions on a smaller set of z. Both cases were
considered by Zanzotto [46] in 2002, but here we present only his result for the first.
Let us introduce the following notation, for σ ∈ B(R)+, and X a stable Lévy process on
R.

N(σ) := {x ∈ R : σ(x) = 0},

O(σ, α) :=
{
x ∈ R : Px

(∫ τ

0
σ(Xs)

−α ds =∞
)

= 1

for all Px-a.s. positive random times τ
}
.

It follows immediately from this definition that O(σ, α) contains its regular points, and
so is finely closed. For X a stable process of index α ∈ (1, 2], it follows from Theorem
4.2.1 that

O(σ, α) =
{
x ∈ R :

∫ x+

x−
σ(y)−α dy =∞

}
,

and for X a symmetric stable process of index α < 1, it follows from Theorem 4.1.3 and
(2.17) that

O(σ, α) =
{
x ∈ R :

∫
R\B

σ(y)−α|y − x|α−1 dy =∞ for all Px-thin B
}
.

With this notation established we can present the most general result of Zanzotto.

Theorem 5.0.4 (Zanzotto [46] Theorems 2.2 and 2.6). Let σ ∈ B(R)+, and fix α ∈ (1, 2].
The following are equivalent:

(i) For every z ∈ R there exists a stable process X of index α and a solution process
Z, both on state space R and probability space P, such that (X,Z,P) is a weak
solution to

dZt = σ(Zt−) dXt, Z0 = z.

(ii) O(σ, α) ⊆ N(σ).

Furthermore, for every z ∈ R, (X,Z,P) is the unique weak solution if and only if
O(σ, α) = N(σ).

5.1 Kallenberg-Zanzotto Time-Change Representation

The bridge between the path integral zero-one laws of Engelbert and Schmidt and Zan-
zotto which were given in Chapter 4 and the SDE existence theorems above is a power-
ful theorem relating weak solutions of driftless stable SDEs to time-changed versions of
the driving stable process. This bridge was explicitly and delicately built by Zanzotto

69



[44, 45, 46] and in part by Kallenberg [27] by considering the jumps of X as a random
Poisson measure on [0,∞)×R, and making use of the precise form of the Lévy measure
π of a stable process.

Although Zanzotto proved his time-change representation for all stable processes on
R, he only proved an Engelbert-Schmidt-type result for α ∈ (1, 2]. In this section
we shall present a proof of Zanzotto’s time-change representation, reformulated and
slightly expanded to deal with local solutions, which better suits our needs. Besides the
reformulation this is worth doing because Zanzotto’s original proof appears in pieces
across three papers [44, 45, 46], and builds upon some work which can be hard to
access.

This first lemma is a more general version of Zanzotto [46] Lemma 2.3. It is more
involved than the original because of the complexity of finely open sets for general Lévy
processes, compared to the relatively simple case of recurrent stable processes. The
result bears some similarity to those of §10.3 and §10.4 of Helms [23].

Lemma 5.1.1. Let X be a Lévy process on Rd satisfying (ACP) and (H), and let
f ∈ B(R)+. Define the path integrals and inverses

It =

∫ t

0
f(Xs) ds, ϕt = inf

{
s > 0 :

∫ s

0
f(Xu) du > t

}
, t ∈ [0,∞).

Then TO = ϕ∞ Pz-almost surely for all z ∈ R, where

O =
{
x ∈ R : Px

(∫ τ

0
f(Xs) ds =∞

)
= 1 for all Px-a.s. positive random times τ

}
.

Proof. Fix a q > 0 and let Xq be the killed process as we saw in (4.9), so that∫ ∞
0

f(Xq
s ) ds =

∫ T q

0
f(Xs) ds almost surely,

where τq is an independent exponentially distributed time of mean 1/q. Define the sets

Mc :=
{
x ∈ R : Px

(∫ ∞
0

f(Xq
s ) ds ≤ 1

c

)
> c
}
, c > 0,

Bc := R \Mc, c > 0.

The sets Mc are super-finite for (Xq, f), and increasing as c ↓ 0. We shall also be
interested in the set

B =
{
x ∈ R : Px

(∫ ∞
0

f(Xq
s ) ds <∞

)
= 0
}

=
⋂
c>0

Bc = lim
c↓0

Bc

It is clearly true that O ∈ B. But we can also note that if x ∈ B then∫ t

0
f(Xs) ds =∞ Px-almost surely for all t ∈ (0,∞),
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since τq is independent and has support (0,∞). Therefore x ∈ O, and so it follows that
the two sets are equal. We saw in Lemma 3.2.3 that for any choice of c, it holds that for
all y ∈ R ∫ t

0
f(Xq

s )1Mc(X
q
s ) ds <∞ for all t ≥ 0 Py-almost surely. (5.4)

This, in combination with the fact that∫ t

0
f(Xq

s )1Mc(Xs) ds =

∫ t

0
f(Xq

s )1Mc(X
q
s ) ds

almost surely, impies that
∫ t

0 f(Xq
s ) ds < ∞ Py-almost surely for all t ≤ TBc , where

TBc = TR\Mc
= inf{s > 0 : Xs ∈ Bc} is the first exit time of Mc by the unkilled process

X. Since the sets Bc are decreasing, the times TBc are almost surely increasing. In
particular, since (5.4) holds for arbitrary c > 0, it follows that for any y ∈ R,∫ t

0
f(Xq

s ) ds <∞ Py-almost surely for all t < lim
c↓0

TBc .

Again since τq is independent and has support (0,∞), this implies that∫ t

0
f(Xs) ds <∞ Py-almost surely for all t < lim

c↓0
TBc .

Therefore it follows that ϕ∞ ≥ limc↓0 TBc . We shall now show that

T := lim
c↓0

TBc ≥ TB almost surely. (5.5)

Recall that for a Borel set A and any q > 0 the function Φq
A(x) = Ey[e−qTA ;TA <∞] =

Ey[e−qTA ] is q-excessive. Since our process X satisfies condition (H) and Φq
A is bounded,

the discussion in Lemma 2.6.8 tells us that Φq
A is regular, and thus in particular that

Φq
A(XTAc

)→ Φq
A(XT ) almost surely on {T <∞} as c ↓ 0.

If we fix A = Ac0 for some c0 > 0 then Φq
A(XTAc

) equals one for all c ≤ c0, since the
sets Ac are decreasing and contain their regular points by Lemma 3.2.5 so that XTAc

is
contained in Ac ⊆ Ac0 on the event {T < ∞} for any y ∈ R. Thus the limit Φq

A(XT )
is equal one on {T < ∞}, that is, PXT (w)(TAc0 = 0) = 1 for Py-almost every w such
that T (w) < ∞. Since Ac0 contains its regular points, this implies that XT ∈ Ac0 on
{T <∞}. Then because our choice of c0 > 0 was arbitrary, it follows that

XT ∈ A =
⋂
c>0

Ac almost surely on {T <∞}.

This implies (5.5) on {T <∞}. On the event {T =∞}, (5.5) is trivial, and so it holds
almost surely, and thus ϕ∞ ≥ TA = TO almost surely.
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The inequality ϕ∞ ≤ TO comes from the fact that for any u > 0, any y ∈ R,

Py(ϕ∞ ≤ TO + u ;TO <∞) = Py
(∫ TO+u

0
f(Xs) ds =∞ ;TO <∞

)
= Ey

[
PXTO

(∫ u

0
f(Xs) ds =∞

)
;TO <∞

]
= Py(TO <∞),

using that O = A = ∩c>0Ac and that all Ac (and thus the intersection) are finely closed
by Lemma 3.2.5 so that XTO ∈ O. This implies that Py(ϕ∞ ≤ TO + u) = Py(ϕ∞ ≤
TO + u < ∞) + Py(TO = ∞) = 1. Therefore ϕ∞ ≤ TO + u almost surely for all u > 0,
and so ϕ∞ ≤ TO almost surely.

Corollary 5.1.2. Let X be a symmetric stable Lévy process on R of index α and

f(x) = σ(x)−α

for σ ∈ B(R)+. Then TO(σ,α) = ϕ∞ = ϕ̄ Pz-almost surely for any z ∈ R.

Proof. Symmetric stable processes satisfy (ACP) and (H), and Lemma 5.1.1 applies. It
remains to note that since σ−α is non-zero, the path integral over f is almost surely
continuous and therefore ϕ∞ = ϕ̄ almost surely.

Here is the first part of the Kallenberg-Zanzotto time-change. It is inspired by three of
Zanzotto’s results: [44] Lemma 2.26, [45] Theorem 2, and [46] Theorem 2.2.

Theorem 5.1.3 (Zanzotto’s time-change). Let X be a symmetric stable process on
probability space (Ω,F ,Pz) of index α ∈ (0, 2], and let σ ∈ B(R)+. Define the path
integrals

It =

∫ t

0
σ(Xs)

−α ds, ϕt = inf
{
s > 0 :

∫ s

0
σ(Xu)−α du > t

}
, t ≥ 0,

and let Xϕ be the time-changed process from (3.4). Then there exists an isotropic stable
process Y of index α on P = (Ω,F ,P) an extension of (Ω,F ,Pz) such that

Xϕt − z =

∫ t

0
σ(Xϕs−) dYs for t ∈ [0, Ī) P-a.s. (5.6)

Corollary 5.1.4. (Y,Xϕ,P) is a local weak solution to (5.1) on R \ O(σ, α). If z ∈
R \ O(σ, α) then (Y,Xϕ,P) is non-trivial.

Proof. Since ϕ is strictly increasing and ϕ(Ī) = ϕ∞ it follows from Corollary 5.1.2 that
Ī = inf{s > 0 : Xϕs ∈ O(σ, α)}, and thus from Theorem 5.1.3 that (Y,Xϕ,P) is a local
weak solution on R \ O(σ, α) to (5.1).
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Suppose z ∈ R \ O(σ, α). Since O(σ, α) is finely closed, we have that Ī > 0 Pz-a.s. It
follows that there is some t > 0 for which It <∞, and thus ϕ is not constant zero, and
therefore that (Y,Xϕ,P) is non-trivial.

Corollary 5.1.5. If either

(A1) σ(Xϕ∞) = 0 Pz-almost surely, or

(A2) Ī =∞ Pz-almost surely,

then (5.6) reads

Xϕt − z =

∫ t

0
σ(Xϕs−) dYs for t ∈ [0,∞) P-almost surely,

and (Y,Xϕ,P) is a global weak solution to (5.1).

Proof. Follows directly from Theorem 5.1.3.

Corollary 5.1.6. If

(A3) O(σ, α) ⊆ N(σ)

then (A1) holds for all z ∈ R, and thus there exists a weak solution (Y,Xϕ,P) to (5.1)
for all z ∈ R.

Proof. To see that (A3) implies (A1) for all z ∈ R, recall that Corollary 5.1.2, alongside
the fact that O(σ, α) is finely closed and thus contains its regular points, tells us that
Xϕ∞ ∈ O(σ, α) Pz-almost surely for all z ∈ R. Then Corollary 5.1.5 yields the result.

Corollary 5.1.7. If

(A4) O(σ, α) = ∅

then there exists a non-trivial weak solution (Y,Xϕ,P) to (5.1) for all z ∈ R.

Proof. Since R\O(σ, α) = R, Corollary 5.1.4 yields that a non-trivial local weak solution
to (5.1) exists for all z ∈ R, and since O(σ, α) is empty, (A2) holds and the solutions are
global.

Now we can present the second half of the Kallenberg-Zanzotto time-change. This
theorem was partially drawn from [27] Theorem 4.1.

Theorem 5.1.8 (Kallenberg’s time-change). Let Z be a stochastic process on probability
space P = (Ω,F ,P), and suppose there exists an isotropic stable process X of index
α ∈ (0, 2] on P such that (X,Z,P) is a local weak solution on a set B ∈ B(R) to

dZt = σ(Zt−) dXt, Z0 = z.
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Then there exists an isotropic stable process Y of index α on P = (Ω,F ,P) an extension
of (Ω,F ,P) such that

Yt = Zϕ̃t for all t ∈ [0, ĨTR\B ) P-almost surely, (5.7)

where

Ĩt =

∫ t

0
σ(Zs−)α ds, ϕ̃t = inf{s > 0 : Ĩs > t}, t ∈ [0,∞).

and TR\B = inf{t > 0 : Zt /∈ B}.

Corollary 5.1.9. If there exists a non-trivial local weak solution on R \A to (5.1) with
issuing point z, where A is Pz-thin, then z ∈ R \ O(σ, α). This in particular holds when
A is the empty set.

This corollary is closely related to Proposition 2.1 of Zanzotto [46].

Proof. Let ϕ̃t = inf{s > 0 : Ĩs > t}, t ∈ [0,∞). Since A is Pz-thin, the hitting time
of A by Z is Pz-almost surely positive. Since Z is not constant it follows from (5.2)
that σ(Zs) > 0 for some Lebesgue-positive set of times s < TA, and thus Ĩ is also not
constant zero, and ϕ̃ does not jump directly to ∞.

Now

ϕ̃t ≥
∫ ϕ̃t

0
1(σ(Zs)>0) ds =

∫ ϕ̃t

0
σ(Zu)−ασ(Zu)α du

=

∫ t

0
σ(Zϕ̃s)

−α ds

=

∫ t

0
σ(Ys)

−α ds =: It.

As discussed above there is at least some t ∈ (0, TA) such that It ≤ ϕ̃t <∞. It therefore
holds by definition of O(σ, α) that the issuing point z of Y under P is an element of
R \ O(σ, α).

Corollary 5.1.10. If there exists a weak solution to (5.1) for all z ∈ R then

(A3) O(σ, α) ⊆ N(σ).

Proof. Corollary 5.1.9 tells us that if z ∈ O(σ, α) then there is no non-trivial solution to
(5.1) with issuing point z. If we then assume that there exists a weak solution to (5.1)
for all issuing points, it follows that the solution for z ∈ O(σ, α) is trivial, and therefore
z ∈ N(σ).

Corollary 5.1.11. If there exists a non-trivial weak solution to (5.1) for all z ∈ R then

(A4) O(σ, α) = ∅.
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Proof. Once again Corollary 5.1.9 tells us that if z ∈ O(σ, α) then there is no non-trivial
solution to (5.1) with issuing point z. If we then assume that there exists a non-trivial
weak solution to (5.1) for all issuing points, it follows that O(σ, α) is empty.

5.2 Proofs of the Time-Change Representations

Proof of Theorem 5.1.3

The essence of the following proof is to compress (or stretch) X in time and space in
a precise way to produce a new process, which due to the scaling property (2.5) has
the same law as X, although possibly on a different probability space. The method of
compression can result in some of the path of X being ‘lost’, and the transformed process
then needs to be augmented by an independent copy of X, and it is this which leads to
the extended probability space in the theorem statement.

The presentation of random measures here is mostly taken from Çinlar [9] and partially
from Klenke [29], but the results we use are quite elementary and not specific to that
work. In his original proof Zanzotto relied heavily on results from Jacod [25], including
the time-change of compensator measures from Theorem 10.27 and the results of §14.4,
in particular Theorem 14.56, but we prefer different references here. It’s interesting to
note that in §14.5 Jacod developed some foundations of the martingale problem, which
is an alternative and far more common approach to studying weak solutions of stable
SDEs.

Let X be a stable process on probability space (Ω,F ,P) of index α ∈ (0, 2], and let
σ ∈ B(R)+. Let H = [0,∞] × R and H = B([0,∞] × R). The jump measure of X is a
Poisson random measure on (H,H), which we denote by µ, and which satisfies

µ(ω,A) =
∑
Dω

1A(t,Xt(ω)−Xt−(ω)), Dω := {t ∈ [0,∞) : Xt(ω)−Xt−(ω) > 0}

for A ∈ H. This is exactly the Poisson random measure from the Lévy-Itô decomposition
of Theorem 2.2.4. The first step of this proof is defining a new random measure on (H,H)
by shifting each of the points dropped by µ to a random new position, to create a new
jump measure - which we will denote ϕµ - corresponding to the jumps of Xϕ. It is
instructive to think of a simple example: if ϕt = 2t then the transformation to obtain
the jumps of Xϕ would map the jump (t, x) of size x at time t to (t/2, x). The first
thought might then be to define the transformation from µ to ϕµ by

(t, x) 7→ (It, x).

But as we shall see, this does part of the job, but can cause some problems. Recall that
since σ does not take the value infinity, I is strictly increasing, and thus ϕ is continuous
everywhere and ϕ̄ = ϕ∞. The maximum value of I is attained at Ī = I(ϕ̄). For any
t > ϕ̄, I(t) = ∞ and any jump (t, x) is sent to the point (∞, x) ∈ H by the map
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above. These jumps are essentially ‘forgotten’ by the process Xϕ. Thus we define the
mapping

ψ1 : (H,H)→ (H,H)

: (t, x) 7→

{
(It, x) if t < ϕ̄

(0, 0) if t ≥ ϕ̄.

The jump measure of Xϕ is then given by ϕµ = µ ◦ ψ−1
1 . We already know that

Is <∞ for every s < ϕ̄. From the definition of I as a path integral it must follow that
σ(Xt) > 0 for Lebesgue-almost every t < ϕ̄. This, combined with the fact that ϕ is
strictly increasing before reaching its maximum, implies that σ(Xϕt) > 0 for Lebesgue-
almost all t ≥ 0.

Any Poisson random measure µ on (H,H) with mean µp satisfies

P(µ(A) = 0) = e−µ
p(A), A ∈ H,

see for example Çinlar [9] Remark VI.2.4 or Klenke [29] Theorem 24.13. Lévy-Itô (Theo-
rem 2.2.4) tells us that the mean µp of the jump measure of a Lévy process has the form
µp = Leb × π, and therefore that B × R has zero mass almost surely under µ for any
Lebesgue-zero Borel subset B of [0,∞). In particular, there is almost surely no jump
(t, x) dropped by µ for which the jump time t satisfies σ(Xϕt) = 0.

We now want to pull a similar trick on ϕµ as we just did on µ, by transforming all the
points it drops via the mapping

(t, x) 7→ (t, σ(Xϕt)
−1x).

Taking the reciprocal of σ(Xϕt) isn’t problematic due to the discussion directly above.
What we therefore define is the random measure ρ on (H,H) with points given by
ϕµ ◦ ψ−1

2 , where

ψ2 : (H,H)→ (H,H)

: (t, x) 7→ (t, σ(Xϕt)
−1x).

The relationship between ρ and ϕµ will be important later on. But it is easier now to
note that the above mapping of the points is equivalent to directly setting ρ = µ ◦ ψ−1

3 ,
where

ψ3 = ψ2 ◦ ψ1 : (H,H)→ (H,H)

: (t, x) 7→

{
(It, σ(Xt)

−1x) if t < ϕ̄, that is, if It < Ī;

(0, 0) otherwise,

where we have used the fact that σ does not take value +∞, which implies that I is
strictly increasing everywhere and thus that ϕ is continuous everywhere, to see that
σ(Xϕ(It)) = σ(Xt). The mapping ψ3 is again random, and for A ∈ H has law

P(ψ3(t, x) ∈ A) =

∫
A
P
(
(It, σ(Xt)

−1x) ∈ (ds, dy); t < ϕ̄
)

+ 1A(0)P(t ≥ ϕ̄).
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This defines the random measure ρ = µ ◦ ψ−1
3 = (µ ◦ ψ−1

1 ) ◦ ψ−1
2 = ϕµ ◦ ψ−1

2 on (H,H).
The points it drops have been transformed in time and then afterwards in space, but all
in ways determined by the jumps of X, and therefore an application of Theorem VI.3.2
of Çinlar [9] gives that ρ is a Poisson random measure on (H,H) with mean

ρp(A) =

∫
H
P((It, σ(Xt)

−1x) ∈ A; t < ϕ̄)µp(dt,dx)

+ 1A(0)P(t ≥ ϕ̄)µp({(0, 0)}).

The mean µp of µ is given by Leb×π, and π has no mass on {0}, so the term on the
right-hand-side vanishes, leaving

= E
[ ∫

[0,ϕ̄)×R
1A(It, σ(Xt)

−1x) dt π(dx)
]

Recalling the form of π from (2.6), we substitute z = σ(Xt)
−1x, which yields π(dx) =

σ(Xt)
−απ(dz), to get

= E
[ ∫

[0,ϕ̄)×R
1A(It, z)σ(Xt)

−α dt π(dz)
]
.

Substituting u = It, we get

= E
[ ∫

[0,I(ϕ̄))×R
1A(u, z) duπ(dz)

]
.

Recalling (3.3),

=

∫
A
P(Ī > u) duπ(dz).

Although ρ is a Poisson random measure, it is not the jump measure of a Lévy process
because it is inhomogeneous in time - recall from the Lévy-Itô decomposition of Theorem
2.2.4 that the jump measure of a Lévy process always has the form Leb×π. Although
if I were continuous, which would hold for example if σ were strictly positive, then Ī
would be almost surely infinite and ρ would be homogeneous.

Now let ν be an independent Poisson random measure on (H,H) and a distinct proba-
bility space (Ω′,F ′,P′) with the same compensator Leb×π as µ.

We want to define the action of an ‘expanded’ version ρ̃ of ρ by choosing jumps from
either ρ or ν depending on the landscape dictated by 1{s < Ī}. We won’t define ρ̃ via
a transformation of points like we have seen before, but rather by cherry-picking points
in different parts of H in the following way.

Here is a rough description of the procedure. First ρ̃ will draw from ρ, which drops
jumps like Leb×π on parts of the state space, but none on parts where t ≥ Ī. When
t ≥ Ī, ρ̃ will draw from ν. The action of ν is only relevant insofar as it “rounds out” the
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compensator of ρ in a convenient way. The jumps dropped by ν have no effect on the
time-changed process Xϕ, which after all is our ultimate object of interest.

So, formally, for each fixed ω ∈ Ω, define the random measure ρ̃ on (H,H), (Ω,F ,P) :=
(Ω× Ω′,F × F ′,P× P′) by

ρ̃(A,ω, ω′) = ρ(A,ω) + ν̃(A,ω, ω′), ν̃(A,ω, ω′) :=

∫
A

1{s ≥ Ī}(ω) ν(ds, dx, ω′).

(5.8)

Çinlar [9] Theorem VI.3.2 yields that ν̃ is a Poisson random measure on (H,H), (Ω,F ,P)
with mean

(ν̃)p(ds, dx) = P(s ≥ Ī) ds π(dx).

The two measures ρ and ν̃ have almost surely disjoint supports on H, and are therefore
not independent of one another. But they are conditionally independent given Ī, and
hence

P(ρ̃(A) = 0) = E[P(ρ(A) = 0; ν̃(A) = 0|Ī)]

= E[P(ρ(A1) = 0; ν̃(A2) = 0|Ī)]

where A1 and A2 are A intersected with 1{s < Ī} and 1{s ≥ Ī} respectively.

= E[P(ρ(A1) = 0|Ī); ν̃(A2) = 0]

= P(ρ(A) = 0)P′(ν̃(A) = 0)

= e−ρ
p(A)e−ν̃

p(A).

It follows from Klenke [29] Theorem 24.13 ρ̃ is a Poisson random measure on (H,H),
(Ω,F ,P) with compensator

ρp + ν̃p = Leb× π.

Thus from Lévy-Itô it follows that ρ̃ is the jump measure of a stable process of index
α on (Ω,F ,P), which inherits isotropy from X via the form of π. Let us denote this
process by Y .

Let us regain our bearings. The process Y has jumps which are points in H dropped by
the random measure ρ̃. Some of those jumps are the jumps (t, x) of Xϕ which have been
multiplied by the value of σ(Xϕt), and the rest are drawn from an independent Poisson
random measure ν. We can do some reverse engineering: taking a jump (t, x) dropped
by ρ̃ and putting it through the mapping

(t, x) 7→ (t, σ(Xϕt)x)

returns us to the original jumps of Xϕt , as long as ϕt < ϕ̄, that is, t < Ī. If it were true
that σ(Xϕ̄) = 0, then jumps at times t ≥ Ī (which corresponds to ϕt = ϕ̄) would be
automatically ‘forgotten’ by this map, because their size would be mapped to zero. But
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if σ(Xϕ̄) > 0 these jumps need to be forcibly forgotten, and thus the mapping we use
is

ψ4 : (H,H)→ (H,H)

: (t, x) 7→

{
(t, σ(Xϕt)x) if t < Ī;

(0, 0) if t ≥ Ī .

Because σ(Xs) is positive for almost every s < ϕ̄, it holds that ψ−1
2 ◦ ψ−1

4 (t, x) = (t, x)
for Lebesgue-almost every t < Ī and every x ∈ R, and therefore that

ρ̃ ◦ ψ−1
4 = ϕµ ◦ ψ−1

2 ◦ ψ
−1
4 = ϕµ P-a.s. on [0, Ī)× R.

Therefore the pure jump processes that these jump measures describe are also almost
surely equal up to time Ī, when started from the same issuing point. The pure jump
process on (Ω,F ,P) started at 0 with jump measure ρ̃ ◦ ψ−1

4 is∫ t

0
σ(Xϕs)1(s<Ī) dYs, t ≥ 0.

The process on (Ω,F ,P) started at 0 with jump measure ϕµ isXϕt−Xϕ0 , t ≥ 0, and these
two processes are almost surely equal on [0, Ī). Thus (5.6) has been proven.

Proof of Theorem 5.1.8

As in the proof above let H = [0,∞]× R and H = B([0,∞]× R), and let µ denote the
jump measure of X. As shorthand write T = TR\B = inf{t > 0 : Zt /∈ B}, and let

Ĩt =

∫ t

0
σ(Zs−)α ds, ϕ̃t = inf

{
s > 0 :

∫ s

0
σ(Zu−)α du > t

}
, t ≥ 0.

Since Z satisfies the SDE equation (5.1), the jumps of Z are the jumps of X mapped
via

ψ1 : (t, x) 7→ (t, σ(Zt−)x).

Now take the jumps of Z and map them via

: (t, x) 7→

{
(Ĩt, x) t < T ;

(0, 0) t ≥ T.

Equivalently, take the points of µ and map them via

ψ2 : (t, x) 7→ (Ĩt, σ(Zt−)x).

We give the name ρ to the random measure on state space (H,H) and probability space
(Ω,F ,P) which drops the points of µ ◦ ψ−1

2 . Theorem 6.3.2 of Çinlar [9] tells us that ρ
is a Poisson random measure with mean

(ρ)p( ds, dy) =

∫
H
P(Ĩt ∈ ds, σ(Zs−)x ∈ dy)1(t<T )(µ)p(dt,dx)
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= E
[ ∫

[0,T )×R
δ{Ĩt ∈ ds, z ∈ dy}σ(Zs−)α ds π(dz)

]
= E

[ ∫
[0,ĨT )×R

δ{u ∈ ds, z ∈ dy} duπ(dz)
]

= P(s < ĨT ) ds π(dy).

Let ν be an independent Poisson random measure on (H,H) and a distinct probability
space (Ω′,F ′,P′) with compensator Leb×π. As in the previous proof we want to expand
the action of ρ by choosing jumps from either ρ or ν depending on the landscape dictated
by 1{t < ĨT }.

For each fixed ω ∈ Ω, define a random measure ρ̃ on (H,H), (Ω,F ,P) := (Ω × Ω′,F ×
F ′,P× P′) by

ρ̃(A,ω, ω′) = ρ(A,ω) + ν̃(A,ω′), ν̃(A,ω′) :=

∫
A

1{t ≥ Ĩt} ν(ds, dx, ω′). (5.9)

The same argument as in the proof of Theorem 5.1.3 yields that ρ̃ is the jump process
of an isotropic stable process Y on (Ω,F ,P) of index α. Since Ĩs < t if and only if
s < ϕ̃t,

Yt = Zϕ̃t P-almost surely, for t ∈ [0, ĨT ).

5.3 Transient Stable SDEs

With the Zanzotto-Kallenberg time-change representation of stable SDE solutions in
place, proving analogues to Theorems 5.0.2 and 5.0.4 is more or less a case of directly
translating the Theorems of Chapter 4 to the language of SDEs, with the time-change
being the interpretor.

Recall the stable SDE equation (5.1):

dZt = σ(Zt−) dXt, Z0 = z. (5.10)

For X a symmetric stable process on R of index α define as before the sets

N(σ) = {x ∈ R : σ(x) = 0}

and

O(σ, α) =
{
x ∈ R : Px

(∫ τ

0
σ(Xs)

−α ds =∞
)

= 1

for all Px-a.s. positive random times τ
}
.

In the case that α ∈ (1, 2], Theorem 4.2.1 yields that

O(σ, α) =
{
x ∈ R :

∫ x+ε

x−ε
σ(y)−α dy =∞ for all ε > 0

}
.
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In the case that α < 1, according to Theorem 4.1.3, a point z ∈ R is an element of
O(σ, α) if and only if for all Pz-thin sets B,∫

R\B
σ(y)−α|y − z|α−1 dy =∞.

If in addition σ has an isolated monotone pole at z then Theorem 4.3.1 gives that
z ∈ O(σ, α) if and only if for all ε > 0,∫ z+ε

z−ε
σ(y)−α|y − z|α−1 dy =∞.

Theorem 5.3.1.

(i) For fixed z ∈ R there exists a non-trivial local weak solution (X,Z,P) to (5.10) if
and only if z ∈ R \ O(σ, α).

(ii) A global weak solution (X,Z,P) to (5.10) exists for all z ∈ R if and only if
O(σ, α) ⊆ N(σ).

(iii) A non-trivial global weak solution (X,Z,P) to (5.10) exists for all z ∈ R if and
only if O(σ, α) = ∅.

Proof.

(i) From Corollary 5.1.4 it follows that if z ∈ R\O(σ, α) then there exists a non-trivial
local weak solution to (5.10). From Corollary 5.1.9 it follows that if there exists a
non-trivial local weak solution to (5.10) then z ∈ R \ O(σ, α).

(ii) Corollary 5.1.6 tells us that O(σ, α) ⊆ N(σ) is a sufficient condition for existence
of a global weak solution to (5.10), and Corollary 5.1.10 tells us it is necessary.

(iii) Corollary 5.1.7 yields that O(σ, α) = ∅ is a sufficient condition for existence of a
global weak solution to (5.10), and Corollary 5.1.11 tells us it is necessary.

Theorem 5.3.1(iii) is well-suited to finishing the story begun in Example 5.0.3. Let X
be a stable process on R of index α ∈ (0, 1) and let σ(x) = |x|β, so that a trivial solution
issued from 0 exists. Theorem 5.3.1(iii) yields that a non-trivial solution issued from 0
exists if O(σ, α) = ∅, which by Theorem 4.3.1 implies∫ ε

−ε
σ−α(y)|y|α−1 dy =

∫ ε

−ε
|y|−αβ+α−1 dy <∞,

which holds if and only if −αβ + α − 1 > −1, that is, β < 1. This ensures that σ is
not Lipschitz, and so there is no contradiction like the one in Example 5.0.3. What is
notable is the independance of this condition from α.
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Now we shall prove a theorem establishing equivalent conditions for existence of unique
SDE solutions. This turns out to be a reasonable setting to explore questions of explosion
and freezing in the next section.

Theorem 5.3.2. There exists a weak solution to (5.10) for all z ∈ R, each of which is
unique in law, if and only if

(A5) O(σ, α) = N(σ).

In that case the solution process Z is given by Zt = Yϕt, t ∈ [0,∞) almost surely, where
Y is a stable process on R of index α and

ϕt = inf
{
s > 0 :

∫ s

0
σ(Yu)−α du > t

}
, t ≥ 0.

Proof. First suppose that a unique weak solution to (5.10) exists for all z ∈ R, which
by Theorem 5.3.1(ii) implies that O(σ, α) ⊆ N(σ). Now suppose for contradiction that
there is a point z ∈ N(σ) ∩ (R \ O(σ, α)). Since z ∈ N(σ), the trivial solution is a
solution. Since (A3) holds, Corollary 5.1.5 tells us that (A1) holds, and thus there exists
a non-trivial weak solution with solution process

Zt = Xϕt , t ∈ [0,∞).

Then we have two weak solutions issued from z which are not equal in law, and this
contradicts uniqueness. So it follows that N(σ) ∩ (R \ O(σ, α)) is empty.

Now suppose that O(σ, α) = N(σ). By Theorem 5.3.1(ii), a weak solution to (5.10)
exists for all z ∈ R. We shall now prove the time-change representation for this solution.
The argument here is similar to that in the proof of Corollary 5.1.9. We saw in (5.7)
that

Ys = Zϕ̃s P-almost surely, for s ∈ [0, Ĩ∞), (5.11)

where Y is a stable process on R of index α and

Ĩt =

∫ t

0
σ(Zs−)α ds, ϕ̃t = inf

{
s > 0 :

∫ s

0
σ(Zu−)α du > t

}
, t ≥ 0.

Let T = TN = TO be the first hitting time of O by Y , which we saw in Corollary 5.1.2
is almost surely equal ϕ∞. Then for all t ≤ T ,

It =

∫ t

0
σ(Ys)

−α ds =

∫ t

0
σ(Zϕ̃s)

−α ds =

∫ ϕ̃t

0
σ(Zu)−ασ(Zu)α du = ϕ̃t.

For all t > T , we have by definition of O(σ, α) that It = ∞. In addition we have from
Corollary 5.1.9 that Z is constant after the first hitting of O(σ, α). Since O(σ, α) = N
this implies that Ĩt is constant after this time, and thus that ϕ̃ jumps to infinity upon
hitting O(σ, α), that is, ϕ̃t =∞ for t > T . Then it holds that

It = ϕ̃t for all t ∈ [0,∞) P-almost surely.
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It follows from (5.11) that

Zt = Yϕt P-almost surely, for t ∈ [0,∞).

If z ∈ O(σ, α) the time-change is identically 0 and the time-change solution and trivial
solution coincide, so the solution is unique. If z ∈ R \ N(σ) then the trivial solution
does not exist, so the non-trivial time-change solution is unique. Since O(σ, α) = N(σ)
we have proven uniqueness for all z ∈ R.

5.4 Behaviour of the Solution Process

Suppose that X is a symmetric stable process on R of index α, and suppose further that
condition (A5) holds, so that by Theorem 5.3.2 for every issuing point z ∈ R the unique
(in law) weak solution (X,Z,P) to the SDE equation

dZt = σ(Zt−) dXt, Z0 = z (5.12)

is the time change of some stable process, that is, there exists a symmetric stable process
Y on R of index α such that

Zt = Yϕt for t ∈ [0,∞), Z∞ = ∆, (5.13)

where

ϕt = inf
{
s > 0 :

∫ s

0
σ(Yu)−α du > t

}
, t ≥ 0.

Since σ takes values in [0,∞) we see that (3.6) holds, that is, that

t 7→ It =

∫ t

0
σ(Ys)

−α ds (5.14)

is almost surely continuous on [0,∞), which from our discussion via Volkonskii [41] in
Chapter 3 ensures that Z is a strong Markov process on R. In this setting the solution
process Z can itself have some interesting properties.

Explosion

Let ζ denote the lifetime of Z. From (5.13) it follows that ϕζ = ∞ almost surely, and
since I is continuous this implies

ζ =

∫ ∞
0

σ(Ys)
−α ds.

We say that Z explodes if ζ <∞. If

It <∞ for all t ∈ [0,∞) almost surely,2 (5.15)
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then the event {ζ <∞} is in the tail-σ-algebra of the Lévy process Y , and therefore has
probability in {0, 1}, and explosion of Z becomes a zero-one law.

We can actually be more explicit: Theorem 3.1.1 gives a necessary and sufficient con-
dition for explosion with positive probability, and Theorem 3.4.1 the same but with
probability one. Via (5.15), Theorem 4.1.2 gives a necessary and sufficient condition for
explosion to be a zero-one law, in the case that α < 1.

Further, if x 7→ σ(x)−α is bounded on compact sets then Theorem 3.5.1 tells us that
explosion is a zero-one law - although that is already clear from the fact that in that case
(5.15) holds - and also gives a necessary and sufficient condition for explosion. In fact,
if we assume the stronger condition that σ is bounded away from zero on compact sets,
then according to Theorem 3.5.1, Z explodes if and only if there exists a Pz-transient
set B (for Y ) such that ∫

R\B
σ(x)−α U(z,dx) <∞. (5.16)

If Y has index α > 1 then it is point recurrent and the only choice of B is the empty
set. In addition in this case the measure U is infinite on all sets with positive Lebesgue
measure and it follows that explosion occurs if and only if σ(x)−α is zero almost every-
where. It was an assumption of this Chapter that σ takes values in [0,∞), and in that
case it follows that explosion of Z cannot occur.

The case of Y having index α = 1 is similar, because Y is set recurrent, and so B must
be a polar set (which in this case means a set with zero Lebesgue measure), and once
again U is infinite on all sets with positive Lebesgue measure.

If Y has index α < 1 then the integral test in (5.16) can be written∫
R\B

σ(x)−α|x− z|α−1 dx <∞.

In that case it would be nice to remove B from the integral test, but the example of §6.4
shows that in general this is not possible.

Explosion of SDE solutions was also recently studied for positive continuous σ by Döring
and Kyprianou [12]. In the same paper those authors also used a theory of time-reversal
for Markov processes developed by Nagasawa [38] to consider a related problem, called
‘entrance at infinity’ of SDE solutions, in which an SDE solution, expressed as the
time-reversal of another Markov process, is well-defined and non-trivial under a law
which has it issuing from the infinity point. Time-reversal of Markov processes is closely
related to duality, and can be quite unwieldy. Getoor and Sharpe [20] demonstrate their
commitment to generality by presenting a version of Nagasawa’s time reversal for Borel
right processes in weak duality.

2We have been introduced to this condition before in (3.8), and it played an important role in the proof
of Proposition 3.2.4. It is a sufficient condition for (5.14), and it holds for example if σ is continuous
and strictly positive.
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Freezing

We say that Z is frozen if there exists a time t ∈ [0,∞) such that Zs = Zt for all s ≥ t,
which if Y is transient is equivalent to the event that limt→∞ Zt 6= ∆. It follows from
(5.13) that Z is frozen if and only if ϕ∞ < ∞, which from the definition of ϕ occurs if
and only if there exists a t ∈ [0,∞) such that∫ t

0
σ(Ys)

−α ds =∞.

Thus it is clear that freezing and explosion preclude one another.

If Y is a symmetric stable process of index α > 1 then it has local times and is point
recurrent, and Theorem 4.2.2 yields that freezing is a zero-one law, and gives a sufficient
and necessary condition for freezing to occur. If α < 1 then Y is transient, and Theorem
4.1.2 gives a sufficient and necessary condition for freezing with positive probability,
while Theorem 4.1.1 gives a sufficient and necessary condition for almost sure freezing.
Unfortunately, the case α = 1 eludes classification, at least with the methods presented
here.
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6 Avoidable Sets

At the end of §2.4 we introduced several classes of sets B ∈ E defined by path properties
of a standard Markov process X on E. Polar sets and thin sets have been studied in detail
for both general Markov processes and Lévy processes, and from both a probabilistic
and a potential theoretic perspective. A class of sets which are less studied are the
avoidable sets, and their complements the supportive sets, which played such a central
role in Chapters 3 and 4.

A well-known result on thin sets is the Wiener Criterion, first proved in 1924 by Wiener
[42, 43] and generalised by Brelot [8], see Helms [23] Theorem 10.21 for a full statement
and proof. The Wiener Criterion gives a sufficient and necessary condition for a set
B ⊆ Rd to be Px-thin for the Brownian motion on Rd. A more general version of the
Wiener Criterion, which covers all stable processes on Rd with index α < d, can be found
in Corollary 4.17 of Bliedtner and Hansen [4], and says that a set B ∈ B(Rd) is Px-thin
if and only if

∞∑
k=1

λk(α−d)C(B ∩ Sk) <∞

where λ ∈ (0, 1) is an arbitrary constant and

Sk = {y ∈ Rd : λk+1 < |y − x| ≤ λk}, k ∈ N.

are the shells of scale λ around x. Bliedtner and Hansen’s statement and proof is
potential theoretic rather than probabilistic.

More recently Mimica and Vondraček studied unavoidable unions of balls in Rd, for
censored stable processes in [36] and for isotropic Lévy processes satisfying a particular
scaling condition - which generalises the scaling of stable processes - in [37]. In Proposi-
tion A.3 and Corollary A.4 of [37] Mimica and Vondraček give a result analogous to the
Wiener Criterion for avoidable sets in Rd. A different perspective on avoidable sets for
stable processes and more general Lévy processes can be found in Döring, Kyprianou,
and Weißmann [13] and Döring, Watson, and Weißmann [14], in which the laws of stable
and Lévy processes are transformed via a form of conditioning in order to make intervals
avoidable.

The purpose of this chapter is to prove Wiener criteria for transient isotropic stable pro-
cesses on Rd which are not the Brownian motion using purely probabilistic tools.
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6.1 Potentials

Equilibrium measures

In order to prove a summation test like that of Bleidtner and Hansen it is necessary that
B has an equilibrium measure. We have seen a necessary and sufficient condition for this
in Lemma 2.6.2. The following Lemmas will be combined to show that for X a transient
isotropic stable process on Rd, any Px-avoidable set has an equilibrium measure.

Lemma 6.1.1. Let X be a standard Markov process on Rd, and B ∈ B(Rd). If B is
strongly Px-transient, that is Px(LB < ζ) = 1, then

Ex[ΦB(XTKc )] ↓ 0 as K ↑ Rd

where K ⊆ Rd are compact, and ΦB(x) = Px(TB <∞) = Px(LB > 0).

Proof. First note that

Ex[ΦB(XTKc )] = Ex[PXTKc (LB > 0)]

= Ex[Px(LB > TKc |FTKc )]
= Px(LB > TKc).

Since the TKc are monotone increasing and have limit in {ζ,∞} almost surely,1 continuity
of measure yields that Px(LB > TKc) ↓ Px(LB ≥ ζ) = 0.

Lemma 6.1.2. Let X be a Lévy process on Rd satisfying (ACT) and with support Rd.
Let B ∈ B(Rd). If Px(LB <∞) = 1 for some x ∈ Rd then Py(LB <∞) = 1 for almost
every y ∈ Rd.

Proof. If Px(LB < ∞) = 1 then PXt(LB < ∞) = 1 Px-almost surely for all t ≥ 0.
Therefore

Ex[PXt(LB =∞)] =

∫
Py(LB =∞)pt(y − x) dy = 0. (6.1)

Sato [39] Exercise 44.1 gives that the support of X is the support of uq, which here is
assumed to be Rd, and from Theorem 2.5.2 and in particular the fact that

uq(x) =

∫ ∞
0

e−qtpt(x) dt

it follows that the support of pt is also Rd. Thus (6.1) yields that Py(LB = ∞) = 0 for
Lebesgue-almost every y ∈ Rd.

Lemma 6.1.3. Let X be a Lévy process on Rd, B ∈ B(Rd), and x ∈ Rd. If B is
Px-avoidable, that is Px(DB <∞) < 1, then Px(LB <∞) = 1.

1This relies on Rd being unbounded, see the proof of Corollary 3.4.2.
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Proof. First note that Px(LB < ∞) ≥ Px(DB = ∞) > 0. Since the tail-σ-algebra of a
Lévy process is trivial, Px(LB <∞) is a zero-one law, and thus Px(LB <∞) = 1.

Theorem 6.1.4. Let X be a transient isotropic stable process on Rd, and B ∈ B(Rd) a
Px-avoidable set. Then there exists a unique measure mB on (Rd,B(Rd)) such that

UmB(x) = Px(TB <∞).

Proof. By Lemma 6.1.3 Px(LB <∞) = 1. Since X is an isotropic stable process on Rd,
X satisfies (ACT) and has support Rd, and thus by Lemma 6.1.2 Py(LB < ∞) = 1 for
almost every y ∈ Rd. Then Lemma 6.1.1 yields that

Ey[ΦB(XTKc )] ↓ 0 as K ↑ Rd for almost every y ∈ Rd.

Since X is transient and satisfies (ACT), condition (C2) of §2.6 holds, and Lemma 2.6.2
(applied with q = 0) gives the result.

When it exists, the measure mB in Theorem 6.1.4 is called the capacitary measure or
equilibrium measure of B. Justification for that name can be found for example in
Definition VI(4.5) of Blumenthal and Getoor [5] and the discussion following it.

Further Lemmas

The following lemmas establish some foundational results for avoidable sets which we
shall use in proving the Wiener criteria.

Lemma 6.1.5. Let X be a transient isotropic stable process on Rd of index α ∈ (0, 2),
let B = Br be the closed ball of radius r centred at 0. Then

Px(TB =∞) = Px(DB =∞) > 0

for all x ∈ Rd \B. That is, B is Px-avoidable for x /∈ B.

This lemma is a direct corollary of Blumenthal, Getoor, and Ray [7] Corollary 2 and
an application of the scaling property of X, but we also provide a proof. For a more
modern approach to the same problem see Kyprianou, Pardo, and Watson [32].

Proof. Theorem 1.1 of Kyprianou, Rivero, and Satitkanitkul [33] gives the law of the
‘point of closest reach’ of X, which is the random variable given by inft≥0|Xt|, as

Px
(

inf
t≥0
|Xt| ∈ dy

)
= π−d/2

Γ(d/2)2

Γ((d− α)/2)Γ(α/2)

(|x|2 − |y|2)α/2

|x− y|d|y|α
dy, 0 < |y| < |x|.

This law has support on the ball B|x|, and in particular if x ∈ Rd \B then it has mass

on the shell B|x| \B = {y : r < |y| < |x|}. It follows that for x ∈ Rd \B,

Px(TB =∞) = Px(DB =∞) = Px
(

inf
t≥0
|Xt| > r

)
> 0.
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A far broader perspective on the above lemma can be found in Mimica and Vondraček
[37], see in particular Theorem 1.1, and also for the Brownian motion in Gardiner and
Ghergu [16], but we only have need for the simpler result as given.

This next lemma establishes a useful corollary of Lemma 6.1.5: a thin set can be ‘reduced’
to an avoidable set by intersecting it with a compact set.

Lemma 6.1.6. Let X be an isotropic transient stable process on Rd of index α ∈ (0, 2),
and B be a Px-thin set. Then there exists ε > 0 such that B̃ = B ∩ {y : 0 < |y− x| ≤ ε}
is Px-avoidable.

Proof. Because B is Px-thin, B̃ is also Px-thin. Thus by Blumenthal’s zero-one law there
exists a deterministic time t > 0 such that Px(TB̃ > t) > 1/2. Fix this t. Denote by Aε
the set {y : |y−x| > ε}. The probability Px(TA2ε < t) can be made arbitrarily close to 1
by choosing ε small enough. In particular we can choose ε such that Px(TA2ε < t) > 1/2,
and thus for this choice of ε it holds that

Px(TA2ε < TB̃) ≥ Px(TA2ε < t < TB̃) > 0. (6.2)

An application of the strong Markov property at TA2ε also yields that

Px(TB̃ =∞) = Px(TB̃ =∞; TA2ε < TB̃)

= Ex[PXTA2ε
(TB̃ =∞); TA2ε < TB̃]

≥ Ex[PXTA2ε
(TRd\Aε =∞); TA2ε < TB̃].

Because the support of XTA2ε
is contained in A2ε ( Aε we can apply Lemma 6.1.5 to see

that the inner probability is almost surely positive. Therefore by (6.2) the expectation
on the right-hand-side is positive, and so Px(TB̃ = ∞) > 0. Since B̃ doesn’t contain x,

Px(TB̃ = DB̃) = 1, and thus B̃ is Px-avoidable.

The lemma below establishes that taking the union of an avoidable set and a (bounded)
shell yields another avoidable set.

Lemma 6.1.7. Let X be an isotropic transient stable process on Rd, and let B be a
Pz-avoidable set. Then for any constants γ, λ ∈ (0,∞) with γ < λ,

B ∪ {x : |x− z| ∈ (γ, λ]}

is also Pz-avoidable.

Proof. Let us write B = Bλ(z) = {x : |x− z| ≤ λ} and A = {x : |x− z| ∈ (γ, λ]}.

It follows from Corollary 2 of Blumenthal, Getoor, and Ray [7] that Py(DB = ∞) ↑ 1.
as |y| → ∞. Thus isotropy of X gives that for all ε > 0 there exists some k large enough
such that Py(DB =∞) > 1− ε for all |y| ≥ k.
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Now, we have by assumption that Pz(DB =∞) > 0. For any k > 0 let Tk = TRd\Bk(z) =
inf{s > 0 : |Xs − z| ≥ k}, the first exit time of the ball Bk(z). Then the strong Markov
property at Tk yields

0 < Pz(DB =∞) = Ez[PXTk (DB =∞); DB /∈ [0, Tk)],

and therefore that there must exist some Borel set B̃ ∈ Rd \Bk(z) such that

Pz(XTk ∈ B̃; DB /∈ [0, Tk)) > 0 (6.3)

and

Py(DB =∞) ≥ Pz(DB =∞) for all y ∈ B̃. (6.4)

Since the jump measure of X is isotropic and has support on Rd, (6.3) implies that

Pz(XTk′ ∈ B̃; DB /∈ [0, Tk′)) > 0 for all k′ ≤ k. (6.5)

Let us combine what we have seen. Since Pz(DB = ∞) > 0 (by assumption of Pz-
avoidability) we can fix a k > λ such that

Py(DB =∞) > 1− Pz(DB =∞)/2 for all |y| ≥ k. (6.6)

For this same choice of k there exists a set B̃ satisfying (6.3) and (6.4). Combining (6.6)
and (6.4) yields that Py(DB =∞; DB =∞) > c for all y ∈ B̃, where c = Pz(DB =∞)/2
is a positive constant, and thus that

Py(DB∪A =∞) = Py(DB =∞; DA =∞)

≥ Py(DB =∞; DB =∞) > c > 0 for all y ∈ B̃.
(6.7)

It lastly remains to note from (6.5) that since k > λ > γ,

Pz(XTγ ∈ B̃; DB∪A /∈ [0, Tγ)) = Pz(XTγ ∈ B̃; DB /∈ [0, Tγ)) > 0.

This, combined with (6.7), gives

Pz(DB∪A =∞) = Ez[PXTγ (DB∪A =∞); DB∪A /∈ [0, Tγ)]

≥ Ez[PXTγ (DB∪A =∞); DB∪A /∈ [0, Tγ); XTγ ∈ B̃]

> cPz(XTγ ∈ B̃; DB∪A /∈ [0, Tγ))

> 0.

That is, B ∪A is Pz-avoidable.

Corollary 6.1.8. Let X be an isotropic transient stable process on Rd of index α ∈ (0, 2),
and B be a bounded Px-thin set. Then B \ {x} is Px-avoidable.
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Proof. According to 6.1.6 there exists ε > 0 such that B̃ = B ∩ {y : 0 < |y − x| ≤ ε} is
Px-avoidable. Then for any δ < ε, it clearly holds that B ∩ {y : 0 < |y − x| ≤ δ} is also
Px-avoidable. For δ > ε, Lemma 6.1.7 tells us that

B ∩ {y : 0 < |y − x| ≤ δ} ⊆ B̃ ∪ {y : |y − x| ∈ (ε, δ]}

is Px-avoidable. Since B is bounded there exists some choice of δ > 0 such that B ∩ {y :
0 < |y − x| ≤ δ} = B \ {x}, and the proof is finished.

Open Avoidable Sets

This final theorem is the analogue of an existing result for Px-thin sets,2 and is useful
for addressing a technical point in the proof of Theorem 6.2.1 below.

Theorem 6.1.9. Let X be a transient Hunt process on Rd, and B be a Px-avoidable
set. Then there exists an open set G such that B ⊆ G and G is Px-avoidable.

Proof. For A ∈ B(Rd) and t ∈ [0,∞) define the event

Rt(A) =
{
ω ∈ Ω : there exists s ∈ [0, t] such that Xs ∈ A

}
=
{
ω ∈ Ω : DA(ω) ≤ t

}
.

The function

ϕ : B(Rd)→ R
: A 7→ Px(Rt(B))

is a Choquet capacity, and this fact implies that for any A ∈ B(Rd),

Px(Rt(A)) = inf
G⊇A

Px(Rt(G)), (6.8)

where the infimum is taken over all open sets G containing A. For details see Definition
I(10.5), Theorem I(10.6), and Remark I(10.13) of Blumenthal and Getoor [5]. Now fix
the sets

mn = {x ∈ Rd : n− 1 ≤ |x| < n}, Mn =

n⋃
k=1

mk, n ∈ N.

Since X is transient each Mn has an almost surely finite last exit time, and thus for any
ε > 0 there exists an increasing sequence of times tn ∈ (0,∞) such that Px(LMn < tn) >
1−ε for every n ∈ N. In particular, choosing δ = (1−Px(DB <∞))/2, which is positive
because B is Px-avoidable, there exists an increasing sequence of times tn ∈ (0,∞) such
that

Px(LMn < tn) > 1− δ2−n−1 for all n ∈ N. (6.9)

2See Blumenthal and Getoor [5] Proposition II(4.3) for a probabilistic version, or Bliedtner and Hansen
[4] Lemma II.4.1 for a potential theoretic one.
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Fix this sequence tn. Our choice of δ also satisfies δ + Px(DB < ∞) < 1, which will be
useful later. Now write Bn = B ∩mn, so that B = ∪nBn and the Bn form a partition
of B. By (6.8) for every n ∈ N we can find an open set Gn ⊇ Bn such that

Px(DGn ≤ tn) < Px(DBn ≤ tn) + δ2−n−1, (6.10)

with tn and δ the same as above. Thus it follows from our choice of tn satisfying (6.9)
that

Px(LMn < DGn) ≥ Px(LMn < tn < DGn)

≥ 1−
(
Px(LMn ≥ t) + Px(DGn ≤ tn)

)
(subadditivity)

= Px(LMn < tn)− Px(DGn ≤ tn)

> 1− δ2−n−1 − Px(DGn ≤ tn) by (6.9)

> 1− δ2−n−1 − Px(DBn ≤ tn)− δ2−n−1 by (6.10)

= Px(DBn > tn)− δ2−n.

Let G̃n = Gn ∩Mn, which is an open set containing Bn, and which satisfies

Px(DG̃n
<∞) ≤ Px(DGn ≤ LMn).

Therefore

Px(DG̃n
<∞) ≤ 1− Px(LMn < DGn) < Px(DBn ≤ tn) + δ2−n.

From this it follows that

Px(DG̃n
<∞; DBn =∞) = Px(DG̃n

<∞)− Px(DG̃n
<∞; DBn <∞)

= Px(DG̃n
<∞)− Px(DBn <∞) (since Bn ⊆ G̃n)

< Px(DBn ≤ tn) + δ2−n − Px(DBn <∞)

≤ δ2−n.

Now define G̃ = ∪nG̃n. Then

Px(DG̃ <∞) = Px(∪∞n=1{DG̃n
<∞})

= Px(∪∞n=1{DG̃n
<∞; DBn <∞} ∪ {DG̃n

<∞; DBn =∞})
≤ Px(∪∞n=1{DG̃n

<∞; DBn <∞}) + Px(∪∞n=1{DG̃n
<∞; DBn =∞})

≤ Px(∪∞n=1{DBn <∞}) +

∞∑
n=1

Px(DG̃n
<∞; DBn =∞)

≤ Px(DB <∞) +
∞∑
n=1

δ2−n

< 1.

The final inequality holds as a result of our choosing δ = (1−Px(DB <∞))/2 earlier in
the proof. Then G̃ is an open Px-avoidable set containing B, and the proof is finished.
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6.2 Summation Tests

The two theorems presented here give necessary and sufficient conditions for avoidability
and thinness of B ∈ B(Rd) in terms of the function Φq

B from (2.8). In §6.3 we shall give
two corollaries which rephrase the conditions in terms of capacity. Let λ ∈ (0, 1) be an
arbitrary positive constant and denote the shells of scale λ around z ∈ Rd by

Sk = {x ∈ Rd : λk+1 < |x− z| ≤ λk}, k ∈ Z.

Every point of Rd \{z} is in exactly one shell, and the shells decrease as k increases. For
any set B ∈ B(Rd) define the sets

Bk := B ∩ Sk, k ∈ Z.

When a Lévy process X on Rd is isotropic its law is rotation-invariant. One result of
this is that u(x, y) = u(|x − y|) for all x, y ∈ Rd, and another is that the dual process
X̂ = −X has the same law as X, and thus û = u. This allows us to drop the ·̂ duality
notation in all of what follows.

Theorem 6.2.1. Let X be a transient isotropic stable process on Rd of index α ∈ (0, 2),
and let B ∈ B(Rd). Then B is Pz-avoidable if and only if

∞∑
k=−∞

Pz(TBk <∞) <∞

and z /∈ B.

The proof of Theorem 6.2.1 is given below, but first we present and prove the following
corollary, which corresponds to Proposition V.4.15 of Bliedtner and Hansen [4].

Theorem 6.2.2. Let X be a transient isotropic stable process on Rd of index α ∈ (0, 2),
and let B ∈ B(Rd). Then B is Pz-thin if and only if

∞∑
k=1

Pz(TBk <∞) <∞. (6.11)

Proof. First suppose that (6.11) holds. Fix a k0 ∈ N and define C = B ∩ {x : |x− z| ≤
λk0}. Then

Pz(TC <∞) ≤
∞∑

k=k0

Pz(TC <∞; TCk = TC) ≤
∞∑

k=k0

Pz(TCk <∞).

Due to (6.11) there exists a choice of k0 such that

Pz(TC <∞) ≤
∞∑

k=k0

Pz(TCk <∞) < 1.
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Thus Pz(TC = 0) < 1, and C is Pz-thin. The union C∪{x : |x−z| > λk0} of two Pz-thin
sets is also Pz-thin, and since B ⊆ C ∪ {x : |x− z| > λk0} we have the result.

Suppose now that B is Pz-thin. Lemma 6.1.6 gives an ε > 0 such that B̃ = B ∩ {x :
0 < |x − z| ≤ ε} is Pz-avoidable. Choosing a k0 ∈ N such that λk0 < ε it follows from
Theorem 6.2.1 that

∞∑
k=k0

Pz(TBk <∞) =
∞∑

k=k0

Pz(TB̃k <∞)

≤
∞∑

k=−∞
Pz(TB̃k <∞) <∞.

The sum
∑k0

k=1 Pz(TBk <∞) is clearly finite, and that finishes the proof.

Proof of Theorem 6.2.1

First letX be a transient isotropic stable process on Rd of index α ∈ (0, 2), letB ∈ B(Rd),
and suppose

∞∑
k=−∞

Pz(TBk <∞) <∞.

Then there exists a choice of k1 ∈ Z such that

Pz(TB1 <∞) ≤
∞∑

k=k1

Pz(TBk <∞) < 1/2, where B1 = B ∩ {x : 0 < |x− z| ≤ λk1},

and a choice of k2 ∈ Z such that

Pz(TB2 <∞) ≤
k2∑

k=−∞
Pz(TBk <∞) < 1/2, where B2 = B ∩ {x : |x− z| > λk2}.

Then Pz(DB1∪B2 <∞) = Pz(TB1∪B2 <∞) ≤ Pz(TB1 <∞;TB2 <∞) < 1, and B1 ∪B2

is Pz-avoidable. If k1 ≤ k2 we are done as B ⊆ B1 ∪B2. Otherwise we need to consider
the ‘forgotten middle’ of B3 = {x : λk1 < |x− z| ≤ λk2} and in that case it follows from
Lemma 6.1.7 that B ⊆ B1 ∪B2 ∪B3 is Pz-avoidable.

Now for the other direction suppose that B ∈ B(R) is a Pz-avoidable set. Suppose for
now that B is open, and we shall deal with the general case afterwards. Define the
set

G =
⋃
k∈Z

Bnk

where n > 1 is some particular fixed positive integer in N, chosen large enough so
that

Pz(TG <∞) < Pz(TB <∞) < (1− λn−1)d−α, (6.12)
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which is possible because Pz(TB < ∞) < Pz(DB < ∞) < 1. The set G only intersects
every nth shell, which is intentional, because the gaps between the shells will be of use to
us. We shall first prove the summation test for G, which is also avoidable, and afterwards
extend it to B.

For any n ∈ N and x ∈ Bnk, y ∈ Bnl, l 6= k, it holds that

|x− z| ≤ λnk ≤ λn(l+1) ≤ λn−1|y − z| if k > l,

|y − z| ≤ λnl ≤ λn(k+1) ≤ λn−1|x− z| if k < l.

Therefore if k > l,

|y − x| = y − x = y − z − |x− z| ≥ (1− λn−1)|y − z|,

and if k < l,

|y − z| ≤ λn−1|x− z| ≤ λn−1(|x− y|+ |y − z|) ≤ |x− y|+ λn−1|y − z|

and thus in either case
|y − x| ≥ (1− λn−1)|y − z|.

Hence because α < d,

u(x, y) = |y − x|α−d ≤ (1− λn−1)α−du(z, y). (6.13)

This relationship will be of use to us shortly. See (A.3) of Mimica and Vondraček [37]
for a similar but more general version of (6.13). We have from Theorem 6.1.4 that there
exists a capacitary measure mG for G such that

UmG(x) = Px(TG <∞)

for all x ∈ R. Define the measures corresponding to mG restricted to Sk and Rd \ Sk
respectively by

νk := mG

∣∣
Sk

and µk := mG − νk.

For any x ∈ Bnk,

Uµnk(x) =

∫
u(x, y)µnk(dy)

≤ (1− λn−1)α−d
∫
u(z, y)µnk(dy) by (6.13)

≤ (1− λn−1)α−d
∫
u(z, y)mG(dy)

= (1− λn−1)α−dPz(TG <∞).

This combined with our choice of n satisfying (6.12) means that Uµnk(x) = c < 1. Then
for x ∈ Bnk

Uνnk(x) = UmG(x)− Uµnk(x)

≥ Px(TG <∞)− c.
(6.14)
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Since B is open all points of B are regular for B, that is Py(TB = 0) = 1 for all y ∈ B.3

G is not necessarily open, because of the boundary points |x| = λkn, k ∈ N. But at
least for every point x of G there exists an ‘upper semi-circle’ around x in G, that is
an ε > 0 such that {y : |y − x| < ε; |y| ≥ |x|} ⊆ G, and isotropy of X yields that x
is regular for this semicircle and therefore for G.4 Therefore for x ∈ Bnk ⊆ G, it holds
that Px(TG <∞) = 1, and thus by (6.14),

Uνnk(x) ≥ 1− c.

It was mentioned in §2.6 that Uνnk is excessive, and thus we can define an excessive
function f by

f(x) =
Uνnk(x)

1− c

that satisfies f(x) ≥ 1 on Bnk. It follows from (2.9) that for all x ∈ Rd,

f(x) ≥ Px(TBnk <∞)

and hence

Uνnk(x) ≥ (1− c)Px(TBnk <∞).

Therefore for all x ∈ Rd,

∑
k∈Z

Px(TBnk <∞) ≤ 1

1− c
∑
k∈Z

Uνnk(x) =
1

1− c
UmG(x) <

1

1− c
<∞.

What we have proven for G =
⋃
k∈ZBnk can be shown in exactly the same way taking

n + 1 instead of n, and likewise for n + 2, . . . , 2n − 1. Summing the finite number of
convergent sums obtained in this way yields∑

k∈Z
Px(TBk <∞) <

n

1− c
<∞. (6.15)

This holds for all x ∈ R, and thus for z.

To finish suppose that B ∈ B(R) is a Pz-avoidable set, not necessarily open. According
to Theorem 6.1.9, there exists an open set B̃ containing B which is also Pz-avoidable,
and which therefore satisfies the summation test in (6.15). From B̃ ⊇ B it follows that
Px(TBk < ∞) ≤ Px(TB̃k < ∞) for all k ∈ Z, x ∈ Rd, and hence the test also holds for
B.

3In fact something stronger holds: B is finely open, and so Rd \B is thin at all y ∈ B.
4Bliedtner and Hansen have a different solution to this problem: they define a larger G =

⋃
nB ∩ {x :

λkn−2 < |x − z| < λkn}, which is open. The individual sets are no longer disjoint, but that causes
no problems in the proof. Either approach is perfectly valid.
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6.3 Wiener Criteria

If a Borel set B ∈ B(Rd) has an equilibrium measure mB then we saw in §2.6 that the
capacity of B is C(B) = mB(Rd). In addition mB satisfies

Px(TB <∞) =

∫
Rd
u(x, y)mB(dy) for all x ∈ Rd.

Recall the sets Bk = B ∩ Sk from the previous section, where Sk, k ∈ Z are the shells
centred at z. The sets Bk are bounded, and thus have a capacitary measure. In addition,
for x ∈ Bk and α < d, u(z, x) is bounded below by λk(α−d) and above by λ(k+1)(α−d).
As a result

λk(α−d)C(Bk) ≤ Pz(TBk <∞) and Pz(TBk <∞) ≤ λ(k+1)(α−d)C(Bk).

Combining these yields that

∞∑
k=−∞

Pz(TBk <∞) <∞ ⇐⇒
∞∑

k=−∞
λk(α−d)C(Bk) <∞

and
∞∑
k=1

Pz(TBk <∞) <∞ ⇐⇒
∞∑
k=1

λk(α−d)C(Bk) <∞.

Knowing these facts, the following two corollaries follow immediately from Theorems
6.2.1 and 6.2.2. The second corresponds to Corollary V.4.17 (the Wiener Criterion) of
Bliedtner and Hansen [4].

Corollary 6.3.1. Let X be a transient isotropic stable process on Rd of index α ∈ (0, 2),
and let B ∈ B(Rd). Then B is Pz-avoidable if and only if

∞∑
k=−∞

λk(α−d)C(Bk) <∞.

Corollary 6.3.2. Let X be a transient isotropic stable process on Rd of index α ∈ (0, 2),
and let B ∈ B(Rd). Then B is Pz-thin if and only if

∞∑
k=1

λk(α−d)C(Bk) <∞.

6.4 An Example

Intuition suggests that avoidability of a set B ∈ B(Rd) is related to potential U(B) of that
set, but it is not immediately clear how. Certainly it is possible to find a set which has
finite potential but is not avoidable, for example any compact set containing the issuing
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point. The example below demonstrates that in some cases the converse is also possible,
that is, there can exist sets which are avoidable but have infinite potential.

Let X be a stable process on R of index α ∈ (0, 1), and define the shells S̃k via

S̃k = {x ∈ R : 2k−1 < |x− z| ≤ 2k}, k ∈ Z,

which grow larger as k increases. This is a reversal of the notation we have seen so far,
that is, S̃k = S−k, and it makes notation in the following example a little easier. Define
the sets A,A1, · · · ∈ B(R) by

An := {x ∈ R : 2n − 2(n−1)/3 ≤ x < 2n}, A :=
∞⋃
n=1

An.

Because 2n − 2(n−1)/3 > 2n − 2(n−1) = 2n−1, we have that An ⊆ S̃n for each n ∈ N, and
in particular that A ∩ S̃n = An.

Lemma 6.4.1. A is P0-avoidable for all α ∈ (0, 1).

Proof. Let us use the notation Bε = {x ∈ R : |x| < ε} for the ball around 0 of radius ε.
Notice that each A∩ S̃n is just a translation of the ball of radius 2−12(n−1)/3 = 2(n−4)/3.
Then from Lemma 2.6.4 (vi) it follows that

C(A ∩ S̃n) = C(B2(n−4)/3) = C(2(n−4)/3B1).

and from (2.18) it follows that

C(A ∩ S̃n) = 2(n−4)(1−α)/3C(B1).

Therefore the summation test from Corollary 6.3.1 concerns finiteness of

∞∑
n=−∞

(2−1)n(α−1)C(A ∩ Sn) =
∞∑
n=1

2n(α−1)C(A ∩ S̃n)

= C(B1)

∞∑
n=1

2n(α−1)2(n−4)(1−α)/3

= 24(α−1)/3C(B1)
∞∑
n=1

2(2n/3)(α−1).

Since C(B1) is a finite constant - see (2.20) - the quantity above is finite if and only if
the geometric series

∑∞
n=1 2(2n/3)(α−1) is finite, and this is equivalent to 2(2/3)(α−1) < 1,

that is, α < 1.

Now that we have shown that A is avoidable for all transient stable processes on R, we
can show that has infinite potential for a subset of those processes. There is nothing
particularly special about the restriction of α here, it is just an artifact of the simple
construction of A.
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Lemma 6.4.2. If 2/3 < α < 1 then U(0, A) =∞.

Proof.

U(0, A) =

∫
A
u(x) dx =

∞∑
n=1

∫
A∩S̃n

u(x) dx

=
∞∑
n=1

∫ 2n

2n−2(n−1)/3

xα−1 dx

≥
∞∑
n=1

2n(α−1)(2n − (2n − 2(n−1)/3)) (monotonicity of xα−1)

= 2−1/3
∞∑
n=1

2n(α−2/3).

This sum is infinite if α > 2/3.

The two lemmas above combine to demonstrate that if X is a stable process on R of
index 2/3 < α < 1, then A describes a P0-avoidable set with infinite potential.
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[21] J. Hawkes. Potential theory of Lévy processes. Proceedings of the London Mathe-
matical Society, 38:335–352, 1979.

[22] J. Hawkes. Local times as stationary processes. In From local times to global
geometry, control and physics, volume 150 of Pitman research notes in math, pages
111–120. Longman, Chicago, 1985.

[23] L.L. Helms. Introduction to Potential Theory. Wiley-Interscience, 1969.

[24] G.A. Hunt. Markoff processes and potentials I, II, III. Illinois J. Math. 1, 44-93;
316-369; Illinois J. Math. 2, 151-213, 1957-58.

[25] J. Jacod. Calcul Stochastique et Problèmes de Martingales. Springer Berlin Heidel-
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Index of Notation

Bε ball of radius ε
Br regular points of B
Cq q-capacity of a point
DB Lemma 2.1.11
E∗ universally measurable σ-algebra
En nearly Borel subsets of E
E∆ σ(E ∪ {∆}) : E ⊆ E∆

f ∈ E f is E/B([−∞,∞])-measurable
f ∈ bE bounded f ∈ E
f ∈ E+ f ∈ E with values in [0,∞)
f ∈ E+ f ∈ E with values in [0,∞]
If (3.1)
Īf (3.3)

If∞ (3.3)
LB Lemma 2.1.11
mq
B q-capacitary measure (2.13)

P qB Definition 2.4.1
TB Lemma 2.1.11
U qµ potential of µ (2.12)
µU q q-resolvent measure (2.11)

ϕf (3.2)
ϕ̄f (3.3)

ϕf∞ (3.3)
Φq
B (2.8)

(ACP), (ACT) page 21, 22
(C1), (C2) §2.6
(A1)-(A4) §5.1
(A5) Theorem 5.3.2
(LSC) page 19

103


	1 Introduction
	1.1 Outline
	1.2 Collaborative Work

	2 Preliminaries
	2.1 Markov Processes
	2.2 Lévy Processes
	2.3 Stable Processes
	2.4 Potential Theory for Markov Processes
	2.5 Potential Theory for Lévy Processes
	2.6 Capacity

	3 Perpetual Integral Tests
	3.1 Main Result
	3.2 Super-Finite Sets
	3.3 Proof of Theorem 3.1.1
	3.4 The Almost Sure Case
	3.5 A Zero-One Law

	4 Path Integral Tests
	4.1 Transient Markov Processes
	4.2 Lévy Processes with Local Times
	4.3 Stable Lévy Processes

	5 Stable SDEs
	5.1 Kallenberg-Zanzotto Time-Change Representation
	5.2 Proofs of the Time-Change Representations
	5.3 Transient Stable SDEs
	5.4 Behaviour of the Solution Process

	6 Avoidable Sets
	6.1 Potentials
	6.2 Summation Tests
	6.3 Wiener Criteria
	6.4 An Example

	Bibliography
	Index of Notation

