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Abstract
We study a lattice duality among families of K3 surfaces associated to coupling pairs
that admit polytope duality with trivial toric contribution.
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lattices · Toric hypersurfaces determined by lattice polytopes

Mathematics Subject Classification 14J28 · 14J17 · 14C22 · 52B20

1 Introduction

Weight systems appear in many interesting spots in algebraic geometry including sin-
gularity theory, where singularities have nice properties. We focus on a duality among
weight systems called coupling introduced by Ebeling (2006), which is for well-
posed weight systems associated to simple K3 singularities classified by Yonemura
(1990). The coupling duality is in particular admitted by a pair of singularities defined
by weighted-homogeneous polynomials f and f ′ as a strange-duality for invertible
polynomials introduced by Ebeling and Takahashi (2011). It is also known that such
polynomials f and f ′ in three variables canbeprojectivised asweighted-homogeneous
polynomials F and F ′ as anticanonical divisor of the weighted projective spaces Pa

andPb, where the pair (a, b) is coupling amongYonemura’s list. Since all theweighted
projective spaces with weights being in Yonemura’s list are Fano, we obtain subfam-
ilies of K3 surfaces in the space once one finds a reflexive polytope as a subpolytope
of the defining polytope of the space. In the author’s recent work (Mase 2021), an
existence and duality of such reflexive polytopes are studied and it is concluded that
almost all coupling pair extends to a polytope-duality. Once one obtains families of
K3 surfaces which already admit several dualities, one may be interested in intrinsic
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properties of K3 surfaces. We are interested in lattice-duality originally studied by
Dolgachev (1996). It is concluded by Mase (2015, 2017) that a part of transpose-dual
pairs associated to strange duality of bimodal singularities extends to lattice dual, and
that some subfamilies of K3 surfaces that are double covering of the projective plane
have lattice-dual property as is studied in Mase (2021). In this paper, focusing on
polytope-dual pairs associated to coupling, one may pose the following problem.

Problem Determine whether or not the coupling pairs which admit polytope-duality
extend to lattice duality of families F� and F�′ in the sense that the relation

(Pic�)⊥
U⊕3⊕E⊕2

8
� U ⊕ Pic�′

holds.
We give an answer as the main theorem of the article which is presented here:

Theorem 3.1 If a coupling pair admits polytope-duality with trivial toric contribution,
then, the families of K3 surfaces are lattice dual. Explicite Picard lattices of the
families are given in Table 1.

In Sect. 2, we recall the Picard lattice and toric geometry. In Sect. 3, we give a
proof of the main theorem. In the last and fourth section, we give a conclusion as the
property of the Picard lattices of families that we have obtained.

2 Preliminary

A lattice is a finitely-generated Z-module with a non-degenerate bilinear form. A K3
surface is a smooth compact complex connected 2-dimensional algebraic variety with
trivial canonical divisor and irregularity zero. It is known that the second cohomology
group with Z-coefficient of a K3 surface S admits a structure of a unimodular lattice
of signature (3, 19), thus by a classification of lattices, the lattice is in fact isometric
to the K3 lattice �K3 := U⊕3 ⊕ E⊕2

8 , where U is the hyperbolic lattice of rank 2,
and E8 is the negative-definite, even unimodular lattice of rank 8. By a standard exact
sequence, one gets an inclusion map c1 : H1(S, O∗

S) → H2(S, Z), which makes the
Picard group H1(S, O∗

S) to be a sublattice of H2(S, Z). We call the Picard group of
S with a lattice structure simply the Picard lattice of S.

We summarize toric geometry in Batyrev (1994) by also giving useful formulas
extracted from Fulton (1997) and Oda (1978).

Let M be a lattice of rank n, and N := HomZ(M Z) be the dual lattice of M , with
a natural pairing 〈 , 〉 : N × M → Z with its R-extension denoted by 〈 , 〉R. A convex
hull of finite-number of points in M ⊗R is called a polytope, which admits the polar
dual polytope �∗ defined by

�∗:= {y ∈ N ⊗ R | 〈y, x〉R ≥ −1 for all x ∈ �} .

Apolytope� is integral if every vertex is inM . An integral polytope�which contains
the only lattice point in its interior is reflexive if the polar dual polytope �∗ is also an
integral polytope.

123



Beitr Algebra Geom (2022) 63:533–559 535

It is observed byBatyrev (1994) that an integral polytope� is reflexive if and only if
the resulting projective toric variety P� is Fano, in other words, general hypersurfaces
that are defined by global anticanonical sections of P� are birational to Calabi-Yau.

We only treat with 3-dimensional reflexive polytopes. We call a anticanonical
section for hypersurfaces that are defined by global anticanonical sections of P� for
short. In 3-dimensional case, it is derived by a study of Batyrev (1994), that moreover,
singularities inP� and in general anticanonical sections Z ofP� can be simultaneously
resolved by a toric resolution called a MPCP-desingularisation, which we denote by
˜P� and Z̃ . The natural restriction map

H1,1(˜P�, Z) → H1,1(Z̃ , Z)

is not necessarily subjective in general, and we denote by L0(�) the rank of the
cokernel of the map, which we call the toric contribution, which is known Kobayashi
(2008) to be given by the formula

L0(�) =
∑

�

l(�)l(�∗), (1)

where the sum runs for all edges in �.
Here we recall from Bruzzo and Grassi (2012) that generic anticanonical sections

of the Fano threefold P� admit isometric Picard lattices. Thus, we define the Picard
lattice of the family F� of K3 surfaces in P� to be the Picard lattice of the minimal
model of any generic anticanonical section of P�, and denote it by Pic�.

For a reflexive polytope �, one can associate a fan �′. By definition, lattice points
of �∗ are primitive vector of one-simplices of �′, and it is clear that the toric varieties
P� and P�′ coincide. Any divisor D of a generic hypersurface in P� is the closure
of the torus orbit of a one-simplex v in �, in particular, the divisors are called toric
divisors. Let F be the face in � that is the polar dual of v. Denote by l(F) the number
of lattice points in the interior of F . The self-intersection number of the divisor D is
given by the formula

D2 = 2l(F) − 2. (2)

Denote by �(1) the set of all edges in � and l(�) be the number of lattice points in
the interior of an edge � ∈ �(1). The Picard number ρ(�) is given by

ρ(�) =
∑

�∈�(1)

l(�) +
∑

vertices of�

1 + L0(�) − 3, (3)

Let e1, e2, e3 be a standard basis for R3. Suppose that the fan � possesses l one-
simplices. The toric divisors D1, . . . , Dl admit the linear relations

l
∑

i=1

〈vi , e j 〉Di = 0 j = 1, 2, 3. (4)
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It is easily seen that the polytope � is of trivial toric contribution if and only if
the corresponding fan �′ is simplicial, that is, every triple of one-simplices form
a Z-basis of R3. Moreover, the restriction of linearly-independent toric divisors of
X = ˜P� = ˜P�′ to the anticanonical divisor of X form a basis of the Picard lattice
Pic�′ of the family F�′ if �′ � �∗.

Denote by M(a0,a1,a2,a3) the lattice consisting of quadruple of integers (i, j, k, l)
satisfying an equation a0i+a1 j+a2k+a3l = 0 for aweight system (a0, a1, a2, a3; d).
There is a one-to-one correspondence between elements inM(a0,a1,a2,a3) and (rational)
monomials of degree d by

(i, j, k, l) ∈ M(a0,a1,a2,a3) ↔ Wi+1X j+1Y k+1Zl+1,

where (W , X ,Y , Z) is a coordinate system of the weighted projective space of weight
(a0, a1, a2, a3).

We denote by L∗, AL , discr L , l(AL), sgn L , qL , and rank L the dual lattice
L∗ := HomZ(L, Z), the discriminant group L/L∗, the discriminant, the minimal
number of generators of AL , the signature, the discriminant form, and the rank of a
lattice L . It is a standard arithmetic property that if rank L is strictly larger than 5,
then, there eists an element representing 0, and if rank L is strictly larger than 12,
then, the hyperbolic lattice U is a sublattice of L . We also recall standard properties
of lattices from Nikulin (1980) and Nishiyama (1996). A sublattice S of a lattice � is
called primitive if the quotient lattice �/S is torsion-free.

Corollary 2.1 (Corollary 1.6.2 Nikulin (1980)) Let S and T be primitive sublattices
of the K3 lattice �K3. The lattices S and T are orthogonal in �K3 if and only if
qS � −qT holds. ��

Corollary 2.2 (Corollary 1.12.3 Nikulin (1980)) Let S be a sublattice with signature
(t+, t−) of an even unimodular lattice � with signature (l+, l−). The lattice S is a
primitive sublattice of � if and only if the following three conditions are satisfied.

(1) l+ − l− ≡ 0 mod 8,
(2) l− − t− ≥ 0 and l+ − t+ ≥ 0, and
(3) rank� − rank S > l(AS).

��

Remark 1 Note that the K3 lattice �K3 is an even unimodular lattice of signature
(l+, l−) = (3, 19). Thus, l+ − l− = 3−19 = −16 ≡ 0 mod 8, and in order to show
a lattice S to be a primitive sublattice of �K3, it suffices to verify the second and third
conditions of Corollary 2.2.

Lemma 2.1 (Lemma 4.3 Nishiyama (1996)) There exist primitive embeddings of A1
and A2 into E8 with orthogonal complements being E7 and E6, respectively.We follow
the notation of lattices in Bourbaki (1968). ��
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3 Main results

Lemma 3.1 The polytope-dual pairs among Nos. 11–14, Nos. 15–18, Nos.35–37,
Nos.38 and 40, Nos.41–43, Nos.48–49 are respectively isomorphic to the following
polytopes in Table 1.

Proof The assertion follows from the proof of Mase (2021). ��
Lemma 3.2 If a coupling pair is in Table 1, the toric contribution is trivial.

Proof The assertion follows by case-by-case computation using formula (1) for all
polytopes obtained in Mase (2021). ��
Theorem 3.1 If a coupling pair admits polytope-duality with trivial toric contribution,
then, the families of K3 surfaces are lattice dual. Explicite Picard lattices of the
families are given in Table 1.

Remark 2 We present the following data in Table 1. The number(s) in the first column
are given in Mase (2021). The second and fifth columns are vertices of polytopes of
�′ and � obtained by Mase (2021), and the sets in the same line are polytope-dual. In
the third and fourth columns are the Picard lattice of the family F�′ , resp. F�, the pair
of the rank and the signature of lattices, and the weight systems that are coupling. The
lattices L̃ and L̃ ′ are explained in the proof. Other lattices follow notation of Bourbaki
(1968).

Proof Take reflexive polytopes � and �′ as in 1. We explicitly calculate the Picard
lattices of the families F� and F�′ . Denote by �, respectively �′ the fan associated
to polytope �′, respectively �. Since the relation �∗ � �′ holds, lattice points of
�′, respectively of � are none other than primitive vectors of one-simplices of �,
respectively �′.

3.1 Nos. 11, 12, 13, and 14

Case 1. Set one-simplices of � in terms of a basis of M(1,4,10,15) ⊗ R

(−1, 4, 0,−1), (−1,−1, 2,−1), (−1,−1,−1, 1) :
v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1),
v4 = (0,−2,−3), v5 = (−6,−8,−15), v6 = (−3,−4,−7),
v7 = (0,−1,−1), v8 = (−2,−2,−5), v9 = (−4,−5,−10),
v10 = (−5,−7,−13), v11 = (−4,−6,−11), v12 = (−3,−5,−9),
v13 = (−2,−4,−7), v14 = (−1,−3,−5),

and let D̃i be the toric divisor determined by the lattice point vi for i = 1, . . . , 14,
and Di := D̃i |−KX with X := ˜P� . It can be easily seen by formulas (3) and (2) that

ρ� = 14 − 3 = 11, D2
1 = 0, D2

2 = 2, D2
3 = 8, D2

4 = · · · = D2
14 = −2.
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Let L be a lattice generated by divisors {Di }14i=1. By solving the Eq. (4), one sees that{ D1, D2, D8, D4, D7, D14, D13, D12, D11, D10, D5 } form a basis for L . By taking
a new basis

⎧

⎨

⎩

D1, D1 + D4, −D1 + D7, D8,

2D1 − D2 + 2D4 + D7 − D8 + D14,

D13, −D1 + D14, D12, D11, D10, D5

⎫

⎬

⎭

,

one sees that the lattice L is isometric to U ⊕ A1 ⊕ E8, which is hyperbolic and a
primitive sublattice of the K3 lattice. Therefore, Pic� � U ⊕ A1 ⊕ E8.

Set one-simplices of �′ in terms of a basis of M(1,6,8,15) ⊗ R

(−6, 1, 0, 0), (−8, 0, 1, 0), (−15, 0, 0, 1):
m1 = (4,−1,−1), m2 = (0, 2,−1), m3 = (−1,−1, 1),
m4 = (−1, 2,−1), m5 = (−1,−1,−1), m6 = (3,−1,−1),
m7 = (2,−1,−1), m8 = (1,−1,−1), m9 = (0,−1,−1),
m10 = (−1, 1,−1), m11 = (−1, 0,−1), m12 = (−1,−1, 0),

and let D̃′
i be the toric divisor determined by the lattice point mi for i = 1, . . . , 12,

and D′
i := D̃′

i |−KX with X := ˜P�′ . It can be easily seen by formulas (3) and (2) that

ρ�′ = 12 − 3 = 9, D′2
1 = 0, D′2

2 = 2, D′2
3 = 10, D′2

4 = · · · = D′2
12 = −2.

Let L be a lattice generated by divisors {D′
i }12i=1. By solving the Eq. (4), one sees that{D′

1, D
′
2, D

′
4, D

′
10, D

′
11, D

′
5, D

′
6, D

′
7, D

′
8} form a basis for L . By taking a new basis

{

D′
1, D′

1 + D′
6, D′

4, D′
10, D′

11, D′
5,−3D′

1 + D′
2 + D′

4 − 2D′
6 − D′

7 − D′
8, −D′

1 + D′
7 + D′

8, D′
1 − D′

7

}

,

one sees that the lattice L ′ is isometric toU ⊕ E7, which is hyperbolic and a primitive
sublattice of the K3 lattice. Therefore, Pic�′ � U ⊕ E7.

Case 2 Set one-simplices of � in terms of a basis of M(1,4,10,15) ⊗ R

(−4, 1, 0, 0), (−10, 0, 1, 0), (−15, 0, 0, 1) :
v1 = (−1,−1, 1), v2 = (−1,−1,−1), v3 = (6,−1,−1),
v4 = (4, 0,−1), v5 = (−1, 2,−1), v6 = (−1,−1, 0),
v7 = (0,−1,−1), v8 = (1,−1,−1), v9 = (2,−1,−1),
v10 = (3,−1,−1), v11 = (4,−1,−1), v12 = (5,−1,−1),
v13 = (−1, 0,−1), v14 = (−1, 1,−1),

and let D̃i be the toric divisor determined by the lattice point vi for i = 1, . . . , 14,
and Di := D̃i |−KX with X := ˜P� . It can be easily seen by formulas (3) and (2) that

ρ� = 14 − 3 = 11, D2
1 = 8, D2

2 = D2
3 = D2

4 = −2, D2
5 = 2,

D2
6 = · · · = D2

14 = −2.
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Let L be a lattice generated by divisors {Di }14i=1. By solving the Eq. (4), one sees that{D4, D3, D5, D14, D13, D2, D12, D11, D10, D9, D8} form a basis for L . By taking a
new basis

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−D3 + D5 − D12, D3 + D4, D4, D13,

−D2 − D13, D2 − D3 − D4 + D13 + D14,

2D3 + D4 − D5 + D11 + 2D12 − D13 − D14,

D3 + D4 + D11, D10, D9, D8

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

one sees that the lattice L is isometric to U ⊕ A1 ⊕ E8, which is hyperbolic and a
primitive sublattice of the K3 lattice. Therefore, Pic� � U ⊕ A1 ⊕ E8.

Set one-simplices of �′ in terms of a basis of M(1,6,8,15) ⊗ R

(−6, 1, 0, 0), (−8, 0, 1, 0), (−15, 0, 0, 1) :
m1 = (−1,−1, 1), m2 = (−1,−1,−1), m3 = (4,−1,−1),
m4 = (0, 2,−1), m5 = (−1, 1,−1), m6 = (−1,−1, 0),
m7 = (0,−1,−1), m8 = (1,−1,−1), m9 = (2,−1,−1),
m10 = (3,−1,−1), m11 = (−1, 0,−1), m12 = (−1, 0, 0),

and let D̃′
i be the toric divisor determined by the lattice point mi for i = 1, . . . , 12,

and D′
i := D̃′

i |−KX with X := ˜P�′ . It can be easily seen by formulas (3) and (2) that

ρ�′ = 12 − 3 = 9, D′2
1 = 10, D′2

2 = −2, D′2
3 = 0, D′2

4 = 4,
D′2
5 = · · · = D′2

12 = −2.

Let L ′ be a lattice generated by divisors {D′
i }12i=1. By solving the Eq. (4), one sees that{D′

3, D
′
10, D

′
8, D

′
6, D

′
7, D

′
2, D

′
11, D

′
5, D

′
12} form a basis for L ′, with respect to which

the intersection matrix of L ′ isU ⊕ E7, which is hyperbolic and a primitive sublattice
of the K3 lattice. Therefore, Pic�′ � U ⊕ E7.

It is well-known that lattices U ⊕ A1 ⊕ E8 and U ⊕ E7 are primitive sublattices
of the K3 lattice �K3. Moreover, by Lemma 2.1, the relation (Pic�)⊥�K3

� U⊥
U⊕3 ⊕

(A1)
⊥
E8

⊕ (E8)
⊥
E8

= U⊕2 ⊕ E7 � U ⊕ Pic�′ holds.

3.2 Nos. 15, 16, 17, and 18

Set one-simplices of � in terms of a basis of M(1,6,8,9) ⊗ R

(−6, 1, 0, 0), (−8, 0, 1, 0), (−9, 0, 0, 1):
v1 = (−1, 2,−1), v2 = (−1,−1,−1), v3 = (5,−1,−1),
v4 = (3,−1, 0), v5 = (−1,−1, 1), v6 = (−1, 1,−1),
v7 = (−1, 0,−1), v8 = (0,−1,−1), v9 = (1,−1,−1),
v10 = (2,−1,−1), v11 = (3,−1,−1), v12 = (4,−1,−1),
v13 = (−1,−1, 0), v14 = (3, 0,−1), v15 = (1, 1,−1),
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and let D̃i be the toric divisor determined by the lattice point vi for i = 1, . . . , 15,
and Di := D̃i |−KX with X := ˜P� . It can be easily seen by formulas (3) and (2) that

ρ� = 15 − 3 = 12, D2
1 = 2, D2

2 = D2
3 = −2,

D2
4 = 0, D2

5 = 4, D2
6 = · · · = D2

15 = −2.

Let L be a lattice generated by divisors {Di }15i=1. By solving the Eq. (4), one sees that{ D4, D5, D13, D2,D7, D3, D14, D15, D12, D11, D10, D9 } form a basis for L . By
taking a new basis

⎧

⎪

⎪

⎨

⎪

⎪

⎩

D4, D3 + D4, D4 − D14 − D15, −D4 + D14, −D7,

−D13, −D4 + D11 + D12,

3D3 + 2D4 − D5 + D10 + 2D11 + 2D12 + 2D14 + D15,

−D2, −D9 − D10 − D11, D10, D9

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

one sees that the lattice L is isometric to U ⊕ A2 ⊕ E8, which is hyperbolic and a
primitive sublattice of the K3 lattice. Therefore, Pic� � U ⊕ A2 ⊕ E8.

Set one-simplices of �′ in terms of a basis of M(1,3,8,12) ⊗ R

(−3, 1, 0, 0), (−8, 0, 1, 0), (−12, 0, 0, 1):
m1 = (−1, 2,−1), m2 = (−1,−1,−1), m3 = (3,−1,−1),
m4 = (0,−1, 1), m5 = (−1,−1, 1), m6 = (−1, 1,−1),
m7 = (−1, 0,−1), m8 = (0,−1, 1), m9 = (1,−1,−1),
m10 = (2,−1,−1), m11 = (−1,−1, 0),

and let D̃′
i be the toric divisor determined by the lattice point mi for i = 1, . . . , 11,

and D′
i := D̃′

i |−KX with X := ˜P�′ . It can be easily seen by formulas (3) and (2) that

ρ�′ = 11 − 3 = 8, D′2
1 = 4, D′2

2 = −2, D′2
3 = 0,

D′2
4 = 6, D′2

5 = −2, D′2
6 = · · · = D′2

11 = −2.

Let L ′ be a lattice generated by divisors {D′
i }11i=1. By solving the Eq. (4), one sees that{ D′

4, D
′
3, D

′
10, D

′
9, D

′
5, D

′
11, D

′
2, D

′
7 } form a basis for L ′. By taking a new basis

⎧

⎪

⎪

⎨

⎪

⎪

⎩

D′
4 − D′

3, 2D
′
3 − D′

5 + D′
9 + 2D′

10, −D′
3 + D′

5,

3D′
3 − 2D′

5 + D′
9 + 3D′

10 − D′
11,

D′
9, −D3′ + D′

4 + D′
11,

D′
2 − 3D′

3 + 2D′
5 − 2D′

9 − 3D′
10 + D′

11, D′
7

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

one sees that the lattice L ′ is isometric toU ⊕ E6, which is hyperbolic and a primitive
sublattice of the K3 lattice. Therefore, Pic�′ � U ⊕ E6.

It is well-known that lattices U ⊕ A2 ⊕ E8 and U ⊕ E6 are primitive sublattices
of the K3 lattice �K3. Moreover, by Lemma 2.1, the relation (Pic�)⊥�K3

� U⊥
U⊕3 ⊕

(A2)
⊥
E8

⊕ (E8)
⊥
E8

= U⊕2 ⊕ E6 � U ⊕ Pic�′ holds.
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3.3 No. 19

In all cases, we set one-simplices in fans in terms of a basis of M(1,4,6,11) ⊗ R

(−4, 1, 0, 0), (−6, 0, 1, 0), (−11, 0, 0, 1).

Case 1 We have � � �′.
Set one-simplices of �′ as follows:

m1 = (−1,−1, 1), m2 = (−1,−1,−1), m3 = (4,−1,−1),
m4 = (3, 0,−1), m5 = (0, 2,−1), m6 = (−1, 1,−1),
m7 = (−1,−1, 0), m8 = (0,−1,−1), m9 = (1,−1,−1),
m10 = (2,−1,−1), m11 = (3,−1,−1), m12 = (−1, 0, 0),
m13 = (−1, 0,−1),

and let D̃′
i be the toric divisor determined by the lattice point mi for i = 1, . . . , 13,

and D′
i := D̃′

i |−KX with X := ˜P�′ . It can be easily seen by formulas (3) and (2) that

ρ�′ = 13 − 3 = 10, D′2
1 = 8, D′2

2 = D′2
3 = D′2

4 = −2, D′2
5 = 2,

D′2
6 = · · · = D′2

13 = −2.

Let L ′ be a lattice generated by divisors {D′
i }13i=1. By solving the Eq. (4), one sees that{D′

4, D
′
5, D

′
3, D

′
11, D

′
10, D

′
9, D

′
6, D

′
12, D

′
13, D

′
2} form a basis for L ′. By taking a new

basis
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

D′
4, −D′

3 + D′
5, D′

3 + D′
4 + D′

11,−3D′
3 − 2D′

4 + D′
5 + D′

6 − D′
9 − 2D′

10 − 3D′
11 + D′

13,

D′
3 − D′

5 + D′
10,

3D′
3 + 2D′

4 − D′
5 − 2D′

6 + D′
10 + 2D′

11 − D′
12 − D′

13,

5D′
3 + 3D′

4 − 2D′
5 − 2D′

6 + 2D′
9 + 3D′

10 + 4D′
11 − D′

12 − D′
13,

D′
2 − 5D′

3 − 3D′
4 + 2D′

5 + 2D′
6 − D′

9 − 3D′
10 − 4D′

11 + D′
12 + D′

13,

D′
12,−D′

2 + 3D′
3 + 2D′

4 − D′
5 − D′

6 + D′
9 + 2D′

10 + 3D′
11 − D′

12 − D′
13

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

,

one sees that the lattice L ′ is isometric to U ⊕ A1 ⊕ E7, which is hyperbolic and a
primitive sublattice of the K3 lattice. Therefore, Pic�′ � U ⊕ A1 ⊕ E7. By similar
computation, one has Pic� � U ⊕ A1 ⊕ E7.

Case 2 We have � � �′.
Set one-simplices of �′ as follows:

m1 = (−1,−1, 1), m2 = (−1,−1,−1), m3 = (3,−1,−1),
m4 = (3, 0,−1), m5 = (0, 2,−1), m6 = (−1, 2,−1),
m7 = (−1,−1, 0), m8 = (0,−1,−1), m9 = (1,−1,−1),
m10 = (2,−1,−1), m11 = (1,−1, 0), m12 = (−1, 0,−1),
m13 = (−1, 1,−1),
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and let D̃′
i be the toric divisor determined by the lattice point mi for i = 1, . . . , 13,

and D′
i := D̃′

i |−KX with X := ˜P�′ . It can be easily seen by formulas (3) and (2) that

ρ�′ = 13 − 3 = 10, D′2
1 = 8, D′2

2 = D′2
3 = −2, D′2

4 = D′2
5 = 0,

D′2
6 = · · · = D′2

13 = −2.

Let L ′ be a lattice generated by divisors {D′
i }13i=1. By solving the Eq. (4), one sees that{D′

4, D
′
3, D

′
11, D

′
9, D

′
8, D

′
2, D

′
7, D

′
12, D

′
13, D

′
6} form a basis for L ′. By taking a new

basis

{

D′
4, D′

3 + D′
4, D′

11 − D′
4, D′

9, D′
8, D′

2, D′
7, D′

12, D
′
13, D′

6

}

,

one sees that the lattice L ′ is isometric to U ⊕ A1 ⊕ E7, which is hyperbolic and a
primitive sublattice of the K3 lattice. Therefore, Pic�′ � U ⊕ A1 ⊕ E7. By similar
computation, one has Pic�′ � U ⊕ A1 ⊕ E7.

Case 3 Set one-simplices of � as follows:

v1 = (−1,−1, 1), v2 = (−1,−1,−1), v3 = (3,−1,−1),
v4 = (3, 0,−1), v5 = (0, 2,−1), v6 = (−1, 1,−1),
v7 = (−1,−1, 0), v8 = (0,−1,−1), v9 = (1,−1,−1),
v10 = (2,−1,−1), v11 = (1,−1, 0), v12 = (−1, 0,−1),
v13 = (−1, 0, 0),

and let D̃i be the toric divisor determined by the lattice point vi for i = 1, . . . , 13,
and Di := D̃i |−KX with X = ˜P� . It can be easily seen by formulas (3) and (2) that

ρ� = 13 − 3 = 10, D2
1 = 8, D2

2 = D2
3 = −2, D2

4 = 0, D2
5 = 2,

D2
6 = · · · = D2

13 = −2.

Let L be a lattice generated by divisors {Di }13i=1. By solving the Eq. (4), one sees that{D4, D3, D11, D9, D8, D2, D7, D12, D6, D13} form a basis for L . By taking a new
basis

{

D4, D3 + D4, D11 − D4, D9, D8, D2, D7, D12, D6, D13
}

,

one sees that the lattice L is isometric to U ⊕ A1 ⊕ E7, which is hyperbolic and a
primitive sublattice of the K3 lattice. Therefore, Pic� � U ⊕ A1 ⊕ E7.

Set one-simplices of �′ as follows:

m1 = (−1,−1, 1), m2 = (−1,−1,−1), m3 = (4,−1,−1),
m4 = (3, 0,−1), m5 = (0, 2,−1), m6 = (−1, 2,−1),
m7 = (−1,−1, 0), m8 = (0,−1,−1), m9 = (1,−1,−1),
m10 = (2,−1,−1), m11 = (3,−1,−1), m12 = (−1, 0,−1),
m13 = (−1, 1,−1),
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and let D̃′
i be the toric divisor determined by the lattice point mi for i = 1, . . . , 13,

and D′
i := D̃′

i |−KX with X := ˜P�′ . It can be easily seen by formulas (3) and (2) that

ρ�′ = 13 − 3 = 10, D′2
1 = 8, D′2

2 = D′2
3 = D′2

4 = −2, D′2
5 = 0,

D′2
6 = · · · = D′2

13 = −2.

Let L ′ be a lattice generated by divisors {D′
i }13i=1. By solving the Eq. (4), one sees that{D′

4, D
′
3, D

′
11, D

′
9, D

′
8, D

′
2, D

′
7, D

′
12, D

′
13, D

′
6} form a basis for L ′. By taking a new

basis

{

D′
3 + D′

4 + D′
11, D′

3 + D′
4, D′

4, D′
9, D′

8, D′
2, D′

7, D′
12, D′

13, D′
6

}

,

one sees that the lattice L ′ is isometric to U ⊕ A1 ⊕ E7, which is hyperbolic and a
primitive sublattice of the K3 lattice. Thus, Pic�′ � U ⊕ A1 ⊕ E7.

It iswell-known that the latticeU⊕A1⊕E7 is a primitive sublattice of the K3 lattice
�K3. Moreover, by Lemma 2.1, the relation (Pic�)⊥�K3

� U⊥
U⊕3 ⊕(A1)

⊥
E8

⊕(E7)
⊥
E8

=
U⊕2 ⊕ E7 ⊕ A1 � U ⊕ Pic�′ holds.

3.4 No. 26

In all cases, we set one-simplices of fans in terms of a basis of M(1,3,4,5) ⊗ R

(−3, 1, 0, 0), (−4, 0, 1, 0), (−5, 0, 0, 1).

Lemma 3.3 If lattices L and L ′ have the signature, the discriminant, and the rank of L
and L ′ are respectively (1, 9), discr L = discr L ′ = −13, and rank L = rank L ′ = 10,
then, the lattices are primitive sublattices of the K3 lattice andU⊕L ′ is the orthogonal
complement of L.

Proof Note that the discriminant groups AL , AL ′ of L and L ′ are isomorphic to Z/

13Z, and that the minimal number of the generators is l(AL) = l(AL ′) = 1. Since the
signature of L and L ′ is (t+, t−) = (1, 9) and the rank is rank L = rank L ′ = 10, we
have

19 − t− = 10 ≥ 0, 3 − t+ = 2 ≥ 0, and

22 − rank L = 22 − rank L ′ = 12 > 1 = l(AL) = l(AL ′),

by Corollary 2.2, the first statement is shown. Since the discriminant of U is −1, we
have discr (U ⊕ L ′) = − discr L ′ = 13 = − discr L , and thus by Corollary 2.1, the
last assertion is proved. ��
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Case 1 Set one-simplices of � as follows:

v1 = (−1,−1, 1), v2 = (−1,−1,−1), v3 = (2,−1,−1),
v4 = (2, 0,−1), v5 = (−1, 2,−1), v6 = (−1, 1, 0),
v7 = (0,−1, 1), v8 = (−1,−1, 0), v9 = (0,−1,−1),
v10 = (1,−1,−1), v11 = (−1, 0,−1), v12 = (−1, 1,−1),
v13 = (1,−1, 0),

and let D̃i be the toric divisor determined by the lattice point vi for i = 1, . . . , 13,
and Di := D̃i |−KX with X := ˜P� . It can be easily seen by formulas (3) and (2) that

ρ� = 13 − 3 = 10, D2
1 = D2

2 = D2
3 = −2, D2

4 = 0, D2
5 = D2

6 = −2,
D2
7 = 0, D2

8 = · · · = D2
13 = −2.

Let L be a lattice generated by divisors {Di }13i=1. By solving the Eq. (4), one sees that{ D7, D4, D3, D13, D10, D9, D2, D8, D11, D12 } form a basis for L . By taking a new
basis

{

D7, D7 + D13, D3 − D7, D3 − D4 + 3D7 + D9 + D10 + 2D13,

D10, D2 + D8 + D9, D2, D8, D11, D12

}

,

one sees that the lattice L is isometric to U ⊕ L̃ with some lattice L̃ . By a direct
computation, one sees that sgn L = (1, 9), discr L = −13, and rank L = 10, thus,
discr L̃ = 13 and rank L̃ = 8 hold. In particular, the discriminant group AL of L is
isomorphic to Z/13Z, and l(AL) = 1.

Set one-simplices of �′ as follows:

m1 = (−1,−1, 1), m2 = (−1,−1,−1), m3 = (2,−1,−1),
m4 = (2, 0,−1), m5 = (−1, 1, 0), m6 = (0,−1, 1),
m7 = (−1, 0,−1), m8 = (−1,−1, 0), m9 = (0,−1,−1),
m10 = (1,−1,−1), m11 = (1, 0,−1), m12 = (0, 0,−1),
m13 = (1,−1, 0),

and let D̃′
i be the toric divisor determined by the lattice point mi for i = 1, . . . , 13,

and D′
i := D̃′

i |−KX with X := ˜P�′ . It can be easily seen by formulas (3) and (2) that

ρ�′ = 13 − 3 = 10, D′2
1 = D′2

2 = D′2
3 = −2, D′2

4 = 0, D′2
5 = 4, D′2

6 = 0,
D′2
7 = · · · = D′2

13 = −2.

Let L ′ be a lattice generated by divisors {D′
i }13i=1. By solving the Eq. (4), one sees that{ D′

4, D
′
6, D

′
13, D

′
3, D

′
10, D

′
9, D

′
2, D

′
8, D

′
7, D

′
12 } form a basis for L ′. By taking a new

basis
{

D′
4, D′

3 + D′
4, D′

4 − D′
13, 2D

′
3 + 2D′

4 − D′
6 + D′

10 + D′
13,−D′

4 + D′
10, D′

9, D′
2, D′

8, D′
7, D′

12

}

,
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one sees that the lattice L ′ is isometric to U ⊕ L̃ ′ with some lattice L̃ ′. By a direct
computation, one sees that sgn L ′ = (1, 9), discr L ′ = −13, and rank L ′ = 10, thus,
discr L̃ ′ = 13 and rank L̃ ′ = 8 hold. In particular, the discriminant group AL ′ of L ′ is
isomorphic to Z/13Z, and l(AL ′) = 1.

Case 2 Set one-simplices of � as follows:

v1 = (−1,−1, 0), v2 = (−1,−1,−1), v3 = (3,−1,−1),
v4 = (2, 0,−1), v5 = (−1, 2,−1), v6 = (−1, 1, 0),
v7 = (0,−1, 1), v8 = (−1, 0, 0), v9 = (0,−1,−1),
v10 = (1,−1,−1), v11 = (2,−1,−1), v12 = (−1, 0,−1),
v13 = (−1, 1,−1),

and let D̃i be the toric divisor determined by the lattice point vi for i = 1, . . . , 13,
and Di := D̃i |−KX with X := ˜P� . It can be easily seen by formulas (3) and (2) that

ρ� = 13 − 3 = 10, D2
1 = · · · = D2

6 = −2, D2
7 = 2, D2

8 = · · · = D2
13 = −2.

Let L be a lattice generated by divisors {Di }13i=1. By solving the Eq. (4), one sees that{ D7, D1, D8, D2, D12, D13, D9, D10, D11, D3 } form a basis for L . By taking a new
basis

{

D7 − D8, D3 + D7 − D8, D1, D2, D12, D13, D9,

D10, −D7 + D8 + D11, −2D3 − 4D7 + 5D8

}

,

one sees that the lattice L is isometric to U ⊕ L̃ with some lattice L̃ . By a direct
computation, one sees that sgn L = (1, 9), discr L = −13, and rank L = 10, thus,
discr L̃ = 13 and rank L̃ = 8 hold. In particular, the discriminant group AL of L is
isomorphic to Z/13Z, and l(AL) = 1.

Set one-simplices of �′ as follows:

m1 = (−1,−1, 0), m2 = (−1,−1,−1), m3 = (3,−1,−1),
m4 = (2, 0,−1), m5 = (−1, 1, 0), m6 = (0,−1, 1),
m7 = (−1, 0,−1), m8 = (−1, 0, 0), m9 = (0,−1,−1),
m10 = (1,−1,−1), m11 = (2,−1,−1), m12 = (0, 0,−1),
m13 = (1, 0,−1),

and let D̃′
i be the toric divisor determined by the lattice point mi for i = 1, . . . , 13,

and D′
i := D̃′

i |−KX with X := ˜P�′ . It can be easily seen by formulas (3) and (2) that

ρ�′ = 13 − 3 = 10, D′2
1 = · · · = D′2

4 = −2, D′2
5 = 4, D′2

6 = 2,
D′2
7 = · · · = D′2

13 = −2.

Let L ′ be a lattice generated by divisors {D′
i }13i=1. By solving the Eq. (4), one sees that{ D′

6, D
′
1, D

′
8, D

′
4, D

′
3, D

′
11, D

′
10, D

′
9, D

′
13, D

′
12 } form a basis for L ′. By taking a new
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basis

⎧

⎨

⎩

D′
3 + D′

4, D′
3 + D′

4 + D′
11, −4D′

3 − 4D′
4 + D′

6 − 2D′
11,−D′

4, D′
1, D′

8, −D′
3 − D′

4 + D′
10, D′

9,−2D′
3 − 2D′

4 − D′
11 + D′

13, D′
12

⎫

⎬

⎭

,

one sees that the lattice L ′ is isometric to U ⊕ L̃ ′ with some lattice L̃ ′. By a direct
computation, one sees that sgn L ′ = (1, 9), discr L ′ = −13, and rank L ′ = 10, thus,
discr L̃ ′ = 13 and rank L̃ ′ = 8 hold. In particular, the discriminant group AL ′ of L ′ is
isomorphic to Z/13Z, and l(AL ′) = 1.

Case 3 Set one-simplices of � as follows:

v1 = (−1,−1, 1), v2 = (−1,−1,−1), v3 = (3,−1,−1),
v4 = (2, 0,−1), v5 = (−1, 1, 0), v6 = (0,−1, 1),
v7 = (−1, 0,−1), v8 = (−1,−1, 0), v9 = (0,−1,−1),
v10 = (1,−1,−1), v11 = (2,−1,−1), v12 = (0, 0,−1),
v13 = (1, 0,−1),

and let D̃i be the toric divisor determined by the lattice point vi for i = 1, . . . , 13,
and Di := D̃i |−KX with X := ˜P� . It can be easily seen by formulas (3) and (2) that

ρ� = 13 − 3 = 10, D2
1 = · · · = D2

4 = −2, D2
5 = 4, D2

6 = 0,
D2
7 = · · · = D2

13 = −2.

Let L be a lattice generated by divisors {Di }13i=1. By solving the Eq. (4), one sees that{ D8, D1, D6, D4, D13, D12, D3, D11, D10, D9 } form a basis for L . By taking a new
basis

{

D6, D4 + D6, D1 − D3 − D4, D8, −D6 + D13,

D12, D3 − D4 − 4D6, D11, D10, D9

}

,

one sees that the lattice L is isometric to U ⊕ L̃ with some lattice L̃ . By a direct
computation, one sees that sgn L = (1, 9), discr L = −13, and rank L = 10, thus,
discr L̃ = 13 and rank L̃ = 8 hold. In particular, the discriminant group AL of L is
isomorphic to Z/13Z, and l(AL) = 1.

Set one-simplices of �′ as follows:

m1 = (−1,−1, 0), m2 = (−1,−1,−1), m3 = (2,−1,−1),
m4 = (2, 0,−1), m5 = (−1, 2,−1), m6 = (−1, 1, 0),
m7 = (0,−1, 1), m8 = (−1, 0, 0), m9 = (0,−1,−1),
m10 = (1,−1,−1), m11 = (1,−1, 0), m12 = (−1, 0,−1),
m13 = (−1, 1,−1),
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and let D̃′
i be the toric divisor determined by the lattice point mi for i = 1, . . . , 13,

and D′
i := D̃′

i |−KX with X := ˜P�′ . It can be easily seen by formulas (3) and (2) that

ρ�′ = 13 − 3 = 10, D′2
1 = D′2

2 = D′2
3 = −2, D′2

4 = 0, D′2
5 = D′2

6 = −2,
D′2
7 = 2, D′2

8 = · · · = D′2
13 = −2.

Let L ′ be a lattice generated by divisors {D′
i }13i=1. By solving the Eq. (4), one sees that{ D′

7, D
′
4, D

′
3, D

′
11, D

′
10, D

′
9, D

′
2, D

′
1, D

′
12, D

′
13 } form a basis for L ′. By taking a new

basis

{

D′
3 + D′

4, D′
4, −2D′

3 − 4D′
4 + D′

7, −D′
4 + D′

11,−D′
4 + D′

10, D′
9, D′

2, D′
1, D′

12, D′
13

}

,

one sees that the lattice L ′ is isometric to U ⊕ L̃ ′ with some lattice L̃ ′. By a direct
computation, one sees that sgn L ′ = (1, 9), discr L ′ = −13, and rank L ′ = 10, thus,
discr L̃ ′ = 13 and rank L̃ ′ = 8 hold. In particular, the discriminant group AL ′ of L ′ is
isomorphic to Z/13Z, and l(AL ′) = 1.

Case 4 Set one-simplices of � as follows:

v1 = (−1,−1, 1), v2 = (−1,−1,−1), v3 = (3,−1,−1),
v4 = (2, 0,−1), v5 = (−1, 2,−1), v6 = (−1, 1, 0),
v7 = (0,−1, 1), v8 = (−1,−1, 0), v9 = (0,−1,−1),
v10 = (1,−1,−1), v11 = (2,−1,−1), v12 = (−1, 0,−1),
v13 = (−1, 1,−1),

and let D̃i be the toric divisor determined by the lattice point vi for i = 1, . . . , 13,
and Di := D̃i |−KX with X := ˜P� . One can easily seen by formulas (3) and (2) that

ρ� = 13 − 3 = 10, D1 = · · · = D6 = −2, D7 = 0,
D8 = · · · = D13 = −2.

Let L be a lattice generated by divisors {Di }13i=1. By solving the Eq. (4), one sees that{ D7, D4, D3, D11, D10, D9, D2, D12, D13, D8 } form a basis for L . By taking a new
basis

{

D7, D4 + D7, D3 − D4 − 4D7, D11, D10, D9, D2, D12, D13, D8
}

,

one sees that the lattice L is isometric to U ⊕ L̃ with some lattice L̃ . By a direct
computation, one sees that sgn L = (1, 9), discr L = −13, and rank L = 10, and
thus, discr L̃ = 13 and rank L̃ = 8 hold. In particular, the discriminant group AL of
L is isomorphic to Z/13Z, and l(AL) = 1.
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Set one-simplices of �′ as follows:

m1 = (−1,−1, 0), m2 = (−1,−1,−1), m3 = (2,−1,−1),
m4 = (2, 0,−1), m5 = (−1, 1, 0), m6 = (0,−1, 1),
m7 = (−1, 0,−1), m8 = (0,−1,−1), m9 = (1,−1,−1),
m10 = (−1, 0, 0), m11 = (1,−1, 0), m12 = (0, 0,−1),
m13 = (1, 0,−1),

and let D̃′
i be the toric divisor determined by the lattice point mi for i = 1, . . . , 13,

and D′
i := D̃′

i |−KX with X := ˜P�′ . It can be easily seen by formulas (3) and (2) that

ρ�′ = 13 − 3 = 10, D′2
1 = D′2

2 = D′2
3 = −2, D′2

4 = 0, D′2
5 = 4,

D′2
6 = 2, D′2

7 = · · · = D′2
13 = −2.

Let L ′ be a lattice generated by divisors {D′
i }13i=1. By solving the Eq. (4), one sees that{ D′

11, D
′
3, D

′
4, D

′
13, D

′
12, D

′
7, D

′
2, D

′
8, D

′
1, D

′
10 } form a basis for L ′. By taking a new

basis

{

D′
4, D′

4 + D′
13, D′

11, D′
3 − 2D′

4 − D′
13,−D′

4 + D′
12, D′

7, D′
2, D′

8, D′
1, D′

10

}

,

one sees that the lattice L ′ is isometric to U ⊕ L̃ ′ with some lattice L̃ ′. By a direct
computation, one sees that sgn L ′ = (1, 9), discr L ′ = −13, and rank L ′ = 10, thus,
discr L̃ ′ = 13 and rank L̃ ′ = 8 hold. In particular, the discriminant group AL ′ of L ′ is
isomorphic to Z/13Z, and l(AL ′) = 1.

In all cases 1 to 4, we obtain lattices L and L ′ satisfying assumptions in Lemma 3.3.
Therefore, we can conclude that Pic� = U ⊕ L̃, Pic�′ = U ⊕ L̃ ′, with discr L̃ =
discr L̃ ′ = 13 and rank L̃ = rank L̃ ′ = 8, and that the relation (Pic�)⊥�K3

� U ⊕Pic�′
holds.

3.5 Nos. 35, 36, and 37

Set one-simplices of � in terms of a basis of M(1,1,4,6) ⊗ R

(−1, 1, 0, 0), (−4, 0, 1, 0), (−6, 0, 0, 1) :
v1 = (−1,−1, 1), v2 = (−1,−1,−1), v3 = (11,−1,−1),
v4 = (−1, 2,−1), v5 = (−1,−1, 0), v6 = (5,−1, 0),
v7 = (0,−1,−1), v8 = (1,−1,−1), v9 = (2,−1,−1),
v10 = (3,−1,−1), v11 = (4,−1,−1), v12 = (5,−1,−1),
v13 = (6,−1,−1), v14 = (7,−1,−1), v15 = (8,−1,−1),
v16 = (9,−1,−1), v17 = (10,−1,−1), v18 = (7, 0,−1),
v19 = (3, 1,−1), v20 = (−1, 0,−1), v21 = (−1, 1,−1),
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and let D̃i be the toric divisor determined by the lattice point vi for i = 1, . . . , 21,
and Di := D̃i |−KX with X := ˜P� . It can be easily seen by formulas (3) and (2) that

ρ� = 21 − 3 = 18, D2
1 = 2, D2

2 = D2
3 = −2, D2

4 = 0
D2
5 = · · · = D2

21 = −2.

Let L be a lattice generated by divisors {Di }21i=1. By solving the Eq. (4), one sees that{ D4, D1, D5,D21,D20,D19,D18,D3,D17,D16,D15,D14,D13,
D12,D11,D10,D9,D8 } form a basis for L . By taking a new basis

⎧

⎪

⎪

⎨

⎪

⎪

⎩

D4, D4 + D21, −D5, −D1 + 2D4 + D19 + D21, −D4 + D20,

D3 − D4 + D16 + D17 + D18 + D19 − D20 − D21, D18, D3,

D17, D14 + D15 + D16, D15, D14, D13 + D14 + D15,

D12, D11, D10, D9, D8

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

one sees that the lattice L is isometric toU ⊕ L̃ , where L̃ is a negative-definite of rank
16 and discriminant 1. By the classification of unimodular lattices, we have L̃ � E⊕2

8 .
Therefore, Pic� � U ⊕ E⊕2

8 .
Set one-simplices of �′ in terms of a basis of M(3,5,11,14) ⊗ R

(1, 0, 1,−1), (2, 1,−1, 0), (10,−1,−1,−1) :
m1 = (−1, 0, 0), m2 = (0, 0, 1), m3 = (2, 4,−1),
m4 = (1,−1, 0), m5 = (1, 2, 0),

and let D̃′
i be the toric divisor determined by the lattice point mi for i = 1, . . . , 5, and

D′
i := D̃′

i |−KX with X := ˜P�′ . It can be easily seen by formulas (3) and (2) that

ρ�′ = 5 − 3 = 2, D′2
1 = 18, D′2

2 = D′2
3 = 0, D′2

4 = 8, D′2
5 = −2.

Let L ′ be a lattice generated by divisors {D′
i }5i=1. By solving the Eq. (4), one sees that{ D′

3, D
′
5 } form a basis for L ′. By taking a new basis

{

D′
3, D′

3 + D′
5

}

, one sees that
the lattice L ′ is isometric to U , which is a hyperbolic primitive sublattice of the K3
lattice. Thus, Pic�′ � U .

It is well-known that lattices U and U ⊕ E⊕2
8 are primitive sublattices of the K3

lattice �K3 and it is clear that the relation (Pic�)⊥�K3
� U⊥

U⊕3 ⊕ (E⊕2
8 )⊥

E⊕3
8

= U⊕2 �
U ⊕ Pic�′ holds.

3.6 Nos. 38 and 40

Take bases of M(1,1,3,5) ⊗ R, and of M(3,4,10,13) ⊗ R, respectively:

{(−1, 1, 0, 0), (−3, 0, 1, 0), (−5, 0, 0, 1)},
{(1, 0, 1,−1), (3, 1, 0,−1), (9,−1,−1,−1)}.
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Lemma 3.4 If L is a negative-definite lattice of rank 15 of discriminant −2, then, it is
a primitive sublattice of the K3 lattice.

Proof Note that the discriminant group of L is isomorphic to Z/2Z of number of
generator l(AL) = 1. Since the signature of L and L ′ is (t+, t−) = (0, 15) and the
rank is rank L = 15, we have

19 − t− = 4 ≥ 0, 3 − t+ = 3 ≥ 0, and 22 − rank L = 7 > 1 = l(AL),

by Corollary 2.2, the assertion is proved. ��
Case 1 Set one-simplices of � as follows:

v1 = (−1,−1, 1), v2 = (−1,−1,−1), v3 = (9,−1,−1),
v4 = (0, 2,−1), v5 = (−1, 2,−1), v6 = (−1,−1, 0),
v7 = (0,−1,−1), v8 = (1,−1,−1), v9 = (2,−1,−1),
v10 = (3,−1,−1), v11 = (4,−1,−1), v12 = (5,−1,−1),
v13 = (6,−1,−1), v14 = (7,−1,−1), v15 = (8,−1,−1),
v16 = (6, 0,−1), v17 = (3, 1,−1), v18 = (−1, 0,−1),
v19 = (−1, 1,−1), v20 = (4,−1, 0),

and let D̃i be the toric divisor determined by the lattice point vi for i = 1, . . . , 20,
and Di := D̃i |−KX with X := ˜P� . It can be easily seen by formulas (3) and (2) that

ρ� = 20 − 3 = 17, D2
1 = 2, D2

2 = · · · = D2
20 = −2.

Let L be a lattice generated by divisors {Di }20i=1. By solving the Eq. (4), one sees that{ D4, D5, D19, D18, D2, D1, D20, D3, D16, D15, D14, D13, D12, D11, D10, D9, D8 }
form a basis for L . By taking a new basis

⎧

⎨

⎩

D4 + D5 + D19, D4 + D5, D4, D1 − 4D4 − 4D5 − 2D19,

D2, −D4 − D5 + D18, D20, D3, D16, D15, D14, D13,

D12, D11, D10, D9, D8

⎫

⎬

⎭

,

one sees that the lattice L is isometric toU⊕ L̃ , where discr L̃ = −2 and rank L̃ = 15.
Set one-simplices of �′ as follows:

m1 = (1, 0, 0), m2 = (0, 1, 0), m3 = (0, 0, 1),
m4 = (0,−2,−3), m5 = (−1,−3,−5), m6 = (0,−1,−1),

and let D̃′
i be the toric divisor determined by the lattice point mi for i = 1, . . . , 6, and

D′
i := D̃′

i |−KX with X := ˜P�′ . It can be easily seen by formulas (3) and (2) that

ρ� = 6 − 3 = 3, D′2
1 = 0, D′2

2 = 6, D′2
3 = 16,

D′2
4 = −2, D′2

5 = 0, D′2
6 = −2.
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Let L ′ be a lattice generated by divisors {D′
i }6i=1. By solving the Eq. (4), one sees that{ D′

1, D
′
4, D

′
6 } form a basis for L ′. By taking a new basis

{

D′
1, D′

1 + D′
4, D′

6 − D′
1

}

,
one sees that the lattice L ′ is isometric toU ⊕ A1, which is hyperbolic and a primitive
sublattice of the K3 lattice. Therefore, Pic�′ � U ⊕ A1. Note that the discriminant
group of Pic�′ is isomorphic to Z/2Z since 2 is a prime number.
Case 2 Set one-simplices of � as follows:

v1 = (−1,−1,−1), v2 = (1, 1, 3), v3 = (1, 3, 9),
v4 = (1, 3,−1), v5 = (1, 0,−1), v6 = (0, 0, 1),
v7 = (0, 1, 4), v8 = (0, 1,−1), v9 = (1, 2, 6),
v10 = (1, 2,−1), v11 = (1, 1,−1), v12 = (1, 3, 8),
v13 = (1, 3, 7), v14 = (1, 3, 6), v15 = (1, 3, 5),
v16 = (1, 3, 4), v17 = (1, 3, 3), v18 = (1, 3, 2),
v19 = (1, 3, 1), v20 = (1, 3, 0),

and let D̃i be the toric divisor determined by the lattice point vi for i = 1, . . . , 20,
and Di := D̃i |−KX with X := ˜P� . It can be easily seen by formulas (3) and (2) that

ρ� = 20 − 3 = 17, D2
1 = 2, D2

2 = · · · = D2
4 = −2,

D2
5 = 0, D2

6 = · · · = D2
20 = −2.

Let L be a lattice generated by divisors {Di }20i=1. By solving the Eq. (4), one sees that{ D5, D1, D11, D2, D9, D3, D12, D13, D14, D15, D16, D17, D18, D19, D20, D4, D8 }
form a basis for L . By taking a new basis

{

D5, D5 + D11, D2 − 2D5 − D11, −D1 + D2 + 2D5 + D11,

D9, D3, D12, D13, D14, D15, D16, D17, D18, D19, D20, D4, D8

}

,

one sees that the lattice L is isometric to U ⊕ L̃ , where L̃ is of rank 15 and of
discriminant −2.

Set one-simplices of �′ as follows:

m1 = (−1, 0, 0), m2 = (2,−1, 0), m3 = (0, 0, 1),
m4 = (−2, 4,−1), m5 = (−1, 3,−1), m6 = (−1, 2, 0),

and let D̃′
i be the toric divisor determined by the lattice point mi for i = 1, . . . , 6, and

D′
i := D̃′

i |−KX with X := ˜P�′ . It can be easily seen by formulas (3) and (2) that

ρ�′ = 6 − 3 = 3, D′2
1 = 16, D′2

2 = 6, D′2
3 = 0,

D′2
4 = D′2

5 = D′2
6 = −2.

Let L ′ be a lattice generated by divisors {D′
i }6i=1. By solving the Eq. (4), one sees that{ D′

3, D
′
6, D

′
5 } form a basis for L ′, with respect to which the intersection matrix of

L ′ is given by
( 0 1 0
1 −2 0
0 0 −2

)

. By taking a new basis
{

D′
3, D′

3 + D′
6, D′

5

}

, one sees that
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the lattice L ′ is isometric to U ⊕ A1, which is a primitive sublattice of the K3 lattice.
Therefore, Pic�′ � U ⊕ A1.

In cases 1 and 2, we obtain a lattice L � U ⊕ L̃ , where L̃ is a lattice satisfying
the assumption of Lemma 3.4. Therefore, L is a primitive sublattice of the K3 lattice,
and that Pic� = L holds. Since discr Pic� = discr (U ⊕ Pic�′) = 2, by Corollary 2.1,
the relation (Pic�)⊥�K3

� U ⊕Pic�′ holds. Moreover, by Lemma 2.1, we have Pic� �
(U⊕2 ⊕ A1)

⊥
�K3

� U ⊕ E7 ⊕ E8.

3.7 Nos. 41, 42, and 43

Set one-simplices of � in terms of a basis of M(1,1,3,4) ⊗ R

(−1, 1, 0, 0), (−3, 0, 1, 0), (−4, 0, 0, 1) :
v1 = (−1, 2,−1), v2 = (−1,−1,−1), v3 = (8,−1,−1),
v4 = (0,−1, 1), v5 = (−1,−1, 1), v6 = (2, 1,−1),
v7 = (5, 0,−1), v8 = (0,−1,−1), v9 = (1,−1,−1),
v10 = (2,−1,−1), v11 = (3,−1,−1), v12 = (4,−1,−1),
v13 = (5,−1,−1), v14 = (6,−1,−1), v15 = (7,−1,−1),
v16 = (4,−1, 0), v17 = (−1,−1, 0), v18 = (−1, 1,−1),
v19 = (−1, 0,−1),

and let D̃i be the toric divisor determined by the lattice point vi for i = 1, . . . , 19,
and Di := D̃i |−KX with X := ˜P� . It can be easily seen by formulas (3) and (2) that

ρ� = 19 − 3 = 16, D2
1 = 0, D2

2 = · · · = D19 = −2.

Let L be a lattice generated by divisors {Di }19i=1. By solving the Eq. (4), one sees that{D6, D1, D4, D18, D19, D2, D8, D9, D10, D11, D17, D5, D16, D3, D15, D14} form a
basis for L . By taking a new basis

⎧

⎪

⎪

⎨

⎪

⎪

⎩

D1 + D4, D1, D1 − D4 − D5 + D6 − D17 + D18, D17, D19,

D2 + D19, D8, D9, D10, D11,

3D1 + D2 − D5 + D8 + D9 + D10 + D11 + D18 + D19,

−3D1 + D5 − D6, −D1 + D16, D3, D15, D14

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

one sees that the lattice L is isometric to U ⊕ L̃ with some lattice L̃ . By a direct
computation, one sees that sgn L = (t+, t−) = (1, 15), discr L = −3, and rank L =
16, and thus, discr L̃ = 3 and rank L̃ = 14 hold. In particular, the discriminant group
AL of L is isomorphic to Z/3Z, and l(AL) = 1. Therefore, one observes that

19 − t− = 4 ≥ 0, 3 − t+ = 2 ≥ 0, 22 − rank L = 6 > 1 = l(AL)

and by Corollary 2.2, L is a primitive sublattice of the K3 lattice. Therefore, Pic� �
U ⊕ L̃ with discr L̃ = 3 and rank L̃ = 14.
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Set one-simplices of �′ in terms of a basis of M(3,4,11,18) ⊗ R

(−1, 8,−1,−1), (0,−1, 2,−1), (−1,−1,−1, 1) :
m1 = (1, 0, 0), m2 = (0, 1, 0), m3 = (0, 0, 1),
m4 = (−1,−3,−4), m5 = (0,−2,−3), m6 = (0, 0,−1),
m7 = (0,−1,−2),

and let D̃′
i be the toric divisor determined by the lattice point mi for i = 1, . . . , 7, and

D′
i := D̃′

i |−KX with X := ˜P�′ . It can be easily seen by formulas (3) and (2) that

ρ�′ = 7 − 3 = 4, D′2
1 = 0, D′2

2 = 6, D′2
3 = 12,

D′2
4 = 0, D′2

5 = D′2
6 = D′2

7 = −2.

Let L ′ be a lattice generated by divisors {D′
i }7i=1. By solving the Eq. (4), one

sees that { D′
4, D′

5, D′
7, D′

6 } form a basis for L ′. By taking a new basis
{

D′
4, D′

4 + D′
5, −D′

4 + D′
7, D′

6

}

, one sees that the lattice L ′ is isometric toU ⊕ A2,
which is a primitive sublattice of the K3 lattice. Therefore, Pic�′ � U ⊕ A2.

Since discr Pic� = discrU ⊕ L̃ = − discrU⊕2 ⊕ A2 = 3, by Corollary 2.1, the
relation (Pic�)⊥�K3

� U ⊕ Pic�′ holds. Moreover, by Lemma 2.1, we have Pic� �
(U⊕2 ⊕ A2)

⊥
�K3

� U ⊕ E6 ⊕ E8.

3.8 No. 46

Set one-simplices of � in terms of a basis of M(1,1,1,2) ⊗ R

(−1, 1, 0, 0), (−1, 0, 1, 0), (−2, 0, 0, 1) :
v1 = (−1,−1, 1), v2 = (−1, 2, 0), v3 = (2,−1, 0),
v4 = (4,−1,−1), v5 = (−1, 4,−1), v6 = (−1,−1,−1),
v7 = (−1,−1, 0), v8 = (1, 0, 0), v9 = (0, 1, 0),
v10 = (3, 0,−1), v11 = (2, 1,−1), v12 = (1, 2,−1),
v13 = (0, 3,−1), v14 = (−1, 3,−1), v15 = (−1, 2,−1),
v16 = (−1, 1,−1), v17 = (−1, 0,−1), v18 = (0,−1,−1),
v19 = (1,−1,−1), v20 = (2,−1,−1), v21 = (3,−1,−1),

and let D̃i be the toric divisor determined by the lattice point vi for i = 1, . . . , 21,
and Di := D̃i |−KX with X := ˜P� . It can be easily seen by formulas (3) and (2) that

ρ� = 21 − 3 = 18, D2
1 = 0, D2

2 = · · · = D2
21 = −2.

Let L be a lattice generated by divisors {Di }21i=1. By solving the Eq. (4), one sees that{ D1,D3,D8,D7,D2,D5,D13,D12,D11,D10,D14,D15,D16,
D17,D6,D18,D19,D20 } form a basis for L . Since rank L = 18 is strictly greater than
12, the lattice L is isometric to U ⊕ L̃ with some lattice L̃ . By a direct computation,
one sees that sgn L = (t+, t−) = (1, 17), discr L = −5, and rank L = 18, and thus,
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discr L̃ = 5 and rank L̃ = 16 hold. In particular, the discriminant group AL of L is
isomorphic to Z/5Z, and l(AL) = 1. Therefore, one observes that

19 − t− = 2 ≥ 0, 3 − t+ = 2 ≥ 0, 22 − rank L = 4 > 1 = l(AL)

and by Corollary 2.2, L is a primitive sublattice of the K3 lattice. Therefore, Pic� �
U ⊕ L̃ with discr L̃ = 5 and rank L̃ = 16.

Set one-simplices of �′ in terms of a basis of M(4,5,7,9) ⊗ R

(4, 0,−1,−1), (3,−1,−1, 0), (0,−1, 2,−1) :
m1 = (0, 0, 1), m2 = (2,−3,−1), m3 = (−1, 1, 0),
m4 = (0, 1, 0), m5 = (1, 0, 0),

and let D̃′
i be the toric divisor determined by the lattice point mi for i = 1, . . . , 5, and

D′
i := D̃′

i |−KX with X := ˜P�′ . It can be easily seen by formulas (3) and (2) that

ρ�′ = 5 − 3 = 2, D′2
1 = D′2

2 = 2, D′2
3 = 10, D′2

4 = D′2
5 = −2.

Let L ′ be a lattice generated by divisors {D′
i }5i=1. By solving the Eq. (4), one sees

that {D′
1, D

′
5} form a basis for L , with respect to which the intersection matrix of L is

given by
(

2 1
1 −2

)

. One sees that the lattice L ′ is a hyperbolic lattice, that is, of signature
(t+, t−) = (1, 1) of rank L ′ = 2 and discr L ′ = −5. In particular, the discriminant
group AL ′ of L ′ is isomorphic to Z/5Z, and l(AL ′) = 1. Therefore, one observes that

19 − t− = 18 ≥ 0, 3 − t+ = 2 ≥ 0, 22 − rank L ′ = 20 > 1 = l(AL ′)

and by Corollary 2.2, L ′ is a primitive sublattice of the K3 lattice. Therefore, Pic�′ �
(

Z
2,

(

2 1
1 −2

))

.
Since discr Pic� = − discr Pic� = −5, by Corollary 2.1, the relation (Pic�)⊥�K3

�
U ⊕ Pic�′ holds.

3.9 Nos. 48 and 49

Set one-simplices of �′ in terms of a basis of M(5,6,8,11) ⊗ R

(−1, 0, 2,−1), (−1,−1, 0, 1), (5,−1,−1,−1) :
m1 = (1, 0, 0), m2 = (0, 1, 0), m3 = (0, 0, 1), m4 = (−1, 3,−1),

and let D̃′
i be the toric divisor determined by the lattice point mi for i = 1, . . . , 4, and

D′
i := D̃′

i |−KX with X := ˜P�′ . It can be easily seen by formulas (3) and (2) that

ρ�′ = 4 − 3 = 1, D′2
1 = D′2

2 = 2, D′2
3 = 18, D′2

4 = 2.
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Let L ′ be a lattice generated by divisors {D′
i }4i=1. By solving the Eq. (4), one sees

that {D′
1} form a basis for L ′. Therefore, Pic�′ � 〈2〉. It is well-known that the lattice

(Z, 〈2〉) is a primitive sublattice of the K3 lattice.
Set one-simplices of � in terms of a basis of M(1,1,1,3) ⊗ R

(−1, 1, 0, 0), (−1, 0, 1, 0), (−3, 0, 0, 1) :
v1 = (−1,−1, 1), v2 = (−1,−1,−1), v3 = (5,−1,−1),
v4 = (−1,−1, 5), v5 = (−1,−1, 0), v6 = (2,−1, 0),
v7 = (−1,−1, 2), v8 = (0,−1,−1), v9 = (1,−1,−1),
v10 = (2,−1,−1), v11 = (3,−1,−1), v12 = (4,−1,−1),
v13 = (4,−1, 0), v14 = (3,−1, 1), v15 = (2,−1, 2),
v16 = (1,−1, 3), v17 = (0,−1, 4), v18 = (−1,−1, 4),
v19 = (−1,−1, 3), v20 = (−1,−1, 2), v21 = (−1,−1, 1),
v22 = (−1,−1, 0),

and let D̃i be the toric divisor determined by the lattice point vi for i = 1, . . . , 22,
and Di := D̃i |−KX with X := ˜P� . It can be easily seen by formulas (3) and (2) that

ρ� = 22 − 3 = 19, D2
1 = 0, D2

2 = · · · = D2
22 = −2.

Let L be a lattice generated by divisors {Di }22i=1. By solving the Eq. (4), one sees that{ D21, D20, D19, D18, D4, D17, D16, D15, D14, D13, D3, D12, D11, D10, D9, D6, D1,
D5, D2 } form a basis for L . By taking a new basis

{

D1, D1 + D5, D19, D18, D4, D17, D16, D15, D14, D13, D3, D12,

D11, D10, D9, −D1 − D2 − D5 + D6, D21, D20, D2 − D1

}

,

one sees that the lattice L is isometric to U ⊕ L̃ with some lattice L̃ .
By a direct computation, one sees that sgn L = (t+, t−) = (1, 18), discr L = 2,

and rank L = 19, and thus, discr L̃ = −2 and rank L̃ = 17 hold. In particular, the
discriminant group AL of L is isomorphic to Z/2Z, and l(AL) = 1. Therefore, one
observes that

19 − t− = 1 ≥ 0, 3 − t+ = 2 ≥ 0, 22 − rank L = 3 > 1 = l(AL)

and by Corollary 2.2, L is a primitive sublattice of the K3 lattice. Therefore, Pic� �
U ⊕ L̃ with discr L̃ = −2 and rank L̃ = 17.

Since discr Pic� = − discr (U ⊕ Pic�′) = 2, by Corollary 2.1, the relation
(Pic�)⊥�K3

� U ⊕ Pic�′ holds.
Since the rank-one lattice (Z, 〈2〉) can be primitively embedded into the hyperbolic

lattice U = 〈e, f 〉Z of rank 2 as an element e + f , the orthogonal complement
(Z, 〈2〉)⊥U in U is a rank-one lattice (Z, 〈−2〉) = 〈e − f 〉Z. Therefore, we have
Pic�′ � (Z, 〈2〉)⊥U ⊕U ⊕ E⊕2

8 � (Z, 〈−2〉) ⊕U ⊕ E⊕2
8 .
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3.10 No. 50

Set one-simplices of �′ in terms of a basis of M(7,8,9,12) ⊗ R

(−1, 2,−1, 0), (−1,−1, 3,−1), (−1,−1,−1, 2) :
m1 = (1, 0, 0), m2 = (0, 1, 0), m3 = (0, 0, 1), m4 = (−1,−1,−1),

and let D̃′
i be the toric divisor determined by the lattice point mi for i = 1, . . . , 4, and

D′
i := D̃′

i |−KX with X := ˜P�′ . One can easily seen by formulas (3) and (2) that

ρ� = 4 − 3 = 1, D′2
1 = D′2

2 = D′2
3 = D′2

4 = 4.

Let L ′ be a lattice generated by divisors {D′
i }4i=1. By solving the Eq. (4), one sees that{D′

1} form a basis for L ′. Therefore, Pic�′ � (Z, 〈4〉). It is well-known that the lattice
(Z, 〈4〉) is a primitive sublattice of the K3 lattice.

Set one-simplices of � in terms of a basis of M(1,1,1,1) ⊗ R

(−1, 1, 0, 0), (−1, 0, 1, 0), (−1, 0, 0, 1) :
v1 = (−1,−1,−1), v2 = (3,−1,−1), v3 = (−1, 3,−1),
v4 = (−1,−1, 3), v5 = (0,−1,−1), v6 = (1,−1,−1),
v7 = (2,−1,−1), v8 = (−1, 0,−1), v9 = (−1, 1,−1),
v10 = (−1, 2,−1), v11 = (−1,−1, 0), v12 = (−1,−1, 1),
v13 = (−1,−1, 2), v14 = (2, 0,−1), v15 = (1, 1,−1),
v16 = (0, 2,−1), v17 = (−1, 2, 0), v18 = (−1, 1, 1),
v19 = (−1, 0, 2), v20 = (0,−1, 2), v21 = (1,−1, 1),
v22 = (2,−1, 0),

and let D̃i be the toric divisor determined by the lattice point vi for i = 1, . . . , 22,
and Di := D̃i |−KX with X := ˜P� . It can be easily seen by formulas (3) and (2) that

ρ� = 22 − 3 = 19, D2
1 = · · · = D2

22 = −2.

Let L be a lattice generated by divisors {Di }22i=1. By solving the Eq. (4), one sees that{ D6, D5, D8, D1, D11, D12, D13, D4, D19, D18, D17, D3, D10, D16, D15, D14, D2,
D22, D21 } form a basis for L . Since the rank of L is strictly greater than 12, the lattice
L is isometric to U ⊕ L̃ with some lattice L̃ .

By a direct computation, one sees that sgn L = (t+, t−) = (1, 18), discr L = 4,
and rank L = 19, and thus, discr L̃ = −4 and rank L̃ = 17 hold. In particular, the
discriminant group AL of L is isomorphic to Z/4Z, and l(AL) = 1. Therefore, one
observes that

19 − t− = 1 ≥ 0, 3 − t+ = 2 ≥ 0, 22 − rank L = 3 > 1 = l(AL)

and by Corollary 2.2, L is a primitive sublattice of the K3 lattice. Therefore, Pic� �
U ⊕ L̃ with discr L̃ = −4 and rank L̃ = 17.
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Since discr Pic� = − discr (U ⊕ Pic�′) = 2, by Corollary 2.1, the relation
(Pic�)⊥�K3

� U ⊕ Pic�′ holds.
Since the rank-one lattice (Z, 〈4〉) can be primitively embedded into the hyperbolic

lattice U = 〈e, f 〉Z of rank 2 as an element 2e + f , the orthogonal complement
(Z, 〈4〉)⊥U in U is a rank-one lattice (Z, 〈−4〉) = 〈e − 2 f 〉Z. Therefore, we have
Pic�′ � (Z, 〈4〉)⊥U ⊕U ⊕ E⊕2

8 � (Z, 〈−4〉) ⊕U ⊕ E⊕2
8 .

Therefore, the assertion of Theorem 3.1 is verified. ��

4 Conclusion

We see in the main theorem that all coupling pairs that are polytope-dual with trivial
toric contribution can extend to lattice duality among families of K3 surfaces. Thus,
the coupling is partly translated to be the lattice-duality. Moreover, all except Nos. 46,
48 and 49, and 50 admit a pair of families of K3 surfaces with generic sections being
elliptic: indeed, the Picard lattices Pic� and Pic�′ contain the hyperbolic lattice U of
rank 2.

We can conclude that the Picard lattices of the families studied in the article are
independent from the choice of reflexive polytopes. In other words, since the choice
of a reflexive polytope is that of a way of blow-up of the ambient space, the Picard
lattice in the subfamilies is birationally independent.
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