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Abstract

We establish a Sanov type large deviation principle for an ensemble of interacting Brownian rough
paths. As application a large deviations for the (k-layer, enhanced) empirical measure of weakly interacting
diffusions is obtained. This in turn implies a propagation of chaos result in a space of rough paths and allows
for a robust analysis of the particle system and its McKean–Vlasov type limit, as shown in two corollaries.
c⃝ 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction and main results

1.1. Large deviation and rough paths

The present paper is concerned with the intersection of large deviations, rough paths and
(weakly) interacting diffusions. We note (i) that large deviations have been one of the first
application areas of rough paths theory: indeed, following Ledoux et al. [15], a large deviation
principle for Brownian motion and Lévy’s area, scaled by ϵ and ϵ2 respectively, in rough path
topology, will yield immediately the Freidlin–Wentzell theory of large deviations for diffusions
with small noise – it suffices to combine continuity of the Itô-map in rough path sense with
the contraction principle of large deviation theory; [13]. (ii) The interplay of rough paths with
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interacting stochastic differential equations was pioneered in [4]. This work, as well as the more
recent [1], required in particular the development of a McKean–Vlasov theory in the context of
random rough differential equations (which is not at all the aim of this paper). At last, (iii) large
deviations for interacting diffusions is a huge field, a small selection of relevant references is
given by [5–7,17,18].

In sense, we combine here aspects of all the afore-mentioned references. In particular, when
compared to the many classical works (iii) an advantage of our approach is robustness: as soon
as we have a LDP on a suitably enhanced space (“enhanced Sanov”) – on which most stochastic
operations of interest are continuous, the raison d’être of rough paths – basic facts of large
deviation theory, such as contraction principle or Varadhan’s lemma become directly applicable.
On the contrary, stronger versions of contraction principles or Varadhan’s lemma need suitable
approximated continuity properties which must be checked case by case.

We briefly describe our main results. Let {Bi
: i ∈ N} be a family of independent

d-dimensional standard Brownian motions,1 on a fixed filtered probability space (Ω ,A, (Ft )t ,P).
On a finite time-horizon, say [0, T ], we may regard them as C([0, T ];Rd )-valued i.i.d. random
variables. By a classical law of large numbers (LLN) argument (e.g. [10, Thm 11.4.1]) the
empirical measure, Ln , a random measure on pathspace, converges to the d-dimensional Wiener
measure P {d}. More precisely, with probability one,2

L B
n (ω) :=

1
n

n∑
i=1

δBi (ω) −→ P {d} as n → ∞.

Sanov’s theorem quantifies the speed of this convergence: for a measure Q on C([0, T ];Rd ),

P
[
L B

n (ω) ≈ Q
]

≈ exp
(
−n H (Q | P {d})

)
,

in the form of a large deviation principle [8,9], where H is the relative entropy. Now, for each
1 ≤ i, j ≤ n, we introduce the 2d-dimensional double-layer process B{2};i j

≡ Bi j as

Bi j
t :=

(
Bi

t , B j
t
)

∈ R2d , (1.1)

and then define the enhanced double-layer process B{2};i j
≡ Bi j , with values in the space of

2d × 2d matrices, as

Bi j
t =

∫ t

0
Bi j

s ⊗ ◦ dBi j
s , (1.2)

where ◦ denotes Stratonovich integration. Clearly, for any i ̸= j , we have

Law(Bi j ) = Law
(
B12)

= P {2d},

where P {e} denotes e-dimensional Wiener-measure. We are interested in (the G2(R2d )-valued
process)

B{2};i j
≡ Bi j

≡ (Bi j ,Bi j ) := ((Bi , B j ),Bi j ),

with law

Law(Bi j ) = Law(B12) = Law(B1, B2,B12) =: P{2d},

1 Later on, we shall allow for non-trivial Law(Bi
0) ≡ λ.

2 We regard L B
n and Pd as random variables with values in the (Polish) space P(C([0, T ]; Rd )), equipped with the

Cb-weak topology.
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where P denotes the enhanced (e-dimensional) Wiener-measure.3 For every n, define the
enhanced “double-layer” empirical measure as

LB;{2}

n (ω) ≡ LB
n (ω) :=

1
n2

n∑
i, j=1

δ(Bi j ,Bi j )(ω) ≡
1
n2

n∑
i, j=1

δBi j (ω). (1.3)

In order to extend the enhanced “double-layer” (k = 2) empirical measure to any k ≥ 3, define
the (kd-dimensional) k-layer process B{k};i1,...,ik ≡ (Bi1 , . . . , Bik ), its rough path lift B{k};i1,...,ik ,
and then the enhanced “k-layer” empirical measure given by LB;{k}

n (ω) := n−k ∑
δB{k};i1,...,ik (ω)

with summation over all 1 ≤ i1, . . . , ik ≤ n. One may expect, as suggested by our notation, that,
for any integer k,4

LB;{k}

n (ω) −→ P{kd} as n → ∞. (1.4)

This is indeed the case, however not a consequence of LLN, for even when k = 2 the
{Bi j

: i, j = 1, . . . , n} are not independent. In fact, we shall study the speed of convergence
around this limit: one of our main results is a large deviation principle for the law of LB;{k}

n ,
which gives (1.4), with convergence in probability (and a.s. by a Borel–Cantelli argument) with
respect to the α-Hölder rough path topology, as a byproduct. Here and below C0,α

g ([0, T ];Re)
denotes a space of rough paths (in notation of [12], some recalls below), a Polish space, elements
of which are paths with values in the group G(2)(Re) ⊂ Re

⊗ (Re)⊗2.

Theorem 1.1. Fix α in (1/3, 1/2). The sequence of laws {Law(LB;{k}

n ) : n ∈ N} satisfies a large
deviation principle on P(C0,α

g ([0, T ];Rkd )) endowed with the Cb-weak topology, with scale n
and good rate function I : P(C0,α

g ([0, T ];Rkd )) → R ∪ ∞ that is given by

I{k}(µ) ≡ I(µ) =

{
H (µ ◦ π−1

1 | P {d}), if µ = F {k}(µ ◦ π−1
1 ),

+∞, otherwise.
(1.5)

This LDP is also valid in a stronger (“modified Wasserstein”) topology.

Here π1 : G(2)(Rkd ) ∼= G(2)(⊕k
i=1Rd ) → Rd is given by the projection ((x1, . . . , xk), . . .) ↦→

x1. In particular, given a probability µ on C0,α
g ([0, T ];Rkd ), the image measure Q := (π1)∗µ ≡

µ ◦ π−1
1 is a measure on the classical Hölder space C0,α([0, T ],Rd ). Moreover, H (.|P {d}) is the

relative entropy and

F {k}
: Q ↦−→ Q⊗k

◦ (S{kd})−1 (1.6)

defines a map F {k}
: P1(C0,α([0, T ];Rd )) → P1(C0,α

g ([0, T ];Rkd )), where S = S{e} denotes the
(measurable) lifting map of an e-dimensional path to a path with values in G2(Re).

The interest in a modified Wasserstein topology (on probability measures on the space of
rough paths, Section 4 for details) is continuity of the map (here k = 2, but then trivially for
k ≥ 2 by projection)

µ ↦−→

∫
C0,α

g ([0,T ];R2d )

∫ T

0
b̄(X t ) dXt µ(dX)

3 That is, the law of e-dimension Brownian motion B and all its iterated integrals of the form
∫

Bk
◦dBl , 1 ≤ k, l ≤ e.

4 Again we regard LB;{k}
n and P{kd} as random variables with values in the (Polish) space P(C([0, T ]; G2(Rkd ))) ,

equipped with the Cb-weak topology.
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for sufficiently nice b̄. Indeed, combining Girsanov’s theorem and Varadhan’s lemma will then
imply a LDP for the empirical measures, as n → ∞, for the particle system given by5⎧⎪⎨⎪⎩ dX i,n

t =
1
n

n∑
j=1

b
(
X i,n

t , X j,n
t

)
dt + dBi

t , i = 1, . . . n,

Law(X i,n
0 ) = λ i.i.d.

(1.7)

In fact, our approach not only allows to recover the (known, see e.g. [2,7]) rate function for the
large deviations of such a particle system, of the form Jb(Q) = H (Q|Φ(Q)) cf. Sections 6 and 7
(where Φ = Φb is introduced, such that fixed points of Φ are solutions to the martingale problem
of the corresponding McKean–Vlasov equation with mean-field drift b), but it gives the LDP
on the level of k-layer enhanced empirical measures. We shall see in two applications, namely
Corollaries 1.5 and 1.6 below, how useful exactly this can be.

Theorem 1.2. Assume that b is in C2
b (Rd

× Rd ), let Xn
= (X1,n, . . . , Xn,n) be the solution

to the above system where the initial law satisfies a suitable exponential integrability condition
(Condition (3.15)). Let LX,{k}

n be the corresponding enhanced k-layer empirical measure, k ≥ 2.
Fix α ∈ (1/3, 1/2). Then the sequence of laws {Law

(
LX,{k}

n
)

: n ∈ N} satisfies a large deviation
principle on (a modified Wasserstein) space of probability measures on C0,α

g ([0, T ];Rkd ) with
scale n and good rate function Jb given by

J{k}

b (µ) ≡ Jb(µ) =

{
H (µ ◦ π−1

1 |Φ(µ ◦ π−1
1 )), if µ = F {k}(µ ◦ π−1

1 ),
+∞, otherwise.

(1.8)

A first consequence of this large deviation principle, together with the fact that the rate
function has a unique zero, is a “law of large number” which already contains a remarkably
strong form of propagation of chaos (POC), namely Theorem 1.4 below. Note that this result can
also be recovered via classical Itô calculus (the reader can verify this as an exercise), nevertheless
it illustrates well the extra information carried by the LDP above, moreover its Corollary 1.5 is
another example of the combination of mean field and rough paths arguments. For context, we
first give the classical form of POC. Let us also note there is much new interest in POC, with
recent applications ranging from calibration methods in quantitative finance to the analysis of
lithium-ion batteries.

Theorem 1.3 (Classical POC, e.g. [17]). Let {X̄ j
: j ∈ N} be an i.i.d. realizations of the

McKean–Vlasov diffusion X̄ (see Section 7 for details). Then, for all k ∈ N,

Law
(
X1,n, . . . , X k,n)

−→
n→∞

Law
(
X̄1, . . . , X̄ k)

= Law(X̄ )⊗k, (1.9)

as Cb-weak6 convergence of probability measures on
(
C([0, T ],Rd )

)×k ∼= C([0, T ],Rkd )
equipped with uniform topology.

In classical terminology [17] the law of
(
X1,n, . . . , X k,n

)
is Q-chaotic, where Q = Law(X̄ )

is a probability measure on the (Polish) space E = C([0, T ],Rd ).
We now state the enhanced POC on the space of rough paths, that is paths with values

in G2(RN ) rather than RN . We insist that this is not just a form of the classical POC (a.k.a.

5 Given a function b : R2d
→ Rd , we use the notation (x1, x2) ∈ Rd

× Rd
= R2d and we denote by b̄ : R2d

→ R2d

the function such that b̄(x1, x2)1
= b(x1, x2) and b̄(x1, x2)2

= 0.
6 Actually, in 1-Wasserstein sense ....
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Q-chaos) in which E = C([0, T ],Rd ) is replaced by some other (Polish) space, which happens
to be a space of rough paths. To wit, the limiting measure in our Theorem 1.4 below is not of
product measure form, since it effectively tracks all areas between the particle trajectories (in the
mean-field limit) which requires it to be a measure on the space of geometric rough paths

C0,α
g

(
[0, T ],Rkd) ∼= C0,α

g

(
[0, T ],G2(Rkd )

)
,

which indeed offers enough room to capture∫
X i

⊗ ◦ dX j ... for 1 ≤ i, j ≤ k

(the anti-symmetric part of which corresponds to the afore-mentioned areas). In contrast, a space
of k rough paths over Rd , say(

X1, . . . ,Xk)
∈ C0,α

g

(
[0, T ],Rd)×k ∼= C0,α

g

(
[0, T ],⊕k

i=1G2(Rd )
)

contains strictly less information as it contains, particle trajectories on Rd aside, only∫
X i

⊗ ◦ dX i for 1 ≤ i ≤ k

(and hence only the areas of each single d-dimensional particle trajectory).
This extra information contained in C0,α

g

(
[0, T ],Rkd

)
makes a difference indeed when one is

interested in subsequent analysis of this particle system, as we shall see in the corollary below.
But first we state our enhanced POC. Recall that for an e-dimensional semi-martingale Z , its
Stratonovich (level 2) lift is given by

S{e}(Z ) =

(
Z i

: 1 ≤ i ≤ e;
∫

Z i
⊗ ◦ dZ j

: 1 ≤ i, j ≤ e
)
.

Theorem 1.4 (Enhanced POC). Under the assumptions of the classical POC for all k ∈ N

Law
(
S{kd}(X1,n, . . . , X k,n)

)
−→
n→∞

Law
(
S{kd}(X̄1, . . . , X̄ k)

)
, (1.10)

as Cb-weak convergence of probability measures on C0,α
g ([0, T ],Rkd ) equipped with α-Hölder

geometric rough path topology.

We now illustrate the power of this new form of propagation of chaos. Recall that the solution
flow to an SDE depends continuously on the driving noise in rough path topology (e.g. [13]).
We then have immediately the following result, a direct proof of which would require substantial
work.

Corollary 1.5. Fix some k ∈ N and consider, for n ≥ k, the solution flow Y n
≡ Y to

dYt = f0(Y ) dt +

k∑
i=1

fi (Y ) ◦ dX i,n (1.11)

where the fi ’s are C3
b vector fields on RN in the case d = 1 (or fi ∈ C3

b (RN
; L(Rd ,RN )) more

generally). Then, (in the sense of flows, cf. [13], and 1/2−-Hölder on compacts in time)

Law(Y n) −→
n→∞

Law(Ȳ ), (1.12)

where the weak limit flow is given by

dȲt = f0(Ȳ ) dt +

k∑
i=1

fi (Ȳ ) ◦ dX̄ i . (1.13)
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We give now a second application of Theorem 1.2, which cannot be covered, to our
understanding, by classical LDP results. This is a large deviation principle associated with SDEs
driven by k-layer paths (X i1,n, . . . X ik ,n): we take, for i1, . . . ik in {1, . . . n}, the SDE

dY i1,...ik ;n
t =

k∑
j=1

f j (Y i1,...ik ;n) ◦ dX i j ,n (1.14)

with same initial condition Y i1,...ik ;n
= y0; here f j : Rd

→ Rm , j = 1, . . . k, are given C3
b vector

fields. For this SDE we can consider the empirical measure

LY ;{k}

n =
1
nk

∑
(i1,...ik )∈{1,...n}k

δY i1,...ik ;n .

This empirical measure can be seen as a symmetrization of the system (1.11), as it tracks the
positions of Y i1,...ik discarding the particular choice of indices i1, . . . in . Now, as in the previous
application, rough paths provide continuity of the solution map of this SDE with respect to the
driving noise in rough path topology. Therefore contraction principle implies the following:

Corollary 1.6. For any fixed 1/3 < β < 1/2, the sequence {Law(LY ;{k}

n )|n ∈ N} satisfies a large
deviation principle on P(C0,β([0, T ];Rm)) , endowed with the C0-weak topology.

The paper is organized as follows. In Section 1, after a brief introduction, we explain our main
results. Section 2 is devoted to settle notation and some recalls on rough paths. In Section 3,
we prove the enhanced Sanov theorem (Theorem 1.1) in the 1-Wasserstein metric, leaving the
extension to the modified Wasserstein topology to Section 4. For notational simplicity we focus
in Sections 3 and 4 on the two-layer case (k = 2). We explain in Section 5 how to extend this
to general k (and so conclude with a full proof of Theorem 1.1). In Section 6, we introduce the
n-particle system, more precisely a system of n weakly interacting diffusions, and prove a large
deviation principle for the empirical measure, that is Theorem 1.3. At last, in Sections 7 and 8,
we prove resp. the (enhanced k-layer) propagation of chaos property and the LDP for the system
(1.14).

1.2. Relation to the work of Cass–Lyons [4]

We comment in some detail on the relation of our work to Cass–Lyons. In [4], the authors
first and foremost establish a theory of mean-field RDEs (more precisely, [4, Theorem 4.9],
rough differential equations with mean-field interaction in the drift term) for suitable classes of
random rough paths B(ω). When it comes to propagation of chaos (see [4, Section 5]) they are
able to consider interacting particle dynamics of the form

dXi,n(ω) =
1
n

n∑
j=1

b
(
X i,n

t (ω), X j,n
t (ω)

)
dt + σ

(
X i

t (ω)
)

dBi (ω), (1.15)

with i.i.d. initial data and driving noise, (X i,n
0 ,Bi ), and show [4, Theorem 5.2] that

LX
n :=

1
n

n∑
j=1

δXi,n −→ Law(X̄ ) a.s.

In the scale of k-layer enhanced empirical measure, LX
n ≡ LX;{k}

n
⏐⏐
k=1. Furthermore, it is

conjectured (see [4, page 25]) that their approach will be useful to establish Sanov-type theorem
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à la Dawson–Gärtner for (1.15). Although related, our work is not a proof of this conjecture.
That said, such a result will not imply our results. To be more specific, in our work no mean-field
RDE theory is required, and in fact we have taken the noise to be additive Brownian noise, that
is dBi (ω) versus σ (X i

t (ω)) dBi (ω). (We note that including non-interacting diffusion coefficients
dBi ⇝ σ (X i

t ) dBi would have been possible, as long as the Girsanov argument we use, cf. the
proof of Theorem 6.1, remains feasible, which amounts to an ellipticity assumption on σ .) In the
cases where our setting overlaps with [4], we indeed quantify the above with a large deviation
principle, but then we also obtain (Theorem 1.2) a Sanov-type à la Dawson–Gärtner for the
general k-layer enhanced empirical measure LX;{k}

n . This is in fact out of reach of [4] as can be
trivially seen noting that LX;{k}

n necessarily involves information of (X1,n, . . . ,Xn,n), and hence
(take e.g. b ≡ 0) of (B1, . . . ,Bn), as joint rough path, rather then a collection of n rough paths.
But no such information is assumed in [4], making LX;{k}

n , k ≥ 2, effectively an ill-defined object.
In contrast, for us, by working directly with Brownian motion, we always have the Stratonovich
lift at our disposal, so this is not an issue. For the same reason, our robust propagation of chaos
(Theorem 1.4, and then e.g. Corollary 1.5) and the large deviation principle in Corollary 1.6
cannot possibly be obtained in the framework of Cass–Lyons. We finally note that forthcoming
work of Bailleul–Catellier deals with Sanov-type theorem a la Dawson–Gärtner for (1.15), again
in the spirit of Cass–Lyons.

2. Basic notation and results on rough paths

We introduce the space of rough paths and the space where our empirical measures live. Most
of this section is taken from [12] or [13]. Before going into the theory, let us recall the basis of
α-Hölder continuous functions. Given a Polish space (E, d) with a compatible structure of Lie
group (it will be Re or G2(Re)) and given α in (0, 1), we define the space Cα([0, T ]; E) of the
α-Hölder continuous paths from [0, T ] to E . This is a complete metric space, endowed with the
distance

dα(γ 1, γ 2) = sup
t∈[0,T ]

d(γ 1(t), γ 2(t)) + sup
s,t∈[0,T ],s ̸=t

d(γ 1(s)−1γ 1(t), γ 2(s)−1γ 2(t))
|t − s|α

. (2.1)

This space is not separable in general. However, the subspace C0,α([0, T ]; E) given by the
closure, with respect of dα , of the smooth (C∞) paths is separable, hence Polish. Furthermore,
for any β > α, Cβ([0, T ]; E) is included in C0,α([0, T ]; E) and the inclusion is compact.

When dealing with rough paths, we will always assume α in (1/3, 1/2]. An α-Hölder rough
path on Re is a triple X = (X0, X,X), with X0 point in Re, X = (Xs,t )s<t two-index Re-valued
map and X = (Xs,t )s<t two-index Re×e-valued map (we always suppose 0 ≤ s, t ≤ T when not
specified), satisfying the following conditions (here v ⊗ w denotes the tensor product vwT ):

1. algebraic conditions (Chen’s relation): for any s < u < t ,

Xs,t = Xs,u + Xu,t and Xs,t = Xs,u + Xu,t + Xs,u ⊗ Xu,t ; (2.2)

2. analytic conditions:

sup
0≤s<t≤T

|Xs,t |

|t − s|α
< ∞ and sup

0≤s<t≤T

|Xs,t |

|t − s|2α
< ∞. (2.3)

Here X0 represents the initial condition; it is not included in the standard definition (Definition
2.1 in [12], Chapter 2), but we need to keep track of it because we will work with paths starting
from a generic probability measure (and not just from a single point). However, with some abuse
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of notation, we will usually write X = (X,X), without X0, when this is not relevant for our
purposes, as for example when the initial point is fixed (this was the case for the main result 1.1).

The space of α-Hölder rough paths on Re is denoted by Cα([0, T ];Re). It is not a vector space
(since the sum of two rough paths does not respect Chen’s relation), but it is a complete metric
space, endowed with the distance

ρ̃α(X,Y) = |X0 − Y0| + ρα(X,Y)

= |X0 − Y0| + sup
0≤s<t≤T

|Xs,t − Ys,t |

|t − s|α
+ sup

0≤s<t≤T

|Xs,t − Ys,t |

|t − s|2α
.

For convenience, we also introduce a “norm” on rough paths; this is actually not a norm, but it
has some good homogeneity property. We define

∥X∥α = sup
0≤s<t≤T

|Xs,t |

|t − s|α
+ sup

0≤s<t≤T

|Xs,t |
1/2

|t − s|α
. (2.4)

A problem with the space Cα([0, T ];Re) is that it is not separable. That is why we introduce
also the space C0,α

g ([0, T ];Re) of geometric rough paths. This is the subspace of Cα([0, T ];Re)
obtained as the closure, with respect to the ρ̃α distance, of the space of smooth Re-valued paths
and their iterated integrals (see [12], Section 2.2). Now the space C0,α

g ([0, T ];Re), endowed with
the distance ρ̃α is a Polish space. This will be the space of interest for us.

The space of geometric rough paths has also the following geometrical interpretation (taken
for example from [12, Section 2.3]): it can be identified with the space C0,α([0, T ]; G2(Re)) of
the closure of smooth paths, with respect to the α-Hölder topology, over the (free step-2 nilpotent)
Lie group G2(Re) . In particular, we can consider the α-Hölder distance dα associated with the
(Carnot–Caratheodory) distance in G2(Re), as explained at the beginning of this section, and we
have, for a constant C > 0,

C−1(|X0| + ∥X∥α) ≤ dα(X, 0) ≤ C(|X0| + ∥X∥α) (2.5)

for every geometric rough path X. We call this distance the homogeneous distance. Unless
otherwise stated, we will always use the homogeneous distance for geometric rough paths.
Notice however that, for the purpose of this paper, only the asymptotic behaviour of dα(X, 0), as
|X0|+∥X∥α → ∞, is of interest for us (see Appendix A and Section 4.1 on the link between this
behaviour and the Wasserstein topology), therefore one can use |X0|+∥X∥α instead of dα(X, 0).

A consequence of this geometrical interpretation is that, for any α < β, we have the
continuous embedding for spaces of rough paths,

Cβg ([0, T ];Re) ↪→ C0,α
g ([0, T ];Re) ↪→ Cαg ([0, T ];Re), (2.6)

where the first embedding is compact.
A basic result in Lyons’ rough paths theory is that, given a function f regular enough, the

integral
∫ t

0 f (Y ) dY is well defined and continuous with respect to Y in the rough paths topology.
We have (e.g. Theorem 4.4 in [12], Chapter 4):

Theorem 2.1. Let f be a function in C2
b (Re) and let X be a geometric α-Hölder rough path on

Re. Given a partition ∆ of the interval [0, T ], define the approximated integral on ∆ as

I∆ f (X) =

∑
[s,t]∈∆

f (Xs)Xs,t + D f (Xs)Xs,t . (2.7)
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Then, the limit∫ T

0
f (X ) dX := lim

n→∞
I∆n f (X ) (2.8)

exists for every sequence (∆n : n ∈ N) with infinitesimal size |∆n| = sup[s,t]∈∆n (t − s) and is
independent of the sequence itself. Furthermore, the application

C0,α
g ([0, T ];Re) ∋ X ↦→

∫ T

0
f (X ) dX ∈ R (2.9)

is continuous and it holds, for some constant C f depending on f ,⏐⏐⏐⏐∫ T

0
f (X ) dX

⏐⏐⏐⏐ ≤ C f
(
∥X∥α ∨ ∥X∥

1/α
α

)
. (2.10)

Recall that Theorem 1.1, through definition of F {k} given in (1.6), involves a (measurable)
“rough path lifting map”

S ≡ S{e}
: C0,α([0, T ],Re) → C0,α

g ([0, T ],Re). (2.11)

Here is the precise definition. Consider piecewise linear approximation {X k
: k ∈ N} of X based

on dyadic partitions ∆k := {[2−k i, 2−k(i + 1)] : i ∈ N}, k ∈ N, and set

Ak
s,t ≡ lim

k→∞

∫ t

s
X k

s,r ⊗ dX k
r . (2.12)

Whenever Sk
:= (X k, Ak) is Cauchy in α-Hölder rough path metric, set

S(X ) ≡ (X, A(X )) := lim
k→∞

(X k, Ak) (2.13)

and zero elsewhere. By construction, S(X ) is in Cα and actually in C0,α
g (since X k is a Lipschitz

path and so Sk is in C0,α
g ) and X ↦→ S(X ) is a well-defined measurable (but in general

discontinuous!) map on path space.
We now recall the basic relations between rough and stochastic integration, see

[12, Proposition 3.5, 3.6 and Corollary 5.2]. We allow B to start from a generic initial probability
measure λ with finite second moment.

Proposition 2.2. Let B be an e-dimensional standard Brownian motion over a filtered
probability space (Ω , (Ft )t ,P), with initial measure λ with finite second moment. For any
i, j = 1, . . . , e, let (BStrat

s,t )i j
=

∫ t
0 Bi

s,r ◦ dB j
r be its Stratonovich iterated integral. Then,

(i) P-a.s., BStrat
:= (B,BStrat) is a geometric α-Hölder rough path for any α < 1/2;

(ii) there exists a null-set N with respect to the e-dimensional Wiener measure P = P {e} (and
hence to every Q absolutely continuous with respect to P {e}), such that, away from this
null-set, Sk is a Cauchy sequence in the rough path metric and S(B) = B = (B,B) P-a.s.

Proposition 2.3. Let B be as before and let f be a function in C2
b (Re). Then the Stratonovich

integral∫ T

0
f (B) ◦ dB (2.14)
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and the rough integral∫ T

0
f (B) dBStrat (2.15)

coincide P-a.s.

3. The enhanced Sanov theorem

The main objective in this section is to prove an LDP for the enhanced empirical measures
LB

n = LB;{k}

n in the 1-Wasserstein topology, in the double layer case (k = 2 will be fixed, and
often omitted, throughout this section). For this purpose, consider a sequence of independent
d-dimensional Brownian motions {Bi

: i ∈ N} each starting with initial distribution λ, defined
on some filtered probability space (Ω ,A, (Ft )t ,P). In the sequel, for fixed α ∈ (1/3, 1/2), we
use the convention to denote a generic measure on C0,α([0, T ];Rd ) by Q, and we write PY to
denote the law on this space of a process Y ; P {d}

= PB is the Wiener measure on C0,α([0, T ];Rd )
with initial distribution λ unless differently specified.

The empirical measure L B
n is defined as

L B
n =

1
n

n∑
i=1

δBi . (3.1)

We use the 1-Wasserstein metric as the topology on the space of probability measures (with finite
first moment) on the spaces Cα and C0,α

g . In this topology, all the maps of the form

µ ↦→

∫
ϕ dµ, (3.2)

for ϕ continuous with at most linear growth, are continuous; on the contrary, in the
Cb-weak topology we could only allow for continuous bounded ϕ. The reason why we consider
the 1-Wasserstein metric is mainly because it is more convenient in the proof: first it gives
an easy-to-handle distance between probability measure, then it makes the map C0,α(Re) ∋

µ ↦→
∫
X(m)µ(dX ) (where X(m) will be a suitable approximation of the stochastic integral∫ t

0 Xr ⊗ ◦dXr ) continuous for m fixed (X ↦→ X(m) has linear growth with respect to dα , so
the Cb-weak topology would not fit into this scheme).

The section is organized as follows. We start with proving Sanov theorem in the 1-Wasserstein
metric. Then, as an intermediate result, we prove an LDP for the double-layer empirical measures
which is a consequence of Sanov theorem (in 1-Wasserstein metric) and the contraction principle.
Finally, we show an LDP for the enhanced empirical measures, whose proof uses the idea for the
double-layer empirical measures but exploits the extended contraction principle, together with
approximation lemmata coming from rough paths theory.

Before going to the results, for completeness we recall the definition of LDP. Classical notions
and results on large deviations can be found for example in [8] and in [9].

Definition 3.1. Let E be a regular Hausdorff topological space (endowed with its Borel
σ -algebra) and let I : E → [0,+∞] be a nonnegative lower semi-continuous function (i.e. such
that {I ≤ a} is closed for every finite a). We say that a sequence {µn : n ∈ N} of probability
measures on E satisfies a large deviation principle (LDP) with scale n and rate function I if the
following facts hold:
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• lim infn
1
n logµn[G] ≥ −infG I for every open subset G of E ;

• lim supn
1
n logµn[F] ≤ −infF I for every closed subset F of E .

We say that the rate function I is good if, for every a ≥ 0, the set {I ≤ a} is compact.

3.1. Sanov theorem in 1-Wasserstein metric

We quickly review Sanov theorem in 1-Wasserstein metric on a general Polish space. A
necessary and sufficient condition for Sanov theorem in p-Wasserstein metric was in fact given
in [20], but as the argument is short we include it in a form convenient to us.

Given a Polish space (E, dE ), we denote by P1(E) the space of probability measures on E
with finite first moment, i.e. the probability measures µ satisfy

∫
E dE (x, x0)µ(dx) < +∞ for

some (equivalently for all) x0 ∈ E . It is a Polish space endowed with the 1-Wasserstein distance
dW , namely

dW (µ, ν) = inf
π∈Γ (µ,ν)

{∫
E×E

dE (x1, x2)π
(
d(x1, x2)

)}
, (3.3)

where Γ (µ, ν) is the set of all probability measures on E × E with the first marginal and
the second marginal equal resp. to µ and ν. Whenever E is some (Polish) space of α-Hölder
continuous (rough) paths, cf. beginning of Section 2, we shall write dW,α for the corresponding
1-Wasserstein distance. Some basic facts on 1-Wasserstein metric will be specified later in
the Appendix.

We also recall that the relative entropy between two probability measures µ and ν on F is
defined as

H (µ|ν) =

⎧⎨⎩
∫

F
ρ log ρdν, if µ ≪ ν and

dµ
dν

= ρ,

+∞, otherwise.
(3.4)

Theorem 3.2 (Sanov Theorem in Wasserstein Metric). Let E be a Polish space and let (X i )i be a
sequence of E-valued i.i.d. random variables, with law µ. Assume that µ satisfies the following
condition: there exists a function G : E → [0,+∞], with compact sublevel sets (in particular
lower semi-continuous), with more than linear growth (i.e., for some x0, |G(x)|/d(x, x0) → +∞

as d(x, x0) → +∞), such that∫
E

eG dµ < +∞. (3.5)

Then the sequence of laws of the empirical measures

L X
n =

1
n

n∑
i=1

δXi (3.6)

satisfies a large deviation principle on P1(E), endowed with the 1-Wasserstein metric, with rate
n and good rate function H (·|µ).

This result differs from the classical Sanov theorem by the fact that it involves the
1-Wasserstein metric, while classical Sanov theorem involves Cb-weak topology. In this, the
statement above is stronger, but does need the additional condition on the measure λ.
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Remark 3.3. In the case E = C0,α([0, T ];Rd ), α < 1/2, the assumption above is satisfied by
{Bi

: i ∈ N} (independent Brownian motions starting from λ), if λ verifies Condition (3.15).
Indeed one can take

G(γ ) = c
(

sup
0≤s<t≤T

d(γ (t), γ (s))
|t − s|β

)1+ε

+ c|γ (0)|1+ε, (3.7)

where β is in (α, 1/2) and c, ε are the same of Condition (3.15). This G has compact sublevel
sets and more than linear growth; Condition (3.5) is verified since (B1(x = 0) is the Brownian
motion starting at 0)

E
[
eG(B1)]

= E
[
exp(c∥B1(x = 0)∥

1+ε

Cβ )
] ∫

Rd
ec|x |

1+ε
λ(dx) < ∞, (3.8)

by Condition (3.15) and exponential integrability of c∥B1
∥

1+ε

Cβ (a consequence for example of
Corollary 13.15 in [13]).

Proof of Theorem 3.2. The assertion is a consequence of classical Sanov theorem (in the
weak convergence topology, see for example [9, Theorem 3.2.17]) and the inverse contraction
principle, see [8, Theorem 4.2.4], provided we prove exponential tightness, in 1-Wasserstein
metric, of the laws of the empirical measures L X

n . We need to prove that, for any M > 0, there
exists a compact set K = KM in P1(E) (with the 1-Wasserstein metric) such that

lim sup
n

1
n

logµn[K c
M ] < −M. (3.9)

We take KM as in Lemma A.3. By Markov inequality and i.i.d. hypothesis on X i , for any CM ,
we have

P
[
L X

n ∈ K c
M

]
≤ e−nCM E

[
exp

(∫
E

nG dL X
n

)]
= e−nCM E

[
exp

(
G(X1)

)]n
. (3.10)

The assumption implies that A := E[exp(G(X1))] < ∞. Hence, by taking CM = M + log A+1,
we obtain (3.9) which completes the proof. □

3.2. The LDP for the double-layer empirical measure

As a warm-up example, we investigate what happens with the double layer empirical measure

L B,{2}

n =
1
n2

n∑
i, j=1

δ(Bi ,B j ) ∈ P1(C0,α([0, T ];R2d )), (3.11)

where P1(C0,α([0, T ];R2d )) denotes the space of probability measures on C0,α([0, T ];R2d )
endowed with the 1-Wasserstein metric. In the following, we identify C0,α([0, T ];R2d ) with
C0,α([0, T ];Rd )2 (they are equivalent as metric spaces) and we call π1 the canonical projection
in C0,α([0, T ];Rd )2 on the first d components.

Lemma 3.4. The double layer empirical measure L B,{2}

n is the image of the empirical measure
L B

n under the map Q ↦→ Q ⊗ Q.

Proof. Obvious via the identification δ(Bi ,B j ) = δBi ⊗ δB j . □
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Proposition 3.5. The family {Law(L B,{2}

n ) : n ∈ N} satisfies a LDP on P1(C0,α([0, T ];R2d ))
endowed with the 1-Wasserstein metric, with scale n and good rate function I {2}, given by

I (Q{2}) =

{
H (Q | P {d}), if Q{2}

= (Q ⊗ Q) with Q = Q{2}
◦ π−1

1
∞, otherwise.

(3.12)

Proof. The result is a consequence of Sanov theorem in the 1-Wasserstein metric 3.2 (together
with Remark 3.3 for our context) and the contraction principle, cf. [8, Theorem 4.2.1], provided
that the map

P1(C0,α([0, T ];Rd )) ∋ Q ↦−→ Q ⊗ Q ∈ P1(C0,α([0, T ];R2d )) (3.13)

is continuous. This continuity result is provided in Lemma A.4 in the Appendix. □

3.3. The LDP for the enhanced empirical measure

We are ready to prove the large deviation result for sequence of the enhanced empirical
measure {LB

n : n ∈ N}.
Probability measures on C0,α

g ([0, T ];R2d ) are denoted by Greek letters µ or ν. Further, we
write dW,α to denote the 1-Wasserstein distance on P1(C0,α

g ([0, T ];R2d )). We call Bi j the path
(Bi , B j ) and Bi j

= (Bi j ,Bi j ) the corresponding rough paths. We define it as B = S(B) (this
ensures we can apply the extended contraction principle on the whole space), but, as far as the
law is concerned, it is equivalent to define B via Stratonovich integral (see the section on rough
paths). The enhanced empirical measure LB

n is defined as

LB
n =

1
n2

n∑
i, j=1

δ(Bi j ,Bi j ).

Recall the definition of S given in (2.13) and of F : P1(C0,α([0, T ];Rd )) → P1(C0,α
g ([0, T ];R2d ))

(formula (1.6) in the case k = 2) as the map

F : Q ↦→ (Q ⊗ Q) ◦ S−1. (3.14)

Recall also the definition of the projection π1 as π1(X) = X1 for any element X = ((X1, X2),X)
in C0,α

g ([0, T ];R2d ).

Theorem 3.6. Let {Bi
: i ∈ N} be a family of independent d-dimensional Brownian motion,

with initial measure λ and assume that there exists c, ε > 0 such that∫
Rd

ec|x |
1+ε
λ(dx) < ∞. (3.15)

The family {Law(LB
n ) : n ∈ N} satisfies a LDP on P1(C0,α

g ([0, T ];R2d )) endowed with the
1-Wasserstein metric, with scale n and good rate function I given by

I(µ) =

{
H (µ ◦ π−1

1 | P {d}), if µ = F(µ ◦ π−1
1 ),

∞, otherwise.
(3.16)

The basic fact, that invites us to use the extended contraction principle, is the following lemma.

Lemma 3.7. The enhanced empirical measure LB
n is a.s. the image of the (true) empirical

measure L B
n under the map F : Q ↦→ (Q ⊗ Q) ◦ S−1.
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Proof. The image measure of L B
n under F is given by

1
n2

n∑
i, j=1

δS(Bi j ). (3.17)

By Proposition 2.2, the Stratonovich rough paths Bi j coincide a.s. with S(Bi j ), hence the image
measure of L B

n under F coincides a.s. with LB
n . □

In order to apply the extended contraction principle, we introduce a continuous approximation
Fm to the map F , defined in this way. Given a continuous trajectory Y , we define its piecewise
linear approximation Y (m) as

Y (m)(t) = Y
(

[mt]
m

)
+ m

(
Y

(
[mt] + 1

m

)
− Y

(
[mt]

m

)) (
t −

[mt]
m

)
.

The iterated integral of Y (m) is classically defined as Riemann integral, precisely(
Y(m)

t
)i j

=

∫ t

0
Y (m),i

s dY (m), j
s .

Now we set Fm as

Fm : P1
(
C0,α([0, T ];Rd )

)
−→ P1

(
C0,α

g ([0, T ];R2d )
)
,

Q ↦−→
(
Q ⊗ Q

)
◦ (S(m))−1

where

C0,α([0, T ];R2d ) ∋ Y ↦−→ S(m)(Y ) :=
(
Y (m),Y(m))

:= S(Y (m)) ∈ C0,α
g ([0, T ];R2d ).

Note that this S(m) is defined as Sk , but replacing the dyadic approximation with the approxi-
mation at step 1/m. We denote by LB(m)

n the enhanced empirical measure associated with B(m),
namely LB(m)

n = Fm(L B
n ). Notice that, for each m, S(m) is continuous with at most linear growth

(this is due to the use of the homogeneous distance dα) and the map Q ↦→ Q ⊗ Q is continuous
with respect to the 1-Wasserstein metrics on P1(C0,α([0, T ],Rd )) and P1(C0,α([0, T ],R2d ))
(Lemma A.4 in the Appendix). So Fm is continuous in the 1-Wasserstein metric (by Corollary A.2
in the Appendix).

In the proceeding lemmata, we show that the approximation given by Fm is indeed exponen-
tially good, in the sense of the extended contraction principle (as in [9, Lemma 2.1.4]). The main
tool is the following lemma, which follows from [13] (see Corollary 13.21 and Exercise 13.22, a
proof is given in the Appendix), which gives an exponential bound for the approximation.

Lemma 3.8. Let B the Stratonovich enhanced Brownian motion on Re, let B(m) be its piecewise
linear approximation, defined as before. Fix α < 1/2. Then, for every η in (0, 1/2 − α), there
exists c > 0 such that

sup
m≥1

E
[
exp

(
cmη/2 dα

(
B,B(m)))]

< ∞. (3.18)

As a first step, we establish the exponential tightness of the approximation LB(m)
n of LB

m .

Lemma 3.9. For any δ > 0, it holds

lim
m→∞

lim sup
n→∞

1
n

logP
[
dW,α

(
LB

n ,LB(m)

n

)
> δ

]
= −∞. (3.19)
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Proof. Consider the coupling measure 1
n2

∑n
i, j=1δ(Bi j ,B(m),i j ) with marginals LB(m)

n and LB
n . Then,

in view of (3.3), we obtain that

dW,α
(
LB

n ,LB(m)

n

)
≤

1
n2

n∑
i, j=1

dα(Bi j ,B(m),i j ), (3.20)

where we used the fact that the map (X,X′) ↦→ dα(X,X′) is Lipschitz continuous. By means of
Hoeffding’s decomposition [14], the right-hand side of (3.20) can be rewritten as

1
n(n − 1)

n∑
i, j=1
i ̸= j

Hm(i, j) =
1
n!

∑
σ∈Sn

1
⌊n/2⌋

⌊n/2⌋∑
i=1

Hm
(
σ (2i − 1), σ (2i)

)
,

where Sn denotes the set of all permutations of {1, . . . , n} and

Hm,n(i, j) ≡ Hm(i, j) :=
n − 1

n
dα (Bi j ,B(m),i j ) +

1
n

dα(Bi i ,B(m),i i ).

Hence, an application of the Markov inequality and Jensen’s inequality gives, for any C > 0 and
any n and m,

P
[
dW,α

(
LB

n ,LB(m)

n

)
> δ

]
≤ P

[
1
n!

∑
σ∈Sn

1
⌊n/2⌋

⌊n/2⌋∑
i=1

Hm
(
σ (2i − 1), σ (2i)

)
> δ

]

≤ e−Cδ E
[

exp
(

C
n!

∑
σ∈Sn

1
⌊n/2⌋

⌊n/2⌋∑
i=1

Hm
(
σ (2i − 1), σ (2i)

))]

≤ e−Cδ 1
n!

∑
σ∈Sn

E
[

exp
(

C
⌊n/2⌋

⌊n/2⌋∑
i=1

Hm
(
σ (2i − 1), σ (2i)

))]
.

Here, we see the advantage of Hoeffding’s decomposition: by using the mutual independence of
{H

(
σ (2i − 1), σ (2i)

)
: i = 1, . . . , ⌊n/2⌋} we finally get that

P
[
dW,α

(
LB

n ,LB(m)

n

)
> δ

]
≤ e−Cδ E

[
exp

(
C

⌊n/2⌋
Hm(1, 2)

)]⌊n/2⌋

. (3.21)

On the other hand, by choosing C = cmηn/(6(c′
∨ 1)) for some c′ < ∞ such that

dα(B11,B(m),11) ≤ c′ dα(B1,B(m),1), Lemma 3.8 implies that, for any η ∈ (0, 1/2 − α) and any
n ≥ 2,

sup
m≥1

E
[

exp
(

c
6(c′ ∨ 1)

mηn
⌊n/2⌋

Hm(1, 2)
)]

≤ sup
m≥1

E
[
exp

(
cmη dα(B12,B(m),12)

)]1/2
E

[
exp

(
cmη dα(B1,B(m),1)

)]1/2
< ∞.

By combining this estimate with (3.21), the assertion follows. □

Lemma 3.10. For every a < ∞, it holds

lim
m→∞

sup
Q:H (Q|P{d})≤a

dW,α
(
Fm(Q), F(Q)

)
= 0. (3.22)
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Proof. Using the coupling (Q ⊗ Q) ◦ (S(m)(X ), S(X ))−1, we get

dW,α
(
Fm(Q), F(Q)

)
≤

∫
C0,α ([0,T ],R2d )

dα
(
S(m)(X ), S(X )

)
Q ⊗ Q(dX )

=

∫
C0,α ([0,T ],R2d )

dα
(
S(m)(X ), S(X )

)
×

(
dQ

dP {d}
⊗

dQ
dP {d}

)
(X )

(
P {d}

⊗ P {d}
)
(dX ).

The idea is the following: For any Q with bounded entropy, dQ
dP{d}

⊗
dQ

dP{d}
has a uniform

L log L bound with respect to the Wiener measure P {d}. Hence, the lemma is proven if the norm
of dα(S(m)(X ), S(X )) in the dual space of L log L , again with respect to P {d}, converges to 0.
This convergence follows by an exponential control of dα(S(m)(X ), f (X )) under P {d}, which is a
consequence of Lemma 3.8.

To make this argument work, we use the theory of Orlicz space. Let Φ, Ψ : [0,∞) → [0,∞)
be a complementary Young pair of N -functions defined by

Φ(r ) =
1
2

r2 1r≤1 +

(
er−1

−
1
2

)
1r>1, and

Ψ (r ) =
1
2

r2 1r≤1 +

(
r log r +

1
2

)
1r>1.

Further, on a given measure space (Λ,Σ , µ), introduce for any g, h : Λ → [0,∞) measurable

∥g∥Lexp := inf
k>0

{
1
k

(
1 +

∫
Λ

Φ(kg) dµ
)}

and

∥h∥L log L := inf
k>0

{
1
k

(
1 +

∫
Λ

Ψ (kh) dµ
)}
.

Then, the classical Orlicz–Birnbaum estimate, see [16, Section 3.3] implies that for any
measurable, nonnegative functions g and h, it holds∫

Λ

gh dµ ≤ 4 ∥g∥L log L ∥h∥Lexp . (3.23)

In particular, by using the explicit form of the Orlicz pair (Φ,Ψ ) the following estimates hold
for any measurable, nonnegative functions g, h and k > 0∫

Λ

gh dµ ≤
4
k

(
1 +

∫
Λ

exp(kg) dµ
) (

2 +

∫
Λ

h log h , dµ
)
. (3.24)

By applying (3.24) with Λ = C0,α(R2d ), µ = P {d}
⊗ P {d}, g = dα(S(m)(X ), S(X )), h =

dQ
dP{d}

⊗
dQ

dP{d}
we get

dW,α
(
Fm(Q), F(Q)

)
≤

4
k

(2 + 2a)
(

1 + E
[
exp

(
k dα

(
B12,B12,(m)))]), (3.25)

where we used that
∫
Λ h log h dµ = 2H (Q|P {d}) ≤ 2a. Finally, by choosing k = cmη/2, a

further application of Lemma 3.8 yields

dW,α
(
Fm(Q), F(Q)

)
≤

4
cmη/2 (2 + 2a)(1 + C),

which completes the proof. □
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Proof of Theorem 3.6. By Sanov Theorem 3.2 and Remark 3.3, the extended contraction
principle ([9], Lemma 2.1.4) together with Lemmas 3.9 and 3.10 shows that {Law(LB(m)

n ) : n ∈

N} satisfies an LDP with scale n and good rate function given by

µ ↦→ inf
{

H (Q | P)
⏐⏐⏐Q ∈ P1

(
C0,α([0, T ],Rd )

)
and F(Q) = µ

}
.

It is easy to see that this rate function coincides with the I defined in Theorem 3.6. □

We close the section with the convergence (in probability) of the enhanced empirical measures,
which follows from the LDP (as well known in large deviations theory).

Corollary 3.11. The sequence of P1(C0,α
g ([0, T ];R2d ))-valued random variables {LB

n : n ∈ N}

converges in probability (and in law) to the constant random variable P{2d}, the enhancement of
the 2d-Wiener measure, that is the law on C0,α

g ([0, T ];R2d ) of (B12,B12).

Proof. The result is a consequence of the LDP for the laws of LB
n and of the fact that the good

rate function has a unique zero in P{2d}. □

4. The modified Wasserstein space

As already mentioned in the Introduction, in view of our application (Corollary 6.2), we will
have to deal with maps of the form

µ ↦−→

∫
C0,α

g

∫ T

0
f (X ) dXµ(dX) (4.1)

and we would like these maps to be continuous (to apply standard tools of large deviations
theory). On one side, we know that a map µ ↦→

∫
G dµ is continuous in the 1-Wasserstein

metric if G is continuous with at most linear growth. But on the other side, by Theorem 2.1, the
rough path integral has a growth of order at most 1/α, in particular a more than linear growth
(with respect to the homogeneous rough paths norm).7 This creates a problem. Following [3], we
introduce a new function N of X with good concentration properties (w.r.t. to Brownian rough
paths) such that the rough integral has at most linear growth with respect to N . We then device a
strengthened topology, on a restriction of the space P1(C0,α

g ([0, T ];Re)), which allows us to use
as test functions also functions with linear growth with respect to such N .

In this new topology we prove the large deviation principle for the enhanced empirical
measures, as a consequence of the LDP in the 1-Wasserstein metric, via inverse contraction
principle. This amounts to verify exponential tightness in the new topology, which can be proved
using again Hoeffding decomposition and also Gaussian estimates for Brownian rough paths.

Remark 4.1. One may ask why we do not take simply N (X) = ∥X∥
1/α
α , or allow for

p-Wasserstein distance, for p = 1/α. The reason is that, with this choice of N , we are not
able to prove a Sanov-type theorem for the enhanced empirical measure. Actually, in [20], it is
proved that a large deviation result in the p-Wasserstein distance does not hold for any p > 2
(and actually also for p = 2), as a consequence of the lack of exponential integrability of ∥X∥

p
α .

7 The path-by-path estimate in Theorem 2.1 is optimal.
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4.1. A modified Wasserstein topology

For the definition of N , consider the following sequence of stopping times: given X in
C0,α

g ([0, T ];Re), we define

τ α0 (X) = 0, ταi+1(X) = inf
{
t > ταi (X) : ∥X∥(1/α)−var,[ταi (X),t] ≥ 1

}
, i ∈ N. (4.2)

Here ∥X∥(1/α)−var,[s,t] is the (1/α)-variation of X, as group-valued path, in the interval [s, t],
see [13] for precise definition. What we need here is that the norm ∥X∥(1/α)−var,[s,t] is a continuous
function of X, in the space C0,α

g ([0, T ];Re), for fixed s, t , and it is independent of the initial datum
X0. Notice, that it is also a continuous function of s, t , for fixed X, and it is monotone in s and t ,
in the sense that ∥X∥(1/α)−var,[s′,t ′] ≤ ∥X∥(1/α)−var,[s,t] for any s ≤ s ′ < t ′

≤ t . We define N = Nα

as

Nα(X) := sup
{
i ∈ N : τ αi (X) < T

}
. (4.3)

We omit α when not necessary. The following lower-semicontinuity property of N will be proved
in the Appendix.

Lemma 4.2. The function N is lower semi-continuous on C0,α
g ([0, T ];Re).

The next lemma gives the desired sublinear growth of the rough integral in terms of N ,
see [12] for a proof.

Lemma 4.3. Let f be a function in C2
b (Re) and let X be in C0,α

g ([0, T ];Re). Then it holds, for
some constant C f depending on f ,⏐⏐⏐⏐∫ T

0
f (X ) dX

⏐⏐⏐⏐ ≤ C f
(
1 + N (X)

)
. (4.4)

Now we introduce a modified topology, on a restriction of P1(C0,α
g ([0, T ];Re)), in order

to deal with functionals of the form µ ↦→
∫

G dµ for some continuous G with G(X) ≤

C(1 + N (X)).
First, for given ε > 0, we introduce the space

P(∥·∥+N )1+ε

(
C0,α

g ([0, T ];Re)
)

:=

{
µ ∈ P1(C0,α

g ([0, T ];Re)) :

∫
C0,α

g

(|X0| + ∥X∥α + Nα(X))1+ε µ(dX) < ∞

}
(4.5)

of probability measures with finite (|X0| + ∥ · ∥α + Nα)1+ε.

Definition 4.4. Let µn , n ∈ N, µ be in P(∥·∥+N )1+ε

(
C0,α

g ([0, T ];Re)
)
. We say that {µn : n ∈ N}

converges to µ in the (∥ · ∥ + N )1+ε-Wasserstein topology if the following two conditions hold:

1. {µn : n ∈ N} converges to µ in the weak topology, i.e. wrt. any test function in
Cb(C0,α

g ([0, T ];Re));
2. we have

sup
n∈N

∫
C0,α

g

(|X0| + ∥X∥α + Nα(X))1+ε µn(dX) < ∞. (4.6)

We say that a subset C of P(∥·∥+N )1+ε (C0,α
g ([0, T ];Re)) is closed in the (∥ ·∥+ N )1+ε-Wasserstein

topology if it is closed under convergence of sequences.
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Due to (2.5), |X0| + ∥X∥α is equivalent to dα(X, 0). Thus, every sequence converging in the
(∥ · ∥ + N )1+ε-Wasserstein topology converges also in the 1-Wasserstein metric (remind the
characterization of 1-Wasserstein distance in Lemma A.1). Hence the (∥ · ∥+ N )1+ε-Wasserstein
topology is stronger than the 1-Wasserstein topology. Note that the (∥ · ∥ + N )1+ε-Wasserstein
topology might not be metrizable. However, the following result, proved in the Appendix, gives
the properties needed for large deviations analysis.

Lemma 4.5. The space P(∥·∥+N )1+ε (C0,α
g ([0, T ];Re)) , with the (∥ · ∥ + N )1+ε-Wasserstein

topology, is a regular Hausdorff space.

Furthermore, since N is lower semi-continuous, by Corollary B.2 the functional

µ ↦−→

∫
C0,α

g

(|X0| + ∥X∥α + Nα(X))1+ε µ(dX)

is sequentially lower semi-continuous with respect to the 1-Wasserstein topology: if {µn : n ∈ N}

converges to µ in the 1-Wasserstein or in the (∥ · ∥ + N )1+ε-Wasserstein topology, then∫
C0,α

g

(|X0| + ∥X∥α + Nα(X))1+ε µ(dX)

≤ lim inf
n

∫
C0,α

g

(|X0| + ∥X∥α + Nα(X))1+ε µn(dX). (4.7)

Proposition 4.6. Assume that {µn : n ∈ N} converges to µ in the (∥ · ∥ + N )1+ε-Wasserstein
topology. Let G be a continuous function on C0,α

g ([0, T ];Re) such that G(X) ≤ C(1 + |X0| +

∥X∥α + Nα(X)), as for example the rough integral. Then,

lim
n→∞

∫
C0,α

g

G(X)µn(dX) =

∫
C0,α

g

G(X)µ(dX). (4.8)

Proof. For any m positive integer, let Gm be the continuous bounded function defined from G
with truncation at level m, that is Gm = G1|G|≤m + m1G>m − m1G<−m . We have for every m, n,⏐⏐⏐⏐ ∫

C0,α
g

G d(µn − µ)
⏐⏐⏐⏐ ≤

⏐⏐⏐⏐ ∫
C0,α

g

Gm d(µn − µ)
⏐⏐⏐⏐ +

∫
C0,α

g

⏐⏐Gm − G
⏐⏐ d(µn + µ)

Notice that the condition G(X) ≤ C(1 + |X0| + ∥X∥ + N (X)) implies (for m with m/C > 4)
that ⏐⏐G(X) − Gm(X)

⏐⏐ ≤ 2C(|X0| + ∥X∥ + N (X)) 1∥X∥+N (X)>m/(2C).

So it holds for any n∫
C0,α

g

⏐⏐Gm − G
⏐⏐ dµn ≤ 2C

∫
C0,α

g

(|X0| + ∥X∥ + N (X)) 1∥X∥+N (X)>m/(2C) dµn

≤ m−ε(2C)1+ε

∫
C0,α

g

(|X0| + ∥X∥ + N (X))1+ε dµn

≤ m−ε(2C)1+εD,

where D := supn

∫
C0,α

g
(|X0| + ∥X∥ + N (X))1+ε µn(dX) is bounded by assumption. The same

estimates hold also for µ in place of µn , by the lower semi-continuity property (4.7). Hence, for



J. Deuschel et al. / Stochastic Processes and their Applications 128 (2018) 2228–2269 2247

any ρ > 0, we can find mρ such that∫
C0,α

g

⏐⏐Gmρ − G
⏐⏐ d(µn + µ) < ρ.

Fix such mρ . Since Gmρ is continuous bounded, there exists nρ < ∞ such that, for every n ≥ nρ ,⏐⏐⏐⏐ ∫
C0,α

g

Gmρ d(µn − µ)
⏐⏐⏐⏐ < ρ.

So we conclude that, for every n ≥ nρ ,⏐⏐⏐⏐ ∫
C0,α

g

G d(µn − µ)
⏐⏐⏐⏐ < 2ρ.

The proof is complete. □

We conclude this subsection with a lemma on compact sets on this space. This will be useful
in view of exponential tightness on P(∥·∥+N )1+ε (C0,α

g ([0, T ];Re)). Recall that, given a topology τ
(i.e. the set of all open sets), its restriction τA to a set A is given by {B ∩ A : B ∈ τ }.

Lemma 4.7.

1. For any R > 0, the (∥ · ∥ + N )1+ε-Wasserstein topology restricted on the set

B̄(R) =

{
µ ∈ P(∥·∥+N )1+ε

(
C0,α

g ([0, T ];Re)
)

:

∫
C0,α

g

(|X0| + ∥ · ∥ + N )1+ε dµ ≤ R
}

(4.9)

coincides with the 1-Wasserstein topology restricted there.
2. Let H be a subset of P(∥·∥+N )1+ε (C0,α

g ([0, T ];Re)), which is compact in the 1-Wasserstein
metric and is “bounded” in P(∥·∥+N )1+ε (C0,α

g ([0, T ];Re)), in the sense that

sup
H

∫
C0,α

g

(|X0| + ∥X∥ + N (X))1+ε µ(dX) < ∞. (4.10)

Then, H is compact in P(∥·∥+N )1+ε (C0,α
g ([0, T ];Re)) (with its (∥ · ∥ + N )1+ε-Wasserstein

topology).

Proof. For the first part, every closed set in B̄(R) with respect to the (restricted) 1-Wasserstein
topology is also closed with respect to the (restricted) (∥ · ∥ + N )1+ε-Wasserstein topology, this
being stronger. Conversely, let C be a closed subset of B̄(R) in the restricted (∥ · ∥ + N )1+ε-
Wasserstein topology; notice that C is closed also in the (not restricted) (∥·∥+N )1+ε-Wasserstein
topology, since B̄(R) is closed in this topology (by the lower semicontinuity property (4.7)). Let
(µn)n be a sequence in C , converging to µ in the 1-Wasserstein metric. Since C is in B̄(R), the
uniform bound

sup
n∈N

∫
C0,α

g

(|X0| + ∥X∥ + N (X))1+ε µn(dX) < ∞ (4.11)

holds, hence µn converges to µ also in the (∥ ·∥+ N )1+ε-Wasserstein topology. Furthermore µ is
also in B̄(R), by the lower semicontinuity property (4.7). Since C is closed in the (∥ · ∥ + N )1+ε-
Wasserstein topology, µ must be in C and so C is closed also in the 1-Wasserstein topology. The
first statement is proved.
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The second part follows from the first one (as a general fact in topology), we give a proof
for completeness. Let (Ai )i∈I be a family of open sets, in the (∥ · ∥ + N )1+ε-Wasserstein
topology, whose union contains H and take R > 0 such that H is contained in B̄(R). Consider
Ãi := Ai ∩ B̄(R), which are open sets in the (∥ · ∥ + N )1+ε-Wasserstein topology restricted
on B̄(R). By the first statement, they are open also in the restricted 1-Wasserstein topology on
B̄(R). That is, there exist Bi (subsets of P1(C0,α

g )), open sets in the 1-Wasserstein topology, such
that Ãi = Bi ∩ B̄(R). Actually, since B̄(R) is closed in every topology under consideration, one
can choose Bi = Ai ∪ P1(C0,α

g ) \ B̄(R). In particular (Bi )i∈I is a family of open sets, in the
1-Wasserstein metric, covering H . By the compactness of H in the 1-Wasserstein metric, we can
extract a finite subset {i1, . . . , im} of I such that

⋃
1≤k≤m Bik contains H . Since Ãi = Bi ∩ B̄(R)

and H is in B̄(R), also
⋃

1≤k≤m Aik contains H . The proof is complete. □

4.2. The LDP in the modified Wasserstein space

In this section we prove the LDP for the enhanced empirical space, in the stronger (∥ · ∥ +

N )1+ε-Wasserstein topology, again for the double layer case (k = 2 will be fixed and often
omitted in the notation). Recall the definition of F and S in (3.14), (2.13). Recall that the
Brownian motions Bi (and their corresponding rough paths) start from measure λ satisfying
(3.15). Here we assume ε to be the one appearing in condition (3.15). Mind that we need large
deviation tools on a regular Hausdorff spaces (as in [8]) and not just on metric spaces.

Theorem 4.8. The sequence Law(LB
n )n satisfies a LDP on P(∥·∥+N )1+ε (C0,α

g ([0, T ];R2d ))
(endowed with the (∥ · ∥ + N )1+ε-Wasserstein topology) with scale n and good rate function

I(µ) =

{
H (µ ◦ π−1

1 | P {d}), if µ = F(µ ◦ π−1
1 ),

∞, otherwise.
(4.12)

Recall that the strategy is to use the inverse contraction principle starting from the previous
Theorem 3.6 and that, for this, we need the exponential tightness of the family (Law(LB

n ))n in the
(∥ · ∥ + N )1+ε-Wasserstein topology.

The main tool is the following lemma, which follows for example from [12, Theorems 11.9
and 11.13], see also [3, Theorem 6.3] adapted to our case in the Appendix, and gives an
exponential bound for N (B).

Lemma 4.9. Let B be the Stratonovich enhanced Brownian motion on Re, with initial measure
λ̃ satisfying condition (3.15). Then, for any α < 1/2, β < 1/2 the random variables ∥B∥β and
Nα(B) have Gaussian tails, in particular, for some c > 0,

E
[
exp

(
c(|B0| + ∥B∥β + Nα(B))1+ε

)]
< ∞. (4.13)

The same result holds for B11 on R2d (where B1 is a Brownian motion on Rd starting from λ and
λ satisfies (3.15)).

Here is the exponential tightness result:

Lemma 4.10. The sequence {Law(LB
n ) : n ∈ N} is exponentially tight on P(∥·∥+N )1+ε (C0,α

g ([0, T ];
R2d )) with respect to the (∥ · ∥ + N )1+ε-Wasserstein topology.
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Proof. For any M > 0, we have to find a set KM , compact in the (∥ · ∥ + N )1+ε-Wasserstein
topology, such that

lim sup
n

1
n

logP{LB
n ∈ K c

M} < −M. (4.14)

Our candidate for KM is

KM =

{
µ ∈ P(∥·∥+N )1+ε :

∫
C0,α

g

G dµ ≤ M
}
,

where G : C0,α
g ([0, T ];R2d ) → [0,+∞] is defined by G(X) := (|X0| + ∥X∥β + Nα(X))1+ε for

some fixed β with α < β < 1/2.
The compactness of KM follows from Lemma 4.7, since KM satisfies the hypotheses of that

result. Indeed 1) KM is “bounded” in P(∥·∥+N )1+ε (in the sense of (4.10)), since ∥X∥α ≤ C∥X∥β

for some C > 0; 2) it is also compact in the 1-Wasserstein metric, as a consequence of
Lemma A.3 (since G has more than linear growth, is lower semi-continuous and has pre-compact
sublevel sets for the compact inclusion of Cβg in C0,α

g ).
Now we verify (4.14). We use a strategy similar to that for Lemma 3.9. By Markov inequality,

we have for any C > 0,

P
[
LB

n ∈ K c
M

]
= P

[∫
C0,α

g

G dLB
n > M

]
≤ e−C M E

[
exp

(
C

∫
C0,λ

g

G dLB
n

)]
= e−C M E

[
exp

(
C
n2

n∑
i, j=1

G(Bi j )
)]
.

Exploiting Hoeffding decomposition as in the proof of Lemma 3.9, we get

P
[
LB

n ∈ K c
M

]
≤ e−C M E

[
exp

(
C

[n/2]
H ′(1, 2)

)][n/2]

,

where now

H ′(i, j) :=
n − 1

n
G(Bi j ) +

1
n

G(Bi i ).

By using that H ′(1, 2) ≤ G(B12) + G(B11) and applying Lemma 4.9 to B12 and to B11 (with
initial measure λ ⊗ λ), we get that E

[
exp(cH ′(1, 2))

]
=: D is finite for some constant c > 0.

Hence, choosing C = c[n/2], we get

P
[
LB

n ∈ K c
M

]
≤ e−c[n/2]M D[n/2].

From this (4.14) follows (up to choosing K3M/c instead of KM ). □

Proof of Theorem 4.8. The result follows applying the inverse contraction principle (in the
version of [8, Theorem 4.2.4]), from the space P1 to the space P(∥·∥+N )1+ε (with the identity
map), having the LDP on the former space (Theorem 3.6) and the exponential tightness on the
latter space. □
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5. Extension to k-layer enhanced empirical measures

So far we have considered the double layer enhanced empirical measure. We now deal with
the extension of the LDP to the k-layer enhanced empirical measure, namely

LB,{k}

n =
1
nk

n∑
i1,...ik=1

δS{kd}(Bi1 ,...,Bik ). (5.1)

Here is the extension of Theorem 3.6, that is Theorem 1.1 in the Introduction, for the 1-
Wasserstein metric, extended to a general initial measure.

Theorem 5.1. Let {Bi
: i ∈ N} be a family of independent d-dimensional Brownian motion, with

initial measure λ and assume Condition (3.15) for some c, ε > 0. The sequence {Law(LB;{k}

n ) :

n ∈ N} satisfies a LDP on P1(C0,α
g ([0, T ];Rkd )) endowed with the 1-Wasserstein metric, with

scale n and good rate function I{k} given by

I{k}(µ) =

{
H (µ ◦ π−1

1 | P {d}), if µ = F {k}(µ ◦ π−1
1 ),

∞, otherwise.
(5.2)

The proof of this LDP goes like the proof in the double layer case (k = 2). We recall the main
steps and the main changes.

First Lemma 3.7 is extended to the k layer case; the map Q ↦→ Q⊗k is continuous by
Lemma B.4 in the Appendix. Therefore the strategy is still to apply the extended contraction
principle. For this we define the approximant S(m);{k} as for the double layer case but on Rkd ,
the approximation B(m);{k} of the enhancement of the kd-dimensional Brownian motion and the
maps F (m);{kd} are defined correspondingly. More in general, the space R2d must be replaced in
all the arguments by Rkd . Then we need to extend Lemmas 3.9 and 3.10 to the k layer case.

Lemma 5.2. For any δ > 0, it holds

lim
m→∞

lim sup
n→∞

1
n

logP
[
dW,α

(
LB;{k}

n ,LB(m)
;{k}

n

)
> δ

]
= −∞. (5.3)

Proof. Consider the coupling measure 1
nk

∑n
i1,...,ik=1δ(B{k},i1,...,ik ,B(m);{k},i1,...,ik ) with marginals

LB(m)
;{k}

n and LB;{k}

n . As in the double layer case, we obtain that

dW,α
(
LB;{k}

n ,LB(m)
;{k}

n

)
≤

1
nk

n∑
i1,...ik=1

dα(B{k},i1,...,ik ,B(m);{k},i1,...,ik )

≤
(n − k)!

n!

n∑
i1,...,ik=1

mutually distinct

H(m);{k}(i1, . . . , ik), (5.4)

where the second sum is obtained from the first one rearranging the terms with at least two equal
indices. For instance, in the case k = 3, H(m);{3} spells out as

H(m);{3}(i1, i2, i3) :=
(n − 1)(n − 2)

n2 dα(B{3},i1,i2,i3 ,B(m);{3},i1,i2,i3 )

+
n − 1

n

(
dα(B{3},i1,i2,i1 ,B(m);{k},{3},i1,i2,i1 )

+ dα(B{3},i1,i1,i3 ,B(m);{3},i1,i1,i3 )
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+ dα(B{3},i1,i2,i2 ,B(m);{k},{3},i1,i2,i2 )
)

+
1
n2 dα(B{3},i1,i1,i1 ,B(m);{k},{3},i1,i1,i1 ).

For a general k, H(m);{k}(i1, . . . ik) can be written as

H(m);{k}(i1, . . . , ik) =
n!

(n − k)! nk
dα(B{k},i1,...,ik ,B(m);{k},i1,...ik )

+
n!

(n − k)! nk

n∑
j1,..., jk=1

a j1,..., jk dα(B{k}, j1,..., jk ,B(m);{k}, j1,..., jk ), (5.5)

where the sum in the second addend is over all ( j1, . . . , jk), with at least one repetition of indices,
such that, for any l ∈ {1, . . . k}, there exists l ′ ≤ l with il ′ = jl , and the coefficient a j1,..., jk
is the inverse of a positive integer depending on the repetition of indices in ( j1, . . . , jk). The
only relevant fact is that the number of terms is independent of m and n (for fixed k) and the
coefficients a j1,..., jk are bounded by 1.

Now, we use Hoeffding’s decomposition [14], for the general k layer case: the right-hand side
of (5.4) can be rewritten as

1
n!

∑
σ∈Sn

1
⌊n/k⌋

⌊n/k⌋∑
j=1

H(m),{k}

(
σ (k j − (k − 1)), . . . , σ (k j)

)
,

where Sn denotes the set of all permutations of {1, . . . , n}. As in the double layer case, an
application of the Markov inequality and Jensen’s inequality gives, for any C > 0 and any n
and m,

P
[
dW,α

(
LB;{k}

n ,LB(m)
;{k}

n

)
> δ

]
≤ e−Cδ 1

n!

∑
σ∈Sn

E
[

exp
(

C
⌊n/k⌋

⌊n/k⌋∑
i=1

H(m);{k}

(
σ (k j − (k − 1)), . . . , σ (k j)

))]
.

By using the mutual independence of {H
(
σ (2i − 1), σ (2i)

)
: i = 1, . . . , ⌊n/2⌋}, we finally get

that

P
[
dW,α

(
LB

n ,LB(m)

n

)
> δ

]
≤ e−Cδ E

[
exp

(
C

⌊n/k⌋
H(m);{k}(1, . . . k)

)]⌊n/k⌋

. (5.6)

On the other hand, using the equality (5.5), we obtain via Hölder inequality

E
[

exp
(

C
⌊n/k⌋

H(m);{k}(1, . . . k)
)]⌊n/k⌋

≤

k∏
l=1

E
[

exp
(

clC
⌊n/k⌋

dα(B{l},i1,... il ,B(m);{l},i1,... il )
)]⌊c′

l n/k⌋

.

Note that the constant cl , c′

l can depend on l = 1, . . . k but are independent of n and m, because
of the aforementioned uniform bounds on the number of addends and on the coefficients in (5.5).
Now, by choosing a suitable C , proportional to mηn and applying Lemma 3.8 to B(m);{l},i1,...il ,
l = 1, . . . k, we get for a suitable constant c > 0, for any η ∈ (0, 1/2 − α) and any n large
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enough,

sup
m≥1

E
[

exp
(

c
mηn

⌊n/k⌋
H(m);{k}(1, . . . k)

)]
< ∞.

By combining this estimate with (5.6), the assertion follows. □

Lemma 5.3. For every a < ∞, it holds

lim
m→∞

sup
Q:H (Q|P{d})≤a

dW,α
(
F (m);{k}(Q), F (m)(Q)

)
= 0. (5.7)

Proof. The proof of the lemma goes on as the proof of Lemma 3.10. The only changes are:
Q ⊗ Q must be replaced by Q⊗k , and similarly for the density with respect to P⊗k , µ must
be taken as (P {d})⊗k , h as ( dQ

dP{d}
)⊗k and the estimate on

∫
h log h dµ becomes

∫
h log h dµ =

k H (Q|P {d}) ≤ ka. □

Proof of Theorem 5.1. As for the proof of the double layer case, Lemmata 5.2 and 5.3 allow to
apply the extended contraction principle, which gives the desired result. □

We also have the convergence (in probability) of the enhanced k layer empirical measures,
which follows again from the LDP.

Corollary 5.4. The sequence of P1(C0,α
g ([0, T ];Rkd ))-valued random variables {LB;{k}

n : n ∈ N}

converges in probability (and in law) to the constant random variable P{kd}, the enhancement of
the kd-Wiener measure, that is the law on C0,α

g ([0, T ];Rkd ) of (B1...k,B1...k).

As in the double layer case, the LDP can be extended to the modified Wasserstein topology
on C0,α

g ([0, T ];Rkd ). This completes the proof of Theorem 1.1 as stated in the Introduction.

Theorem 5.5. The sequence Law(LB;{k}

n )n satisfies a LDP on P(∥·∥+N )1+ε (C0,α
g ([0, T ];Rkd ))

(endowed with the (∥ · ∥ + N )1+ε-Wasserstein topology) with scale n and good rate function

I{k}(µ) =

{
H (µ ◦ π−1

1 | P {d}), if µ = F {k}(µ ◦ π−1
1 ),

∞, otherwise.
(5.8)

Proof. The proof is analogous to the proof of Theorem 4.8, we recall only the main points and
changes. In all the arguments, R2d must be replaced in all the arguments by Rkd .

First, Lemma 4.9 is extended to B{k};i1,...,ik for any multi index (i1, . . . , ik), with a similar
proof. Then, Lemma 4.10 is extended to the k layer case and gives the exponential tightness,
in the modified Wasserstein topology, of Law(LB;{k}

n )n; the proof is similar to the proof of
Lemma 4.10, using the Hoeffding decomposition for the general k layer case (as in the proof
of Lemma 5.2) and Lemma 4.9 applied to B{k};1,...,k and to B{k};i1,...,ik with repetition of indices.
The exponential tightness allows to conclude the LDP in the modified Wasserstein topology, by
the inverse contraction principle. □
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6. Large deviations for weakly interacting diffusions

We consider an interacting particle system of the following type:⎧⎪⎨⎪⎩ dX i,n
t =

1
n

n∑
j=1

b
(
X i,n

t , X j,n
t

)
dt + dBi

t , i = 1, . . . n,

Law(X i,n
0 ) = λ i.i.d.

(6.1)

Here X i,n , i = 1, . . . , n are the unknown positions of the particles, each of them in Rd ,
b : Rd

×Rd
→ Rd is a given vector field, which we assume regular as much as needed (precisely

C2
b (Rd

× Rd )), Bi are independent standard Rd -valued Brownian motions, on a fixed filtered
probability space (Ω ,A, (Ft )t ,P), and λ is a given probability measure on Rd satisfying the
exponential integrability condition (3.15) for some c > 0, ε > 0. We will omit the superscript
n when not necessary. It is well known that the above system admits existence and strong
uniqueness (i.e. uniqueness for fixed X0 and B).

The object of interest is an empirical measure associated to this system. For this, let Xn
=

(X1,n, . . . , Xn,n) be the solution to the SDE (6.1). However, we will not, as is classical [17],
study

L X
n =

1
n

n∑
i=1

δX i,n (6.2)

but instead, as n → ∞, the k-layer, enhanced empirical measure LX;{k}

n , defined in complete
analogy to the Brownian motion setting. To wit, with k = 2 for notational simplicity only,

LX,{2}

n (ω) ≡ LX
n (ω) :=

1
n2

n∑
i, j=1

δXi j,n , (6.3)

where Xi j,n
= (X i j,n,Xi j,n) is the rough path on R2d associated with X i j,n

= (X i,n, X j,n),
defined by Xi j,n

= S{2d}(X i j,n). Clearly, LX;{2}

n (ω) is a (random) measure on C0,α
g ([0, T ];R2d )

and we define, on the space of such measures,8

Kb(µ) =

∫
C0,α

g ([0,T ];R2d )

∫ T

0
b̄(X t ) dXt µ(dX)

−
1
2

∫ T

0

∫
C0,α

g ([0,T ];R2d )
divb̄(X t )µ(dX) dt

−
1
2

∫ T

0

∫
C0,α

g (R2d )

(∫
C0,α

g (R2d )
b̄(X1

t , Y 2
t )µ(dY)

)2

µ(dX) dt, (6.4)

noting that Kb(µ) is well-defined whenever b ∈ C2
b and µ ∈ P(∥·∥+N )1+ε (C0,α

g ([0, T ];R2d )).
Call Π2 the projection from G2(Rkd ) → G2(R2d ).9 Given a measure µ on C0,α

g ([0, T ];Rkd ),
the image measure (Π2)∗µ ≡ µ ◦ Π −1

2 is a measure on the space C0,α
g ([0, T ];R2d ) of 2-layer

rough paths. As previously, P {d} is d-dimensional Wiener measure with λ initial distribution. N
was introduced in (4.3).

8 Given b : R2d
→ Rd , using notation (x1, x2) ∈ Rd

× Rd
= R2d , we denote by b̄ : R2d

→ R2d the function such
that b̄(x1, x2)1

= b(x1, x2) and b̄(x1, x2)2
= 0.

9 Π2 is the projection (X12, . . . ;X12, . . .) ↦→ (X12
;X12).
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Theorem 6.1. Assume that b is in C2
b (Rd

× Rd ), let Xn
= (X1,n, . . . , Xn,n) be the solution

to the system (6.1), with initial law λ satisfying Condition (3.15) for fixed ε > 0, and let
LX,{k}

n be the corresponding enhanced k-layer empirical measure, k ≥ 2. Fix α ∈ (1/3, 1/2).
Then, the sequence of laws {Law(LX

n ) : n ∈ N} satisfies a large deviation principle on
P(∥·∥+N )1+ε (C0,α

g ([0, T ];Rkd )) with scale n and good rate function Jb given by

J{k}

b (µ) ≡ Jb(µ) =

{
H (µ ◦ π−1

1 |P {d}) − Kb(µ ◦ Π −1
2 ), if µ = F {k}(µ ◦ π−1

1 ),
∞, otherwise.

(6.5)

Proof. FIRST STEP: Enhanced Girsanov theorem. Let X = Xn
= (X1,n, . . . , Xn,n) be the

solution to the SDE (6.1) with Stratonovich lift X = S{nd}(X ). We prove that the law of
X on C0,α

g ([0, T ];Rnd ) is absolutely continuous with respect to the law of the enhanced nd-
dimensional Brownian motion B, with density given by exp(ρn(B)), where ρn is deterministically
defined by (recall b = b(x, y))

ρn(Y) =
1
n

n∑
i, j=1

∫ T

0
b̄(Y i j

t ) · dYi j
t −

1
2n

n∑
i, j=1

∫ T

0
divb̄(Y i j

t ) dt

−
1

2n

n∑
i=1

∫ T

0
divyb(Y i i

t ) dt

−
1
2

n∑
i=1

∫ T

0

⏐⏐⏐⏐1
n

n∑
j=1

b̄(Y i j
t )

⏐⏐⏐⏐2

dt. (6.6)

Indeed, the classical Girsanov theorem applied to (6.1), combined with Proposition 2.3, gives
that, for every ψ measurable bounded function on Cα([0, T ];Rnd ),

E
[
ψ(X )

]
= E

[
eρn (B)ψ(B)

]
.

By applying the previously obtained formula toψ(X ) := ϕ(S{nd}(X )), where ϕ is any measurable
bounded function on C0,α([0, T ];Rnd ), we get

E
[
ϕ(X)

]
= E

[
eρn (B)ϕ(B)

]
, (6.7)

that is enhanced Girsanov theorem.
SECOND STEP: Density for the law of the enhanced empirical measures. First consider the

double-layer case k = 2. We prove that on the space P(∥·∥+N )1+ε (C0,α
g ([0, T ];R2d )) the law of

the enhanced empirical measure LX
n is absolutely continuous with respect to the law of LB

n , with
density given by exp(nKb) exp(K′

b) for a bounded function K′

b specified below. The main point
is that

ρn(B) = n Kb(LB
n ) + K′

b(LB
n ) = n Kb(LB;{2}

n ) + K′

b(LB;{2}

n ), (6.8)

where

K′

b(µ) = −

∫ T

0

∫
C0,α

g ([0,T ];R2d )
divyb(π1(Yt ), π1(Yt ))µ(dY) dt.

This follows from formula (6.6), the structural reason being the mean field interaction. Now by
Lemma B.4 in the Appendix (applied with k = 2) the enhanced empirical measure associated
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with a rough path in Rnd is a continuous, in particular measurable function Gn of the rough path,
that is LX

n = Gn(X), LB
n = Gn(B). So it is enough to apply formula (6.7) to ϕ = φ ◦ Gn , where

φ is any measurable bounded function on P(∥·∥+N )1+ε (C0,α
g ([0, T ];R2d )), and to use (6.8).

In the case k > 2, on the space P(∥·∥+N )1+ε (C0,α
g ([0, T ];Rkd )) the law of the enhanced

empirical measure LX,{k}

n has density (with respect to the law of LB,{k}

n given by exp(nKb ◦

Π2) exp(K′

b ◦ Π2). Indeed,

(Π2)∗LB;{k}

n = LB;{k}

n ◦ Π −1
2 = LB;{2}

n ,

and therefore

ρn(B) = n Kb(LB;{k}

n ◦ Π −1
2 ) + K′

b(LB;{k}

n ◦ Π −1
2 ) = n Kb(LB;{2}

n ) + K′

b(LB;{2}

n ).

We can conclude as in the double-layer case (applying Lemma B.4 to the general k layer case).
THIRD STEP: LDP for Z−1

n exp(nKb ◦ Π −1
2 )Law(LB;{k}

n ) (and goodness of Jb). We are ready
to prove a large deviation principle for the family Z−1

n exp(nKb)Law(LB;{k}

n ), where Zn =

E[exp(nKb(LB;{2}

n ))] is the usual renormalization constant. Indeed, the second step invites to
apply Varadhan’s lemma (Theorem B.3, which is an easy and well-known consequence of
Varadhan’s lemma in [8, Theorem 4.3.1]). We need to verify the hypotheses, namely, for k = 2,
that Kb is a continuous function on P(∥·∥+N )1+ε (C0,α

g ([0, T ];R2d )) and that it holds, for some
γ > 1,

lim sup
n→∞

1
n

logE
[
exp

(
nγKb(LB

n )
)]
< ∞. (6.9)

The hypotheses for general k follow from those for k = 2 (so we will fix and omit k = 2 in the
argument below).

On the continuity of Kb, it is easy to see that the deterministic integrals in formula (6.4)
(i.e. the second and third addend) are continuous bounded functions of µ (they are actually
continuous bounded functions of Q = µ◦π−1

1 in the Cb-weak topology on P(C0,α([0, T ];Rd ))),
so we concentrate on the term with the rough integral. By Theorem 2.1, the rough integral

Ib(X) :=

∫ T

0
b̄(X ) dX (6.10)

is continuous on C0,α
g with at most linear growth with respect to N (by (4.4)). So, by

Proposition 4.6, the term∫
C0,α

g ([0,T ];R2d )

∫ T

0
b̄(X t ) dXt µ(dX) =

∫
C0,α

g ([0,T ];R2d )
Ib dµ

is continuous on P(∥·∥+N )1+ε (C0,α
g ([0, T ];R2d )). Hence Kb is continuous. Now we prove (6.9)

with γ = 2. We use the fact that

Mt = exp
(

2n Kb(LB
n ) −

n∑
i=1

∫ T

0

2
n2

⏐⏐⏐⏐ n∑
j=1

b(X i
− X j )

⏐⏐⏐⏐2

dt
)

is a martingale, as one can verify easily (and classically). Hence we have

E
[
exp

(
2nKb(LB

n )
)]

= E
[

MT exp
( n∑

i=1

∫ T

0

2
n2

⏐⏐⏐⏐ n∑
j=1

b(X i
− X j )

⏐⏐⏐⏐2

dt
)]

≤ e2nT ∥b∥∞ E
[
MT

]
= e2nT ∥b∥∞ ,
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which implies (6.9). Hence, we can apply Varadhan’s lemma and get the LDP for {Z−1
n exp(nKb◦

Π −1
2 )Law(LB;{k}

n ) : n ∈ N} with rate function Jb. Moreover Jb is good: this follows from
exponential tightness of {Law(LB;{k}

n ) : n ∈ N} and Varadhan’s lemma (in the version B.3).
CONCLUSION. In order to conclude the LDP for {Law(LX;{k}

n ) : n ∈ N}, note that

{Law(LB;{k}

n ) : n ∈ N} = Zn exp(K′

b ◦ Π −1
2 )

(
Z−1

n exp(nKb ◦ Π −1
2 ) Law(LB;{k}

n )
)
.

Therefore, for any Borel set A in P(∥·∥+N )1+ε (C0,α
g ([0, T ];Rkd )), we have

1
n

logP
[
LB;{k}

n ∈ A
]

≤ lim sup
n

1
n

log
(
Z−1

n exp(nKb ◦ Π −1
2 ) Law(LB;{k}

n )(A)
)

+ lim sup
n

1
n

sup
µ∈A

⏐⏐K′

b(Π −1
2 (µ))

⏐⏐ + lim sup
n

1
n

⏐⏐ log Zn
⏐⏐.

Now, K′

b is bounded on the whole P(∥·∥+N )1+ε (C0,α
g ([0, T ];Rkd )). Moreover,

Zn = E
[
exp(nKb(LB;{2}

n ))
]

= E
[
exp(−K′

b(LB;{2}

n )) exp(nKb(LB;{2}

n ) + K′

b(LB;{2}

n ))
]
,

since E[exp(nKb(LB;{2}

n )+K′

b(LB;{2}

n ))] = 1 (the exponential being a density) and K′

b is bounded
from above and from below, |log Zn| is bounded uniformly in n. Hence,

1
n

logP
[
LB;{k}

n ∈ A
]

≤ lim sup
n

1
n

log
(
Z−1

n exp(nKb ◦ Π −1
2 ) Law(LB;{k}

n )(A)
)
;

similarly (with reverse inequalities) for the lim infn . Then the LDP for {Law(LX;{k}

n ) : n ∈ N}

follows from that for {Z−1
n exp(nKb ◦ Π −1

2 )Law(LB;{k}

n ) : n ∈ N}. The proof is complete. □

We insist that it is crucial in the above proof to work with k = 2 (or more) layers, for otherwise
the argument – based on continuity of K – fails. Theorem 6.1 implies immediately, of course, a
(known, cf. [2,7]) LPD for the (1-layer, non-enhanced) empirical measure L X

n as defined in (6.2):
it suffices to apply the contraction principle, applied to the map

P(∥·∥+N )1+ε (C0,α
g ([0, t];R2d )) ∋ ν ↦−→ ν ◦ π−1

1 ∈ P1(C0,α([0, T ];Rd )),

with resulting (good) rate function

Jb(Q) := inf{Jb(µ) : µ ◦ π−1
1 = Q}.

The (only) purpose of the following corollary is to re-express this rate function in more familiar
terms of stochastic analysis. To this end, we define, for any measure Q on C0,α([0, T ];Rd ) which
makes the coordinate process, and then also the doubled coordinate process X = (X1, X2) under
Q ⊗ Q, a Wiener process plus a square integrable (in time and Ω ) drift (this happens when
H (Q|P {d}) < ∞, see the proof of Corollary 6.2),

Kb(Q) :=

∫
C0,α ([0,T ];R2d )

∫ T

0
b̄(X t ) ◦ dX t (Q ⊗ Q)(dX )

−
1
2

∫ T

0

∫
C0,α ([0,T ];R2d )

div b̄(X t ) (Q ⊗ Q)(dX )dt

−
1
2

∫ T

0

∫
C0,α ([0,T ];Rd )

⏐⏐⏐⏐ ∫
C0,α ([0,T ];Rd )

b̄(Yt , Z t ) Q(dZ )
⏐⏐⏐⏐2

Q(dY ) dt. (6.11)

Note the last two summands (integrals against dt) are finite under our assumptions on b.
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Corollary 6.2. Under the assumptions of Theorem 6.1, the sequence of laws {Law(L X
n ) : n ∈ N}

satisfies an LDP on P1(C0,α([0, T ];Rd )) with scale n and good rate function Jb given by

Jb(Q) = H (Q | P {d}) − Kb(Q), (6.12)

with the understanding that the right-hand side above is +∞ whenever H (Q | P {d}) = +∞.

Proof. Consider a measure Q with H (Q, P {d}) = ∞. We need to show that inf{Jb(µ) :

µ ◦ π−1
1 = Q} = ∞, that is, Jb(µ) = ∞ whenever µ projects to Q. By looking at the

definition of Jb, there is nothing to show unless µ = F {2}(µ ◦ π−1
1 ) = F {2}(Q). But in this

case Jb(µ) = H (Q|P {d}) − Kb(µ) = ∞, as desired.
We now consider a measure Q with H (Q, P {d}) < ∞. We have to show that

H (Q | P {d}) − Kb(Q) = inf{Jb(µ) : µ ◦ π−1
1 = Q}.

In fact, from the very definition of Jb, we have Jb(µ) = ∞ unless µ = F {2}(Q). This measure
µ = F {2}(Q) satisfies Q = µ ◦ π−1

1 : by Proposition 2.2, denoting Y = (Y 1, Y 2) the canonical
process on C0,α([0, T ];R2d ), P {d}

⊗ P {d}
≃ P {2d}-a.s., and so Q ⊗ Q-a.s., Sm,{2}(Y ) converges

to S{2}(Y ) = ((Y 1, Y 2),Y), in particular π1(S(Y )) = Y 1 Q ⊗ Q-a.s. and so F {2}(Q) ◦ π−1
1 = Q.

For such a µ, we have Jb(µ) = H (µ ◦ π−1
1 |P {d}) − Kb(µ) = H (Q|P {d}) − K2(F {2}(Q)). Thus,

it only remains to see that

Kb(Q) = Kb(F {2}(Q)).

Since H (Q, P {d}) < ∞, by a classical result (see for example [11, Section II Remark 1.3]), there
exists an adapted process g such that Wt = X t − X0 −

∫ t
0 gr dr is a Wiener process under Q and,

denoting by ν the marginal of Q at time 0, it holds

H (Q | P) = H (ν | λ) +
1
2

EQ
[∫ t

0
|gr |

2 dr
]
. (6.13)

In particular we can define
∫ t

s b̄(Xr ) ◦ dXr , which appears in the definition of Kb (so Kb(X )
makes sense), as a Stratonovich integral under Q ⊗ Q or equivalently under P ⊗ P , and by
Proposition 2.3 this integral coincides P ⊗ P-a.s. (and so Q ⊗ Q-a.s.) with the rough integral∫ T

0 b̄(X t ) dXt in the definition of Kb. Therefore,∫
C0,α

g ([0,T ];R2d )

∫ T

0
b̄(X t ) dXt µ(dX) =

∫
C0,α ([0,T ];R2d )

∫ T

0
b̄(X t ) ◦ dX t (Q ⊗ Q)(dX ),

i.e. the first addend in the definitions of Kb(Q) and Kb(µ) coincide. The other addends also
coincide, as easily verified (they are classical integrals). Therefore Kb(Q) = Kb(F {2}(Q)) as
desired. □

The above discussion has another useful consequence.

Lemma 6.3. The rate function given in Theorem 6.1 satisfies

J{k}

b (µ) = Jb(Q) (6.14)

whenever µ = F {k}(Q) and infinite otherwise.
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7. Application 1: Robust propagation of chaos

It is an elementary fact of large deviations theory, that a LDP at scale n with good rate
function, which has a single zero, implies a (weak and in fact – thanks to Borel–Cantelli – strong)
law of large numbers. We now give different representations of the rate functions obtained in the
last section, which will allow to “see” the single zero. This requires us to consider the following
mean field (McKean–Vlasov) SDE on Rd⎧⎨⎩

dX̄ t = (b ∗ ut )(X̄ t ) dt + dB̄t

ut = Law(X̄ t )
λ = Law(X̄0)

(7.1)

where

(b ∗ ut )(x) :=

∫
Rd

b(x, y) ut (dy). (7.2)

The law PX̄ of the solution X̄ can be seen as fixed point of the map Φ defined in this way: for
any probability measure Q on C0,α([0, T ],Rd ), calling Qt the marginal of Q at time t , Φ(Q) is
the law of the solution to the SDE{

dȲt = (b ∗ Qt )(Ȳt ) dt + dB̄t

λ = Law(X̄0)
(7.3)

(for given X0 and Q, this SDE has a pathwise-unique solution).

Lemma 7.1.

(i) (“one-layer, non-enhanced”) The zeros of Jb are precisely fixed points of Φ, as is seen
from

Jb(Q) = H (Q |Φ(Q)).

(ii) The zeros of J{k}

b are precisely the image under F {k} of fixed points of Φ, as is seen from
Lemma 6.3.

Proof. (i) Indeed, by Girsanov theorem, Φ(Q) is absolutely continuous with respect to P {d},
with density satisfying

log
dΦ(Q)
d P {d}

(X ) =

∫
C0,α ([0,T ];Rd )

∫ T

0
b̄(X t , Z t ) ◦ dX t Q(dZ )

−
1
2

∫ T

0

∫
C0,α ([0,T ];Rd )

divb̄(X t , Z t ) Q(dZ ) dt

−
1
2

∫ T

0

⏐⏐⏐⏐ ∫
C0,α ([0,T ];Rd )

b̄(X t , Z t ) Q(dZ )
⏐⏐⏐⏐2

dt

(where we have used stochastic Fubini theorem for exchanging stochastic integration and
integration in Q in the first term). Notice that, for Q absolutely continuous with respect to Pd ,

Kb(Q) =

∫
C0,α ([0,T ];Rd )

log
dΦ(Q)
dP {d}

(X ) Q(dX ),
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so we have

Jb(Q) =

∫
C0,α ([0,T ];Rd )

log
dQ

dP {d}
dQ +

∫
C0,α ([0,T ];Rd )

log
dP {d}

dΦ(Q)
dQ = H (Q |Φ(Q)).

(ii) The statement follows from Part (i) and Lemma 6.3. □

The previous lemma applies nicely in view of the following result (well-known, see e.g. [17,
Theorem 1.1 in Chapter 1]).

Proposition 7.2. For b as in Theorem 6.1, there is a unique strong solution to (7.1) and its law
Law(X̄ ) is the unique fixed point of Φ.

We hence know that Jb, although not necessarily convex, has exactly one zero, given by
PX̄

= Law(X̄ ). Similarly, and more importantly, Jk
b has exactly one zero given by

F {k}(Law(X̄ )) = (Law(X̄ )⊗k) ◦ (S{kd})−1.

This law is, of course, nothing else that the law of the Stratonovich lift of k IID copies X̄1, . . . , X̄ k

of the McKean–Vlasov diffusion X̄ . We can now deduce the enhanced propagation of chaos
result as stated in the introduction.

Theorem 7.3. Under the assumptions of Theorem 6.1 (that is, b ∈ C2
b ) and for all integer k,

Law
(
S{kd}(X1,n, . . . , X k,n)

)
−→
n→∞

Law
(
S{kd}(X̄1, . . . , X̄ k)

)
, (7.4)

as Cb-weak convergence of probability measures on C0,α
g ([0, T ];Rkd ) equipped with α-Hölder

rough path topology.

Proof. Theorem 6.1 gives us a LDP that quantifies the convergence (in the Cb-weak topology
on P(C0,α

g ([0, T ];Rkd ))) in probability

1
nk

n∑
i1,...,ik=1

δS(X i1,n (ω),...,X ik ,n (ω)) −→
n→∞

Law
(
S2(X̄1, . . . , X̄ k)

)
.

This convergence follows (by standard reasoning in large deviations on metric spaces) from
Theorem 6.1 and Lemma 7.1 which identifies the law of S2(X̄1, . . . , X̄ k) as the unique zero of
the rate function. Testing against

ϕ ∈ Cb
(
C0,α

g ([0, T ];Rkd )
)

we get convergence (in probability, as n → ∞)

1
nk

∑
i1,...,ik=1

ϕ
(
S2(X i1,n(ω), . . . , X ik ,n(ω))

)
−→
n→∞

⟨
ϕ, Law

(
S2(X̄1, . . . , X̄ k)

)⟩
= E

[
ϕ
(
S2(X̄1, . . . , X̄ k)

)]
.
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Now take expectation E[·] on both sides. By using the boundedness of ϕ,

1
nk

n∑
i1,...,ik=1

E
[
ϕ
(
S2(X i1,n(ω), . . . , X ik ,n(ω))

)]
=

1
nk

n∑
i1,...,ik=1

mutually distinct

E
[
ϕ
(
S2(X i1,n(ω), . . . , X ik ,n(ω))

)]
+ O(1/n)

=
n!

nk(n − k)!
E

[
ϕ
(
S2(X1,n(ω), . . . , X k,n(ω))

)]
+ O(1/n),

we have

E
[
ϕ
(
S2(X1,n(ω), . . . , X k,n(ω))

)]
−→
n→∞

E
[
ϕ
(
S2(X̄1, . . . , X̄ k)

)]
.

Since ϕ ∈ Cb(C0,α
g ([0, T ];Rkd )) is arbitrary, we proved (in rough path topology!), that

S2
(
X1,n(ω), . . . , X k,n(ω)

)
H⇒ S2

(
X̄1, . . . , X̄ k) as n → ∞. □

Remark 7.4. As already noted in the Introduction, this enhanced propagation of chaos is also a
consequence of classical propagation of chaos and classical Itô calculus, applying Itô formula to∫ t

s X i,n
s,r ◦ dX i,n

r . We leave the computations as exercise.

8. Application 2: An LDP for SDEs driven by k-layer noises

We start recalling the notation. We fix k in N and, for a multi-index I in {1, . . . n}
k , we use the

notation I j for the j th component of I . We denote by X I,n
= X {k};I,n the vector (X I1,n, . . . X Ik ,n).

We take f j : Rd
→ Rm , j = 1, . . . k, given C3

b vector fields. We consider the following family
of SDEs on Rm driven by X i,n , parameterized by multi-indices I in {1, . . . n}

k :

dY I,n
t =

k∑
j=1

f j (Y I,n
t ) ◦ dX

I j ,n
t , Y I,n

0 = y0, (8.1)

where y0 is a point in Rm independent of I and n (however more general choices of initial data
should be possible). We call

LY ;{k}

n =
1
nk

∑
I∈{1,...n}k

δY I,n ;

it is a random variable with values in P(C0,β([0, T ];Rm)), for any 1/3 < β < 1/2.
By rough paths theory, precisely Theorems 8.4 and 8.5 in [12], there exists a (unique)

continuous function ϕ : C0,α
g ([0, T ];Rkd ) → C0,β([0, T ];Rm) such that, for every I and every

n, Y I,n
= ϕ(Skd (X I,n)) (actually ϕ is locally Lipschitz continuous). This brings to the following

LDP, as recalled in the introduction:

Corollary 8.1. Fix 1/3 < β < 1/2. The sequence {Law(LY ;{k}

n ) : n ∈ N} satisfies a large
deviation principle on P(C0,β([0, T ];Rm)), endowed with the C0-weak topology, with scale n
and good rate function given by

J Y (Q) = inf
{
J{k}(µ) : Q = µ ◦ ϕ−1}.
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Proof. We have

LY ;{k}

n = LX;{k}

n ◦ ϕ−1.

as it can be easily verified by testing the two measures with a functionψ in Cb(C0,β([0, T ];Rm)).
In particular LY ;{k}

n is the image of LX;{k}

n under the map F : P(C0,α
g ([0, T ];Rkd )) →

P(C0,β([0, T ];Rm)), defined by F(Q) = Q ◦ ϕ−1, which is continuous between the C0-weak
topologies. We then conclude by Theorem 6.1 via contraction principle. □
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Appendix A. Basic facts on 1-Wasserstein metric

Let (F, dF ) be a Polish space. We denote by P1(F) the space of probability measures on F
with finite first moment. It is a Polish space endowed with the 1-Wasserstein distance dW , namely

dW (µ, ν) = inf
π∈Γ (µ,ν)

∫
F×F

dF (x1, x2) π (d(x1, x2)) (A.1)

where Γ (µ, ν) is the set of all probability measures on F × F with the first marginal and the
second marginal equal resp. to µ and ν (such measures are sometimes called transportation
plans). When F = C0,α([0, T ]; E) (for some Polish space E), we use the notation dW,α for
the 1-Wasserstein distance associated with the α-Hölder distance on C0,α([0, T ]; E).

We recall the following characterization of convergence in the 1-Wasserstein metric, stated
in [19, Definition 6.8]. Here and in the following, we say that a map ϕ : F → F ′ (F , F ′ being
Polish spaces) has at most linear growth if there exist x0 ∈ F , y0 ∈ F ′ and C ≥ 0 such that, for
every x in F

dF ′ (ϕ(x), y0) ≤ C
(
1 + dF (x, x0)

)
. (A.2)

It is easy to see that this property is equivalent to the following fact: for any x0 in F , y0 in F ′,
there exists C ≥ 0 such that, for every x in F , (A.2) holds.

Lemma A.1. The following facts are equivalent:

• µn → µ in 1-Wasserstein distance;
•

∫
F ϕ(x)µn(dx) →

∫
F ϕ(x)µ(dx) for any function continuous ϕ : F → R with at most

linear growth;
• µn ⇀ µ and there exists x0 ∈ F such that, for any η > 0, there exists R > 0 verifying

sup
n≥1

∫
{d(·,x0)>R}

d(x, x0)µn(dx) < η. (A.3)

As a consequence, we have the following Corollary.

Corollary A.2. Let h : F → F ′ be a continuous map (F, F ′ being Polish spaces) with at most
linear growth. Then, the corresponding map at the level of measures, namely P1(F) ∋ µ ↦→

µ ◦ h−1
∈ P1(F ′), is continuous in the 1-Wasserstein metric.



2262 J. Deuschel et al. / Stochastic Processes and their Applications 128 (2018) 2228–2269

Proof. Using the equivalence above, it is enough to verify that, for any sequence {µn : n ∈ N}

converging to µ in P1(F), for any continuous function ϕ : F ′
→ R with at most linear growth,∫

F ϕ(h(x))µn(dx) →
∫

F ϕ(h(x))µ(dx). Now, since h is continuous with at most linear growth,
also ϕ ◦ h is continuous with at most linear growth, hence the convergence above holds. □

The following lemma provides a wide class of compact sets in the 1-Wasserstein metric.

Lemma A.3. Let G be a function G : F → [0,∞], with compact sublevel sets and with more
than linear growth. Define the set

KM :=

{
ν ∈ P1(F) :

∫
F

G dν ≤ M
}
. (A.4)

Then KM is compact (in the 1-Wasserstein metric).

Proof. We prove sequential compactness (which is equivalent to compactness for metric spaces).
Let {νn : n ∈ N} be a sequence of measures in KM , we will prove that νn is tight and that there
exists x0 ∈ F such that, for every η > 0, there exists R > 0 verifying

sup
n≥1

∫
{d(·,x0)>R}

d(x, x0) νn(dx) < η. (A.5)

These two conditions imply the existence of a subsequence {νnk : k ∈ N} converging to some
measure ν in P1(F) in the 1-Wasserstein metric; it is easy to prove that ν is still in KM (since the
functional ν →

∫
F G dν is lower semi-continuous by Corollary B.2), so that KM is compact.

For tightness, we use the compact sublevel sets property of G: for every δ > 0, the set {G ≤ δ}

is compact and, by Markov inequality, we have, for any n,

νn
[
G > δ−1]

≤ δ

∫
F

G dνn ≤ δM. (A.6)

This proves tightness.
For (A.5), we use the more than linear growth property of G: for some x0 ∈ F , for any η > 0,

there exists R > 0 such that d(x, x0)/G(x) < η. Hence, for any n,∫
{d(·,x0)>R}

d(x, x0) νn(dx) ≤ η

∫
{d(·,x0)>R}

G(x) νn(dx) ≤ ηM. (A.7)

This proves (A.5) (up to choosing a different R). The lemma is proved. □

We conclude this section with a result on the continuity of the doubling map for measures
under the 1-Wasserstein metric. Recall that, if (F, d) is a Polish space, then (F2, d{2}) is a Polish
space as well, where d{2}((x, y), (x ′, y′))2

= d(x, x ′)2
+ d(y, y′)2; similarly, for any k ≥ 2,

(Fk, d{k}) is a Polish space as well, where d{k}((x1, . . . , xk), (x ′

1, . . . , x ′

k))2
= d(x1, x ′

1)2
+ . . .+

d(xk, x ′

k)2.

Lemma A.4. Let F be a Polish space, k ≥ 2 integer. Then the map

P1(F) ∋ µ ↦−→ µ⊗k
∈ P1(Fk) (A.8)

is continuous (where P1(F, d), P1(Fk, d{k}) are endowed with the 1-Wasserstein distance
induced by d and d{k}, respectively).
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Proof. We start with the case k = 2. Let µ, ν be two probability measures in P1(F). Let π
in Γ (µ, ν) be an admissible plan between µ and ν, namely a probability measure on F × F
with first marginal µ and second marginal ν. Then, an admissible plan π {2} on F2

× F2

between µ ⊗ µ and ν ⊗ ν is built from Π as follows: identifying F2
× F2 with F4 and

calling q j , j = 1, . . . , 4, the canonical projections, π {2} is the unique measure on F4 such
that, under π {2}, (q1, q3) and (q2, q4) are i.i.d. with distribution π . Indeed, with this definition,
π {2}

◦ (q1, q2)−1
= π ◦ (q1)−1

⊗ π ◦ (q2)−1
= µ⊗ µ and similarly π {2}

◦ (q3, q4)−1
= ν ⊗ ν, so

π {2} is in Γ (µ⊗ µ, ν ⊗ ν). Now we have

dW (µ⊗ µ, ν ⊗ ν) = inf
ξ∈Γ (µ⊗µ,ν⊗ν)

∫
F×F

d{2}((x1, y1), (x2, y2)) ξ
(
d((x1, y1), (x2, y2))

)
≤ inf

π∈Γ (µ,ν)

∫
F2×F2

d{2}((x1, y1), (x2, y2))π {2}
(
d((x1, y1), (x2, y2))

)
≤ inf

π∈Γ (µ,ν)

∫
F2×F2

(
d(x1, x2) + d(y1, y2)

)
π {2}

(
d((x1, y1), (x2, y2))

)
≤ inf

π∈Γ (µ,ν)

∫
F×F

d(x1, x2)π
(
d(x1, x2)

)
+

∫
F×F

d(y1, y2)π
(
d(y1, y2)

)
= 2dW (µ, ν),

where in the second inequality we used the simple estimate d{2}((x1, y1), (x2, y2)) ≤ d(x1, x2)+
d(y1, y2) and in the third inequality we used the fact that (x1, x2) = (q1, q3) and (y1, y2) =

(q2, q4) are distributed according to π . The estimate above implies immediately continuity (and
even Lipschitz continuity) for k = 2.

In the case k = 2h for some positive integer h, it is enough to note that µ ↦→ µ⊗2h
is the

h-times iteration of the map µ ↦→ µ⊗2. In the case k general, the measure µ⊗k is obtained
projecting the measure µ⊗2h

on the first k components, for some h with k ≤ 2h , so continuity of
µ ↦→ µ⊗k follows. □

Appendix B. Technical results and proofs

We start with a known result on lower semi-continuous functions, that we use at least twice
in the paper.

Lemma B.1. Let (E, d) be a metric space. Any lower semi-continuous function f : E →

(−∞,∞], bounded from below, is the pointwise supremum of an increasing sequence of
continuous (actually Lipschitz) maps.

Proof. If f is identically +∞, then it is enough to take fk ≡ k as Lipschitz approximants.
Hence, we consider f assuming at least one finite value. We define { fk : k ∈ N} as the lower
envelope of f , namely

fk(x) = inf
y∈E

{
f (y) + k d(x, y)

}
. (B.1)

Since f is bounded from below and not identically +∞, fk is a real-valued function. The
sequence fk is increasing and, for every k, x , we have fk(x) ≤ f (x) (by choosing y = x
in (B.1)). Moreover, for each k, fk is Lipschitz continuous: for every y, |( f (y) + kd(x, y))
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− ( f (y) + kd(x ′, y)) ≤ kd(x, x ′) and therefore | fk(x) − fk(x ′)| ≤ kd(x, x ′). We are left to
prove the pointwise convergence of fk to f .

We start with proving convergence on the points x with f (x) finite. Fix ε > 0 and, for every
k, take a point xk such that f (xk) + kd(x, xk) < fk(x) + ε. The sequence {xk : k ∈ N} converges
to x : indeed kd(x, xk) ≤ fk(x) + ε + (inf( f ))− ≤ f (x) + ε + (inf( f ))− for every k. Therefore,
by lower semi-continuity,

f (x) ≤ lim inf
k→∞

f (xk) ≤ lim inf
k→∞

fk(x) + ε. (B.2)

By the arbitrariness of ε, we conclude f (x) = limk→∞ fk(x).
For the case f (x) = +∞, fix N > 0, by lower semi-continuity, there exists δ > 0 such that

f > N on B(x, δ). Therefore fk(x) ≥ N + kδ and so { fk(x) : k ∈ N} converges to +∞ = f (x).
The proof is complete. □

Corollary B.2. Let (E, d) be a metric space and let f : E → (−∞,∞] be lower semi-
continuous, bounded from below. Then, for every sequence {µn : n ∈ N} in P(E), converging
Cb(E)-weakly to µ in P(E), it holds∫

E
f (x)µ(dx) ≤ lim inf

n→∞

∫
E

f (x)µn(dx). (B.3)

Proof. The previous lemma gives that f = supk≥1 fk , where { fk : k ∈ N} is an increasing
sequence of continuous functions. We can assume, possibly replacing fk with fk ∧ k, that fk is
bounded for every k. By monotone convergence theorem, we have for every ν in P(E)∫

E
f (x) ν(dx) = sup

k≥1

∫
E

fk(x) ν(dx). (B.4)

So the function ν ↦→
∫

E f (x) ν(dx) is the supremum of a family of continuous functions in
the Cb(E)-weak topology, therefore, by a standard argument, it is sequentially lower semi-
continuous in that topology. □

Here is the version of Varadhan’s lemma we need.

Theorem B.3 (Varadhan Lemma). Let E be a regular Hausdorff space. Suppose that {µn : n ∈

N} is a sequence of probability measures on E satisfying a large deviation principle with scale
n and good rate function I . Let ϕ : E → R be a continuous function such that

lim sup
n→∞

1
n

log
∫

E
exp(nγ ϕ) dµn < ∞ (B.5)

for some γ > 1. For any n, let νn be the probability measure having density Z−1
n enϕ with respect

to µn (Zn being the normalization constant). Then the sequence {νn : n ∈ N} satisfies a large
deviation principle with scale n and rate function J = I − ϕ − infE (I − ϕ). It also holds

lim
n→∞

1
n

log Zn = inf
E

(I − ϕ). (B.6)

In particular, if Zn = 1 for each n (i.e. if enϕ µn is a probability measure), then J = I − ϕ.
Furthermore, if {µn : n ∈ N} is exponentially tight, then so is {νn : n ∈ N} and the rate function
J is good.
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Proof. Apart for the last sentence, the statement is a simple consequence of Varadhan
lemma in [8, Theorem 4.3.1, Lemma 4.3.4 and Lemma 4.3.6]. The goodness of J follows by
[8, Lemma!1.2.18], if we have exponential tightness for {νn : n ∈ N}. Since {µn : n ∈ N} is
exponentially tight, for any M > 0, there exists KM compact set such that

lim sup
n→∞

1
n

logµn
[
K c

M

]
< −M. (B.7)

We have

νn
[
K c

M

]
=

1
Zn

∫
E

1K c
M

enϕ dµn ≤
1
Zn
µn

[
K c

M

]1−1/γ
(∫

E
enγ ϕ dµn

)1/γ

. (B.8)

Now, using the assumption (B.5), we easily get that

lim sup
n→∞

1
n

logµn
[
K c

M

]
< −C(M − 1) − inf

E
(I − ϕ) (B.9)

for some constant C > 0. The proof is complete. □

We prove now the lower-semi-continuity of Nα .

Proof of Lemma 4.2. Notice first that, for any i ,

{N ≤ i} = {τi+1 ≥ T } (B.10)

so that lower semi-continuity of N follows from upper semi-continuity of τi , for any i , which we
now aim to prove. We must show that, for any i in N, for any t > 0,

{τi ≥ t} =
{

X ∈ C0,α
g : ∥X∥(1/α)−var,[τi−1(X),t] ≤ 1

}
=: Ai (t) (B.11)

is a closed set. We use induction on i . For i = 1, since τ0 = 0, closedness follows from
continuity of the (1/α) − var norm (with respect to X). For the passage from i to i + 1,
take {Xm

: m ∈ N} sequence in Ai+1(t) converging to some X in C0,α
g ([0, T ];Re), we must

prove that X belongs to Ai+1(t). By upper semi-continuity of τi (inductive hypothesis), we have
that τi (X) ≥ lim supm→∞τi (Xm), so, for any δ > 0, the interval [τi (X) + δ, t] is contained in
[τi (Xm), t] for m large enough. So, for any δ > 0, by continuity and monotonicity properties of
the (1/α) − var norm, we have

∥X∥(1/α)−var,[τi (X)+δ,t] ≤ lim sup
m→∞

∥X∥(1/α)−var,[τi (Xm ),t] ≤ 1. (B.12)

By arbitrariness of δ > 0 and again by continuity of the norm, we get that ∥X∥(1/α)−var,[τi (X),t] ≤

1, that is X belongs to Ai+1(t). The proof is complete. □

Now we prove Lemma 4.5.

Proof of Lemma 4.5. The Hausdorff property follows from the fact that the (∥ · ∥ + N )1+ε-
Wasserstein topology is stronger than the 1-Wasserstein metric (which is an Hausdorff space).

As for the regularity property, we prove it by embedding this space into a topological
vector space (which is regular). Precisely, let V be the space of finite signed measures ν on
C0,α

g ([0, T ];Re), with finite (|X0| + ∥ · ∥ + N )1+ε moment, i.e.∫
C0,α

g

(|X0| + ∥X∥α + Nα(X))1+ε
|ν|(dX) < ∞, (B.13)
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where |ν| denotes the total variation measure of ν. We say that a sequence (νn)n converges to ν
in V , in the (∥ · ∥ + N )1+ε-sense, if:

1. {νn : n} converges to ν in the Cb-weak topology, i.e. against any test function in
Cb(C0,α

g ([0, T ];Re));
2. we have

sup
n≥1

∫
C0,α

g

(|X0| + ∥X∥α + Nα(X))1+ε
|νn|(dX) < ∞. (B.14)

This defines a topology on V which we call (∥ · ∥ + N )1+ε signed topology (or just signed
topology). It is easy to see that this topology is Hausdorff and that it makes the operations
V × V ∋ (ν1, ν2) ↦→ ν1 + ν2 ∈ V , R × V ∋ (α, ν) ↦→ αν ∈ V continuous; so V is a
Hausdorff topological vector space with the (∥ · ∥ + N )1+ε signed topology. As a general result
in topology, any Hausdorff topological vector space is regular, so V is regular.

It is also easy to see that P(∥·∥+N )1+ε (C0,α
g ) is closed in V and that the (∥ · ∥ + N )1+ε signed

topology induces the (∥ · ∥ + N )1+ε-Wasserstein topology on P(∥·∥+N )1+ε (C0,α
g ): any subset in

P(∥·∥+N )1+ε (C0,α
g ) which is closed in the (∥ · ∥ + N )1+ε-Wasserstein topology is also closed in the

signed topology and, vice versa, the intersection of any closed (in the signed topology) subset of
V with P(∥·∥+N )1+ε (C0,α

g ) is closed in the (∥ · ∥ + N )1+ε-Wasserstein topology.
This allows to prove that P(∥·∥+N )1+ε (C0,α

g ) is regular (with the original (∥ · ∥ + N )1+ε-
Wasserstein topology). Indeed, let µ be in P(∥·∥+N )1+ε (C0,α

g ) and let C be a closed set in the
(∥ · ∥ + N )1+ε-Wasserstein topology. Since C is closed also in the signed topology, then there
exist A, B disjoint subset of V , open in the signed topology, such that µ ∈ A and C ⊆ B.
Hence, calling A′, resp. B ′ the intersection of A, resp. B, with P(∥·∥+N )1+ε (C0,α

g ), then A′, B ′ are
two disjoint subsets of P(∥·∥+N )1+ε (C0,α

g ), open in the (∥ · ∥ + N )1+ε-Wasserstein topology, with
µ ∈ A′ and C ⊆ B ′. This proves regularity of P(∥·∥+N )1+ε (C0,α

g ). The proof is complete. □

Here we prove that the enhanced empirical measure associated with a rough path in Rnd is a
continuous function (in the modified Wasserstein topology) of the rough path itself.

Lemma B.4. Fix n and k (with n ≥ k). The map Gn : C0,α
g ([0, T ];Rnd ) → P(∥·∥α+Nα )1+ϵ

(C0,α
g ([0, T ];Rkd )) given by

Gn(X) = LX,{k}

n =
1
nk

n∑
i1,...,ik=1

δX{k};i1,...,ik

is continuous (in particular measurable).

Proof. Let {Xm
: m ∈ N} be a sequence of nd-dimensional geometric rough paths, converging

to X in C0,α
g ([0, T ];Rnd ) (as m → +∞), we have to prove that LXm ,{k}

n converges to LX,{k}

n in the
modified Wasserstein topology. We start proving convergence in the Cb-weak topology. For any
ϕ in Cb(C0,α

g ([0, T ];Rkd )), we have∫
C0,α

g ([0,T ];Rkd )
ϕ dLXm ,{k}

n =
1
nk

n∑
i1,...,ik=1

ϕ(Xm,{k};i1,...,ik ),

so convergence of
∫
ϕ dLXm ,{k}

n to
∫
ϕ dLX,{k}

n follows from continuity of ϕ (and of the projections
on the (i1, . . . ik) components).
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To conclude, we have to prove that

sup
m≥1

∫
C0,α

g ([0,T ];Rkd )

(
|Y0| + ∥Y∥α + Nα(Y )

)1+ϵ LXm ,{k}

n (dY) < ∞.

For this, we remind that, for any geometric rough path Y , Nα(Y) ≤ ∥Y∥
1/α
(1/α)−var,[0,T ] (see for

example [12], Section 11.2.3) and ∥Y∥(1/α)−var,[0,T ] ≤ C∥Y∥α for some constant C (as easily
verified). Therefore (using also that ∥Y{k};i1,...ik ∥α ≤ C∥Y∥α for some C), we get∫

C0,α
g ([0,T ];Rkd )

(
|Y0| + ∥Y∥α + Nα(Y )

)1+ϵ LXm ,{k}

n (dY)

=
1
nk

n∑
i1,...,ik=1

(
|Xm,{k};i1,...,ik

0 | + ∥Xm,{k};i1,...,ik ∥α + Nα(Xm,{k};i1,...ik )
)1+ϵ

≤ C
(
|Xm

0 | + ∥Xm
∥α + ∥Xm

∥
1/α
α

)1+ϵ

and the RHS above is uniformly bounded in m. The proof is complete. □

Finally we prove Lemma 3.8, starting from Corollary 13.22 in [13], following Exercise 13.22
there, and Lemma 4.9, starting from Theorems 11.9 and 11.13 in [12] (see also [3], Theorem
6.3).

Proof of Lemma 3.8. Corollary 13.22 in [13] applies clearly also to Brownian rough path
starting from any initial measure (since B and B(m) start from the same point) and gives the
existence of a constant C > 0 such that, for every q ≥ 1, for every m, it holds

E
[
dα(B(m),B)q]

≤ (Cq1/2m−η/2)q .

From this we get the following estimate on the exponential of the distance above: for any ρ > 0,

E
[
exp(ρdα(B(m),B))

]
= 1 +

∞∑
q=1

ρq E
[
dα(B(m),B)q

]
q!

≤ 1 +

∞∑
q=1

(ρCq1/2m−η/2)q

q!
.

Using the elementary estimate qq
≤ eq−1q! (which can be easily proved by induction on q), we

have

E
[
exp(ρdα(B(m),B))

]
≤ 1 +

∞∑
q=1

(eρCm−η/2)q .

So, taking ρ = mη/2/(2eC), we get that this series converges. Hence,

E
[
exp

(
(2eC)−1mη/2dα(B(m),B)

)]
< ∞. (B.15)

The proof is complete. [Notice that some estimates were not optimal: in fact the result holds also
for dα(B(m),B)2 replacing dα(B(m),B).] □

Proof of Lemma 4.9. Notice that (for ε < 1, using independence of the initial datum and the
increments of Brownian motion)

E
[
exp

(
c(|B0| + ∥B∥β + Nα(B))1+ε

)]
≤ E

[
e2c|B0|

]
E

[
exp

(
2c(∥B∥β + Nα(B))1+ε

)]
. (B.16)
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Now, E
[
exp

(
2c(∥B∥β + Nα(B))1+ε

)]
is finite (actually for every c > 0), as proved in Theorems

11.9 and 11.13 in [12]; E
[
e2c|B0|

]
=

∫
Re e2cx λ̃(dx) is finite because of the exponential

integrability condition (3.15) (replacing c with 2c). The same proof applies to B11 (and to
B{k};i1,...,ik for any multi-index (i1, . . . , ik) also with repetition of indices). □
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