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Abstract
Food is a central element of humans? life, and food preferences are amongst others
manifestations of social, cultural and economic forces that influence the way we view,
prepare and consume food. Historically, data for studies of food preferences stems
from consumer panels which continuously capture food consumption and
preference patterns from individuals and households. In this work we look at a new
source of data, i.e., server log data from a large recipe platform on the World Wide
Web, and explore its usefulness for understanding online food preferences. The main
findings of this work are: (i) recipe preferences are partly driven by ingredients,
(ii) recipe preference distributions exhibitmore regional differences than ingredient
preference distributions, and (iii) weekday preferences are clearly distinct from
weekend preferences.
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1 Introduction
Italians are ?Macaronis”, the English are ?Roastbeef ”, the French are ?Frogs” and the Ger-
mans are ?Krauts” []. In other words, food is often used to define and differentiate social
groups. Claude Fischler [] points out that human beings mark their membership of a
culture or social group by asserting the specificity of what they eat or by defining differ-
ences with others. Eric B. Ross describes diet as an ?evolutionary product of environmental
conditions and of the basic forces, especially social institutions and social relations, that
determine their use” []. Work by Manuel Calvo [] observed that in situations of migra-
tion, certain features of cuisine are sometimes retained even when the original culture
and language have already been forgotten. This suggests that culture and diet are deeply
connected. Understanding dietary patterns and food preferencesa of humans is therefore
central to several research communities. It is not only relevant from an anthropological
and sociological view point, but also from a medical point of view since food preferences
and diet obviously impact health.
Predominantly, studies of offline food preferences are based on surveys and consumer

panels which continuously produce longitudinal behavioral data on the consumption be-
havior and preferences of individuals and households []. However, generating this data
is a time-consuming and costly process and despite its strengths it also suffers from limi-
tations such as high drop-out rates, high latency or Hawthorne effects.
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Research objectives and methods. By contrast, in this work we leverage server log data
from a large online recipe platform which is frequently used in the German speaking re-
gions and present a multi-dimensional approach for exploring users? online food prefer-
ences.We infer the popularity of recipes and ingredients by counting the number of times
each recipe or ingredient is visited from a certain geographic region within a certain time
window.b These region- and time-specific popularity distributions are treated as the ob-
servable outcome of users? online food preferences and allow us to explore the nature and
evolution of online food preferences using well established statistical methods. Amongst
others, we apply (i) power law fittingmethods by Clauset et al. [] for explaining the intrin-
sic statistical properties of recipe and ingredient popularity distributions, (ii) correlation
and similarity measures for explaining spatial food preferences and (iii) a stability mea-
sures [] for exploring dynamics of temporal food preferences.
Concretely, we use these methods to explore the online food preferences of users on the

following four dimensions:
• Recipe preferences. What are the intrinsic statistical properties of recipe popularity
distributions? How general are those properties - i.e., do the recipe popularity
distributions of different geographic regions reveal similar statistical properties? How
do recipe popularity distributions differ from the popularity distributions of other
types of online content (e.g., YouTube videos or websites in general)?

• Ingredient preferences. Do the ingredient popularity distributions of different regions
reveal information about users? food preferences or are they just an artifact of users?
recipe preferences and ingredient distribution over recipes? What are the intrinsic
statistical properties of ingredient popularity distributions? How general are those
properties - i.e., do the ingredient popularity distributions of different geographic
regions reveal essentially the same statistical properties?

• Spatial food preferences. What is the relation between the geographic distance of
regions and their online food preferences? Are online food preferences of
geographically close regions more similar than those of distant regions?

• Temporal food preferences. To what extent do online food preferences change over
time - i.e., change during the week or over seasons?

Contributions. The main findings of this work are: (i) Recipe and ingredient popularity
distributions are heavy tail distributions and can be best approximated by truncated power
law functions. The truncation is stronger for very popular recipes compared to popular
ingredients. We can observe this behavior on a macro level (i.e., in the aggregation of all
German-speaking regions in Europe) as well as on ameso level (i.e., in individual regions).
(ii) Recipe preference distributions exhibitmore regional differences than ingredient pref-
erence distributions. This suggests that food cultures manifest themselves more via the
way food is combined and prepared, rather than what a culture ingests. (iii) Recipe pref-
erences are partly driven by ingredients and (iv) weekday preferences are clearly distinct
from weekend preferences.
Our work thereby shows that recipe visits as well as the inferred ingredient visits repre-

sent a preliminary, yet promising, signal for food preferences of human populations, since
(a) our observations can in part be linked to real-world events, such as the asparagus sea-
son, and findings from offline studies and (b) our observations are fairly consistent on a
macro and meso level which suggests that the observed online preference distributions
can be reproduced at different scales.
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Outline.We begin by describing our dataset in Section . In Section  we focus on inves-
tigating the nature of online food preferences on the four different dimensions described
above. We discuss our main findings in Section , present a review of related work in Sec-
tion  and finally conclude our work in Section .

2 Description of the dataset
We analyze server log data from the largest online recipe platform in Austria, ichkoche.at.
The server logs describe how frequently a recipe has been visited within a certain region.
A visit is defined as one or several page requests from the same IP address within the
same session. We use visits rather than page hits or views to get a more accurate picture
about users? recipe interests rather than their browsing practices. The , recipes
have been visited by , different regions around million times between August 
until November . In addition to the log data, our dataset also contains information
about the ingredients of recipes.
Even though the platform is from Austria, other German-speaking countries such as

regions in Germany and Switzerland are prominently included (Bavaria, Zurich, Stuttgart,
Hessen, Berlin,Worms, Bern and Saxony belong to the top most active regions). Hence,
we focus on data from themain German speaking regions in Europe - i.e.,  federal states
in Austria (AT), Germany (DE) and Switzerland (CH).
Figure  shows the number of visits for each of the  German speaking regions in our

dataset on a log scale and the normalized entropy of the recipe and ingredient frequency
vector per region. In order to be able to compare the visits of recipes and ingredients,
we normalize the entropy by the logarithmic length of the vector since the number of
recipes is much higher than the number of ingredients. A low entropy indicates that clear
preferences have emerged (i.e., some recipes or ingredients are much more popular than
others), while a high entropy indicates a more even distribution (i.e., many recipes or in-
gredients are equally popular). We can see that ingredient preferences are more focused
than recipe preferences according to their lower entropy values. However, the list of re-
gions ranked by their normalized recipe and ingredient entropy are strongly correlated
(Kendall τ = .). This is not surprising since it simply shows that regions which have

Figure 1 How active are different regions and
how focused are their recipe/ingredient
preferences? This figure shows the normalized
entropy of the recipe and ingredient frequency
vectors per region versus the number of visits per
region on a log scale. Low entropy means that there
is a high regional focus on just a few
recipes/ingredients while a large entropy indicates
a more even distribution. We see that ingredient
preferences are more focused than recipe
preferences according to their lower entropy values;
however, they are strongly correlated (Kendall
τ = 0.95 for the list of regions ranked by their recipe
entropy and ingredient entropy). Furthermore, we
can observe that the most active regions are in
Austria (due to their higher number of clicks) and
that the more active a region is, the less random
their recipe and ingredient preferences are
(according to their lower entropy values).

http://ichkoche.at
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a narrow recipe focus also have a narrow ingredient focus. Furthermore, we can observe
almost prefect linear relationship between the activity of a region and its recipe and in-
gredient entropy. This indicates that the more active a region, the less random its recipe
and ingredient preferences. One potential explanation is that the platform ranks popular
recipes higher which will make them even more popular. Therefore, the more users from
a region use the platform the more skewed the preference distribution which we observe.
The most active regions are in Austria since the platform originates from this country.

3 Online food preferences
In this section we investigate online food preferences along the four introduced dimen-
sions - i.e., recipe preferences, ingredient preferences, spatial food preferences and tem-
poral food preferences.

3.1 Recipe preferences
Approach. To approximate the recipe preferences of one or several region(s) we count the
number of times users from that region(s) have visited each recipe. We explore the in-
trinsic statistical properties of the popularity distributions of recipes, since the exact form
of the popularity distribution often allows to infer which mechanisms might have gener-
ated the data [, ] and may therefore allow to gain insight into the underlying process
which drives the evolution of recipe preferences.We do not only explore the properties of
these distributions on a macro level (i.e., recipe preferences aggregated over all German-
speaking regions in Europe), but also on ameso level (i.e., recipe preferences per region).
The latter can help us to answer the question whether the shape of online recipe pref-
erences of individual regions differs from each other and from the global, accumulated
recipe preferences. That means, we explore whether different geographical regions pro-
duce popularity distributions with similar intrinsic statistical properties.
In the past, many researchers found that the power law model can best explain these

distributions which emerge when users engage with content on the Web (cf. [, –]).
Power laws are frequently appearing in social sciences, physics, biology or other sciences
[] and the probability density (mass) function of the power law distribution is defined as
f (x) = x–α . Hence, we can hypothesize that our distributions at hand are also heavy tailed
distributions that will most likely follow a power law model. We test this hypothesis as
follows:
A simple approach to fit a power law function to data is using a least-squares linear re-

gression. However, this method can introduce strong biases and hence, we usemaximum
likelihood estimationc as suggested by Clauset et al. [] and implemented and extended
by Alstott et al. []. Since for empirical distributions it is often difficult to find a good fit
for the complete range of values, Clauset et al. [] suggest that the power law might only
hold for values that are greater than some given xmin value - i.e., the part of the distribution
that captures popular items. Thus, we specifically focus on investigating the tail (popular
recipes and ingredients) of the distribution. We use the Kolmogorov-Smirnov statistic as
suggested by Clauset et al. [] to find the appropriate xmin value that is the lowest value
for which the power law model produces a good fit. Nevertheless, other candidate func-
tions that produce heavy-tailed distributions exist. Hence, we do not only fit the power
law function to our empirical data, but also other candidate functions: (a) the truncated
power law function which has an exponential cut-off and is defined as f (x) = x–α exp(–λx),
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(b) the lognormal function defined as f (x) = 
x exp[– (ln(x)–μ)

σ ] and (c) the exponential func-
tion defined as f (x) = exp(–λx) which represents the lower boundary for heavy-tailed dis-
tributions. Note that for each distribution the appropriate normalization constant C is
necessary such that

∑∞
x=xmin

Cf (x) = . We would like to point the interested reader to []
and [] for corresponding normalization definitions. In case of the lognormal distribu-
tion no discrete form for the theoretical distribution is known. Thus, we resort to the
continuous counterpart for approximation by utilizing a rounding method that sums the
probability mass from x – . to x + . for each data point. For comparing the candidate
functions with each other - regarding their statistically significant differences - we use
likelihood ratio tests.
One needs to note that power law fitting has some limitations (see, e.g., []). First of

all, it is often difficult to determine which distribution has generated the data since sev-
eral candidate functions might produce equally good fits. Secondly, we can only assess
the goodness of fit in relative terms - i.e., we only say that a function A fits better than a
function B. Thirdly, by automatically calculating xmin we potentially reduce the distribu-
tion to a small portion of the tail. If the tail is small enough, the power law function will
always produce a good fit, but a large portion of the data will be ignored. In order to tackle
this issue, we try to contrast the best fit for the whole distribution with the best fit for the
tail. Finally, many different hypotheses exist that may explain why power law distributions
emerge. Nevertheless, in our context some hypotheses are more plausible than others.

Macro results. Figure A shows a clear heavy-tailed behavior for the empirical popularity
distribution of recipes since the tail of the complementary cumulative distribution func-
tion (CCDF) is heavier than one would expect by an exponential function. The figure also
shows that the recipe popularity distribution does not follow a power law for the whole
range of values but can best be approximated by a truncated power law function compared
to other candidate functions. This is imminent as the truncated power law function is a
statistically significant better fit to the empirical data compared to the pure powerlaw or
lognormal function. The likelihood ratio tests between the fit of the truncated power law
function and the pure powerlaw function (normalized log-likelihood ratiod of R = .
with a p-value < .) as well as between the truncated power law function and the log-
normal function (R = . with a p-value < .) indicate that the truncated power law
function best approximates the observed distribution.
When limiting the range of values for finding the best power law fit (≥ xmin) we see that

the best xmin value is very high (xmin = ,) which again indicates that power law dis-
tributions do not fit well for the whole range of values (cf. Figure B). Since the remaining
tail of the distribution is short, we can not find statistically significant differences between
the fits of the power law, the lognormal and the exponential function.
Several mechanisms such as the aging [], information filtering [] and content-

fetching behavior [] have been proposed to explain the sharp decay from the straight
power law in the tail. In [] the authors investigated the statistical properties of the pop-
ularity distributions of YouTube and Daum videos and argue that the so-called ?fetch-at-
once” model originally introduced by Gummadi et al. [] is most likely to explain the
truncation. The model suggests that in a power-fetching scenario where users request the
same content item millions of times (e.g., popular websites such as CNN) no truncation
can be observed; however, if the same content is only fetched once or a limited number
of times a cutoff can be observed. Cha et al. [] conclude that it is plausible that users do
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Figure 2 What are the intrinsic statistical properties of recipes? popularity distributions?The figure
visualizes the CCDF of the empirical popularity distributions of recipes as well as the best fits for several
candidate functions. The truncated power law function is the best fit for the whole empirical distribution (cf.
panel A). When analyzing only the tail of the empirical distribution (cf. panel B) we can see that the best xmin

is very high (xmin = 20,784), which indicates that power law is not a good fit for the whole range of values.
Since the remaining tail of the distribution is short, we can not find statistical significant differences between
the fits of the power law, lognormal and exponential function.

not watch the same video millions of times and that the limited fetching effect produces
the truncation. It seems to be plausible that users of recipe platforms also fetch the same
recipe a limited number of times, since the recipes do not change. If this holds true, the
truncation in Figure may also be explained by the finite-size effect []meaning that there
is some upper limit (e.g., the number of users) that prevents themost popular recipes to be
as popular as a power law distribution would suggest. A recipe can never be more popular
than the number of users of the platform.

Meso results. Figure A shows the CCDF of the recipe popularity distribution of  dif-
ferent regions in Germany, Austria and Switzerland. We fit our candidate functions (log-
normal, exponential, power law and truncated power law) to the region-specific popular-
ity distributions. First, we use a fixed xmin (xmin = ) to cover the whole range of values for
each region separately. We depict the corresponding power law fit parameters in the first
row of Table . By comparing the power law fits of each region to the corresponding can-
didate functions, we can see that in almost all cases the truncated as well as the lognormal
function are better fits to the data than the power law function (in  out of  cases the
likelihood ratio test exhibits a p-value below the significance level of .). This confirms
our macro results on a regional (meso) level.
Next, we extend our analysis by finding the best xmin parameter for each region sepa-

rately (second row of Table ). Similar as in the macro-level analysis we again end up with
extraordinary high xmin values. On average xmin is so high that the remaining tail only cov-
ers around %of all potential xmin values (i.e., bins). Again, this indicates that the power law
function can only explain a very small part of the tail of the region-specific distributions.

3.2 Ingredient preferences
Approach. For analyzing ingredient preferenceswe infer the popularity of ingredients from
the popularity of recipes - e.g., if two users visit two distinct recipes which both contain
salt, than each recipe would have the popularity  since it received one visit, while salt
would have a popularity of  since it received two visits. Therefore, recipe and ingredient
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Table 1 Parameters of the best power law fits for the recipe and ingredient preference
distributions

α std xmin std

Recipes (all) 1.678 0.224 1.0 0.0
Recipes (best xmin) 2.762 0.277 342.3 1428.403
Ingredients (all) 1.523 0.077 1.0 0.0
Ingredients (best xmin) 1.883 0.712 720.94 3914.296

The fits are calculated for each region independently in two ways: (i) setting xmin = 1 and fitting on the whole range of values
and (ii) finding the best xmin value for the best power law fit. We report the average values over all regions and the
corresponding standard deviation.

popularity distributions are obviously interdependent and it is unclear if the inferred pop-
ularity distribution of ingredients reveals information about the online food preferences
of users or if it is just an artifact of the ingredient universality distribution (i.e., in how
many recipes ingredients are used) and the recipe popularity distribution (i.e., how often
each recipe was visited). To address this question we (i) analyze the universality distri-
bution of ingredients and (ii) simulate the ingredient preferences of a synthetic region as
follows: A synthetic region consists of a set of agents who randomly select recipes from a
randomly generated recipe-popularity distribution with the same shape as our empirical
recipe distribution. For each selected recipe we extract all its ingredients from our data
and increase the visit count of those ingredients. Repeating this process allows generating
a synthetic ingredient preference distribution which reflects how the visits would be dis-
tributed over ingredients if the recipe selection process would be random.We assume that
visits are independent and use the median number of visits of all regions as the activity
level of the synthetic region.
We contrast the ingredient preference distribution which is generated by the synthetic

region with the empirically observed ingredient distributions. If the shapes of the two dis-
tributions do not differ significantly, we can conclude that ingredient popularity prefer-
ences are an artifact of recipe popularity and the distribution of ingredients over recipes.
Otherwise, we may conclude that external forces such as users? ingredient preferences
or seasonality of ingredients impact the recipe selection process. In other words, if users
recipe selection process is partly driven by ingredients, we expect the empirical ingredient
distributions to differ from the synthetically generated one in the sense that they should
be more focused towards fewer ingredients than the synthetic one.
To investigate the shape of the popularity distribution of ingredients on a meso and

macro level we adapt the same approach as for recipes which we described in the previous
section.

Macro results. In the previous section we have shown that the recipe popularity distri-
bution is best approximated by a severely truncated power law (cf. Figure ). However,
it is unclear how the ingredients are distributed over recipes (i.e., in how many recipes
each ingredient is used). That means, how many ingredients are so universal that they
are used in almost all recipes and how does this universality decrease? Figure D shows
that the universality distribution of ingredients follows a truncated power law (at least for
the most universal ingredients with xmin ≥ ). This is also imminent by the results of the
likelihood ratio test which indicates that the fit of the truncated power law function is
a statistically significant better fit than the pure powerlaw, the lognormal and the expo-
nential function; all p-values are below the significance level of .. This observation is
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Figure 3 What are the intrinsic statistical properties of ingredients? popularity distributions?We
visualize the empirical CCDFs coupled with corresponding candidate function fits. The popularity of
ingredients clearly follows a truncated power law when looking at the whole range of values (cf. panel A).
When only focusing on the most popular ingredients (> xmin) the truncated power law function as well as the
log-normal function fit best as visible in panel B. For the synthetic ingredient popularity distribution which we
obtained by simulating a region with a random recipe selection behavior also the truncated power law and
the lognormal function are the best fits (cf. panel C). The universality distribution of ingredients follows as well
a truncated power law (cf. panel D).

in line with a study looking at the distribution of ingredients over recipes in cook books
[] as the truncation captures finite size effects (i.e., number of recipes is finite). We also
find that the mean number of ingredients per recipe is  and the median is , which is
similar to what was found in previous studies of cookbooks (mean number of ingredients
per recipe was found to be between  and  [] or between  and  [] for different
cookbooks and cuisines).
For the empirical ingredient popularity distribution we can clearly see that it follows

a truncated power law for the whole range of values (cf. Figure A, the likelihood ratio
tests between the distinct distributions all result in p-values below . indicating that the
truncated power law fit is the best one out of those we tested).We also find a truncation in
the ingredient popularity distribution, but the truncation is less sharp for ingredients than
for recipes (cf. Figure ). This can be derived from looking at the exponential cutoff of both
truncated fits: λ = .e– (/λ = .)e for recipes and λ = .e– (/λ = ,.)
for ingredients. One potential explanation for this might be that the popularity of recipes
is limited by the number of users of the platform, especially if they only fetch each recipe a
limited number of time. The popularity of an ingredient depends on the number of recipes
in which it is used (i.e., its universality) and the popularity of all recipes. Therefore, the
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finite-size effect is less pronounced in the ingredient popularity distributions than in the
recipe popularity distributions.When only focusing on themost popular ingredients with
xmin = , (see Figure B), we again find that the truncated power law is a statistically
significant better fit to the data than the power law function (R = . with p-value .).
The likelihood ratio test between the truncated power law function and the lognormal
function indicates similar good fits (p-value above .).
For the synthetically generated ingredient popularity distribution we find that the trun-

cated power law function is a better fit than the power law function (p-value below .).
The lognormal and truncated power law function are similar good fits (p-value of .).
This indicates, that on the first glance our synthetic ingredient popularity distribution
which is generated by a random recipe selection process does not differ from our empiri-
cal observations. However, this is only true for the most popular ingredients (such as salt,
sugar, butter or oil). When taking a closer look one can see two interesting differences: the
two distributions differ in () how unpopular ingredients are accessed by users and () the
growth rate of popularity. Concretely, we can see in Figure B andC that the best xmin value
is much smaller for the synthetic popularity distribution than for the empirical ones. This
indicates, in our empirical data the shape of the distribution which also contains unpop-
ular ingredients is different from the part which only contains more popular ingredients.
We can further see that the distributions as well as corresponding fits are slightly steeper
for the empirically observed ingredient preferences compared to the synthetically gener-
ated ones - the α parameter of the power law function is . for Figure B while it is .
for the synthetic data. From these two observations we can derive that the recipe selection
process of users seems to be at least partly driven by the ingredient preferences of users,
since the ingredient preferences which are generated via the recipe selection process are
more focused towards few ingredients and less focused towards others than one would
expect if the process would be random. This means that users? ingredient preferences re-
veal stronger favor or disgust for selected ingredients than we would expect to observe if
the recipe selection process would be random.

Meso results. Finally, to gain insight into the potential universality of the pattern which
we observed in our macro analysis, we repeated the analysis for each region separately.
We first fitted the power law and several other candidate function to the whole range of
values (i.e., xmin = ) of region-specific ingredient preference distributions (cf. third row in
Table ). By comparing candidate functions, we can see that for all regions the truncated
as well as the lognormal function fit the data better than the power law function (p-values
below .). Next, we estimated the best xmin value for each region and fitted different
candidate functions to the part of the distribution which exceeds xmin (cf. fourth row in
Table ). Our results show that in  cases the truncated power law function fits statisti-
cally significantly better our data than the power law function (positive likelihood ratio, p-
values below .) while in  regions it is worse (negative likelihood ratio, p-values below
.). In one case the fits are equal (p-values above .). The lognormal function equals
the power law function in nearly all cases () (p-values above .). This indicates that it
is indeed likely that the ingredient distributions of different regions have been generated by
the same underlying process, since we observe the same patterns on the macro and meso
level. Finally, we also observe that the popularity distributions of different ingredients tend
to be very similar, while for recipes we observe slightly more regional variability. This ob-
servation becomes not only apparent when comparing the different regional CCDF plots
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Figure 4 Are the recipe and ingredient preferences of different regions generated by the same
process? The figure shows the CCDF of the ingredient and recipe popularity distributions of individual
regions. The variable x on the x-axis corresponds to the number of visits, while the y-axis shows the number
of recipes/ingredients that have received equal or more than x visits. One can see that the ingredient
popularity distributions of different regions tend to be very similar, while for recipes we can observe slightly
more regional variability. This observation is also apparent when comparing the standard deviations of the
fitted α slopes (cf. Table 1) - higher for recipes (all) compared to ingredients (all).

in Figure , but also when comparing the standard deviations of the fitted α parameters
(cf. Table ) which is higher for recipes (all) compared to ingredients (all).

3.3 Spatial food preferences
One potential cause of shared online food preferences is geographical proximity since fre-
quent communication andmigrationmay explain the adoption of food preferences []. In
the following, we test the hypothesis that geographically nearby regions are more similar
regarding their online food preferences than geographically distant regions.

Approach. We compute the recipe and ingredient similarity between different regions
using cosine similarity. Cosine similarity is a measure of similarity between two vectors
that measures the cosine of the angle between them. Two vectors (in our case recipe or
ingredient frequency vectors) with the same orientation have a cosine similarity of , while
vectors with opposite orientation have a cosine similarity of –.
We test the hypothesis that geographical distant regions revealmore distinct online food

preferences than geographic close regions by measuring Spearman rank correlation be-
tween the geographical distance of region pairs and their recipe similarity and ingredient
similarity. We use k bootstrap samples to estimate the confidence interval of the corre-
lation coefficient.
We further compare the difference in the means (recipe-similarity and ingredient-

similarity means) of geographical distant regions (i.e., regions which aremore distant than
the median distance) and geographical nearby regions (i.e., regions which are closer than
the median distance) using a permutation test. For Austria, the median distance of all re-
gion pairs is  km, for Germany it is  km and for Switzerland it is  km. The overall
median distance is  km. We created two groups of region pairs, distant ones D and
close ones C whose sample means are x̄D and x̄C . Let nD and nC be the sample size cor-
responding to each group. The permutation test is designed to determine whether the
observed difference T(obs) between the sample means is large enough to reject the null
hypothesis H which states that the two groups have identical probability distribution.
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First, the difference in means between the two samples is calculated as T(obs) = x̄D – x̄C .
Then, the observations of groups D and C are pooled and subsequently, the difference in
sample means is calculated and recorded for every possible way of dividing these pooled
values into two groups of size nD and nC (i.e., for every permutation of the group labels D
andC). The set of the calculated differences is the exact distribution of possible differences
under the null hypothesis that group labels do not matter.

Results. When analyzing all three countries together, we find a slightly negative corre-
lation between geographic distance and the cosine similarity of the recipe and ingredient
frequency vectors of different regions (Spearman?sρ = –., standard error SEρ = .
and confidence interval CI at % is (–., –.) for recipes and Spearman?s
ρ = –., SEρ = . and CI at % is (–., –.) for ingredients). When only
looking at Austria, we observe a much stronger correlation but with higher standard error
especially for ingredients (Spearman?sρ = –., standard error SEρ = . and confidence
interval CI at % is (–., –.) for recipes and Spearman?sρ = –., SEρ = .
and CI at % is (–., .) for ingredients).
Figures  and  show that at least in Austria and in Germany the recipe preferences of

geographic close regions tend to be more similar than those of geographic distant ones.
Ingredient preferences are very similar for both geographic close and distant regions (cf.
Figure ). For Switzerland we cannot observe the same pattern since geographic distances
in Switzerland are very small and the diversity in the country is very large (see Figure ).
When looking at all three countries, we can still see the tendency of geographic close re-
gions to be more similar than geographic distant ones. However, the differences are not
significant and our permutation test results suggest that we cannot reject the null hypoth-
esis - i.e., the differences within all groups can potentially be generated from the same
underlying distribution. In previous work [] the authors tested the same hypothesis for
China and were able to reject the null hypothesis. However, one needs to note that our
study focuses on a much smaller geographic area and therefore geographic distances may
play a minor role.

3.4 Temporal food preferences
Food preferences are not static and may change over time. Therefore, we next explore
the temporal evolution of human?s online food preferences and how potential temporal
regularities relate to what we know about food and dietary patterns observed in offline
studies.

Approach. First, we explore the normalized number of visits per day or month for se-
lected ingredients using z-scores. The rationale behind z-score normalization is to miti-
gate the effect of anomalous days [].
Next, we compute the average popularity change rate of two consecutive days ormonths

di and di+ for selected ingredients as follows:

R(di,di+) =
|F(di) – F(di+)|

∑N
j= |F(dj) – F(dj+)|

. ()

N refers to the number of consecutive pairs (which is e.g.,  in the case of a week) and F(d)
refers to the total access volume at day or month d.
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Figure 5 Do geographic nearby regions reveal more similar online food preferences than distant
ones? This figure shows the cosine similarity distribution of two groups of region-pairs within each country
and across countries, distant ones (which are above the median distance) and nearby ones (which are equal
or below median distance). One can see that in Austria and Germany geographic close regions tend to reveal
more similar recipe and ingredient preferences than distant regions; however, in Switzerland we do not
observe this tendency.

Figure 6 Do geographic nearby regions reveal more similar online food preferences than distant
ones? This figure shows the cosine similarity of region pairs in relation to their physical distance. One can see
that ingredient preferences tend to be very similar independent of the geographical distance in all three
countries. Recipe similarity slightly decreases with increasing distance, at least in Austria and Germany.

To go beyond the exploration of the popularity of selected ingredients, we next explore
the dynamics (i.e., stability and changes) of the recipe and ingredient frequency vectors
between consecutive weekdays and months using the rank biased overlap (RBO) metric
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[]. RBO measures the correlation between two ranked lists of recipes/ingredients that
represent the popularity of recipes/ingredients in different regions. Recipes and ingredi-
ents are ranked by the number of visits they obtained during that weekday/month within
one year. RBO is a top weighted metric which means that it is more important that the
ranking of the most popular recipes/ingredients does not change from one day/month to
the next day/month than the ranking of recipes/ingredients in the long tail of unpopular
recipes/ingredients. This makes sense, since we know that the popularity distributions of
recipes and ingredients are heavy tail distribution and one might argue that recipes and
ingredients which have been accessed very few times during a day or month do not reflect
the online food preferences of that day or month. Therefore, we do not care if the ranking
of those recipes/ingredients changes. RBO is defined as follows:

RBO(σ ,σ,p) = ( – p)
∞∑

d=

σ :d ∩ σ:d
d

p(d–). ()

Let σ  and σ be two not necessarily conjoint lists of ranking. Let σ :d and σ:d be the
ranked lists at depth d. The RBO falls in the range [, ], where  means disjoint, and 
means identical. The parameter p (≤ p < ) determines how steep the decline in weights
is. The smaller p, the more top-weighted the metric.

Results by week day. Figure  shows the normalized access volume of sample ingredi-
ents ordered by group (meat, carbohydrates, fish, vegetables and alcohol).We can see that
different groups of ingredients indeed reveal similar temporal trends regarding their pop-
ularity. Meat (e.g., pork and steak) is mainly requested during the weekend with a peak on
Sunday. This confirms offline observations (gained via questionnaires) which reveal that
Austrians consume meat products more frequently on Sundays compared to other days
in the week []. Carbohydrate-rich, cheap and healthy food such as pasta, vegetables and
potatoes is more frequently requested at the beginning of the week and less frequently
during weekends. We also observe that fish is most popular on Thursday and Friday and
alcohol is more popular at weekends than during the week.
Our preliminary results raise the question whether online preferences of certain ingre-

dients show a clear shift from weekdays to weekends. Figure  shows that indeed most
changes happen before and after the weekend, suggesting that online preferences for ingre-
dients during the week are starkly different from weekend preferences. Changes in online
food preferences over the course of a week slowly accumulate, with noticeable changes
starting around Thu/Fri. The end of the weekend period is clearly demarcated, evident
in a high change rate across most ingredients on Sun-Mon. This means that online food
preferences tend to change slowly towards weekend preferences during the week, but they
change abruptly back to weekday preferences over Sun-Mon.
Finally, to complement our analysis of selected ingredients and ingredients groups, we

study the dynamics of all recipes and ingredients collectively. Figure  shows the stability of
ingredient and recipe preferences during the course of a week using the RBOmetric with
different top weightiness (i.e., p-values). One can see that users? ingredient preferences are
very stable which can be explained by the fact that many of the most popular ingredients
(such as butter, salt and pepper) are equally important on different weekdays. The shifts in
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Figure 7 How popular are different ingredients over the course of a week? The figure shows z-scores of
the request volume per weekday. One can see that fish is mainly requested Friday, meat during the weekend
and carbohydrate-rich and cheap food such as pasta or potatoes during the week.

the ingredient preferences only become visible when one focuses on selected ingredients
but not when analyzing the aggregation of all ingredients. For users? recipe preferences we
can see that they are relatively stable during the week, but major shifts in the preferences
happen during the weekends. This confirms our hypothesis that users? online food prefer-
ences change during the weekend which becomes visible in their recipe selection process
which is in part driven by ingredient preferences as we have shown before. However, not
all ingredients have the same function in the recipe selection process and it is unlikely that
the most popular ingredients impact the recipe selection process since those are mainly
staple food. We leave the question about which types of ingredients may drive the recipe
selection process for future research.

Results by month. To characterize a typical year, we compute for a sample of ingredi-
ents their normalized access volume and the change rate between consecutive months.
Figure  shows that the access volume of ingredients indeed allows to identify ingredi-
ents with strong seasonal prevalence such as asparagus, since recipes with asparagus are
mainly requested during the asparagus season which starts at the end of April and ends in
June.
Again, so far we have only explored selected ingredients. To further extend and com-

plement our analysis we investigate the dynamics (i.e., stability and changes) of the recipe
and ingredient frequency vectors between consecutivemonths using the rank biased over-
lap (RBO) metric. Figure  shows the RBO value between the ranked lists of recipes or
ingredients of consecutive months. Recipe and ingredients are ranked by the number of
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Figure 8 How do preferences change over the course of a week? The figure shows the average change
rate from one day to the next one. One can see that most changes happen before and after the weekend.
That means that the weekday-preferences are different from weekend-preferences.

visits they obtained during that month within one year. One can see that the recipe pref-
erences are pretty unstable and change a lot during the course of a year. Only November
and December and January, February and March seem to be exceptions since the recipe
preferences remain pretty stable during these periods. However, to further dig into these
patterns data collections which span over several years are required.

4 Discussion
In the following we will discuss the main findings of our work and their implications. This
work is based on data stemming from one single recipe platform with unknown biases.
In future work we plan to extend this study on additional log data from other recipe plat-
forms.

Recipe and ingredient preferences. We observe that both the popularity distributions of
recipes and ingredients are heavy tailed. Both can be best approximated by a truncated
power law distribution, while the truncation is stronger for the recipe popularity distribu-
tion (cf. Figure ) compared to the ingredient popularity distribution (cf. Figure ). Our
results also indicate that the recipe selection process of users is at least partly driven by
their preferences towards ingredients since the empirically observed ingredient prefer-
ences are more focused towards few ingredients and less focused towards others than one
would expect if the recipe selection process would be random. By investigating the online
food preferences of each region separately (meso level), we obtained similar results as for
the accumulated analysis (macro level). However, we see slightly more regional variabil-
ity for the recipe preference distributions than for the ingredient preference distributions.
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Figure 9 How stable are users? online food preferences during the course of a week?This figure shows
the RBO values between the ranked lists of recipes or ingredients of two consecutive days. Recipe and
ingredients are ranked by the number of visits they obtained during that weekday within one year. One can
see that users online food preferences are relatively stable during the week, but major shifts in the preferences
happen during weekends.

Figure 10 How seasonal are the preferences for different ingredients? This figure shows the z-score per
month and the average change rate from one month to the next one. One can see that the popularity of
certain ingredients such as asparagus can clearly be mapped to its seasonal availability in central Europe.

This indicates, that the process which generated the ingredient preferences in different re-
gions is more similar across different regions than the process which generated the recipe
preferences.
In the literature several mechanisms have been proposed and described that may pro-

duce heavy tailed and specifically power law distributions (e.g., [, , ]). The most
prominent one is the so-called Yule process [] (also known as preferential attachment
or the rich get richer phenomenon) which can only explain certain parts of online food
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Figure 11 How stable are users? online food preferences during the course of a year?This figure shows
the RBO values between the ranked lists of recipes or ingredients of consecutive months. Recipe and
ingredients are ranked by the number of visits they obtained during that month within one year. One can see
that the recipe preferences are pretty unstable and change a lot during the course of a year. Only November
and December and January, February and March seem to be exceptions since the recipe preferences remain
pretty stable during these periods.

preference distributions. As mentioned before, our results indicate that the most popu-
lar recipe and ingredient popularities are truncated (i.e., they are lower than one would
expect if the power law distribution would explain the whole distribution). Several hy-
potheses exists that aim to explain what causes this truncation (see e.g., [, , , ]). In
this work we presented two potential explanations of why the Yule process fails to explain
the evolution of online food preferences and why we can observe a truncation for the pop-
ularity of the most popular recipes: (i) We can expect that the static nature of recipes has
an influence on how they are viewed; the fact that recipes do not change and are therefore
most likely only fetched a limited number of times by each user leads to the fetch-at-once
effect which can causes the truncation of the most popular recipes. (ii) If this holds true
the truncation is further impacted by the finite-size effect - i.e., that a physical upper limit
of the maximum popularity of recipes exists which corresponds to the number of users
on the platform. For ingredients, the truncation is also visible but less pronounced since
universal ingredients like salt or butter are included in almost all recipes. Therefore, even
if a finite number of users fetches every recipe only once or a very small number of times,
universal ingredients are fetched repeatedly.

Spatial preferences. Anderson et al. [] point out that ?our basic nutritional needs,
and some very broad preferences, are set by biology, but preferences are notoriously sub-
ject to cultural and social forces”. Therefore, it seems to be a plausible assumption, that
geographic close regions have more similar food preferences than distant ones since they
are more likely to be subjects of the same cultural forces. Zhu et al. [] further point out
that frequent communication andmigrationmay explain the adoption of food preferences
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and their empirical findings support this hypothesis. Our spatial preference analysis (cf.
Figures  and ) shows that there exists a slight tendency of geographic close regions to re-
veal more similar recipe and ingredient patterns; however, the differences in the German
speaking part of Europe are not significant as it was observed for China []. One potential
explanation for that is that distances in German speaking part of Europe are much smaller
and also the mobility of people living in this area might be higher. Therefore, other factors
like cultural similarities and transportation infrastructure might be more suitable alter-
natives to explain the similarities of food preferences between different regions in central
Europa.

Temporal preferences. Food preferences are not static and change over time and our re-
sults clearly show that users? online food preferences change during the weekend, which
becomes visible in their recipe selection process which is in part driven by ingredient pref-
erences. Selected ingredients show a prevalence for specific seasons (cf. Figure ) and
weekdays (cf. Figure ) which can be related with phenomena from the offline world such
as the seasonal availability of some ingredients or results from reactive diet studies which
showed that users tend to eat more meat during the weekend than other days in the week
[]. However, when looking at the aggregation of all ingredients we observe that the in-
gredient preferences are relatively stable during the course of the week, while the recipe
preferences clearly change during the weekend (cf. Figure ). This can be explained by the
fact that not all ingredients have the same function in the recipe selection process and
especially the most popular ingredients like salt, sugar or butter are so common that they
probably do not impact the recipe selection process. Therefore, when analyzing the col-
lection of all ingredients, their popularity appears to be very stable (cf. Figure ), while
for selected ingredients we can observe interesting changes and temporal regularities (cf.
Figures  and ) which can be related with the offline world (cf. Figures  and ). We
leave the question about which types of ingredients may drive the recipe selection process
for future research.

5 Related work
Dietary trends and culinary evolution. Previous research suggests that dietary trends are
affected by behavioral, socio-cultural and economic variables [, ], while the impact
of taste factors is for adult?s food intake less apparent []. A question which has been of
long lasting interest is:which variables can explain the culinary variety to what extent? Re-
searchers, for example, found culinary regularities that are functions of the climate. The
work of [] shows that the usage of spices in a given region is highly correlatedwith its an-
nual temperature. The work of West et al. [] also suggests that climate impacts dietary
patterns. Zhu et al. [] investigate the effect of climate and geographic distance on the
cuisine of different regions in China and show that geographic distance plays a more im-
portant role than climate conditions. Concretely, they showed that climate does not show
any correlation with the ingredient usage similarities when controlling for geographic dis-
tance (PCC= .), while geographic distance remains correlated with ingredient usage
similarities also when they control for climate (PCC= –.).
In [] the authors analyze the ingredient distributions of six different cookbooks. They

found that the universality of ingredients varies over four orders of magnitude document-
ing huge differences in how frequently various ingredients are used in recipes. The authors
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further find that the rank-ordered ingredient distribution (i.e., ingredients are ranked by
the number of recipes in which they appear) follows a power law with an exponential cut-
off to capture finite size effects. The slope of the power law parameter α = . which can-
not be explained by a general Yule process which would produce a power law with α ≥ .
To model cuisine growth the authors propose a copy-mutate algorithm which preservers
idiosyncratic ingredients in a manner akin to the founder effect in biology.
In [] the authors empirically tested the food pairing hypothesis originally proposed by

Benzi and Blumenthal which states that ?two ingredients which share important flavor
compounds will go well together”. They found that shared flavors compounds effect in-
gredient combinations very differently inWestern and Eastern cuisines.While inWestern
cuisines ingredients that share flavor compounds are more frequently combined then one
would expect from randomly generated recipes (with the same ingredient frequencies),
in the Eastern cuisines ingredients with distinct flavor compounds are combined much
more frequently than for random recipes. The authors further reveal that the food prepar-
ing differences between the Western and Eastern cuisine is due to few outliers which are
frequently used in a particular cuisine, such as butter, cocoa or vanilla in North America.
While our work focuses on studying the popularity of recipes in different regions, pre-

vious work on the culinary evolution relied on a regional categorization schema of recipes
to define what is typical for a region. However, it remains unclear if typical recipes of a
region reflect the preferences of that region.

Online food preferences. Despite the fact that online recipe databases and community
sites gain a lot of attention in the online world, little research exists today on the nature
and evolution of users? online food preferences and how those preferences relate to their
offline preferences (i.e., their preferences in the real world). A very inspiring piece of work
was published by West et al. [] who analyze temporal patterns and regional differences
in dietary patterns online and relate them with observations from the world. Unlike in
our work, West et al. use web logs recorded by a Web browser add-on provided by Bing
and use the access statistics of recipes a user clicks on from a search query result page
to approximate the food consumption of different regions in the US. Their user study
suggests that it is a reasonable assumption that users who search for a dish and click on the
recipe afterwards, are likely to cook it. Their results indicate that the online access volume
of food related information may potentially allow to predict offline medical needs. They
found a significant correlation between the hospital admissions of patients admitted with
a diagnosis related to congestive heart failure over time and the sodium intake over time
approximated via recipe visits. The curves indeed follow each other closely, however the
causal relationship cannot be proved. High sodium intake may e.g. be linked to holidays
which might be linked to higher traveling activities leading to a loss of compliance with
medication.
Another interesting work by Teng et al. [] shows that structural properties of nodes in

ingredient networks (co-occurrence and substitution networks) can be used to improve
the prediction performance of recipe ratings. The authors make the assumption that the
ratings of recipes reflect the online food preferences of users, which can be inaccurate
especially if only a small fraction of users uses the rating feature while most of them are
lurkers.
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Our work overcomes this issue by focusing on the consumption of content rather than
the production of content. UnlikeWest et al. we focus on a rather small area in central Eu-
rope (Austria, Germany and Switzerland), while they focus on the US. Further, we use the
access volume of recipes as a proxy for food preferences rather than for food consumption.

Popularity of online content. Since we analyze the popularity of recipes and ingredients
over time and space, also research about the popularity of other types of online content is
relevant for our work. For example, in [] The authors found that the popularity distri-
bution of videos on YouTube and Daum follows a power law but with a sharp decay from
the straight line for the most popular videos. The curve fitting results show that the decay
at the heavy tail is best fitted by adding an exponential cutoff to the power law distribu-
tion. The power law part of the distribution can be explained by the Yule process (also
known as preferential attachment or the rich-get-richer phenomenon), while the sharp
decay for the most popular videos can be explained by the aging effect [] (i.e., high de-
gree nodes will eventually stop receiving more links because every node ages and will stop
being active at some point), the information filtering effect [] (i.e., users cannot receive
information about all available videos but only about a fraction of them and therefore
preferential attachment is hindered), and finally the limited fetching phenomenon [] (i.e.,
users may fetch popular videos only once or few times since they do not change, while
they may fetch popular websites such as news sites million of times). In [] the authors
show via simulations that the limited-fetching phenomenon can indeed explain the sharp
decay from the straight power law line for very popular videos. The higher the number of
requests per users in their simulations the more visible the decay.

Server logs. In our work we use server logs as a proxy for users? online food preferences.
In previous work, logs of search engine use have been successfully used to identify tem-
poral trends (cf. []), geographic differences (cf. []) and to predict real world medical
phenomena (cf. []). However, to our best knowledge this is the first work which analyzes
server log data from recipe platforms to analyze the evolution of online food preferences.

6 Conclusions
To the best of our knowledge, our work is the first to study online food preferences of
users via log data obtained from recipe websites and presents a comprehensive multi-
dimensional approach which allows to dig into the nature and evolution of users? online
food preferences. We find that recipe visits (as well as the inferred ingredient visits) may
represent a plausible signal for food preferences of human populations, since (i) our ob-
servations can in part be linked to real-world events, such as the asparagus season, and
findings from studies which e.g., showed that people eat more meat at weekends than at
other days of the week and (ii) our observations are fairly consistent on a macro and meso
level which suggests that the observed online preference distributions can be reproduced
at different scales. We hope that this work contributes to understanding the nature and
evolution of online food preferences by analyzing the observable outcome of such prefer-
ences on four different dimensions.
The main findings of this work are: (i) Recipe and ingredient popularity distributions

are heavy tailed and can be approximated well by a severely truncated power law func-
tion (recipes) and a truncated power law function (ingredients). These effects can both be
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found on a meso level (i.e., in individual regions) as well as on a macro level (i.e., in the
aggregation of all German-speaking regions in Europe). (ii) Recipe preference distribu-
tions exhibitmore regional differences than ingredient preference distributions. (iii) Recipe
preferences are partly driven by ingredient preferences and (iv) weekday preferences are
clearly distinct from weekend preferences.
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Endnotes
a Food preferences may not only expose what is liked but also what is disliked and avoided. Preferences assume a

situation of choice but do not necessarily reflect use. One might prefer lobster over shrimps but eat more shrimps.
b Ingredient visits are inferred from the recipe visits in which the ingredients are used.
c Note that we work with discrete and not continuous data and hence, also use the exact methods necessary to cope

with discrete data. For fitting the discrete power law function we use the faster analytical methods, instead of using
the slow exact numerical variants.

d A positive value of Rmeans that the log-likelihood of the first distribution (in this case the truncated power law
function) is higher than that of the second (in this case the power law function).

e We also report 1/λ as it roughly tells us where the cutoff is.

Received: 20 March 2014 Accepted: 10 December 2014

References
1. Fischler C (1988) Food, self and identity. Soc Sci Inf 27(2):275-292
2. Harris M, Ross EB (1987) Food and evolution: toward a theory of human food habits. Temple University Press,

Philadelphia
3. Calvo M (1982) Migration et alimentation. Soc Sci Inf 21(3):383-446
4. Prester H-G (2001) Consumer panel research at GfK. In: Social and economic analyses of consumer panel data.

ZUMA-Nachrichten Spezial, vol 7
5. Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Rev 51(4):661-703
6. Wagner C, Singer P, Strohmaier M, Huberman BA (2014) Semantic stability in social tagging streams. In: Proceedings

of the 23rd international conference on World Wide Web, pp 735-746
7. Mitzenmacher M (2003) A brief history of generative models for power law and lognormal distributions. Internet

Math 1:226-251
8. Andriani P, McKelvey B (2009) Perspective - from Gaussian to Paretian thinking: causes and implications of power

laws in organizations. Organ Sci 20(6):1053-1071
9. Adamic LA, Huberman BA (2000) Power-law distribution of the World Wide Web. Science 287(5461):2115
10. Sen S, Lam SK, Rashid AM, Cosley D, Frankowski D, Osterhouse J, Harper FM, Riedl J (2006) Tagging, communities,

vocabulary, evolution. In: Proceedings of the 2006 20th anniversary conference on computer supported cooperative
work, pp 181-190

11. Cha M, Kwak H, Rodriguez P, Ahn Y-Y, Moon S (2009) Analyzing the video popularity characteristics of large-scale user
generated content systems. IEEE/ACM Trans Netw 17(5):1357-1370.

12. Newman ME (2005) Power laws, Pareto distributions and Zipf?s law. Contemp Phys 46(5):323-351
13. Alstott J, Bullmore E, Plenz D (2014) powerlaw: a Python package for analysis of heavy-tailed distributions. PLoS ONE

9(1):e85777
14. Amaral LA, Scala A, Barthelemy M, Stanley HE (2000) Classes of small-world networks. Proc Natl Acad Sci USA

97(21):11149-11152
15. Mossa S, Barthelemy M, Stanley EH, Amaral LA (2002) Truncation of power law behavior in ?scale-free” network

models due to information filtering. Phys Rev Lett 88(13):138701
16. Gummadi KP, Dunn RJ, Saroiu S, Gribble SD, Levy HM, Zahorjan J (2003) Measurement, modeling, and analysis of a

peer-to-peer file-sharing workload. In: Proceedings of the nineteenth ACM symposium on operating systems
principles. SOSP?03, pp 314-329

17. Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Phys Rev A 38(1):364
18. Kinouchi O, Diez-Garcia RW, Holanda AJ, Zambianchi P, Roque AC (2008) The non-equilibrium nature of culinary

evolution. New J Phys 10(7):073020
19. Ahn Y-Y, Ahnert SE, Bagrow JP, Barabási A-L (2011) Flavor network and the principles of food pairing. Sci Rep 1:196
20. Anderson EN (2005) Everyone eats. Understanding food and culture. New York University Press, New York
21. Zhu Y-X, Huang J, Zhang Z-K, Zhang Q-M, Zhou T, Ahn Y-Y (2013) Geography and similarity of regional cuisines in

China. PLoS ONE 8(11):e79161

http://ichkoche.at


Wagner et al. EPJ Data Science  (2014) 3:38 Page 22 of 22

22. West R, White RW, Horvitz E (2013) From cookies to cooks: insights on dietary patterns via analysis of web usage logs.
In: Word Wide Web conference (WWW)

23. Webber W, Moffat A, Zobel J (2010) A similarity measure for indefinite rankings. ACM Trans Inf Syst 28(4):20
24. Kiefer I, Haberzettl C, Rieder C (2000) Ernährungsverhalten und Einstellung zum Essen der ÖsterreicherInnen. J

Ernährmed 2(5):2-7
25. Mitzenmacher M (2004) A brief history of generative models for power law and lognormal distributions. Internet

Math 1(2):226-251
26. Sornette D (1998) Multiplicative processes and power laws. Phys Rev E 57(4):4811
27. Yule GU (1925) A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Philos Trans R

Soc Lond B 213:21-87
28. Sornette D, Cont R (1997) Convergent multiplicative processes repelled from zero: power laws and truncated power

laws. J Phys I 7(3):431-444
29. Logue AW (2004) The psychology of eating and drinking. Psychology Press, New York
30. Sanjur D (1982) Social and cultural perspectives in nutrition. Prentice Hall, New York
31. Drewnowski A (1997) Taste preferences and food intake. Annu Rev Nutr 17:237–253
32. Sherman PW, Billing J (1999) Darwinian gastronomy: why we use spices. BioScience J 49(6):453–463
33. Teng C-Y, Lin Y-R, Adamic LA (2012) Recipe recommendation using ingredient networks. In: Proceedings of the 3rd

annual ACM web science conference. WebSci?12, pp 298-307
34. Vlachos M, Meek C, Vagena Z, Gunopulos D (2004) Identifying similarities, periodicities and bursts for online search

queries. In: Proceedings of the 2004 ACM SIGMOD international conference on management of data. SIGMOD?04,
pp 131-142

35. Bennett PN, Radlinski F, White RW, Yilmaz E (2011) Inferring and using location metadata to personalize web search.
In: Proceedings of the 34th international ACM SIGIR conference on research and development in information
retrieval. SIGIR?11, pp 135-144

36. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L (2009) Detecting influenza epidemics using
search engine query data. Nature 457(7232):1012-1014


	The nature and evolution of online food preferences
	Abstract
	Keywords

	Introduction
	Description of the dataset
	Online food preferences
	Recipe preferences
	Ingredient preferences
	Spatial food preferences
	Temporal food preferences

	Discussion
	Related work
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	Endnotes
	References


