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Abstract

We study the time dependent Schrodinger equation for large spinless fermions with the
semiclassical scale & = N~!/3 in three dimensions. By using the Husimi measure defined
by coherent states, we rewrite the Schrodinger equation into a BBGKY type of hierarchy for
the k particle Husimi measure. Further estimates are derived to obtain the weak compactness
of the Husimi measure, and in addition uniform estimates for the remainder terms in the
hierarchy are derived in order to show that in the semiclassical regime the weak limit of the
Husimi measure is exactly the solution of the Vlasov equation.

Keywords Large fermionic system - Husimi measure - Semiclassical limit - BBGKY -
Wasserstein distance - Vlasov equation

1 Introduction

In this paper, we aim to study the combined mean-field and semiclassical limit of N-fermions
from time-dependent Schrodinger equation to Vlasov equation.
The following anti-symmetric subspace of L?(R3") is considered for fermions,

Li@™) = W € L2®Y) ¥ (qaay. o gaon) = 6P @1 am) |

It is known that a system of fermions initially confined in a volume of order one have kinetic
energy of order N°/3 due to the Pauli principle. Therefore, to balance the order, the scale of
the interaction term should be of order N~1/3, we refer to [6,8] for more details about this
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scaling. After a time rescaling of N'/3 the Schodinger equation for N-fermions is written
into
| 1o .
N3io W, = | =3 DA+ —<> Vg —q) | ¥
j=1 2N iz

By denoting the semiclassical scale 4 = N~!/3 and multiplying both sides by /2, one can

recover the N~!, the coupling constant for the mean field interaction. Hence one arrives at
the following many body Schrodinger equation

. hz N 1 N
WA= | = D Ayt 5 D Vi — ) | v = Hy W, an
j=1 i#] '

Uno =Y,

where Wy, € L2(R3V), Wy is the initial datain L2(R3V), and V is the interacting potential.

The limit from many body Schrodinger equation to the Vlasov equation has been studied
extensively in the literature. Narnhofer and Sewell [34] and Spohn [46] are the first to prove
this limit with the potential V assumed to be analytic and C? respectively.

For large N, in the mean field limit regime, the solution of many body fermionic
Schrodinger equation can be approximated by the solution of the following nonlinear Hartree—
Fock equation,

ihdwy s = [—th +(Vxo)— Xy, wN.t] ;

WN,0 = WN,

where wy ; is the one-particle density matrix, o;(g) = N‘le,t(q; q) and Xy ; is a small
term having the kernel X; (x, y) = N lv(x— y)wpn (x; y). In[16], for the initial data being
a Slater determinant, the approximation has been proved for short time for analytic interaction
potential by using BBGKY hierarchy, while [6] proved the approximation with convergence
rate for arbitrary time and weakened potential in the framework of second quantization.
Similar results have been extended for mixed states in [4] and for relativistic case in [7].
Recently, with the help of Fefferman—de la Llave decomposition [18,26], weaker assumptions
on the interaction potential have been considered. Specifically, Coulomb potential has been
considered in [38], inverse power law in [41]. Further relevant literature on the fermionic
case for the mean-field limit problem of Schrddinger equation can be found in [3,20,35-37].

In parallel, the mean field limit for the bosonic case from many body Schrodinger system
to nonlinear Hartree equation was proved in [17] for Coulomb potential. Also for Coulomb
potential, the convergence with rate N''/? has been obtained in [40]. Later, it has been opti-
mized to the optimal convergence rate N ~ljn [11], and furthermore for stronger singular
potentials in [10].

The semiclassical limit from Hartree—Fock equation to Vlasov equation has been obtained
in the literature by using Wigner—Weyl transformation of the one-particle density matrix wy ;

defined by
3
Wn.i(q. p) = <£> /dy e ay, <x + Ey'x - Ey) (1.2)
B 2 ’ 27’ 27 ) '

which has been intensively studied in the semiclassical limit of quantum mechanics by Lions
and Paul in [31]. In [5] the authors compared the inverse Wigner transform of the Vlasov
solution and the solution of Hartree—Fock and get the convergence rate in the trace norm as
well as Hilbert—Schmidt norm with the regular assumptions on the initial data. The works in
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N-fermionic Schrédinger } N—voo Hartree Fock

h—0

Liouville Noroo Vlasov

Fig. 1 Relations of N-fermionic Schrodinger systems to other mean-field equations [22,23]

this direction have also been extended for inverse power law potential [43], convergence rate
in Schatten norm in [30], and Coulomb potential and mixed states in [42]. The convergence of
relativistic Hartree dynamic to relativistic Vlasov equation has also been considered in [14].
Further convergence results from Hartree to Vlasov can be found in [1,2,21,33].

It is known that Wigner transform (1.2) is not a true probability density as it may be
negative in certain phase-space. In fact, [27,32,45] concludes that the Wigner measure is
non-negative if and only if the pure quantum states are Gaussian, whilst [9] state that the
Wigner measure is non-negative if the state is a convex combination of coherent states.
Nevertheless, it has been shown that if one convolutes the Wigner measure with a Gaussian
function in phase-space, it will yield a non-negative probability measure known as Husimi
measure [19,39,48]. In fact, from [19, p.21], the Husimi measure is given by

N(N—-1)---(N—k+1)

o Wy Gh, (1.3)

(k) _
my, =

where 1 <k < N,G" = (wh)~3* exp (—h_l(zljzl |qj|2—|— |pj|2)) and Wl(f)[ is the Wigner
transform of k-particle density matrix.

In the recent development, the convergence to Vlasov equation in the semiclassical Wasser-
stein pseudo-distance has been proved in [23-25,28,29]. The semiclassical Wasserstein
pseudo-distance is computed between the Husimi measure and Vlasov solution.

One can also show the combined limit by first taking the semiclassical limit and then the
mean field limit from many particle Schrodinger to Vlasov via the Liouville equations, and
the corresponding BBGKY hierarchy.! This has been done in [23]

Our goal, therefore, is to obtain the Vlasov equation from Schrédinger equation directly,
as shown in the diagonal line of Figure 1, by taking N — oo and h — 0 simultaneously. In
order to do this, it is convenient for us to introduce the second quantization framework in our
study of the quantum many-body systems. In particular, we utilize the notations in [6,8,11]
where the fermionic Fock space is defined as

Fa =P LIR™, (dx)®"),

n>0

where we denote (dx)®" = dxj - - - dx,. The creation and annihilation operator in terms of
their respective distributive forms,

a*(f)Z/dX ay f(x), a(f)= /dx ax f(x). (1.4)

I See Figure 1.
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Due to the canonical anti-commutator relation (CAR) in the fermionic regime, we have
that for all f, g € HY(R?)

la(f).a* (@} =(f.g). {a*(f).a"(®)}={a(f) al®)} =0, (1.5)

where {A, B} = AB+ BA is the anti-commutator. In particular, the CAR for operator kernels
hold as follow
{ax, a;} = 8x=y, {a:’ a;ﬁ} = {ax, ay} =0. (1.6)

This CAR in distributive form will be frequently used in our computations.
As in [6], we may write the corresponding Hamiltonian in terms of the operator valued
distribution in F, by

2 1
Hy = > /dx ViaiVyiay + IN //dxdy Vix — y)a;"a;kayax. (1.7)
Therefore, we rewrite the Schrodinger equation in Fock space as follows,

{ihafw,t = Hy¥ns,

1.8
YN0 = ¥N, (15

forall Yy, € ]-"LEN) andt € [0, T], W_here YN € féN) with ||Yy || = 1. The solution to the
above Cauchy problem is ¥y ; = e T Y, with a given initial data Yy .

Remark 1.1 1t should be noted the states v, in our analysis stays in the Nth-sector of F,
due to the definition of Husimi measure which will be given later. Therefore, denoting f,g”)
to be the n-th sector in F,, we say that ¥ ; € ]-'a(N) for all t > 0.

Furthermore, we use the definition of the number and kinetic energy operators as follows,
N = /dx ata, and K = hz/dx Via!Vyay, (1.9)

respectively. We further explore the properties of the operators in (1.9) in Sect. 2.2.2.

Next, we shall introduce the Husimi measure. In fact, our notation follows closely with
the notations in Fournais et al. [19] where it deals with large fermionic particles in stationary
case. The main tool in their analysis is the use of coherent state, a subtle tool that proves
extremely useful in our work as well.

For any real-valued normalized function f, the coherent state is given by,

h R | y—q\ i,
fip=h"3f (f/ﬁ )eh”, (1.10)
Similar to [12] and [19], the k-particle Husimi measure is defined as, forany 1 <k < N
k )
@ P po) = (U@ ) a R L af ) a0,
(1.11)

where ¥y € f(gN) is the N-fermionic states, a( quf p) and a*( quf p) are the annihilation
and creation operators respectively. Husimi measure defined in (1.11) measures how many
particles, in particularly fermions, are in the k semiclassical boxes with length scaled of Vh
centered in its respectively phase-space pair, (g1, p1), - - -, (k. Pk)-

2 The function f can be any real-valued function. [19] For this paper, we set f to be compactly supported.
See Assumption Al.

@ Springer



Combined Mean-Field and Semiclassical Limits... Page50f41 24

In the context of this paper, we use m( ) , to be the time dependent Husimi measure defined

by the solution of the Schrodinger equatlon ¥ ;. By using operator kernels defined in (1.4),
we may rewrite the Husimi measure as follows

k
mgv?,(Q1, Pl s ks Dk)
—\®k
= // @wdw)® (£, @) [7,@) " (nag, - ahau - anbn),
where the tensor products indicate

(dwdu)®k = dwiduy - - - dwrduy

(1.12)

and
k —
(7 p )17 @) ™ =TT A wp T .
j=1

Note that the function f here is a very well localized function in practice [19], therefore
we may take the following assumption

Assumption A1 The real-valued function f € H L(R3) satisfies || fll, = 1, and has compact
support.

Additionally, we assume that the interaction potential to satisfy
Assumption A2 V is a real-valued function such that V(—x) = V(x) and V € W2 (R3).

As is well known that in the mean field semiclassical regime, the dynamic of (1.1) can be
approximated by a one particle Vlasov equation. Namely, for all ¢, p € R?

dmi(q. p)+ p-Vgmi(q, p) = V(V % p1)(q) - Vpmi(q. p), (1.13)

with initial data mo(q, p), where m;(gq, p) is the time dependent one particle probability
density function, and p;(g) = f m; (g, p)dp. Although (1.13) is a non-linear equation, such
equation would be more suitable to analyze than the increasingly large systems of Schrodinger
equation. The well-posedness of the above Vlasov problem is given by Drobrushin [15] for
smooth V.

Now, we are ready to state the our main results.

Theorem 1.1 Let Assumptions Al and A2 hold, Wx ; be the solution of Schrodinger equation

(1.8), m(k) be the Husimi measure defined in (1.12). Ifm(l), the 1-particle Husimi measure
of the mltlal data ¥y, satisfies

//dqldpl(lml2 +lgihmy (1. p) < C. (1.14)

Then, for all t > 0, the k-particle Husimi measure at time t, m' N has a weakly convergent

subsequence which converges tom; ®inL L(R®), where m( ) is aweak solution of the following
infinite hierarchy in the sense of dzsmbutlon, i.e. it satisfies for all k > 1 that

k k
azmg)(% Pls - Gk, Pk)+pk-qum,()(611,1?1,.--,% Pk)

1
=@y Vi //ko+1de+1VV(qj — g 0m V@1 iy g, prg). (115)
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By using [47, Theorem 7.12], we have the following corollary,

Corollary 1.1 Suppose assumptions Al and A2 hold. Assume further that the initial data of
(1.15) can be factorized, i.e. for all k > 1,

(k)

Imly) —m$* — 0, as N — oo. (1.16)

Then, if the infinite hierarchy (1.15) has a unique solution and m; is the solution to the
classical Vlasov equation in (1.13), it holds that

Wi (mx)l s mt) —> 0, asN — oo,
fort > 0.

Remark 1.2 In the pioneering work by Spohn [46], he considered

N EL L EN NG 1)
N
= tr [ e VW) (W |V T Texp GNP pj + mjx))
Jj=1

with p; = —iV; and obtained the following Vlasov hierarchy,

o rMEL L E T 1)

_Zn]agj (gl 771»~-~a$ny77nvt)

+Z/V<dk>k-sjr,§i{<sl,m,...,s,»,n,,-+k,...sn,nn,0, k1),
=1

which is slightly different from Vlasov hierarchy for Husimi measure given in (1.15), or
the version in (2.3) before taking the limit. The benefit of the hierarchy in (2.3) is that
one observes directly the mean field and semiclassical structure in the remainder terms.
The explicit formulation is helpful in getting estimates for the remainder terms in (2.3).
Moreover if one can handle singular potentials (or even the Coulomb potential) for both
terms separately, one expects that this new approach can be applied to obtain the limit from
many body Schrordinger to Vlasov with singular potentials in the future. Since the mean field
limit with singular potential has been studied with convergence rate, for example in [8], then
we can utilize similar ideas to handle one of the remainder term which includes the mean
field structure. In parallel, we can apply the techniques in semiclassical limit, for example
in [43], to get estimates for the other remainder term.

Remark 1.3 Although the results in this article does not yield a convergent rate, the main
purpose of this article is to present an alternative approach and framework, namely to rewrite
the Schrodinger equation into a BBGKY type of hierarchy, and to derive estimates for the
remainder terms that appear in the new hierarchy.

Remark 1.4 In Corollary 1.1, the convergence is stated in terms of 1-Wasserstein distance.
For completeness, we give its definition as defined in [47]

Wi(u, v) :: max /lx—y|dﬂ(x y), (1.17)
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where p and v are probability measures and I7 (i, v) the set of all probability measures with
marginals ¢ and v. The Wasserstein distance, also known as Monge—Kantorovich distance,
is a distance on the set of probability measures. In fact, if we interpret the metric in L? space
as the distance that measures two densities “vertically”, the Wasserstein distance measures
the distance between two densities “horizontally” [44].

Remark 1.5 The assumptions for initial data (1.14) and (1.16) can be realized by choosing
¥y to be the Slater-determinant. That is, for all orthonormal basis {¢; ‘/?il , the initial data
is given as

1
Yn(gis ... qN) = ﬁdet{wj(qi)}lgi,jgzv, (1.18)

Remark 1.6 Assumptions Al and A2 are expected to be weakened to the situation that
feH 1 (]R3), x| f(x) € L2(R3), and V to be Coulomb potential. These will be our future
projects.

Remark 1.7 In this context, we have applied the BBGKY hierarchy, the intermediate mean
field approximation Hartree Fock system has not been benefited. With Hartree Fock approx-
imation, one can do direct factorization in the equation for mg\l,), In this direction, we expect
to derive the rate of convergence in an appropriate distance between the Husimi measure and
the solution of the Vlasov equation.

The arrangement of the paper is the following. In Sect. 2, we give the main strategy
of the proof. Followed by the reformulation of Schrodinger equation into a hierarchy of
the Husimi measure, a sequence of necessary estimates on number operators, the localized
number operators, and the kinetic energy operator are given, which will be contributed to do
compactness argument for the Husimi measure. We leave the computation of the hierarchy
to Sect. 3.1. Furthermore, the uniform estimates for remainder terms in the hierarchy, which
is another main contribution of this article, are provided in Sect. 3.2.

2 Proof Strategy Through BBGKY Type Hierarchy for Husimi Measure

We first start from the many particle Schrodinger equation and derive an approximated
hierarchy of time dependent Husimi measure by direct computation. Compare to the BBGKY
hierarchy of Liouville equation in the classical sense, it has two families of remainder terms,
which are determined by the N particle wave function from Schrodinger equation. In order
to take a convergent subsequence of the k-particle Husimi measure, we derive the uniform
estimates for number operator and the kinetic energy. Together with an additional estimate
for localized number operator, we can show that the remainder terms are of order h%_‘s, for
arbitrary small §. Then the desired result will be obtained by the uniqueness of solution to
the infinite hierarchy.

2.1 Reformulation: Hierarchy of Time Dependent Husimi Measure
In this subsection, we begin by examining the dynamics of k-particle Husimi measure by using

the N-body fermionic Schrodinger. The proofs of the following propositions are provided in
Sect. 3.1.

@ Springer



24 Page8of41 L. Chenetal.

Proposition 2.1 Suppose ¥y, € féN) is anti-symmetric N-particle state satisfying the
Schridinger equation in (1.8). Moreover, if V(—x) = V(x) then we have the following
equation for k =1,

1 1
8,m§\,?,(q1, p1) +p1- Vqlmﬁv,)t(ql, P1)

1 ) -
= va '//d%dl?zVV(m —42)"15\;?,(611, P1,q2, p2) + Vg - R1+Vp - Ry,
2.1

where the remainder terms R and ﬁl, are given by

Ry i=him (Vo a(/h , 0w aCff ) vwa),

~ 1 !
R ::W -Re//dwdu//dydv //dqzdpz/ ds

VV(su + (U =syw—=y) R, ) fh @ fE DR, ) (ayantn., avann )

//dqzdszV(ql —qz)mN,(ql,pl q2, P2),

@)
2.2)

Proposition 2.2 For every 1 <i,j < k and qj, p; € R3, denote qi = (q1. . ... qx) and
= (p1, ..., pr). Under the assumption in Proposition 2.1, then for 1 < k < N, we have
the following hierarchy
5m® v m®
iy (G, PLs - Gks PE) F Pk Vgemy' (g1 pi, - G, PE)

1
=y Vi //qu+1dpk+1VV(q,—qk+1)mN, (q1: Pt Qi1 k1) (2.3)

+qu-'Rk+Vpk-'Rk—|—'Rk,

where the remainder terms are denoted as
Ry :=hIm (vqk (@t ) --alty )N alfyy 0 alfp >wN,,>,
~ 1 g g 1 ) .\ ®k
R ::wRe/-/(dwdu)@‘/dy [/0 dsVV (suj + (1 — s)w; —y)i| (S, ) 7, w)

ﬂdadﬁ fqh;(,V) /dv fﬁ_,(v) (awk s 'awlawa,t, Ay~ 'aulava,t)

T e //d4k+1dpk+1VV(qJ—61k+1)m V@1 pr o Gt i)

—lm//(dwdu)®k Z [V(u, — ) = V(w; —w; ] (f W)/l (u))®k

J#

(awk c Ay, 1//N,t; Ay =+ Ay wN,t>

2.4)

2.2 A Priori Estimates

In the next steps, we derive estimates in order to have compactness of each k-particle Husimi
measure, as well as to prove that the remainder terms converge to zero in the sense of distri-
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bution. The estimates are derived directly from the solutions of the N-fermionic Schrédinger
equation.

2.2.1 Properties of Coherent States and Husimi Measure

Here we give the properties of coherent states and Husimi measure provided in [19], which
will be frequently needed in our computation. Firstly, we observe that the coherent state has
a projection property, that is

Lemma 2.1 (Projection of the coherent state, [19]) For every real-valued function f satisfying
Il fll, = 1 and the coherent states qufp defined as in (1.10), we have that

1 1
i [ adn ity 1= s [ dadn (s ) sl =1 @)

(k)
N

Secondly, the properties of the k-particle Husimi measure my,” is given as follows

Lemma 2.2 (Properties of k-particle Husimi measure, [19]) Suppose for ¥y € F3 is
normalized. Then, the following properties hold true for m%{):

G , .
. my(q1, p1s - -, Gk, Pk) IS symmetric,

k N(N—=1)---(N—k+1
2. Gk [+ @aqdp)®m (qr, pr. . ars pr) = THEANERED,

k k—1
3. ﬁffd%dpkmgv)(ql,pl,...,qk,pk)=(N—k+1)m§v (q1, PLs - Ghets Pr—1),
and ’
4. 0< mgv)(ch,l?l,..-,!]k,Pk) <lae,

wherel <k < N.
Remark 2.1 Note that as ||[Yy| = ||1/1N,, , Lemma 2.2 is also valid if we replaced the

stationary wave-function ¥y, to a time-dependent ¥ ;, for ¢ > 0. Moreover, it can be
obtained that for any fixed positive integer 1 <k < N,

0<m® <1 ae inR% (2.6)

,

Following [19], we define the h-weighted Fourier transformation as follows,

Definition 2.1 (h-weighted Fourier transform) Let F be any real-valued function in L2(RY).
We define the h-weighted Fourier transform of f to be,

1 i
Falf1(p) = —— /R dx f(x)e R P,

2mh)2
and its inverse transform by L

From the Definition 2.1, we have the following identity,

/ dy GO)F(y) = / dy G(y) = // dpadv F)eh? 00 (27
R3 R3 Q2rh)3 J/r32

for any G, F € L*>(R?). In other words, the Dirac-delta distribution is given by

1 i
() = e 5.
) = G /R dp et 2.38)
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2.2.2 Number Operator and Localized Number Operator

In this part, we give the bounds of number operators and its corresponding localized version,
both of which are used extensively in estimating the remainder terms in (2.1) and (2.3).

Lemma23 Let Y, € ]-',EN) be the solution to Schrodinger equation in (1.1) with initial

data |y || = 1, the number operator N defined in (1.9). Then, for finite 1 < k < N, we
have

Nk
<’/fN,za W‘/fN,z> =1.
Proof Since vy, satisfies the Schrodinger equation, then for k > 1,

i (e Ny ) = (U I o) = k(o NN g, ) = 0,

where we used the fact that Hy is self-adjoint and [H y, N'] = 0. Therefore, integrating the
above equation with respect to time, gives us

Nk N*
<1/IN,I7 WwN,t> = <WN, Wle> = 1,
forany 1 <k < N. ]

Remark 2.2 The expectation of the number operator is the total mass of Husimi measure. In
fact, observe that

<¢N,t7NWN,t)=/dx<‘//N,taa;ax¢N,t>=/dx (Wn.saflacyn,),

Then, by (2.5)

1 .
:W //dqdp/dx <WN,z,a;‘ffp(X)(/dy a}'fq;%p(Y)>lﬁN,t>

1
= W // dgdp <1/fN,t, a*(fq?p)a(f;%p)w/v»

1
= Qi) //dqdp m%?,(qv P)
=N

where we use Lemma 2.2 in the last equality. Moverover, if we repeat the projection above
for k-times, we get

1
(27.[)3k

Nk
S<WN,1, WwN,t> =1,

/"/(dqdp)g’km%(?,(th, Pls -« qks Pk)
2.9)

where 1 <k < Nandt > 0.

More importantly, we have the following estimates for localized number operators.
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Lemma 2.4 (Bound on localized number operator) Let ¥y € F‘SN) suchthat |Yn| = 1, and
R be the radius of a ball such that the volume is 1. Then, for all 1 <k < N, we have

k
3
/../(dqu)®k <¢N, <1_[ Xlann|<«/ﬁR> al e df ag o ay 1/,N> < h 2k,
n=1

where X is a characteristic function

Proof Consider first the case where k = 1. Forevery 1 < j < k, we have

/dxj (/d% Xertu\sJﬁze) <¢N,aj§jaxj1p1\,>

2 (YN, Nyy) = TR <1/fN, %/WN> <h72,

[ST[%)
[T

=h

where we used Lemma 2.3. Analogously, for2 <k < N,

k
/(dx)®k (1_[ /dq,, Xx,,—q,,<\/ﬁR) (wN, a;kl ...a;kan ey, 1/,N)
n=1

k
= 13 (Y, Ny ) = 3 <wN, %M < A3,

where we applied Lemma 2.3 again. O

Lemma 2.5 (Estimate of oscillation) For ¢(p) € C{° (R3) and

Qp = {x e R max |x;| < k%), (2.10)
1<j=<3
it holds for every o € (0,1), s e N, and x € R3\.Qh,

‘/ dp e%""‘so(p)‘ < Ch=s, @2.11)
R3
where C depends on the compact support and the C* norm of ¢.

Proof We will prove the lemma in a single-variable environment. That is, we let the momen-
tum and space to be p = (p1, p2, p3) and x = (x1, x2, x3) such that x;, p; € R for all
Jj € {1, 2, 3}. Then, for arbitrary x € R3\.Qh, one of the x;s is bigger than 1%. Without loss
of generality, we assume that |x;| > A% and x2, x3 € R. Let supp ¢ C B,(0) C R3, we can
rewrite the left hand of (2.11) into the following,

r r r .
‘/ dpi / dpz/ dp3eh(ﬁ1x1+172x2+p3x3)¢(p)‘
—r —r —r

r . r . r .
= ‘/ dl’zeﬁpzxz/ dp3eﬁp3x3/ dl?leﬁp'x'fﬂ(P)‘

—r —r —r
Observe that since
_iz d E%PIXI :e%PIXI’
x1dpy
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24 Page 12 of 41 L. Chenetal.

we have after s times integration by parts in py,

r r r .
‘/ dpl/ sz/ dpse (P1P22+p3xs) o ()
. _ .,

R [T o rooy
= ‘(—i—) / dpzeﬁpzxz/ dp3€ﬁp3x3/ dp1e?™197, o(p)
X1 r

—r —r -

<o < ep-en,
lxil*

where s indicates the number of time that integration by parts has been performed. O

2.2.3 Finite Moments of Husimi Measure

To prove that the second moment in p of the Husimi measure is finite, we first show that
the kinetic energy is bounded from above. Recall that the definition of the kinetic energy
operator K, i.e.,

h2
K= 5 dx Vya}Vyay,

and the kinetic energy associated with ¥y is given as (Y, Kiry).

Lemma 2.6 Assume V € W, then the kinetic energy is bounded in the following

<‘//N,t» — VN, z> < 2<‘/f1v, IPN> +Cr?, (2.12)
where C depends on ||[VV || .

Proof From the Schrodinger equation, we get

d
lha (U, K¥n o) = (Y, [, HIY ) (2.13)

Note that since the commutator between kinetic and interaction term is given as

hZ
[, H] =— |:/ dx an;kvxa,h //dydz V(y - z)a;‘,a;azay:|
i//dxdyv Vi(x —y)(V ai ayax ay ;anyaX>

=ﬁlm//dxdnyV(x — y)(an:a;fayax)

Then, from (2.13), we have that

I
N 3 e o) = st [ asay v =) (v Veatagaan ).

Now, observe that

h
‘W /dXdy ViVix —y) <WN,t7 an;a?ayawa,t>

=yl ||VV||Loc//dxdy layVeaxyw .|| |ayacn |
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|

5 3

< CW (//dxdy<w1\/,t, Viatala,Vy axllth ) (//dxdy 1/fN i aza ayaxllsz>>
hZ N N i

=C (ﬁ /dx <1/IN,ta aniﬁvxaxl/fN,t>) <1/’NJ’ W‘/’NJ>

= C <<WNJ, %WN,1>>7 s

Thus, we have

1

d )
a<¢N,m 1,/th>< C<1/th7 WN,t>
Integrating both sides with respect to time ¢ and we obtain the desired inequality. O

Proposition 2.3 Fort > 0, assume Al and let m( ) to be the k-particle Husimi measure.

Denoting the phase-space vectors qx = (q1, - - -, qk) and px = (p1, ..., pr), we have the
following finite moments,

/‘/(dqdp)@’k (ax! + Ipel? )mN ,(41, c ) < C(L 41

where C is a constant dependent on k, [[ dgidpi(lqi| + |p1 |2)m5\})(511, p1), and |VV | .

Proof We first consider the case where k = 1. Observe that we may rewrite the kinetic energy
as follows

! IC = w2 d Vypa* Vv
N(‘/fzv,z, WN,:)—N/ w (Y., Vaas Vaw¥n.i)
hZ
= e // dgrdpy // dwdu £ ) @) (Y0, Vs Vaduthn )

K2 -
- oo // dgrdpy // dwdu Vo £ )V ) (Y @i, i)

hZ
- w//dqldpl //dwdu (=Vg +ih™ ) £, (w)

=V — b pOfI L @) (Y ahantn.g)

where we used the fact that

() = ()

To continue, we have

1 ! 2 ()
ﬁ <¢N,ta KWN,:) Zw dg1dp1 Ip1l mNiyt(q]ﬂ 1)

? [
+ any //dfhdpl //dwdu Vqlfqh,,p,(w) N I @) (n, agauyn i)

2' -
+ﬁ(2Tl)31m//d611dm//dwdu P1Va £l g VI @) (Y alhann ).
(2.14)
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Since kinetic energy is real-valued, if we take the real part of (2.14), the last term in the right
hand side vanishes since it is purely imaginary, yielding

1 L 2 (1)
3 v cm) = [ dandp 1o P ar, )
n? -
+ WRe//dqldpl //dwdu Va fq1 i (w) - Vg, qu?,m (u) (wN’[,a:,auwN,,f
Note that by (2.7), we have

h? -
e // dgidp // dwdu Vy, £l ) -V, f1 @) (Yn . ahanin )

= pt3 //dqldw h_%

_ h/d’(i|Vf@|2<wN,t,

_ 2
Vq1f<%)‘ (¢N,t,a:)au;WN,t>

M‘/’N,t>

N
= h/dan@F, (2.15)

where we recall that i> = N~!. Thus, taking the real part of (2.14), we have that

IC 1
<¢fN,,, Nw,t>= W//dqldm |p1|2m%?,(q1,p1>+h/dq|Vf<q>|2, 2.16)

which means,

1
2n)? //déhdpl \p1I? mN,(CII p1) < <1/th7 WN,t>- (2.17)

Therefore, (2.17) tells us that the second moment of the 1-particle Husimi measure in
momentum space is finite if the kinetic energy is finite.
Now, we turn our focus on the moment with respect to position space. From (2.1), we get

o [ aanap i, a o0 = |f |q1\a,m5$?,(q1,p1>
://dKIIdPI |lll|< Pl VqlmNt(thl)“l‘ o )3 //dwdu//dxdyf/dqzdpz/ ds

VV(su+ (1= s)w—x) £ ) fl @ fh ) fE ) axawyn.. ayan.) + Vg, - Rl)-

Then, using intergration by parts with respect to py,
= //dq1dp1 Valqil - (leN,(cn P1)+R1)
= //dmdpl % : (le%,)t(m, 120) +’Rl)
S//déhdpl (Ipllm (1, p1)+|R1|>

where R; is the remainder term in (2.2).
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Note that by Young’s product inequality, we have
dgid ¢ < /[ dgidp; (1 2)mfy
qidp1 |pilmy’, (g1, p) < [[ dgidpr (14 1p117) my) (g1, p1)
3 K 2
=@m)” | 1+2 WN,NWN +Ct” ),

where we used (2.17) and Lemma 2.6 in the last inequality. Next, we want to bound the term
associated with R,

// dqidpi [Ri] <h // dg1dpy | (Vo aCfp p )0 alfih , )vni) |

Observe that we have,

h // dgidpy | (Vaa(rh w0 alfh o)

<0 [ danam [Sarf i | Jacsl o

h h %
< | ([ aram (Tuatsf p roma Vuatsl o)

2
[ // dg1dp) (wN,t, a*(f) ,)alfl v )}
1
_ 2 3
= [7# // dgidp // dwdu Vy, fll () - Vg, 2 () (wN,,,a:;,auwN,,>] (2m)2
1

< <2n>3¢ﬁ[/da|w<27)|2}2 ,

where we used (2.15), Lemma 2.2. Thus, we have that

K
0 //dqldpl |41|m§$?,(t11, p1) < 2n)? (1 + 2<w1v, Nva> +Cr?+ Cﬁ) < C(141%).
(2.18)
which gives the estimate for first moment after integrating with respect to time .
We now consider the case of 2 < k < N. In this computation, we make use of the

(k)
N

properties of k-particle Husimi measure. Namely, that the m’, is symmetric and satisfies

the following equation

1 X (N—k+1) ¢
W//qudpk mﬁv?,(fh, Pls -+ qks Pk) :ngw @1, 1y Gt Pre1)

k-1
Smg\;,z @1, P Ghets PE-1)-

(2.19)
Observe that for fixed 1 <k < N.

k
/-/(dqdp)®k > 1pilPmy @i pro - g i)
j=1

k
— k
= Z//dqjdpj ij|2/~/dq1dp1---dqjdpj---qudpk mi (g1, pr..... . po).
j=1
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Then, by using the symmetricity of m%‘)t and change of variables, we get

—k//dqdp Ipl //(dqdp)®" m (@ p.qr. pr .. gk pr-1)

36—, NV —D---(N-k+1) 2 ()
= (2m)** Dk Nk : dqdp |pI*m}’ (q. p)

< 2m)**k (1 + 2<wN, %w>+ cﬁ) < C(l1+1%),

where we denoted (dqdp)(g’k_1 =dqidp;---dgr—1dpr—1.
Similar strategy is used to obtain the first moment with respect to q,. That is

//(dqdp)®kZIqJImN,(q1 Ploes Gy PK)

j=1

= @myk-n =D ]'V'k(fvl SLARY // dgdp lglm$y,(q. p)

< (2n)3(k*1)k//dqdp lglmy (g, p) < C(1 +1%).

This yields the desired conclusion. O

2.3 Uniform Estimates for the Remainder Terms

In this subsection, we give uniform estimates for the error terms that appear in (2.1) and (2.3).

They are all bounded of order h2=3 for arbitrary small § > 0. The proofs of all the following
propositions will be provided in Sect. 3.2.

Proposition 2.4 Let Assumption Al holds, then for 1 < k < N, we have the following bound
for Ry in (2.1) and (2.3). For arbitrary small § > 0, the following estimate holds for any test
function @ € C§° (IR%),

1
‘/'/(dqdp)@’kfp(m, Pls-sqks Pk)Vq, - Ri| < Ch27°

where C depends on | D*® ® | and k.

F:roposition 2.5 Let Assumption Al and A2 hold, then we have the following bound for
Ry in (2.2). For arbitrary small § > 0, the following estimate holds for any test function
@ € CP(RY),

< Chrs3, (2.20)

’//dmdpl@(m,m)vpl Ry
where C depends on |D*® ® || 5

Proposition 2.6 Suppose that Assumption Al and A2 hold. Denote the remainders terms Ry
and Ry as in (2.4). Then for 1 < k < N and arbitrary small § > 0, the following estimates
hold for any test function @ € Cg° (R6%),

‘/-/(dqdp)®k®(q1, Pl Qs PK) - Rie| < CI37°, (2:21)
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and
~ 1
’ // (dqdp)®* D (1. pr. ... g p) Vi - Re| < CRI, 222)

where C depends on | D*® ® | and k.

2.4 Convergence to Infinite Hierarchy

In this subsection, we prove that the k-particle Husimi measure m' N has subsequence that

converges weakly (as N — 00) to a limit m,(k) in L!, which is a solution of the infinite

hierarchy in the sense of distribution.

(k)

The weak compactness of k-particle Husimi measure m,,’, can be proved by the use of

Dunford—Pettis theorem.? In particular, we have the following result.

Proposition 2 7 Let {mgv),}NeN be the k-particle Husimi measure, then there exists a subse-

quence {m N; t} jeN that converges weakly in L LRYY 10 a function (27r)3kmt , i.e. for all
RS LOO(R(’]‘), it holds

1
W/'/(dqdp)wm%{;tw — /-/(dqdp)‘g’km;k)go,

when j — oo for arbitrary fixed k > 1.

Proof To apply Dunford—Pettis theorem, we need to check that it is uniformly integrable and
bounded. From the previous uniform estimates that we have obtained for m%c)t from (2.6)
and its second finite moment in Proposition 2.3 imply

<C(@).

L'~

[ =1 | dael + pehmy

where qx = (g1, .-, qx) Pk := (p1, ..., pr) and C(¢) is a time-dependent constant, we can
check the uniform integrability. More precisely, for any £ > 0, by taking r = e~} (27)3* C (1)
we have that

1 1
- ... dad ®k (k) // dad ®k <
(27-,:)3]( -//\Qk|+|Pk|Zr( qdp) My, = r Qr )3k (dgdp)=" (Iqk| + |pk|)m1\/, = é&.
(2.23)
Furthermore, for arbitrary ¢ > 0, by taking § = &, we have that for all £ C RO with

Vol(E) < é, it holds
// m&{,{)l < ng,()l H Vol(E) < &,
E ’ oo

which means that there is no concentration for the k-particle Husimi measure.
It is shown in (2.9) that the boundedness of k-particle Husimi measure in L', i.e

< o),
Ll

Then applying directly Dunford—Pettis Theorem one obtain that k-particle Husimi measure
is weakly compact in L. O

3 See [13] for the treatment of uniform integerability.
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Proof (Proof of Theorem 1.1 and Corollary 1.1) Cantor s diagonal procedure shows that
we can take the same convergent subsequence of m' N for all k > 1. Then by the error
estimates obtained in Propositions 2.4, 2.5, and 2.6, we can obtain that the limit satisfies the
infinite hierarchy (1.15) in the sense of distribution, by directly taking the limit in the weak
formulation of (2.1) and (2.3).

Observe that the estimates for the remainder terms also show that any convergent subse-

(k)

quence of my’, converges weakly in L' to the solution of the infinite hierarchy. Therefore,

if furthermore, the infinite hierarchy has a unique solution, then the sequence mgl\f)t itself
converges weakly to the solution of the infinite hierarchy.
As for Corollary 1.1, one only need to combine the facts that the infinite hierarchy has a

unique solution and that the tensor products of the solution of the Vlasov equation (1.13),

m;@k is a solution of the infinite hierarchy.

Lastly, by Theorem 7.12 in [47], we would obtain the convergence in 1-Wasserstein
metric. o

3 Completion of the Reformulation and Estimates in the Proof

3.1 Proof of the Reformulation in Sect. 2.1

In this subsection we supply the proofs for the reformulation of Schrédinger equation into
a hierarchy of k (1 < k < N) particle Husimi measure. The reformulation shares similar

structure to the classical BBGKY hierarchy.

Proof (Proof of Proposition 2.1) First, observe that taking the time derivative on the Husimi
measure, we have

2ihdmYy, (q1. p1)
= (hz///dwdudx SR @) fE @) (Y. alyauVeal VeaxPy.)
- EZ///dwdudx S ) @) (e, vxajvxaxa;*awt/w,,))
+ (% // dwdu // dxdy [, ) fF @) (v Vi = Vagaaiaiayai,)

1 -
— o [ dwan [ axas T w0 (v v - y)aj;a;*ayaxa::aww,f))
=L +1L.

Now, focus on I1, we have
I :h2///dwdudx quf,pl(W)m(llfzv,;,a:;auvxarvxaxw[vﬁ
_h2///dwdudx f,,1 P (w)fq1 o W (U0, VadiViaraha v,

where the last equality is just change of variable on the complex conjugate term. Then, from
CAR, observe we have that
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* * * %k *
—a,aua, Axay =a,,a;ayAxay — 8y=xa, Axay

k sk *
=a;a, Axaxay — Sy=xay, Axay

k sk *
=Axa,a,,0:0, — Sy=x0y, Axay

* * * *
=— Ayajaca,ay + Sy=x Axa;a, — Sy=xa,,Axay,

where integration by parts and CAR of the operator have been used several times. Putting
this back, we cancel out the the second term and get

I =h? ///du)dudx fq?,m (w)fqﬁl',m (“)(WN,ts (Sw:xAxa;au - 5u:xa:)Axax)WN,l>
e // duwdu (Aw " (w)>f,{},,,1 @ (.0 aaatin.s)

- // dwdu f;‘},pgw)(Auf;;,,,l (u)) (. ahautn.g).

3.1
Now, observe the following
SN _3 u—dqi iy
Vufqr},m(”)=vu <h 4f< \/ﬁ )6 nh u)
_3 u—4qi i _3 u—4qi i
=h"32V e mPIM L pT3 < >Ve n P
”f( NG ) AL
_3 U—q1\ _ipw o1 s fu—q1\ _i, .
=—h 1V, e mPIH —ip -h™a < )e g
q|f< \/ﬁ ) P1 f «/ﬁ
=(=Vg —ib7 ' p0) £}, @),
and furthermore,
Aufqﬁl',m () =V, - Vufq?,pl(u)
=V - (=Vg —in~ ' p [l @)
e o o 32
— (Vg —ih p1) - (=¥ — b PO f] ) 32)
=<Aq, +2i ! py -V, — h—2p%) fE ).
and similarly
A Sy py (w) = (Aql — 207 p1 - Vg, — hfzp%>fq’?,p, (w), (3.3)
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we obtain by putting these back into (3.1),

I =h2[<Aq1 /dw fqﬁ,p,(w)aww,z,/du qu},pl(u)aullfzv,z>
- </dw fq}?,m (W)aw¥n i, Ag /du fth,pl(u)aul//N,t>i|
= 2ihpy - [<vq. / dw 1, (wawn.. / du f;:,,,l(mauw,f) (34)

+</dw quf,pl (w)awwN,h vql /du fqrf,pl (u)auWN,t>i|

. . 1
—2i%Im (Aqla(fq’?,,,l)w,,, a(f;?,m)w,,} —2ilipy - Vgmy (g1, p1).
Since the Husimi measure is actually a real-valued function, we have that

1 1 11 :
azmg\,?t((h, P1)+P1-Vq1m§\;?,(fh, p1) =Re <7>+hlm(Aq] a(f,ﬁ,,,1 YUN.t5 a(jqﬁ,,,l)tluv,t>.

2ih
3.5)
Now, we turn our focus on /1y, i.e.,

! R
11, = N dwdu dxdy fqupl(w)fqupl(u)

(v V& = D auaiaaacin.i)

1 TR oy gh
- N//dwdu//dxdy fq1,p1 (w)fql,pl (u)

<1//N,t, Vix — )’)a;a;kayaxa:awwN,z>-
Observe that

* * % k% *
Ay Ay, ayayay =0y aydydxd,,dy
* % * %
+ 6w=yaxayaxau — Swzxaxayayau

* * * *
+ Su=xa,,ayayax — Sy=ya,,a;ayay.

The first term and the complex conjugate term vanishes under changes of variable, u to w
and w to u. Therefore, since from assumption V (x) = V(—x), we have
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1
I N ///dwdudx qufvpl (w)fqrfpl () (‘/’N,t’ Vix - w)a:a:;axaux//,v,,)

1 -

-5 /]/dwdudx fqri pl(w)fthzpl ) (Yn,p, Vx —walatagacyy ;)
1 -

+ N ///dwdudy fqr? p1 (w)fq?pl (u) ('Z’N,t, V(u— y)a:;a;ayaul//N,t>
1 -

-5 /[/dwdudy fqh] pi (w)f,ﬁipl () ('I’N,z, V(w— y)a;a;a},augy,vy,)

1 -

=N[ydwmwfﬁmWUﬁmW(VW—x%—Ww—ﬂ)wM“%@@%wMﬁ

1 -

+ ¥ ///dwdudy f;]h;’Pl (w)fzﬁ,p] (u)<V(u —y)—V(w— y)) <WN,,, aZa;’fayauxpN_,>

2 -
5 [ dwaway £, )7, <u>(V(u — Y- V- y)) (vn.rasaasann.).
(3.6)
Now, note that mean value theorem gives

1
V(u—y)—V(w—y>=/0 VYV (st — )+ (1= =) - @—w). G

and observe that since, V(s(u — y) + (1 —s)(w — y)) = V(su + (1 — s)w — y), we can
have from (3.6) the following

H—2 dwdudy " h ldvv 1
l_ﬁ/‘// wau yfq],p](w)fq],p](u) (/0 S (SM+( _s)w_}’)>

w-wy (v aaiaa)

21h
///dwdudy/ VV(su + ({1 —-s)w— )
(3.8)

£l ) (Wne. abaiayann.,
Vi (F4tp @)1 @) )

21hf//dwdudy/ VV(su+(1 —sw — )

Vir (150 @) T @0 ) {away v, auay ).

where we use the fact that

Vi (£ @I @) = 2w =) £, W) F . (3.9)

Then we get

2ih ! —
11, = % ///dwdudy/o VV(SM + (1 —-s5)w — y) . Vpl (quPI (w)fqﬁl_p] (”)) (awayllfN,ry auayllfN,r) .
' (3.10)
Applying the following projection

1
W //dqzdp2| fq@spz ) fq@,pz | =1, 3.1D)

onto ayyy ;, we get
1 h
@ = G [ dazap2 £y, [ @0 T @i
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Putting this back into (3.10), we get the following

2ih 1 !
11, :%W //dwdu//dydv//dqzdpz/o ds VV(su+(l —s)w—y)

Vir (10 T GO) F O T @) (s v o cu iy}
(3.12)
Recall that i3 = N~!, we have

1, = (2217:;3 //dwdu//dydv//dqzdpz/ ds VV su+(1 —sw — )

Vo (£ T @) Sy O T o ) (@ s @t i)
(3.13)
Therefore, we have the last term in (3.5) as

1 1 !
Reﬁ :(2n)3Re//dwdu[/dydv//dqzdpz/o ds VV(su+(1 —s)w—y)

vp] (fq77p1 (w)fq7?7P1 (M)> fqhzl,p2 ()’)fq@,m (U) (awawa,tv auaUI//N,f) )

thus we have derived the equation for mg\})t (g1, p1)- O

We have proved the reformulation from Schrédinger equation into 1-particle Husimi
measure. We also observed that it contains a resemblance to the classical Vlasov equation.
Next we want to prove the similar result for2 < k < N.

Proof (Proof of Proposition 2.2) Now we focus on the case where 2 < k < N. As in the proof
for the case of k = 1, we first observe that for every k € N,

. k
21hatm§v_);(ql s P15 Gk> PK)

— .\ ®k
= (— W2 /-/(dwdu)®k /dx (fqrfp(w)fq"fp(u))® Ay (1//N1,,a “eay, dy, ey drax PN )

+ 72 /-/(dwdu)®k/dx (fq’*fp(w).fqﬁp(u)) Ay (Yn s ayasay, - ay, ay, ~~~au11//1v,t))

( / / (dwdu)®* // dxdyV (=) (12, fF (u))

(zlfzvr,a ~~~awkauk~-~aulaxayayax1//m>

- —//(dwdu)®k//dxdyV(x ffp(w)ffp(u))

* %k * *
(')[/N,Iv AyAyAyQydy, =« -y Ay - - Qyy WNJ>)

=: L +1, (314)
where the tensor product denotes (dwdu)®k =dwy ---dwgduy - - - dug.
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We first focus on the I, part of (3.14), i.e.,

&k
L =—h /-/(dwdu)®k/dx (fq;%p(w)f;]ffp(u)) Ay (WN,,,al*u] eay, -~~au1a:axlp1\/.,)

—\ ®k
2 /~/(dwdu)®k /dx (fq"f,,(w)quf[,(u)) A (YN, dlasdly -l duy - Gy YN ).
(3.15)

Observe that we have

* * * _ 4k
Gy, Gy Guy -+ Ay Ay =(—1)"ay

* *
wy axalUl ...awkauk ...aul

k
+ax (=D axzwjaw] awj Ay | Quge Au,
j=1

k
* * j —
T Oyt Ay E (_l)jax:ujauk Tyt Ay | Oy
j=1

(3.16)
where the hat indicates exclusion of that element.
Putting this back into (3.15), we obtain

L =N’ // (dwdu)®* / dx (fq’?p<w>fq’%p<u>)®k

k

'Ax <wN,t’ a:” ‘”a:}k Z(_l)jax:u_/auk"’éu\j s dyy axWN,I>

j=1
— hz //(dwdu)®k /dx (f,f;p(u))m)ébk

k
* j * *
CA, <WN,t, ar Z(_l)]’sx:w,‘awl ceag can | a, - .aule’t>
j=1

k . — \®k
=2 Y1) [of wan® (1, ) 70)”

Jj=1

. <Au/ (WN,ha:;)l .. .a:}k (auk .. du\] .. ’aul)au/WN,t)

- ij <1//N,t’a:;)j (11:)1 5;5 'a:}k)a“k ’ "auﬂ//N,t>)-
(.17

Note that, if we want to move the missing ay; or a:;j back to their original position after
applying the delta function, we have for fixed j

(_l)j % *

—Da* -..a* ... - 7
(-1 y,, Ay, [auk ay aul]auj = (_l)j_law] Ay, Quy Ay,
_ 1 % *
_(_1) awl ...aw](auk...au“
. _ |
(~1)/a, [a:” g ...a;k]auk ey = (=) e al
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Therefore, continuing from (3.17), we have

Kooy .\ ®k
L =—h Z// (dwdu)®* (fq’f[,(w)fq’%,,(u)) [Au; — Aw, [ (Ynahy, - ah, auy - aw Y )
j=1

(3.18)
Now, by integration by parts on (3.18) and note that the Laplacian acting on the coherent
state would be similar to (3.2) and (3.3), i.e., for fixed j where 1 < j <k

Ay, (fq;%p(u))w - (A”/f + 2ih71p!' Vg, — 572p3> (fffh’l’(u)>®k’

Auw; <fr1}%p(w))®k - (qu - Zihilp.i Vg — hizpi) (fjfp(w))@k '

Thus, we have similar for when k& = 1, the kinetic part as

k
.\ ®k
I =— Zifiz pj- qu /~/(dwdu)®k (fq}%p(w)fqh’p(u)> (1//N,t, a:]l .. a:,kauk ceay, T,ﬁN’,>
=

k
+ 2R%Im Z <Aq/‘a (fqrz,pk) T (ffﬁ,m) VN, a (fqh’“/’k> T (qu?‘pl) WNJ>
j=1
= —2ihpg - Var <a (quz.pk) ceea (quf,pl) YN, a (fqu,pk> cea (fqh;-Pl) 1/’N,z>

k
+2iA*Im ; <Aq,.a (fqz.pk) cd (qu},l’l) YN a (fqhk,pk> ca (fq}?,111> 1/’1"”>‘
"~ (3.19)
Therefore it follows that

‘ k
Iy = =2ihpy - qumgv?t(ch, Pls s Qks Dk)

+ Zih2lmi<qu“ (fq}z,pk> cea (fqr?,pl) YN, a (fqrzypk) e (fqﬁ;»Pl) WNJ)'

j=1
(3.20)
Now, we turn our focus on part /I, of (3.14),
1
1 —\ ®k
=~ /-/(dwdu)®k (fqi%p(w)fqép(u)> //dxdy Vix—y)
<¢, Ay, oy G~ 'aulaiaiayax¢> (3.21)
1 —\ ®k
- /-/(dwdu)®k (qufp(w)fq"fp(u)) //dxdy Vi(x—y)
(. azazayaay, - afan - anv).
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For 1 < k < N, observe that from the CAR, we have

* * * ok 8k % * * *
Ay, Gy Gy Ay A Ay Ay Ay — (-1 A3y axay, -y, Gy - Ay
k
= —a* ...qF 1/ . *
= —a,, ay, Z( 1) 8x=ujauk Quj -~ Ay | ayayay
Jj=1
k
* ok * J —~
—ayay, Ay, Z(—l) Sy=u;Quy -+~ Qu; -+~ Ay, | Gyax
j=1 (3.22)
k
* ok j * — *
+ ayay 2:(—1)18),:,”].5110l . ~a:}j c | Quy e Guyax
=1
k
* % _1)/ * g o.gf
+ ayayay Z( 1)/ $x=w;ay,, ;e oy | Gu - Gy -
Jj=1
From (3.21), we have that
* * ko k k sk * *
//dxdy Vix —y) (aw] Sy, Gy Gy A Ay Ayl — A AyAyedy, - Gy, Qyy - -aul)
k
* * i —~ *
= //dxdyV(x — y)|: — Ay Gy, Z(—l)](sx:u./.auk Cyy e ayy | ayayay
j=1
k
* %k * j —~
—ayay, ---dy, Z(—l)lé}w:ujauk Ce @y e ay | ayax
j=1
k
* ok j * pon *
+acayay Z(—l)faxzwjawl .. .a;;i can | aw - aw,
Jj=1
k
* ¥ _1)/ *oaq* ..o.aqf
+ayayay Z( 1)/ $x=w;ay, gy e oy | Guy au1:|
Jj=1
=1+ L+ 3+ Ja.
Note that summing J; and J4, we have
k .
S+ Jp=— Z(—l)/ / dy[ (V(uj — Yy, ~~~a;‘,kauk . ~-a’b; ~~-aula;‘ayauj>
i=1
- (V(wj - y)a;ja;‘.ayafz] . 'a;';)_,' o 'G:Zkauk T aul) ]
k
= Z [/ dyV(uj — y)ay, - dy, Gy -+ Gy ayay — V(0)ay, - ay, du, - -aul]
=1
k
- [/ dyV(wj — y)ajayay, - ay, du, -~ au, — V(Oay, - -ay, ay, - -aul] ,
=1
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where the terms with V' (0) cancel one another. For the remaining term, we use again CAR
to obtain

k
Z/dy(V(uj -y = V(wj — y))a;‘.a:z1 Sy, Gy Ay,

=1

~.

k

k
+ ZZ( 1! /dy V(uj — y)u=y@y, -~ Gy Quy -+~ oy - = - Ay Ay

_ Z( 1)1 /dy V(w] —Y)(Sw,_)aya a/zi "'a:;kauk"'aul

~.

=1
kK Kk
— Z Z (V@uj—ui) = V(wj —wp))ag, - -ag ay, - ay,.
On the other hand, the sum of J; and J> yield
S+ J3 = Z/dx(V(x —uj)—Vx — wj))a;a:;] .. -a;kauk Sy, Ay

By change of variable and using the fact that V (—x) = V (x), we have from (3.21) that

7 k
=~ /-/(dwdu)®k/dy 3 |:V(y —uj)— V(w; — y):| (£, ) 7 (u))
j=1

: <awk e 'awlawa ts auk . 'aulayl/fN t)

//(dwdu)®k Z [V(uj —up) = V(w; — w ] (fq ,,(w)fqh,,(u)>

J#

Nwy - @ YN G Gy YN )
(3.23)

Applying mean value theorem on the first term on right hand side, we have that

k
2 —\ ®k
5 > // (dwdu)®* / dy (V(y —uj) = V(wj —y)) (fq"fp(w)f;’f,,(u))
j=1

Aawy - aw ay YN 1, uy - Quyay Y )

k 1
= %Z/~/(dwdu)®k/dy [/ ds VV(suj + (1 —s)w; —y)]
j=! 0

—\ ®k
= w)) (1, @) fF )

Aawy -+ aw ay YN 1, auy - Quyay Y )

2lh Rk 1
Z//(dwdu) /dy [/ ds VV(suj + (1 — s)w; —y)]
0
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—\ ®k
V, (£, @ fF )

‘(awk "'awlayWN.t,auk "'aulayWN,t)~ (3.24)

As in the case of k = 1, we apply the projection (3.11) onto ay ¥y ; and get further

k

2ih ! ———\ ®k
%Z/-/(dwdu)‘g’k/dy M dsVV (su; + (1 — s)w; —y)] Y, (fq"fp(w)f;‘fp(u))
J

—1

. <awk e 'awla)’I//N,ts Ayy - - 'aulﬂayl//N,t>
20 1 & !
- % P Z/-/(dwdu)®k /dy [/0 dsVV (su; + (1 —s)w; —y):|
j=1
—_  \®k
-V, (f, ) )

. //d’fidﬁ f,}hﬁ(y) /dv fg}iﬁ(v) (awk e 'awlawa,ta [T 'aulaul/fN,t)~

(3.25)
Therefore, dividing both equations by 2iA, we have the following equation

k k
Btmgv?,(ql, Pls-«-sqks Pk) + Pk qumﬁv,)t(cn, Pls - qks Pk)

= hImi(qua (fqhk.,pk) ea (fq?,m> YN a (fqz,pk) cd <fq?,171) ¢N~f>
j=1

d 1
1
+ W ; /../(dwdu)®k/dy [/0 dsVV(suj+ (1 —s)w; — y)]

—\ ®k
Vo (@ £, w)
. //d?idﬁ fa}“ffi(y)/dv fq}%ﬁ(v) (awk e 'aUJIa)"(/fN,Ia Ayy -~ aulav\//N,t>
ih? k &k
+ ‘7 /./(dwdu)®k ) [V(uj —up) — Vw; — w,-)] (S, ) 1, )
i
. <awk e 'awll//N,tv Ay * - Ay wN,t)~ (3.26)

for1 <k < N, px = (p1,..., px) and recalling B3 = N~ At this point we finish the
computation of the hierarchy for Husimi measure. O

3.2 Proof of the Uniform Estimates in Section 2.3

This subsection provide the proof of estimates for the error terms that appeared in the equa-
tions for m%‘)t. Note that in all the proofs below, we suppose, without loss of generality, that

the test function @ € C{° (R is factorized in phase-space by family of test functions in
Cy° (IR3) space.
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3.2.1 Proof of Proposition 2.4

Proof For fixed k, we denote the vector x; = (x1,---,xx) for each x; € R3 with j =
1,---, k. Then we estimate the integral as follows

‘/'/(dqdl))qukds(m,m,-..,Qk,Pk)-Rk

k
<t Y fof @adp® 9,0 i g o
=1

'<Vq_/ (a(fqz,pk) ’ "a(fqul,pl))dwv““(fq}}mpk) ’ "a(fquLvPI)l’//N’t>
k

Z //(dqdp)®k qu¢(q17 pl7 ctt qu pk)

j=1

k
. /./(dwdu)®k l_[ (X(wy,—un)e(z% + X(w,fu;z)e-()h)
n=1

Wp — Up — Loy (w,—
'ngf( Yl\/ﬁq’l)f< nﬁ‘]n)ehpn (wp—uy) <awk"'awH//N,t’auk"'auH//N,t)

k
< pl3k Z/-/(dqdwdu)@’k
Jj=1
k .
‘ /./(dp)@k ]_[ (X(wn—un)E-Qh + X(w,,fu,,)eﬂ‘r;) qu<P . ¢ B Pn-(Wn—tn)
n=1
Wn — qn Un — qn
s (0 |l ()
RNV NG
k
— pr2k Z/-/(dqdwdu)®k
j=1
k .
’ /../(dp)@k ]_[ (X(wn—un)éf?h + X(w,,fu,,)e.(z;') qu® . e Pr-(Wn—it)
n=1

o ()
|, (3.27)

— hl—%k

||awk o 'aw1WN,l|| Hauk o ’au]wN,t“

n#j

Naw - aw Y| g - - aw v

where 25 is defined as in (2.10) and used the fact that

wj —q; 1 Wi —q;j
o (158) <~ o (5).
RN NG Vh
Now, the product term ]_[ﬁ:1 (X (wn—un)en + X (wrun)eﬂg> in (3.27) includes a summation
of C(k) terms of the following type

Xwi—uney = Xwe—up)e2n X wepi—uernes, X (wp—up)es » (3.28)
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where £ € {1, ..., k}. Thus, to continue from (3.27), we have

‘//(dqdp)@kvqk@(ql,pl,...,qk, P) - Rk

k
1 3
<Ch7_7k§ dgdwdu)®*
< l_Org?X//(qwu) 1—[

o) (5m)|

®k
: ‘ //(dp) (X(wl—ul)é-(?n te X(wz—uz)eﬂhx(wz+1—w+1)69%

() ()

e X(wk—ukﬁﬂ%) Vg, @ - e Pr (M)

. ”awk "'awlet” ||auk "'aquNt”

<Ch:™3 "Z max //(dqdwdu)‘g’k ]_[

n#j
o ()|l ()
. ’/"/(dp)(gex(w]—ul)eﬂh

i £
elﬁ Zm:] P (Wi —ttp)

()1 (")

= X we—upes,
®(k—1)
//(dp) X(wz+1*w+1)69%
it . _
.. X(wkiuk)eg%e A Zm:k—l Pm- (Wi um)vl]j qj’

) ”aW : "“WIWNJ” ”auk Cr Gy ‘/fN,z”

Applying Lemma 2.5 onto the (k — £) terms, we have

k
3
<C oT?fkhz gkt 1-a)ke= e)s//(dqdwdu) (X wi—unen X (we—up)e2n)
=175
d Wy — g Up —¢q —-q
() (o) () (52
nki Vh vh

Nawg -+ aw ¥ | |au - awvn . -

For a fixed ¢, observe that since f is compact supported, by using Holder’s inequality in w

and u variables, we have
W — 4n Un — 4n
! ( NG ) ! ( 7 )‘

Hawk t 'aw]wN,tH Hauk t 'aule,tH

k

//(dqu)dM)®k (X(wlful)E.Qh e X(wgfug)e.(?ﬁ) l_[

n#j
Jor ()l ()
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k

Wy — 4n Up — qn
= //(dqdli)dbl)®k (X(wlful)EQh cee X(qug)eﬂh) l_[ f ( ) f ( )’
n#j vh Vi
k
) ‘Vf< >‘ ‘f( ) H |wm*qm|§\/ﬁRX|um*‘1m‘S\/ﬁR

”awk A YN ” “auk “Au YN ”

< // (dq)®"[ // (dwdi)® (X wi—unye@n = X we—un)e2n)

nlj,- ; <wnd—ﬁqn) ; <u;ﬁq> ?

[ ez

[//(dw)®/< 1—[ X — i<k 1wy - @ | }

m=1
By change of variables and then applying Lemma 2.4, we have

k

& [ o (dwdu)®k< lwl%<hn+%---XWW&H%)Hlf(wn»f(ﬁnnz

n#j

’ |Vf (ﬁ1)|2 |f‘(l/7 :| //(dqd'l,l))@k l_[ [wim— qm|<\/>R ”awk awIWNt”

m=1

<| [~] @wdn)®* ( x X
_[//( ) ( i1 | <2 IW*ﬁZIShH%)

1

[117 @ f @R |9 F @) 17 @) } (3.29)
n#j

Observe now that by using Holder inequality with respect to i, we get, forevery 1 <n <k,

[ w1 @R [ LGP

</c1~ 1 @) (/d~ X )3 (/dN |f(~)|6>%

= ) Gomt/ % ity <netE ol (3.30)
1

< cpret! (/ dwn|f(wn)|2> (/d’ﬁn |f(ﬁn)|6>’

S Ch20{+1’

where we have used the fact that f € H!, it is also embedded in the L space. Similarly,

~ i~ ~ \|2 ~ \ 2
[ x e 195 @)1 @)
~ ~ \ 2 ~ ~ |2
= /dw/‘ V.1 ()] /duj A Ch]
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1

E/O‘lw"‘vf (@) (/dﬁj X\w_,-—ﬁnsn“%) </dgj |f(b7"’)|6>\

< Ch2a+l.

Putting this back into (3.29), we have

k

/"/(dqudu)®k (X wi—une@n X (we—ur)e2n) 1_[

n#j
Jor ()l ()

< Ch(a+%)[.

() ()

”awk o 'awle,t” ”auk o 'aulth,l“

Then, from (3.28), we have

k
=C max h2— k(1) (k=Os+(a+3)0

— 0<l<k
j=1

‘/-/(dqdp)g’kvqk‘p(m, DPls---sqks Pk) - Ry

— Ck max fi2—3k+(1-)k=0s+(@+35)E

0<e<k
3.31)
Therefore, by picking s = {zl(ltzg)—‘ we arrive immediately that
‘/-/(dqdp)®kvqk¢(q1, Ple.-o G pk) - Ri| < Chrt@=DE
Therefore, for all § < 1, we choose % < o < 1 suchthat (@ — 1)k < —6. O

3.2.2 Proof of Proposition 2.5

Proof Let @ be an arbitrary test function, then the remainder term R | can be written explicitly
into

‘//dqldmvmmql,m)ﬁl

= ‘//d%dplvpﬁ(ﬂh,m) : <// dwdu//dydv//d%dpz
1

. [/0 dsVV(su + (1 —-s)w — y) - VV(gq — 612)]

CfR ) ) OV R ) (away Y, auavw,A) ‘

//dqldplvp,q)(ql,pl%//dwdu //dydv//dqzdpz
1

| / dsVV (s + (1 = s)w = y) = VV(g) — ga) | kim0
0
w—dqi u—dqi Y —4q V—q2
f( \/ﬁ >f< \/ﬁ >f< \/ﬁ >f< Jﬁ ><away¢N,tylluQUWN,t>

@ Springer

1
=W




24 Page 32 of 41 L. Chenetal.

Then, utilizing (2.7), we may get

//dCJIdPIVm(P(CIl,pl)-//dwdu //dydq2
1
. |:/ dsVV(su+ (1 —s)w—y)—VV(g — é]z)]
0
_ T u—a\ _ 2
.f<w«/ﬁm)f(u\/ﬁql)egm.(w7u) f<y\/£12>’ <away1ﬂ1v’t,auaylﬁ1v,t)
//dﬂhdplvp]d’(m,pl)-//dwdu/ dydg,

1
. [/ dsVV(su+ (1 —s)w—y)—VV(g —y+ */ﬁaz)]
0

@2n)?

— n)’md

f (”’Jﬁq‘ ) f (“;ﬁq‘ )e%f"“w‘") f @)1 (away ¥y 1, auay ¥y ) |-

Then, we insert a term, namely VV (¢; — y) and use triangle inequality to obtain

f/dqldplvp1¢(q17 Pl)'//deM//dydaz

1
. / ds(VV(su +=5)w—y)—VV(g — y))
0

3,3
<(@2m)’h2

f (“’;ﬁm) 7 (“;ﬁ‘“ )e%m-<w—”>|f @) | {away¥n 1, auay oy )

3
+ 2n)’n2 //dfﬂdplvpl(p(‘]hpl)

-//dwdu //dydaz(VV(ql —y)—VVigi —y+ \/%Ziz))

f ("’J;‘) f (“;ﬁq‘ )e%""“‘"“>|f @) *laway ¥y o, awayyin 1)

=:13 + 115,

where we have used change of variable «/5172 = (y — ¢2) in the second term above.
We first focus on /73. We begin by splitting the integral on momentum, by using Lemma 2.5,

it follows
//dthdplvpld’(ql, p1) - //dwdu//dyd?[z (X(wfu)eQ% +X(w—u)eﬂh>

. (vv(ql —y) = VV(q —y+«/ﬁﬁz))f (w\;ﬁql> f (u:/gql>

3,3
IIz =Qm) h2

: e%m'(W7u) |f (q2) |2 (awayl/fN,h auawa,t)

<en'nith [ag [[ awa [ dy(‘ [ o eFr O o 9 )
w—qi\ ,(u—q1\
) () o 7 )

+ ’/dpl eRPIWTIOX e Vi @ (g1, p1)
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- ( [ il @ \2) s Y. auay v}

SCFL%+% /dq1 //dwdu/dy(l/dpl elﬁpl'(wiu)x(w,u)eggvm(D(ql,p])

w—4qi u—qi
)l ()
: |(away¢N,tv auawa,tM

=31 + ii3], (3.32)

+ ‘/dpl e P X o ie2n Vi @1, p1)

where we used the fact that VV is Lipschitz continuous, f has compact support, and the
definition of £2p in (2.10).

The next step is to use Lemmata 2.4 and 2.5 to bound the terms i3 and ii3;. Then we
examine what the appropriate terms « and s should be. By Lemma 2.5, we may bound the
term i3q, i.e.,

i3 < Cha*i+(1-ws /dql //dwdu/dy"f(wkql)f (u\—/}%]l)

< Ch%+%+(1—a)s/dq1 //dwdu /dy’f (w\;ﬁ%) f(u:/ﬁql>

Since we assume that f is compactly supported, by Holder inequality with respect to w and

u, we have we have that
1 w—q u—q\[*\?
31 ECthri*(l*a)s/‘d 1(//dwdu ( > ( ) )
7 " N
2\ 2
~ ( [ N § o T | P ) )
=cptati-os / dq1< / dw|f<ai>|2>

2
(a5t ([ 05 v ) )

where we used the change of variable VW = w— q1 in the last inequality. Now, since || f1l,
is normalized, we continue to have

| <away wN,tv auawa,t> |

laway v | lawaywn.i]-

2

Nl

< CR3taHi-as

1

2\ 2
o (ff 0 g e ([ 0 Tt s ))

< CR3t 3=

1
2
/dq‘ (//dU}duX|w—41‘SﬁRX|u—q1\§\/ﬁR (/dy ”awa.vlm\’,t”z) (/dy ||auayWNJH2>>
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1 —a)s 2
= Cptati-ws /dql //dydw X jw—g11< VR [away ¥ |

1 —o)s
= CRp3tatU-ws /dy//dqldw (ayl//N,,, X|w—q||§«/ﬁRa;a“’a}’V’NJ>

by Lemma 2.4
3.1 .
i31 < cratat-as /dY<ay¢N,t,awa,t)
N
= Cpon! <wN,,, ﬁw,,> < Rt (3.33)

On the other hand, from ii3; we have

3.1 A —
iz <CRIH / dan // dwdu / dy‘ / dpy RPI 0 X o, Bgr 1)

. f(w\;gh>f<u\_/>q}> |<awawa,tvauayle,t)|
dgi

h
//dwdu/d)’/dm X w—we2n | Vo ®(q1, p1)|

e
dgi

h
//dwdu/dy X(wfu)egh

) ()

Since f is assumed to be compactly supported, we have

1
2\ 2
3.1 w — {1 u—q
it faa ([ ansu (250 5 (450
ql( u Xw—weon|f NG f 7
2\ 2
. (//dwdu Xlwfql\gx/ERX\uquS\/gR </dy ”awayl/fN,z” Hauayl//N,zH) ) ,

where we use Cauchy—Schwarz inequality and Holder inequality.
Next, by change of variables as well as Holder inequality in respect of y, we have

1

2\ 2

<Ch¥*z (//dwdﬁx R )
lw—u|<h" "2

'/dy//d‘hdw X\wfql\Sx/ﬁR <ay¢N,tva:,away¢'N,t) (3.34)

1
—1 ~ ~\ 2 ~ ~12 2
e ([ dw i @R [dix o 1F@P)

where we applied Lemma 2.4. Observe from (3.30), we get

3,1
<Ch2"2

<away1pN,t7 auawa,t) |

3,1
<Ch2t:2

| <awawa,t» au“yWN,t) |

I (@) f )

|
iiz) < Ch*"2.
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Now we compare power of i with the one in (3.33). Namely,

a—%:(l—a)s—l. (3.35)

1
Therefore, we choose s = {21&-_25)" such that I73 is of order 1%~ 2. Now, focus on I3, we use

similar strategy as with /1.

1
I SCh%/dql//dwdu/dy/ ds
0

: (‘ / dp1 P TOL oy yee Vi (g1, p1)

VVEu+ (1 —s)w—y)—VV(g —y)

‘f ("’ ‘“) f (”;ﬁ‘“)‘ (/ daz|f<6z>|2> | away ¥n s, auay ¥,
<Ch2 /dql//dwdu/dy
/0 dslsu + (1 —s)w — q1|( ‘/dpl ehm (w— u)X(w e Y, ®(q1, p1)
w —{q] u—q
)l () ()
Xjw—gi1<VARX u—q11<v/FR ||aw“y\”N,t|| ““u"y‘pl\’,t“
=:!i3 + i3 (3.36)

+ ’/dm e%”"(”“”)x(w—u)eghvpl05(611, p1)

+ ’/dpl en P X o iean Vi @(q1, p1)

Again, by Lemma 2.5 and the bounds for number operator and localized number operator,
we have for i3, that

3 1 w — u —
szt o ot [ 1ot (52) /(50
i3y <Ch? q1 wdu A slsu+ (1 —s)w—qil-|f NG f NG

'X|wfql\§«/ﬁRX|u7q1\§\/ﬁR/dy ”“w"y‘/’N,tH ||“u“y‘//N~tH
1
2)2

1

§Ch3+%+<‘—“)*‘/dql (//dl?}dﬁ/o ds |s7 + (1 — s)@|? - 'f(w)f(’u“)
2

(a5t o5 Y 1))

1

. 1 2\ 2
<Cp3tati-os (Z/dfﬁdi?/ ds |sii + (1 — s)@)? - 0 )

0

./dy//dqldw X|U)*LII|S\ER (ayd/N,,,a:,awawa,,)
Sch(lfa)sfl’

o=
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where we used Lemma 2.4 and the bounds for number operator. Similarly, for ii3>, we have

, 1
iizp <Ch2 /dfh //dwdu/dy/ dslsu + (I —s)w _‘11|/de |X w—wye2n Vpi @(q1, p1)|
Jo

w—qi u—gq
o () 1 () o anin-iein syl e

<C %/dql//dwdu/dy/ dslsu + (1 = s)w — q1 X w-weey, | f (w;ﬁql)f(u:/ﬁql)‘

Xjw—qi1<v/ARX lu—qi|<V/AR lawaywn.i| [auayvn.|
1
<w ql > f (u 7 ql )
Vi Vi

2 2
/dth (//dwdu/ X(wu)es?h)

1
H
’ <// dwdu X\w—qn\sﬁRX\u—qllsJﬁR/dy lawayyn.i| awayvn.q ”)

1

2

<CHt1 (//dwdu/ ds|stt + ( S )
—u|<h 2

/dQI (//dwdu)(lw q||<~/FLR Ju— ql\<fR/dy ”awaﬂ/th” ”auav‘/thH>

By Lemma 2.4 and the bounds for number operator, we have

<ch! (//dwdﬁ/ol

Then, by using similar computation in (3.30) and the assumption that f is compactly sup-
ported, we may get

m\ 1w

o—

iisp < C ha_% .
Therefore, I3 and I3 together, we have the bound of order h"‘_% foro € (%, 1). O

3.2.3 Proof of Proposition 2.6

Proof To calculate the bound in (2.21) for ﬁk. It has automatically an 1/N as a factor,
therefore, we expect it has better estimates than the other remainder terms. More precisely,
we can split the integrals as before,

' [ aap® @wan e p.....a. pk)Z[vm, ui)—v<w,»—w,»>]
J#i

—\ ®k
. (fqh:p(w)fqh:l;(u)) <6lwk t 'aw]wN,h auk t 'au|wN,t)

N /~/(dqdp)®k(dwdu)®k¢(q1, Plo--vs Qs PK)
k

> [vw,- —up) = V(w; - w,-)] (1 7y w) ™
J#i
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k
! l_[ (X (wn_”n)e-Q;L + X(wn*”rl)egh) (awk o aw] WN,Is auk e aul 1/[N,t>

n=1

)

where §2j, is defined as in (2.10). Since V € W2 and recall i* = N~!, we have

7 (wn\/_ﬁQn ) 7 (un\;ﬁqn ) )

. k
<€ WVl 3 [of @qauan® T

n=I1

”awk e 'awl]//N.t ” ”auk o ‘aLtM[/N,IH
k

i k
[ (X<w,,—un>e:2;, + X(wu—u,,>e9n) /./(dp)@(ﬁ Lot o=t (g py)
n=1
3 * w, — ¢ Up — ¢,
3—35k ®k n — Y4n n —4n
<o [ waswan® [1]r (2272 1 (5%

”awk cQu YNt H ”auk cly YN “ : ‘ /'/(d]?)®k

(X(wlful)es?h ce X(w[fug)eﬂhX(lequl)e.Q% e X(wk 714;()6.(2%)

qu@ . e%pk'(wk—“k)

_3 [ [ iye (w0 —
—CK3 2k Olgfjk// (dqdwdu)®k // (dp)®lx(wlfu1)eﬂﬁ e K wg—upyeszy €T >t Pm- (W —ttm)

R(k—¢
//(dp) ¢ )X(wul—uul)é-(?%

iyt . _
.. 'X(wk—uk)eszgeh P mek—t Pm- (Wi u”')vqj¢>(9h Pl G PK)

Wn — 4n Un — qn
() (5")
where we apply similar argument in (3.28) in the last inequality. Note here that the constant
C above is dependent on k. Applying Lemma 2.5 we have

_3 _ —0s
=€ OIE?EI( A /~/(dqdwdu)®k (X(’Ulﬂtl)e-‘?h T X(wfw)eﬂh)

‘ ; (wnjﬁqn) ; (u\;ﬁq)

_3 _ —0s
=C max p37 2k k=05 /'/(dqdwd”)®k (X(w1*u1)69h T X(wsz)eﬂh)

k

11

n=1

Hawk cQu YN ” Hauk cau YN ” ,

“awk o 'awl'(/fN,t ” ”auk o aull[fN,t ”
n=1
0=<f=<k

k
Wy — ¢, Up — ¢

’ 1_[ f( r:/ﬁ n) f( n\/ﬁ n)‘anq’1|<\/ﬁRX|Mn‘In<\/ﬁR

lawy - - aw ¥ | wy - - auy ¥ o

n=1
_3 _ _
=¢ OIE?EI( h3 Tt /./(dq)®k|:/./(dwdu)®k (X(wlful)EQn "'X(wzﬂtz)eﬂh)

Tl () (*5%)

1

.

11

n=1
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[//(dw)® l_[X\wn anl<VhR ”awk “wﬂpNt” :|

—C max h3+(] —a)(k— @)s//(dq)®k

0<t<k

o (A K X X
[//( idir) ( |1~ |<h*+ D | — uzl<h‘”2>

k !
1 @)f(ﬂn)ﬁ]

n=1

k
[/’/(dU))@k l_[ X‘wn—qn\ix/ﬁR ”awk C Ay YNt ||2 j|
n=1

<C max h37%k+(1*Of)(k*l)er(aJr%)[
0<e<k s
where, as in the proof of Proposition 2.4, we applied Lemma 2.4 and (3.30). Therefore, we

obtain the desired result by choosing s = "21(;122) -|

Next, we switch to estimate (2.22) for Ry Repeated the steps in the proof of Proposi-
tion 2.5, we have

‘/-/(dqdp)@kvpkwa, Plse o Qs ) - Ri

(deu)®kVp,-q§(qlaPl,--~s9k,Pk)‘//dydvﬂko+lde+l

1
/0 ds [VV (suj + (1= )w; — y) — YV(gj — )+ VV(gj — ¥) = VV(q) — qie)]

————\®k I
' (fqrfp(w)fq)%p(”» fqhkﬂ,pkﬂ(y)fq)zﬂ,pkﬂ ) (awk Ay Ay YN g, Gy "'au]aUI/vat> :

Appling the h-weighted Dirac-delta function as in (2.7), we have

3
= @2m)’h "2 --/(dqdp)®k(dwdu)®kvp,¢(q1,pl, ~~.,qk,pk)~//dyqu+1

1
/0 ds [VV(suj+ (1 —s)w; —y) = VV(g; —y) + VV(g; — y) — VV(gj — qis1)]

— .\ ®k _ 2
() 7, 0) ’f (7y ;;1)‘ -y s - gy )

o @, D pr. g poeh e

k k
< @n)’ K33k Z/-/(dqdwdu)®k I1
j=1 n=l

// dydgess

1
. (/0 ds [VV(suj+ (1 —s)w; —y) — VV(g; — )|

+ ‘vv(q_/ - -=VVigj—y+ */ﬁa’”l)))
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‘f (wn\/_ﬁqn> f <unJﬁqn> |f(zik+1)|2|(awk "'aw]ayWN,taauk "'aulay‘//N,r)|~

Using the fact that V'V is Lipchitz continuous and that f is compactly supported, we have

k k
< @n)’RP3 Z/-/(dqdwdu)®k 1
j=1 n=1
1
//dyd?jk_,_l . (/0 ds |SM]' + 1 —=s)w; —qj| + ‘«/777@'1(4.1‘)

Wp — qn Uy — qn ~ 2
‘f( NG )f( NG >‘|f(41k+l)|

X =gl <V FR X i —gn | </AR) ”"Wk S aw Ay YN ” ”“uk Sy Ay YN ”
=4+ 1l

//(dp)®kvpj¢(ql’ Ploeees ks pk)eﬁpn'(wn—un)

Focusing on 14, we split the integral as follows

k
[ (X (wy—up)e2, + X(wn—umeﬂn)

n=I1

k
I = Q)R- 3k Z/~/(dqdwdu)®k
=1

// @Ap)®* v, ®(q1. p1. ... qi. pi)

i k
s eF Linet P (W —ttm)

1 _ _
//ddeNkH/O ds [suj + (1 = s)w; — ;| f(w”ﬁq )f(” ﬁq >‘|f@+1)|2

’ Xlqunlsx/ﬁRan—qu\/ﬁRl H“wk "'“WI“)W[’NJH H“uk C G Ay YN g ” :

where £2j, is defined as in (2.10). We do similar computations for /iy,

k
[T [+ @™ (X + Xn-urean)
n=1

k
1y =Qm)3H3— 2k Z/~/(dqdwdu)®k
j=1
Vp, ®(q1. Pt -, Gks Pr)

J] 4 Vi |1 (wjﬁ") f (”J;)‘ 1f G0 P

Xy —gu < AR lip—ga <R @ @@y ¥ | aw - awayyw i -

e Pa-(wn—itn)

Repeating the proof of Proposition 2.5, namely in (3.36) and (3.32), as well as the proof for
estimate (2.21), we eventually obtain

L +1I; < C max h%%kﬂlw)(k%)w(a%n,
T 0<e<k

where the constant C depends on k. As before, we choose s = {zl(ltzg)—‘ and choose « €

(% 1) such that (@« — 1)k < —§, and we obtain the desired estimates. O
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