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Developmental Coordination Disorder and Attention-Deficit/Hyperactivity Disorder are
unique neurodevelopmental disorders with overlaps in executive functions and motor
control. The conditions co-occur in up to 50% of cases, raising questions of the
pathological mechanisms of DCD versus ADHD. Few studies have examined these
overlaps in adults with DCD and/or ADHD. Therefore, to provide insights about
executive functions and motor control between adults with DCD, ADHD, both conditions
(DCD + ADHD), or typically developed controls, this study used a stop-signal task and
parallel EEG measurement. We assessed executive performance via go accuracy and
go reaction time, as well as motor response inhibition via stop-signal reaction time.
This was complemented with analysis of event-related potentials (ERPs). Based on
existing investigations of adults with DCD or ADHD, we expected (1) groups would
not differ in behavioral performance on stop and go trials, but (2) differences in ERPs,
particularly in components N200 (index of cognitive control) and P300 (index of attention
and inhibition) would be evident. The sample included N = 50 adults with DCD (n = 12),
ADHD (n = 9), DCD + ADHD (n = 7), and control participants (n = 22). We replicated that
there were no between-group differences for behavioral-level executive performance
and motor response inhibition. However, on a physiological level, ERP components
N200 and P300 differed between groups, particularly during successful response
inhibition. These ERPs reflect potential endophenotypic differences not evident in overt
behavior of participants with ADHD and/or DCD. This suggests a disorder specific
employment of inhibition or general executive functions in groups of adults with DCD,
DCD + ADHD, ADHD, or control participants.
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INTRODUCTION

Developmental Coordination Disorder (DCD) and Attention-
Deficit/Hyperactivity Disorder (ADHD) are lifelong
neurodevelopmental disorders known to co-occur in up to
50% of cases (Blank et al., 2019). The primary symptoms of
DCD are difficulties in learning and executing coordinated
fine and gross movements, while primary symptoms of ADHD
include inattention, hyperactivity, and impulsivity (American
Psychiatric Association, 2013). In the last decade, evidence for
substantial symptomatic overlaps between the two disorders
has been observed. This includes children with DCD displaying
hyperactivity (Harrowell et al., 2018), and having deficiencies in
executive functions (Bernardi et al., 2015; Sartori et al., 2020)
with the latter potentially persisting overtime (Bernardi et al.,
2018; Wilson et al., 2020). These are typically observed as core
symptoms of ADHD. Conversely, impaired fine and gross motor
skills, a primary symptom of DCD, have been found for children
with ADHD in comparison to typically developing individuals
(Kaiser et al., 2015). This overlap is not limited to children, as, for
instance, adults with DCD have also expressed difficulties with
executive functions (e.g., Tal Saban et al., 2014), while those with
ADHD have shown weakened visuo-motor adaptation (Kurdziel
et al., 2015). Despite considerable overlap between DCD and
ADHD, researchers have often supported the notion that they are
unique disorders (e.g., Martin et al., 2006; Sergeant et al., 2006;
Goulardins et al., 2015). In their critical review, Goulardins et al.
(2015) pointed out that further research is needed to identify the
possible sources of symptomatic overlap in DCD and ADHD.
This research gap was also documented in a recent international
consensus on DCD, in which the authors also highlight a
generally growing body of research on adult populations (Blank
et al., 2019). To expand on this literature, a better understanding
of the mechanisms involved in executive functions and motor
skills for adults with DCD versus ADHD is pertinent.

An obvious target for such research is to examine how
inhibitory control and related underlying mechanisms differ in
DCD and ADHD. First, inhibitory control is central to executive
functioning (Miyake and Friedman, 2012; Matzke et al., 2018).
Second, inhibitory deficits have often been observed in those
with ADHD compared to typically developing individuals, with
some evidence also emerging for DCD (Wodka et al., 2007; DCD
versus controls: Bernardi et al., 2015; Sartori et al., 2020). Given
the prominence of work on response inhibition with ADHD
(e.g., Pauli-Pott and Becker, 2011) along with a dearth of work
on inhibition more generally for DCD, this is an apt starting
point for examining unique features of inhibition between both
conditions. Thus, the purpose of this paper is a unique and
necessary investigation of the differences in motor inhibition
between adults with DCD and ADHD and both conditions.

To this end, we used the Stop-Signal Task (SST), as it places
particularly high demands on motor response inhibition (Rubia
et al., 2001). Arguably, such increased demands on inhibitory
performance should render the SST sufficiently sensitive to reveal
capacity limits in inhibitory control (i.e., avoid the risk of a
ceiling effect with optimal inhibitory performance), and thus
permit observing differential effects across groups. Nonetheless,
potential differences between DCD and/or ADHD could go

undetected at the behavioral level alone (Mandich et al., 2003; He
et al., 2018a). Therefore, we included parallel neurophysiological
measurement. Event-related P300 and N200 components were
examined at the neurophysiological level based on their high
relevance in inhibitory control in previous research of the SST,
especially with ADHD versus control groups (e.g., Bekker et al.,
2005; MacLaren et al., 2007; Senderecka et al., 2012). We examine
differences in these components between groups of adults with
DCD, ADHD, both conditions, and those of typical development.

Behavioral Performance: Response
Inhibition in DCD and ADHD
The SST is an opportune method for a closer look into inhibitory
control and related executive processes (e.g., attention, Miyake
and Friedman, 2012; Matzke et al., 2017, 2018), relevant to several
disorders (e.g., ADHD; Verbruggen and Logan, 2008b; Nigg,
2017). The SST typically involves an ongoing binary selection
process across go trials (e.g., left or right). On a small number
of trials, a stop-signal cues participants that the response they
are about to execute should be inhibited (stop trial). Stop trials
involve a brief presentation of a go stimulus before the stop-
signal appears after a variable delay. Owing to this delayed signal
onset, the SST measures top-down response inhibition rather
than automatic inhibition (Verbruggen and Logan, 2008a).

Various forms of the SST have been used to compare and
contrast individuals with ADHD to unaffected individuals (e.g.,
Rubia et al., 2005; MacLaren et al., 2007; Pauli-Pott and Becker,
2011; Senderecka et al., 2012; Congdon et al., 2014). It has
even been considered that impairments in task performance
among those with ADHD versus typically developing individuals
on a SST could be indicative of a prefrontal lobe dysfunction
(Homack and Riccio, 2004), however, this may be specific
to child populations. There is some evidence for potentially
impaired inhibition in those with DCD compared to typically
developing individuals as well (e.g., Mandich et al., 2003; He
et al., 2018a) but when adults with DCD performed worse,
these differences were subtle. One study has recently examined
SST performance in a group of young adults with DCD versus
typically developing individuals and found only a trend toward
significantly different stop-signal reaction times (SSRTs; He et al.,
2018a). This study also examined Go/No-Go task performance
(automatic inhibition) (Verbruggen and Logan, 2008a), and
found the DCD group had significantly reduced performance
compared to typically developing individuals, showing some
inhibitory differences in adults with DCD at the behavioral level
(He et al., 2018a). More research is needed to determine if these
inhibitory differences are consistent for adults with DCD and/or
ADHD. Therefore, in the present study, we used the SST to
capture the top-down processing of motor response inhibition for
insight into executive functioning differences at both behavioral
and neural levels.

ERP Evidence for Inhibitory Differences
in ADHD and DCD
Adults with DCD and ADHD may employ advanced learned
compensatory mechanisms (Kysow et al., 2017; Wilmut,
2017) which may in turn obscure their true differences
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based on overt behavior alone. Therefore, it is important to
consider the diverse endophenotypes of DCD and ADHD
with parallel neurophysiological assessment. Endophenotypes,
which are sometimes referred to as mechanisms, are the
processes by which a phenotype is expressed (Rommelse
et al., 2008). There is little research that has examined
potential differences in both behavior and endophenotypic
expressions (e.g., neural activity via EEG) in adults with
DCD versus ADHD.

In fact, to date, explorations of neural activity via EEG versus
behavioral performance have been rare for DCD versus control
participants in general. To our knowledge, studies which have
examined inhibition for individuals with DCD versus typically
developing individuals have not yet included EEG to examine
potential compensatory mechanisms, or in a more general brain-
behavior comparison with a SST. However, there are some studies
that examine inhibitory performance between individuals with
ADHD versus typically developing individuals during a SST
using EEG to capture event-related potentials (i.e., measurements
of neural activity during discrete events; e.g., Bekker et al., 2005;
MacLaren et al., 2007; Senderecka et al., 2012).

Among the studies examining inhibitory performance, those
which included adult populations often found SST performance
did not differ at the behavioral level for those with ADHD when
compared to typically developing individuals, but variations have
been found at the neural level (e.g., Bekker et al., 2005; MacLaren
et al., 2007). More specifically, one study showed no differences
on go trials, but revealed significantly longer SSRTs in the
ADHD group (versus a typically developed individuals) coupled
with significantly lower P300 ERPs (interpreted as an index of
inhibition; Bekker et al., 2005). However, in another study, adults
with ADHD did not differ in general behavioral performance
on a simple SST compared to typically developing individuals,
but instead showed significant differences in ERPs for P300 and
N200 during stop trials (MacLaren et al., 2007). While the precise
neural substrates of P300 and N200 have often been debated,
both are thought to relate to aspects of inhibition, attention, and
other executive functions in the context of a SST (Bekker et al.,
2005; MacLaren et al., 2007; Huster et al., 2020). Taken together,
these findings highlight the importance of testing the underlying
neural responses to the SST in adult clinical populations. This
may help elucidate the distinctions between those with ADHD
and typically developing individuals.

The Current Study
The present study examined both behavioral and neural levels of
performance of participants with DCD, ADHD, DCD + ADHD,
and typically developing control participants in a motor
inhibition task. We aimed to improve the understanding of
brain-behavior differences in these adult groups in order to
better inform the co-occurrence of DCD and ADHD, as well
as to highlight differences between the occurrence of DCD
versus ADHD alone. We expected that, due to compensatory
mechanisms, no differences would be present at the behavioral
level in general go accuracy, and mean reaction times for all trial
types (particularly: Go RT, RT of unsuccessful stop trials, and
SSRT). We further hypothesized that behavioral compensation

among adults would relate to more robust differences in the
EEG signals between groups, and more specifically, that they
would be present in components P300 and N200 in line with
symptoms of ADHD, DCD, or both conditions versus typically
developing adults.

Due to insufficient data in the DCD literature to make specific
assumptions of the direction of amplitudes in P300 and N200 we
aimed to examine effects reported in the literature comparing
ADHD and typically developing individuals. Furthermore, we
explore and report all differences found in the complete set
of electrodes to build insights into patterns when comparing
DCD and DCD + ADHD groups. In addition, we explored all
possible distinctions between the ERPs in the DCD and ADHD
groups. These comparisons provide important pilot evidence in
relation to group differences in inhibition and related executive
functioning processes as well.

MATERIALS AND METHODS

Sample
A total of N = 59 participants were recruited at two sites
(Germany and United Kingdom). Following EEG pre-processing
and our criteria for the removal of outliers (see “EEG Pre-
processing” and “Statistical Analysis” sections below), a final
sample of N = 50 was included in the present analyses with
the same participants across behavioral and neurophysiological
levels (see Table 1). This sample included n = 30 from Germany
and n = 20 from the United Kingdom. Overall participants were
67% female, 76% right handed, and M = 25.5 (SD = 7.9) years
old. Groups included those with an existing diagnosis of ADHD
(n = 9), DCD (n = 12), both ADHD and DCD (n = 7), and a
control group (n = 22). In order to run more reliable analyses, we
combined the participants from both sites to result in adequate
group sizes (see Table 1).

In the clinical groups, all participants reported previous
diagnoses of ADHD and/or DCD, and reported no history
of brain damage or other developmental impairments (e.g.,
cerebral palsy). The control group reported no history of any
psychiatric or other health conditions. Additionally, participants
with ADHD were asked to not take ADHD-relevant medication
on the day of the study session if they had the option. None
of the participants included in the final sample reported taking
such medication on the day of testing. The protocol was reviewed
and approved by ethics committees at both sites (University of
Mannheim and Oxford Brookes University).

Measures
We administered the Adult Dyspraxia/DCD Checklist (ADC;
Kirby et al., 2010), it yielded good reliability in the present study
via Cronbach’s Alpha in overall scores (α = 0.950) and in its
standard three subsections (A: difficulties in childhood, α = 0.918;
B: current difficulties, α = 0.883; C, current difficulties manifested
by others, α = 0.851). In addition, we compiled the Adult Self
Report Screening (ASRS v.1) for ADHD (Kessler et al., 2005),
which also yielded good reliability overall (α = 0.875) as well as
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TABLE 1 | Group classification and testing location comparisons.

Groups: overall
(N = 50)

Sample size Average ADC
score

Average
ASRS v.1

score

DCD 12 113.1 (14.1) 42.5 (9.3)

ADHD 9 87.8 (12.0) 59.0 (9.0)

DCD + ADHD 7 108.1 (11.7) 52.9 (11.7)

Control 22 66.7 (12.8) 44.0 (8.2)

Participants
from Germany
(n = 30)

Sample size Average ADC
score

Average
ASRS v.1

score

DCD 1 119.0 48.0

ADHD 6 88.2 60.8

DCD + ADHD 2 104.5 64.0

Control 21 67.6 45.1

Participants
from
United Kingdom
(n = 20)

Sample size Average ADC
score

Average
ASRS v.1

score

Median
MABC-2

percentile

DCD 11 112.9 42.0 5th

ADHD 3 85.3 55.3 25th

DCD + ADHD 5 109.6 48.4 2nd

Control 1 50.0 22.0 63rd

Overall group scores on the ADC and ASRS v.1 were compared via a one-way
ANOVA. There was a significant effect of group on ADC score [F(3,46) = 38.37,
p < 0.001]. Post hoc tests revealed all group comparisons were significant
(p < 0.05) aside from the DCD and DCD + ADHD group comparison. There was
also a significant effect by group on ASRS v.1 scores [F(3,45) = 7.78, p < 0.001].
Post hoc tests revealed this effect was driven by all group comparisons except for
ADHD and DCD + ADHD; DCD and DCD + ADHD; DCD and the control group;
DCD + ADHD and the control group (p > 0.05).

in subsections A (adult ADHD symptom overview, α = 0.687)
and B (adult ADHD specific symptom probes, α = 0.835).

Stop-Signal Task Features
The SST began with a black fixation cross at the center of the
screen appearing for 500 ms. Next, a black shape cue (circle or
square) was presented in the center of the screen surrounded by
a black frame. On go trials, participants needed to press the key
corresponding to the shape shown (go stimulus; counterbalanced
“c” or “v” keys). On stop trials (25% of all trials) participants
were instructed to refrain from pressing a key. Here, the black
frame was replaced by a blue frame after a variable delay known
as stop-signal delay (SSD). The SSD ranged from 250 to 1,250 ms
with an adaptive up-down staircase method (Levitt, 1971) based
on performance in steps of ±25 ms. The SSD was increased
with successful inhibition and decreased with failed inhibition
to maintain a 50% stop accuracy rate for each participant.
Participants were informed of this tracking procedure and
subsequently were to respond as fast and accurately as possible
without waiting for the stop-signal to appear. The entire SST was
presented against a gray background, and the SST was based on
that of Gajsar et al. (2020; see Figure 1).

Participants completed a total of 768 trials across six blocks
with open-ended breaks after each block. There were 128

trials per block, with 64 trials (48 go, 16 stop) per shape.
The stimuli were presented on computers with MATLAB R©

(The MathWorks, Inc., Natick, MA, United States) using the
Psychtoolbox extensions (Kleiner et al., 2007) on a 16 inch screen
in Germany and a 24 inch screen in the United Kingdom.
Viewing distances were approximately 5 and 3 feet, and visual
angles of 43 and 67◦, respectively.

Following recent guidelines on the SST set out by Verbruggen
et al. (2019), this visual stop-signal task was designed with all
recommended features aside from practice trials and block-
based feedback of performance. In lieu of practice trials, the
researchers checked in with participants after the first block to
ensure that, to their knowledge, they completed the task properly.
Block-based feedback was not included in order to reduce any
external influences on performance given the novel DCD and
DCD+ ADHD groups.

Procedure
Prior to the main task, participants completed the ASRS v.1 for
ADHD (Kessler et al., 2005), the ADC (Kirby et al., 2010), as
well as questions about their demographics and health history.
Participants in the United Kingdom also completed the MABC-
2 age band 3 (Henderson et al., 2007). These measures were
used to confirm preexisting diagnoses of DCD and/or ADHD for
group assignment, and to ensure members of the DCD group
did not have signs of ADHD, and vice versa (see Table 1).
Next, participants were prepared for EEG measurement and
then completed the stop-signal task. As a part of other studies,
a subgroup of participants completed the SST and additional
computer tasks in random order.

EEG Data Pre-processing
A 64 channel system was utilized for electrophysiological
recoding in a standard 10–20 system. FCz was used as the
reference electrode and AFz as the ground (for setup see Gerdes
et al., 2013). Scalp impedances were maintained at 15 k� and
below. Recordings were made at a sampling rate of 1 kHz
at one testing location and 500 Hz at another; therefore, all
data were adjusted to a 500 Hz sampling rate. The average of
all channels was used as the reference in the data processing
phase. A 50 Hz notch filter was implemented to remove any
confounding high frequency noise. Moreover, a band pass filter
was set from 0.5 to 70 to reflect the more cautious approach
used in other studies with a SST and related clinical groups
(e.g., Senderecka et al., 2012). Eye blink artifacts were removed
with an Independent Component Analysis (ICA). Segments
during responses were set with windows from −100 ms before
the event to 400 ms after the event. For some participants,
electrodes with uninterpretable signals were corrected with a
topographic interpolation. An average of M = 0.94 (SD = 1.21,
Range: 0–5) electrodes per participant needed to be corrected
with topographical interpolations.

Trigger recoding was performed for all participants to
tag trials as correct versus incorrect. In this process, three
participants had insufficient or poor quality EEG data for which
triggers could not be recoded, such that the recalculated triggers
displayed a significant discrepancy between the original and
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FIGURE 1 | Stop-signal task design. (A) Depicts a go trial, (B) depicts a stop trial. For both trial types, the maximum time from the appearance of the circle/square
to the end of a trial was 1,250 ms. The ITI was randomized between 375 and 625 ms and presented with a blank screen.

new fixation trigger time points. This led to the exclusion of
n = 3 participants.

Following other studies that have used the SST with ADHD
and control groups (e.g., Kok et al., 2004; Ramautar et al.,
2006; Johnstone et al., 2007; Senderecka et al., 2012), electrodes

were explored with time windows set at 200 ms−310 ms
for N200, and 230 ms −400 ms for P300. Epochs were
defined at 100 ms pre-stimulus and 400 ms post-stimulus.
We report any significant differences in amplitudes for
individual electrodes.
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Statistical Analysis
Participants were excluded if their average reaction times on
go trials were larger than unsuccessful stop trial reaction
times, thereby violating the independence assumption of the
race model of the SST (Verbruggen et al., 2019). Following
Verbruggen et al. (2019), mean RTs in this comparison
included all trials with a key press (i.e., responses may also
be incorrect or premature. This led to the removal of one
participant with co-occurring DCD and ADHD from consecutive
analysis. In an additional step, within-subjects outliers, i.e.,
extreme trial-level raw go RT and unsuccessful stop RT
scores, were removed (on average, 4% an 33%, respectively)
to exclude premature and late responses based on the criteria
recommended by Leys et al. (2013; i.e., median ± 2.5 × absolute
median score).

Average go reaction times were then computed for correct
go trials and unsuccessful stop reaction times, with the latter
including only responses in which a key was incorrectly
pressed. The stop-signal reaction time (SSRT), or the estimated
amount of time required to inhibit a response about to be
executed, represents response latencies that were estimated
for stop trials (i.e., in which a key was not pressed). The
SSRTs were calculated with the block-based integration method
(Verbruggen et al., 2013; see Gajsar et al., 2020 for a detailed
description of this procedure). However, mean SSDs involved
in estimating SSRTs were used to align with actual screen
presentation times and are referred to simply as “SSDs”; see
Verbruggen et al., 2019). This method is preferable when
including clinical groups, such as individuals with ADHD
(Verbruggen et al., 2013

Following the calculations above, performance was further
screened to increase reliability by removing outlying individuals
with sub-optimal performance based on the lenient outlier
criteria set by Congdon et al. (2012), slightly adapted for
clinical populations (see below). Based on this, participants
were excluded if, on average, they violated one or more of
the following criteria: (1) a proportion of successful inhibition
on stop trials greater than 25% and less than 75%, (2) a
proportion of go response greater than 60%, (3) an estimated
SSRT which is positive and greater than 50 ms, and (4) a
proportion of go errors less than 15%. The fourth criterion
required slight modification to 15% (instead of 10%) to account
for outliers in the DCD + ADHD group. Screening for these
four criteria resulted in the removal of an additional n = 5
participants (n = 3 in control group; n = 1 with DCD;
n = 1 with ADHD).

Behavioral and neurophysiological results were compared
with between-subjects One-Way ANOVAs and Tukey’s LSD
post hoc tests. We also conducted independent samples t-tests to
compare the amplitudes of ERPs between participants with DCD
and ADHD in particular. Kolmogorov–Smirnov tests revealed
the control group had a non-normal distribution (D = 0.20,
p = 0.02) for SSRTs, which prevents its comparison to the
other groups for correct stop trials. All aforementioned group
comparisons held before and after outlier removal. Statistical
analysis was conducted in R (v. 3.6.2).

RESULTS

Group Confirmation
As mentioned, participants were grouped based on their
reported diagnostic history for DCD, ADHD, both conditions
(DCD + ADHD), or no health conditions, and this was
confirmed by self-reported symptoms. The average ADC scores
for each group from highest to lowest were: DCD (M = 113.1,
SD = 14.1), DCD + ADHD (M = 108.1, SD = 11.7), ADHD
(M = 87.8, SD = 12.0), and the control group (M = 66.7,
SD = 12.8). Scores of 90 and above signify probable DCD, and
scores over 80 signal potential risk for DCD (Kirby et al., 2010).
The ASRS v.1 scores from highest to lowest per group were:
ADHD (M = 59.0, SD = 9.0), DCD + ADHD (M = 52.9,
SD = 11.7), controls (M = 44.0, SD = 8.2), and the DCD group
(M = 42.5, SD = 9.3) where a score of 47 or higher is indicative of
likely ADHD. Classifications by group and testing site are listed
in Table 1.

Stop-Signal Task Behavioral Parameters
Stop accuracy was not significantly different between groups,
however, there was a significant difference for groups on go
accuracy [F(3,44) = 4.15, p = 0.011]. As revealed in post hoc
testing, this difference was driven by a significant lower accuracy
in the DCD + ADHD (M = 0.93, SD = 0.19) group compared to
the control group (M = 0.97, SD = 0.11). The average reaction
times for go trials, unsuccessful stop trials, and correct (i.e.,
successful) stop trials (SSRTs) were not significantly different
between groups, whereby SSRTs were only compared between
clinical groups (see Table 2 for the descriptive statistics of the
dependent measures of SST performance for all participants).

ERP Results
N200: All Group Comparisons
For component N200, there were amplitudes of several electrodes
for which a significant group effect was found. This included C2
[F(3,46) = 3.47, p = 0.024], C4 [F(3,46) = 3.78, p = 0.017], C6
[F(3,46) = 3.15, p = 0.034], FC2 [F(3,46) = 3.25, p = 0.030], P4
[F(3,46) = 3.00, p = 0.040], and P6 [F(3,46) = 3.93, p = 0.014]
during successful inhibition (correct stop trials). Post hoc tests
revealed several of these differences were driven by the distinction
in amplitudes between the ADHD and control groups (C2,
ADHD: M = 0.71, SD = 1.74, Control: M = −2.27, SD = 2.88,
p = 0.016; C4, ADHD: M =−0.28, SD = 1.75, Control: M =−3.04,
SD = 2.69, p = 0.018; FC2, ADHD: M = 1.10, SD = 1.59,
Control: M = −2.12, SD = 3.32, p = 0.020). A further difference
in C6 was driven by marginally significant differences between
the DCD and ADHD groups (DCD: M = −2.93, SD = 2.31,
ADHD: M = −1.02, SD = 0.94, p = 0.056) and ADHD and
control groups (Control: M = −2.64, SD = 1.43, p = 0.076; see
Figure 2). Furthermore, an effect in amplitudes for electrodes P4
and P6 was driven by differences between the DCD + ADHD
and control groups (P4, ADHD: M = −2.82, SD = 1.44, Control:
M = −5.29, SD = 2.03, p = 0.048; P6, ADHD: M = −3.86,
SD = 1.82, Control: M =−6.78, SD = 2.08, p = 0.010). Finally, one
electrode was implicated in unsuccessful inhibition (incorrect
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TABLE 2 | Descriptive statistics of dependent measures for stop-signal task behavioral data overall and per group.

Dependent Measure Group M SD Range

Probability of go omissions (no response) DCD 0.02 0.03 0–0.07

ADHD 0.04 0.04 0–0.14

DCD + ADHD 0.03 0.04 0–0.1

Control 0.02 0.02 0–0.08

Overall 0.03 0.03 0–0.14

Probability of choice errors on go trials DCD 0.04 0.03 0–0.1

ADHD 0.04 0.04 0–0.13

DCD + ADHD 0.07 0.05 0.02–0.14

Control 0.03 0.02 0–0.09

Overall 0.04 0.03 0–0.14

RT on go trials (mean) DCD 663.64 107.25 491.25–842.05

ADHD 618.46 167.22 402.91–837.31

DCD + ADHD 654.59 197.17 496.53–988.59

Control 672.49 151.75 407.1–904.31

Overall 656.73 147.31 402.91–988.59

Intra-subject variability of correct go trials DCD 133.40 35.80 67.43–191.7

ADHD 120.17 47.27 49.42–192.59

DCD + ADHD 114.68 35.26 80.69–167.44

Control 122.37 39.98 54.47–184.19

Overall 122.76 39.12 49.42–192.59

Probability of responding on a stop trial DCD 0.50 0.03 0.45–0.59

ADHD 0.49 0.02 0.45–0.51

DCD + ADHD 0.48 0.03 0.43–0.51

Control 0.48 0.03 0.44–0.56

Overall 0.49 0.03 0.43–0.59

Average stop-signal delay DCD 377.79 124.27 143.18–574.17

ADHD 359.58 155.08 170.18–557.71

DCD + ADHD 374.36 204.97 141.18–674.2

Control 413.00 148.26 141.17–656.19

Overall 389.00 147.96 141.17–674.20

Stop-signal reaction time DCD 286.24 72.18 228.29–479.07

ADHD 256.02 30.75 226.54–320.42

DCD + ADHD 275.51 47.19 231.08–358.23

Control 254.34* 43.42 200.4–413.9

Overall 264.13 50.29 200.40–479.07

RT of go responses on unsuccessful stop trials DCD 569.30 70.75 458.94–690.85

ADHD 545.09 149.42 373.3–811.73

DCD + ADHD 575.60 188.01 424.23–903.2

Control 583.06 129.95 379.44–813.99

Overall 570.77 126.75 373.30–903.20

Measures listed as recommended by Verbruggen et al. (2019), including measures for each group and overall. The SSRT was not estimated for n = 5 participants
exhibiting suboptimal performance. An additional table is included in Supplementary Materials listing descriptive measures for these participants. When outliers were
removed on a trial-by-trial basis, group level differences did not change. *Not normally distributed.

stop trials): C2 [F(3,46) = 3.01, p = 0.040], for which post hoc
testing revealed differences between the ADHD (M = 0.59,
SD = 1.14) and control groups (M = −2.44, SD = 3.43, p = 0.037;
see Figure 3).

P300: All Group Comparisons
When considering component P300, there was a significant effect
on the amplitudes of various electrodes based on group, including
Fz during successful inhibition [F(3,46) = 3.06, p = 0.038],
FC1 during unsuccessful inhibition [F(3,46) = 3.05, p = 0.038],

and T7 during correct go trials [F(3,46) = 3.39, p = 0.026].
Post hoc testing via Tukey’s HSD revealed these findings were
driven by differences between the DCD + ADHD and control
groups (Fz, DCD + ADHD: M = 4.83, SD = 2.98, Control:
M = 8.89, SD = 4.57, p = 0.092; FC1, DCD + ADHD:
M = 4.95, SD = 3.01, Control: M = 9.37, SD = 4.58,
p = 0.047; T7, DCD + ADHD: M = 2.63, SD = 2.48,
Control: M = 0.32, SD = 1.68, p = 0.016). However, in
Fz this group difference was just marginally significant (see
Figures 2, 3).
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FIGURE 2 | Successful-stop ERPs. Depicted are all electrodes with significant differences in amplitudes for N200 and P300 for correct stop trials. Time windows
were set at 200–310 ms for N200, and 230–400 ms for P300. For N200, significant differences in amplitudes in C2, C4, and FC2 were driven by differences in the
ADHD and control groups, while differences for C6 were driven by differences between the control and DCD groups, and the control and ADHD groups. Differences
in P4 and P6 were driven by differences in the control and DCD + ADHD groups. For P300, a significant difference between groups was indicated for electrode Fz,
driven by the difference between the DCD + ADHD and control groups.

FIGURE 3 | Unsuccessful stop ERPs. Depicted are all electrodes with
significant differences in amplitudes for N200 and P300 for incorrect stop
trials. Time windows were set at 200–310 ms for N200, and 230–400 ms for
P300. For N200, a significant effect of group on amplitude was found for C2,
driven by a difference between the ADHD and control groups. For P300, a
significant difference was found for FC1, driven by the DCD + ADHD and
control groups.

Exploratory Comparisons: DCD Versus ADHD
No significant differences between the ADHD and DCD groups
were found during go trials, however, for P300 and N200 on
stop trials, there were several noteworthy differences between
the DCD and ADHD groups in particular. During successful
inhibition, significantly higher amplitudes were present in P300

for the DCD group compared to the ADHD group in fronto-
temporal electrodes AF7 [t(19) = 3.29, p = 0.004] (DCD:
M = 4.30, SD = 1.84; ADHD: M = 1.88, SD = 1.40), F7
[t(19) = 2.99, p = 0.008] (DCD: M = 3.91, SD = 1.87;
ADHD: M = 1.66, SD = 1.46), and FT7 [t(19) = 2.96,
p = 0.008] (DCD: M = 3.32, SD = 1.19; ADHD: M = 1.59,
SD = 1.49). During unsuccessful inhibition, the DCD group
had heightened peaks in activation for P300 compared to the
ADHD group for electrodes AF7 [t(19) = 2.44, p = 0.025]
(DCD: M = 4.54, SD = 2.60; ADHD: M = 2.08, SD = 1.76),
F7 [t(19) = 3.05, p = 0.008] (DCD: M = 5.27, SD = 1.82;
ADHD: M = 2.64, SD = 2.13), and T7 [t(19) = 2.56,
p = 0.018] (DCD: M = 3.00, SD = 1.20; ADHD: M = 1.46,
SD = 1.54).

In addition, several differences in central and fronto-central
electrodes were present between the DCD and ADHD groups for
N200, including FC2 [t(19) = 2.29, p = 0.034] (DCD: M =−0.96,
SD = 2.31; ADHD: M = 1.10, SD = 1.59), FC6 [t(19) = 2.60,
p = 0.022] (DCD: M = −2.01, SD = 2.14; ADHD: M = −0.33,
SD = 0.57), C2 [t(19) = 2.13, p = 0.047] (DCD: M = −1.14,
SD = 2.13; ADHD: M = 0.71, SD = 1.74), and C6 [t(19) = 2.32,
p = 0.032] (DCD: M = -2.93, SD = 2.31, ADHD: M = −1.02,
SD = 0.94) during successful inhibition. Furthermore, there
were significant differences between groups for N200 peaks in
several electrodes during unsuccessful inhibition, including C1
[t(19) = 2.42, p = 0.027] (DCD: M = −0.93, SD = 2.61; ADHD:
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M = 1.17, SD = 1.30), and C2 [t(19) = 2.31, p = 0.034] (DCD:
M = −1.29, SD = 2.48; ADHD: M = 0.59, SD = 1.14). In all
aforementioned differences in N200, the DCD group showed a
significantly more negative amplitude than the ADHD group.

DISCUSSION

This study lays important groundwork in the DCD literature by
examining endophenotypic overlaps and differences in executive
functions. This novel design includes a stop-signal task and
neurophysiological measurements among adults with DCD,
ADHD, both conditions, and typically developing individuals
(control group). As expected, the behavioral results showed few
differences between all groups. One difference was present in that
the go accuracy of individuals with co-occurring DCD+ ADHD
was lower than for typically developing individuals. Also in line
with our expectations, several differences were found as indexed
by ERPs between all groups, with additional differences found
in direct comparison of the DCD versus ADHD groups. The
latter comparison showed that many electrodes had significantly
different amplitudes for components P300 and N200 between
the DCD and ADHD groups. There were several electrodes,
especially in central locations, which indicated differences in
amplitude for P300 and N200 components on stop trials. These
differences were not present for go trials which signifies that
the general presence of the stop-signal may activate a specific
neurophysiological response. This is in line with other research
comparing those with ADHD to typically developing individuals
in various age groups (e.g., Kok et al., 2004; Ramautar et al.,
2006; Johnstone et al., 2007; Senderecka et al., 2012). While
N200 is often viewed as an index of cognitive flexibility in
typically developing individuals, P300 is viewed as an index
of attention, and both have implications for attention and
response inhibition in the SST (Chikara et al., 2018; Huster
et al., 2020). Given that there were several key differences in
these components in the present study, mechanisms of attention,
response inhibition, and/or cognitive flexibility seem to differ
for DCD and ADHD.

Aside from go accuracy, those with combined DCD+ ADHD
did not perform significantly different from all other groups at
the behavioral level. This result aligns with previous studies of
adults with DCD or ADHD compared to typically developing
individuals where no differences in behavioral results were
present between groups (Bekker et al., 2005; MacLaren et al.,
2007; He et al., 2018a). Due to high demands on inhibitory
performance in the SST (see Rubia et al., 2001), these results
are unlikely to be accounted for by a floor effect in the
clinical group, as they perform similarly to the control groups.
Should our result hold in larger samples, it would indicate
adults with DCD and/or ADHD can compensate in order to
perform as well as typically developed adults in overt responses
on the stop-signal task (i.e., inhibitory control and related
engagement of attention).

The general absence of differences in overt behavior
emphasizes the lack of diagnostic power of typical measures
of accuracy and reaction times regarding differential diagnosis

of DCD or ADHD in adults. Differences in task performance
on other inhibition tasks (e.g., Stroop task) have previously
been considered as indicators of possible neurological differences
among those with ADHD in particular, but similarly are not
sufficient for a diagnosis (Homack and Riccio, 2004). This could
be due to effortful compensation in adults, or more broadly
because inhibitory control is extremely complex and can be gaged
differently by various inhibition tasks (Mirabella, 2021).

Evidence at the neural level indicates there may be unique
neural signatures in evoked potentials between the DCD and
ADHD groups, supporting findings of other studies (Langevin
et al., 2014; McLeod et al., 2014). In the current study, several
differences in activation were present in the N200 component for
DCD versus ADHD groups on stop trials, especially in central
regions during successful inhibition (i.e., correct performance
on a stop trial). Interestingly, the amplitude for the DCD group
was consistently larger than in the ADHD group regardless of
successful versus unsuccessful inhibition. This provides evidence
of separate ways of engaging attentional and inhibitory resources
between these groups to achieve the same overt response.

Importantly, while behavioral performance did not differ
between groups in the majority of parameters, inhibition and
task engagement are not necessarily employed with the same
underlying neural mechanisms across groups. It is unclear if these
underlying mechanisms also translate to increased effort and/or
fatigue, but this should be explored in more detail in future
research. Given that compensation is more readily achieved when
a task is less complex for DCD groups in particular (e.g., Pratt
et al., 2014), it may also be the case that the task was too complex
for the DCD+ ADHD group with a higher symptom load.

Overall, the present study provides several novel contributions
to the DCD and ADHD literature. First, to our knowledge it
is the first study to compare inhibition performance between
adult participants with DCD versus ADHD using a SST, as
well as group comparisons between those with DCD, ADHD,
DCD+ADHD, and typically developing adults. It is also the first
study to incorporate an additional layer of EEG measurement
to examine such group differences during the inhibition of a
motor response to a visual cue. While most research on symptom
differentiation relies on self-report questionnaires (Eisenbarth
et al., 2008), some studies have also investigated endophenotypes
in DCD or ADHD via motor performance or attentional
performance exclusively with single-occurring DCD or ADHD
compared to typically developing individuals, but rarely both.
Third, investigations on adults with both ADHD and DCD are
extremely rare. Therefore, examining this population can provide
researchers with important insights into the endophenotypes and
clinical picture of ADHD and DCD in adults.

Limitations and Future Directions
There are several limitations of the present study which should
be considered. First, the sample sizes were small, in particular
those of the clinical sub-groups. A normality check performed
due to unequal group sizes indicated SSRTs of the typically
developing (control) group were not normally distributed, even
though the typically developing adults comprised of the largest
group of the four in this study. Nonetheless, normality checks
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for other groups passed. Small and unequal group sizes are
not a new problem in DCD and ADHD research, especially
when involving neuroscientific measurements (e.g., Querne et al.,
2008; McLeod et al., 2014). In that respect, our sample sizes
are in the range of previous studies. Future research should
replicate this initial study with larger groups. While some
shortcomings are expected in pilot testing, the present study is
nonetheless important and novel by including diverse groups
of adults with DCD, ADHD, DCD + ADHD, and typically
developing individuals.

A second limitation is the duration of the study sessions.
Participants completed 768 trials of the stop-signal task, and this
took most participants around 40 min. While the participants all
took breaks between blocks, this can still be straining, especially
to participants with difficulties in sustaining attention. There is
evidence of this for the DCD + ADHD group in particular,
who performed significantly worse than typically developing
individuals in go accuracy, which are the least complex trials
in the task. This could be explained by a difficulty managing
competing cognitive resources of the task (e.g., executive versus
inhibitory performance) and could be related to a higher
symptom load in the DCD+ ADHD group.

Another limitation is that the mean performance measures
(i.e., accuracy and reaction-time) did not reveal many substantial
differences but they do not confirm a null hypothesis for
behavioral results in the present study. Our main focus
was to examine if neurophysiological differences would differ
between groups for components linked to attention and motor
performance with the expectation that behavioral data would
reveal no differences, as observed in other studies with related
samples (e.g., Bekker et al., 2005; MacLaren et al., 2007; He
et al., 2018a). More robust cognitive models could potentially
reveal more subtle differences between groups not detectable
in mean RTs or accuracy. Future research should consider the
use of cognitive models (e.g., the diffusion model, Ratcliff and
McKoon, 2008; White et al., 2010) in behavioral data for those
with DCD, ADHD, and both conditions. In addition, these
models might better differentiate symptoms present in both
DCD and ADHD related to visuo-motor integration deficits in
particular (Kurdziel et al., 2015; Nobusako et al., 2018). Future
research should also consider the utilization of a task with visuo-
motor components in order to better understand the potential
differences between DCD and ADHD in visuo-motor integration
and inhibition, and how it is cognitively employed in relation to
profiles of each disorder.

Additional limitations include the participant demographics
(e.g., majority female, differing equipment at testing locations).
Also, participants were recruited in two different sites. While the
laboratory equipment and practices of the researchers remained
as consistent as possible, some differences between the testing
locations existed, such as the visual angles for the task. On the
other hand, it may be an advantage that multinational groups of
individuals may help to generalize the findings and is a method
that has been used before with DCD (e.g., United Kingdom and
Israel, Kirby et al., 2010). We argue that the benefit of increasing
the sample size outweighs the possibly subtle differences in
laboratories. Nonetheless, future research should replicate these

findings with a larger population and balanced groups, but also
across additional test sites and cultures.

Another limitation is the lack of specificity in N200 and
P300 in general. ERP components are broad constructs, but
are useful in the present study to indicate several processes in
executive functioning (e.g., attention, action, inhibition; Huster
et al., 2020). A source analysis for P300 and N200 components
(e.g., Moores et al., 2003; Huster et al., 2010; Hong et al., 2017)
should be considered in dedicated future research with larger
samples to understand the localization of processes involved
in executive functioning during a SST. Given that the present
study aimed to identify any potential differences in ERPs
as foundational evidence for future research, we reported all
relevant electrode sites. However, it also is essential to replicate
amplitude differences with a priori hypotheses in larger samples
with respect to specific electrodes or sensor sites to account for
potential false positives by testing many sensors.

Finally, future research should consider approaches with
multiple levels of neurophysiological assessment, including
neuroimaging and neurostimulation. Recent pilot work using
TMS in adults with DCD versus typical adults has shown to be
promising in identifying correlates of motor symptoms of DCD
at the neural level (He et al., 2018b; Hyde et al., 2019). Combined
approaches between some of these methods, such as EEG and
TMS, could be particularly effective in disentangling DCD and
ADHD symptoms at the neural level.

The present study provides an important initial step in
identifying underlying neural processes which may not be
reflected in behavioral performance of adults with DCD and
ADHD. In addition to further work needed to confirm our
findings in behavioral and electrophysiological differences in
adults with DCD and/or ADHD during the SST, there is still
a need for more research on other relevant endophenotypes in
DCD and ADHD which can be compared in other paradigms
(e.g., attention; Conzelmann et al., 2010). Also, we have not
identified the specific compensatory mechanisms that were
used (e.g., adaptive versus maladaptive), or if they were based
on motor or executive functioning processes. So far we can
only assert that there is evidence in the present study that
compensation is being employed by participants in clinical
groups. Future research should consider identifying more
specific features of compensation mechanisms for those with
DCD or ADHD, for example, in different age groups with
longitudinal designs.

CONCLUSION

This pilot study innovatively demonstrated that inhibitory
control may be a relevant endophenotype at behavioral and
neurophysiological levels for the differentiation of DCD, ADHD,
and co-occurring DCD and ADHD. Crucially, we identified
patterns of varying P300 and N200 amplitudes, suggesting
there are unique executive mechanisms utilized to inhibit a
motor response between groups. At the same time, our results
(i.e., group differences in ERPs but largely similar behavioral
performance between groups), may reflect the potential strength
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and success of compensatory mechanisms in individuals with
DCD and/or ADHD. This study serves as an important
foundation for future explorations into the overlapping executive
functioning processes in DCD and ADHD.
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