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Abstract
The goal of this article is to contribute towards the conceptual and quantitative under-
standing of the evolutionary benefits for (microbial) populations to maintain a seed
bank consisting of dormant individuals when facing fluctuating environmental con-
ditions. To this end, we discuss a class of ‘2-type’ branching processes describing
populations of individuals that may switch between ‘active’ and ‘dormant’ states in
a random environment oscillating between a ‘healthy’ and a ‘harsh’ state. We incor-
porate different switching strategies and suggest a method of ‘fair comparison’ to
incorporate potentially varying reproductive costs. We then use this concept to com-
pare the fitness of the different strategies in terms of maximal Lyapunov exponents.
This gives rise to a ‘fitness map’ depicting the environmental regimes where certain
switching strategies are uniquely supercritical.
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1 Introduction

1.1 Biological motivation

Dormancy is an evolutionary trait that comes in many guises and has evolved inde-
pendently multiple times across the tree of life. In particular, it is ubiquitous among
microbial communities. As a general definition, we say that an individual exhibits a
dormancy trait if it is able to enter a reversible state of vanishing metabolic activity. It
has been observed that a large fraction of microbes on earth is currently in a dormant
state, thus creating seed banks consisting of inactive individuals (see e.g. Lennon and
Jones 2011; Shoemaker and Lennon 2018; Lennon et al. 2020 for recent overviews).
A common ecological and evolutionary explanation for the emergence of the corre-
sponding complex dormancy traits is that the maintenance of a seed bank serves as
a bet-hedging strategy to ensure survival in fluctuating and potentially unfavourable
environmental conditions. Recent theory has also shown that dormancy traits can
already be beneficial in competing speciesmodels in the presence of sufficiently strong
competitive pressure for limited resources (even in otherwise stable environments) (see
Blath and Tobiás 2020). However, maintaining a dormancy trait is costly and comes
with a substantial trade-off: For example, microbes need to invest resources into rest-
ing structures and the machinery required for switching into and out of a dormant
state, which are then unavailable for reproduction.

Dormancy also has implications for the pathogenic character of microbial com-
munities and plays an important role in human health. For example, dormancy in the
form of persister cells can lead to chronic infections, since these cells can withstand
antibiotic treatment (Balaban et al. 2004; Fisher et al. 2017; Lewis 2010). Further,
dormancy, both on the level of individual cells as well as the tumor level, plays a
crucial role in cancer dynamics (Endo and Inoue 2019). In all of the above situations
external treatment can be seen as a form of environmental stress for the pathogens.

Hence, improving the conceptual and quantitative understanding of themechanisms
leading to fitness advantages for individuals with a dormancy trait in fluctuating envi-
ronments, incorporating the potentially different costs of forming active and dormant
offspring (and potential reproductive trade-offs due to the maintenance of dormancy
traits), seems to be a worthwhile task.

1.2 Deterministic versus stochastic models and known results

In the last two decades, dormancy-related population dynamic modeling based on
deterministic dynamical systems has expanded rather rapidly, often with a focus on
phenotypic plasticity in microbial communities (see e.g. Bär et al. 2002; Balaban et al.
2004;Kussell et al. 2005;Kussell and Leibler 2005;Malik and Smith 2008; Fowler and
Winstanley 2018). The important paper by Balaban et al. (2004) for example describes
‘persistence’ (which can be seen as a form of dormancy) as a phenotypic switch, and
several of the above papers deal with models incorporating various switching strate-
gies and fluctuating environments. Kussell et al. (2005) consider periodic antibiotic
treatment (and also treat a stochastic version of their model via simulation), and Kus-
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sell and Leibler (2005) incorporate randomly changing environments, however under
the condition that the random changes are slow. Fitness is typically measured in terms
of the (maximal) Lyapunov exponents of the underlying dynamical systems, which
is often difficult to evaluate analytically in the presence of random environments.
Kussel and Leibler approximate the Lyapunov exponent under a ‘slow environment
condition’, reducing the model to an essentially one-dimensional system, which is
a strategy that we will meet again in different forms later on. These models have
been taken up in a mathematical article by Malik and Smith (2008), who provide
a set of rigorous results regarding the maximal Lyapunov exponents of dynamical
systems explicitly incorporating dormancy, considering both stochastic and respon-
sive switches in (periodically) changing environments. They also compare these to
the corresponding results for populations without dormancy trait (so-called ‘sleepless
population’). However, for truly random environments, they do not provide exact rep-
resentations for the maximal Lyapunov exponents and instead give relatively simple
(yet useful) bounds.

Recently, also stochastic (individual-based) models for seed banks and dormancy
have gained increasing attention, in particular in population genetics (Kaj et al. 2001;
Blath et al. 2015, 2016, 2020). However, these models are mainly concerned with
genealogical implications of seed banks and typically require constant population size
(without random environment). In stochastic population dynamics, while there are
interesting recent simulation studies such as Locey et al. (2017), rigorousmathematical
modeling and results are still relatively rare. Here, a suitable framework for individual-
based seed bank models with fluctuating population size is given by the theory of
multi-type branching processes (in random environments). Indeed, dormancy has been
described in a brief example in the book by Haccou et al. (2007, Example 5.3) as a
2-type branching process, which served as a motivation for this paper. For quiescence
(which is a similar concept as dormancy), a multi-type branching-process model has
been proposed in Alarcón and Jensen (2011), including a simulation study. On the
theoretical side, in the context of phenotypic switches, Dombry et al. (2011) and Jost
and Wang (2014), again building on motivation from Kussell and Leibler (2005),
have developed a branching-process based framework for phenotypic plasticity and
obtained interesting rigorous results on the optimality of switching strategies in random
environments. However, their set-ups and results, though closely related, do not focus
on dormancy, and only partially cover the reproductive and switching strategies that
we are going to discuss in Sect. 2.2 (wewill explicitly comment on the differences with
respect to our model and results as appropriate). They are able to determine Lyapunov
exponents in random environments, but similarly to Kussell and Leibler (2005) under
a condition which essentially restricts the problem to a one-dimensional system.

1.3 Modeling approach and organization of the present paper

Our approach, motivated by the example in Haccou et al. (2007), is based on a 2-type
branching process (Zn) = (Z1

n, Z
2
n) with Z1

n denoting the active and Z2
n denoting the

dormant individuals at time/generation n, which we embed in a random environment
that is described by a stochastic process (En) and governs the respective sequence
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of random reproductive laws (Q(En)). As in Kussell and Leibler (2005), Malik and
Smith (2008), Dombry et al. (2011), we will discuss results related to both stochas-
tic/spontaneous as well as responsive switching strategies. Further, we also consider
mixed strategies.Weaim for explicit results under ‘fair comparison’ regarding resource
limitations including potentially different costs for active and dormant offspring, and
also in comparison with a 1-type branching process without dormancy trait (‘sleep-
less case’), expressing qualitative and quantitative fitness advantages in terms of the
maximal Lyapunov exponent.

By providing a model tailored to dormancy in a random environment, we close
a gap related to the multi-type branching process models and results provided in
Dombry et al. (2011) and Jost and Wang (2014) related to phenotypic switching,
which only partially cover our dormancy models and results. We also extend and
refine results of Malik and Smith (2008) which explicitly model dormancy in the
deterministic dynamical systems case, butwith a smaller set of switching strategies and
few results for truly random environments. Additionally, we pay particular attention
to reproductive costs related to dormancy.

All models and results will be introduced and discussed in Sect. 2. We observe
that there are natural parameter regimes under which either the spontaneous or the
responsive switching strategies, or even a mixture of strategies, will be fit, while
all the others are detrimental. We discuss the corresponding parameter regimes in
detail and illustrate them in certain important cases, see e.g. Figs. 3, 4 and 5. This
shows that already in our relatively simple random environment (involving only two
states), dormancy leads to a rather rich picture regarding the long-term behaviour of
the embedded branching processes.

However, while our results will capture several prototypical scenarios correspond-
ing to both stochastic/spontaneous and responsive switching (and mixtures), we are
still far from being able to provide a mathematically complete classification in the
full space of switching strategies. One theoretical reason for this is that computing the
maximal Lyapunov exponent of a random multiplicative sequence of positive matri-
ces, which is the mathematical core of the problem, is infeasible in general (see e.g.
Bougerol and Lacroix (1985); Ledrappier (1984) for an overview of the mathemat-
ical theory), and works only if the underlying matrices exhibit additional algebraic
properties.

Hence, a further aim of this paper is to provide a small review of current meth-
ods to compute/estimate maximal Lyapunov exponents. The reason which allows
Dombry et al. (2011) and Jost and Wang (2014) to treat the responsive switching
regime in their papers is that their assumptions reduce the system to an essentially
one-dimensional case, which interestingly has a similar effect as the ‘slow variation
assumption’ ofKussell andLeibler (2005), andwewill investigate similar cases.While
the exponents are easily accessible for the corresponding ‘rank-1 matrices’ (and, of
course, scalars), spontaneous/stochastic switching strategies can a priori involve both
‘rank-1’ and ‘rank-2 matrices’. We will see that while special cases of the stochas-
tic switching regime can again be treated with the rank-1 approach, for the general
stochastic switching regime involving rank-2 matrices, techniques used in Malik and
Smith (2008) are available, which lead at least to bounds on the Lyapunov exponents.
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We also provide further bounds and estimators. These theoretical considerations can
be found in Sect. 3.

Finally, in Sect. 4, we discuss some open questions and potential further steps in
modeling and analysis of dormancy and seed banks in random environments, from a
somewhat theoretical perspective.

2 Models andmain results

Recall that for a classical (1-type) Bienaymé–Galton–Watson process, say X = (Xn),
it is assumed that individuals die and reproduce independently of each other according
to some given common offspring distribution QX on N0. We extend this framework
by introducing a second component that acts as a reservoir of dormant individuals,
also referred to as seed bank. Moreover, we allow the offspring distribution in each
generation n to depend on the state of a random environment process E = (En).
This gives rise to a particular class of 2-type Bienaymé–Galton–Watson processes in
random environment that we introduce formally in Definition 2.1 and which will be
the main object of study in this paper. However, later on, we will also discuss more
general p-type branching processes (for p ≥ 1) in random environments, so that we
will first introduce the corresponding general notation, which is standard in the theory
of multi-type branching processes.

Notation

Let E = (En)n∈N0 be a stationary and ergodic Markov chain on some probability
space (�,F ,P) taking values in some measurable space (�′,F ′) and denote by πE

its stationary distribution. Such a process will be called random environment process.
For p ∈ N, we write M1(N

p
0 ) to denote the space of probability measures on N

p
0 ,

and set � := {(Q1, . . . , Qp) : Qi ∈ M1(N
p
0 )}. Elements of � will be interpreted

as the collection of the p offspring distributions on N
p
0 (one for each type). An infi-

nite sequence � = (Q(E1), Q(E2), . . .) generated by (En) and a random variable
Q : �′ → � will be called sequence of random offspring distributions with respect
to the environment process (En). Finally, a sequence of N

p
0 -valued random variables

Z0, Z1, . . .will be called a p-type Bienaymé–Galton–Watson process in random envi-
ronment (p-typeBGWPRE), if Z0 is independent of� and if for each given realization
(e1, e2, . . . ) of E (and thus also of �) the process Z = (Zn)n∈N0 is a Markov chain
whose law satisfies

L(
Zn | Zn−1 = z, � = (Q(e1), Q(e2), . . .)

) = L
( p∑

i=1

zi∑

j=1

ζ ij

)
,

for every n ∈ N and z = (z1, . . . , z p) ∈ N
p
0 , where the (ζ ij : i ∈ {1, . . . , p}, j ∈ N)

are independent random variables taking values inNp
0 , and for each i ∈ {1, . . . , p}, the

ζ i1, ζ
i
2, . . . are identically distributed according to Q

i (en). In the language of branching
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processes, if the state of the environment at time n is en ∈ �′, then each of the Zi
n

individuals of type i alive at time n produces offspring according to the probability
distribution Qi (en), independent of the offspring production of all the other individ-
uals. For notational clarity, we will often write QZ to denote the random variable Q
that is used in the definition of a branching process Z .

We are now ready to define the class of branching processes modeling dormancy:

Definition 2.1 With the above notation (for p = 2), a 2-type BGWPRE Z = (Zn)will
be called a Bienaymé–Galton–Watson process with dormancy in random environment
(En), abbreviated BGWPDRE, if, P-almost surely,

Q2
Z (En)[{(0, 0), (1, 0), (0, 1)}] = 1 ∀ n ∈ N0. (2.1)

Particles of type 1 are called active and particles of type 2 are called dormant.

Note that Condition (2.1) ensures that a (dormant) type 2 particle can either switch its
state to type 1 (active), remain in the dormant state 2, or die—no other transitions are
possible. There is no restriction on the offspring reproduction of active type 1 particles
other than the following first moment condition.

Throughout we assume, for P-a.e. realization (e1, e2, . . .) of (En) and any n ∈ N,
that the distribution Q(en) ∈ � is such that the corresponding random variables ζ i =
(ζ 1, . . . , ζ p) distributed according to Q(en) satisfy E[ζ i ] < ∞ for all i ∈ {1, . . . , p}.
Moreover, we write

mi, j
n ≡ mi, j (en) := E

[
Z j
n+1 | Zn = (δik)k, �n = QZ (en)

]
.

to denote the expected number of offspring of type j produced by a single particle of
type i in generation n in the environment QZ (en), and we denote by

Mn ≡ M(en) := (mi, j
n )i, j (2.2)

the corresponding mean matrix. Suppose that, for any n ∈ N, the matrix Mn is irre-
ducible. Then, by the Perron–Frobenius-Theorem, the spectral radius �n ≡ �(Mn) of
Mn is a simple eigenvalue with |λ| ≤ �n for any (other) eigenvalue λ of Mn .

2.1 Branching processes with dormancy in constant environment

As a gentle warm-up, we first compare the survival probabilities and extinction times
of a classical 1-type BGWP with those of a 2-type BGWPDRE in the absence of
environmental fluctuations (in this case, we use the abbreviation BGWPD). For sim-
plicity, we further restrict ourselves to the binary branching case (following the set-up
of Example 5.3 in Haccou et al. 2007), which can be thought of as a model for bac-
terial reproduction via binary fission and sporulation as exhibited e.g. by Bacillus
subtilis, and summarize several standard results (that nevertheless will be proved in
the appendix for the reader’s convenience). These results will then serve as a motiva-
tion and reference point for our later results involving fluctuating environments, which
will also deal with more general reproductive mechanisms.
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Fig. 1 Offspring distribution of Z for active (white) individuals on the left and dormant (gray) individuals
on the right

Let p ∈ (0, 1), X0 = 1 and X = (Xn)n∈N0 be a 1-type BGWP with offspring dis-
tribution QX = pδ2+(1− p)δ0, where δ denotes the Dirac measure. This mechanism
can be seen as a caricature of reproduction via cell division: Every individual in each
generation independently either splits in two (cell division) with probability p or dies
with probability 1 − p.

Furthermore, for ε ∈ (0, p), b, w ∈ (0, 1) and d ∈ (0, 1 − w), let Z0 = (1, 0) and
Z = (Zn)n∈N0 be a 2-type BGWPD with offspring distribution, QZ , given by

Q1
Z (0, 0) = 1 − p + ε, Q2

Z (1, 0) = w,

Q1
Z (2, 0) = (p − ε)b, Q2

Z (0, 0) = d,

Q1
Z (0, 1) = (p − ε)(1 − b), Q2

Z (0, 1) = 1 − w − d.

Figure 1 illustrates the model. The parameters can be interpreted as follows:
p − ε > 0 is the probability with which an active individual either exhibits a repro-
ductive or a switching event. In this case, a binary split will happen with probability
b (reproduction), and a switching event into a dormant state (e.g. by sporulation) with
probability 1 − b. Note that a ‘switch’ can be thought of as the simultaneous death
of an active individual and the corresponding birth of a dormant individual. With
probability 1 − p + ε, an active individual will die. Dormant individuals resuscitate
(“wake up”) with probability w, and die with probability d, otherwise they stay in
their dormant state (with probability 1 − w − d). Note that for ε = 0 and b = 1, the
active component (Z1

n) of (Zn) equals (Xn) in distribution. Hence, ε can be seen as a
way of incorporating a reproductive trade-off that arises from the maintenance costs
of the dormancy trait, delivering reduced splitting and increased death probability in
comparison to the 1-type model. Additionally, note that in our model the potential to
switch into dormancy also reduces the reproductive capability, since entering the seed
bank is only possible during a ‘reproduction-or-switching event’ at a chance of 1− b.

From the following more general result, which we will prove in the Appendix, we
obtain a comparison of long-term survival behaviour of X and Z .

Proposition 2.2 Let X = (Xn) be a 1-type BGWP, and Z = (Zn) a BGWPD with
X0 = 1 and Z0 = (1, 0). Assume that the offspring distributions QX and QZ ,
respectively, are of finite variance with Q2

Z (0, 0) > 0 and P[Z2
1 > 0] > 0. Set
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μX := E[X1] and denote by

TZ := inf
{
n ≥ 1 : Zn = 0

}
, TX := inf

{
n ≥ 1 : Xn = 0

}
,

σZ := P

[
lim
n→∞ TZ = ∞

]
and σX := P

[
lim
n→∞ TX = ∞

]

the extinction times and survival probabilities of Z and X, respectively. If

QX (k) ≥
k∑

�=0

Q1
Z (k − �, �) (2.3)

for all k ≥ 1, then the following statements hold:

(1) If μX > 1, then σZ < σX .

(2) If μX = 1, then σZ = σX = 0 and E
[
TZ

]
< E

[
TX

] = ∞.

(3) If μX < 1, then σZ = σX = 0. However, Q2
Z can be chosen in such a way that

Q2
Z (1, 0) > 0, Q2

Z (0, 0) > 0 and for some n0 ∈ N

P
[
TZ > n

]
> P

[
TX > n

]
for all n ≥ n0. (2.4)

Condition (2.3) ensures that the total amount of offspring of active individuals in Z is
stochastically dominated by the amount of offspring in X .

Proposition 2.2 shows that—at least in the simple binary model—in the super-
critical case p > 1/2 (i.e. μX = 2p > 1) maintaining a seed bank always leads to a
decreased survival probability. Indeed, the reproductive trade-off, incorporated by the
penalty ε > 0, is always detrimental. The same holds for the critical regime (p = 1/2
and μX = 1), where both processes always go extinct: Here, the expected time to
extinction is even finite for the 2-type process Z .

However, in the sub-critical regime (3), while both processes do go extinct with
probability 1, for small w and d (i.e. Q2

Z (1, 0) and Q2
Z (0, 0)) the population with

dormancy trait can be more likely to survive for extended periods of time, since by
(2.4) P[TZ > n] > P[TX > n] for n ≥ n0, i.e. P[Z1

n + Z2
n > 0] > P[Xn > 0]. This is

in line with basic intuition, since for small w and d individuals spend a long time in
the dormant state delaying extinction. Notably, the condition on w and d can be given
explicitly, i.e. (3) holds whenever

1 − d > μX and w < (1 − d − μX ) · μX − E[Z1
1]

μX − E[Z1
1 + Z2

1]
.

This suggests that the ‘prolonged survival in the sub-critical regime’ effect could
lead to a fitness advantage in the presence of a random environment, fluctuating
between a healthy (super-critical) and a harsh (sub-critical) scenario, even if the dor-
mancy trait exhibits a reproductive trade-off in the healthy scenario, since dormancy
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could potentially compensate for this during harsh times by delaying extinction. A cen-
tral goal of this article is to identify and classify scenarios in which this is indeed the
case. We thus now extend our models to incorporate such a fluctuating environment.

2.2 Branching processes with dormancy in randomly fluctuating environment

As indicated by Proposition 2.2 above, evolutionary fitness advantages resulting from
a dormancy trait may be expected to manifest themselves in the presence of a random
environment, where prolonged survival times may help to survive during harsh times.
Here, we even expect that dormancy may turn an otherwise (overall) sub-critical
process into a super-critical one, even in the presence of reproductive trade-offs. We
now introduce a simple model for a fluctuating environment, randomly oscillating
between two states “1” and “2”, where “1” corresponds to healthy and “2” to harsh
conditions, which is identical to the environment given as an example in Dombry et al.
(2011, Sections 1.1.1 and 1.1.2.).

Definition 2.3 (Binary random environment). Let s1, s2 ∈ (0, 1] and s1 · s2 < 1.
Define a discrete-time homogeneous Markov chain (In) with values in {1, 2} via the
transition matrix

PI :=
(
1 − s1 s1
s2 1 − s2

)
,

where s1 and s2 denote the environmental switching probabilities. Further, denote by
πI = (s2/(s1 + s2), s1/(s1 + s2)) the stationary distribution of (In) and let I0 ∼ πI .

Remark 2.4 The initial condition for I0 as well as the assertion s1s2 < 1 ensure that
(In) is stationary and ergodic. Hence, the process (In) is a random environment process
as defined at the beginning of this section, taking only two values.

In the remainder of this section we will not give complete definitions of any further
BGWPDRE’s. We will only be interested in the mean matrices, while the exact off-
spring distributions will typically be irrelevant. We will also restrict our attention to
the binary random environment from Definition 2.3. As indicated in (2.2), for envi-
ronmental states e ∈ {1, 2}, these matrices will be given by

M(e) =
(
me

a me
d

we 1 − we − de

)
,

where me
a and me

d represent the average amount of active and dormant offspring of
active individuals respectively, while we and de denote resuscitation (‘waking’) and
death probabilities of dormant individuals. Ourmain results will concern the following
three particular strategies.

Definition and Remark 2.5 (Switching strategies). The following idealized switching
strategies represent important special cases that have been discussed in the literature,
see e.g. Malik and Smith (2008), Lennon and Jones (2011), Dombry et al. (2011). In
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particular, one distinguishes between responsive switching, triggered by environmental
conditions, and spontaneous or stochastic switching, which is assumed to happen in
each individual with a certain probability, independently of the environment and the
behaviour of other individuals.

a) Responsive switching: We consider the case where individuals behave “opti-
mally” in the sense that they invest all their resources into the production of
active individuals during the healthy environmental spells (choosing m1

d = 0,
w1 = 1 − d1), while during harsh environmental conditions they invest every-
thing into dormant offspring (choosing m2

a = w2 = 0). Hence, in this case, the
offspring mean matrices are of the form

M res(1) =
(

m1 0
1 − d1 0

)
and M res(2) =

(
0 m2

0 1 − d2

)

for some me > 0 and de < 1.
b) Stochastic switching:Here, the population assumes a reproductive strategywhich

is independent of its environmental state. This can be modeled by choosing m1• =
m• > 0 andm2• = αm• for α ∈ [0, 1) and • ∈ {a, d}. That way,m1

a/m
1
d = m2

a/m
2
d,

which means that active individuals split up their resources into the production of
active and dormant offspring in the same way in both environments. Then, the
offspring mean matrices for e ∈ {1, 2} equate to

Msto(1) =
(
ma md
w1 1 − w1 − d1

)
and Msto(2) =

(
αma αmd
w2 1 − w2 − d2

)
.

Note that α represents the effect of harsh environments: Since α < 1, the expected
number of offspring of active individuals is reduced in harsh environments. For
α = 0, all active individuals are killed immediately during such conditions,without
producing any offspring.

c) Preliminary (or anticipatory) switching: In this strategy,we consider individuals
that invest all their resources into the production of dormant individuals during
the healthy environmental spells (choosing m1

a = w1 = 0), while during harsh
environmental conditions they invest everything into active offspring (choosing
m2

d = 0, w2 = 1 − d2). This can be understood as counter-intuitive responsive
switching, always prefering the unfavorable type in reproduction, in anticipation
of a coming environmental change. The corresponding offspring mean matrices,
for some me > 0 and de < 1, are given by

Mpre(1) =
(
0 m1

0 1 − d1

)
and Mpre(2) =

(
m2 0

1 − d2 0

)
.

In population genetic models with seed bank, recently, similar types of switching
have been distinguished (spontaneous vs. simultaneous switching) and these lead to
topologically different limiting coalescent models describing the ancestry of a sample
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(see Blath et al. 2015, 2016, 2020). Here, in the presence of a random environment,
we will see that the right choice of switching strategy can lead to qualitative fitness
advantages, depending on the distribution of the environmental process.

Of course, less extreme variants, or even mixtures, of the above switching strategies
should be interesting in practice. For example, as reported in van Vliet (2015) and
Sturm and Dworkin (2015), phenotypic diversity in Bacillus subtilis with respect to
the ‘exit from dormancy mechanisms’ seems to combine stochastic switching of some
individuals with responsive switching due to environmental cues of others on the pop-
ulation level. However, the special form of the mean matrices in these ‘pure’ strategies
makes it possible to explicitly compute or obtain suitable bounds on the corresponding
maximal Lyapunov exponents, which are crucial to assess and compare the fitness of
the corresponding BGWDREs, as wewill see later. Interestingly, these building blocks
will also allow the analysis of certain mixtures of strategies (Remark 2.21)

Remark 2.6 (Comparison to multi-type branching process models considered inDom-
bry et al. (2011) and Jost and Wang (2014)). Note that the model in Definition 2.1 is
closely related to a very general multi-type branching process in random environment
(MBPRE) modeling phenotypic diversity (with many, even a continuum of, possible
types) considered in Dombry et al. (2011), and Jost andWang (2014), who themselves
are inspired by the earlier work of Kussell and Leibler (2005). However, in their mod-
els, the authors follow a two step procedure, where in a first step each particle gives
birth to a random amount of offspring (depending on its type and the state of the
environment), and then in a second step, independently of that amount, the offspring
particles are fitted (individually) with their new phenotypes. As the authors point out,
this clearly disentangles the birth and “migration” (between phenotypes) phases. The
BGWPDRE-model that we propose here is tailored to dormancy and does not disen-
tangle these steps. This has consequences for the possible switching strategies. In fact
it turns out that some of our reproductive strategies in Definition 2.5 are not covered
by the framework of Dombry et al. (2011) and Jost and Wang (2014). For example,
they do not cover the case that active offspring in the healthy environment can either
split into two active offspring (cell division), or switch to a dormant state (e.g. by
sporulation), as in the example of Sect. 2.1, since the phenotype distribution in this
case would have to be allowed to depend on the number of offspring of the parent, see
also Remark 3.3.

Remark 2.7 (Comparison to switching strategies employed in Malik and Smith
(2008)).Malik and Smith in Malik and Smith (2008) consider a related, but less gen-
eral switching model. Again, there are two possible environmental states, however,
the bad environment here always completely prevents the reproduction of active indi-
viduals. Exact analytic expressions for the Lyapunov exponents are obtained only for
the case where the environment is deterministic. In the random environment case, still
some bounds are provided. It turns out that we can adapt the corresponding methods
to obtain bounds for Lyapunov exponents of our models (cf. Remark 3.7).
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2.3 Asymptotic growth of BGWPDREs and Lyapunov exponents

Of particular interest is the asymptotic behaviour of the process Z . It is well known,
cf. Kaplan (1974), that

E
[
Zn

∣∣ Z0, � = (QZ (e1), QZ (e2), . . .)
] = Z0 · M1 · . . . · Mn .

The study of such products of randommatrices has a long and venerable history dating
back to first results by Furstenberg and Kesten (1960). For stationary and ergodic
sequences (M1, M2, . . .) of non-negative matrices satisfying E

[
log+ ‖M1‖

]
< ∞,

where log+(x) := max{log(x), 0} and ‖ · ‖ is a matrix norm, Kingman (1973), see
also Oseledec (1968), proved that, by means of the subadditive ergodic theorem,

ϕ := lim
n→∞

1

n
log ‖M1 · . . . · Mn‖ ∈ [−∞,∞) (2.5)

exists P-a.s. and satisfies

ϕ = lim
n→∞

1

n
E

[
log ‖M1 · . . . · Mn‖

]
.

Note that, by norm equivalence, ϕ is independent of the chosen matrix norm. The
limit, ϕ, is called maximal Lyapunov exponent.

Remark 2.8 (Exact computation of Lyapunov exponents). There are only a few cases
where the maximal Lyapunov exponent can be computed explicitly. For instance, if
(M1, M2, . . .) is a stationary and ergodic process of positive 1 × 1 matrices. Then,
recalling that �(M) denotes the spectral radius of the matrix M , trivially Mn = �(Mn)

for all n ∈ N, and ifE[log+ �(M1)] < ∞ an application of Birkhoff’s ergodic theorem
yields, P-a.s.,

ϕ = lim
n→∞

1

n

n∑

k=1

logMk = E
[
log �(M1)

]
. (2.6)

A further simple case is given by a sequence of stationary and ergodic matrices
with E[log+ ‖M1‖] < ∞ such that the matrices Mi are either mutually diagonizable,
i.e. MiMj = MjMi for all i �= j , or upper (lower) triangular. Then, P-a.s.,

ϕ = lim
n→∞

1

n
log ‖M1 · . . . · Mn‖ = E

[
log �(M1)

]
.

Further cases in which the maximal Lyapunov exponent can be computed explicitly
are discussed in Key (1987). For the general case, where the computation of ϕ is
infeasible, there are various strategies for giving bounds known in the literature, see
also Crisanti et al. (1993). We will discuss and employ possible methods in Sect. 3.2.
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Remark 2.9 (Approximation of Lyapunov exponents). Under certain further assump-
tions on the stationary and ergodic sequence, (M1, M2, . . .), of non-negative matrices
with E[log+ ‖M1‖] < ∞, Key (1990) proved that, P-a.s. and in mean,

ϕ = lim
n→∞

1

n
log f (M1 · . . . · Mn)

for any one-homogeneous, non-negative, super-multiplicative function, f , such that
E[log− f (M1)] > −∞. By defining

ϕ
k

:= 1

k
E

[
log f (M1 · . . . · Mk)

]
and ϕk := 1

k
E

[
log ‖M1 · . . . · Mk‖

]
,

then it follows from the sub-multiplicativity of ‖ · ‖, the super-multiplicativity of f ,
and the stationarity of the sequence (M1, M2, . . .) that ϕ

k
increases monotonically

to ϕ, whereas ϕk decreases monotonically to ϕ. Although this provides an easy way
to derive upper and lower bounds on the maximal Lyapunov exponent, the computa-
tional effort increases exponentially in k. For i.i.d. sequences (M1, M2, . . .) Pollicott
(2010) and Jurga and Morris (2019) established efficient approximation schemes with
super-exponential convergence rates, see also Protasov and Jungers (2013) for further
bounds.

Remark 2.10 (Lyapunov exponent and long-term behaviour). Notice that for a p-type
BGWPRE, Z , the sequence of mean matrices, (M1, M2, . . .), forms a stationary and
ergodic process. Thus, provided thatE

[
log+ ‖M(E1)‖

]
< ∞, the correspondingmax-

imal Lyapunov exponent, ϕZ , exists describing the asymptotic rate of growth/decay
of the expected value of Z .

The almost sure behaviour of the process Z has also been studied intensively. For
instance, if Z is a p-type BGWPRE such that Mn ∈ (0,∞)p×p for all n ∈ N and
E

[
log+ ‖M(E1)‖

]
< ∞, then it follows from Tanny (1981, Theorem 9.10) that, for

almost all realizations of the environment, ϕZ < 0 implies that Z becomes extinct
almost surely, whereas for ϕZ > 0 there exists a positive probability that Z never
becomes extinct. Moreover, conditioned on survival, we have that 1

n log ‖Zn‖1 → ϕZ

almost surely as n → ∞. In particular, the almost sure growth of the stochastic
switching model, cf. Definition 2.5-b), conditioned on non-extinction, is given by ϕZ .

Actually, Tanny established in (1981, Theorem 9.6 and Theorem 9.10) a classifica-
tion theorem for more general multi-type BGWPRE with non-negative mean matrices
satisfying certain regularity conditions. Notice that these conditions are not satisfied
by our responsive and preliminary switching model, cf. Definition 2.5-a). However,
due to the particular structure that allows a reduction of this BGWPDRE to a 1-type
BGWPRE (cf. Dombry et al. 2011, Proposition 7), an analogous classification theorem
can then be deduced from Tanny (1981, Theorem 9.6), see also Athreya and Karlin
(1971a, b).

Remark 2.11 (Lyapunov exponent, fitness and survival-probability). The previously
mentioned features of the maximal Lyapunov exponent, describing various growth
properties of population models, justifies the use of ϕ as a measure of fitness of
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populationmodels, as is common in the literature.However, there is nodirectmonotone
relationship between ϕ and the survival probability of the underlying population in
the super-critical case, as the following example confirms: Taking the setting from
Sect. 2.1, choosing X with parameter p = 4/7, one can compute that σX = 2 − 1

p =
0.25 and ϕX = 2p ≈ 1.143. Then, for Z letting p = 4/5, ε = 0, b = 2/5, w = 1/2
and d = 1/25 it holds that

σZ = 2 − 1

bp
+ 1 − b

b
· w

w + d
≈ 0.264 > σX .

However (cf. (5.1) below), ϕZ ≈ 1.050 < ϕX . Hence, the comparison of Lyapunov
exponents of distinct population models does not necessarily provide a complete pic-
ture of the advantages of one growth strategy over the other.

This phenomenon has been studied in more detail by Jost and Wang (2014), where
the authors illustrate that different optimization criteria (i.e. largest growth rate vs.
smallest extinction probability) can lead to distinct optimal strategies.

We now move on to some of the main results of this paper. Indeed, the Lyapunov
exponent for a BGWPDRE with responsive and preliminary switching strategy can
be computed explicitly:

Theorem 2.12 (Lyapunov exponent of the responsive switcher). Let (Zn) be a BGW-
PDRE with environment process (In) from Definition 2.3, following the responsive
switching regime in Definition 2.5-a). Then, P-a.s.,

ϕZ =
s2 log(m1) + s1 log(1 − d2) + s1s2 log

(
m2(1−d1)
m1(1−d2)

)

s1 + s2
.

Theorem 2.13 (Lyapunov exponent of the preliminary switcher). Let (Zn) be a BGW-
PDRE with environment process (In) from Definition 2.3, following the preliminary
switching regime in Definition 2.5-c). Then, P-a.s.,

ϕZ =
s2 log(1 − d1) + s1 log(m2) + s1s2 log

(
m1(1−d2)
m2(1−d1)

)

s1 + s2
.

A proof will be provided in the next section. For the stochastic switcher we obtain the
following analytic result under the additional assumption that the determinant of the
mean matrices vanishes:

Theorem 2.14 (Lyapunov exponent of the stochastic switcher). Let (Zn) be a BGW-
PDRE with environment process (In) from Definition 2.3, following the stochastic
switching regime in Definition 2.5-b) with det M(1) = det M(2) = 0. Then, P-a.s.,

ϕZ = s2 log
(
ma + w1 md

ma

) + s1 log
(
αma + w2 md

ma

)

s1 + s2
. (2.7)
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These results are closely related to results in Dombry et al. (2011), considering that
meanmatrices of determinant zero correspond to the non-hereditary-with-sensing case
therein (cf. Sect. 3.1 for the proof and further remarks). In the hereditary case, i.e. the
case of non-zero determinants, neither (Dombry et al. 2011) nor the article at hand
obtain an explicit result for ϕZ . However, various boundswill be discussed in Sect. 3.2.
We provide one of them here in a special case, for illustration:

Theorem 2.15 Let (Zn) be a BGWPDRE with environment process (In) from Defini-
tion 2.3, following the stochastic switching regime in Definition 2.5 with w1 = w2,
d1 = d2 and α ∈ (0, 1). Then, P-a.s.,

ϕZ ≥ E
[
log

(
tr M(I0) − max{det M(1)/ma, 0}

)]
.

Note that since w and d do not depend on e, we get det M(2) = α det M(1). Notably,
when det M(1) = 0, this lower bound equates to the result from Theorem 2.14.

Further bounds will be provided in the next section, where we also try to shed light
on the structures of switching mechanisms that allow for the computation of analytical
results and bounds. Indeed, we will distinguish the so-called ‘rank-1’-case (which is
closely related to the results in Dombry et al. (2011)), allowing explicit computations,
and the ‘rank-2’-case, where often only bounds can be provided. Here, we refer to
the rank of mean matrices of the reproduction and switching mechanisms. Obviously,
the mean matrices of the responsive and preliminary switcher in Definition 2.5 are
degenerate and of rank 1, as are the mean matrices of the stochastic switcher in
Theorem 2.14, due to the vanishing determinant, while the stochastic switcher of
Theorem 2.15 has mean matrices of rank 2. Yet, this switching mechanism also has
particular properties that will be exploited in the next section.

Before we carry out these considerations and prove the above results, we first inves-
tigate the selective advantages of the switching strategies in different environments.

2.4 Fair comparison of BGWPDREs with different switching strategies

To decide which switching strategy of two different BGWPDREs is superior in an
environment given by (In), one needs to impose a condition that ensures that both
processes “may use an equal amount of available resources”. One way to do this
would be to require that both processes can produce in expectation the same amount
of offspring in each generation, be it active or dormant offspring, and to assume that
the death probabilities of both processes are the same in both the active and dormant
states each. The processes thus can adapt to the environment only by means of their
specific switching strategies while using the same amount of resources. This motivates
our notion of fitness advantages under “fair comparison”.We formulate this concept in
the general framework of p-type branching processes in random environments (En).

Definition 2.16 (Fitness advantage under fair comparison). For p ≥ 1 let Z ≡ (Zn)

and Z̄ ≡ (Z̄n) two p-type BGWPRE with respect to the same environmental process
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(En) such that P-a.s. for all 1 ≤ t ≤ p and n ≥ 1 their mean matrices satiesfy

p∑

i=1

mt,i
n =

p∑

i=1

mt,i
n . (2.8)

Then, if ϕZ > ϕZ̄ , we say that Z is fitter than Z̄ at fair comparison. If additionally
ϕZ > 0 ≥ ϕZ̄ , we say that Z has a strong (or qualitative) fitness advantage over Z̄
under fair comparison.

Remark 2.17 (1) The concept of Definition 2.16 is in the same spirit as the comparison
of strategies in Dombry et al. (2011), since equation (2.8) assures that for each t ,
type-t-individuals in both populations produce in expectation the same amount of
offspring, only varying the distribution of types among offspring.

(2) For BGWPDREs in environment (In), equation (2.8) is equivalent to

(i) me
a + me

d = me
a + me

d and (i i) de = d̄e

for each e ∈ {1, 2}.
(3) To allow a comparison of a BGWPDRE to a 1-type process (i.e. without dor-

mancy), let (Xn) be a 1-type BGWPRE with environment (In) with conditional
offspring means m1 and m2 (referring to healthy and harsh environmental states
respectively). This process can be understood as a 2-type BGWPRE process in the
sense of Definition 2.1, starting in (1, 0), and having mean matrices

M(e) =
(

me 0
1 − de 0

)

for e ∈ {1, 2} and some arbitrary de ∈ (0, 1). Although these matrices are
reducible, this makes a fair comparison feasible.

(4) Note that the notion of fair comparison alone does not yet imply any kind of
reproductive trade-off. However, every Lyapunov exponent or bound of such we
will compute in the rest of this paper is continuous in the model parameters.
This continuity and the strictness of the inequality in the definition of fitness
advantages verywell include the possibility of advantages under ‘disadvantageous’
comparison, including (sufficiently small but non-trivial) trade-offs.

One of the main goals of this article is to identify situations, under fair comparison,
in which one switching strategy can be super-critical, whereas the other switching
strategies and the process without dormancy is sub-critical. Note that this is impos-
sible in the absence of a random environment, as pointed out in the discussion after
Proposition 2.2. This is now obtained in the context of fair comparison and making
use of Remark 2.17:

Theorem 2.18 Denote by (In) an environment process as in Definition 2.3, by X a
1-type branching process as in Remark 2.17 and by Z res, Zpre, Z sto BGWPDREs
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Fig. 2 Parameter regimes of Example 2.19-(1) and -(3) respectively, Lyapunov exponents taken as functions
of α. black: ϕX , red: ϕres, blue: ϕsto, green: ϕpre (color figure online)

following either the responsive, preliminary or stochastic switching strategy as in
Definition 2.5. Then, for either of the four processes there are non-trivial parameter
regimes and environmental distributions, under which this process has a strong fitness
advantage over the other three in the sense of Definition 2.16.

We prove this Theorem by means of examples of dominant strategies combining the
results of Theorem 2.12, Theorem 2.13, Theorem 2.14 and (2.6) from Remark 2.8
after fitting the parameters to the regime of fair comparison.

Example 2.19 (Strong fitness advantages of seed bank switching strategies). Let X be
a 1-type BGWPRE as in Remark 2.17 above with m(1) = 4 and m(2) = 4α, where
α < 1/4 such that X is sub-critical in the second environment. Further, let Z res, Zpre

and Z sto be three BGWPDREs with mean matrices

M res(1) =
(

4 0
4/5 0

)
, M res(2) =

(
0 4α
0 4/5

)
,

Mpre(1) =
(
0 4
0 4/5

)
, Mpre(2) =

(
4α 0
4/5 0

)
,

Msto(1) =
(

2 2
2/5 2/5

)
, Msto(2) =

(
2α 2α
2/5 2/5

)
.

Note that both the responsive and preliminary switching matrices correspond to
d1 = d2 = 1/5 and the stochastic switchingmatrices additionally tow1 = w2 = 2/5.
In particular, these processes satisfy (2.8), the condition of fair comparison. Also
note that det Msto(1) = det Msto(2) = 0, such that we obtain an exact result from
Theorem 2.14.
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Fig. 3 Phase diagram of fair comparison, strategies taken fromExample 2.19 with fixed α = 1/20 (left) and
α = 1/10 (right). The areas indicate parameter regimes where the respective strategies are advantegous.
Colored regions indicate strong advantages, light colors indicate advantage and (not necessarily unique)
supercriticality. X has no strong advantage in these settings. Below the colored regions (white), all strategies
are subcritical. (cf. Remark 2.20) (color figure online)

Now, only the environment-related parameters α < 1/4 and s1, s2 are left to play
with, describing the severity of harsh environments and the lengths of the environ-
mental phases. The following cases prove Theorem 2.18:

(1) For α = 1/20, s1 = 2/10 and s2 = 1/10 we obtain

ϕX ≈ −0.61 < 0, ϕsto ≈ −0.17 < 0, ϕpre ≈ −0.95 < 0 but

ϕres ≈ 0.11 > 0.

(2) For α = 1/20, s1 = 1/2 and s2 = 1/2 we get

ϕX ≈ −0.11 < 0, ϕres ≈ −0.17 < 0, ϕpre ≈ −0.17 < 0 but

ϕsto ≈ 0.09 > 0.

(3) Letting α = 1/20, s1 = 8/10 and s2 = 6/10 implies

ϕX ≈ −0.33 < 0, ϕres ≈ −0.56 < 0, ϕsto ≈ −0.02 < 0 but

ϕpre ≈ 0.01 > 0.

(4) Finally, choosing α = 1/5, s1 = 8/10 and s2 = 3/20 yields

ϕres ≈ −0.17 < 0, ϕsto ≈ −0.05 < 0, ϕpre ≈ −0.02 < 0 but

ϕX ≈ 0.03 > 0.

Remark 2.20 (Interpretation of advantageous strategies). Figure 2 provides more
insight into the behaviour of the four strategies than Example 2.19, by taking the
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parameter regimes (1) and (3) thereof and plotting the respective Lyapunov expo-
nents as functions of α ∈ (0, 1/4). Furthermore, Fig. 3 shows the fitness advantage
landscapes of the four models in dependence of (s1, s2), where strong advantages are
colorized.

The responsive switcher, whenm2 � 1−d2, suffers most upon entering or exiting
the harsh environment. Hence, in a scenario where environments rarely change (cf.
Figs. 2 (left) and 3), responsive switching does well compared to the other strategies.

The stochastic switcher however, performs a bet hedging strategy, i.e. investing in
dormant offspring even in good times to have better chances in worse times. This can
often be very costly, but really pays off when environments change with a moderate
frequency (cf. Fig. 3), especially when bad environments get very harsh, i.e. when α

is small.
The preliminary switcher is a somewhat paradoxical form of responsive switching,

since it invests under good environmental conditions all its resources in producing
dormant offspring, whereas in bad environments it only produces active offspring. In
the extreme case s1 = s2 = 1, where deterministically the environment changes at
every generation, it is intuitive that the preliminary switcher is optimal. Figure 3 even
shows a non-trivial parameter region, in which this strategy is dominant.

Note that the 1-type process without dormancy trait will always dominate the
switching strategies when α becomes sufficiently big—i.e. when the process gets
less and less sub-critical in bad environments—as illustrated in Fig. 3 (right). In
fact, in that particular parameter setting, when α ≥ 1/5, only the region of ϕX

will appear in the phase diagram, meaning that for any environmental parameters
ϕX ≥ max{ϕres, ϕsto, ϕpre}. This corresponds to Proposition 2.2 from the beginning of
this paper, wherewe saw that seed bank strategies are at a disadvantage in super-critical
environments.

Lastly, note that, for general values ofα, the case of iid environments—which corre-
sponds to the line on which s1+s2 = 1—would not at all capture the strong advantage
of responsive and preliminary switching in the settings of Fig. 3. Hence, for providing
a complete understanding of the fitness landscapes, the iid case is insufficient.

Remark 2.21 (Combining basic strategies). The presence of phenotypic diversity
regarding different switching strategies within the same Bacillus population [at least
with respect to the exit strategy from dormancy, see van Vliet (2015) and Sturm and
Dworkin (2015)] suggests also to investigate in mixtures of switching strategies. To
model this, we let each individual choose at birth whether it behaves according to
the preliminary (with probability q(e) ∈ [0, 1]) or the responsive (with probability
1 − q(e)) switching mechanism. The resulting mean matrices are given by

Mcc
q (e) := q(e)Mpre(e) + (1 − q(e))M res(e),

still maintaining fair comparison. Furthermore, these matrices also have determinant
0. (In fact, linear combinations of rank-1-matrices under fair comparison always retain
rank1). In particular, under fair comparison, the stochastic switcherwith det Msto(1) =
det Msto(2) = 0 can be represented as the convex combination of the responsive
and preliminary switcher with q(1) = md/(ma + md) and q(2) = ma/(ma + md).
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Fig. 4 Figure 3 extended by ϕcc(1/6) and ϕcc(5/6) from Remark 2.21. Additional advantegous regions
arise for the mixed strategies: purple: ϕcc(1/6), cyan: ϕcc(5/6) (color figure online)

Hence, we can again compute their fitness explicitly, and this leads to very interesting
behaviour.

Inserting the matrices of Example 2.19, we
obtain for q(1) = q(2) = q

Mcc
q (1) =

(
4(1 − q) 4q
4(1 − q)/5 4q/5

)
and Mcc

q (2) =
(
4αq 4α(1 − q)

4q/5 4(1 − q)/5

)
.

Figure 4 illustrates—in comparison to Fig. 3—which influence the convex combi-
nation of the basic strategies can have. Very intuitively, the regions where ϕcc(1/6)
and ϕcc(5/6) have an advantage lie between the regions of the responsive/stochastic
and stochastic/preliminary strategies. Remarkably, e.g. around (s1, s2) = (0.4, 0.3)
for α = 1/20 there is even a region where the convex combination of the responsive
and preliminary strategy with q = 1/6 yields a strong advantage possibly preventing
extinction which, however, is certain for the responsive, stochastic and preliminary
strategy.

This can be motivated as follows: For s1, s2 both either small or large, one of
the pure strategies (responsive or preliminary) seems to be optimal. However, for
moderate s1, s2 environmental variation is high and both fast switching and slow
switching environmental phases might occur. Then, a combination of both strategies
ensures that the worst case for neither strategy can affect the whole population. If one
considers the strategy of stochastic switching as a bet-hedging strategy, then using
phenotypic diversity to employ a mixture of extreme strategies might be seen as a
‘second-level’ bet-hedging strategy, now with respect to switching behaviour.

Remark 2.22 (Refinement of fair comparison).Thenotion of fair comparison implicitly
assumes that the production of or conversion into dormant forms is equally costly as
the production of active offspring. In many scenarios this will not be realistic. In fact,
the production of inactive individuals can be both very efficient (e.g. in seed plants)
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Fig. 5 Phase diagram of γ -weighted fair comparison, strategies taken from Remark 2.22 with α = 1/20.
For γ = 1 see Fig. 3 (left) (color figure online)

as well as rather costly (e.g. sporulation of Bacillus subtilis, see Piggot and Hilbert
2004). Exchanging (2.8) in Definition 2.16 by

p∑

i=1

mt,i
n γ i =

p∑

i=1

mt,i
n γ i

for some γ ∈ (0,∞)p leads us to the notion of “γ -weighted fair comparison”. For
BGWDPREs in the environment (In) we are mainly interested in γ -weighted fair
comparison with (γ 1, γ 2) = (1, γ ) for some γ > 0. Hence, the condition above
reads

(i) me
a + γme

d = me
a + γme

d and (i i) de = d̄e. (2.9)

The idea behind (2.9) is to ensure that both populations still make use of the same
amount of resources when producing dormant offspring becomes either less (γ < 1)
or more (γ > 1) resource consuming than producing active offspring. This can be seen
as one particular way of incorporating a reproductive trade-off (another natural one is
the introduction of the parameter ε > 0 in the BGWPWD from Sect. 2.1). Obviously,
we recover the notion of fair comparison for γ = 1.

To get some intuition on the influence of γ on the fitness under fair comparison,
we provide an example: Indeed, we adjust Example 2.19 by setting

M res(2) =
(
0 4α/γ

0 4/5

)
, Mpre(1) =

(
0 4/γ
0 4/5

)
,

Msto(1) =
(
4/(1 + γ ) 4/(1 + γ )

2/5 2/5

)
, Msto(2) =

(
4α/(1 + γ ) 4α/(1 + γ )

2/5 2/5

)
.

With this, the four processes from the example satisfy the condition for γ -weighted
fair comparison, while we still maintain det Msto(1) = det Msto(2) = 0 to obtain
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Fig. 6 Left: Separatrices between beneficial areas of responsive versus stochastic switching with α = 1/20
under γ -weighted fair comparison for various γ (cf. Remark 2.22). For γ = 1 compare Fig. 3 (left). ∗marks
the setting on the right. Right: Lyapunov exponents under γ -weighted fair comparison for fixed s1, s2 as
functions of γ . Black: ϕX , red: ϕres, blue: ϕsto. Parameters given in Remark 2.22 (color figure online)

an exact result from Theorem 2.14. Also, a convex combination Mcc
q (e) yields γ -

weighted fair comparison, although not necessarily retaining rank 1 anymore such
that ϕcc requires simulation.

Figure 5 illustrates the influence of γ on the phase diagram in Fig. 3 (left). Here,
we see that halving the cost parameter γ largely enhances the advantages of carrying
any dormancy trait, where the advantageous region for ϕsto seems to increase the
most. Naturally, the switching strategies will always dominate the 1-type process as
γ approaches 0, i.e. as dormant offspring become very cost-efficient. On the other
hand, having a cost parameter γ > 1 shifts the landscape in such a way that the 1-type
process overtakes the strong-advantage-region from the stochastic switcher.

Figure 6 (left) shows the phase diagram of stochastic versus responsive switching
for various values of γ , where the separatrix in general is given by the equation

s2 = s1
(
log

(
w2 + w2 md

ma

) − log
(
αma + w2 md

ma

))

log
(
ma + w1 md

ma

) − log
(
ma + γmd

) − s1 log
(

αw1

γw2

) (2.10)

With the parameters specified above, we observe that, for γ = 1/9, the separatrix
becomes a constant function with s2 = log(40/29)/ log(20/9) ≈ 0.4027. Remark-
ably, this effect leads to parameter regimes where the fitness of the responsive switcher
exceeds that of the stochastic switcher if γ is either small or big, while stochastic
switching wins for intermediate γ , e.g. at the point (s1, s2) = (0.4, 0.3) marked by ∗.
This particular case is further depicted in Fig. 6 (right), where the respective Lyapunov
exponents are plotted as functions of γ . (Note that the 1-type-fitness is constant here,
since it is not influenced by the cost of dormant offspring.)
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Fig. 7 Left and right: Lyapunov exponents as functions in α of various stochastic switchers under fair
comparison in the regimes of Example 2.19-(1) and -(3) respectively. Line: ϕsto, �,∇: simulated values of
ϕ for strategies defined by Msto

� , Msto∇ from Remark 2.23

Remark 2.23 (Non-zero determinant case for mean matrices). Rather than combining
the pure strategies, one can also compare different stochastic switching strategies
under fair comparison, e.g. by choosing mean matrices of non-zero determinant, as
illustrated in Fig. 7. Here, we add to the setting of Example 2.19 two further stochastic
switchers with matrices

Msto
� (e) =

(
13αe−1/4 3αe−1/4

2/5 2/5

)
and Msto∇ (e) =

(
3αe−1/4 13αe−1/4
2/5 2/5

)

for e ∈ {1, 2}. These satisfy the conditions of fair comparison to the processes in
Example 2.19 while det Msto

� (e) = αe−1 > 0 and det Msto∇ (e) = −αe−1 < 0.
In contrast to the stochastic switcher given byMsto in Example 2.19, the�-matrices

describe a strategy that focuses more on the production of active offspring, making
better use of good times. Note that a positive determinant could also come from a
decrease of the resuscitation rate we, increasing the chance of enduring long-lasting
harsh times. Both effects increase the fitness in less frequently changing environments,
Fig. 7 (left).

The ∇-matrices, however, describe a population that mostly produces dormant
offspring, making for a strategy that prevails in frequently changing and sufficiently
harsh environments as seen in Fig. 7 (right).

Figure 8 illustrates the influence of the determinant on the phase diagram: In com-
parison to Fig. 3 (left), roughly, the �-strategy with positive determinant wins ground
on the left half, but loses ground on the right half of the diagram, while the ∇-strategy
with negative determinant generates the opposite effect.

Of course, the above examples invite a much larger and systematic study of param-
eter ranges and switching strategies, but we think that this goes beyond the scope of
the present paper, with its focus on mathematical methods.
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Fig. 8 Same as Fig. 3, but ϕsto replaced by strategies taken from Remark 2.23 (color figure online)

3 Technical results for rank-1 and rank-2 switching strategies

In this section, we provide theoretical results for the explicit computation and bounds
for maximal Lyapunov exponents related to switching strategies in BGWPDRE. We
prove Theorems 2.12, 2.13, 2.14 (rank-1 case) and 2.15 (rank-2 case) and provide
bounds in the rank-2 case and a short literature review.

3.1 Rank-1-matrices and exact results

Consider a stationary and ergodic sequence (M1, M2, . . .) of non-negative p × p
matrices such that, for any n ∈ N, the rank of Mn is equal to one. Hence, for any
n ∈ N, we can find column vectors �n, rn ∈ [0,∞)p such that Mn = �n · r�

n and the
sequence ((�n, rn))n≥1 is stationary. Note that in this case, only one eigenvalue of Mn

is non-zero and, as a consequence, �(Mn) = tr Mn .

Lemma 3.1 Let (M1, M2, . . .) be a stationary and ergodic sequence of non-negative
p × p matrices with Mn = �n · r�

n for any n ∈ N. Suppose that E
[
log+ ‖�1‖

]
< ∞

and E
[
log+ ‖r1‖

]
< ∞. Then, P-a.s. and in mean,

ϕ = lim
n→∞

1

n
log ‖M1 · . . . · Mn‖ = E

[
log 〈r1, �2〉

]
. (3.1)

Proof First, note that both E
[
log+〈r1, �2〉

]
< ∞ and E

[
log+ ‖M1‖

]
< ∞. The latter

ensures that the maximal Lyapunov exponent, ϕ, exists P-a.s. and in mean. Thus it
remains to show that ϕ is equal to the expression on the right-hand side of (3.1).

In order to apply (Kingman 1973, Theorem 1) which ensures that ϕ is finite, we
first assume

E
[
log ‖M1 · . . . · Mn‖

] ≥ −An for some A ∈ [0,∞) and all n ∈ N. (3.2)
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This implies that log 〈r1, �2〉 ∈ L1(P), log ‖�1‖ ∈ L1(P) and log ‖r1‖ ∈ L1(P). In
particular, P-a.s., 〈rn, �n+1〉 > 0 for all n ∈ N. Since

1

n
log ‖M1 · . . . · Mn‖ = 1

n

n−1∑

i=1

log 〈ri , �i+1〉 + 1

n
log ‖�1 · r�

n ‖, (3.3)

we immediately deduce fromBirkhoff’s ergodic theorem that the first termon the right-
hand side of (3.3) converges, P-a.s. and in L1(P), to E

[
log〈�1, r2〉

]
as n → ∞. Since

supn∈N E
[| log ‖�1 · r�

n ‖|] < ∞, it follows that limn→∞ 1
n E

[| log ‖�1 · r�
n ‖|] = 0,

and (3.1) holds in mean. Moreover, for any ε > 0

∞∑

n=1

P
[| log ‖�1 · r�

n ‖| ≥ εn
] ≤ 2C

ε

(
E

[| log ‖�1‖|
] + E

[| log ‖r1‖|
])

< ∞,

where the constant C ≥ 1 appearing in the computation above results from the com-
parison of equivalent matrix norms. Thus, by using the Borel–Cantelli Lemma we
conclude that limn→∞ log ‖�1 · r�

n ‖/n = 0 P-a.s., and (3.1) follows.
However, if the additional assumption in (3.2) is violated then we conclude that

E
[
log〈r1, �2〉

] = −∞. Thus, by Kingman (1973, Theorem 2), the maximal Lyapunov
exponent, ϕ, as well as the limit of the sum on the right-hand side of (3.3) exists with
probability one, and ϕ = −∞. Using that supn∈N E

[
log+ ‖�1 · r�

n ‖] < ∞ concludes
the proof. ��
Corollary 3.2 Let Z be a p-type BGWPRE in environment (In) given in Definition 2.3.
Suppose that rk M(e) = 1, tr M(e) > 0 for any e ∈ {1, 2}, and tr(M(1) · M(2)) > 0.
Then, P-a.s.,

ϕZ = s2
s1+s2

log(tr M(1)) + s1
s1+s2

log(tr M(2)) + s1s2
s1+s2

log

(
tr(M(1)M(2))

tr M(1) tr M(2)

)
.

Proof By Lemma 3.1, it holds that, P-a.s.,

ϕZ = E
[
log 〈r(I0), �(I1)〉

] =
∑

i, j∈{1,2}
πI (i) PI (i, j) log 〈r(i), �( j)〉.

By using that 〈�(e), r(e)〉 = tr M(e) for any e ∈ {1, 2}, 〈r(1), �(2)〉〈r(2), �(1)〉 =
tr(M(1) · M(2)) and πI (1)PI (1, 2) = πI (2)PI (2, 1), the assertion follows. ��
Proof of Theorem 2.12, 2.13 and 2.14 This follows directly from Corollary 3.2. ��
Remark 3.3 (Connection to Dombry et al. 2011).

(1) Similarly toDombry et al. (2011, Propositions 1 and 7), the responsive switcher can
be regarded as a 1-typeBGWPREprocess in amore complex randomenvironment,
here given by ((In, In+1))n with corresponding offspring means m1,i = mi and
m2,i = 1 − di for i ∈ {1, 2}. With this, Theorem 2.12 follows by applying the
Ergodic Theorem.
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(2) For a given fixed mean offspring per type and environment, say (mt (e))1≤t≤p for
e ∈ {1, 2}, consider a collection of distributions of offspring types—say νt (e) ∈
R

p
≥0 for 1 ≤ t ≤ p, e ∈ {1, 2}—as reproduction strategy. In Dombry et al. (2011)

the maximal Lyapunov exponent is only computed explicitly in the so-called non-
hereditary case, that is, when the distributions of offspring types do not depend
on the parent type, νt (e) = ν(e). Regarding m(e) = (mt (e))t and ν(e) as column
vectors in R

p
≥0, the corresponding mean matrices are M(e) = m(e) · ν(e)� and

thus, of rank 1. Hence, the case in which Dombry et al. (2011) obtain exact results
for ϕZ aligns with the case where we do.
A natural generalization is to give type-t-individuals an offspring type distribution
depending on e as a convex combination of two distributions, say ν(e) and μ(e).
This provides a simple example of the hereditary case and produces meanmatrices
of rank at most 2.

3.2 Rank-2-matrices and bounds

Let (M1, M2, . . .) a stationary and ergodic sequence of non-negative p × p matrices
such that, for any n ∈ N, the rank of Mn is at most two, i.e. there are column vectors
�in, r

i
n ∈ [0,∞)p, i ∈ {1, 2} such that

Mn =
2∑

i=1

�in · (r in)
�

for any i ∈ N. Further, for any i ∈ N, we denote by An,n+1 a non-negative 2 × 2
matrix that is defined by

An,n+1 :=
(〈r1n , �1n+1〉 〈r1n , �2n+1〉

〈r2n , �1n+1〉 〈r2n , �2n+1〉

)

. (3.4)

Note that the sequence (A1,2, A2,3, . . .) is as well stationary and ergodic.

Remark 3.4 There are several ways to decompose a non-negative 2×2-matrix into the
sum of two products of non-negative vectors, e.g. for any a, b, c, d ≥ 0 and ab > 0
it holds

M :=
(
a b
c d

)
=

(
1
0

)
· (
a b

) +
(
0
1

)
· (
c d

)
(3.5)

=
(
a
c

)
· (
1 0

) +
(
b
d

)
· (
0 1

)
(3.6)

=
(
a
c

)
· (
1 b

a

) +
(
0
1

)
· (
0 det M

a

)
(3.7)

=
(
b
d

)
· ( a

b 1
) +

(
0
1

)
· (− det M

b 0
)
, (3.8)
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where the entries in (3.5) and (3.6) are always non-negative, in (3.7) they are non-
negative if det M ≥ 0 and in the last if det M ≤ 0.Notably, (3.6) corresponds towriting
M(e) as convex combination of responsive and preliminary switchers as indicated in
Remark 2.21.

Lemma 3.5 Let (M1, M2, . . .). be a stationary and ergodic sequence of non-negative
p × p matrices with Mn = ∑2

i=1 �in · (r in)
� for any n ∈ N and log ‖�i1‖, log ‖r i1‖ ∈

L1(P) for any i ∈ {1, 2}. Then, P-a.s. and in mean,

ϕ = lim
n→∞

1

n
log ‖M1 · . . . · Mn‖ = lim

n→∞
1

n
log ‖A1,2 · . . . · An−1,n‖. (3.9)

Proof First, by an elementary computation, we get that E
[
log+ ‖M1‖

]
< ∞ and

E
[
log+ ‖A1,2‖

]
< ∞. Thus, Kingman (1973, Theorem 6) implies that

lim
n→∞

1

n
log ‖M1 · . . . · Mn‖ and lim

n→∞
1

n
log ‖A1,2 · . . . · An−1,n‖

exist P-a.s. and in mean. Thus, we are left with showing that both limits coincide.
Recall that the limit does not depend on the chosen matrix norm. Choosing ‖B‖ :=∑p

i, j=1 |Bi, j |, we obtain

‖M1 · . . . · Mn‖ =
2∑

i, j=1

(
A1,2 · . . . · An−1,n

)i, j ‖�i1‖1 ‖r j
n ‖1.

By setting Rn := ∑2
i=1(| log ‖�i1‖1| + | log ‖r in‖1|) for any n ∈ N, it follows that

−1

n
Rn ≤ 1

n
log ‖M1 · . . . · Mn‖ − 1

n
log ‖A1,2 · . . . · An−1,n‖ ≤ 1

n
Rn .

Thus, by using the same argument as in the proof of Lemma 3.1, we obtain that,
P-a.s. and in mean, limn→∞ 1

n Rn = 0, which concludes the proof. ��
Next, we focus on establishing various bounds for the maximal Lyapunov exponent
for the resulting product of 2 × 2 matrices.

Proposition 3.6 Let (In) be a stationary and ergodic Markov chain with values in
�′ = {1, 2} as given in Definition 2.3, and A : �′ × �′ → [0,∞)2×2 such that
E[| log ‖A(I0, I1)‖|] < ∞. Denoting An,n+1 = A(In, In+1), the following holds:

(a) For λ : �′ × �′ → (0,∞), let A∗(i, j) = A(i, j)/λ(i, j) for i, j ∈ �′. Then,
P-a.s. and in mean,

lim
n→∞

1

n
log

∥∥A1,2 · . . . · An−1,n
∥∥ ≤ E[log λ(I0, I1)] + log �( Â∗),
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where �( Â∗) denotes the spectral radius of the (4 × 4)-matrix

Â∗ :=
(

(1 − s1)A∗(1, 1) s1A(1, 2)∗
s2A(2, 1)∗ (1 − s2)A(2, 2)∗

)
.

(b) For n ≥ 1 denote by Dn the set of probability density functions on {1, 2}n. Then,
P-a.s. and in mean,

lim
n→∞

1

n
log

∥∥A1,2 · . . . · An−1,n
∥∥ ≥ lim sup

n→∞
sup

ν∈Dn

1

n

( n−1∑

k=1

Eν[Xk] + H(ν)

)
,

where Xk = log
(
A(Ik, Ik+1)

αk ,αk+1
)
, Eν denotes integration by α ∈ {1, 2}n with

respect to ν and H(ν) the entropy of ν, i.e.

H(ν) = −
∑

α∈{1,2}n
ν(α) log ν(α).

Proof (a) First, by the ergodic theorem, letting A∗
n,n+1 = A∗(In, In+1), we have that,

P-a.s. and in mean,

lim
n→∞

1

n
log

∥∥A1,2 · . . . · An−1,n
∥∥

= E
[
log λ(I0, I1)

] + lim
n→∞

1

n
E

[
log

∥∥A∗
1,2 · . . . · A∗

n−1,n

∥∥
]
.

Moreover, it is well known that an upper bound for themaximal Lyapunov exponent
of the stationary and ergodic sequence (A∗

1,2, A
∗
2,3, . . .) follows immediately from

Jensen’s inequality. Indeed, using the matrix norm ‖B‖ = ∑
i, j |Bi, j |, B ∈ R

2×2,

E

[
log

∥∥A∗
1,2 · . . . · A∗

n−1,n

∥∥
]

≤ logE
[∥∥A∗

1,2 · . . . · A∗
n−1,n

∥∥
]

= log
(
(πI ⊗ 12)�( Â∗)n−1(14)

) ≤ log ‖( Â∗)n−1‖,

where 1k := (1, . . . , 1)� ∈ R
k . Hence, the assertion follows from Horn and Johnson

(1990, Corollary 5.6.14).
(b) Note that, for any ν ∈ Dn , ‖A1,2 · . . . · An−1,n‖ equates to

∑

α∈{1,2}n

n−1∏

k=1

Aαk ,αk+1
k,k+1 ≥

∑

α: ν(α)>0

ν(α) exp

( n−1∑

k=1

log
(
Aαk ,αk+1
k,k+1

) − log ν(α)

)
.

The result follows from Jensen’s inequality, taking supremum and limit superior.
Note that the right-hand side converges almost surely and hence in mean by monotone
convergence. ��
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Proof of Theorem 2.15 Since w and d do not depend on e, it holds det M(2) =
α det M(1). Notably, when det M(1) = 0, this lower bound equates to the result
from Theorem 2.14. Hence, in what follows we assume det M(1) �= 0.

For det M(1) > 0, using representation (3.7) we obtain

A(i, j) =
(

α j−1ma + wmd
ma

md
ma

w det M(1)
ma

det M(1)
ma

)

,

where A(i, j)1,1 = tr M( j) − det M(1)
ma

. Otherwise, if det M(1) < 0 and we use (3.8),

A(i, j) =
(

tr M( j) 1
− det M( j) 0

)
.

Hence, in both cases it holds A(i, j)1,1 = tr M( j) − (det M(1)/ma)
+ and Proposi-

tion 3.6-(b) concludes the proof by considering νn = δ{1}n ∈ Dn and applying the
Ergodic Theorem. ��

Remark 3.7 (Further bounds on the maximal Lyapunov exponent). Let us consider
the stochastic switching model with mean matrices M(1) and M(2). In view of
Remark 2.9 any sub-multiplicative function ‖ · ‖ : R2×2≥ → (0,∞) yields that ϕZ ≤
E[log ‖M(I0)‖]. Likewise, for any super-multiplicative function f : R2×2≥ → (0,∞)

we obtain that ϕZ ≥ E[log f (M(I0))]. Examples of super-multiplicative functions
are the minimal column and row sums, respectively, any diagonal element, or the
permanent of a matrix A.

For a slightly improved upper bound note that for any sub-multiplicative matrix
norm ‖ · ‖

∥∥∥
n∏

k=1

Mk

∥∥∥ ≤
n∏

k=1

‖Mk‖ ·
n−1∏

k=1

( ‖M(1)M(2)‖
‖M(1)‖‖M(2)‖

)1Ik=1,Ik+1=2
,

which takes into account the effects of one type of environmental change. Hence, we
obtain that ϕZ ≤ E[log ‖M(I0)‖] + �, where

� = s1s2
s1 + s2

log
(min{‖M(1)M(2)‖, ‖M(2)M(1)‖}

‖M(1)‖‖M(2)‖
)

≤ 0.

As one can see in Fig. 9 (right), for small α in some cases this can give a better
upper bound than the one from Hautphenne and Latouche (2016).

Amore evolved approach is to choose a sequence (νn) such that (αk)k canbe interpreted
as path of aMarkov chain. Combining this ansatz withMarkov chain limit results leads
to
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Corollary 3.8 For i, j, y ∈ {1, 2} let μi j y ∈ [0, 1], such that the stochastic matrix Q
defined as

⎛

⎜⎜⎜⎜
⎝

11 12 21 22

11 (1 − s1)μ111 (1 − s1)(1 − μ111) s1μ121 s1(1 − μ121)

12 (1 − s1)μ112 (1 − s1)(1 − μ112) s1μ122 s1(1 − μ122)

21 s2μ211 s2(1 − μ211) (1 − s2)μ221 (1 − s2)(1 − μ221)

22 s2μ212 s2(1 − μ212) (1 − s2)μ222 (1 − s2)(1 − μ222)

⎞

⎟⎟⎟⎟
⎠

is irreducible and aperiodic, and denote by q its stationary distribution. Then,

ϕZ ≥
∑

i, j,y,z∈{1,2}
qiy Q

iy, j z
(
log

(
A(i, j)y,z

) + h(μi j y)
)
,

where h(x) = 0 if x ∈ {0, 1} and h(x) = −x log(x) − (1 − x) log(1 − x) otherwise.

Let us point out that this result can also be deduced directly from Arnold et al.
(1994, Theorem4.3), where the authors, based on concepts from equilibrium statistical
mechanics, established a variational characterization of the maximal Lyapunov expo-
nent for general ergodic sequences of positive matrices satisfying certain integrability
conditions. Nevertheless, for the sake of being self-contained we provide a proof of
Corollary 3.8 at the end of this section. A similar upper bound has been derived by
Gharavi and Anantharam (2005).

Note that Corollary 3.8 in this special case offers an analytical approach for finding
an over-all reliable lower bound by adjusting the eight μ-parameters. Additionally, it
provides a way to give an approximate uniform lower bound, which, in some regimes,
outperforms the other lower bounds discussed here—see Fig. 9 (mid).

Remark 3.9 (Connection to Hautphenne and Latouche 2016 and Kussell and Leibler
2005).

(1) Using Eq. (3.5) for both mean matrices of the stochastic switcher yields A(i, j) =
M(i). Hence, letting λ(e, ·) = �(e), Proposition 3.6-(a) gives the same upper
bound as in Hautphenne and Latouche (2016, Theorem 2). Changing the values of
λ allows to influence the loss from the estimation by Jensen’s inequality, offering
potential improvement for this upper bound.

(2) Analogous to Corollary 3.8 the method in Hautphenne and Latouche (2016) is
based on constructing νn via transition matrices of the form

�(e) := diag(v(e))−1 · M(e)

�(e)
· diag(v(e)),

where v(e) denotes the respective and suitably normalized right-eigenvectors of
M(e). In fact, the lower bound in Hautphenne and Latouche (2016, Theorem 3)
can be achieved from Corollary 3.8 by choosing μi j y = �(i)y1 and, as above,
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Fig. 9 Left and mid: Comparison of lower bounds of �- and ∇-strategy resp. in setting of Fig. 7 (right)—
red: Theorem 2.15, black: Corollary 3.8 maximized over 1000 random choices of the μ-parameters, blue:
(Hautphenne and Latouche 2016, Theorem 3), � and ∇: approximation via simulation. On the right:
Comparison of upper bounds—black: improved norm bound from Remark 3.7 with respect to ‖ · ‖1, blue:
(Hautphenne and Latouche 2016, Theorem 2), �: approximation via simulation (color figure online)

A(i, j) = M(i) by decomposition (3.5). Then, the lower bound in Corollary 3.8
becomes

E[log �(0)] + q

(
I4 −

(
�(1) 0
0 �(2)

) )
⎛

⎜
⎜
⎝

log v(1)1
log v(1)2
log v(2)1
log v(2)2

⎞

⎟
⎟
⎠ , (3.10)

which illustrates the connection. Figure 9 demonstrates that there are choices for
the parameters μ that can be made to improve the lower bound from Hautphenne
and Latouche (2016), especially for small α. This particular choice of transition
matrices �(e) defines a Markov chain (Yk) closely related to the so-called retro-
spective process (cf. Wang 2014, Chapter 3).

(3) Kussell and Leibler (2005) approximate the maximal Lyapunov exponent under
a slow environment condition. The soundness of this approximation can be veri-
fied by the previously discussed bounds of Hautphenne and Latouche (2016): As
s1, s2 → 0 and s1/s2 → τ > 0, PI gets close to I2 and hence, the second addend in
(3.10) approaches q(I4−Q) log v = 0. On the other hand, the Â∗-matrix obtained
in Remark 3.9-(1) tends to

(
M(1)/�(1) 0

0 M(2)/�(2)

)

and �( Â∗) → 1. Thus, both bounds approach E[log �(0)] and so does ϕZ .
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Proof of Corollary 3.8 Denote by γi = qi1
q11+q12

and by (Yk)k≥1 random variables on
{1, 2} holding P[Y1 = 1 | I1] = γI1 and

P[Yn+1 = 1 | Yn, In, In+1] = μIn ,In+1,Yn

for all n ≥ 1. Then, ((In,Yn))n is a time-homogeneous stationary Markov chain with
transition matrix Q. Furthermore, (Yn)n with Yn := ((In,Yn), (In+1,Yn+1)) is a
homogeneous Markov chain with stationary distribution q(2) given by

q(2)
ab = qa · Qab = (diag(q) · Q)ab

for a, b ∈ {11, 12, 21, 22}. Now, Xn = f (Yn) with f (i, y, j, z) = log
(
A(i, j)y,z

)
.

Letting ν I
n the distribution of (Yk)1≤k≤n conditional on (Ik), it follows by stationarity

of the Yk and ergodicity that

1

n

n−1∑

k=1

Eν I
n
[Xk] = 1

n

n−1∑

k=1

E[ f (Yk) | Ik, Ik+1] n→∞−−−→ Eq(2)

[
f (I1,Y1, I2,Y2)

]

amounting to the first addend of the lower bound. On the other hand, using theMarkov
property,

1

n
H(ν I

n ) := −1

n

∑

α∈{0,1}n
ν I
n (α) log ν I

n (α) = −1

n
E

[
log ν I

n (Y1, . . . ,Yn) | (Ik)k≤n
]

= 1

n

n−1∑

k=1

E
[
h(μIk Ik+1Yk ) | Ik, Ik+1

] + O(1/n).

Hence, by stationarity of (Yk) and the Ergodic Theorem it follows

1

n
H(ν I

n )
n→∞−−−→ Eq(2)

[
h(μI1 I2Y1)

]

and the corollary holds by Proposition 3.6-(b). ��

4 Discussion and outlook

4.1 Discussion

In the previous sectionswe evaluated and compared the fitness of 2-type branching pro-
cesses with dormancy. We incorporated different switching strategies between active
and dormant states, type-specific relative reproductive costs and fluctuating environ-
ments changing between healthy and harsh states. We will now discuss our results
from a somewhat elevated perspective, formulating simplified ‘take-home messages’,
and put them in the context of earlier work. Further, we will comment on the role of
stochasticity in our model and sketch areas for future research.
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‘Take-homemessages’ and the ‘rules of thumb’of Malik and Smith

In Malik and Smith (2008), the authors work in a dynamical-systems based set-up and
provide several ‘rules of thumb’ summarizing their findings. We try to formulate a
corresponding set of such rules; however, one should be careful with these necessarily
vague statements—in doubt one should always refer to the exact mathematical results.
The following statements hold under our ‘fair comparison’ assumption (γ = 1).

(1) Each switching strategy can be more fit than the ‘sleepless’ strategy when
i) good times are rare and ii) bad times are sufficiently harsh. Otherwise, the
sleepless population has a (potentially strong) fitness advantage.

This was essentially also observed in Malik and Smith (2008). Here, i) corresponds in
our setting to the condition s2 � s1. In this case indeed we see that ϕX is small—cf.
Fig. 3. However, one should note that this observation also depends on the severity α of
the ‘harsh’ environmental state, as ϕX will eventually always dominate as α → 1, thus
explaining the additional condition ii). In fact, we can strengthen this rule by adding
that each switching strategy can even be exclusively super-critical (“strong fitness
advantage”), if the ratio between good times and bad times is sufficiently adjusted, cf.
the colored areas of Fig. 3. From now on, we will always assume a sufficiently severe
harsh environment (that is, α is sufficiently small).

Note that in the opposite limitα ↓ 0 the horizontal line in Fig. 3 tends to a horizontal
line through the point 1, the slope of the linear function through the origin tends to
∞, and the separatrix between the responsive and spontaneous switcher tends to the
function [0, 1] � s1 �→ 1−1(0,1](s1). In this case, the stochastic switcher completely
dominates the diagram, but has no strong fitness advantage.

(2) The responsive switcher is more fit than the stochastic switcher when envi-
ronmental states change rarely, i.e. when s1 · s2 is small.

Note that a similar rule has been stated in Kussell and Leibler (2005). The correspond-
ing rule in Malik and Smith (2008) is that the “responsive switcher is more fit than the
stochastic switcher when either good times are very rare or are very common”. In our
case, this would correspond to the condition that either s1 � s2 or s2 � s1, suggesting
that the point (s1, s2) lies below the graph of a suitable ‘hyperbola’. Indeed, we are
able to compute the exact boundary of the region where ϕres > ϕsto, which is given
by (2.10), see Fig. 3 and Remark 2.22. Hence we are able to provide a very explicit
classification of fitness advantage areas. However, we also see that ϕres > ϕsto when
environmental states both change rarely, i.e. also if s1 and s2 are small. SinceMalik and
Smith (2008) only consider environmental cycles of fixed length T ≡ s−1

1 + s−1
2 , they

cannot observe this effect. In contrast, Malik and Smith (2008) also provide results
for the limit of extremely quickly fluctuating environments, which are meaningless in
our model, since we assume discrete time/generations.

(3) When the environment changes almost every generation, i.e. when s1 · s2 is
large, the preliminary switcher is the fittest.

The preliminary switcher does not appear explicitly in Malik and Smith (2008) and
might seem counter-intuitive at first glance. However, in the discrete generation con-
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text, when the environment becomes predictable (e.g. seasonal/periodic changes), this
strategy can be optimal, as Fig. 3 shows.

(4) For intermediate values of s1 · s2, stochastic switching emerges as optimal
strategy.

As discussed in Remark 2.21, stochastic switching can be constructed via convex com-
binations of responsive and preliminary switching, retaining rank 1. Their Lyapunov
exponents, ϕcc(q(1), q(2)), can then be computed by Theorem 2.14 and maximized in
q(1) and q(2) to obtain the optimal rank-1-strategy under fair comparison, which is a
non-trivial convex combination for intermediate s1 ·s2 as Fig. 4 suggests. Indeed,mixed
strategies can be uniquely super-critical (‘strong fitness advantage’). This observation
has no analogue in Malik and Smith (2008), where although ‘hybrid’ strategies are
mentioned (p. 1144), no results are being provided. However, in general the optimal
strategy might not be of rank 1, as Fig. 7 suggests that non-zero determinants might
further increase fitness in certain scenarios.

Themodel of Dombry, Mazza and Bansaye

In Dombry et al. (2011), the authors deal with a branching process model for pheno-
typic switches between potentially many types, and with a general class of random
environments (though still assumed to be stationary and ergodic). However, in some
regards their model and results are also more restrictive than ours, and some scenarios
of dormancy-related reproduction are not covered. To understand the differences,
let us recall their distinction between hereditary and non-hereditary reproduction
strategies. In non-hereditary strategies, in a first step, the offspring numbers of indi-
viduals are sampled, and then, in a second step, independently, the new phenotypes
are attached to the offspring individuals. This case disentangles reproduction and
phenotype-allocation and allows to obtain a wealth of elegant results on the fitness
and optimality of switching strategies. In contrast, the hereditary case does not fea-
ture this disentanglement, and type allocation may depend on the type of the parents.
Because of this, this case is mathematically much harder to investigate. In fact, here,
Dombry et al. (2011) provide no systematic results for the Lyapunov exponents of the
system.

Unfortunately, the non-hereditary case already excludes our simple example for
dormancy-related reproduction being the result of either binary fission or sporulation
from Sect. 2.1, since here, the offspring number determines the offspring type. It is
still possible to transfer some of their machinery to the cases which in our models
correspond to rank-1 matrices, but not to the rank-2 case.

Nevertheless it is interesting to compare some of the results for the non-hereditary
case with our results. In the case with spontaneous switching (related to the ‘no-
sensing’ case in the language of Dombry et al. (2011)), they show that there are
situations where a diversified strategy with several phenotypes can have a strong fit-
ness advantage over a ‘single-type’ strategy, cf. their Section 1.1.1. For the case ‘with
sensing’ (responsive switching) and for s1 = s2, they show that for rarely changing
environments, responsive switching is optimal, whereas in highly fluctuating environ-
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ments, preliminary switching dominates. Further, a mixed strategy—e.g. stochastic
switching—is optimal in intermediate regimes. This corresponds to our observation
in Fig. 3 (left). However, similarly to the iid case given on the line where s1 = 1− s2,
this covers only a small part of the fitness landscape.

The role of relative reproductive costs and ‘weighted fair comparison’

Note that while (Dombry et al. 2011) do consider mixed switching strategies, they
implicitly always assume a ‘fair-comparison’ of reproductive strategies (cf. the fixed
type distributions ϒt,e on p. 377), corresponding to our comparison with γ = 1. If
this assumption is violated, that is, dormant offspring are either ‘more cost efficient’
than active offspring (γ < 1), or ‘more expensive’ (γ > 1), the picture regarding
optimal strategies becomes very rich and exhibits novel effects. Note that situations
in which dormant offspring are more expensive than active offspring could relate for
example to the sporulation process of Bacillus subtilis, which takes much longer than
producing an active offspring by binary fission (Piggot and Hilbert 2004), and thus
leads to fewer dormant offspring per time unit, resulting in higher ‘effective’ costs.
On the other hand, plants often produce many seeds at a low cost, and this is clearly
the optimal strategy in the presence of extremely harsh environments (‘winter’) that
effectively kills all ‘active’ individuals from the current generation of a species.

In our model, the following picture emerges (cf. Fig. 5): Under reduced costs for
dormant individuals (here, γ = 1/2), rule (1) still holds in a qualitative sense; however,
the region where the sleepless case is optimal is further reduced, while the relation
between the regions of the switching strategies does not seem to change qualitatively.
Under increased costs for dormant offspring (here, γ = 2), a new effect appears. Here,
the ‘sleepless’ population can suddenly gain a strong fitness advantage in moderately
fluctuating environments, at the cost of the stochastic switcher.

Interestingly, both the responsive and the preliminary strategies seem less severely
affected by variable relative reproductive costs as both retain their ‘strong advantages’
in Fig. 5 (right). However, for severe relative fitness differences, the qualitative picture
may again change drastically. For example, in Fig. 6 (left) the separatrix between the
regions of dominance of the responsive and the stochastic switcher performs a phase
transition, where for γ = 1/9 it becomes a straight line. This invites a more compre-
hensive study of the sensitivity of the optimal strategies on the relative reproductive
costs, which however seems beyond the scope of the present paper.

Stochastic versus deterministic modeling

Stochasticity enters in our model in two distinct ways. The first is environmental
stochasticity, where random changes between harsh and healthy states affect all indi-
viduals in the population simultaneously. Second, there is demographic stochasticity,
due to random reproduction/switching (described by a branching process), which is
independent between individuals. Despite these two sources of randomness, a first
observation is that several qualitative results remain valid under both approaches (e.g.
rule 1).
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One reason is that the reproductive mechanism enters our results on the maximal
Lyapunov exponents only through the mean matrices of the offspring distributions,
which yields the same information as is contained in the transition rates of dynamical
systems. Further, for large populations, the lawof large numbers implies that branching
processes in discrete time, resp. birth-death processes in continuous time, can be well
approximated by dynamical systems, see e.g, Kurtz (1974), Ethier and Kurtz (1986)
and Fournier and Méléard (2004) (the latter for spatial and measure-valued set-ups)
on the ecological time-scale.

However, demographic stochasticity does play a major role in situations when
population sizes may fluctuate strongly, and in particular may be very small. This
could for example be the case in scenarios when new dormancy traits invade a resident
population without this trait (as in Blath and Tobiás 2020), or infections in an early
stage. It is certainly also relevant when considering extinction probabilities, which
by definition involve small population sizes. See e.g. Jost and Wang (2014), who
investigate the extinction probability of branching processes under optimal phenotype
allocation.

Environmental stochasticity determines the ‘random order’ in which the mean
matrices corresponding to the environmental states enter the formula for the Lyapunov
exponent. The formula of course also holds for deterministic periodic environments.
In the rank-1 case, exponents can e.g. be computed via Lemma 3.1, and this can lead in
(suitably chosen) environments to similar effects as in corresponding random environ-
ments (e.g. a periodic environment, where two harsh periods are always followed by
two healthy periods and vice versa, and a random environment with s1 = s2 = 1/2).
However, in the (non-commutative) rank two case, the relation between stochastic
and deterministic environments, and the impact on optimal switching strategies, is not
clear and requests future work.

4.2 Outlook

As indicated above, our results are still incomplete and our study invites further
research in several directions.

For example, progress regarding the exact computation of Lyapunov exponents is
certainly desirable, but this is known to be difficult and probably needs particular and
sophisticated methods for particular switching strategies, depending on the algebraic
properties of the underlyingmeanmatrices. This also holds true for more general envi-
ronments. An alternative to analytic solutions could be the exploration of the ‘strategy
space’ via simulation, e.g. involving genetic algorithms. Simulation methods in more
complex models could also allow the assessment of antibiotic treatment protocols.

A readily accessible task is the extension of our model to continuous-time birth-
death processes. This then suggests to explore the relation to ‘adaptive dynamics’
related set-ups, in which one could try to merge random environments and dormancy
with competition andmutation.A starting point could be the recentmodel on dormancy
under competition in Blath and Tobiás (2020), extended by rates depending on the state
of a fluctuating environment. Having more than one species with potentially different
dormancy strategies, perhaps even in a spatial set-up à la (Fournier andMéléard 2004),
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could lead to truly ecological models. However, this would also require to disentangle
different notions of fitness (e.g. invasion fitness vs. long-term fitness).

Finally, such general models could form the basis to understand effects of long-term
changes in the distribution of the random environment (for example due to climate
change). It is well-known that climate change can have a serious impact on seed
banks, see e.g. Ooi (2012), and it would be interesting to understand the robustness of
switching methods under such scenarios.
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5 Appendix

Proof of Proposition 2.2 For the classical BGW process (Xn) with offspring distribu-
tion QX we write h : [0, 1] → [0, 1], s �→ h(s) = E[sX1 | X0 = 1] to denote
the corresponding offspring probability generating function. Set h′(1) = μX and
h(0) = QX (0). Recall that, by assumption, the variance of QX is finite. It is well-
known (cf. Athreya and Ney 1972, Theorem I.5.1), that the survival probability σX is
given by 1 − x∗, where x∗ is the smallest fixed point of hX . Furthermore it is known
that (μX )−n

P
[
Xn > 0

]
for n → ∞ converges to a positive limit if μX < 1, as does

n P
[
Xn > 0

]
if μX = 1 (cf. Athreya and Ney 1972, Corollary I.11.1 and Athreya and

Ney 1972, Theorem I.9.1, respectively). Since Xn > 0 iff TX > n, it follows that

E
[
TX

] =
∑

n≥0

P
[
TX > n

] =
∑

n≥0

P
[
Xn > 0

]

is infinite if μX = 1 and finite if μX < 1.
Coming to (Zn), its offspring probability generating function is given by

g : [0, 1]2 → [0, 1]2, (s1, s2) �−→
⎛

⎝
E

[
s
Z1
1

1 s
Z2
1

2

∣∣∣ Z0 = (1, 0)
]

E

[
s
Z1
1

1 s
Z2
1

2

∣∣∣ Z0 = (0, 1)
]

⎞

⎠ .

Now, by Athreya and Ney (1972, Theorem V.3.2), 1 − σZ can be given as the first
component of the smallest fixed point of g. Denotingw = Q2

Z (1, 0) and d = Q2
Z (0, 0)
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as in the example in Sect. 2.1, basic transformations yield that g(s1, s2) = (s1, s2) iff

(
g1(s1, s2)

s2

)
=

(
s1

d+ws1
d+w

)
,

such that by monotonicity 1 − σZ = g1(1 − σZ ,
d+w(1−σZ )

d+w
).

From (2.3) we obtain for s ∈ [0, 1] that

h(s) = 1 −
∑

k≥1

QX (k)(1 − sk) ≤ g1(s, s) < g1(s,
d+ws
d+w

),

which implies that 1 − σZ ≥ 1 − σX , where the inequality is strict, if σX > 0.
It remains to prove the results regarding TZ . For this, denoting by m1 = E[Z1

1 |
Z0 = (1, 0)] and by m2 = E[Z2

1 | Z0 = (1, 0)], the mean matrix of the offspring
distribution of Z is given by

M =
(
m1 m2
w 1 − w − d

)

along with its largest eigenvalue

� ≡ �(w, d) = 1

2

(
m1 + 1 − w − d +

√
(m1 − (1 − w − d))2 + 4wm2

)

≥ max{m1, 1 − w − d}. (5.1)

Then, (Zn) survives with positive probability iff � > 1, while P
[|Zn| > 0

] n→∞−−−→
0, if � ≤ 1 (cf. Athreya and Ney 1972, TheoremV.3.2). More importantly, for case (3),
when d is so small that 1− d > μX , (5.1) implies �(0, d) > μX . Thus, by continuity,
there also is w > 0 such that �(w, d) > μX .

We now apply Athreya and Ney (1972, Theorem V.4.4): Since the offspring dis-
tributions are of finite variance, the second moment condition holds and the theorem
implies

lim
n→∞ �−n

P
[
Z1
n + Z2

n > 0
] ∈ (0,∞),

which concludes the proof of (3).
For the critical case (2) note that � ≤ max{m1 + m2, 1 − d}. (The maximum row

sum can be seen as an operator norm and hence is an upper bound for all eigenvalues.)
Hence, in the case m1 +m2 < μX = 1 the proof is complete, since P[TZ > n] ≈ �n .
At last, it remains to show that even ifm1+m2 = 1, � < 1. Thus, lettingm1 = 1−m2
note that � = 1 iff

√
(w + d − m2)2 + 4wm2 = m2 + w + d,

which can only hold if either d = 0 or m2 = 0, both contradicting our assumptions. ��
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