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Abstract 
Trauma exposure can lead to the development of posttraumatic stress disorder (PTSD), a 
mental disorder characterized by re-experience of the traumatic event, avoidance behavior, 
negative alterations in cognitions and mood and heightened arousal and reactivity. Fear 
learning and context processing are two psychological processes which have been highlighted 
by psychobiological models of PTSD. In this thesis, structural and functional brain 
differences are investigated in three studies between patients with PTSD and healthy trauma 
(TC) or non-trauma exposed (HC) control subjects and results are discussed within a common 
psychobiological model of PTSD.  

In the first study, we provide a systematic review and meta-analysis including 30 studies with 
1,700 participants on structural white matter differences. In the second study, we build upon 
our findings and investigate both white and gray matter alterations in PTSD in a cross-
sectional study design consisting of 154 subjects. In the third study, we examine behavioral 
and psychophysiological alterations in patients with PTSD during uncued and cued contextual 
fear processing using virtual reality in a cross-sectional-, functional magnetic resonance 
imaging study, including 63 subjects. 

Our results from the first two studies suggest that patients with PTSD show structural 
differences in a wide range of white matter tracts most prominently including tracts 
connecting the prefrontal cortices inter-hemispherically (e.g. forceps minor) as well as with 
more posterior brain regions like the parietal lobe (e.g. superior longitudinal fasciculus). 
White matter alterations in these regions of the brain can be associated with processing 
contexts, regulating emotions and guiding attention. Furthermore, our results suggest lower 
gray matter volumes in patients with PTSD in comparison to TC subjects in the anterior 
insulae, a region critical for processing fear and threat related information. The results of our 
third study show that patients with PTSD in comparison to HC but not TC showed lower 
functional activity in the ventromedial prefrontal cortex during uncued contextual fear 
learning and higher functional activity in the hippocampi during cued contextual fear learning. 
Patients with PTSD did show however similar behavioral ratings of arousal, valence and 
contingency as well as skin conductance responses during both conditions than both control 
groups. 

In summary, this work suggests that patients with PTSD show alterations in structural and 
functional brain activity that can both be associated to fear learning and context processing. 
Our work proposes above all that lower volume and activity within the prefrontal cortex in 
combination with functional alterations in the hippocampi can be associated with deficient 
contextual fear processing. Structural and functional alterations in PTSD are mutually 
dependent and future work will benefit from discussing results of both branches within a 
common psychobiological model of PTSD. Targeting contextual fear processing in PTSD will 
help the overarching goal of translating the results from the lab into clinical practice.   
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1 Introduction 
Psychological trauma (from τραύμα, the Greek word for wound) is characterized by a 

complex emotional response following the experience of an extremely aversive event (Forbes 

et al., 2020). The experience of such an event can lead to the development of posttraumatic 

stress disorder (PTSD), which is characterized by symptoms of re-experiencing, avoidance, 

heightened arousal and reactivity and alterations in cognition and mood. The past two decades 

of research have seen an immense effort in understanding the psychopathological mechanisms 

underlying PTSD. In particular, novel paradigms in combination with advanced neuroimaging 

techniques have led to a refined psychobiological model of PTSD. Here, fear learning and 

context processing have taken the center stage suggesting that patients with PTSD have 

difficulties in discriminating safe from dangerous contexts and in forming accurate 

expectancies about a potential threat within the respective context. Neurobiological findings 

support this hypothesis by showing functional differences in brain regions associated to fear 

learning and context processing. However, there is a gap in the literature on a) structural brain 

differences and their integration into a common psychobiological model of PTSD and b) 

functional brain activity during contextual fear conditioning in patients with PTSD in 

comparison to healthy control subjects with (TC) or without (HC) trauma experience. The 

goal of this dissertation was to investigate structural and functional brain differences 

associated to fear learning and context processing, between patients with PTSD and TC and 

HC subjects and to discuss the results within a shared psychobiological model of PTSD. 

This cumulative thesis is based on the following three manuscripts: 

Siehl, S., King, J. A., Burgess, N., Flor, H., & Nees, F. (2018). Structural white matter 
changes in adults and children with posttraumatic stress disorder: A systematic review 
and meta-analysis. NeuroImage: Clinical, 19, 581-598. doi: 
10.1016/j.nicl.2018.05.013 

Siehl, S., Wicking, M., Pohlack, S., Winkelmann, T., Zidda, F., Steiger-White, F., King, J., 
Burgess, N., Flor, H., & Nees, F. (2020). Structural white and gray matter differences 
in a large sample of patients with Posttraumatic Stress Disorder and a healthy and 
trauma-exposed control group: Diffusion tensor imaging and region-based 
morphometry. NeuroImage: Clinical, 28, 102424. doi: 10.1016/j.nicl.2020.102424 

Siehl, S., Wicking, M., Pohlack, S., Winkelmann, T., Zidda, F., Steiger-White, F., Nees, F., & 
Flor, H. (2020). Cued and contextual conditioning in patients with posttraumatic

stress disorder and a healthy and trauma-exposed control group: A functional 

magnetic resonance imaging study using virtual reality. Manuscript in preparation. 

https://doi.org/10.1016/j.nicl.2018.05.013
https://dx.doi.org/10.1016%2Fj.nicl.2020.102424
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1.1 Posttraumatic stress disorder 

According to the fifth edition of the Diagnostic and Statistical Manual (DSM-5; American 

Psychiatric Association, 2013), a diagnostic requirement for being diagnosed with PTSD is 

that an individual has either been directly or indirectly exposed or has learned about a close 

person being exposed to a traumatic event. In addition, the following four symptom clusters 

have to be fulfilled, having been present for the past four weeks: a) the re-experience of the 

traumatic event in form of intrusions or flashbacks; b) avoidance behavior around thoughts, 

emotions or reminders of the event; c) negative alterations in cognitions and mood; d) 

heightened arousal and reactivity. Often these key symptoms are accompanied by symptoms 

such as impaired social cognition (Couette, Mouchabac, Bourla, Nuss, & Ferreri, 2020) and 

somatic pain or disfigurements (Morina et al., 2018; Siqveland, Ruud, & Hauff, 2017), such 

as physical scars or amputations. An estimated seven out of ten adults worldwide experience 

at least one traumatic event in their lifetime with approximately every third adult experiencing 

four or more events (Benjet et al., 2016). This means that a majority of people worldwide 

experience at least one traumatic event during their lifetime. The lifetime prevalence of PTSD 

is about seven percent (Kessler et al., 2005) with significantly higher prevalence rates in 

conflict and post-conflict regions (Ng et al., 2020; Onyut et al., 2009). The probability to 

develop PTSD is increased by a variety of factors including female sex, childhood trauma or a 

higher number of traumatic events experienced (Shalev, Liberzon, & Marmar, 2017). 

Furthermore, the probability increases with an increased intensity (e.g., exposure to death) 

and unpredictability (e.g., torture) of the traumatic event as well as specific types of trauma, 

with interpersonal or voluntarily caused types (e.g., rape) resulting in higher probability rates 

than non-personal or involuntarily caused events (e.g., car accident; Kessler et al., 2017; 

Shalev, Liberzon, & Marmar, 2017). The comorbidity of PTSD is high with approximately 

every second individual being also diagnosed with a mood-, anxiety or substance abuse 

disorder (Antonacci & de Groot, 2000; Pietrzak, Goldstein, Southwick, & Grant, 2011). In the 

following sections, we will discuss psychological processes involved in the development and 

maintenance of PTSD, followed by the introduction of a novel psychobiological model of 

PTSD.   

1.2 Psychological processes involved in posttraumatic stress disorder 

A traumatic event can be defined as an extremely aversive, often life-threatening, learning 

experience. As such, learning processes, studied primarily through classical pavlovian fear 

conditioning, have been the natural starting point to investigate mechanisms in anxiety 
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disorders (Jacobs & Nadel, 1985; Rosen & Schulkin, 1998). In PTSD, a particular focus was 

placed on context conditioning (Maren, Phan, & Liberzon, 2013) in recent years. In the 

following, we discuss fear learning and context processing in more detail using the model of 

PTSD proposed by Shalev et al. (2017) and briefly touch upon related processes like threat 

detection, emotion processing and aspects of executive functions.  

1.2.1  Fear learning 

Fear learning, the process of learning to predict the occurrence of an unpleasant stimulus and 

changing one’s behavior accordingly, is a central survival skill. Fear learning can be studied 

using classical pavlovian fear conditioning (Pavlov, 1927). In classical fear conditioning, an 

originally neutral stimulus (the conditioned stimulus, CS) is presented together with an 

aversive (e.g. tone, shock), unconditioned stimulus (US). During acquisition, the CS acquires 

aversive characteristics similar to the one of the US and the CS starts to elicit a conditioned 

response (CR). In the extinction phase, the CR can be overwritten when the CS is repeatedly 

presented without the US (for a review see Lonsdorf et al., 2017). In a differential fear 

conditioning paradigm, a modification of classical fear conditioning, there are multiple CSs, 

which are either paired with a US to become a danger (CS+) or safety signal (CS-). Earlier 

studies investigating differential fear conditioning (Lissek et al., 2005) found that patients 

with PTSD show difficulties in discriminating safety from danger cues (Grillon, 2002; 

Grillon, Morgan, Davis, & Southwick, 1998). Patients with PTSD were reported to show 

higher physiological reactions, measured via startle or skin conductance response (SCR), to 

safety cues than healthy control subjects (Jovanovic, Kazama, Bachevalier, & Davis, 2012; 

Jovanovic et al., 2010). An impaired safety signal learning was even suggested as a possible 

biomarker for PTSD (Jovanovic et al., 2012). The results on physiological responses during 

cued fear acquisition have been mixed, however, with some authors reporting an elevated 

startle or SCRs (Orr et al., 2000; Peri, Ben-Shakhar, Orr, & Shalev, 1999), while others did 

not find any differences (Milad et al., 2009; Nees, Heinrich, & Flor, 2014).  

In the previous examples, the CS was a single item or cue (cue conditioning). In the 

absence of a specific cue that is predictive for the occurrence of the US, the entire context can 

become the CS (context conditioning; Maren, Phan, & Liberzon, 2013). Now, extreme stress 

leads to an ambiguity in the evaluation of contexts. Originally safe contexts are encoded as 

potentially dangerous. Different ways to study context conditioning have been developed, 

operationalizing “context” differently (for a review: Glenn, Risbrough, Simmons, Acheson, & 
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Stout, 2017). Early studies used distinct colored backgrounds (Armony & Dolan, 2001), 

transitioning colored backgrounds (Lang et al., 2009; Pohlack, Nees, Ruttorf, Schad, & Flor, 

2012) or static background pictures (Marschner, Kalisch, Vervliet, Vansteenwegen, & Buchel, 

2008; Steiger, Nees, Wicking, Lang, & Flor, 2015). More recent approaches include 

configural learning (Baeuchl, Hoppstädter, Meyer, & Flor, 2019; Baeuchl, Meyer, 

Hoppstädter, Diener, & Flor, 2015; Stout et al., 2018), in which the US can only be predicted 

by learning the configuration of multiple items, and virtual reality (Alvarez, Biggs, Chen, 

Pine, & Grillon, 2008; Alvarez, Chen, Bodurka, Kaplan, & Grillon, 2011; Andreatta et al., 

2015; Baas, van Ooijen, Goudriaan, & Kenemans, 2008; Grillon, Baas, Cornwell, & Johnson, 

2006; Indovina, Robbins, Núñez-Elizalde, Dunn, & Bishop, 2011). In PTSD, contextual fear 

learning was proposed to be a key mechanism around which the psychopathology evolves (for 

a review see Maren et al., 2013). In particular, an underlying inability to adequately form 

conjunctive context representations has been suggested (Stout et al., 2018), a process of 

binding single items into a unitary representation (Rudy & O’Reilly, 2001; Rudy & O’Reilly, 

1999), and the inability to associate cues to the appropriate contexts (Acheson, Gresack, & 

Risbrough, 2012; Stout et al., 2018). In line with this, Steiger, Nees, Wicking, Lang, & Flor 

(2015) found that individuals with PTSD showed an impaired ability to discriminate safe and 

dangerous contexts as well as impaired contextual modulation of cue-related associations 

compared to healthy individuals with or without traumatic experience. For a better 

understanding of mechanisms behind context learning, we first have to define what we mean 

by context, and then look at the broader function of context processing in cognition.  

1.2.2  Context processing 

Context processing as a central psychological process involved in anxiety disorders has been 

on the radar of researchers for some time (Pitman et al., 2012) but recent theoretical work put 

it at the center of their models for the development and maintenance of PTSD (Brewin, 

Gregory, Lipton, & Burgess, 2010; Liberzon & Abelson, 2016; Robertson et al., 2017). Maren 

et al. (2013) define context very broadly “as the internal (cognitive and hormonal) and 

external (environmental and social) backdrop against which psychological processes operate” 

(p.417). In other words, an individual’s appraisal of a context influences our internal and 

external responses to a given situation. In this work, we will mainly discuss external, and 

more specifically environmental, factors of context. Figure 1a shows elements of an office 

and their embedding into a context. Therein, context processing describes the embedding of 

cues in a common environmental space (single event), which is defined by its spatial borders  
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Figure 1. Context representation and the example of an aversive experience. a) Elements, in 
this case furniture, that are typically present in an office. b) Office context and particular 
spaces, in which the elements are placed in. c) Aversive experience in office, such as getting 
fired. An encoded context can be associated with a new event, such as this aversive 
experience. d) Office memories, which are associated to the event of getting fired, might 
provoke stress and anxiety and might generalize to similar context settings. [adapted from 
Maren, Phan, & Liberzon, 2013, without permission] 

 (e.g. wall), its complexity (e.g. high amount of interactions of objects/ people in 

environment) and its possible courses of action (e.g. control taking within a single event; see 

Figure 1a and b). Along these lines, combined cue-context conditioning paradigms have used 

predictable contexts, in which a single cue within the context predicts the US (CS; e.g. person 

in red in Figure 1c), in comparison to unpredictable contexts, in which no single cue but the 

context itself predicts the occurrence of a US (CTX+; Grillon, Baas, Lissek, Smith, & 

Milstein, 2004; Indovina, Robbins, Núñez-Elizalde, Dunn, & Bishop, 2011; Schmitz & 

Grillon, 2012). A combined cue-context study design allows studying the main effects of a 

conditioned cue and a conditioned context as well as their interaction simultaneously. To the 

best of our knowledge, no study has assessed this in patients with PTSD. We would 

hypothesize that patients with PTSD in comparison to TC and HC subjects show higher 

arousal, valence and contingency ratings as well as SCRs when the US occurs in an 

unpredictable context but not in the predictable context.  

In addition, just remembering the office might elicit a fear response with the 

possibility of being generalized over time to similar environments (Figure 1d). This is in line 

with multiple lines of research, including fear conditioning, imagery and memory research, 

that found alterations in context processing in patients with PTSD (Brewin & Burgess, 2014; 

Brewin et al., 2010; Ehlers & Clark, 2000; Jacobs, Brown, & Nadel, 2017; Kheirbek et al., 

2012; Levy-gigi, Richter-levin, Levy-gigi, & Richter-levin, 2016; Liberzon & Abelson, 2016; 
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Maren et al., 2013; Nadel & Willner, 1980). Using fear conditioning paradigms, patients with 

PTSD showed stronger fear generalization (Dunsmoor & Paz, 2015; Kheirbek et al., 2012; 

Lissek et al., 2005; Lissek & van Meurs, 2015; Morey et al., 2020), weaker context 

representations (Acheson et al., 2012; Flor & Nees, 2014; Lang et al., 2009; Maren et al., 

2013; Steiger et al., 2015), deficient fear extinction and renewal with heightened levels of fear 

(Garfinkel et al., 2014; Maren & Holmes, 2016; Wicking et al., 2016). Similar results come 

from research on the development of intrusions and flashbacks (Bird et al., 2012; Brewin & 

Burgess, 2014; Brewin et al., 2010; Jacobs et al., 2017), showing alterations in processes 

associated to context processing, such as allocentric memory performance (Meyer et al., 2012; 

Smith, Burgess, Brewin, & King, 2015) and reduced accuracy in pattern separation (Liberzon, 

Duval, & Joshi, 2017). In addition, a reduced accuracy in temporal contextualization is 

discussed, measured via a reduced sense of ‘nowness’ (Brewin & Burgess, 2014; Glazer, 

Mason, King, & Brewin, 2013) and the effect of being ‘frozen in time’ (Ehlers & Clark, 

2000). The representation of context is essential for detecting changes and predicting future 

events within the same map. Dysfunctional context processing is not an isolated process but 

accompanied by changes in attention, emotion processing and specific executive functions, 

which will be briefly discussed in the following section. 

1.2.3  Threat and salience detection, emotion processing and executive functions in PTSD  

The ability to detect or anticipate potential threats via guiding one’s attention towards salient 

stimuli, like a snake lying in the grass, is a core survival mechanism in humans (Brewin et al., 

2010; Eilam, Izhar, & Mort, 2011; Maren et al., 2013; Sripada et al., 2012). Patients with 

PTSD show exaggerated reactivity to salient stimuli (Fani et al., 2012), a stronger preferential 

attention to threatening stimuli (Buckley, 2000) and a heightened threat anticipation (Grillon 

et al., 2009). This constant alertness leads to increased levels of arousal and hypervigilance in 

patients with PTSD. At the same time, attentional inflexibility might underlie the difficulty in 

discriminating unpredictable and predictable contexts from their safe counterparts. Patients 

with PTSD also show alterations in emotion regulation, making it difficult to either 

downregulate very intense emotions or to match an emotional response to the situational 

demands (Gross, 2014; Gross, 1998). Here, an increased utilization of response-focused 

strategies was shown in patients with PTSD, in which the already evolved emotion is 

modulated (expressive suppression), and a decreased utilization of antecedent-focused 

strategies, in which one’s thoughts are changed prior to the emotional response (cognitive 

reappraisal; Boden et al., 2013). Firefighters with low (but not high) emotion regulatory 
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flexibility showed a strong association between the number of traumatic events exposed to 

and symptom severity of PTSD (Levy-gigi et al., 2016; Polak et al., 2012). Higher flexibility 

in being able to choose between different emotion processing strategies seems to be a 

protective factor. Finally, Shalev et al. (2017) argue that a broader malfunctioning of key 

executive functions, such as the integrity of working memory or task-shifting components, 

underlie altered threat detection and emotion processing (Aupperle, Melrose, Stein, & Paulus, 

2012; Polak et al., 2012). The malfunctioning of these necessary core processes in 

combination with increased levels of arousal and hypervigilance amplify the inflexibility in 

emotional processing and threat detection. These on the other hand create a context in which 

discrimination learning and predictability of threats are impeded. Abnormalities in the above 

discussed psychological processes are associated with and mediated by neurobiological 

processes. In the next section, common neuroimaging techniques shall be discussed to assess 

structural and functional brain differences. These will then be embedded in a psychobiological 

model of PTSD. 

1.3 Neurobiological foundations of posttraumatic stress disorder 

The human brain is a highly flexible organ adapting through growth and reorganization, a 

process termed neuroplasticity (Fuchs & Flügge, 2014). Neuroplasticity can be divided into 

structural and functional neuroplasticity (Sampaio-Baptista & Johansen-Berg, 2017; Zatorre, 

Fields, & Johansen-Berg, 2012). Structural plasticity can be further subdivided into gray and 

white matter plasticity (Zatorre et al., 2012) and both can be assesses with specialized 

magnetic resonance imaging (MRI) sequences. Furthermore, all types of analyses described in 

this section can be applied to all areas in the brain (so called whole-brain analysis) or to 

specific regions of interest (ROI analysis). Diffusion Tensor Imaging (DTI; Bihan & 

Johansen-Berg, 2012; Johansen-Berg & Behrens, 2014) is a commonly used imaging 

technique to assess white matter architecture, in which the directionality of diffusion of water 

molecules is estimated. It is assumed that the movement of water molecules in white matter is 

bound to the direction of the axons the water is dissolved in. The net directionality of water 

diffusion can be estimated with the so-called fractional anisotropy (FA), a measure ranging 

from 0 (isotropic; non-directional) to 1 (anisotropic diffusion; highly directional). FA values 

closer to 1 are associated with a higher streamline count of white matter tracts and are 

considered to be preferable over low values in areas in which a strong connectivity is assumed 

(Jones, Knösche, & Turner, 2013). In their systematic review and meta-analysis on 

differences in FA in patients with PTSD in comparison to either HC or TC subjects, Daniels 
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et al., (2013) found a variety of tracts differing significantly in the FA value. These tracts 

included bilaterally the cingulum and superior longitudinal fasciculus (SLF), the posterior 

limb of the internal capsule, the right anterior thalamic radiation and the right anterior corona 

radiate. More studies reported higher FA values in these tracts in patients with PTSD than in 

the respective control group, with only two studies reporting lower FA values. Differences in 

FA values seem to be found in large and long-reaching fiber tracts, connecting either anterior 

to posterior lobes (e.g. SLF) or in interhemispheric connections (e.g. cingulum). However, the 

results of the review and meta-analysis by Daniels et al. (2013) highlight a large heterogeneity 

in both the applied methodology and the included and compared samples. Thus, a systematic 

review and meta-analysis is needed with clearly defined groups, taking into consideration the 

age of participants (e.g. children vs. adulthood), the timing of trauma (e.g. childhood [<18 

years of age] vs. adulthood [>18 years of age]) and the methodology of the assessment of 

white matter (whole brain vs. ROI). In addition, studies with larger sample sizes are needed 

comparing white matter in patients with PTSD with HC and TC subjects.  

In respect to gray matter plasticity, volumes can be estimated with a technique called 

voxel-based morphometry (VBM; Ashburner & Friston, 2005), in which the volume of each 

voxel in the brain, after registration to a template brain, is estimated from a high-resolution 

MRI scan. Just like in DTI, VBM can be applied to the whole brain or to particular ROIs and 

group comparisons can then be calculated. In PTSD research, recent meta-analyses found 

smaller volumes in brain regions associated to all four psychological processes discussed in 

the previous section (Bromis, Calem, Reinders, Williams, & Kempton, 2018; Kühn & 

Gallinat, 2013). Interestingly, differences in volume were also found when TCs were 

compared to HC subjects, with lower volumes of the hippocampus bilaterally in TC subjects. 

Furthermore, patients with PTSD in comparison to patients with major depressive disorder 

(MDD) showed lower total brain volume, suggesting either a more generalized neuroplastic 

volume change in gray matter due to trauma experience or a pre-traumatic vulnerability factor 

for developing PTSD (Bromis et al., 2018). However, the number of studies is low for the 

majority of meta-analytical ROI analyses, with often only a handful of studies that could be 

included. Furthermore, it is not clear if and how gray and white matter differences are 

associated. The hen-and-egg problem in brain plasticity research in PTSD evolves around the 

question if these differences are the result of a simple trauma exposure or if trauma exposure is 

only the last straw that breaks the camel’s back as the result of a pre-traumatic vulnerability. 

Zatorre et al. (2012) called this interaction between experience-based learning, mediated by 
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functional brain plasticity, and structural adaptation of the brain a dynamic loop. The 

challenge to study this loop and its various interacting mechanisms is further complicated by 

the fact that PTSD presents itself in a heterogeneous clinical picture (e.g. complex PTSD, 

dissociative subtype; Frewen, Zhu, & Lanius, 2019; Sierk, Manthey, Brakemeier, Walter, & 

Daniels, 2020) and can be the consequence of different kinds of events (e.g. involuntarily- or 

voluntarily caused events; Kessler et al., 2017) occurring at different points in life (e.g. 

childhood vs. adulthood; Alisic et al., 2014). To tackle this challenge, we need more well-

powered studies on gray and white matter differences with strong study designs focusing on 

the various aspects mentioned above. 

Finally, we can assess functional brain activity associated to specific tasks via a technique 

called blood-oxygenation-level-dependency (BOLD; Ogawa, Lee, Kay, & Tank, 1990). When 

a specific task is performed, the neurons involved in the computations are in need of more 

energy, reflected in oxygen. The latter is delivered by blood cells (bound to hemoglobin 

molecules) which are supplied via arteries in the brain. This consumption of oxygen leads to a 

change in the level of oxygenated (oxyhemoglobin) and deoxygenated (deoxyhemoglobin) 

blood, the so-called hemodynamic response. Differences in the magnetic susceptibility of 

oxy- and deoxygenated blood can be detected and are the basis for the BOLD signal, thus 

providing the underlying principle of functional MRI (fMRI). Using fMRI, we can study 

cognitive functions noninvasively, associate these functions to the activity in anatomically or 

functionally defined brain regions and compare the fMRI signal between groups (Logothetis, 

2003, 2008). This can be done using task- or paradigm-based fMRI, in which a specific task is 

performed by participants in the MRI scanner, or using resting state fMRI (rs-fMRI), in which 

the brain activity is measured during the absence of any stimulus or task. The latter is often 

used to identify brain networks, which are brain areas whose BOLD activations are correlated 

over time. A large number of studies have investigated task-based and rs-fMRI group 

differences between patients with PTSD and HC and TC subjects across fear learning, context 

processing, threat detection and emotion processing. In the following section, we will discuss 

some of the findings within a novel psychobiological model of PTSD. 
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Figure 2. Psychobiological model of PTSD with brain regions and networks involved in the 
pathophysiology. a) Network involved in emotion regulation and executive function.             
b) Network involved in threat detection. c) Network involved in contextual processing.          
d) Network involved in fear learning. [adapted from Shalev, Liberzon, & Marmar, 2017, 
without permission] 

1.4 Psychobiological model of posttraumatic stress disorder 

The past two decades marked a major leap in the understanding of the neurobiology of PTSD.  

Shalev et al. (2017) proposed a psychobiological model associating the psychological 

processes with structural and functional differences in specific brain regions (Figure 2). The 

model is complemented by the psychobiological model by Maren et al. (2013; Figure 3) 

tackling specific neural mechanisms underlying cue and context conditioning in more detail. 

Cue processing and context processing have been associated to different brain regions 

which are activated together, so-called circuits. The cue processing circuit consists of its most 

prominent candidate, the amygdala (Figure 2; Shalev et al., 2017), the thalamus, sensory 

cortices (such as primary visual or auditory cortex), the posterior insula and association areas 

(such as parietal and temporal lobe; Maren et al., 2013). The context conditioning circuit 

includes the hippocampus, the ventromedial prefrontal cortex (vmPFC), the anterior insula 

and the subgenual anterior cingulate cortex (sgACC; Figure 3; Maren et al., 2013). Patients 
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with PTSD showed alterations in the BOLD activity of the hippocampus during contextual 

fear acquisition (Lang et al., 2009; Lissek et al., 2005; for a review: Acheson, Gresack, & 

Risbrough, 2012b; Flor & Nees, 2014b) and impaired extinction recall associated with 

heightened amygdala activity (Garfinkel et al., 2014; Nees et al., 2015; VanElzakker, Kathryn 

Dahlgren, Caroline Davis, Dubois, & Shin, 2014). However, only very few neuroimaging 

studies have investigated cued fear learning in PTSD patients (for a review see Suarez-

Jimenez et al., 2020), and even fewer have studied context conditioning and extinction in 

patients with PTSD (Rougemont-Bücking et al., 2011; Steiger et al., 2015). To study 

functional brain differences in fear learning and context processing in patients with PTSD in 

comparison to HC and TC subjects, a combined cue-context conditioning paradigm (Lonsdorf 

et al., 2017) would be desirable using virtual reality (Glenn et al., 2017). 

The last four decades have shown that the hippocampus is more broadly involved in 

the representation of context as a spatial outline of the environment including objects and 

their spatial relation to each other (e.g. Nadel, Hoscheidt, & Ryan, 2013; Smith & Mizumori, 

2006). This way of context mapping in the hippocampus is the prerequisite for learning and 

memory (Bird & Burgess, 2008; Burgess, Maguire, & O’Keefe, 2002; King, Burgess, Hartley, 

Vargha-Khadem, & O'Keefe, 2002) as well as imagery (Brewin, Gregory, Lipton, & Burgess, 

2010; Zeidman & Maguire, 2016). Kheirbek et al. (2012) showed that extreme stress leads to 

a decrease in neurogenesis in the ventral and dorsal hippocampus of rats. Similar results were 

found in humans, linking neurogenesis in the anterior and posterior hippocampus to the 

formation of accurate pattern separation (Bakker, Kirwan, Miller, & Stark, 2008; Stark, 

Yassa, Lacy, & Stark, 2013; Yassa & Stark, 2011). This is in line with previously mentioned 

structural findings of hippocampus atrophy in patients with PTSD (Bromis et al., 2018). 

Besides the hippocampus, the mPFC supports maintaining context representations over time 

(Quinn, Ma, Tinsley, Koch, & Fanselow, 2008), shifting the perspective within scenes (Bird 

& Burgess, 2008) and incorporating novel into existing networks of memories (Preston & 

Eichenbaum, 2013). Eden et al. (2015) investigated the microstructural white matter in 

healthy individuals and different degrees of trait anxiety and found that individuals scoring 

higher on trait anxiety showed weaker connections, via tracts like the uncinate fasciculus, 

between the PFC and the amygdalae. Similarly, Nees et al., (2019) found a positive 

correlation in 93 healthy individuals between the microstructural white matter architecture in 

the hippocampal cingulum and skin conductance response during  extinction of contextual 

conditioned responses. This effect was moderated by trait anxiety, suggesting an association  



12  

 

 

 

Figure 3. Brain regions and networks involved in cue and context processing. A cue, such as 
a poisonous snake, encountered in a context, such as in the wild, is appraised differently 
(potentially dangerous) than when it is exhibited in a zoo (safe or interesting). Two systems in 
the brain process cue- (in red) and context (in green) information. The cue processing system 
consists of the thalamus, amygdala, sensory cortices (e.g. V1 and auditory cortex), pINS and 
association areas (e.g. PL and TL). The context processing system consists of the vmPFC, 
hippocampus, aINS and sgACC. The cue and context processing systems interact, and 
learning about one of the two influences the processing of the other [adapted from Maren, 
Phan, & Liberzon, 2013, without permission].  

[Abbreviations: aINS – anterior insula; pINS – posterior insula; PL – parietal lobe; sgACC – subgenual anterior 
cingulate cortex; TL – temporal lobe; V1 – primary visual cortex; vmPFC – ventromedial prefrontal cortex] 

between emotion regulation, contextual learning and prefrontal and hippocampal white matter 

paths. Two other brain regions associated to context processing are the thalamus and the locus 

coeruleus (Shalev et al., 2017; Figure 2c). The thalamus on the one hand is involved in fear 

conditioning (LeDoux, Farb, & Ruggiero, 1990), consolidation of memories (Pereira de 

Vasconcelos & Cassel, 2015) and the recall and recognition of memories, likely in interaction 

with hippocampal activity (Aggleton & Brown, 1999). The hyperactive locus coeruleus on the 

other hand, as center of synthesis of the stress hormone and neurotransmitter norepinephrine, 

is argued to be a possible player in explaining difficulties in contextual memory consolidation 

due to the association between a hyperactive locus coeruleus and less rapid-eye movement 

sleep in patients with PTSD (Naegeli et al., 2018; Pietrzak et al., 2013; Shalev et al., 2017).  
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The ability to detect threats and process salience is associated to the activity in several 

brain areas such as the amygdalae, the insulae and the anterior cingulate cortices (ACC;  

Uddin, 2015). These regions are part of the salience network, a network of regions which was 

found to be simultaneously active during rs-fMRI. Patients with PTSD were repeatedly found 

to show alterations in the salience network with higher BOLD activities of the insula, 

amygdala and ACC (Figure 2b; Liberzon & Abelson, 2016; Shalev et al., 2017). Similar 

results were found in highly trauma-exposed populations without PTSD, such as firefighters, 

in comparison to non-exposed populations (Jeong et al., 2019). Differences were reported in 

the activity of and connectivity within the salience network and between the salience network 

and other brain networks such as the default mode network (DMN; Sripada et al., 2012). 

Lanius, Frewen, Tursich, Jetly, & McKinnon (2015) proposed a neuroscientifically-informed 

treatment intervention for traumatized individuals with clinical markers such as hyper-/ 

hypoarousal and treatments targeting the functional connectivity (FC) within the salience 

network via techniques such as mindfulness or neurofeedback. While we begin to understand 

that fMRI neurofeedback and mindfulness are powerful techniques that can be combined and 

used to enhance emotion regulation and reduce salience of aversive memories, the 

neuroscience behind it is still poorly understood (Lubianiker et al., 2019; Tang, Hölzel, & 

Posner, 2015). A more mechanism-based treatment approach in PTSD relies heavily on our 

understanding of the underlying structural white and gray matter regions that we aim to target 

and change. Goldin, McRae, Ramel, & Gross (2008) showed emotion-eliciting films to 

healthy women and found that the PFC responded within the first five seconds during 

cognitive reappraisal resulting in a decreased experience of negative emotion associated to 

decreased  functional activation in the amygdalae and insulae. During suppression of negative 

emotions, the PFC responded after ten to 15 secs also leading to a decreased experience of 

negative emotion, which was associated with increased brain activity in the amygdalae and 

insulae. Interestingly, recent studies using Bayesian modelling of fMRI data showed that 

patients with PTSD display a downregulation of inhibitory connections from the vmPFC to 

the amygdala, while patients with PTSD and its dissociative subtype showed an upregulation 

of inhibitory connections from the vmPFC to the amygdala (Nicholson, Friston, et al., 2017). 

Central executive functions (Lanius et al., 2015), such as the inhibition of automatic responses 

and the regulation of attention, depend on the activity of several subregions of the prefrontal 

cortex (PFC) and its connectivity to other brain regions (Miyake et al., 2000). Patients with 

PTSD in comparison to healthy control subjects show a reduction of structural gray matter in 

the vmPFC and orbitofrontal cortex (Bromis et al., 2018; Kühn & Gallinat, 2013). 
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Furthermore, patients with PTSD show alterations in FA values (both lower and higher FA 

values) in white matter tracts in the frontal gyrus, when compared to HC (Sun et al., 2013; 

Zhang et al., 2011) and TC subjects (Fani et al., 2014; Li et al., 2016; Schuff et al., 2011). In 

addition, white matter alterations in interhemispheric connections within the PFC, like the 

forceps minor, have been found (Huang, Gundapuneedi, & Rao, 2012) between patients with 

PTSD and TCs.   

1.5 Research questions 

The aim of this dissertation is to study structural and functional brain differences in patients 

with PTSD in comparison to healthy control subjects with or without traumatic experiences 

within a shared model of psychobiology of PTSD. The current research on structural and 

functional neuroplasticity, fear learning and context processing discloses several gaps 

including the following:  

1. a comprehensive systematic review and meta-analysis on white matter differences in 

patients with PTSD embedding findings in a common psychobiological model of PTSD 

2. a well-powered study on structural white and gray matter differences embedding findings 

in a common psychobiological model of PTSD 

3. an fMRI study using a combined cue-context fear learning paradigm, studying the 

discriminatory ability of patients with PTSD of safe and dangerous contexts.  

Therefore, the first two studies presented here, focused on structural differences, with a 

particular focus on white matter differences, whereas the third study focused on contextual 

fear learning in a VR environment.  

1.6.1 Hypotheses: Study 1 

In the first study, a systematic review and meta-analysis on structural white matter differences 

in adults and children with PTSD was conducted. The main hypotheses of the study were:  

a) … lower FA values in the corpus callosum were expected in adults with PTSD and 

trauma experience in childhood in comparison to trauma control subjects. 

b) … lower FA values in the cingulum, long-reaching white matter tracts like the inferior 

and superior longitudinal fasciculus (ILF and SLF) as well as in frontal white matter 
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tracts such as the uncinate fasciculus (UF) and the forceps minor (FM) were expected 

in adults with PTSD in comparison to trauma control subjects.  

c) In the meta-analysis, significant clusters were expected in the above mentioned white 

matter tracts of the ILF, SLF, UF and FM, all associated to top-down control of 

emotion processing as well as visual spatial learning and attention. 

1.6.2 Hypotheses: Study 2 

In the second study, structural white and gray matter differences in patients with PTSD using 

diffusion tensor imaging and voxel-based morphometry were examined. The following 

hypotheses were proposed:  

Comparing patients with PTSD to healthy and trauma control subjects we expected … 

a) … higher FA values in frontal white matter tracts, such as the FM and UF in both 

control groups.  

b) … higher gray matter volume of both hippocampi in both control groups. 

c) … higher gray matter volume of both anterior insulae in both control groups.  

d) … a positive correlation between differences in white and gray matter. 

e) … negative correlations between symptom severity of PTSD, depression and trait 

anxiety and white and gray matter differences.  

1.6.3 Hypotheses: Study 3 

In the third study, we investigated contextual fear learning in patients with PTSD in 

comparison to trauma and healthy control subjects using an immersive VR like environment 

during fMRI. For the different conditions, we expected the following:  

For the uncued and therefore unpredictable context in comparison to a safe context, we 

hypothesized that patients with PTSD in comparison to HC and TC subjects … 

a) … report higher arousal, valence and contingency ratings. 

b) … show an elevated skin conductance response. 

c) … show smaller BOLD activities in the hippocampi, vmPFC and 

amygdalae. 
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For the cued and therefore predictable context in comparison to the safe context, we expected 

higher BOLD activity in the amygdalae for patients with PTSD in comparison to HC and TC 

subjects. We also hypothesized that all three groups for the danger cue (CS+) in comparison 

to the safety cue (CS-)… 

a) … report higher arousal, valence and contingency ratings and  

b) … show an elevated skin conductance response. 
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2     Empirical Studies

2.1 Study 1: 

Structural white matter changes in adults and children with posttraumatic stress 

disorder: A systematic review and meta-analysis1 

1 Publication: 

Siehl, S., King, J. A., Burgess, N., Flor, H., & Nees, F. (2018). Structural white matter 
changes in adults and children with posttraumatic stress disorder: A systematic review 
and meta-analysis. NeuroImage: Clinical, 19, 581–598. doi: 10.1016/j.nicl.2018.05.013

https://doi/
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Abstract 

 

White matter plasticity occurs throughout life due to learning and can be a protective factor 

against as well as a vulnerability factor for the development of mental disorders. In this 

systematic review we summarise findings on structural white matter changes in children and 

adults with posttraumatic stress disorder (PTSD) and relate them to theoretical accounts of the 

pathophysiology of PTSD with a focus on the disturbed processing of contexts and associated 

problems in emotional and cognitive processing and PTSD symptomatology. We particularly 

examine studies reporting fractional anisotropy (FA) measured with diffusion tensor imaging 

(DTI). We further subdivided the studies in adult-onset PTSD with traumatic experience in 

adulthood, adult-onset PTSD with traumatic experience in childhood and children with PTSD. 

We included 30 studies comprising almost 1700 participants with 450 adults and 300 children 

suffering from PTSD. Our systematic review showed that for children with PTSD and adult-

onset PTSD with childhood trauma, a decrease in FA in the corpus collosum, most 

prominently in the anterior and posterior midbody, the isthmus and splenium were reported. 

For adult-onset PTSD with traumatic experience in adulthood, changes in FA in the anterior 

and posterior part of the cingulum, the superior longitudinal fasciculus and frontal regions 

were found. Using GingerAle, we also performed a coordinate-based meta-analysis of 14 

studies of adult-onset PTSD with traumatic experience in adulthood and did not find any 

significant clusters. Our results suggest that changes in white matter microstructure vary 

depending on traumatic experience and are associated with changes in brain circuits related to 

the processing of contexts. Finally, we present methodological considerations for future 

studies.  
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1. Introduction 

1.1 Structural changes in Posttraumatic Stress Disorder  

A traumatic experience such as a life threatening event can lead to the development of 

posttraumatic stress disorder (PTSD). Structural changes in major white matter (WM) tracts 

have been reported in several studies in adult and juvenile patients suffering from PTSD (Fani 

et al., 2012a; Kennis et al., 2015). This is in line with recent work demonstrating that WM  

plasticity occurs in adults (Sampaio-Baptista & Johansen-Berg, 2017; Scholz, Klein, Behrens, 

& Johansen-Berg, 2009; Zatorre, Fields, & Johansen-Berg, 2012), suggesting a broader role 

of WM in learning and neural circuit formation. Traumatic experiences are an extremely 

aversive form of learning in a potentially life threatening situation. Changes inWM 

microarchitecture of certain tracts might also be a vulnerability factor similar to findings on 

smaller hippocampal volumes predicting susceptibility to posttraumatic symptoms (Gilbertson 

et al., 2002). Structural changes in major WM tracts have been reported in several studies in 

adult and juvenile patients suffering from PTSD. A recent review and meta-analysis (Daniels, 

Lamke, Gaebler, Walter, & Scheel, 2013) on WM changes using data from diffusion tensor 

imaging (DTI) focused on individuals with trauma exposure with or without the diagnosis of 

PTSD. The authors subdivided the reviewed articles in the following three populations: a) 

pediatric PTSD and trauma exposure in childhood, b) adults with childhood trauma exposure 

and c) adult-onset PTSD. However, the definition of childhood trauma is not clearly 

mentioned and can only be assumed to be below the age of 18 years. Daniels et al. (2013) 

included 25 studies in their review and found a heterogeneous picture with studies reporting 

an increase or decrease of white matter volume in PTSD. The majority of studies reported a 

significant reduction in WM volume of major fibre tracts including the corpus callosum, the 

cingulum bundle as well as the left posterior cingulate. Changes in the anterior and posterior 

parts of the corpus callosum were most prominently reported in trauma-exposed children with 
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or without the diagnosis of PTSD in comparison to healthy control subjects. Changes in WM 

volume in adult-onset PTSD in comparison to healthy control subjects with or without 

traumatic experience were found bilaterally in the cingulum and the left superior longitudinal 

fasciculus. The cingulum is one of the major fibre tracts for communication within the limbic 

system. The superior longitudinal fasciculus connects occipital, parietal and temporal regions 

to the frontal lobe and is involved in a wide range of functions including processing of visual 

spatial information. In addition, one longitudinal study observed a significant increase in the 

left posterior cingulate after remission of PTSD symptoms in adult-onset PTSD. The posterior 

cingulate is assumed to be a major hub for integrating information from different perspectives 

and feeding information into the precuneus for building up mental images (Burgess, Becker, 

King, & O’Keefe, 2001b; Burgess, Maguire, Spiers, & O’Keefe, 2001a; Vann, Aggleton, & 

Maguire, 2009). Due to the small number of studies included and the differences in 

comparison groups (trauma controls, healthy controls), it remains unclear whether trauma 

exposure, predisposition or the development of PTSD is the driving factor of structural 

changes. Except for two studies that reported on adult patients with PTSD in comparison to 

healthy controls and either trauma control subjects or patients with generalized anxiety 

disorder (GAD), none of the reviewed studies used more than one control group (Sun et al., 

2013; Zhang et al., 2011). Furthermore, the majority of studies employed only healthy control 

subjects without any traumatic experience and no trauma control subjects with trauma 

experience. However, trauma control subjects are essential to determine whether these 

changes are the result of  trauma exposure or are related to PTSD or based on pretraumatic 

vulnerability (for a summary Brewin, Andrews, & Valentine, 2000).  

In this review, we focus on studies reporting DTI data in at least one population 

diagnosed with PTSD. We followed the subdivision by Daniels et al. (2013) in comparing 

adults with PTSD after traumatic experience in adulthood (aa-PTSD), adults with PTSD after 
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traumatic experience in childhood (ac-PTSD) and children with PTSD after traumatic 

experience in childhood (cc-PTSD). This subdivision was related to the fact that increases in 

WM volume are part of a natural maturation from birth to young adulthood (Giedd et al., 

2015; Giedd & Rapoport, 2010). A traumatic experience during this vulnerable period might 

have a different effect on WM microstructure than after maturation of the core WM network 

in young adulthood. Trauma in childhood or adolescence is defined as any traumatic event 

experienced before the completion of the 18th birthday and was chosen rather as a legal than a 

biological boundary definition. While, we include all three age groups in our review of the 

literature, we will only include studies with aa-PTSD in our meta-analysis. The small number 

of studies available for ac-PTSD and cc-PTSD make a reliable interpretation of the findings 

difficult at this stage for these two groups. In addition, we will provide guidelines for future 

studies on white matter changes in trauma-exposed populations suffering from PTSD. 

1.2 Theoretical considerations related to WM changes in PTSD 

 
PTSD is characterized by symptom clusters such as re-experiencing the traumatic event, 

avoidance and numbing, hyperarousal and negative thought and mood changes (Diagnostic 

and Statistical Manual of Mental Disorders (DSM) 5; American Psychiatric Association, 

2013). In the past decades, theoretical frameworks have identified several key brain circuits 

involved in different cognitive and emotional processes contributing to the development of 

PTSD with a focus on disturbed contextual processing, an inability to extinguish aversive 

memories and an increase in threat detection and arousal (Bisby & Burgess, 2017; Brewin, 

Gregory, Lipton, & Burgess, 2010; Ehlers & Clark, 2000; Flor & Nees, 2014; Jacobs & 

Nadel, 1985; Liberzon & Abelson, 2016; Maren, Phan, & Liberzon, 2013). Patients with 

PTSD have trouble to contextualize incoming visual-spatial information, which is associated 

with a functional down regulation in activity in the medial temporal lobe (MTL), most 
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prominently in the hippocampus, and the retrosplenial cortex (RSC), which translates this 

information into a coherent egocentric mental image in the precuneus (Bisby & Burgess, 

2017). At the same time, the processing of salient emotional cues involves areas like the 

amygdala, the insula and the anterior cingulate cortex (ACC),  which are up-regulated in 

PTSD (Bisby & Burgess, 2017; Brewin et al., 2010; Liberzon & Abelson, 2016). Finally, the 

prefrontal control of subcortical regions involved in fear learning and extinction such as the 

medial-, dorso- and ventrolateral prefrontal cortex (mPFC, dlPFC, vlPFC) is diminished 

(Bisby & Burgess, 2017; Brewin et al., 2010; Liberzon & Abelson, 2016). As a result, 

patients show increased levels of arousal and anxiety as well as hypervigilance and might 

have difficulties putting these negative emotions in context and thus successfully extinguish 

acquired fear responses. In line with this, several reviews and meta-analyses on volumetric 

gray matter (GM) changes reported significant differences in GM in  the hippocampus, 

mPFC, superior frontal gyrus and the ACC (Kühn & Gallinat, 2013; Li et al., 2014) in PTSD 

patients compared to controls. These studies need to be complemented by research on WM 

changes because they might, similar to GM changes, directly reflect changes in connections 

between functionally distinct brain areas. In this review, we will mainly focus on changes 

WM microstructure after negative experiences early or late in white matter development due 

to its centrality and importance and the small number of existing reviews in this area. 

1.2 Methods for measuring structural changes. 

 

Changes in microstructural WM in individuals with adult-onset PTSD have been measured 

using manual tracing, volumetric morphometry and DTI. One of the earliest methods was 

manual tracing. In manual tracing, the corpus callosum is manually subdivided into seven 

parts (De Bellis et al., 2015). Manual tracing has particularly been used in underage 

populations suffering from traumatic experience and PTSD (Daniels et al., 2013), tracing 

mostly the corpus callosum. Here, differences in white matter are visible in a two dimensional 
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plane only. Voxel-based morphometry (VBM) was introduced as an approach to segment the 

brain into GM, WM and cerebrospinal fluid (CSF). Groups are contrasted using voxel-wise 

comparisons, which increase the accuracy of localization and permit a three-dimensional 

representation of the WM. However, the precise segmentation is error-prone and vulnerable to 

partial volume effects, which occur if more than one type of tissue occupies the same voxel 

and in consequence can cause loss of contrast (Smith et al., 2006). In DTI, the directionality 

of water molecules is calculated as they diffuse in a substance-dependent manner. This is 

achieved by fitting a voxel-wise ellipsoid tensor to the diffusion-weighted magnetic resonance 

images (MRI) in three dimensions (Bihan & Johansen-Berg, 2012; Le Bihan, 2014). Three 

eigenvectors (λ1, λ2, λ3) of this tensor are obtained, which, in combinations with their lengths 

eigenvalues, allow to describe different measures of diffusivity, such as the mean diffusivity 

(MD; (λ1 + λ2 + λ3)/3) assessing the total diffusion within one voxel, the axial diffusivity (AD, 

λ1) assessing axonal injury or the radial diffusivity (RD; (λ2 + λ3)/2) assesses myelin injury. In 

addition, a fourth measurement can be obtained, the so called fractional anisotropy 

(FA;√(λ1− λ2)2+(λ2− λ3)2+(λ1− λ3)2

√2(λ1
2+ λ2

2+  λ3
2)

), which gives information about the shape of the diffusion 

tensor in each voxel. FA values range from 0 (isotropic; non-directional) to 1 (anisotropic 

diffusion; highly directional) and indicate the net directionality of water diffusion in the given 

tissue (Pierpaoli & Basser, 1996). Since the majority of diffusivity studies on PTSD report FA 

values we will focus on this measurement in this review. A decrease in FA or a more isotropic 

connection, is generally considered to lead to a decrease in structural connectivity and 

functionality of the tract (Zatorre et al., 2012; Hänggi, Koeneke, Bezzola, & Jäncke, 2010). 

An increase in FA or a more anisotropic connection, is considered to lead to an increase in 

structural connectivity and functionality of the tract (Scholz et al., 2009; Zatorre et al., 2012). 

 



28  S t u d y  1  

 

 

2. Aims 

This paper seeks to systematically review the literature reporting structural changes using DTI 

in individuals with PTSD compared to healthy individuals with the experience of a traumatic 

event (trauma controls) and healthy individuals without the experience of a traumatic event 

(healthy controls). In the review part we subdivide three groups of studies: a) underage 

patients with PTSD after childhood/ adolescence trauma (cc-PTSD), b) adult-onset PTSD 

following childhood trauma (ac-PTSD) and c) adult-onset PTSD following trauma experience 

in adulthood (aa-PTSD). We suggest that traumatic experiences might interact with naturally 

occurring maturation processes during childhood and adolescence (Giedd et al., 2015; Giedd 

& Rapoport, 2010) and might therefore have a different impact on WM tracts than 

traumatization in adulthood. Early traumatization might therefore interfere more strongly in 

the development of the corpus callosum (Teicher et al., 2003). In the meta-analysis, we will 

investigate overlapping clusters of FA change. We will only include studies from adult-onset 

PTSD following trauma experience in adulthood, which used a whole brain analysis. See also 

Table 2a) 

3. Methods 

3.1 Literature search 

PubMed, Web of Science, PSYNDEX and PsychINFO databases were searched to identify 

studies on the role of structural changes measured via DTI in patients with PTSD in 

comparison to healthy control subjects and/ or trauma-exposed control subjects. The 

systematic search was conducted with the following keywords: structural changes (OR 

diffusion tensor imaging OR DTI OR white matter integrity OR fractional anisotropy OR FA) 

AND PTSD (OR psychological trauma* OR posttraumatic stress* OR anxiety OR anxious* 

OR early life trauma OR childhood trauma OR childhood abuse OR childhood adversity OR 

childhood maltreatment). 
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3.2 Inclusion and Exclusion Criteria 

Participants had to be clearly diagnosed with PTSD using the criteria of the fourth and fifth 

edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM; American 

Psychiatric Association, 2000; 2013) or the International Classification of Diseases (ICD 10; 

World Health Organization, 1992) available at the time of publication. We included all studies 

that examined structural changes using DTI. Studies on adult-onset PTSD were subdivided 

into studies with individuals suffering from PTSD after childhood trauma or trauma 

experienced in adulthood. In a third group, we included studies with children that suffered 

from PTSD. Studies were excluded, if no control group was included or if participants in the 

experimental group suffered from comorbid disorders such as substance abuse or psychotic 

symptoms. 

3.3 Meta-Analysis using GingerAle 

In our meta-analysis we included only DTI studies examining the whole brain, instead of 

specific predefined regions of interest (ROI). Although ROI-based analyses have several 

advantages such as theory guidance, a limited number of statistical tests performed on the 

ROIs and a definition of regions according to functional properties (Poldrack, 2007), the 

comparability between studies is impeded due to differences in the definition of ROIs and the 

masking of the same ROI. For studies using whole brain analysis, we included all coordinates 

in our meta-analysis, independent of the threshold applied to the p values or the cluster sizes 

used in the study. The small number of studies in the group of adults and children with trauma 

experience in childhood made it difficult to calculate any meaningful effects specific to this 

group Thus we only included DTI studies from the group of adult-onset PTSD with traumatic 

experience in adulthood. We further subdivided the findings in this group in studies reporting 

a significant decrease or a significant increase of FA in patients with PTSD in comparison to 
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Figure 1. Flowchart of literature review. The total number of studies reviewed in this article is printed in bold 
letters (taken from the guidelines of the PRISMA group (Moher et al., 2009)). 

at least one control group. The activation-likelihood (ALE) meta-analysis was computed 

separately for these two groups. The meta-analysis was carried out with the GingerAle 

software package (www.brainmap.org/ale/), a coordinate-based human brain mapping tool to 

perform meta-analyses of functional or structural datasets (Eickhoff, Bzdok, Laird, Kurth, & 

Fox, 2012; Eickhoff et al., 2009; Turkeltaub et al., 2012). All coordinates were either reported 

From:  Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-
Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097 

For	more	information,	visit	www.prisma-statement.org.
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N 
(PTSD) 

N 
(TC) 

N 
(HC) 

N 
(GAD) Total FA 

dec. 
FA 
inc. 

FA 
both 

FA 
no ch. Total 

Adult onset PTSD 
(adulthood trauma) 431 422 101 20 974 10 6 3 0 19 

Adult onset PTSD 
(childhood trauma) 21 0 19 - 40 1 0 0 1 2 

Child onset PTSD 
(childhood trauma) 292 51 330 - 673 5 0 2 2 9 

Total 744 473 450 20 1687 16 6 5 3 30 

Table 1. Summary of reviewed articles with the number of individuals included in each subgroup (PTSD – 

Posttraumatic Stress Disorder; TC – Trauma Controls; HC – Healthy Controls; GAD – Generalized Anxiety 

Disorder) and number of studies reporting changes in fractional anisotrophy (FA; dec. – decrease; inc. – 

increase; both – decrease and increase; no ch. – no change). 

in the Montreal Neurological Institute (MNI) space or transformed using the Bretts 

transformation algorithm in GingerAle. The meta-analysis was computed in four steps. For 

the calculations, GingerAle needs the following information of each study in a text file: the 

contrast (e.g. PTSD vs. TC), the mask (MNI), the subject size and the finding (e.g. decrease). 

First, an ALE score is calculated in a 3D image for each group of foci, using the information 

given above. Second, a Modelled Activation map (MA; Eickhoff et al., 2009) is constructed, 

finding in our case the maximum across the Gaussian distributions of the foci (Non-Additive; 

Turkeltaub et al., 2012). Third, All the MA are united to form an ALE image. We set the 

statistical threshold to a False Discovery Rate (FDR) of pN = .05 and the threshold of the 

cluster level analysis to p = .05 with 1000 threshold permutations. The FDR with pN 

thresholding is the more conservative option of two possible thresholdings, making no 

assumptions about correlations in the data. The cluster-level inference simulates random data 

sets based on the characteristics of our input data. Finally, GingerAle calculates the volumes 

which are above the threshold (clusters) and tracks the distribution of their volume. An output 

table is created indicating which clusters survived after applying the indicated threshold.  



32  S t u d y  1

4. Results

Initially, 1741 articles were identified in the searched databases after applying the search 

terms. Of these, 1183 articles did not meet inclusion criteria, because they either did not 

specifically investigate PTSD, focused on different techniques or non-human samples. 

Further, we fully reviewed 78 articles, resulting in 30 studies that were ultimately included in 

the qualitative review. We included 19 papers in the group of aa-PTSD, two papers in the 

group of ac-PTSD and nine papers on cc-PTSD (see Figure 1 for details). In total, the articles 

reviewed comprise a population of 1687 individuals, of whom 744 were diagnosed with 

PTSD, 473 were trauma-exposed control subjects, 450 were healthy control subjects and 20 

were individuals with Generalized Anxiety Disorder (GAD). For the change in FA, 16 studies 

found a decrease, 6 found an increase and 5 reported both, a decrease and an increase in FA in 

patients with PTSD in comparison to at least one control group. In addition, two studies found 

no significant change in FA (see Table 1 for details).  

In the systematic review, we further subdivided the identified regions depending on the 

comparison made between either PTSD patients and healthy or PTSD and trauma control 

subjects (see also Appendix Table 1, 2 and 3). In the group of aa-PTSD, studies 

predominantly used a whole brain approach and the majority of studies compared patients to 

trauma control subjects. In the group comparison between aa-PTSD patients and healthy 

control subjects, the most commonly mentioned regions were the cingulum, especially with 

its anterior and subgenual subparts (Abe et al., 2006; Kim et al., 2006) and the superior and 

orbital frontal gyrus (Sun et al., 2013; Zhang et al., 2011). In the cingulum, a significant 

increase, using whole brain (Abe et al., 2006), as well as decrease, using ROI analysis (Kim et 

al., 2006), was found. In the group comparison between aa-PTSD patients and trauma control 

subjects, a larger range of regions were found (detailed overview Appendix Table 1). Again, 

the most prominent regions included several subparts of the cingulum (Bierer et al., 2015; 
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Fani et al., 2012; Hu et al., 2016; Kennis et al., 2015; Kim, Shin, Kim, & Lee, 2016; Sun et 

al., 2013; Wang et al., 2010; Zhang et al., 2012), frontal gyrus (Li et al., 2016; Sun et al., 

2015; Sun et al., 2013) and in addition the longitudinal fasciculus (Fani et al., 2012; Hu et al., 

2016; Olson et al., 2017). In the cingulum, a significant decrease in FA was found, using 

whole brain (Fani et al., 2012; Hu et al., 2016; Kim, Shin, Kim, & Lee, 2016; Schuff et al., 

2011; Sun et al., 2013) or ROI (Bierer et al., 2015; Wang et al., 2010) but also a significant 

increase in FA, using whole brain (Kennis et al., 2015; Zhang et al., 2012) or ROI (Kennis et 

al., 2015). In the frontal gyrus, all studies used whole brain analysis finding a decrease 

(Schuff et al., 2011; Sun et al., 2015; Sun et al., 2013) or increase (Li et al., 2016) in FA of 

several frontal areas. Within the inferior and superior longitudinal fasciculus, a decrease was 

found using whole brain analysis (Fani et al., 2012; Hu et al., 2016; Olson et al., 2017). In the 

group of ac-PTSD (detailed overview Appendix Table 2), both studies reviewed used ROI 

analysis of the corpus callosum, finding a decrease of the genu, mid-body and isthmus 

(Kitayama et al., 2007; Villarreal et al., 2004). Finally, in the group of cc-PTSD (detailed 

overview Appendix Table 3), the great majority studies focused on the corpus callosum and 

compared underage patients (< 18 years of age) with PTSD to healthy control subjects. Using 

ROI analysis, they found a decrease in FA, most prominently in the anterior and posterior 

midbody (De Bellis et al., 1999, 2002; De Bellis & Keshavan, 2003; Jackowski et al., 2008; 

Teicher et al., 2004) as well as the isthmus and splenium (De Bellis et al., 1999, 2002; De 

Bellis & Keshavan, 2003; Rinne-Albers et al., 2016; Teicher et al., 2004).  
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Figure 2. Overview of thirteen studies reporting coordinates in MNI space on changes in FA in adult-onset 

PTSD. The ALE scores are displayed in colour (blue spectrum for increase of FA, red spectrum for decrease of 

FA). Due to the choice of showing the Gaussian distribution of each foci, weighted by the number of subjects 

included in each study, foci might appear in several slices 

5. Meta-Analysis

In the meta-analysis, we included only studies fulfilling the following five criteria: a) one 

group of adult patients (> 18 years of age) with PTSD and at least one control group; b) 

clearly stating if childhood trauma and comorbid disorders were present; c) using diffusion 

tensor imaging measuring fractional anisotropy; d) using whole brain analysis; e) reporting 

foci of significant cluster differences. In total, 14 DTI studies of patients with adult-onset 

PTSD were included in the meta-analysis. Seven studies reported a decrease of FA (Fani et 

al., 2012; Hu et al., 2016; Kim et al., 2005; Olson et al., 2017; Schuff et al., 2011; Sun et al., 

2013; Sun et al., 2015; Zhang et al., 2011), including 9 contrasts with 22 foci. In this group of 

studies, 175 patients with PTSD, 130 trauma and 22 healthy control subjects and 20 subjects 

with GAD were included. In contrast, six studies reported an increase in FA (Abe et al., 2006; 

Fani et al., 2012; Kennis et al., 2015; Li et al., 2016; Zhang et al., 2011, 2012), including six 
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contrasts with twelve foci. In this second group of studies, 191 patients with PTSD, 153 

trauma and 44 healthy control subjects are comprised in the analysis (see Figure 2).  
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6. Discussion

The aim of this systematic review was to provide a comprehensive evaluation of studies 

reporting structural WM changes in patients with PTSD. We identified 30 articles, including 

almost 1700 individuals comprising 450 adult patients and 300 children suffering from PTSD. 

Firstly, for aa-PTSD in comparison to trauma and healthy control subjects, the most common 

changes in white matter were reported in the cingulum (decrease and increase) and frontal 

regions (decrease and increase). Furthermore, changes in the longitudinal fasciculi (decrease) 

were shown in studies comparing adult patients with trauma control subjects. A meta-analysis 

using GingerAle, including 14 studies of adults with adult onset PTSD in comparison to 

trauma and healthy control subjects did not reveal any significant clusters. Secondly, for ac-

PTSD in comparison to healthy control subjects, only two studies could be included both 

focusing on changes in the corpus callosum (decrease and no change). Thirdly, for children 

diagnosed with PTSD compared to healthy control subjects, all available studies found 

changes in the corpus callosum (decrease), most prominently in the anterior and posterior 

midbody, the isthmus and the splenium. Only one study in this subgroup also compared 

children suffering from chronic PTSD to trauma control subjects and found no change in FA 

in the corpus callosum. Our review revealed a high heterogeneity regarding significant 

changes of WM, measured via change in the FA, in patients with PTSD in comparison to 

trauma and healthy controls. The most prominent changes in fiber tracts included the corpus 

callosum (CC), the cingulum, the superior longitudinal fasciculus (SLF). Theses changes can 

be related to contextualization, the processing of emotionally salient cues and extinction of 

aversive memories. Changes in the white matter microarchitecture due to traumatic 

experiences could play an important role in the development of child- and adult onset PTSD.  
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Firstly, the corpus callosum, the largest connecting fiber bundle which facilitates inter-

hemispheric communication, was reported to show a decreased FA mainly in patients with 

childhood trauma in comparison to healthy control subjects (see also Appendix Table 3; De 

Bellis et al., 1999, 2002; De Bellis & Keshavan, 2003; Jackowski et al., 2008; Kitayama et al., 

2007; Lei et al., 2015; Richert, Carrion, Karchemskiy, & Reiss, 2006; Rinne-Albers et al., 

2016; Teicher et al., 2004; Villarreal et al., 2004). Only one study with adult-onset PTSD with 

trauma experience in adulthood found a significant negative CC and symptoms like arousal, 

avoidance and re-experiencing (Saar-Ashkenazy et al., 2016). The CC has been reported to be 

important for encoding and retrieval of memories (Gazzaniga, 2000; Tulving, Kapur, Craik, 

Moscovitch, & Houle, 1994). A malfunctioning or reduction in volume was suggested to 

result in a lack of lateralization and specification in associative memory (Saar-Ashkenazy et 

al., 2014, 2016). These results point towards changes in WM maturation due to traumatic 

experiences rather than vulnerability. Interestingly, Saar-Ashkenazy et al. (2014, 2016) found 

a high negative correlation of 0.65 between WM in the mid-posterior, posterior and the total 

FA of the CC and associative memory encoding and retrieval of words in adult-onset PTSD. 

In addition, they found a strong negative correlation of 0.65 between WM in the anterior, 

central and total FA of the CC for the mean association reaction time for pictures. These 

findings indicate a deficit in associative encoding and memory, which is in line with the idea 

of a disturbance of brain circuits involved in contextual processing in PTSD (Bisby & 

Burgess, 2017; Brewin et al., 2010; Flor & Nees, 2014; Liberzon & Abelson, 2016). In their 

review, Daniels et al. (2013) observed a reduced volume of the CC in the majority of studies 

investigating trauma-exposed children. They found a similar amount of studies as in our 

review reporting volume loss in the CC in adult-onset PTSD. However, this is not surprising 

considering that the CC is developing most dramatically during childhood and adolescence, 

driven by additive genetic effects and environmental exposure (Giedd & Rapoport, 2010; 

Luders, Thompson, & Toga, 2010). Luders et al. (2010) found differences in males and 
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females in colossal maturation patterns and segments. The authors suggested that a decrease 

in the thickness of the CC may reflect axonal redirection or pruning. Alternating periods of 

growth and shrinkage of the CC during childhood and adolescence were found to be normal in 

healthy development of the human brain. Interestingly, the only study in the subgroup of 

children with PTSD including a healthy as well as a trauma control group, did not find any 

differences in FA in the corpus callosum (De Bellis et al., 2015). However, in their well-

designed study De Bellis et al. (2015) found a decrease in axial diffusivity in childhood 

patients in comparison to trauma controls in the section of splenium projecting to occipital 

regions. Although the authors discuss reasons for an innate vulnerability, they also mention 

the limited inference one can make from a cross-sectional design. Future studies should 

include healthy and trauma control groups in their design and take into account sex- and age-

specific differences in WM development of the corpus callosum. Overall, a decrease in FA in 

the CC is more prominent in children with PTSD than adults, suggesting a more drastic 

changes in white matter architecture given the central role of the CC in interhemispheric 

communication. However, in adults, a negative association between the decrease in FA in 

subparts of the CC and the performance in an association task with words and pictures was 

found, suggesting a role of the CC in associative encoding and processing.  

Secondly, the cingulum was reported to show an alteration in FA in individuals with 

aa-PTSD (see also Appendix Table 1). Our findings rather support the hypotheses of the 

cingulum as a vulnerable WM tract, with several studies showing differences between patients 

with PTSD and trauma controls. Although the cingulum is the most frequently reported WM 

bundle to be affected by chronic stress besides the CC, the directionality of change in FA 

stays unclear with some studies reporting an increase (Kim et al., 2007; Schuff et al., 2011) 

and others a decrease (Abe et al., 2006; Zhang et al., 2013) in FA. In general, the cingulum 

has been associated with a variety of functions including the integration of negative affect and 
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pain (Shackman et al., 2011) and verbal and spatial short-term memory (Kalisch, Wiech, 

Critchley, & Dolan, 2006; Vytal, Cornwell, Arkin, & Grillon, 2012; Vytal, Cornwell, 

Letkiewicz, Arkin, & Grillon, 2013). Robinson et al. (2014) demonstrated over a series of 

experiments that individuals with anxiety disorder but without PTSD showed an increased 

circuit coupling during processing of fearful faces in the amygdala and the anterior cingulate 

cortex (ACC). An increased trait anxiety was thereby associated with an increased 

connectivity of the amygdala and the ACC. Fani et al. (2014) found that traumatized females 

without the diagnosis of PTSD carrying two risk alleles of the FKBP5 gene showed a 

decreased FA in the posterior cingulum, pointing towards WM changes as a vulnerability 

factor. The posterior cingulate cortex (PCC) is  assumed to be a major region involved in the 

integration of information from an ego- and allocentric perspective into a cohesive whole 

(Aggleton & Vann, 2004; Burgess, Becker, King, & O’Keefe, 2001b; Burgess, Maguire, et 

al., 2001a; Hassabis, Kumaran, Vann, & Maguire, 2007; Vann et al., 2009).  It is thought to 

play a part in combining spatial components to form mental images and episodic memories 

and was further found to be important for imagination and planning for the future (Vann et al., 

2009). Recent findings found alterations in WM integrity in the PCC and dorsolateral PFC 

(dlPFC) in adults with PTSD and trauma experience in the adulthood (e.g. Kennis et al., 

2015). Interestingly, individuals with PTSD showed similar WM alterations in the PCC and 

dlPFC during fear extinction (Li et al., 2016). In summary, mixed findings within the 

cingulum might be explained by the different functions of the ACC and PCC in human 

cognition and emotion. Whereas the ACC is important for the processing of negative 

emotions and spatial short-term memory (Brewin et al., 2010; Liberzon & Abelson, 2016), the 

PCC integrates and transforms information of different perspectives to create mental images 

and episodic memories. Furthermore, the PCC might play a role in contextualization as part of 

a salience, visual and default mode network, which was found to be distorted in individuals 

with PTSD (Liberzon & Abelson, 2016; Sripada et al., 2012) and has recently been associated 
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with symptoms like intrusions (Brewin & Burgess, 2014; Brewin et al., 2010) or 

overgeneralization (Kheirbek, Klemenhagen, Sahay, & Hen, 2012; Maren et al., 2013). More 

speculatively, changes in white matter in the ACC and connected areas such as the amygdala 

or insula could be associated with an up-regulation in sensory emotional processing of the 

experience of the traumatic event (Brewin et al., 2010). In contrast, changes in WM in the 

PCC and connected areas such as the hippocampus or precuneus could be associated with a 

down-regulation of contextualization of traumatic events. This imbalance in information 

processing with, for example, an up-regulation of object recognition and a down-regulation of 

spatial and temporal scene recognition could be associated with the development of intrusions 

(Brewin et al., 2010; Flor & Wessa, 2010). A recent study by Hermann, Stark, Blecker, Milad, 

& Merz (2017) showed a direct relationship between the hippocampal part of the cingulum, 

connecting the cingulate cortex and the hippocampus, and context dependent extinction recall. 

They found that healthy participants with a higher FA value in the hippocampal part of the 

cingulum showed higher renewal of conditioned skin conductance responses (SCRs). This is 

in line with research on adult-onset patients with PTSD after traumatic experience in 

adulthood, showing that they have an impaired extinction recall and fear renewal, making it 

difficult for them to distinguish safe and dangerous environments (Garfinkel et al., 2014; 

Milad et al., 2009; Steiger, Nees, Wicking, Lang, & Flor, 2015; Wicking et al., 2016). Further 

research is needed here to distinguish the role of different segments of the cingulum in 

contextualization and the role of distorted salience and contextual networks in adult-onset 

PTSD with trauma (see Figure 2). 

 

Thirdly, the superior longitudinal fasciculus (SLF) was found to be altered in 

individuals with aa-PTSD (see also Appendix Table 1).Here, two studies found a decrease in 

WM integrity in the left SLF (Fani et al., 2012; Schuff et al., 2011), while one study reported 
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an increase in WM in the left middle temporal branch (arcuate fascicle (AF)) and the right 

parietal branch of the SLF (SLF II; Zhang et al., 2012). Interestingly, the SLF was only found 

to differ between patients with PTSD and trauma control subjects, suggesting changes due to 

traumatic experience. The SLF is one of the major fiber bundles connecting the parietal, 

occipital and temporal lobe with the frontal lobe. The SLF is subdivided into three major 

tracts and their major functions include higher aspects of motor behaviour (SLF I), the 

perception of visual (SLF II) and auditory space (AF) as well orofacial and hand actions (for a 

review see Makris et al., 2005). De Schotten et al. (2011) emphasized the key role of the SLF 

in a visuo-spatial network with an increased processing speed of visuospatial information 

along the right hemispheric SLF II. Alterations in the left SLF on the other hand are 

associated with decreased visual spatial processing in a variety of neurological and mental 

disorders including Williams Syndrome (Hoeft et al., 2007), spatial neglect (Shinoura et al., 

2009), early-onset schizophrenia (Karlsgodt et al., 2008) and social anxiety disorder (Baur et 

al., 2011). Although a wide range of literature found that the SLF is a key player in spatial 

attentional processing across different modalities, it stays unclear how its malfunctioning is 

connected to alterations in other major WM fiber tracts such as the CC or the ACC and PCC. 

In patients with PTSD, the SLF might play an important role in a wider network of visual-

spatial attention in information processing and autobiographical memory. Changes in the WM 

microstructure of the SLF might have an overarching effect on several brain circuits involved 

in PTSD such as the early detection and processing as well  the emotional response to the cue, 

which further influences how well the cue is embedded in the environment (see Figure 2). 

 Fourthly, we want to briefly emphasize a growing evidence of changes in FA in white 

matter tracts in frontal regions including the superior- and middle frontal gyrus (SFG; MFG) 

in aa-PTSD in comparison to trauma control subjects (see also Appendix Table 1 and 3; Li et 

al., 2016; Schuff et al., 2011; Sun et al., 2013; Sun et al., 2015) and healthy control subjects 

(Zhang et al., 2011). In our sample, two studies found a decrease in FA in the SFG and MFG 
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(Sun et al., 2013; Sun et al., 2015) and two an increase specifically in the left SFG (Li et al., 

2016; Zhang et al., 2011). Interestingly, the SFG was found to support cognitive functions 

like spatial cognition (Boisgueheneuc et al., 2006) or as being part of a lateralized parietal-

frontal resting state network (van den Heuvel & Hulshoff Pol, 2010). Parts of the medial SFG, 

better known as mPFC are involved in top-down control of subcortical regions and executive 

functions and known to be impaired in patients with PTSD (Brewin et al., 2010; Flor & 

Wessa, 2010; Lang et al., 2009; Liberzon & Abelson, 2016). The mPFC was suggested to 

support association learning between contexts, events, locations and their emotional responses 

(Euston, Gruber, & Mcnaughton, 2013). A decreased functioning of the SFG as part of higher 

level working memory might play a role in how patients with PTSD can ‘keep up’ with 

environmental changes, which in turn might influence more long-term learning processes like 

extinction recall or fear renewal mentioned above. Symptoms like biased attention or 

heightened impulsivity might be the result. This is in line with current neurobiological models 

of the development and maintenance of PTSD, similarly associating the MFG to executive 

networks. Liberzon & Abelson (2016) argue that the dorsolateral PFC (part of the MFG) in 

combination with other prefrontal regions is activated during reappraisal. These assumption 

stay of course highly speculative until more research is carried out specifically locating the 

areas of the SFG impacted by changes in WM and their specific cognitive functions it might 

support (see Figure 2). 

 

6.1 Critical evaluation and future directions  

The recent development of GingerAle makes it possible to calculate brain-wide analyses of 

cluster changes across studies. Due to the heterogeneity of findings across studies and the 

small number of studies reported, we only included those studies using whole brain analysis. 
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In addition, research groups tend to use different protocols for the DTI parameters. Following 

our approach, we were able to subdivide the studies in groups reporting a significant increase 

or decrease in FA across the whole brain. Due to the global comparison, the construction of 

Ale maps leading to a meta-analysis is possible but at the same time the interpretations of the 

results is limited to a rather general level, like the direction of change. A next step would thus 

be the quantification of change using ROI analysis, which would quantify the FA change 

further by allowing researchers to calculate standardized effect sizes. Using effect sizes would 

also enable to include moderators, such as scanner type or symptom severity of PTSD. For 

this next step several prerequisites will be needed concerning study design and methodology 

of diffusion tensor imaging studies in patients with PTSD (for a summary see Appendix Table 

A2).  

First, four key study design-specific considerations are proposed to enhance the 

explanatory power of future studies. The average sample size should be increased per group to 

ensure enough statistical power to be able to perform statistical tests including methods for 

bias corrections.  A meta-analysis of all meta-analyses (n=46) published between 2006 and 

2009 found a median statistical power of 8% across 461 individual neuroimaging studies 

(Button et al., 2013). The relative bias of research findings in the field of neuroscience was 

found to be negatively related to the statistical power of studies, indicating that higher power 

improves the validity of the results. Importantly, studies should aim to have at least two 

matched control groups, including healthy participants without any traumatic experiences and 

healthy participants with trauma experiences. As mentioned previously, a second control 

group is essential to draw conclusions about whether structural WM changes arise due to 

neuroplastic changes after traumatic experience or whether these WM changes are also 

associated with symptoms of PTSD or may even be a pre-existing vulnerability factor. An 

important goal of future studies should be to clearly define target groups including subgroups 
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within underage and adult patients with PTSD. We propose four target groups of patients 

suffering from PTSD, which are clearly understudied up to this point: b) children with 

traumatic experience in childhood, b) adolescents with traumatic experience in childhood; c) 

adolescents with traumatic experience in adolescence; d) adults with traumatic experience in 

childhood. In a recent survey of almost 6500 adolescent-parent pairs (aged 13-17 years), 

McLaughlin et al. (2013) found that 61.8% of the adolescents experienced a lifetime potential 

traumatic experience. The lifetime prevalence of developing PTSD in the group of 

adolescents according to the DSM-IV criteria was 4.7% with a significantly higher prevalence 

for females with 7.3% in comparison to males with 2.2%. In this context, it will become even 

more important to take into account moderators such as sex or comorbid disorders in 

underage but also adult populations suffering from PTSD. In the same line of argumentation, 

clearly stated inclusion and exclusion criteria are essential for increasing the validity with 

which group differences in FA values are associated with clinical symptoms of PTSD. Clearly 

stated criteria also make it possible to later compare more refined groups of studies in a meta-

analysis.  

 Second, several methodological considerations are proposed to ensure high quality of 

data. Although the majority of studies reported basic demographic information including 

gender ratio, age or race, this information is crucial for replication and comparison between 

studies and should be clearly stated. Furthermore, the assessment of clinical disorders should 

include at least one common scale for the assessment of PTSD and at least one for common 

comorbid disorders such as depression, anxiety disorder and substance misuse. Breslau, 

Davis, Peterson, & Schultz (2000) found that the risk to develop depression was increased in 

adults with PTSD in comparison to trauma exposed adults without PTSD. The neural 

mechanisms of PTSD and depression might overlap and are important to take into account 

when investigating correlations between clinical assessments and changes in FA. In addition, 
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a variety of clinical disorders were found to have comorbid PTSD including disorders such as 

schizophrenia, bipolar disorder or borderline personality disorder (Mueser et al., 1998). In 

these cases, PTSD might not be the primary outcome of structural changes in WM but rather 

an additional factor in the equation. A clear assessment of comorbid disorders is needed to 

understand these relations between disorders. In addition, the chronicity of PTSD might 

influence structural long-term changes and should be assessed and included in the analysis as 

covariate. Finally, the type of traumatic event experienced varies dramatically related to age 

and sex (McLaughlin et al., 2013; Mueser et al., 1998) and may influence the characteristics 

and severity of PTSD symptoms. A list of the type and number of traumatic experiences to 

which participants were exposed to should be included.  

Third, we raise some methodological considerations concerning the acquisition, the pre-

processing, the analyses and the reporting of DTI data. Since DTI is a rather novel technique 

in the field of neuroscience, the past ten years have seen a development towards a more 

standardized manner of acquiring and handling diffusion data. The heterogeneity in the results 

presented in this review can partly be explained by the variance in DTI methods applied, in 

the protocols used for acquiring the data as well as scanner type and field strength. For data 

acquisition and data pre-processing we recommend to follow the guidelines suggested by 

Jones et al. (2013). In the case of data analysis, two approaches are most common in DTI: 

whole brain and region of interest analyses. As mentioned previously, studies using whole 

brain analysis in research on patients with PTSD have the advantage to be included in meta-

analyses because the limited number of studies using ROIs, at least in adult-onset with PTSD, 

focus on different regions, which made a meaningful comparison across studies difficult at the 

point in time of this review. In children with PTSD, the picture is reversed with almost all 

studies using region of interest analysis on different segments of the corpus callosum. Finally, 

the interpretation and reporting of DTI in PTSD has to be done with great caution. Studies 
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should include the coordinates of foci of significant changes in FA as well as the cluster size 

and peak values. Several studies could not be included in the meta-analysis due to missing 

data. For the interpretation of DTI data and specifically FA, we again refer to the excellent list 

of ‘do’s’ and ‘don’ts’ in the overview article by Jones et al. (2013). Up to date, many articles 

interpret changes in FA in the context of PTSD as changes in ‘white matter integrity’. The FA 

value, however, varies across the brain and can be low in areas where, for example, fibers 

cross. In their review, Zatorre et al. (2012) mention at least three processes, which can lead to 

an increase in FA: fiber organization, myelin formation and myelin remodelling. Furthermore, 

changes in glial cells, myelin context or the permeability of membranes might also contribute 

to changes in FA (Sampaio-Baptista & Johansen-Berg, 2017). In addition, stochastic errors, 

model simplifications or given anatomical structures like crossing fibers or changes in 

packing density (Jones et al., 2013) can influence the results. Overall, fractional anisotropy 

has a high sensitivity and a low specificity for the above mentioned anatomical properties to 

which it is often associated. For future research, it would be necessary to compare changes in 

FA to changes in GM or functional connectivity (Zatorre et al., 2012) in PTSD patients and 

the appropriate controls. Furthermore, a wide range of DTI acquisition procedures is in use in 

combination with various software packages for DTI pre-processing and data analysis. The 

high heterogeneity in findings for FA differences between studies in individuals with PTSD in 

comparison to healthy control subjects or subjects with trauma experience might therefore be 

partly the result of the high number of existing procedures to measure, pre-process and 

analyse data based on DTI. Methodological variability based on type of scanner, magnetic 

field strength, measurement parameters or pre-processing steps like motion correction are 

potential moderators influencing the magnitude and direction of FA change. Also, there is no 

theoretical framework explaining or predicting white matter changes in PTSD in specific 
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areas or fiber tracts. Since PTSD is not explicitly impacting on WM, a theory why and where 

changes in WM should occur, is needed.  

6.2 Limitations 

Several limitations apply to our systematic review. First, despite the increased number of 

studies published in the past five years on WM alterations in adult-onset PTSD, only a limited 

number of studies could be included. The majority comprised a sample size of 15-20 

individuals with PTSD in comparison to only one control group, either trauma-exposed or 

healthy controls. Only one study in adult-onset PTSD and one study in childhood-PTSD had a 

larger sample size of over 75 participants and only one study in each of these two subgroups 

compared PTSD patients to two control groups. Second, the heterogeneity of the WM tracts 

identified as well as the direction of change, with some studies reporting an increase and 

others a decrease in FA, allow only a preliminary interpretation of the results. Another 

explanatory factor to be taken into account in the future are methodological differences in 

software and scanner types used as well as diverse methodological approaches to assessment 

and analysis. A final note on GingerAle, which was originally designed for summarising 

results of changes in GM. By applying the same same technique to changes in white matter 

taken from DTI two problems arise: the analysis space and error distribution are different. In 

addition, studies using tract based spatial statistics (TBSS) with individual skeletons should 

be treated differently than DWI analysis, which they are currently not. To encounter these 

problems ne toolboxes and software packages are urgently needed with the growing number 

of studies focusing on structural changes in white matter. 

7. Conclusions and future directions

This review provides novel conclusions on WM changes in individuals with underage-onset 

PTSD and traumatic experience in childhood, adult-onset PTSD with traumatic experience in 
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childhood and adult-onset PTSD with traumatic experience in adulthood. The studies reported 

revealed some patterns of changes in WM integrity including the CC, ACC, PCC, SLF and 

SFG/MFG. In the group of adult-patients with traumatic experience in adulthood, changes in 

FA were found in the cingulum, most prominently with decreases in the ACC and increases in 

the PCC, the SLF and frontal tracts associated with the SFG and MFG. These findings are in 

line with recent psychobiological models of PTSD focusing on brain networks such as a 

context learning and memory, salience processing, emotional control and executive functions. 

In the group of children with PTSD and adults with PTSD after traumatic experience in 

childhood, almost exclusively changes in the corpus callosum are reported, particularly in the 

anterior and posterior midbody, the isthmus and the splenium. Although most of the studies 

included found significant correlations between PTSD symptom scales and their reported WM 

alterations, future studies should focus on specific symptoms like intrusions or 

overgeneralization as well as effects of WM changes on functional connectivity. This would 

allow for easier identification of mechanisms behind clusters of symptoms, enhance a 

mechanism-oriented approach to psychopathology, and help to embed findings into a larger 

theoretical framework. We suggest that future studies on WM in underage and adult 

populations suffering from PTSD should focus on more specifically selected groups of 

participants, including adolescent populations and adults with PTSD and trauma experience in 

childhood. Furthermore, future studies will have to take into account covariates such as 

demographic data (e.g. age, gender), the assessment of clinical factors (e.g. comorbidity, type 

of trauma experience, PTSD chronicity) as well as methodological considerations (e.g. 

acquisition and pre-processing of DTI data). Finally, whereas the assessment of structural 

changes in WM due to the experience of traumatic events and the development of PTSD is 

highly valuable, a theoretical foundation is needed putting possible alterations in FA in 

association with symptom clusters of PTSD or functional network changes.
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A1. These tables summarize all the regions mentioned in the reviewed studies in which a 
significant change in FA was found between adult patients with PTSD after traumatic 
experience in adulthood and healthy control patients (HC; left table) or trauma control 
patients (TC; right table). The tables are subdivided in three groups: a) adults with PTSD and 
traumatic experience in adulthood, b) adults with PTSD and traumatic experience in 
childhood and c) children with PTSD and traumatic experience in childhood. The first column 
of each tables indicates the white matter tract or more global region in which a significant 
change in FA was reported. The second and third column show, if the change in this specific 
tract or region was found after using a whole brain analysis (WB) or setting a region of 
interest (ROI). The arrows indicate if a significant increase (upwards pointing) or decrease 
(downwards pointing) was found or if no significant change (rightwards pointing) was 
reported for the specific region.  (ant. - anterior; bil. - bilateral; inf. - inferior; l. - left; post. - 
posterior; r. - right; sup. – superior) 

Table 3 



70  S t u d y  1  

 

 

 

A2. Considerations for future DTI studies with PTSD patients concerning study design and methodology. 
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Abstract 

Differences in structural white and gray matter in survivors of traumatic experiences have 

been related to the development and maintenance of Posttraumatic Stress Disorder (PTSD). 

However, there are very few studies on diffusion tensor imaging and region based 

morphometry comparing patients with PTSD to two control groups, namely healthy 

individuals with or without trauma experience. It is also unknown if differences in white and 

gray matter are associated. In this cross-sectional study, we examined white- and gray matter 

differences between 44 patients with PTSD, 49 trauma control and 61 healthy control 

subjects. We compared the groups applying Tract-Based Spatial Statistics (TBSS) for a whole 

brain white matter analysis as well as ROI analyses for white and gray matter. First, trauma 

control subjects in comparison to patients with PTSD and healthy control subjects showed 

significantly a) higher fractional anisotropy (FA) in the left corticospinal tract and inferior 

fronto-occipital fasciculus than patients with PTSD, b) higher FA in the left inferior fronto-

occipital-, right inferior – and right superior longitudinal fasciculi, c) higher FA in the forceps 

minor and d) higher volume of the left and right anterior insulae. Second, we show significant 

correlations between the FA in the forceps minor and the gray matter volume in the left and 

right anterior insulae. Third, the mean FA value in the forceps minor correlated negatively 

with symptom severity of PTSD and depression as well as trait anxiety, whereas the gray 

matter volume in the left anterior insula correlated negatively with symptom severity in 

PTSD. Our findings underline the importance of brain structures critically involved in 

emotion regulation and salience mapping. While previous studies associated these processes 

primarily to functional and task-based differences in brain activity, we argue that 

morphometrical white and gray matter differences could serve as targets in 

neuroscientifically-informed prevention and treatment interventions for PTSD.  
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1 Introduction 

The experience of a traumatic event can lead to the development of Posttraumatic Stress 

Disorder (PTSD). The fifth edition of the Diagnostic and Statistical Manual (DSM-5; 

American Psychiatric Association, 2013) characterizes PTSD by four symptom clusters: a) 

the re-experience of the traumatic event in form of intrusions or flashbacks; b) avoidance 

behavior around thoughts, feelings or reminders of the event; c) negative alterations in 

cognitions and mood; d) heightened arousal and reactivity. In the past two decades, a large 

amount of neuroimaging studies investigated differences in brain morphology in patients with 

PTSD when compared to either healthy individuals with or without trauma experience 

(Bromis, Calem, Reinders, Williams, & Kempton, 2018; Daniels, Lamke, Gaebler, Walter, & 

Scheel, 2013; Kühn & Gallinat, 2013; Siehl, King, Burgess, Flor, & Nees, 2018). The 

volumetric change of regions in the brain is an important indicator for underlying disease 

mechanisms and potential target regions for interventions. However, only few studies include 

more than one comparison group, with studies either focusing on a sample of healthy control 

subjects (HC) or a sample of healthy individuals that have experienced at least one traumatic 

event, so called trauma control subjects (TC). Choosing one or the other as a comparison 

group leads to very different results and conclusions. We therefore include both control 

groups in our study comparing patients with PTSD to TC and HC subjects. Furthermore, 

white and gray matter differences are largely studied independently and possible associations 

between them are rarely discussed within a common theoretical framework. We would like to 

bridge the gap between imaging techniques by studying structural differences in white- and 

gray matter within a single sample. By studying multiple imaging modalities, we aim to draw 

conclusions on how these differences are interrelated and how novel prevention and 

intervention tools might benefit from multiple outcome variables.  
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An estimated half of the brain volume consists of white matter with short and long 

reaching fibers passing on information (Sampaio-Baptista & Johansen-Berg, 2017). An 

important mechanism of the human brain is the ability of white matter tracts to change during 

maturation of the human brain (Giedd & Rapoport, 2010; Lövdén et al., 2010) or  when 

learning occurs (Scholz, Klein, Behrens, & Johansen-Berg, 2009; Wang & Young, 2014; 

Zatorre, Fields, & Johansen-Berg, 2012), a process called white matter plasticity (Sampaio-

Baptista & Johansen-Berg, 2017).  White matter plasticity also plays an important role in the 

development of anxiety disorders in general (Jenkins et al., 2016) and PTSD in particular 

(Daniels et al., 2013; Siehl et al., 2018). Recent meta-analyses comparing patients with PTSD 

and TCs and HCs showed mixed results with lower and higher fractional anisotropies (FA) in 

patients in the anterior and posterior part of the cingulum, the superior longitudinal fasciculus 

and frontal white matter tracts, such as the forceps minor and the uncinate fasciculus (Daniels 

et al., 2013; Siehl et al., 2018). As argued in more detail in Siehl, King, Burgess, Flor, & Nees 

(2018), alterations in the above mentioned white matter tracts in patients with PTSD might be 

associated with context learning, processing of emotionally salient cues and extinction of 

aversive memories. However, as mentioned before, most studies focused on the comparison 

between patients with PTSD and trauma control subjects, with only a single study comparing 

patients with PTSD to trauma and healthy control subjects (Sun et al., 2013). Information on 

structural white matter differences between patients with PTSD and HCs as well as TC and 

HC subjects are still scarce, and a more refined understanding is needed to further establish 

neural white matter tracts as markers following trauma exposure. This also includes a link to 

several clinical target measures, such as PTSD characteristics and comorbidity, which can co-

determine these effects (Ginzburg, Ein-Dor, & Solomon, 2010).  

Similar to white matter plasticity, there is gray matter plasticity due to axon sprouting, 

dendritic branching, neuro- or angiogenesis or changes in glia cells following for example 
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experience based learning (Kühn, Gleich, Lorenz, Lindenberger, & Gallinat, 2014; Zatorre et 

al., 2012). We can quantify volumetric gray matter differences by a technique called voxel-

based morphometry (Ashburner & Friston, 2005), in which the volume of voxels in the whole 

brain is estimated and can be compared between groups. This approach can also be applied to 

particular regions of interest (ROIs) estimating regional volumes with a so called region-

based morphometry (RBM; Gaser & Dahnke, 2016). Recent meta-analyses found a reduction 

in overall brain volume in patients with PTSD in comparison to trauma and healthy control 

subjects with the largest differences in the volume of the insulae, the hippocampi and the 

anterior cingulate cortices and the superior frontal gyri in ROI analyses and the medial 

prefrontal- and the anterior cingulate cortices in the whole brain voxel-based morphometry 

analysis (VBM; Kühn and Gallinat, 2013; Bromis et al., 2018). In a large meta-analysis of 89 

studies, Bromis et al. (2018) showed accumulated evidence of 38 studies reporting differences 

in the volume of the hippocampi, showing differences in the following three contrasts: 

patients with PTSD<HC subjects, patients with PTSD<TC subjects, TC<HC subjects. 

Furthermore, they reported a reduction of gray matter volume of the insulae between patients 

with PTSD<HC as well as between patients with PTSD<TC. This fits well to 

psychobiological models suggesting a downregulation of brain activity in areas associated to 

processing context information, such as the hippocampal formation, and emotion regulation in 

more frontal parts of the brain and an upregulation of brain activity in areas associated to 

salience processing and threat detection, in areas such as the insulae and amygdalae (Brewin, 

Gregory, Lipton, & Burgess, 2010; Liberzon & Abelson, 2016). 

In the present study, we analyzed data from a large civilian sample including patients 

with PTSD, TCs, and HCs. We expected higher FA in frontal white matter, such as the 

forceps minor and uncinate fasciculus in TC and HC subjects in comparison to patients with 
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PTSD. Further, we expected higher gray matter volumes of the hippocampi in HC subjects in 

comparison to TCs and patients with PTSD, between TC subjects and patients with PTSD as 

well as HCs and TCs. We also expected higher gray matter volume of the anterior insulae in 

HC and TC subjects in comparison to patients with PTSD. We further explored gray matter 

differences in the following region of interests: amygdalae, posterior insulae, anterior and 

posterior cingulate cortices as well as the ventromedial prefrontal cortices (vmPFC). We 

expected a positive association between differences in white and gray matter. Finally, we 

expected significant negative correlations between symptom severity of PTSD and depression 

as well as trait anxiety and differences in white and gray matter volume.  

2 Methods and Materials 

2.1 Participants  

The dataset in this study is pooled from three independent studies on key mechanisms of 

pavlovian learning in patients suffering from PTSD (Wicking et al., 2016; two studies are in 

preparation). The studies were performed between 2010 and 2018 and all imaging protocols 

used for white and gray matter assessment were identical. In total, 154 participants were 

included in this study with 44 patients with PTSD, 49 TC and 61 HC subjects (see Table 1). 

There were no significant between-group differences observed for sex and age.  

Participants in all groups, including subjects in the HC group, were asked if they had 

experienced any traumatic event from a list of possible traumatic events, taken from the 

Posttraumatic Diagnostic Scale (Foa, 1995; Foa, Cashman, Jaycox, & Perry, 1997). Then, the 

Structured Clinical Interviews for DSM-IV-TR (American Psychiatric Association, 2000) I 

and II were carried out for each participant (SCID; Fydrich, Renneberg, Schmitz, & Wittchen, 

1997; Wittchen, Wunderlich, Gruschwitz, & Zaudig, 1997) to assess PTSD, depression and 
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other possible comorbidities. Participants fulfilling the PTSD criteria in the SCID-I interview 

were assigned to the PTSD group. To verify the assignment in a second step patients with 

PTSD had to fulfill criteria B through F of the DSM-IV criteria in the German version of the 

Clinician-Administered Posttraumatic Stress Disorder Scale (CAPS; Blake et al., 1995; 

Schnyder & Moergeli, 2002). This second step was independent of the overall score in the 

CAPS.  

The following exclusion criteria applied: any traumatic experience before the age of 

18 years, comorbid current or lifetime psychotic symptoms, current alcohol/ drug dependence 

or abuse, borderline personality disorder, cardiovascular or neurological disorders, brain 

injury, acute pain, continuous pain or medication for attention deficit hyperactivity disorder, 

pregnancy and metal implants.  

For patients with PTSD and individuals in the TC group, no significant differences 

were present in time since trauma. The groups differed significantly in the level of education 

and medication with patients suffering from PTSD taking more psychopharmacological 

medication than participants in the control groups. All participants in the TC and HC groups 

that reported the intake of psychopharmacological medication were prescribed this medication 

for other purposes than a diagnosed mental disorder (e.g. sleep disturbances). Patients with 

PTSD scored significantly higher on symptom severity of PTSD and depression as well as 

trait anxiety than both control groups.   

All participants received a reimbursement for participation (10€/h) and travel expenses. 

Patients were offered treatment in the outpatient clinics of the Central Institute of Mental 

Health in Mannheim, if requested. The study was carried out conforming to the Code of 

Ethics of the World Medical Association (World Medical Association, Declaration of 
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Helsinki, seventh revision, 2013). The study was approved by the Ethical Review Board of 

the Medical Faculty Mannheim, Heidelberg University and all participants gave written 

informed consent including consent for data re-analysis.    

2.2 Data acquisition 

Whole-brain MRI images were acquired using a 3T Magnetom TRIO whole body 

magnetic resonance scanner (Siemens Medical Solutions, Erlangen, Germany) equipped with 

a standard 12-channel volume head coil. We obtained  T1-weighted, magnetization-prepared, 

rapid-acquisition gradient echo (MPRAGE) images with the  following parameters: 

TR = 2300 ms, TE = 2.98 ms, flip angle 9°, FOV: 256 × 256 mm2, matrix size: 256 × 256,

voxel size: 1.0 × 1.0 × 1.1 mm3, 160 sagittal slices. For the diffusion images we applied a

single shot echo-planar imaging sequence (TR = 14000 ms, TE = 86 ms, 64 axial slices, 2 mm 

slice thickness, FOV: 256 × 256 mm², matrix size: 128 × 128 mm²), with one image without 

diffusion weighting and 40 diffusion-weighted images (b = 1000 s/mm²) along forty non-

collinear directions.  
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2.3 Preprocessing 

2.3.1 White matter 

First, the diffusion-weighted raw data were preprocessed using the Oxford Centre for 

Functional MRI of the Brain Software Library (FMRIB; FSL, version 6.0), UK; 

http://www.bmrib.ox.ac.uk/fsl; Behrens et al., 2003). The preprocessing procedure included 

the following steps: a) correction for motion artefacts and eddy current distortions using the 

FMRIB Diffusion Toolbox (FDT); b) extraction of the skull from T1-images using the Brain 

Extraction Tool (BET); c) fitting diffusion tensors at each voxel independently to the data and 

calculation of FA maps using a DTI fit algorithm, with alignment to the MNI space. In a 

second step, we extracted the mean FA value for each of the twenty white matter tracts 

specified by the probabilistic JHU white-matter tractography atlas (Mori, Wakana, Van Zijl, 

& Nagae-Poetscher, 2005) for a ROI analysis. The probability threshold was set to 30%, 

meaning that each voxel contained the corresponding tract with a 30% probability. We 

assessed motion parameters and included participants up to a maximum translation of one mm 

in x-, y-, or z-direction and a maximum of 1° of any angular motion throughout the course of 

the scan. No participants were excluded due to motion during the scan of white matter. 

2.3.2 Gray matter 

Second, we preprocessed the T1 weighted images using the Computational Anatomy 

Toolbox (CAT12; http://www.neuro.uni-jena.de/cat). The CAT12 toolbox runs on Statistical 

Parametric Mapping (SPM12; Wellcome Department of Imaging Neuroscience, London, UK) 

implemented in MATLAB R2016a (The MathWorks Inc., Natick, MA, USA). The 

preprocessing included the following steps: a) spatial registration; b) segmentation into gray 

http://www.bmrib.ox.ac.uk/fsl
http://www.neuro.uni-jena.de/cat
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and white matter and CSF; c) bias correction of intensity non-uniformities. The 

Neuromorphometric atlas (provided by Neuromorphometrics, Inc., MA, USA; 

http://www.neuromorphometrics.com) was chosen providing a total of 142 ROIs. In a second 

step, we extracted the mean gray matter volume for each subject for 14 predefined ROIs 

including both hippocampi, amygdalae, anterior and posterior insulae, anterior and posterior 

cingulate cortices as well as ventromedial prefrontal cortices. We assessed motion parameters 

and included participants up to a maximum translation of one mm in x-, y-, or z-direction and 

a maximum of 1° of any angular motion throughout the course of the scan. No participants 

were excluded due to motion during the scan of gray matter. 

2.4 Analyses of structural brain data 

2.4.1 White matter: whole brain analysis 

First, Tract-based spatial statistics (TBSS) was applied for the analysis of voxelwise 

FA changes (Smith et al., 2006) using FSL software. TBSS projects the FA data of all 

subjects onto a mean FA tract skeleton, before applying voxelwise cross-subject statistics. For 

statistical testing we conducted a one-way, univariate analysis of covariance (ANCOVA) with 

permutation-based nonparametric inference on FA with age and sex as nuisance covariates. 

FSL’s randomize was used with threshold-free cluster enhancement (TFCE; Smith & Nichols, 

2009) and 5000 permutations per analysis to assess group differences between patients with 

PTSD, TC and HC subjects. For whole-brain multiple comparison correction, the statistical 

threshold was set at α<.05 with family-wise error (FWE) correction at cluster level (cluster 

threshold p<0.001; Table 2).  

http://www.neuromorphometrics.com/
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2.4.2 White matter: ROI analysis 

In a second step, we averaged the FA value across all voxels in each of the twenty 

white matter ROIs. The group difference of the mean FA of each tract between patients with 

PTSD, TC and HC subjects was assessed with 20 different ANCOVAs (one for each tract) 

with age and sex entered as nuisance variables. Bonferroni-corrections were applied across 20 

tracts (significant at α<.0025). In case the ANCOVA showed a significant group difference, 

Post-hoc t-tests were performed using Tukey’s honestly significant difference (Tuckey’s 

HSD) test as post-hoc single-step multiple comparison procedure.  

2.4.3 Gray matter 

We performed a RBM analysis on the gray matter data. RBM estimates a regional 

tissue volume for different regions in the brain based on a surface-based atlas. We took 

fourteen pre-defined ROIs (each bilateral: hippocampi, amygdalae, anterior and posterior 

insulae, anterior and posterior cingulate cortices, ventromedial prefrontal cortices) from 

results of two meta-analyses (Bromis et al., 2018; Simone Kühn & Gallinat, 2013). The group 

difference of the mean volume of each ROI between patients with PTSD, TC and HC subjects 

was assessed with fourteen different ANCOVAs (one for each tract) with age, sex and TIV 

entered as nuisance variables. Bonferroni-corrections were applied across 14 tracts 

(significant at α<.0036). Identical to the analyses steps in white matter, in case of a significant 

group difference, post-hoc t-tests were performed using Tukey’s honestly significant 

difference (Tuckey’s HSD) test as post-hoc single-step multiple comparison procedure. 
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2.4.4 Correlation of white and gray matter differences 

In a final step, we carried out a Pearson’s product moment correlation to assess the 

association between the FA value in white matter tracts in which groups significantly differed 

and the volume of ROIs in which groups differed significantly. We applied Bonferroni 

corrections dividing the p-value by the number of correlations that were performed.  

2.5 Clinical assessments 

Posttraumatic Stress Disorder. The German version of the CAPS  (Blake et al., 1995; 

Schnyder & Moergeli, 2002) was used to provide a categorical diagnosis of PTSD and to 

assess symptom severity, which is calculated by summing the frequency and intensity score, 

measured on two 5-point scales ranging from zero (“never”/ “none”) to four (“most or all of 

the time”/ “extreme”). The CAPS score ranges from 0 to 100. 

Depression. For the assessment of impairment due to depressive symptoms within the 

last week, we applied the German long version of the Center for Epidemiological Studies 

Depression Scale (ADS; Hautzinger & Bailer, 1993). The ADS is a self-report questionnaire 

with 20 items measured on a 4-point scale ranging from zero (“rarely or not at all (less than 

one day)”) to three (“most often, all of the time (on five to seven days)”). The ADS score 

ranges from 0 to 60. 

Trait anxiety. For the assessment of trait anxiety, we applied the German version of 

the trait-version of the State-Trait-Anxiety-Inventory (STAIT; Laux et al., 1981). The STAI-T 

is a self-report questionnaire including 20 questions, measured on a 4-point Likert scale 

ranging from one (“not at all”) to four (“very much”). Higher scores are associated with 

higher levels of anxiety. The STAIT score ranges from 20 to 80. 
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2.6 Statistical analysis 

All statistical analyses were performed in R-Statistics (Team, 2013). Data were 

assessed for outliers and normal distribution. All assumptions were met, if not mentioned 

otherwise below. Analyses of covariance (ANCOVA) were computed including age and sex 

(for DTI and RBM) as well as total intracranial volume (TIV; for RBM). In case of multiple 

comparisons (e.g. multiple FA comparisons of different white matter tracts) Bonferroni 

corrections were applied to counteract Type 1 errors. We applied Tukey’s honestly significant 

difference (Tuckey’s HSD) test as post-hoc single-step multiple comparison procedure. 

Missing data were excluded from the analyses. However, this applied only to the gray matter 

analyses, in which seven datasets were missing (nPTSD=2; nTC=2, nHC=3) due to incomplete 

measurements or artefacts. Correlations were calculated based on Pearson’s product moment 

correlation coefficient. This applied to correlations calculated between clinical assessments of 

PTSD, depression and trait anxiety and differences in white and gray matter volume as well as 

for correlations between differences in gray and white matter volume.  

3 Results 

3.1 White matter: whole brain analysis 

Figure 1a illustrates significant between-group differences in FA (α≤.05 cluster-wise FWE-

correction) based on a whole-brain TBSS, including age and sex as covariates. We found two 

significant clusters in the ANCOVA comparing all three groups. The first cluster was located 

in the left corticospinal tract (CST; cluster size k=46 voxels, p=.046, MNI: x=-27, y=-25, 

z=17) and the second cluster in the left inferior fronto-occipital fasciculus (IFOF; cluster size 

k=24 voxels, p=.045, MNI: x=-25, y=28, z=112).  
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Table 2. Results of TBSS analysis 

Table 2. Results of the whole brain cluster analysis of FA values (TBSS). ANCOVA includes 
comparison of all three experimental groups (patients with PTSD, TCs, HCs) and sex and age 
as covariates. Tracts were extracted according to the JHU white matter tractography atlas.  

[Abbreviations: ATR – Anterior thalamic radiation; CST – Corticospinal tract; IFOF – 
Inferior fronto-occipital fasciculus; ILF – Inferior longitudinal fasciculus; L – Left; n.c. – not 
classified; R - Right; SLF – Superior longitudinal fasciculus] 

Contrast Cluster 
index 

voxels Significance Peak voxel coordinate Tracts 

p x y z 

ANCOVA 2 46 .046 -27 -25 17 l CST

1 24 .045 -25 28 12 l IFOF

Post-Hoc T-
test 

(TC>HC) 

7 28264 .009 -24 28 10 l IFOF

6 1492 .034 45 -22 -1 r ILF 

5 233 .048 50 -46 0 r SLF 

4 34 .05 -19 -31 36 l ATR
3 22 .05 36 -54 -8 r IFOF

2 17 .05 35 -49 8 r IFOF 

1 1 .05 37 -51 -8 r IFOF

Post-Hoc T-
test 

(TC>PTSD) 

11 23058 .014 -27 -26 17 l CST

10 305 .046 31 -33 14 r IFOF

9 116 .049 35 -46 7 r IFOF 

8 109 .049 39 -44 -11 r ILF

7 85 .049 47 -25 4 r ILF 

6 30 .049 32 -44 -15 n.c.

5 22 .05 40 -39 -11 r ILF

4 19 .05 57 -18 3 r ILF 

3 15 .05 37 -38 15 r SLF

2 2 .05 40 -53 1 r ILF 

1 1 .05 27 -40 -18 n.c.
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Figure 1. Results of Diffusion Tensor Imaging 

Figure 1. Diffusion Tensor Imaging. a) Results of TBSS analyses comparing the fractional 
anisotropy between patient with PTSD (n=44), TC (n=49) and HC (n=61) subjects in an 
ANCOVA (yellow), between TC>HC subjects in a post-hoc t-test (red) and between 
TC>PTSD in a post-hoc t-test (blue). Age and sex were included as covariates in the analyses. 
All results are FWE-corrected (α<.05). b) Boxplots with significant 
(αbonferroni_cor=.05/20=.0025) differences in mean FA value of the forceps minor between 
patients with PTSD (n=44), TC (n=49) and HC (n=61) subjects (n=154). c) Significant 
correlation (αbonferroni_cor=.05/4=.0125) between mean FA value in the forceps minor and the 
mean CAPS score for TC subjects (n=49) and patients with PTSD (n=44). d) Anatomical 
images with mean FA skeleton used for the TBSS analysis (in green). The contrast between 
TC subjects and patients with PTSD is marked in yellow to red. The forceps minor is marked 
in blue as a region of interest for clarification.  

[Abbreviations: ANCOVA - Analysis of Covariance; CAPS - Clinician-Administered PTSD 
Scale; FA - Fractional anisotropy; FM - Forceps minor; FWE - Family-wise error correction; 
HC - Healthy control subjects; I - Inferior; L - Left; P - Posterior; PTSD - Patients with 
posttraumatic stress disorder; R - Right; S - Superior; TBSS - Tract-based spatial statistics; 
TC - Trauma control subjects; * α<.05; ** α<.01; *** α<.001] 
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The post-hoc contrast TC>HC resulted in seven clusters showing significantly different FA 

values with the three largest being the following (Figure 1; Table 2): a) left IFOF (cluster size 

k=28264 voxels, p=.009, MNI: x=-24, y=28, z=10), b) right inferior longitudinal fasciculus 

(ILF; cluster size k=1492 voxels, p=.034, MNI: x=45, y=-22, z=-1) and c) right superior 

longitudinal fasciculus (SLF; cluster size k=233 voxels, p=.048, MNI: x=50, y=-46, z=0). A 

second post-hoc contrast TC>PTSD resulted in eleven clusters showing significantly different 

FA values with the three largest being the following (Figure 1; Table 2): a) left CST (cluster 

size k=23058 voxels, p=.014, MNI: x=-27, y=-26, z=17), b) right IFOF (cluster size k=305 

voxels, p=.046, MNI: x=31, y=-33, z=14) and c) right IFOF (IFOF; cluster size k=116 voxels, 

p=.049, MNI: x=35, y=-46, z=7). There was no significant difference between patients 

suffering from PTSD and HC subjects. 

3.2 White matter: ROI analysis 

When extracting 20 ROIs, one for each white matter tract, we found a significant 

difference in the mean FA of the forceps minor (F(2,149)=6.56, p=.002; pbonf.cor.=.04). Post-

hoc t-tests showed a significantly higher mean FA in the forceps minor for TC compared to 

HC (MDifference=0.02; 95% CI 0.005 to 0.029; p=.002; Hedges’ g= 0.53) and TC compared to 

patients with PTSD (MDifference=0.02; 95% CI 0.002 to 0.028, p=.02; Hedges’ g= 0.62). There 

was no significant difference between patients suffering from PTSD and HC (Figure 1; Table 

3). The white matter dataset comprised 154 participants. 

3.3 Gray matter 

The RBM analysis revealed significant differences in GM volume (in cm3) in the left 

(F(2,140)= 7.24, p=.001; pbonf.cor.=.014) and right anterior insulae (F(2,140)= 6.06, p=.003; 

pbonf.cor.=.042; Figure 2; Table 4). Post-hoc t-test comparisons showed that this difference in  
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Figure 2. Results of Region Based Morphometry 

Figure 2. Region Based Morphometry. a) Boxplots with mean volume of left anterior insula 
(in cm3) in all three groups. The results show a significant (αbonferroni_cor=.05/14=.0036) 
difference in volume between patients with PTSD (n=42), TC (n=47) and HC (n=58) subjects. 
Post-hoc t-tests revealed significant differences in volume for the contrasts TC>HC subjects 
and TC>PTSD. b) Significant negative correlation (αbonferroni_cor=.05/5=.0125) between mean 
volume of left anterior insula (in cm3) and the mean CAPS score for TC subjects (n=47) and 
patients with PTSD (n=42). c) Outline of the left and right anterior insulae. d) Boxplots with 
mean volume of right anterior insula (in cm3) in all three groups. The results show a 
significant (αbonferroni_cor=.05/14=.0036) difference in volume between patients with PTSD 
(n=42), TC (n=47) and HC (n=58) subjects. Post-hoc t-tests revealed significant differences in 
volume for the contrasts TC>HC subjects and TC>PTSD. 

[Abbreviations: CAPS - Clinician-Administered PTSD Scale; HC - Healthy control subjects; 
lAntIns - Left anterior insula; PTSD - Patients with posttraumatic stress disorder; rAntIns - 
Right anterior insula; TC - Trauma control subjects; * α<.05; ** α<.01; *** α<.001] 

the left anterior insula was driven by the TC group, which showed a significantly higher mean 

GM volume than the HC subjects (MDifference=0.35; 95% CI 0.09 to 0.60; p=.004; Hedges’ g= 

0.54) or than the group of patients suffering from PTSD (MDifference=0.39; 95% CI 0.12 to 

0.66; p=.003; Hedges’ g= 0.67). The difference in the right anterior insula was also driven by  
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Figure 3. White and gray matter coupling 

Figure 3. White and gray matter coupling. Significant positive correlation 
(αbonferroni_cor=.05/4=.0125) between mean FA value in forceps minor and a) volume of the 
lAntIns (PTSD, n=42; TC, n=47; HC, n=58) and b) volume of the rAntIns (PTSD, n=42; TC, 
n=47; HC, n=58).  

[Abbreviations: HC - Healthy control subjects; lAntIns - Left anterior insula; PTSD - 
Patients with posttraumatic stress disorder; rAntIns - Right anterior insula; TC - Trauma 
control subjects; * α<.05; ** α<.01; *** α<.001] 

the TC group, which showed a significantly higher mean GM volume than the HC subjects 

(MDifference=0.30; 95% CI 0.06 to 0.54; p=.009; Hedges’ g= 0.50) or than the group of patients 

suffering from PTSD (MDifference=0.33; 95% CI 0.08 to 0.59; p=.008; Hedges’ g= 0.60). There 

was no significant difference between patients with PTSD and HC. The gray matter dataset 

comprised 147 participants, excluding seven participants due to artefacts or missing data.  
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3.4 Relationship between white and gray matter differences 

As a measurement of white- and gray matter coupling, we correlated findings of structural 

(WM and GM) differences between TC subjects and patients with PTSD. We found a 

significant positive correlation between the mean FA in the forceps minor and the mean 

volume in the left anterior insula including subjects from all three groups (r(144)=.29, 95% CI 

0.14 to 0.43, p=.00036; pbonf.cor.=.001; Figure 3a). The correlation stayed significant, when we  

included only patients with PTSD and TC subjects (r(86)=.31, 95% CI 0.10 to 0.49, p=.0037; 

pbonf.cor.=.015). Similarly, we found a significant positive correlation between the mean FA in 

the forceps minor and the mean volume in the right anterior insula (r(144)=.28, 95% CI 0.12 

to 0.42, p=.0006; pbonf.cor.=.0024). This association also stayed significant, when we included 

only patients with PTSD and TC subjects (r(86)=.29, 95% CI 0.09 to 0.47, p=.0059; 

pbonf.cor.=.024; Figure 3b). 

3.5 Relationship of brain changes and clinical measures 

We found significant negative Pearson correlation coefficients for the contrast of 

TC>PTSD between the mean FA value in the forceps minor and the mean CAPS- (r(87)= -

.32, 95% CI -0.12 to -0.49, p=.0026; pbonf.cor.=.008; Figure 1c), STAIT- (r(84)=-.26, 95% CI -

0.05 to -0.45, p=.014; pbonf.cor.=.042) and ADS scores (r(83)=-.28, 95% CI 0.07 to 0.46, 

p=.011; pbonf.cor.=.033). For the same contrast of TC>PTSD, we found a significant negative 

Pearson correlation coefficient between the mean GM volume in the left anterior insula and 

the mean CAPS score (r(82)=-.31, 95% CI -0.10 to -0.49, p=.005; pbonf.cor.=.015). The 

correlations for the STAIT- (r(80)=-.25, 95% CI -0.04 to -0.44, p=.023; pbonf.cor.=.069) and 

ADS score (r(78)=-.24, 95% CI -0.02 to -0.43, p=.035; pbonf.cor.=.11) did not survive 

Bonferroni corrections. We did not find any significant correlations between our clinical 

measures and the GM volume difference in the right anterior insula. 
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4 Discussion 

The present study used TBSS and ROI analysis for white matter and ROI analysis for gray 

matter regions to examine group differences in a large non-military sample of 154 patients 

with PTSD and trauma and healthy control subjects. We observed significant white- and gray 

matter differences in TC subjects compared to both patients with PTSD and HC subjects. In 

particular, TC subjects in comparison to patients with PTSD as well as HC subjects showed a 

significantly higher FA in the forceps minor and higher gray matter volume in the left and 

right anterior insulae. Interestingly, we did not find any differences in white or gray matter 

analyses between patients with PTSD and HC subjects. Our results suggest that TC subjects 

show higher interhemispheric frontal connections combined with larger volumes in brain 

areas associated with salience processing and threat detection than patients with PTSD and 

HC subjects. Furthermore, we found positive correlations between the FA value in the forceps 

minor and the volume of the left and right anterior insulae. These results suggest thathigher 

volumes in the FM and anterior insulae in TC subjects might be a result of resilience, as TC 

subjects are those individuals that experienced a traumatic event, but did not develop PTSD. 

Finally, our results demonstrate a link between morphometric white and gray matter 

differences and symptom severity of PTSD, depression and trait anxiety. We argue that the 

forceps minor and the left anterior insula could be used as target regions in 

neuroscientifically-informed treatment studies on PTSD. 

Our TBSS analysis revealed significantly higher FA values in TCs than patients with 

PTSD in long reaching white matter fibers such as the left CST and left IFOF. The CST is one 

of the largest descending white matter tracts in humans and involved in voluntary movement 

of contralateral limbs (Natali & Bordoni, 2018). Although, previous studies mention 

differences in FA in the CST in anxiety related disorders (Jenkins et al., 2016), depression 
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(Sacchet et al., 2014) and neurogenerative disorders, such as Alzheimer’s (Douaud et al., 

2011), its role in PTSD is unclear. Douaud et al. (2011) also found that higher FA values in 

the CST were associated with higher values in the SLF. Future studies are needed to 

determine the function of the CST in affect- and anxiety related disorders. The IFOF on the 

other hand originates in the parietal and occipital lobes and connects them with regions in the 

lateral frontal cortex (Catani, Howard, Pajevic, & Jones, 2002). As a long reaching white 

matter tract, it is generally assumed to be involved in cognitive control, language processing 

(Almairac, Herbet, Moritz-Gasser, de Champfleur, & Duffau, 2015), and salience processing 

(Wang et al., 2016). Differences in the FA value of the IFOF have been previously linked to 

anxiety disorders in general (Jenkins et al., 2016) and PTSD in particular (Siehl et al., 2018). 

Furthermore, TC subjects showed a significantly higher FA value than HC subjects in the left 

IFOF, right ILF and right SLF. Similar to the IFOF, the SLF connects more posterior regions 

of the parietal, occipital and temporal lobe with the frontal lobe. The SLF is involved in a 

wide range of functions, such as the perception of visual and auditory space as well as aspects 

of motor behavior (de Schotten et al., 2011; Makris et al., 2005). In a previous systematic 

review, the authors did not find any differences in the SLF between TC and HC subjects 

(Siehl et al., 2018) and to the best of our knowledge, there is no study so far comparing the 

FA value in TC to HC subjects in a non-military sample. However, Our findings are in line 

with previous studies comparing patients with PTSD to TC subjects showing higher FA 

values in the SLF in TC subjects (Fani et al., 2012; Schuff et al., 2011). The ILF is a long 

reaching white matter tract connecting occipital and more posterior parts of the temporal lobe 

to more anterior parts of the temporal lobe. The ILF has been associated with visual cognition 

and socio-emotional processing of information (Herbet, Zemmoura, & Duffau, 2018) and 

previously been associated to show reduced FA values in patients with PTSD in comparison 

to TC subjects (Olson et al., 2017). Interestingly we don’t find any differences in the ILF and 

SLF between TCs and patients with PTSD, but between TC and HC subjects. In a summary, 



2 E m p i r i c a l  S t u d i e s | 101 

long reaching white matter fibers connecting more posterior regions of the brain to more 

anterior regions seem to play a role in the development of PTSD. We speculate that lower 

white matter connectivity is an understudied factor in PTSD leading to higher salience and 

lower contextual information processing.   

Frontal white matter tracts such as the FM might play an important role in the 

development of PTSD, in particular altered emotion regulation. Our white matter ROI 

analyses demonstrated significantly higher FA values in the FM in TC subjects than patients 

with PTSD or HC subjects. The FA in the FM was found to be central for PTSD in earlier 

studies (Sripada et al., 2012a). The forceps minor originates from the genu of the corpus 

callosum and connects the medial and lateral surfaces of the prefrontal cortices of both 

hemispheres in a fork-like shape, supporting interhemispheric information exchange between 

medial and lateral surfaces of the frontal lobe. Presumably, the FM is part of a larger network 

of white matter tracts, including the uncinate fasciculus and the cingulum, involved in 

emotion regulation (Versace et al., 2015). A lower FA in the FM suggests a lower top-down 

control and a less well orchestrated functional connectivity between hemispheres in the PFC 

(Liberzon & Abelson, 2016). Interestingly, the FA value in the FM in TC subjects was also 

significantly higher than in HC subjects, while there was no difference between patients with 

PTSD and HC subjects. White matter plasticity in the FM might occur after trauma 

experience as an adaptive change to strengthen networks involved in emotion regulation. 

However, longitudinal studies are needed to test this hypothesis. We did not find any 

significant FA differences between the groups in the uncinate fasciculus. 

Lower gray matter volume in the insulae might be associated to weaker salience 

mapping in patients with PTSD. The RBM analysis on gray matter differences revealed a 

higher volume in the left and right insulae in TC subjects in comparison to both, patients with 
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PTSD as well as HC subjects. The insula is a major hub within the salience network and 

associated with the detection and autonomic response to salient events as well the facilitation 

of communication between large scale networks (Menon, 2011; Menon & Uddin, 2010). A 

larger volumetric size of the insula can be associated with a stronger salience mapping. 

Stronger salience mapping after the experience of a traumatic event might lead to a better 

integration of cognitive, homeostatic and affective systems within the brain (Damasio & 

Carvalho, 2013; Pessoa, 2008). It also fits well to recent studies on neurofeedback, which 

found stronger functional connectivity between the PFC and the amygdala and insula after 

targeting areas in the salience network for up- or down regulation (Cohen Kadosh et al., 2016; 

Lubianiker et al., 2019; Paret et al., 2016). We did not find volumetric differences for the 

hippocampi, amygdalae, posterior insulae, anterior and posterior cingulate cortices or 

vmPFCs after Bonferroni corrections (see Table 4). We argue that this is partly due to low 

power and heterogeneity of the sample concerning the trauma type. Future studies should 

investigate volumetric gray matter differences with a larger sample focusing for example on 

one particular trauma type.  

Structural differences in the FM and insulae are associated and point to the importance 

of the salience network in PTSD and its function in safety learning. We observed a positive 

association between the FA in the forceps minor and the volume of the left and right insulae 

(see Figure 3), which supports the association between structural white and gray matter 

differences in patients with PTSD in comparison to TC subjects. This is also in line with 

previous studies emphasizing the central role of the insulae and the right amygdala within the 

salience network in PTSD (Cisler et al., 2014; Peterson, Thome, Frewen, & Lanius, 2014; 

Rabinak et al., 2011; Sripada et al., 2012b; Zhang et al., 2015), with the insulae playing a 

particular role in discrimination learning of safety cues (Lissek et al., 2014). The inclusion of 

two healthy control groups is important for the interpretation of the results at this point. The 
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volumetric size of the left and right anterior insulae did not significantly differ between HCs 

and patients with PTSD. Due to our cross-sectional design, we can only speculate that this 

volumetric difference in the anterior insulae could emerge, post trauma, as an adaptive, 

functional neuroplastic change. The volumetric difference, alongside the difference in the FA 

of the FM, might lead to an increased functional connectivity in the salience network in TCs 

in comparison to patients with PTSD. This is in line with a recent study on healthy but highly 

trauma-exposed firefighters in comparison to non-firefighters, which found a higher 

functional connectivity in the salience network for the highly trauma exposed population of 

firefighters with the insula as a seed region (Jeong et al., 2018). Although it becomes more 

difficult to explain why there is no difference between patients with PTSD and HC subjects, it 

might also be possible that this difference existed before the traumatic event. Future studies 

on neurofeedback could investigate the effect of an up regulation of the anterior insulae in 

patients with PTSD in comparison to TC subjects and its effect on the functional connectivity 

within the salience network. 

In our study, we included participants that experienced different types of traumatic 

events with the traumatic event either being caused voluntarily (e.g. physical violence, sexual 

abuse) or involuntarily (e.g. accidents, fire or explosion). Exposure to voluntarily caused 

events, in particular events involving interpersonal violence such as rape or sexual assault, 

show the strongest association with subsequent traumatic events (Benjet et al., 2016) and 

higher risk of developing PTSD (Kessler et al., 2017). Although our groups of patients with 

PTSD and TC subjects did not differ significantly in the type of trauma, patients with PTSD 

were more frequently exposed to voluntarily caused events, specifically physical violence and 

wartime experience. TC subjects on the other hand experienced more involuntarily caused 

events such as accidents. Whereas changes in white (Daniels, Lamke, Gaebler, Walter, & 
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Scheel, 2013b; Giedd & Rapoport, 2010; Siehl et al., 2018) and gray matter (Bromis et al., 

2018; Kribakaran, Danese, Bromis, Kempton, & Gee, 2020) due to traumatic experiences 

were found to be age sensitive, it is not clear whether the different types of traumatic events 

impact white and gray matter trajectory differently. One would assume given the large 

differences in cognition, emotion and perception following either a voluntarily or 

involuntarily caused event. Future research is needed here to further assess differences in 

white and gray matter structures in adults with PTSD and trauma in adulthood with different 

types of trauma experiences.  

These structural white and gray matter differences in areas related to salience 

processing and top-down control could inform behavioral prevention and treatment strategies. 

Psychotherapeutic interventions could benefit from neuroscientific findings by specifically 

selecting treatment techniques that focus on the flexibility (up- and down regulation) of 

salience processing and salience mapping, such as mindfulness-based interventions (Lanius, 

Frewen, Tursich, Jetly, & McKinnon, 2015), to increase the connectivity between the salience 

network and the frontal lobe in patients with PTSD. Higher emotional control, possibly 

mediated via the FM in combination with a threat-detection system that is well embedded 

might facilitate healthy recovery after the exposure to traumatic events.  

4.1 Limitations 

A limitation of this study is clearly its cross-sectional design, which only allows limited 

interpretation of the results. A longitudinal design would be needed to disentangle, if 

structural differences, especially between patients with PTSD and TC subjects, occur due to 

pre-existing vulnerabilities or if these differences have developed after trauma experience. 

Furthermore, our sample focused on adults with trauma experience in adulthood (after 18 

years of age) only. White and gray matter are known to develop differently in underage 
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populations suffering from PTSD in comparison to adults with PTSD, so we can draw only 

limited conclusions for this population from our sample.  Further, the patients showed higher 

intake of medication and less years spending in education than both control groups. The 

differences in education might partly be explained by the experience of the traumatic event 

which on average participants in the PTSD and TC group experienced in their early to late 

twenties. Arguably, patients suffering of PTSD couldn’t continue their education due to the 

illness. Another possible argument could be the socio-economic background of participants 

which might have influenced the differences in years of education. This was however not 

assessed in our sample. While there was no difference between TC and HC control group in 

medication and education, we can’t fully rule out that group differences between patients with 

PTSD and both control groups are confounded.  

4.2 Conclusions 

In this cross-sectional study, we found structural white and gray matter differences in brain 

regions related to emotional control and threat detection in healthy traumatized control 

subjects in comparison to patients suffering from PTSD and HC subjects. First, TCs in 

comparison to patients with PTSD and HCs showed a higher FA in the forceps minor and a 

larger volume in the left and right anterior insulae. We argue that these morphometric 

differences might be associated with stronger emotion regulation and salience mapping in TC 

subjects. Second, we found a positive correlation between FA in the FM and gray matter 

volume in the insulae, showing that white and gray matter differences are associated and 

important for understanding the development of PTSD. Finally, the mean FA value in the 

forceps minor correlated negatively with symptom severity of PTSD, depression as well as 

trait anxiety, while gray matter volume in the left anterior insula correlated negatively with 

symptom severity in PTSD. Our results add important information for individualized 
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prevention and neuroscientifically-informed treatment interventions such as neurofeedback, 

which could target the anterior insulae as a region to be up-regulated in patients with PTSD to 

strengthen functional connectivity within the salience network and between the salience 

network and regions in the frontal lobe. Finally, future studies could investigate long-term 

differences in the forceps minor before and after an intervention.  
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2.3 Study 3:  
Cued and contextual conditioning in patients with posttraumatic stress disorder and a 

healthy and trauma-exposed control group: A study using functional magnetic 

resonance imaging and virtual reality.3 
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Flor, H. (2020). Cued and contextual conditioning in patients with posttraumatic stress 

disorder and a healthy and trauma-exposed control group: A functional magnetic 

resonance imaging study using virtual reality. Manuscript in preparation. 
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Abstract 

 
Objective: Psychobiological models of Posttraumatic stress disorder (PTSD) suggest that 

deficiencies in discriminating safe from dangerous contexts are a central for its development. 

In particular, configural learning, binding multiple elements into a coherent context 

representation, might be deficient in patients with PTSD if there is not a single cue predicting 

the danger.  

Methods: A novel combined cue-context conditioning paradigm was applied using virtual 

reality. Contexts consisted of four different rooms with furniture, in which two rooms were 

conditioned with a painful electrical stimulus (dangerous), one uncued (unpredictable) and 

one cued (predictable), and two contexts without a painful stimulus (safe). The authors 

assessed 20 patients with PTSD, 21 healthy trauma-exposed and 22 non-trauma-exposed 

participants using self-report measures, skin conductance responses and functional magnetic 

resonance imaging (fMRI). 

Results: Patients with PTSD in contrast to non-trauma-exposed but not trauma-exposed 

individuals showed lower brain activity in the ventromedial prefrontal cortex in the 

unpredictable and a higher brain activity in the hippocampi in the predictable context. During 

cued contextual conditioning, patients with PTSD also showed significantly lower skin 

conductance responses in comparison to both control groups. There were no differences in 

self-reports between the groups.  

Conclusion: These results suggest that patients with PTSD indeed show a different neural 

response during cued and uncued contextual learning than non-trauma exposed but not 

trauma-exposed subjects. The ventromedial prefrontal cortex seem to be less engaged during 

uncued, and the hippocampi more engaged during cued contextual fear acquisition. 
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Treatments of PTSD could specifically enhance configural learning strategies to potentially 

benefit exposure effects.   

 

Keywords: context conditioning, PTSD, trauma, virtual reality, neuroplasticity, functional 

connectivity
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1 Introduction  
 

Studies of fear learning, using pavlovian conditioning (1), have greatly advanced our 

understanding of the psychobiological mechanisms of posttraumatic stress disorder (PTSD), 

which is characterized by symptoms like re-experiencing, avoidance, hyperarousal and 

alterations in mood and cognition (2). In pavlovian fear conditioning, an originally neutral 

stimulus is paired with a biologically relevant stimulus (unconditioned stimulus (US)), such 

as pain, to become a conditioned stimulus (CS). This CS can then elicit a conditioned 

response such as increased heart rate that is usually but not always similar to the response to 

the original unconditioned response (UR), without the US being present. In differential 

conditioning, two CSs are differentiated of which one is predictive of the US (CS+; danger 

signal) and the second is not (CS-; safety signal). This association between the US and the CS 

is learned during fear acquisition and can be overwritten during fear extinction. The CS can 

be a single object (cue) or an entire internal or external environment (context). 

Psychobiological models of PTSD (3,4) have focused on contextual fear learning as a central 

mechanism underlying psychopathology. The term ‘context’ has been defined very broadly as 

“ ... the set of circumstances around an event” (2, p. 418) and conditioning research has 

developed a variety of study protocols to investigate contexts in humans, most often 

environmental or spatial contexts. Spatial context conditioning paradigms have used distinct 

or transitioning colored backgrounds, static background images, videos of environments or 

virtual reality (5). Context conditioning can further be enhanced by increasing the temporal 

unpredictability of the US (6). The larger the time frame, in which a US can occur, the larger 

the unpredictability and the higher the levels of anxiety (7). In general, patients with PTSD 

show a reduced capacity to use context information to regulate fear responses (8) during fear 

extinction (9), memory of the extinction (extinction recall; 8) and when the already 
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extinguished fear is renewed (fear renewal; 9). Previous work has shown that patients with 

PTSD are deficient in acquiring context conditioning, but improve when cues are added to 

predict danger or safe context (12). 

Neurobiological findings point towards distinct neural circuits involved in cue and 

context conditioning (3). The most prominent brain regions involved in contextual 

conditioning are the hippocampus and ventromedial prefrontal cortex (vmPFC), with the 

amygdala being the most prominent mediator of cue conditioning. The hippocampus has long 

been proposed as an epicenter for processing environmental context (13,14), in particularly 

for learning conjunctive associations (15) as a form of context conditioning. Conjunctive 

associations are a form of association learning in which many individual elements or cues in a 

particular context are encoded as a whole, also referred to as configural learning. Patients with 

PTSD show difficulties in conjunctive based learning of contexts, eventually leading to an 

element based association, meaning that each cue in the environment is individually 

associated to the dangerous stimulus (16). Each individual cue is then potentially able to elicit 

a fear response across contexts, with the amygdala being more active (17), independent of the 

context being originally safe or dangerous. When fear is elicited in an original safe context, 

corrective responses could for example involve emotional downregulation of the fear response 

or redirecting ones attention towards safety related stimuli. Patients with PTSD however show 

difficulties in emotion and attention related processes which are associated to functional 

activity in the vmPFC (3,16). Most studies on contextual conditioning have used configural 

learning paradigms (18). The aim of our study was to create contexts based on configural 

learning with several conditions, in which either a cue or the whole context is predictive of the 

US.  

 In this study, we investigated context processing in patients with PTSD in comparison 

to HC and TC subjects in a combined cue-context conditioning paradigm using virtual reality 
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and functional magnetic resonance imaging (fMRI). Participants were presented with four 

different contexts, two during the context conditioning (unpredictable, safe) and two during 

the cue conditioning (predictable, safe). We predicted that patients with PTSD would have 

difficulties in discriminating safe and dangerous contexts from each other, if there is no 

additional cue predicting the US in the environment (unpredictable). However, if there is an 

additional cue predicting, if the context is dangerous or safe (predictable), patients with PTSD 

should be equally could in differentiating the two environments. In the unpredictable in 

comparison to a safe context, we therefore hypothesized that patients with PTSD in 

comparison to HC and TC subjects would a) report higher arousal, valence and contingency 

ratings, b) show an elevated skin conductance response, c) show smaller BOLD activities in 

the hippocampi, vmPFC and amygdalae. During cued context conditioning, we expected that 

all three groups report a) higher arousal, valence and contingency ratings as well as b) 

elevated skin conductance responses for the CS+ in comparison to the CS- in the predictable 

context but not in the safe context. In addition, we expected higher BOLD activity in the 

amygdalae in the predictable context in patients with PTSD in comparison to TC and HC 

subjects. 
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2 Methods 

2.1 Participants  

Twenty patients suffering from PTSD, 21 age- and sex matched trauma control (TC) and 22 

never traumatized healthy control subjects participated in this study (Table 1; details on 

recruitment and inclusion and exclusion criteria can be found in Suppl. methods). All trauma-

exposed subjects fulfilled the trauma criteria of the revised fourth edition of the Diagnostic 

and Statistical Manual of Mental Disorders (DSM-IV-TR; 18) assessed with the German 

version of the Structured Clinical Interview (SCID-I; 19). Based on the SCID-I and the results 

of the Clinician-Administered PTSD Scale (CAPS; 20,21), participants were assigned to the 

respective groups. Healthy control subjects had never experienced any traumatic event in their 

lives and had never met any criterion for a DSM-IV-TR disorder. All participants received a 

reimbursement for participation (10€/h), travel and potential costs for accommodation. 

Patients suffering from PTSD were offered treatment in one of the outpatient clinics of the 

CIMH. The study was carried out in accordance with the Code of Ethics of the World Medical 

Association (23). The study was approved by the Ethical Review Board of the Medical 

Faculty Mannheim, Heidelberg University and all participants gave written informed consent.   

2.2 Procedure and study design 

The study consisted of two sessions on two consecutive days, each lasting for approximately 

five to seven hours. On the first day, participants completed questionnaires and clinical 

assessments on PTSD (described in more detail below) as well as the SCID-I. During the first 

experimental phase participants completed a training- and habituation phase outside the 

Magnetic Resonance Imaging (MRI) scanner, while sitting in front of a computer screen with 

a head mounted display (HMD). Participants then determined the intensity of the painful 
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stimulus (see Suppl. methods) before completing the context and cue acquisition phases inside 

the MRI scanner. On the second day, participants took part in the context and cue extinction 

phases inside the MRI scanner. This was followed by a final testing phase including cognitive 

and neuropsychological assessments. Finally, the SCID-II (24) personality assessment was 

conducted with participants who reached the cut-off values in the accompanying screening 

assessment. 

2.3 Stimuli and experimental procedure 

During the experimental phase of this combined cue and context conditioning paradigm, 

participants were passively navigated through virtual contexts (living rooms) on a parabola 

shaped trajectory with a constant slow-paced walking speed of 0.45 km/h and an egocentric 

viewpoint (see Figure 1). The perspective rotated slightly from right to left and right again, so 

that each of the four walls was entirely visible at least once. The virtual contexts consisted of 

several objects (bookshelves, chest of drawers, floor lamp, potted plant, racks, seating corner, 

television, see Figure 1) and were built using an online software toolbox Open-Source 

Graphics Rendering Engine (OGRE; www.ogre3d.org) and the support of a software 

company (Glodeck Software GmbH) using Visual Studio Professional (2010, Redmond, WA, 

USA). The arrangement of the objects differed for each context. Two colored squares, serving 

as CS+ and CS-, were presented on the walls of each context in a counterbalanced fashion and 

were built in Microsoft Office Power Point (2007, Redmond, WA, USA). The virtual contexts 

were presented on a Dell laptop (Dell Precision M4600; Round Rock, Texas, USA) with a 

HMD (Trivisio Scout, Kaiserslautern, Rheinland-Pfalz, Germany) outside the scanner and 

MRI suitable goggles (VisuaStimDigital, Northridge, California, USA) inside the scanner 

using the same laptop in both cases with a resolution of 800x600 pixels. Ratings were 

http://www.ogre3d.org/
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performed on the laptop keyboard during habituation and on a four button optical response 

pad (Current Designs, Philadelphia, Pennsylvania, USA) during acquisition and extinction. 

A total of four different contexts (context unpredictable [ctx_unpred], context safe 

[ctx_safectx], cue predictable [cue_pred], cue safe [cue_safe]) and two different cues (CS+, 

CS-) were presented during habituation, acquisition and extinction. Each of the four main 

experimental conditions (context and cue acquisition, context and cue extinction) consisted of 

8 room entries per condition following a block design (e.g. context acquisition: 4 x 

ctx_unpred – 4 x ctx_safe - 4 x cue_pred – 4 x cue_safe). The order of appearance of rooms 

within each block and of the CSs were counterbalanced using an original (context acquisition: 

2 x ctx_unpred-ctx_safe; cue acquisition: 2 x cue_pred-cue_safe) and parallel (context 

acquisition: 2 x ctx_safe- ctx_unpred; cue acquisition: 2 x cue_safe-cue_pred) version of the 

experiment. During a pilot study participants had difficulties acquiring the context 

conditioning with a preceding cue conditioning. We therefore decided to keep the order in 

which the conditions appeared on each day steady with context acquisition/ extinction 

appearing before cue acquisition/ extinction (see Figure 1).  

Habituation. During habituation (HAB) participants were passively walked through all four 

rooms twice and were instructed to pay attention to the interior design of each context. At the 

end participants were asked “How many different architects designed the rooms?” to 

guarantee that participants payed attention and could differentiate between the contexts. 

Furthermore, participants saw each CS separately for 4s with an inter-trial-interval (ITI) of 2s 

in front of a grey background and included within each context. Participants then rated the 

arousal, valence and contingency of each context, CS and context with CS on a seven point 

scale using self-assessment manikins (SAM; 24). In addition, participants’ pain thresholds and 

the intensity of the painful stimulation were determined (see Suppl. Methods), followed by a 

habituation of the US.    
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Acquisition (see Figure 1). During context acquisition, participants were walked 

through two different contexts, one so called unpredictable (ctx_unpred) and one safe 

(ctx_safe) context. In the ctx_unpred condition, a US was presented at different points in time 

appearing in the middle of long ITIs between the CTX/CS+/CS- stimuli of 7.5-9 seconds. The 

CS+ and CS- were presented one to two times per room for four seconds each with additional 

CTX triggers in each condition. None of the stimuli predicted the appearance of the US in the 

ctx_unpred condition. The ctx_safe condition was identical to the ctx_unpred except that there 

was no US presented. At the end of both acquisition phases, participants rated each stimulus 

(CTX/CS+/CS-) and a combination of them (e.g. CS+ in ctx_safe) on the SAM (25) for 

arousal and valence and the probability of a painful stimulus on a visual analogue scale. 

During cue acquisition, participants were presented with another two contexts, the so-called 

predictable (cue_pred) and safe (cue_safe) context. In the cue_pred condition, the 4s 

presentation of one of the two colored squares (blue/red) was followed by the presentation of 

the US, which started 0.5 seconds before the end of the CS+. During the cue_safe condition, 

participants received no painful stimulus.  

Extinction. The extinction phase consisted of the same four conditions, as the 

acquisition phase (ctx_unpred_ext; ctx_safe_ext; cue_pred_ext; cue_safe_ext) except that 

participants received no painful stimulus in either condition.   

2.4 Skin Conductance 

Skin Conductance Response (SCR) was continuously recorded separately for each condition 

on the medial, inner side of the left foot using two silver/ silver chloride electrodes. SCRs 

were recorded with a galvanic skin response magnetic resonance module and Brain Amp 

Amplifier and Brain Vision Recorder 1.05 (Brainproducts, Munich, Germany). The sampling 

rate was 5000 Hz, filters were DC and 250 Hz, which we downsampled to 10 Hz using Brain 
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Vision Analyzer 2.0 (Brainproducts, Munich, Germany). After manual artefact correction 

using Ledalab V3.4.9 (www.ledalab.de) in Matlab R2016a (The MathWorks Inc., Natick, 

MA, USA), smoothing with a Gaussian window width of 40 samples, a 6-fold optimization 

was applied to perform a continuous decomposition analysis (26). A response window of 1-

7.5s after stimulus onset was chosen (27) with a minimum threshold criterion of 0.01 μS. The 

data was normalized using a logarithmic (y = log(x + 1)) transformation.  

2.5 Clinical and neuropsychological assessments and self-reports  

A more detailed description of all assessments and self-reports described in this section can be 

found in Suppl. Methods. 

2.5.1 Clinical assessments 

All participants were assessed for their handedness using the Edinburgh Handedness 

Inventory (EHI; (28)) and for color blindness using the Ishihara color-blindness test (29). 

Trauma severity and characteristics of PTSD symptomatology were assessed with the CAPS 

(21). In addition we assessed potential maltreatment during childhood with the Childhood 

Trauma Questionnaire (CTQ; (30)). The German long version of the Center for 

Epidemiological Studies Depression Scale (ADS; (31)) was used to assess depression. Trait 

anxiety was assessed using the trait-version of the State-Trait-Anxiety-Inventory (STAI-T; 

(32)). The Neuroticism-Extraversion-Openness to experience Five-Factor Inventory (NEO-

FFI; (33)) was employed to assess personality traits. In addition, any kind of medication, 

psychopharmacological or non-psychopharmacological, was recorded.  

2.5.2 Neuropsychological assessments and Debriefing 

On day two, we assessed general intelligence (IQ) with the “Kurztest für allgemeine 

Basisgrößen der Informationsverarbeitung” [Short Test for General Factors of Information 

Processing] (KAI; (34)) and the Culture Fair Intelligence Test (CFT; (35); see Table 1). Four 

subtests of the Cambridge Neuropsychological Test Automated Battery (CANTAB® 

http://www.ledalab.de/
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[Cognitive assessment software]. Cambridge Cognition (2019). www.cantab.com) were 

applied including the test on Pattern Recognition Memory (PRM), Spatial Span (SSP), Paired 

Associates Learning (PAL) and the Spatial Recognition Memory (SRM; Suppl. Methods,

Suppl. Table 1). After acquisition, participants completed a debriefing questionnaire (see 

Suppl. Methods for details). 

2.6 MRI Data Acquisitions 

Blood-oxygenation-level-dependent (BOLD) contrasts of whole-brain functional 

images were acquired using a T2*-weighted Gradient-Echo-Planar Imaging (EPI) sequence 

(protocol parameters: TR = 2700 ms; TE = 27 ms; matrix size = 96 x 96; field of view = 220 x 

220 mm2; flip angle = 90°; GRAPPA PAT 2; sequence length: 19:02min). Each of the 420 

volumes per condition consisted of 40 axial slices (slice thickness = 2.3 mm; gap = 0.7 mm; 

voxel size = 2.3 mm3) measured in interleaved, descending slice order and positioned along a 

tilted line to the anterior-posterior commissure (AC-PC orientation). An automated high-order 

shimming technique was used to maximize magnetic field homogeneity. The fMRI data was 

analyzed using Statistical Parametric Mapping (SPM12; Wellcome Department of Imaging 

Neuroscience, London, UK) implemented in MATLAB R2016a (The MathWorks Inc., 

Natick, MA, USA).   

2.7 Statistical analysis 

The fMRI data were analyzed using Statistical Parametric Mapping (SPM12; 

Wellcome Department of Imaging Neuroscience, London, UK) implemented in MATLAB 

R2016a (The MathWorks Inc., Natick, MA, USA). Before preprocessing, the first five 

volumes of each scanning session were discarded to allow for T1 equilibration effects. 

Participants were excluded in case their motion parameter estimates exceeded 2.3 mm in x-, 

y-, or z-direction and a maximum of 1° of any angular motion throughout the course of the 

http://www.cantab.com/
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scan. Preprocessing included realignment, normalization to the standard space of the Montreal 

Neurological Institute (MNI; SPM12 template), slice time correction to reference slice one, 

coregistration of structural and functional volumes and smoothing of each functional volume 

with a 8.0 x 8.0 x 8.0 mm3 Gaussian kernel. On the first level, we set up four different general 

linear models (GLM), one for each phase (context acquisition, cue acquisition, context 

extinction, cue extinction) including the following six experimental predictors in each model: 

1) conditioned fear context [CTX+], 2) conditioned safety context [CTX-], 3) conditioned fear

cue in fear context [CS+ in CTX+], 4) conditioned fear cue in safety context [CS+ in CTX-], 

5) conditioned safety cue in fear context [CS- in CTX+], 6) conditioned safety cue in safety

context [CS- in CTX-]. As an example, for the context conditioning phase this resulted in the 

following six predictors: ctx_unpred, ctx_safe, cs+ (in ctx_unpred), cs+ (in ctx_safe), cs- (in 

ctx_unpred), cs- (in ctx_safe). In addition, each model contained six parameters describing the 

rigid body transformation to account for head motion (in mm: x-, y-, z-direction; in degrees: 

pitch-, roll-, yaw-direction).   

All statistical analyses were performed in R-Statistics (36). Data were assessed for 

outliers, normal distribution, homoscedasticity, multicollinearity. All assumptions were met, 

if not mentioned otherwise below. Descriptive data were analyzed with analyses of variance 

(ANOVAs; e.g. age) or independent t-tests in case of two sample comparisons (e.g. trauma 

diagnostics). Chi-squared tests were performed to assess statistical differences in frequency 

distributions (e.g. sex). For the analyses of the self-report ratings (arousal, valence, 

contingency) and the SCR we performed two separate analyses each. In case of the self-report 

ratings, we performed a 3 (Groups) x 3 (Phase: HAB, ACQ, EXT) repeated measures 

ANOVA (rmANOVA) for each of the four contexts. For the difference scores (CS+-CS-) of 

the ratings, we performed two separate 3 (Groups) x 2 (condition: context or cue) 

rmANOVAs, one for the acquisition and one for the extinction phase. In case of the SCRs, we 
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performed four different 3 (Groups) x 2 (contexts: e.g. ctx_unpred and ctx_safe) rmANOVAs, 

one for each phase (ACQ or EXT) and condition (context or cue). The difference scores 

(CS+-CS-) of the SCRs were calculated in a similar fashion with four separate 3 (Groups) x 2 

(contexts: e.g. ctx_unpred and ctx_safe) rmANOVAs. Finally, for the ROI analyses we 

assessed group differences with independent t-tests between PTSD and HCs or PTSD and 

TCs, separately for the contexts of interest (ctx_unpred, cue_pred) and the three ROIs 

(Hippocampi, vmPFC, Amgdalae). We applied Bonferroni corrections to counteract Type 1 

errors due to multiple comparisons. We further applied Tukey’s honestly significant 

difference (Tukey’s HSD) test as post-hoc single-step comparison procedure. We report the 

sample size for each type of analysis. There were few cases of missing data, motion artefacts 

or outliers for each analysis. These are reported in the results section.  
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3 Results 

3.1 Sample characteristics 

The experimental groups did not significantly differ in any of the demographic variables 

except for education (X2(2, 62) = 9.67, p = .008). A post-hoc chi-square test of independence 

revealed that the level of education was unequal between patients with PTSD and the TC and 

HC group, respectively (p = .015; see Table 1 for details), as previously shown. All detailed 

information on demographics, trauma severity, PTSD assessment and comorbidities can be 

found in Table 1 and the Suppl. Results. In addition, we describe more detailed results on 

personality traits and neuropsychological assessment in Suppl. Table 1 and in the Suppl.

Results. There was no significant difference between the experimental groups on any of the 

seven evaluation and debriefing questions (see Suppl. Methods) concerning the difficulty of 

the study (Suppl. Table 2 and Suppl. Results).

3.2 Self-reports 

Ratings across contexts. We found significant main effects of phase (HAB, ACQ, 

EXT) across all four contexts for the arousal and contingency ratings with the highest scores 

during acquisition and the lowest scores during extinction. For the valence ratings, we found a 

significant main effect of phase for ctx_unpred and a significant group x phase interaction 

(see Suppl. Figure 2a, Suppl. Table 3b-d). We could not confirm our first hypothesis that 

patients with PTSD in comparison to HC and TC subjects report higher arousal, valence and 

contingency ratings during the unpredictable context. There was also no difference in the 

ratings between the groups for the predictable context.  
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Figure 2.  SCRs across each of the four conditions (CTX_unpred, CTX_safe, CUE_pred, 
CUE_safe), two phases (ACQ, EXT) and each group (HC, PTSD, TC). A) ACQ phase. B) 
EXT phase.
[Abbreviations: ACQ – Acquisition; CTX – Context; EXT – Extinction; HC – Healthy control subjects without trauma experience; pred – 
Predictable; PTSD – patients with PTSD; SCR – Skin conductance response; TC – healthy control subjects with trauma experience; unpred – 
Unpredictable] 

Differences in ratings between CS+ - CS-. There were significant main effects of 

phase during acquisition for ratings of arousal (Fphase(1, 56) = 39.13, p < .001), valence 

(Fphase(1, 56) = 21.54, p < .001) and contingency (Fphase(1, 56) = 42.89, p < .001). There were 

neither other significant main effects of phase or group, nor any significant interaction of 

group x phase (see Suppl. Figure 2b, Suppl. Table 3e). 

3.3 Skin Conductance 

SCR across contexts. During acquisition, there was a significant main effect for context 

during context (Fcontext(1, 36) = 14.55, p < .001) and cue acquisition (Fcontext(1, 34) = 66.07, p 

< .001), as well as a main effect of group during cue acquisition (Fgroup(2, 34) = 5.45, p < 

.009). We did not find a significant main effect of group during the context condition, neither 

any interaction of group x context (see Figure 2 and Suppl. Table 4a for details). We could 
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not confirm our second hypothesis that patients with PTSD in comparison to HC and TC 

subjects show an elevated SCR during context conditioning of the context unpredictable.  

However, we found a significantly lower SCR during cue conditioning for patients with 

PTSD in comparison to the two healthy control groups during the context predictable.  

Differences in SCRs between CS+ - CS-. During acquisition, we found a significant 

main effect of group for the mean difference of CS+-CS- during context acquisition (Fgroup(2, 

36) = 3.93, p = .029) and a main effect of context during cue acquisition (Fcontext(1, 34) =

62.59, p < .001). Patients with PTSD and TC subjects showed a significantly lower difference 

score than HC subjects during context acquisition. During cue acquisition, groups did not 

significantly differ in their difference scores but showed higher scores in the unpredictable 

context than in the cue_safe context, as predicted. There was no other significant main effect 

or interaction of group x context. During context extinction, we found a significant main 

effect of context for the mean difference of CS+-CS- (Fcontext(1, 35) = 5.47, p = .025). There 

was no other significant main effect of interaction of group x context (see Suppl Figure 3 and

Suppl. Table 4b). 

3.4 Functional magnetic resonance imaging 

Context unpredictable. We compared the beta values in the hippocampi during acquisition 

in the ctx_unpred condition and found no significant difference between patients with PTSD 

and HC (T(30) = -1.87, p = .07) or TC subjects (T(33) = -1.11, p = .28). Comparing the beta 

values in the vmPFC during ctx_unpred, we found significantly lower beta values for patients 

with PTSD in comparison to HC (T(30) = -2.15, p = .040, pbonf.cor.  = .08), which, however, did 

not survive Bonferroni correction. Here, we also observed marginally significantly lower beta 

values in the vmPFC between patients with PTSD and TC subjects (T(33) = -2.02, p = .051, 

pbonf.cor.  = .10). Finally, we compared the beta values within the amygdalae during acquisition 

in the ctx_unpred condition and found no significant difference between patients with PTSD 
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and HC (T(31) = -0.71, p = .48) or TC subjects (T(33) = -0.51, p = .62; see Figure 3a and

Suppl. Table 5a for details). There were no significant differences in betas values during the 

context safe condition (see Suppl. Table 5b).   

Cue predictable. In addition, we compared the beta values in the hippocampi during 

acquisition in the cue_pred condition and found significantly lower beta values for patients 

with PTSD in comparison to HC (T(30) = 2.05, p = .049, pbonf.cor.  = .10), which, however, did 

not survive Bonferroni correction. There was no significant difference between patients with 

PTSD and TC subjects (T(33) = 0.90, p = .38). Within the vmPFC, we did not find any 

significant differences in the beta values during acquisition in the cue_pred condition between 

patients with PTSD and HC (T(31) = 1.31, p = .20) or TC subjects (T(33) = 1.18, p = .25). 

Lastly, we also did not find a significant difference in beta values of the amygdalae during 

acquisition in the cue_pred condition between patients with PTSD and HC (T(31) = 1.32, p = 

.20) or TC subjects (T(33) = 1.06, p = .30; see Figure 3b and Suppl. Table 5a for details). 

There were no significant differences in betas values during the cue safe condition (see Suppl.

Table 5b). 
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4 Discussion 

The present study investigated behavioral and physiological differences in cued- and uncued-

contextual fear acquisition in patients with PTSD in comparison to healthy trauma or non-

trauma exposed control subjects. During uncued-context conditioning (unpredictable), 

patients with PTSD showed a marginally significantly lower ROI activity in the vmPFC, but 

showed similar arousal, valence, contingency ratings and SCRs in comparison to the two 

control groups. The difference in the vmPFC did not survive Bonferroni correction. During 

cued context conditioning (predictable), patients with PTSD showed a marginally 

significantly higher ROI activity in the hippocampi, and lower SCR across both contexts than 

TC and HC subjects. There were no significant differences between the groups in the 

behavioral ratings for the contexts or the differential cue learning. Our results point towards 

two distinct systems in play, namely an elemental and configural learning, with the first being 

intact in patients with PTSD and the latter being impaired.     

Using a novel combined cue-context conditioning paradigm, which contrasted cued- 

and uncued context conditioning, we could partly confirm our hypothesis that patients with 

PTSD show difficulties in discriminating uncued safe and dangerous contexts from each other 

during fear acquisition. Lower BOLD activity in the vmPFC in patients with PTSD in the 

unpredictable but not the safe context are in line with previous studies finding similar results 

with healthy individuals who score high on trait anxiety (7). Animal and human studies on 

context conditioning (3), found a downregulation of the vmPFC in combination with a 

downregulation of the hippocampus, primarily to be associated with context extinction or 

retrieval (9,10). Our findings point in the direction that the vmPFC might already play a role 

in fear acquisition (37). If this is the case, one would assume that less recruitment of the 

vmPFC in the unpredictable context might lead to an increased fear response measured 

behaviorally or via SCR (7). However, we did not observe an elevated SCR or higher arousal 

or valence ratings during context conditioning in patients with PTSD in comparison to TC and 
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HC subjects. This is in contrast to previous studies that found differences in behavioral ratings 

and functional brain activity in patients with PTSD in comparison to TC and HC subjects 

(12). Here, patients with PTSD showed an increased fear to the safe and dangerous context in 

both cued and uncued conditions. However, this study mainly focused on extinction and 

extinction recall. 

While we did not find any significant differences in the brain activity of the 

hippocampi and amygdalae between the groups during uncued-contextual fear acquisition, we 

did so for the hippocampi during cued-contextual fear acquisition. We found a marginally 

significantly higher activity of the hippocampi in patients with PTSD in comparison to HC 

but not TC in the predictable context. This suggests a higher recruitment of memory related-

context processing of the environment in which the cue is predictive of the US within a 

dangerous context (3). The characteristics of a combined cue-context conditioning protocol 

suggest that participants would have to keep in mind the contexts learned during context 

conditioning, while processing the cues in the second phase. In our particular case, the 

uncued-context conditioning phase always preceded the cued-context conditioning phase. 

Interestingly, patients with PTSD in comparison to HC already show a marginally 

significantly lower BOLD activity in the hippocampi in the unpredictable context during 

context conditioning. Lower activity in both regions of interest, the hippocampus and the 

vmPFC, which are essential for encoding a configural memory representation, could lead to 

an insufficient context encoding. This could further lead to an insufficant extinction of fear on 

the second day, which most studies on contextual fear conditioning investigating patients with 

PTSD report (3). In a next step, we will assess extinction learning of cued and uncued 

contextual learning. A follow-up analysis should be applied to a) investigate within group 

differences between cued and uncued contextual conditioning and b) to assess differences in 
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between group connectivity in the hippocampal-vmPFC connectivity during each condition 

and its association with SCR and behavioral ratings. 

4.1 Limitations  

Two main limitations apply to our study comprising aspects of the study design and 

concerning non responders. Whereas the complexity of the design allows for the simultaneous 

examination of context and cue related triggers and their interaction, the design limits the 

choice of where to select the context triggers from in a given environment. To minimize 

overlapping, or additive, effects in SCR or BOLD activity, the triggers had to be far enough 

apart from each other (see Figure 1). This, however, extended each trial to 50 secs, which in 

turn limited our total number of trials per given condition to eight. With this rather low 

number of trials, each missing data point became a potential dropout. This issue was 

further exacerbated by the interdependence of the triggers in the unpredictable context. Here, 

almost each trial represented a unique composition of positions for the CSs, US and context 

triggers. A fear response in a given context is most likely not limited to a single 

predictive cue or multiple contextual features but might also generalize to objects being 

non-predictive to the occurrence of the painful stimulus. This is, however, a known issue in 

the community and not limited to our study (27) and the presented results have to be 

interpreted within the boundaries of the study design. A second limitation concerns a 

rather high number of potential non-responders in the SCR. The SCR was measured on the 

foot instead of the hand of participants, because participants received the painful stimulus 

on the left hand and responded with the response pad on the right hand. The signal on the 

foot might not have been strong enough. A potential solution could be to measure SCR on 

the shoulder instead (38). This would have to be tested in a follow-up study.  
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4.2 Conclusions 

In this cross-sectional study, we show that patients with PTSD in comparison to TC but 

not HC subjects show lower functional brain activity in the vmPFC during an 

unpredictable contextual and higher functional brain activity in the hippocampi during 

a predictable contextual fear acquisition. Our results support the model that patients 

with PTSD show deficiencies in configural learning. Future studies are needed to investigate 

if the alterations in configural learning are a predisposing factor of PTSD or establish 

after trauma exposure. Finally, trauma focused exposure-based treatments that focus on 

conjunctive integration of features within traumatic memories during exposure might 

benefit from an enhanced activation of the vmPFC during exposure. 
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Supplemental Information 

Supplemental methods 

Participants 

We recruited participants through the outpatient clinic of the Institute of Cognitive and 

Clinical Neuroscience and advertisement on the recruitment website of the Central Institute of 

Mental Health in Mannheim. In addition, we recruited patients from local psychotherapy and 

psychiatry practices as well as local clinics and outpatient units. Prior to testing, a telephone 

screening was conducted with all participants. The following exclusion criteria were applied: 

any traumatic experience before the age of 18 years, borderline personality disorder, 

comorbid current or lifetime psychotic symptoms, current substance dependence or abuse, 

cardiovascular or neurological disorders, acute pain, continuous pain or medication for 

attention deficit hyperactivity disorder, pregnancy and metal implants. 

Procedure and study design 

The electric stimulus was delivered through a cupric (copper) electrode attached to the 

participants’ right hand by an electrical stimulus generator (Digitimer, DS7A, Welwyn 

Garden City, UK). Increasingly painful stimuli (50 ms bursts, 12 Hz) were administered to 

participants to obtain the pain threshold and tolerance. The pain intensity and unpleasantness 

was rated by participants on a Likert scale ranging from 0 (not at all painful/ not at all 

unpleasant) to 10 (extremely painful/ extremely unpleasant). Participants were asked to rate 

when a) they felt the electrical stimulus at all, b) when the pain intensity reached seven out of 

ten points for them and c) when the pain intensity reached an unbearable level (nine out of 

ten). This procedure was repeated three times in order to obtain a value of 80% of the pain 
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tolerance. To achieve this, the values of the last two runs were entered into the following 

formula: 

[(Meanpain_tolerance - Meanpain_threshold)* 0.8] + pain_threshold 

In case, participants did not rate the pain as aversive after the habituation phase, we increased 

the intensity by 0.4 mA.  

Clinical and neuropsychological assessments and self-reports 

Handedness. The Edinburg Handedness Inventory (EHI; Oldfield, 1971) is a self-

report questionnaire in which participant report with which hand they perform a series of 

sixteen tasks (e.g. writing, holding a spoon). Participants are requested to put a “+” in the 

column (left hand or right hand) with which they perform the task. If both hands are used for 

the completion of the task, participants mark this with a “+” in both columns and if 

exclusively one hand is used, participants mark this with “++” in one of the columns. The “+” 

are counted and a sum score is built to highlight the dominant hand.  

Color-blindness. Participants completed the Ishihara color-blindness test (Ishihara, 

1987) which consists of 19 colored dotted items, each depicting a letter, a number or a 

combination of both. The test separately assesses red-green (15 items) and blue-yellow (three 

items) color blindness.  

Intelligence Testing. The Intelligence score was estimated with a subtest of the Cattell 

Culture Fair Intelligence Test (CFT, Weiß, 1998) and the „Kurztest für allgemeine 

Basisgrößen der Informationsverarbeitung“ [Short Test for General Factors of Information 

Processing] (KAI; Lehrl, Gallwitz, Blaha, Ebersberg, & 1991). In the CFT, participants 

completed four tests with increasing difficulty. Each test consisted of eight to fourteen 

questions, in which participants were asked to recognize a pattern/rule within a sequence of 

figures and apply this rule to either complete the row or figure out “the odd one in the row”. 
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The number of correct responses of all four tests is summed up and the IQ is taken from a 

table based on a validation sample. In the KAI, participants had to remember a sequence of 

numbers and digits, starting from three up to the maximum of nine in a row. The test ended 

when participants could not recall the sequence correctly after the second time.   

Posttraumatic Stress Disorder. To assess symptom severity, we used the German 

version of the Clinician-Administered Posttraumatic Stress Disorder Scale (CAPS; Blake et 

al., 1995; Schnyder & Moergeli, 2002). The CAPS combined score is calculated by summing 

the frequency and severity (or intensity) score, measured on two 5-point scales ranging from 

zero (“never”/ “none) to four (“most or all of the time”/ “extreme”). The CAPS combined 

score can range from 0 to 100, with either subscore ranging from 0 to 50.  

Childhood Trauma Experience. The Childhood Trauma Questionnaire (CTQ; 

Bernstein, Fink, Handelsman, & Foote, 1994) is a 40 item self-report instrument assessing the 

severity of traumatic childhood experiences, such as emotional abuse and neglect, physical 

abuse and neglect as well as sexual abuse. The first 34 items ask how often each event 

occurred during the participant’s upbringing and each item is rated on a 5-point Likert scale 

ranging from 1 (“never at all”) to 5 (“very often”). For the purpose of this study, we only 

report the overall sum score, which is calculated by the sum of the five subscales. The overall 

score can range from 25 to 125. In the last six items, participants are asked to select the age or 

period in which the neglect or abuse occurred ranging from one to twenty years of age.  

Time since trauma and the type of the index event were assessed with the interview on 

the severity of the trauma [Interview zur Traumaschwere]. The type of traumatic events are 

hereby subdivided into seven voluntarily (e.g. imprisonment, rape) or five involuntarily (e.g. 

natural disaster, accident) caused events.  
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Comorbidities. The German long version of the Center for Epidemiological Studies 

Depression Scale (ADS; Hautzinger & Bailer, 2003) was applied to assess possible comorbid 

impairment due to depressive symptoms within the last week. The ADS is a self-report 

questionnaire with 20 items measured on a 4-point scale ranging from zero (“rarely or not at 

all [less than one day]”) to three (“most often, all of the time [on five to seven days]”) with a 

sum score ranging from 0 to 60. Trait anxiety was assessed with the German version of the 

trait-version of the State-Trait-Anxiety-Inventory (STAI-T; Laux, 1981). The self-report 

questionnaire comprises of 20 questions, measured on a 4-point Likert scale ranging from one 

(“not at all”) to four (“very much”) with higher scores being associated with higher levels of 

trait anxiety and sum scores ranging from 20 to 80.  

Personality Traits. The 60 item version of the Neuroticism-Extraversion-Openness to 

experience Five-Factor Inventory (NEO-FFI; Ostendorf & Angleitner, 2004; Costa & 

McCrae, 2008) was used to assess personality traits. Participants can rate each item on a 5-

point Likert scale ranging from “strong rejection” to “strong approval”. Five trait-dimensions 

of personality are depicted, namely neuroticism, extraversion, openness to experience, 

agreeableness and conscientiousness. A sum score is built for each of the five dimensions 

from twelve items each.  

Neuropsychological assessments. Spatial learning and memory were tested with the 

Cambridge Neuropsychological Test Automated Battery (CANTAB® [Cognitive assessment 

software]. Cambridge Cognition (2019). All rights reserved. www.cantab.com). First, the 

Pattern Recognition Test (PRM) is a 2-choice forced discrimination paradigm assessing visual 

pattern recognition memory. In an initial learning phase, participants are presented with a 

series of complex visual patterns, one at a time. In a recognition phase, either directly after the 

testing phase or after a few minutes (delayed), participants have to choose between a novel 

pattern and a pattern which they have already seen. The outcome variables are the reaction 

http://www.cantab.com/
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time of a participant’s response (mean correct latency) and the accuracy of the responses 

(percent correct). Second, the Spatial Span (SSP) was assessed with a visuospatial working 

memory capacity paradigm. Here, participants have to first learn a sequence of two to nine 

squares that are arranged on the screen and are highlighted in color. They then have to select 

the squares in the correct order by clicking on the respective squares. When the sequence is 

correct, participants are presented with an additional square in the next sequence. The 

outcome variables are the longest sequence successfully recalled (span length), the number of 

errors (total errors) and the reaction time to the first and last response (speed of response). 

Third, the Spatial Recognition Memory (SRM) is also a 2-choice forced discrimination 

paradigm assessing visual-spatial recognition memory. In a learning phase, participants are 

presented with a sequence of white squares appearing at five different locations on the screen. 

In the recognition phase, participants are presented with pairs of white squares with one 

square being in a novel location and one square in a previously shown location. The outcome 

measures include, similarly to the PRM, the reaction time and accuracy of the responses. 

Finally, the Paired Associates Learning (PAL) assesses visual memory by showing one to six 

patterns in a range of white boxes on the screen. Participants have to remember the patterns 

and location where it appeared. As outcome measures, a memory score is calculated, the mean 

number of trials to success as well as the total number of trials and errors are measured.  

Manipulation Check 

Emotional state. Positive and negative affect were measured before and after the 

acquisition phase on day one and before and after the extinction phase on day two with the 

Positive And Negative Affective Schedule (PANAS; Watson, Clark, & Tellegen, 1988) and a 

six item Visual Analogue Scale (VAS). The PANAS has 20 items with ten items each 

concerning positive and negative affect. Responses are given on a 5-point forced choice scale 

ranging from 1 (“not at all”) to 5 (“extremely”). The sum scores for each subscale can vary 
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between 10-50 points, with higher scores indicating higher positive/negative affect. The 

responses on the VAS ranged from 0 (“applies not at all”) to 10 (“applies completely”) with 

six items describing the current mood: 1) “high mood”, 2) “irritated”, 3) “balanced”, 4) 

“gloomy mood”, 5) “sluggish”, 6) “activated”.  

Debriefing. A set of seven questions were asked at the end of habituation and 

acquisition on day one of the experiment. The questions were the following: 1) “How many 

different architects designed the rooms?”, 2) “How quickly did you manage to distinguish the 

rooms from each other?” with possible responses being “during context acquisition/ during 

cue acquisition/ not at all”, 3) “Did you find the instructions understandable?” with responses 

ranging from 1 (“difficult”) to 10 (“easy”), 4) “Did you find the ratings understandable?” with 

responses ranging from 1 (“difficult”) to 10 (“easy”), 5) “How well did you get along with the 

keyboard?” with responses ranging from 1 (“very badly”) to 10 (“very good”), 6) “How 

exhausting did you find the experiment?” from 1 (“very exhausting”) to 10 (“not exhausting 

at all”), 7) “How attentive were you during the experiment?” from 1 (“not at all”) to 10 

(“very”).   

Statistical Analysis 

fMRI. A response window of 1-7s after stimulus onset for all parameters (ctx, cs+, cs-) 

was chosen for BOLD responses. We then extracted beta values from the first level from a 

priori defined ROIs, namely the hippocampi, the amygdalae and the vmPFC. The masks were 

taken from the Wake Forest University Pick Atlas 3.0.5b (Maldjian, Laurienti, Kraft, & 

Burdette, 2003) choosing bilaterally the hippocampi and amydalae from the Automated 

Anatomical Labeling Atlas (AAL; (Tzourio-Mazoyer et al., 2002)). For the vmPFC, we chose 

Brodmann areas (BA) 11, 12 and 25 (Wicking et al., 2016). Beta values were extracted 

directly from SPM12 with customized MATLAB scripts. 
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Supplemental results 
Sample characteristics 

Demographic Information. All detailed information can be found in Table 1. The 

sample did not significantly differ in the distribution of gender (X2(2, 63) = 0.29, p = .87) with 

approximately 50% females in each group, nor in age (F(2, 60) = 1.09, p = .34) with 

participants’ age ranging from 20 to 62 years across groups. The groups did significantly 

differ in the level of education (X2(2, 62) = 9.67, p = .008) whereby the distribution of the 

level of education of patients with PTSD (N≤12=12/ N>12=7) was significantly lower from the 

two control groups (pbonf.cor. = .015) as assessed by a chi-square post-hoc test. Finally, there 

were no significant differences between the groups in the distribution of handedness (X2(4, 

62) = 1.03, p = .91), or the intelligence quotients as assessed with the KAI (F(2, 56) = 2.92, p

= .06; range 82 to 142) and the CFT (F(2, 57) = 0.94, p = .40; range 69 to 140; see Table 1 for 

details). 

Trauma severity. All detailed information can be found in Table 1. Time since trauma 

did not significantly differ between patients with PTSD and TC subjects (T(24.7) = 1.75, p = 

.09; 95% CI -.96 to 11.85), ranging from 1 to 30 years. The groups did also not significantly 

differ across the two types of traumatic events (X2(1, 41) = 0.61, p = .44; see Table 1 for 

details). 

Trauma diagnostics. All detailed information can be found in Table 1. Patients with 

PTSD showed a significantly higher overall CAPS score than TC subjects (T(36.9) = 9.02, p < 

.001; 95% CI -60.38 to 38.22) as well as significantly higher CAPS severity (T(37.9) = 7.20, p 

< .001; 95% CI -29.34 to -16.46) and CAPS frequency (T(35.1) = 9.56, p < .001; 95% CI -

31.58 to -20.52) scores. There was a significant difference in the CAPS score between the 

experimental groups (F(2, 59) = 3.27, p = .045), with patients with PTSD showing 
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significantly higher scores than TC subjects (MDifference = 11.2; 95% CI 0.7 to 21.8, p = .035; 

Hedges’g = 0.77; see Table 1 for details). 

Comorbidities. All detailed information can be found in Table 1. Patients with PTSD 

showed significantly higher numbers of comorbidities than both control groups, both on axis I 

(X2(2, 63) = 21.05, p < .001) and on axis II disorders (X2(2, 63) = 14.26, p < .001). 

Comorbidities on Axis I disorders were comprised of current major depressive disorder 

(MDD; NPTSD = 10), previous MDD (NPTSD = 8; NTC = 2), general anxiety disorder (GAD; 

NPTSD = 2), panic disorder (NPTSD = 4; NTC = 2) substance dependence (NPTSD = 2; NTC = 1) 

and alcohol abuse (NPTSD = 1; NTC = 2), previous manic episode (NPTSD = 2), current 

dysthymia (NPTSD = 1) and bulimia (NPTSD = 1). Comorbidities on Axis II disorders for 

patients with PTSD comprised of avoidant personality disorder (NPTSD = 4), obsessive-

compulsive personality disorder (NPTSD = 1) and depressive personality disorder (NPTSD = 1; 

see Table 1 for details). The groups differed significantly in their depression score (F(2, 59) = 

23.58, p < .001; range 0 to 42) with post-hoc tests revealing significantly higher depression in 

patients with PTSD compared to TC (MDifference = 11.8; 95% CI 4.8 to 18.8, pTukey HSD < .001; 

Hedges’g = 1.08), between patients with PTSD and HC (MDifference = 19.7; 95% CI 12.8 to 

26.6, pTukey HSD < .001; Hedges’g = 2.51) as well as between TC and HC (MDifference = 7.9; 95% 

CI 1.2 to 14.6, pTukey HSD = .018; Hedges’g = 0.94; see Table 1 for details). The groups also 

differed significantly in their STAI-T score (F(2, 59) = 20.28, p < .001; range 23 to 70) with 

post-hoc tests revealing a significantly higher STAI-T score between patients with PTSD and 

TC(MDifference = 12.1; 95% CI 4.0 to 20.2, pTukey HSD = .002; Hedges’g = 0.99), between 

patients with PTSD and HC (MDifference = 21.2; 95% CI 13.2 to 29.2, pTukey HSD < .001; 

Hedges’g = 2.17) and  between TC and HC (MDifference = 9.1; 95% CI 1.3 to 16.9, pTukey HSD = 

.019; Hedges’g = 0.89; see Table 1 for details). Finally, the experimental groups did not 

significantly differ in the distribution of intake of any prescribed medication (X2(2, 63) = 2.18, 
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p = .34), with three subjects reporting the intake of low doses of psychopharmacological 

medication (NPTSD = 1; NTC = 2; longterm usage of Tetrahydrocannabinol, Pregabalin, 

Quetiapin), five subjects reporting the intake of non-psychopharmacological medication 

(NPTSD = 2; NTC = 2; NHC = 1; contraceptive pill, L-Thyroxine, Mesalazine, Prednisolone) and 

55 subjects reporting no intake of any medication; see Table 1 for details). 

Personality traits. All detailed information can be found in Suppl. Table 1. The 

experimental groups did not significantly differ on extraversion (F(2, 55) = 3.03, p = .056; 

range 6 to 43), openness to experience (F(2, 57) = 0.77, p = .47; range 10 to 45) and 

conscientiousness (F(2, 58) = 2.23, p = .12; range 17 to 45). They did, however, significantly 

differ on neuroticism (F(2, 56) = 12.87, p < .001; range 2 to 37), with post-hoc tests revealing 

a significantly higher neuroticism score for patients with PTSD versus TC (MDifference = 7.6; 

95% CI 1.1 to 14.1, pTukey HSD = .019; Hedges’g = 0.89), for patients with PTSD compared to 

HC (MDifference = 13.9; 95% CI 7.3 to 20.4, pTukey HSD < .001; Hedges’g = 1.77) and a 

marginally significantly higher score for TC versus HC (MDifference = 6.3; 95% CI 0.0 to 12.6, 

pTukey HSD = .051; Hedges’g = 0.77). The groups did also significantly differ on agreeableness 

(F(2, 56) = 4.98, p = .010; range 16 to 46), with post-hoc tests revealing significantly lower 

agreeableness scores for patients with PTSD versus HC (MDifference = -6.1; 95% CI -11.2 to -

1.0, pTukey HSD = .014; Hedges’g = 0.92) and for TCs versus HCs (MDifference = -5.0; 95% CI -

9.8 to -0.1, pTukey HSD < .045; Hedges’g = 0.79), with no significant difference between patients 

with PTSD and TC (MDifference = -1.2; 95% CI -6.4 to 4.1, pTukey HSD = .86; Hedges’g = 0.16; 

see Suppl. Table 1 for details). 

Neuropsychological Assessment. There was no significant difference between patients 

with PTSD, TC and HC subjects in any of the scores of the PRM, PRM delayed, SSP, SRM 

or PAL (see Suppl. Table 1 for details). 
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Debriefing. All detailed information can be found in Suppl. Table 2. The groups did 

not significantly differ on any of the debriefing questions. After habituation, the groups 

reported a similar number of architects designing the rooms (F(2, 49) = 2.62, p = .08; range 2 

to 9). After acquisition, the groups did not significantly differ on when they could distinguish 

the contexts (X2(4, 61) = 6.07, p = .19) with the majority of participants (67%) being able to 

distinguish the rooms from each other during context acquisition. In addition, participants 

across all groups found the instructions (F(2, 59) = 0.53, p = .39; range 5 to 10) and ratings 

(F(2, 60) = 2.65, p = .11; range 3 to 10) understandable, could handle the keyboard (F(2, 60) 

= 1.58, p = .21; range 1 to 10) and were similarly exhausted after (F(2, 58) = 2.26, p = .14; 

range 1 to 10) and attentive during (F(2, 59) = 0.07, p = .80; range 1 to 10) the experiment  

(see Suppl. Table 2 for details). 

Self-reports 

Ratings of the unconditioned stimulus. All detailed information can be found in Suppl.

Table 3a).The experimental groups did not significantly differ in the ratings of the intensity of 

the US (F(2, 58) = 0.54, p = .59) at the end of habituation. For the pain intensity rating, there 

was a significant main effect of phase (Fphase(2, 108) = 31.27, p < .001) and a significant 

interaction of phase x group (Fgroup x phase(4, 108) = 3.05, p = .02). The pain intensity ratings of 

the US were higher during habituation than during context and cue conditioning across all 

three groups. However, the pain intensity ratings for the US were higher for TC subjects than 

patients with PTSD and HC subjects during context and cue conditioning. For the valence 

ratings of the US, we found a significant main effect of phase (Fphase(2, 108) = 18.46, pGG < 

.001) and a significant interaction of group x phase (Fgroup x phase(4, 108) = 3.06, pGG = .031). 

Similar to the pain intensity ratings, the valence ratings of the US were higher for the 

habituation than for cue and context conditioning across all three groups. However, the 
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valence ratings of the US stayed higher for TC subjects than patients with PTSD and HC 

subjects during cue and context conditioning (Suppl. Table 3a). 

Ratings across contexts. All detailed information can be found in Suppl. Figure 2a, 

Suppl. Table 3b-d. We found a significant main effect of phase for arousal ratings in the 

ctx_unpred (Fphase(2, 82) = 4.33, p = .022), ctx_safe (Fphase(1, 46) = 6.45, p = .015), cue_pred 

(Fphase(2, 82) = 6.03, p = .004) and cue_safe (Fphase(1, 46) = 9.55, p = .003) condition. The 

arousal ratings were highest after acquisition across all the groups. There was no significant 

main effect of group and no significant interaction of group x phase in the arousal ratings 

(Suppl. Table 3b). In the valence rating for each context, we only found a significant main 

effect of phase for the ctx_unpred (Fphase(2, 82) = 8.90, p < .001) and a significant interaction 

of group x phase in ctx_safe (Fgroup x phase(2, 46) = 3.69, p = .033; Suppl. Table 3c). The 

valence ratings were highest after acquisition across all the groups for ctx_unpred. For 

ctx_safe, the valence ratings were higher during acquisition than extinction, while for TC 

subjects it was the opposite, hence the significant interaction. For the contingency ratings, we 

observed significant main effects of phase across all four contexts, namely ctx_unpred 

(Fphase(2, 82) = 10.56, p < .001), ctx_safe (Fphase(1, 46) = 13.36, p < .001), cue_pred (Fphase(2, 

82) = 5.37, p = .007) and cue_safe (Fphase(1, 46) = 16.57, p < .001). The contingency ratings 

were highest after acquisition across all the groups and contexts. 

Differences in ratings between CS+ - CS-. All detailed information for the difference 

scores of CS+ - CS- can be found in Suppl. Figure 2b and Suppl. Table 3e. A significant main 

effect of phase was found for the difference ratings during acquisition for arousal (Fphase(1, 

56) = 39.13, p < .001), valence (Fphase(1, 56) = 21.54, p < .001) and contingency (Fphase(1, 56) 

= 42.89, p < .001). All three groups seemed to be able to recognize the CS+ as danger signal 

during cue conditioning in the predictable context. 
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US 
Groups HAB ACQ 

Con 
ACQ 
Cue 

Analyses 

n M (SD) M (SD) M (SD) 
Intensity (in 
mA) 
PTSD [n=19] 4.68 

(3.39) 
- - F(2, 58)= 0.54, p=.59 

TC [n=20] 4.80 
(2.41) 

- - 

HC [n=22] 3.96 
(2.72) 

- - 

Pain 
PTSD [n=17] 7.29 

(0.77) 
5.47 

(1.94) 
5.94 

(1.71) 
Group: F(2, 54)= 2.29, p=.11 
Phase:  F(2, 108)= 31.27, p<.001*** 
     HAB > ACQCon + ACQCue 
GroupxPhase: F(4, 108)= 3.05, p=.02* 
    TCACQ_con > PTSDACQ_con + HCACQ_con

  TCACQ_cue > PTSDACQ_cue + HCACQ_cue 

TC [n=20] 7.10 
(0.45) 

6.55 
(0.76) 

6.55 
(0.76) 

HC [n=20] 7.25 
(0.44) 

5.40 
(2.06) 

5.50 
(1.82) 

Valence 
PTSD [n=17] 7.29 

(0.69) 
5.76 

(1.92) 
6.18 

(1.88) 
Group: F(2, 54)= 3.02, p=.057 
Phase:  F(2, 108)= 18.46, pGG<.001*** 
    HAB > ACQCon + ACQCue 
GroupxPhase: F(4, 108)= 3.06, pGG=.031* 
    TCACQ_con > PTSDACQ_con + HCACQ_con

  TCACQ_cue > HCACQ_cue

TC [n=20] 7.10 
(0.45) 

6.75 
(1.02) 

6.85 
(1.18) 

HC [n=20] 7.10 
(0.55) 

5.60 
(1.90) 

5.35 
(2.21) 

Suppl. Table 3a. Intensity (in Milliampere), pain intensity ratings and valence ratings of the 
US during HAB and ACQ.  

[Abbreviations: ACQ – Acquisition; Con – Context; EXT – Extinction; HAB – Habituation; HC – Healthy control subjects without trauma 
experience; mA – Milliampere; PTSD – patients with PTSD; TC – healthy control subjects with trauma experience; US – Unconditioned 
Stimulus] 
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Arousal 

Groups HAB ACQ EXT Analyses 
n M (SD) M (SD) M (SD) 

CTX_unpred 

PTSD [n=14] 2.21 
(1.73) 

2.46 
(1.68) 

1.54 
(0.91) 

Group: F(2, 41)= 1.40, p=.26 

Phase:  F(2, 82)= 4.33, pGG=.022* 

     ACQ > HAB + EXT 

GroupxPhase: F(4, 82)= 1.38, p=.25 

TC [n=17] 2.41 
(1.24) 

3.47 
(2.22) 

2.24 
(1.44) 

HC [n=13] 2.15 
(1.25) 

2.27 
(0.90) 

2.23 
(1.13) 

CTX_safe 

PTSD [n=16] - 2.31
(1.52)

1.69 
(1.40) 

Group: F(2, 46)= 0.80, p=.46 

Phase:  F(1, 46)= 6.45, p=.015* 

    ACQ > EXT 

GroupxPhase: F(2, 46)= 0.33, p=.72 

TC [n=18] - 2.72
(1.22)

2.42 
(2.10) 

HC [n=15] - 2.60
(1.45)

1.90 
(1.14) 

CUE_pred 

PTSD [n=14] 2.46 
(1.83) 

2.83 
(1.83) 

2.00 
(1.40) 

Group: F(2, 42)= 1.30, p=.28 

Phase:  F(2, 82)= 6.03, p=.004** 

     ACQ > HAB + EXT 

GroupxPhase: F(4, 82)= 0.56, p=.69

TC [n=17] 2.50 
(1.35) 

3.62 
(2.33) 

2.79 
(2.27) 

HC [n=13] 1.85 
(0.90) 

2.62 
(1.34) 

2.04 
(1.25) 

CUE_safe 

PTSD [n=16] - 2.28
(1.48)

1.78 
(1.03) 

Group: F(2, 46)= 0.34, p=.72 

Phase:  FP(1, 46)= 9.55, p=.003** 

      ACQ > EXT 

GroupxPhase: F(2, 46)= 0.12, p=.89 

TC [n=18] - 2.56
(1.12)

2.08 
(1.41) 

HC [n=15] - 2.63
(1.25)

1.97 
(1.34) 

Supplementary Table 3b. Mixed repeated measures ANOVAs (rmANOVA) across arousal 
ratings for each of the four conditions (ctx_unpred, ctx_safe, cue_pred, cue_safe) and each of 
the three phases (HAB, ACQ, EXT).  

[Abbreviations: ACQ – Acquisition; CTX – Context; EXT – Extinction; HAB – Habituation; HC – Healthy control subjects without trauma 
experience; pGG – Greenhouse-Geisser correction; pred – Predictable; PTSD – patients with PTSD; SCR – Skin conductance response; TC – 
healthy control subjects with trauma experience; unpred – Unpredictable] 
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Valence 
Groups HAB ACQ EXT Analyses 

n M (SD) M (SD) M (SD) 

CTX_unpred 

PTSD [n=14] 3.54 
(1.67) 

3.71 
(1.99) 

3.36 
(1.79) 

Group: F(2, 41)= 0.30, p=.74 

Phase:  F(2, 82)= 8.90, pGG<.001*** 

     ACQ > HAB + EXT 

GroupxPhase: F(4, 82)= 0.92, p=.45 

TC [n=17] 3.26 
(1.38) 

4.18 
(2.08) 

3.18 
(1.49) 

HC [n=13] 2.81 
(1.49) 

3.85 
(1.63) 

2.81 
(1.63) 

CTX_safe 

PTSD [n=16] - 3.53
(1.79)

3.22 
(1.81) 

Group: F(2, 46)= 0.86, p=.43 

Phase:  F(1, 46)= 2.26, p=.14 

GroupxPhase: F(2, 46)= 3.69, p=.033* 

    HCEXT > PTSDEXT + TCEXT 

TC [n=18] - 3.33
(1.37)

3.72 
(2.12) 

HC [n=15] - 3.40
(1.66)

2.33 
(0.96) 

CUE_pred 

PTSD [n=14] 3.89 
(1.91) 

3.63 
(1.91) 

4.00 
(2.12) 

Group: F(2, 42)= 0.19, p=.83 

Phase:  F(2, 82)= 0.19, p=.83 

GroupxPhase: F(4, 82)= 1.08, p=.37TC [n=17] 3.65 
(1.43) 

3.65 
(1.94) 

3.88 
(2.18) 

HC [n=13] 3.37 
(1.91) 

3.81 
(1.68) 

2.96 
(1.89) 

CUE_safe 

PTSD [n=16] - 3.69
(1.71)

3.84 
(1.94) 

Group: F(2, 46)= 1.83, p=.17 

Phase:  FP(1, 46)= 0.01, p=.94 

GroupxPhase: F(2, 46)= 1.29, p=.29 TC [n=18] - 3.25
(1.31)

3.61 
(1.92) 

HC [n=15] - 3.00
(1.21)

2.53 
(1.70) 

Supplementary Table 3c. Mixed repeated measures ANOVAs (rmANOVA) across valence 
ratings for each of the four conditions (ctx_unpred, ctx_safe, cue_pred, cue_safe) and each of 
the three phases (HAB, ACQ, EXT).  

[Abbreviations: ACQ – Acquisition; CTX – Context; EXT – Extinction; HAB – Habituation; HC – Healthy control subjects without trauma 
experience; pGG – Greenhouse-Geisser correction; pred – Predictable; PTSD – patients with PTSD; SCR – Skin conductance response; TC – 
healthy control subjects with trauma experience; unpred – Unpredictable] 
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Contingency 
Groups HAB ACQ EXT Analyses 

n M (SD) M (SD) M (SD) 

CTX_unpred 

PTSD [n=14] 2.64 
(1.70) 

3.68 
(1.87) 

2.11 
(2.26) 

Group: F(2, 41)= 1.12, p=.34 

Phase:  F(2, 82)= 10.56, pGG<.001*** 

     EXT < HAB + ACQ 

GroupxPhase: F(4, 82)= 0.55, p=.70 

TC [n=17] 3.12 
(1.60) 

4.29 
(1.98) 

2.38 
(1.75) 

HC [n=13] 3.08 
(1.80) 

3.12 
(2.58) 

1.58 
(1.10) 

CTX_safe 

PTSD [n=16] - 3.22
(1.91)

2.06 
(2.15) 

Group: F(2, 46)= 0.92, p=.41 

Phase:  F(1, 46)= 13.36, p<.001*** 

     ACQ > EXT 

GroupxPhase: F(2, 46)= 0.42, p=.66 

TC [n=18] - 3.64
(1.75)

2.64 
(2.17) 

HC [n=15] - 3.33
(2.53)

1.57 
(0.89) 

CUE_pred 

PTSD [n=14] 2.89 
(1.96) 

2.75 
(2.03) 

1.89 
(1.71) 

Group: F(2, 42)= 2.65, p=.83 

Phase:  F(2, 82)= 5.27, p=.007** 

      EXT < HAB + ACQ 

GroupxPhase: F(4, 82)= 0.53, p=.72

TC [n=17] 3.41 
(1.65) 

4.24 
(2.22) 

2.79 
(2.28) 

HC [n=13] 2.81 
(1.74) 

2.62 
(1.96) 

1.85 
(1.39) 

CUE_safe 

PTSD [n=16] - 2.78
(1.83)

1.56 
(1.14) 

Group: F(2, 46)= 0.99, p=.38 

Phase:  FP(1, 46)= 16.57, p<.001*** 

      ACQ > EXT 

GroupxPhase: F(2, 46)= 0.29, p=.75 

TC [n=18] - 2.94
(1.70)

2.17 
(1.56) 

HC [n=15] - 2.57
(1.46)

1.43 
(0.82) 

Supplementary Table 3d. Mixed repeated measures ANOVAs (rmANOVA) across 
contingency ratings for each of the four conditions (ctx_unpred, ctx_safe, cue_pred, cue_safe) 
and each of the three phases (HAB, ACQ, EXT).  

[Abbreviations: ACQ – Acquisition; CTX – Context; EXT – Extinction; HAB – Habituation; HC – Healthy control subjects without trauma 
experience; pGG – Greenhouse-Geisser correction; pred – Predictable; PTSD – patients with PTSD; SCR – Skin conductance response; TC – 
healthy control subjects with trauma experience; unpred – Unpredictable] 
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Ratings [Diff CS+-CS-] 
Arousal PTSD TC HC Analyses 

[n=19] [n=17] [n=19] 

HAB 1.06 
(1.53) 

0.95 
(1.41) 

0.76 
(1.51) 

F(2, 52)= 0.18, p=.83 

ACQ Con 0.21 
(1.87) 

0.20 
(1.62) 

-0.45
(1.40)

Group: F(2, 56)= 0.64, p=.53 
Phase:  F(1, 56)= 39.13, p<.001*** 
      ACQcue > ACQcon 
GroupxPhase: F(2, 56)= 0.15, p=.86 

Cue 1.97 
(1.97) 

1.75 
(2.51) 

1.48
(2.42)

EXT Con 0.82 
(1.67) 

0.15 
(1.15) 

0.69 
(1.62) 

Group: F(2, 55)= 1.27, p=.29 
Phase:  F(1, 55)= 0.15, p=.70 
GroupxPhase: F(2, 55)= 0.11, p=.90 Cue 0.88 

(1.47) 
0.30 

(1.41) 
0.67 

(0.94) 
Valence PTSD TC HC Analyses 

[n=19] [n=17] [n=19] 

HAB 0.85 
(1.28) 

0.63 
(1.63) 

0.26 
(1.26) 

F(2, 52)= 0.81, p=.45 

ACQ Con -0.13
(1.94)

0.48 
(1.60) 

0.48 
(1.59) 

Group: F(2, 56)= 1.11, p=.34 
Phase:  F(1, 56)= 21.54, p<.001*** 
      ACQcue > ACQcon 
GroupxPhase: F(2, 56)= 0.10, p=.90 

Cue 1.71
(2.19)

1.92 
(2.12) 

1.25 
(3.33) 

EXT Con 0.35 
(1.52) 

0.60 
(1.26) 

0.79 
(1.52) 

Group: F(2, 55)= 0.23, p=.80 
Phase:  F(1, 55)= 0.26, p=.61 
GroupxPhase: F(2, 55)= 1.98, p=.15 Cue 0.65 

(1.61) 
0.95 

(1.56) 
0.41 

(1.06) 
Contingency PTSD TC HC Analyses 

[n=20] [n=19] [n=20] 

HAB 1.18 
(2.21) 

1.08 
(1.73) 

0.82 
(2.43) 

F(2, 52)= 0.14, p=.87 

ACQ Con -0.45
(2.19)

0.00 
(2.73) 

-0.42
(1.42

Group: F(2, 56)= 0.37, p=.69 
Phase:  F(1, 56)= 42.89, p<.001*** 
      ACQcue > ACQcon 
GroupxPhase: F(2, 56)= 0.07, p=.93 

Cue 2.89
(3.55)

3.25 
(3.38) 

2.50
(3.39)

EXT Con 0.68 
(1.46) 

0.13 
(1.44) 

0.57 
(2.07) 

Group: F(2, 55)= 0.70, p=.50 
Phase:  F(1, 55)= 0.37, p=.55 
GroupxPhase: F(2, 55)= 1.04, p=.36 Cue 1.00 

(2.24) 
0.53 

(1.37) 
0.26 

(0.96) 

Suppl. Table 3e. Difference of ratings between CS+ - CS- for the ratings of arousal, valence 
and contingency during all three phases (HAB, ACQ, EXT) and for all three groups (PTSD, 
TC, HC).  

[Abbreviations: ACQ – Acquisition; Con – Context; CS – conditioned stimulus; EXT – Extinction; HAB – Habituation; HC – Healthy 
control subjects without trauma experience; PTSD – patients with PTSD; TC – healthy control subjects with trauma experience] 
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Suppl. Figure 1.  Flowchart depicting identification, screening, eligibility and inclusion of 
subjects.  
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Suppl. Figure 2b.  Difference scores (CS+ - CS-) for arousal, valence and contingency 
ratings across each of the three phases (HAB, ACQ, EXT) and each group (HC, PTSD, TC).  

[Abbreviations: ACQ – Acquisition; Con – Context; EXT – Extinction; HAB – Habituation; HC – Healthy control subjects without trauma 
experience; PTSD – patients with PTSD; TC – healthy control subjects with trauma experience] 
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3    General Discussion 

“You can’t stop the waves, but you can learn to surf.” 
Jon Kabat-Zinn (1994), “Wherever you go, there you are” 

The aim of this work was to study mechanisms of fear learning and context processing and 

associated structural and functional differences in patients with PTSD within a shared 

psychobiological model. In the systematic review and meta-analysis we show lower FA 

values of major white matter tracts in patients with PTSD in comparison to healthy control 

subjects with (TC) or without traumatic experiences (HC) including over 1700 participants. 

This reduction in the cingulum, superior longitudinal fasciculus, forceps minor and other 

prefrontal white matter tracts can be associated to spatial learning, a key process for 

contextual processing and emotional downregulation, both important in fear learning and 

emotional processing, as well as attention-guiding, a key process in threat detection. This is in 

line with results from the second study, in which we found lower FA values in the forceps 

minor, superior longitudinal fasciculus and several other long-reaching fiber tracts in patients 

with PTSD in comparison to TC but not HC subjects. Furthermore, lower volumetric gray 

matter was shown in the left and right anterior insulae, again between TC subjects and both 

patients with PTSD and HC subjects. Volumetric differences in the forceps minor and insulae 

were positively associated and correlated both negatively with symptom severity in PTSD. In 

the third study, we examined behavioral and physiological differences in fear learning in 

PTSD in a combined cue-context fear learning paradigm using virtual reality and fMRI. 

Comparing patients with PTSD to TC and HC subjects during the acquisition of the uncued 

and therefore unpredictable context, we found a marginally significantly lower ROI activity of 

the vmPFC but no differences in SCR or behavioral arousal, valence and contingency ratings. 

In the cued and therefore predictable context, we found a marginally significantly higher ROI 

activity in the hippocampus in patients with PTSD in comparison to HC but not TC subjects 

and significantly lower SCR in the predictable and safe context in comparison to both control 

groups. The results of our three studies suggest that neurobiological differences in patients 

with PTSD in prefrontal and long-reaching white matter tracts can be associated to context 

processing and threat detection. Lower BOLD activity in the vmPFC of patients with PTSD in 
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comparison to TC and HC subjects during uncued contextual fear acquisition complement 

these findings. Interestingly, there was no difference between the groups in the hippocampal 

activity in the uncued condition but in the cued (predictable) condition. Patients with PTSD 

showed higher hippocampal activity in the predictable context than HC subjects. In following 

sections, we will integrate our findings into the current literature, discuss limitations and 

provide some possible future directions.  

3.1 Integration of findings into current literature 

3.1.1 Connecting the dots: Neurobiological findings and their integration into a 
psychobiological model of PTSD 

The first two studies of this dissertation summarize and empirically test structural white 

matter differences in patients with PTSD in comparison to HC and TC subjects. Our 

systematic review and meta-analysis showed that studies on underage populations with PTSD 

and adults with traumatic childhood experiences reported mostly lower FA values in the 

corpus callosum. In adults the results are more heterogeneous with some studies reporting 

lower and other higher FA values in tracts like the cingulum, frontal gyri or the ILF and SLF. 

Our second study partly supports these findings with lower FA values in tracts like the ILF 

and SLF in patients with PTSD in comparison to TC subjects. Both tracts have been 

associated with visual spatial attention (D’Andrea et al., 2019) and decision processes 

(Herbet, Zemmoura, & Duffau, 2018) as well as contextual processing of memory (Hodgetts 

et al., 2017). Only very few studies exist so far associating white matter differences to 

mechanisms related to fear learning and context processing. Fani et al. (2015) found a 

negative association between the FA value of the cingulum and the fear-potentiated startle 

response during early and late extinction in TC subjects. Similarly, Nees et al. (2019) found 

that a higher FA value in the cingulum (hippocampal branch) significantly correlated with 

higher SCRs during extinction of contextual conditioned responses in healthy individuals. In a 

subclinical sample of veterans with symptoms of PTSD, a positive correlation was found 

between the FA value in the uncinate fasciculus and startle responses during extinction 

(Costanzo et al., 2016). Overall, these studies suggest an association between physiological 

responses during extinction and the FA value of frontal white matter tracts, such as the 

cingulum or the uncinate fasciculus. Clearly, more studies are needed to confirm this 

association, especially in clinical populations suffering from PTSD. 
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Our findings of lower FA values in the forceps minor in patients with PTSD in 

comparison to TC subjects in the second study support the importance of frontal white matter 

tracts in PTSD. The forceps minor is a fork-like structure, connecting medial and lateral parts 

of the PFCs inter-hemispherically and is potentially involved in emotion processing within a 

larger network of frontal white matter tracts (Versace et al., 2015). Only one other study on 

human subjects has found a decreased value in the FA of the forceps minor in adolescent 

subjects with childhood maltreatment (Huang et al., 2012). There are no studies on human 

subjects associating the forceps minor to any mechanisms of fear learning. But studies on 

rodents suggest an involvement of prefrontal pathways in learning of expectancies of aversive 

events, including the forceps minor (Cho, Deisseroth, & Bolshakov, 2013; Furlong, Cole, 

Hamlin, & McNally, 2010). Frontal white matter tracts, such as the forceps minor, uncinate 

fasciculus and anterior parts of the cingulum and corpus callosum might be part of a large 

white matter network underlying psychological processes such as expectancy learning in fear-

related contexts. Interestingly, we found that the FA value of the forceps minor and the 

volume of the left and right anterior insulae were positively associated, meaning that a higher 

streamline count in the forceps minor was associated with higher gray matter volumes in the 

anterior insulae. This is in line with previous research showing that the insula in combination 

with the PFC is involved in the anticipation of aversive stimuli (Simmons, Matthews, Stein, & 

Paulus, 2004). A recent study on healthy non-trauma exposed subjects, found that the insula 

in combination with the vmPFC encodes modality-specific features (e.g. unpleasantness) of 

an expected aversive event (Sharvit, Corradi-DellʼAcqua, & Vuilleumier, 2018). The authors 

suggest that the insula is a hub for gathering bottom-up sensory information to form a prior 

about what to expect from a potentially threatening stimulus. The vmPFC has arguably two 

functions, namely to keep information up to date about current events and in a top down 

manner to control these expectations formed in, for example, the anterior insula. This fits to 

findings that the insula plays a larger role in PTSD within the salience network (Liberzon & 

Abelson, 2016). Further research is needed to investigate the association of expectancy and 

higher volume in the anterior insula in combination with higher streamline count in white 

matter tracts within the PFC in healthy trauma-exposed subjects in comparison to patients 

with PTSD but not healthy non-trauma-exposed subjects.  

The first two studies highlight the heterogeneity in the field of DTI-based research in 

patients with PTSD and emphasize the importance of concept-based categorizations of groups 
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according to key moderators like age of trauma experience and type of trauma. Research on 

structural brain development has shown vulnerable periods of brain maturation in adolescence 

and their association to psychiatric disorders in this period (Giedd et al., 1999; Giedd & 

Rapoport, 2010; Paus, Keshavan, & Giedd, 2008). Teicher, Samson, Anderson, & Ohashi 

(2016) have shown that the time point matters in regard of structural brain differences, with 

the vulnerability for changes in the FA of the inferior longitudinal fasciculus, for example, 

peaking around the age of eight and again around the age of thirteen. Similarly, the 

vulnerability for volumetric gray matter change in die hippocampal volume is largest in early 

childhood, around four years of age, and then peaks again during adolescence, between 12-15 

years of age (Teicher et al., 2016). Meta-analyses on gray matter differences have subdivided 

patient samples according to, for instance, the age of the sample or the time point of the index 

trauma (Bromis et al., 2018; Kribakaran, Danese, Bromis, Kempton, & Gee, 2020), whereas 

meta-analyses focusing on white matter do not seem to consider this distinction yet when 

comparing results (Daniels, Lamke, Gaebler, Walter, & Scheel, 2013; Ju et al., 2020). In a 

recent multi-site study presenting TBSS results of over 3.000 individuals (Dennis et al., 

2019), half of them with PTSD and the other half either trauma-exposed (TCs; 92%) or not 

(HCs), Dennis et al. (2019) found lower FA values in the tapetum, a part of the corpus 

callosum connecting both hippocampi inter-hemispherically in patients with PTSD in 

comparison to HC subjects. This result stayed significant when controlled for a variety of 

covariates including comorbidity (e.g. depression, alcohol used disorder) or medication. 

However, when controlling for childhood trauma, Dennis et al. (2019) did not find any 

significant difference between patients with PTSD and TC, emphasizing the importance of 

concept-based categorization of groups. Together with the Institute for Psychiatric and 

Psychosomatic Psychotherapy at the Central Institute of Mental Health, we are investigating 

gray matter differences using two existing datasets on female, adult patients with PTSD, one 

with trauma experience in adulthood (>18 years of age) and the other with trauma experience 

in childhood (<18 years of age). Each dataset consists of a TC and HC group. With this more 

specific categorization of treatment groups, we further hope to shed light on the contribution 

of timing of trauma on gray matter differences in patients with PTSD.  

3.1.2 How predictable is unpredictable? Placing fear in its context. 

Context matters in PTSD, in particular in contextual fear learning (Acheson et al., 

2012; Flor & Wessa, 2010; Liberzon & Abelson, 2016). Even more so does the predictability 

of a potential danger within a context matter. Although various studies have studied context 
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conditioning and extinction in humans (Baas et al., 2008; Grillon et al., 2006; Lonsdorf, 

Haaker, & Kalisch, 2014; Stout et al., 2018; Suarez-Jimenez et al., 2018), only very few 

studies have investigated context conditioning in PTSD (Wicking et al., 2016), and even 

fewer studied uncued versus cued context conditioning in patients with PTSD (Steiger et al., 

2015; for a review see Glenn et al., 2017). In our third study, we investigated fear acquisition 

using a combined cue-context paradigm in a virtual environment. Participants could either 

predict the painful stimulus by the appearance of a cue in a given context, a so-called 

predictable context, or only by the configuration of several stimuli within a context, in which 

no single cue was predictive of the painful stimulus, a so-called uncued or unpredictable 

context (Indovina et al., 2011; Schmitz & Grillon, 2012). We found that patients with PTSD 

were in principle able to distinguish an uncued dangerous from an uncued safe context and 

showed similar behavioral ratings of arousal, valence and contingency as well as SCR than 

TC and HC subjects. What differed was the functional brain activity of the vmPFC in the 

unpredictable context, with patients with PTSD showing lower activity than HC subjects. 

Although our hypotheses pointed in the right direction, there were no differences in the 

functional activity of the hippocampus or amygdala between the groups. Patients with PTSD 

were also able to distinguish a dangerous cued context from a safe cued context with no 

difference in behavioral ratings of arousal, valence and contingency between the groups. 

Patients with PTSD did, however, show differences in the physiological responses with lower 

SCR than HC and TC subjects across the predictable and safe context as well as marginally 

significantly higher hippocampal activity in the predictable context than HC subjects.  

The vmPFC is a key region involved in downregulating fear in cued contextual fear 

learning (Indovina et al., 2011) with lower activity suggesting less fear regulation. A follow-

up analysis would have to be performed to see whether lower activity of the vmPFC is 

associated with higher SCR or higher ratings of arousal and valence. Lower activity in the 

vmPFC is consistent with the results of our first two studies, suggesting that not only 

structural white matter differences but also functional processing in the PFC might underlie 

deficient fear learning and context processing. Our results should nevertheless be interpreted 

with caution, since these are somehow preliminary results with none of the differences in 

functional activity surviving Bonferroni correction.  

While the involvement of the vmPFC in encoding of the unpredictable context is in 

line with previous findings (Indovina et al., 2011), it is somehow surprising that there were no 
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significant differences in the hippocampus between patients with PTSD and the healthy 

control groups. As argued in more detail above, the hippocampus has consistently been 

described as main hub for context processing (Phillips & Ledoux, 1992; Rudy, 2009; Smith & 

Mizumori, 2006), consistently been found in context conditioning paradigms (Kroes, 

Dunsmoor, Mackey, McClay, & Phelps, 2017), both in healthy participants as well as patients 

with PTSD (Maren et al., 2013). There are two possible explanations for why the 

hippocampus does not show the expected activation patterns. The first one relates to design 

and analysis, in that the time windows used for the context triggers in each room are not 

sufficient. While each participant’s BOLD curves were checked individually for outliers and 

non-responders, the time frame of the context triggers has not been changed. One idea would 

be to subdivide each room into early, middle and late phases. This would be in line with 

previous studies, showing time-related differences in contextual fear acquisition (Baeuchl et 

al., 2015; Lonsdorf et al., 2017; Steiger et al., 2015). It would also fit well with our second 

explanation, that we would expect different activation patterns depending on the hemisphere 

and subregion of the hippocampus. Previous work suggests that the anterior part of the 

hippocampus is preferentially associated with context coding and its signal decays over time 

while the posterior part of the hippocampus encodes detailed spatial relational information 

with the activation staying more stable over time (Nadel et al., 2013; Poppenk, Evensmoen, 

Moscovitch, & Nadel, 2013). In addition, the left hippocampus was argued to process context-

dependent episodic memory, whereas the right hippocampus has been more strongly 

associated with spatially locating oneself in the environment (Burgess et al., 2002). By 

averaging over all triggers in a room, we might average out subregion-specific activation 

patterns. A subdivision of the hippocampi would therefore be appropriate with the strongest 

activation and potential differences between patients with PTSD and healthy control subjects 

to be expected in the left anterior hippocampus.  

Context has long been studied in basic neuroscience focusing on the hippocampus as 

major hub for creating cognitive maps (Epstein, Patai, Julian, & Spiers, 2017; O’Keefe & 

Nadel, 1978) and has early on also been speculated to play a key role in anxiety disorders 

(Jacobs & Nadel, 1985; Jacobs et al., 2017; Nadel & Willner, 1980). Here, spatial encoding 

and recollection of our environment is speculated to provide a much larger function, namely 

to supply a cognitive space for cognition (Bellmund, Gärdenfors, Moser, & Doeller, 2018). 

As described above, context includes both internal as well as external aspects (Maren et al., 

2013). We argue that a broader approach of studying context processing is needed, increasing 
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the validity and generalizability of findings in the field of fear learning to, for example, 

internal cognitive domains like the field of episodic memory (Dunsmoor & Kroes, 2019) or 

more external domains like the social environment patients with PTSD find themselves 

interacting in (Maercker & Horn, 2013). Recent studies have associated the hippocampus as 

well as the vmPFC with navigating social interactions in healthy individuals (Schafer & 

Schiller, 2018a; Tavares et al., 2015). This fits well with our findings of lower prefrontal 

white matter and functional activity in patients with PTSD. If context matters in PTSD, it 

probably does so at different levels of cognition, thereby influencing not only learning and 

memory processes but attention and social interaction as well. Abnormal social navigation has 

also been associated with other mental disorders such as schizophrenia, autism or depression 

(Schafer & Schiller, 2018b). To study and, most importantly, treat the effects of context 

processing more broadly, we rely on studies focusing on different aspects of context 

processing.   

3.2 Limitations 

Several limitations apply to each of the manuscripts and to the work as a whole. Concerning 

the first study, limitations comprise a) the rather restrictively defined inclusion and exclusion 

criteria, b) methodologically derived issues with the meta-analytical software applied, and c) 

the need for future integration of possible mediators and moderators. First, we restricted the 

systematic review to DTI studies reporting differences in FA, leading to more homogeneous 

groups. The result, however, was fewer studies within each subgroup (e.g. adult-onset PTSD 

with trauma experience in adulthood) with smaller sample sizes for each group (patients with 

PTSD, TCs, HCs). In addition, the meta-analysis was only conducted for the whole-brain 

studies. By applying this rather restrictive approach, a variety of ROI studies were excluded, 

which is a particularly widely used approach in studies on underage populations. This leads to 

the second limitation, which is bound to the usage of the software package GingerAle for 

conducting the meta-analysis. GingerAle was originally developed to statistically compare 

differences in gray matter. However, the analysis space and error distributions are different 

for the white matter “space”, for which toolboxes like for example Seed-Based d Mapping 

(SDM) provide more accurate ways to account for using specific white matter atlases. Third, 

variables concerning trauma (e.g. trauma type or trauma severity), comorbidity (e.g. 

depression), imaging (e.g. scanner type), methodology (e.g. software packages used for DTI 

analysis), outcome (e.g. cluster size with peak value) or demographics (e.g. education) should 
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be included, as potential mediators or moderators between psychopathology and differences 

in FA value, in future analyses. Moreover, we need larger sample sizes in each group. 

Regarding the second study, limitations encompass a) the cross-sectional design of the study 

and b) specific sample characteristics. The cross-sectional nature of the combined white and 

gray matter study allows only for limited interpretation of the results. It stays unclear whether 

these neuroplastic differences in trauma control subjects in comparison to patients with PTSD 

and HC subjects occur on the basis of pre-existing vulnerabilities or as an effect of the trauma 

experience. A longitudinal design with measurement points pre- and post-trauma experience 

would be needed to disentangle these potentially interacting effects. In addition, certain 

sample characteristics concerning education or trauma type should be controlled for in future 

studies. Educational level could be included as covariate and larger samples with more 

heterogeneous groups would allow for comparisons of groups with voluntary (interpersonal) 

trauma experience to groups with involuntary experiences. In the third study, limitations 

consist mainly of certain aspects of the a) study design and b) the issue of non-responders. 

While the novelty and complexity of the study design are the biggest strengths of the study, 

they come with certain restraints and difficulties concerning drop-outs or non-responders. 

Participants were wearing MR-suitable goggles during the fMRI session to enhance 

immersiveness. This, however, led to increased drop-out rates, mainly in patients with PTSD 

that struggled with increased levels of anxiety due to claustrophobia. In addition, a rather 

large number of non-responders were observed for the SCR across groups. This was most 

likely due to measuring the SCR on the left foot of participants instead of the hand, because 

they received the painful stimulus on the left hand and had the response pad in the right hand. 

A possible solution would be to record the startle reflect in facial muscles like the masseter or 

orbicularis oculi muscle. The feasibility of this solution, under the circumstance that 

participants wear goggles, would have to be tested in future work.  

3.3 Outlook 

Psychobiological research has sharpened its tools over the past two decades and greatly 

influenced the way how we perceive, study and treat mental disorders such as PTSD. The next 

step in this development will show whether our findings of structural and functional 

differences associated to fear learning and context processing can be a) replicated, refined and 

b) translated from the laboratory into clinical practice, in particular into psychotherapeutic

treatments (Holmes, Craske, & Graybiel, 2014; Holmes et al., 2018; Morris, Rumsey, &

Cuthbert, 2014).
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3.3.1 Data, Data, Data: Novel approaches for meta-analyses of neuroimaging data 

With an estimated amount of over 30,000 neuroimaging papers (Müller et al., 2018), meta-

analyses become more common and more essential in cognitive neuroscience. Guidelines for 

neuroimaging-based meta-analyses have been published only recently on how to report key 

variables, possible statistical analyses options and risk of bias corrections (Müller et al., 

2018). The SDM toolbox (Radua et al., 2012; Radua, Via, Catani, & Mataix-Cols, 2011; 

Radua & Mataix-Cols, 2009) provides the possibility to meta-analytically investigate white 

matter differences using a five-step method: 1) extracting the peak coordinate and statistical 

maps, 2) estimation of lower and upper bounds of possible effect size images and 3) 

estimation of the most likely effect size along with its standard error, 4) execution of the 

meta-analysis for each imputed dataset, 5) and running a standard permutation test over 

recreated subjects images. As mentioned in the limitations, a future meta-analysis on white 

matter differences in PTSD could benefit from the SDM toolbox by reporting results of either 

whole-brain, ROI or both approaches, of each study. Our meta-analysis further revealed a 

large heterogeneity in the provided data and that independently of the software package, the 

defined contrast groups (e.g. TCs) are essential for the interpretation of the results. Two recent 

meta-analysis on gray matter differences in adult (Bromis et al., 2018) and underage patients 

with PTSD (Kribakaran et al., 2020) used SDM and compared patients with PTSD either to 

TC or HC subjects. They further provided the image files on a freely accessible online 

platform (http://www.ptsdmri.uk). We have preregistered our own meta-analysis on gray 

matter differences in PTSD on the International Prospective Register of Systematic Reviews 

(PROSPERO; ID: CRD42019135821; 

https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=135821). We chose a 

combined approach of using GingerAle for studies reporting whole-brain data and SDM for 

studies reporting ROI data. Also, we are planning to subdivide the results in the same 

categories as previously defined in our white matter analysis with adult-onset PTSD with 

trauma experience in adulthood (aa), adult-onset PTSD with trauma experience in childhood 

(ac) and childhood-onset PTSD with trauma experience in childhood (cc). Furthermore, we 

are planning to provide our final dataset on openly accessible databanks like Neurosynth 

(https://neurosynth.org/; Yarkoni, Poldrack, & Nichols, 2011) or Sleuth 

(https://brainmap.org/sleuth/; Laird et al., 2011). 

http://www.ptsdmri.uk/
https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=135821
https://neurosynth.org/
https://brainmap.org/sleuth/
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3.3.2 Everything is connected: Network science in PTSD 

Recently, structural and functional connectivity have been combined to study complex 

networks (Bullmore & Sporns, 2009; Bullmore & Vértes, 2013; Kashtan & Alon, 2005; van 

den Heuvel, Bullmore, & Sporns, 2016). Complex networks have certain topological features, 

such as high-degree nodes or hubs (Freeman, 1977; Guimerà & Nunes Amaral, 2005; Sporns, 

2012). In a large meta-analysis, Crossley et al. (2014) found that brain hubs play a central role 

in the majority of mental disorders. Brain hubs (richly connected nodes) were more likely to 

show anatomical abnormalities than non-brain hubs (sparsely connected nodes). These 

findings are consistent with the idea that densely connected hubs function as major cross-

roads between brain regions. Recently, network topologies were studied in patients with 

PTSD (Suo et al., 2019), the dissociative subtype of PTSD (Sierk et al., 2020) and maltreated 

youths with PTSD (Sun, Haswell, Morey, & De Bellis, 2019). Studies on neuroplastic 

differences are particularly valuable to identify potential target hubs, central to the network 

structure. The forceps minor as “edge of interest” or the anterior insula as “node of interest” 

would be candidates to study in future work on neural networks. The role of functional brain 

networks in contextual fear learning has only been studied in rodents so far (Coelho, Ferreira, 

Kramer-Soares, Sato, & Oliveira, 2018). Similar analyses have been performed with 

behavioral data, such as symptom severity, where “central symptom hubs” are identified in a 

particular network of interacting symptom clusters (Borsboom, 2017; McNally, 2016; 

McNally et al., 2015). Such analyses could also be performed with cognitive dysfunctions in 

PTSD, with fear learning and context processing as potential central hubs of a network based 

on symptom clusters. Recent network models consider “simple” forms of associative learning 

and study how humans learn patterns and form internal networks of these learned patterns 

(graph-based learning; Karuza, Thompson-Schill, & Bassett, 2016; Lynn & Bassett, 2020). 

Differences in network properties of learned contexts between patients with PTSD and control 

subjects could possibly provide valuable information on underlying psychopathological 

mechanisms of learning. Future research could study learning of environments and 

differences in graph-based learning of safe and dangerous environments. 

3.3.3 Translational Research: From the laboratory into the clinic  

The studies reported in this thesis also have potential clinical implications. Whereas the first 

two studies on structural differences in PTSD could potentially contribute to neuroscience-

based treatment approaches (Linhartová et al., 2019; Lubianiker et al., 2019; Nicholson, 

Rabellino, et al., 2017), the latter could contribute to a better understanding of the 
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mechanisms behind exposure-based treatments (Bouton, 1988; Craske, Treanor, Conway, 

Zbozinek, & Vervliet, 2014). First, neuroscience-based treatments like neurofeedback target 

mechanism-oriented and personalized neuromodulation (Lubianiker et al., 2019). Findings 

from studies on structural differences whose results are embedded in psychobiological models 

are especially valuable in this context for determining regions of interest or connections of 

interest (e.g. PFC-amygdala) for modulation. Second, trauma-focused exposure therapy, as 

gold standard of evidenced-based treatment approaches for PTSD (Bisson, Roberts, Andrew, 

Cooper, & Lewis, 2013; Cusack et al., 2016; Watts et al., 2013), works with the element of 

contextualization of the traumatic experience, both spatially and temporally (Brewin, 2001; 

Elbert & Schauer, 2002). One example would be Narrative Exposure Therapy (NET; (Lely, 

Smid, Jongedijk, Knipscheer, & Kleber, 2019; Schauer, Neuner, & Elbert, 2011; Siehl, 

Robjant, & Crombach, 2020), an evidence-based, trauma-focused, short-term treatment for 

survivors of violence and war. Here, elements of context processing are integrated throughout 

therapy. First, a lifeline is used for the contextualization of the traumatic event within a 

client’s narrative story of his or her life. Second, clients go through multiple sessions of 

prolonged exposure (Foa, 2011), in which they are exposed, in sensu, to their traumatic 

memories. The worst scene, the so-called “hot spot”, is then contextualized, via the 

integration of verbal reports about sensory (e.g. smell of burned skin) and environmental 

elements (e.g. the sun was shining) of the scene. A better and more detailed understanding of 

fear learning and context processing in PTSD could help to identify moments in which 

beneficial context processes could be maximized. Enhancing these windows of change would 

thereby also enhance treatment efficacy. 

3.4 Conclusions 

In this thesis, structural and functional neuroplasticity of patients with PTSD were assessed, 

associated with processes of fear learning and context processing and interpreted within a 

psychobiological model of PTSD. Only very few studies have linked neurobiological 

differences, in particular in frontal white matter, to behavioral and psychophysiological 

markers of PTSD. This work provides a large systematic review and meta-analysis on the 

current findings of diffusion tensor imaging in PTSD, besides an empirical study investigating 

structural white and gray matter in relation to symptom severity. The results suggest that 

lower fractional anisotropy in frontal white matter tracts such as the forceps minor, anterior 

parts of the cingulum and corpus callosum can be associated to difficulties in top-down 
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control of fear-related symptoms. In addition, long-reaching fiber tracts like the inferior- and 

superior longitudinal fasciculi, involved in visual spatial attention, show lower fractional 

anisotropy in patients with PTSD in comparison to trauma control subjects. Furthermore, we 

found potential evidence of lower BOLD activity in the ventromedial prefrontal cortex but not 

in the hippocampi or amygdalae, during fear acquisition of an unpredictable context, in 

patients with PTSD in comparison to two healthy control groups. There were no behavioral or 

psychophysiological differences between the groups in that condition or during the 

predictable context. This again suggests that patients with PTSD show an impaired top-down 

control of fear during contextual fear acquisition. In combination, these results suggest that 

white matter tracts can be associated to fear- and context related processes in PTSD. A 

reduced streamline count in frontal white matter as well as lower functional activity within the 

prefrontal cortex can be associated to deficits in top-down control of contextual fear 

acquisition in PTSD. In the future, a refined understanding is needed of how important factors 

such as timing or type of the traumatic experience interact with neurodevelopmental 

trajectories of individual brain structures. The tools, imaging techniques and paradigms exist 

to test current psychobiological models of PTSD. The time is ripe to deepen and refine our 

understanding of the interaction between psychological and neurobiological mechanisms 

underlying PTSD. Let’s continue.  
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