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Abstract
We study a lattice duality among families of K 3 surfaces associated to coupling pairs
that admit polytope duality with trivial toric contribution.
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1 Introduction

Weight systems appear in many interesting spots in algebraic geometry including sin-
gularity theory, where singularities have nice properties. We focus on a duality among
weight systems called coupling introduced by Ebeling (2006), which is for well-
posed weight systems associated to simple K3 singularities classified by Yonemura
(1990). The coupling duality is in particular admitted by a pair of singularities defined
by weighted-homogeneous polynomials f and f’ as a strange-duality for invertible
polynomials introduced by Ebeling and Takahashi (2011). It is also known that such
polynomials f and f” in three variables can be projectivised as weighted-homogeneous
polynomials F and F’ as anticanonical divisor of the weighted projective spaces P,
and [P, where the pair (a, b) is coupling among Yonemura’s list. Since all the weighted
projective spaces with weights being in Yonemura’s list are Fano, we obtain subfam-
ilies of K3 surfaces in the space once one finds a reflexive polytope as a subpolytope
of the defining polytope of the space. In the author’s recent work (Mase 2021), an
existence and duality of such reflexive polytopes are studied and it is concluded that
almost all coupling pair extends to a polytope-duality. Once one obtains families of
K 3 surfaces which already admit several dualities, one may be interested in intrinsic
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properties of K3 surfaces. We are interested in lattice-duality originally studied by
Dolgachev (1996). It is concluded by Mase (2015, 2017) that a part of transpose-dual
pairs associated to strange duality of bimodal singularities extends to lattice dual, and
that some subfamilies of K 3 surfaces that are double covering of the projective plane
have lattice-dual property as is studied in Mase (2021). In this paper, focusing on
polytope-dual pairs associated to coupling, one may pose the following problem.

PROBLEM Determine whether or not the coupling pairs which admit polytope-duality
extend to lattice duality of families Fa and F,s in the sense that the relation
. 1 ~ .
(PICA)U@@E?Z ~ U @ Picar

holds.
We give an answer as the main theorem of the article which is presented here:

Theorem 3.1 Ifa coupling pair admits polytope-duality with trivial toric contribution,
then, the families of K3 surfaces are lattice dual. Explicite Picard lattices of the
families are given in Table 1.

In Sect. 2, we recall the Picard lattice and toric geometry. In Sect. 3, we give a
proof of the main theorem. In the last and fourth section, we give a conclusion as the
property of the Picard lattices of families that we have obtained.

2 Preliminary

A lattice is a finitely-generated Z-module with a non-degenerate bilinear form. A K3
surface is a smooth compact complex connected 2-dimensional algebraic variety with
trivial canonical divisor and irregularity zero. It is known that the second cohomology
group with Z-coefficient of a K3 surface S admits a structure of a unimodular lattice
of signature (3, 19), thus by a classification of lattices, the lattice is in fact isometric
to the K3 lattice Ag3z .= U 83 E§92, where U is the hyperbolic lattice of rank 2,
and Eg is the negative-definite, even unimodular lattice of rank 8. By a standard exact
sequence, one gets an inclusion map ¢y : H Ies, (’)i‘;) — H2(S, 7), which makes the
Picard group H'(S, O%) to be a sublattice of H 2(S, 7). We call the Picard group of
S with a lattice structure simply the Picard lattice of S.

We summarize toric geometry in Batyrev (1994) by also giving useful formulas
extracted from Fulton (1997) and Oda (1978).

Let M be a lattice of rank n, and N := Homy (M Z) be the dual lattice of M, with
anatural pairing (, ) : N x M — Z with its R-extension denoted by (, )r. A convex
hull of finite-number of points in M ® R is called a polytope, which admits the polar
dual polytope A* defined by

A*:={ye NOR|(y,x)g > —1 forallx € A}.
A polytope A is integral if every vertex is in M. An integral polytope A which contains
the only lattice point in its interior is reflexive if the polar dual polytope A* is also an

integral polytope.
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Itis observed by Batyrev (1994) that an integral polytope A is reflexive if and only if
the resulting projective toric variety PA is Fano, in other words, general hypersurfaces
that are defined by global anticanonical sections of [PA are birational to Calabi-Yau.

We only treat with 3-dimensional reflexive polytopes. We call a anticanonical
section for hypersurfaces that are defined by global anticanonical sections of PA for
short. In 3-dimensional case, it is derived by a study of Batyrev (1994), that moreover,
singularities in P and in general anticanonical sections Z of PA can be simultaneously
resolved by a toric resolution called a MPCP-desingularisation, which we denote by
PA and Z. The natural restriction map

H" Y (Pr, Z) — HY(Z, 7)

is not necessarily subjective in general, and we denote by Lo(A) the rank of the
cokernel of the map, which we call the foric contribution, which is known Kobayashi
(2008) to be given by the formula

Lo(A) =Y " I(D)I(T™), e
r

where the sum runs for all edges in A.

Here we recall from Bruzzo and Grassi (2012) that generic anticanonical sections
of the Fano threefold IPA admit isometric Picard lattices. Thus, we define the Picard
lattice of the family Fp of K3 surfaces in Po to be the Picard lattice of the minimal
model of any generic anticanonical section of Pa, and denote it by Pica.

For a reflexive polytope A, one can associate a fan X’. By definition, lattice points
of A* are primitive vector of one-simplices of X', and it is clear that the toric varieties
Pa and Py coincide. Any divisor D of a generic hypersurface in Py is the closure
of the torus orbit of a one-simplex v in X, in particular, the divisors are called foric
divisors. Let F be the face in A that is the polar dual of v. Denote by /(F') the number
of lattice points in the interior of F. The self-intersection number of the divisor D is
given by the formula

D? =2I(F) — 2. 2

Denote by A the set of all edges in A and /(T") be the number of lattice points in
the interior of an edge I' € A", The Picard number p(A) is given by

p(A)= Y UMY+ > 1+Lo(A) =3 3)

reA® vertices of A

Let eq, e, e3 be a standard basis for R>. Suppose that the fan ¥ possesses / one-
simplices. The toric divisors Dy, ..., D; admit the linear relations

1
Y (wiep)Di=0 j=1.203. @)

i=1
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It is easily seen that the polytope A is of trivial toric contribution if and only if
the corresponding fan ¥’ is simplicial, that is, every triple of one-simplices form
a Z basis of R3 Moreover, the restriction of linearly-independent toric divisors of

= IP’A = IP’E/ to the anticanonical divisor of X form a basis of the Picard lattice
Pch/ of the family Fps if A" >~ A*,

Denote by M (4y,4,,a2.a45) the lattice consisting of quadruple of integers (i, j, k, )
satisfying an equation agi +a j +azk+a3l = 0 for a weight system (ag, a1, a2, az; d).
There is a one-to-one correspondence between elements in M 4 4;.a,45) and (rational)
monomials of degree d by

@, j. k. D) € My,ar,a2,a3) < witlxi+lyk+lzi+1

where (W, X, Y, Z) is a coordinate system of the weighted projective space of weight
(ao, a1, az, az).

We denote by L*, Ay, discr L, [(Ar), sgnL, qr, and rank L the dual lattice
L* := Homgy(L, 7Z), the discriminant group L/L*, the discriminant, the minimal
number of generators of Ay, the signature, the discriminant form, and the rank of a
lattice L. It is a standard arithmetic property that if rank L is strictly larger than 5,
then, there eists an element representing 0, and if rank L is strictly larger than 12,
then, the hyperbolic lattice U is a sublattice of L. We also recall standard properties
of lattices from Nikulin (1980) and Nishiyama (1996). A sublattice S of a lattice A is
called primitive if the quotient lattice A /S is torsion-free.

Corollary 2.1 (Corollary 1.6.2 Nikulin (1980)) Let S and T be primitive sublattices
of the K3 lattice Ak3. The lattices S and T are orthogonal in Ak3 if and only if
qs =~ —qr holds. O

Corollary 2.2 (Corollary 1.12.3 Nikulin (1980)) Let S be a sublattice with signature
(t4, t-) of an even unimodular lattice A with signature (I4, 1_). The lattice S is a
primitive sublattice of A if and only if the following three conditions are satisfied.

1) Iy —1- =0 mod 8,
) l-—t_>0andly —ty >0, and
(3) rank A —rank § > [(Agy).

O

Remark 1 Note that the K3 lattice Ag3 is an even unimodular lattice of signature
I+, 1-)=(3, 19).Thus,l —I- =3—-19 = —16 =0 mod 8§, and in order to show
alattice S to be a primitive sublattice of A k3, it suffices to verify the second and third
conditions of Corollary 2.2.

Lemma 2.1 (Lemma 4.3 Nishiyama (1996)) There exist primitive embeddings of A1
and A; into Eg with orthogonal complements being E7 and Eg, respectively. We follow
the notation of lattices in Bourbaki (1968). O
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3 Main results

Lemma 3.1 The polytope-dual pairs among Nos. 11-14, Nos. 15-18, Nos.35-37,
Nos.38 and 40, Nos.41-43, Nos.48-49 are respectively isomorphic to the following
polytopes in Table 1.

Proof The assertion follows from the proof of Mase (2021). O
Lemma 3.2 If a coupling pair is in Table 1, the toric contribution is trivial.

Proof The assertion follows by case-by-case computation using formula (1) for all
polytopes obtained in Mase (2021). O

Theorem 3.1 Ifa coupling pair admits polytope-duality with trivial toric contribution,
then, the families of K3 surfaces are lattice dual. Explicite Picard lattices of the
families are given in Table 1.

Remark 2 We present the following data in Table 1. The number(s) in the first column
are given in Mase (2021). The second and fifth columns are vertices of polytopes of
A’ and A obtained by Mase (2021), and the sets in the same line are polytope-dual. In
the third and fourth columns are the Picard lattice of the family Fx-, resp. Fa, the pair
of the rank and the signature of lattices, and the weight systems that are coupling. The
lattices L and L' are explained in the proof. Other lattices follow notation of Bourbaki
(1968).

Proof Take reflexive polytopes A and A’ as in 1. We explicitly calculate the Picard
lattices of the families Fa and Fa/. Denote by I, respectively ¥ the fan associated
to polytope A’, respectively A. Since the relation A* >~ A’ holds, lattice points of
A/, respectively of A are none other than primitive vectors of one-simplices of X,
respectively ¥'.

3.1 Nos.11,12,13,and 14
Case 1. Set one-simplices of X in terms of a basis of M(j 4,10,15) ® R

(-1,4,0,-1), (—=1,—-1,2,—-1), (—1,—1,—1,1):

v = (1,0, 0), v = (0,1, 0), v3 = (0,0, 1),

vg = (0, =2, =3), vs = (—6, —8, —15), ve = (-3, —4, =7),
v7 = (0, -1, —1), vg = (—2, -2, -5), w9 =(—4,-5,-10),
vio = (=5, =7, —13), v = (-4, —6, —11), vio = (-3, =5, -9),
vi3 = (=2,-4,=7), viu=(-1,-3,-5),

and let D; be the toric divisor determined by the lattice point v; fori = 1,..., 14,
and D; .= D |—ky with X := }P’z It can be easily seen by formulas (3) and (2) that

2 2 2 2
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Let L be a lattice generated by divisors {Di}}i |- By solving the Eq. (4), one sees that
{ D1, D, D3, D4, D7, D14, D13, D12, D11, D19, D5 } form a basis for L. By taking
a new basis

Dy, Dy + D4, =D + D7, Dg,
2Dy — Dy +2D4+ D7 — Dg+ Dy, ¢,
D13, —D1 + D14, D12, D11, Do, Ds

one sees that the lattice L is isometric to U @ A| @ Eg, which is hyperbolic and a
primitive sublattice of the K3 lattice. Therefore, Pica ~ U & A & Eg.
Set one-simplices of X/ in terms of a basis of M(j 6315 ® R

(=6,1,0,0), (=8,0,1,0), (—=15,0,0, 1):

m;=4,—-1,-1), my=1(0,2,-1), m3 = (—1,—-1, 1),
my = (—1,2,-1), ms=(-1,-1,-1), mg =3, -1, 1),
m7=2,—-1,-1), mg=(1,-1,-1), m9g=(0,—-1,-1),
mio = (=1, 1,=1), my; = (=1,0,=1), mi2=(=1,-1,0),

and let D~l/ be the toric divisor determined by the lattice point m; fori =1, ..., 12,
and le = D;|, Ky With X := ]P”;:// It can be easily seen by formulas (3) and (2) that

pa=12-3=9, DP=0, D=2 D} =10, D} =-.- =D} =-2.

Let L be a lattice generated by divisors { D] }l.lil. By solving the Eq. (4), one sees that
{D}, D}, Dy, D}, D}, D5, Dg, D}, Dg} form a basis for L. By taking a new basis

Di, Dy + Dg, Dy, Dy, Dy, Ds,
—3D| + Dy + D}, — 2D}, — D} — D}, —D} + D} + D}, D} — D} [°

one sees that the lattice L' is isometric to U @ E7, which is hyperbolic and a primitive
sublattice of the K 3 lattice. Therefore, Picas >~ U @ E7.

Case 2 Set one-simplices of X in terms of a basis of M(1 4,10,15) ® R

(—-4,1,0,0), (—10,0,1,0), (—15,0,0,1) :

v =(—1,-1,1), v, =(—-1,—-1,—-1), v3 = (6, —1, —1),
vy = (4,0, —1), vs =(—1,2,—1), wvg=(—1,-1,0),
v7=(0,—-1,-1), vg=(1,—-1,—-1), v9=(2,—1,—1),
vip= 3, -1, =1, vi1 =@, —-1,-1), vi2=(,—-1,-1),
vi3 = (=10,-1), vig = (=1, 1, =1),

and let D; be the toric divisor determined by the lattice point v; fori = 1,..., 14,
and D; := D |-k, With X := IF’E It can be easily seen by formulas (3) and (2) that

pa=14-3=11,D} =8, D} =D} =D} =-2, D:=2,
2
D= _1)14_—2.
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Let L be a lattice generated by divisors {Di}}i |- By solving the Eq. (4), one sees that
{D4, D3, Ds, D14, D13, D>, D12, D11, D19, D9, Dg} form a basis for L. By taking a
new basis

—D3 + Ds — D12, D3 + Dy, Dy, Dy3,

—Dy — D13, Dy — D3 — Dy + D13 + Dig,
2D3 + D4 — Ds + D11 +2D13 — D13 — Dug,
D3 + D4 + Dyy, Dyo, Dy, Dg

one sees that the lattice L is isometric to U @ A; @ Eg, which is hyperbolic and a
primitive sublattice of the K3 lattice. Therefore, Pica ~ U & A| & Es.
Set one-simplices of ¥’ in terms of a basis of M( 63,15 @ R

(-6,1,0,0), (-8,0,1,0), (—15,0,0,1) :

m;y=(—1,-1,1), mr=(—1,-1,-1), my =4, -1, —1),
myq = (0,2, —1), ms = (—1,1,—1), mg=(—1,—-1,0),
m7=(0,—-1,-1), mg=(,—-1,—-1), mg=2,—1,—-1),
mio = 3, —=1,=1), m;; = (=1,0,=1), mpp=(-1,0,0),

and let 131/ be the toric divisor determined by the lattice point m; fori =1, ..., 12,
and D] := D}|_g, with X := I@; It can be easily seen by formulas (3) and (2) that

pa=12—-3=09, D}

2 _ 2 _ 2
=10, DF =2, DF =0, D} =4,
D

5

— D2 =
.=DR=-2.

Let L' be a lattice generated by divisors { D} llil By solving the Eq. (4), one sees that
{D}, D}, Dg, Dg, D}, D), Dy, D, D},} form a basis for L', with respect to which
the intersection matrix of L’ is U @ E7, which is hyperbolic and a primitive sublattice
of the K 3 lattice. Therefore, Picar ~ U & E7.

It is well-known that lattices U @ A} @ Eg and U @ E7 are primitive sublattices
of the K3 lattice A 3. Moreover, by Lemma 2.1, the relation (PicA)f\-I<3 ~U 5@3 &

(ADg, © (Eg)f, = U2 @ E7 ~ U & Picy' holds.

3.2 Nos. 15,16,17,and 18

Set one-simplices of X in terms of a basis of M(1,6,8,9) ® R

(—6,1,0,0), (-8,0,1,0), (—9,0,0, 1):

v =(—1,2,-1), vp=(—-1,—-1,—-1), v3 =(5, —1, —1),
vy = (3, —1,0), vs =(—1,—-1,1), ve=(—1,1,-1),
v7=(—1,0,-1), vg=(0,—1,—-1), vo=(,—1,-1),
vio=2,-1,-1), v;1 =G, -1,-1), vip=4,~-1,-1),
vi3=(=1,-1,0), viy = (3,0, -1), wvi5=(,1,-1),
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and let D; be the toric divisor determined by the lattice point v; fori = 1,..., 15,
and D; := D;|_ —Kky With X = IP’E It can be easily seen by formulas (3) and (2) that

pa=15-3=12,D7 =2, Dj = D3 = -2,
D;=0,D}=4 D} =...= D =-2.

Let L be a lattice generated by divisors {D; }}i |- By solving the Eq. (4), one sees that
{ D4, D5, D13, D2,D7, D3, D14, D15, D12, D11, D1g, Do } form a basis for L. By
taking a new basis

D4, D3+ Dy, Dy — D1y — D15, —D4 + D14, — D7,
—D13, —D4 + D11 + Dy2,

3D3+2D4 — Ds + Dig+2D11 +2Di12 4+ 2D14 + Dis,
—Dy, —Dg — D1o — D11, Dio, Dy

one sees that the lattice L is isometric to U @ A, @ Eg, which is hyperbolic and a
primitive sublattice of the K3 lattice. Therefore, Pica >~ U & A, & Eg.
Set one-simplices of ¥’ in terms of a basis of Mai3.8,12) @R

(-3,1,0,0), (-8,0,1,0), (—12,0,0, 1):
my=(-—1,2,-1), mpy=(-1,-1,-1), m3y = (@3, -1, —1),
myg = (0, —1, 1), ms=(—1,—-1,1), mg=(—1,1,—-1),
my; = (—1,0,—1), mg=1(0,-1,1), mg = (1, —1, —1),
miyo = (2, =1, =1), my; = (=1, -1,0),

and let DNZ’ be the toric divisor determined by the lattice point m; fori = 1, ..., 11,
and le = D{|_KX with X = IPF’;/ It can be easily seen by formulas (3) and (2) that

pa=11-3=8, D =4, D} =2, D} =0,
Df_6 D/2 -2, D¢ =---=Dfj=-2.

Let L’ be a lattice generated by divisors {D; }l.1 ! |- By solving the Eq. (4), one sees that
{ D}, D}, D\, Dy, D, D}, D, D’ } form a basis for L'. By taking a new basis

D) — D}, 2D§—D§+D +2D},, —D} + Dy,
3D} — 2D, + Dy + 3D}, — D},

Dy, D3/+D/ +D“, ’
D2 — 3D} +2D’ — 2Dy — 3D}y + D}y, D}

one sees that the lattice L' is isometric to U @ Eg, which is hyperbolic and a primitive
sublattice of the K 3 lattice. Therefore, Picas >~ U @ Eg.

It is well-known that lattices U @ A, @ Eg and U @ Eg¢ are primitive sublattices
of the K3 lattice A 3. Moreover, by Lemma 2.1, the relation (Picy)+ Ay = ~ Ut yes @

(A2)g, ® (Eg)f, = U2 @ Eg ~ U & Picy’ holds.
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3.3 No. 19
In all cases, we set one-simplices in fans in terms of a basis of M(1.46,11) ® R
(_47 17 07 0)7 (_67 0’ 17 0)’ (_117 07 05 1)'

Case 1 Wehave A >~ A/,
Set one-simplices of X as follows:

m; = (—1,-1,1), my=(-1,—-1,-1), m3 = 4, -1, —1),
mg=3,0,-1), ms5=1(0,2,-1), me = (—1,1, —1),
m7 = (—1,-1,0), mg=(0,—-1,-1), mog=(1,—-1,-1),
mio = (2, =1, =1), my; = @3, -1, =1), mi2 =(=1,0,0),
mi3 = (=1,0,=1),

and let D~l’ be the toric divisor determined by the lattice point m; fori = 1,..., 13,
and D! := D!|_g, with X := Py. Tt can be easily seen by formulas (3) and (2) that

pa =13-3=10, D} =8, D = D} =D} = -2, D? =2,
DZ =-.-=Dj=-2.

Let L' be a lattice generated by divisors { D]} ll 3 |- By solving the Eq. (4), one sees that
{D}, D5, D, D', D\y, Dy, Dg, D},, D|5, D3} form a basis for L’. By taking a new
basis

Dy, —D5 + D5, Dy + D} + Dy,

—/3Dg - 2D}, + D + Dy — Dy — 2D}, — 3D}, + Dj;,

3]‘)5’_ DzSDJ7 DloD” 2D; + D, + 2D}, — D}, — D]
:/;+ ﬁ‘_ 5/_ 6/+ 1O/—i_ 11/_ 12/_ 13’/ / )

5D} +3D) —2D% — 2Dy + 2D}, + 3D}, + 4D}, — D}, — D)5,

Dé —5D; — 3D, + 2D, + 2Dy — Dy — 3D, — 4D}, + D}, + Di,

D12’

—D5 +3D; +2Dj — Dy — Dy + Dy + 2D}y + 3D} — D, — D3

one sees that the lattice L’ is isometric to U @& A| @ E7, which is hyperbolic and a
primitive sublattice of the K3 lattice. Therefore, Pica» >~ U @ A @& E7. By similar
computation, one has Pica ~ U & A @ E.

Case2 We have A >~ A/,
Set one-simplices of ¥’ as follows:

my = (—1,-1,1), mpy=(-1,-1,-1), m3 =3, -1, —-1),
mg=3,0,—1), ms5=1(0,2,—-1), me = (—1,2, —1),
m7:(_11_150)’ m8=(07_11_1)3 m9=(1’_17_1)’

m]0:(2,_1,_1),m]] =(1’_170)7 m]2=(_1507_1)5
mi3 = (_17 1? _1)’
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and let 151/ be the toric divisor determined by the lattice point m; fori =1, ..., 13,
and le = le|, Ky With X = I@; It can be easily seen by formulas (3) and (2) that

par=13-3=10, D? =8, D = D = -2, D} = DZ =0,
DZ=...=D}=-2.

Let L’ be a lattice generated by divisors {D; }lli |- By solving the Eq. (4), one sees that
{D}, D}, D}, Dy, Dg, D), D}, D',, D}5, D¢} form a basis for L’. By taking a new
basis

{ D}, Dy + Dy, Dy, — Dy, Dy, D, Dy, Dy, Diy, Dis, Dg},

one sees that the lattice L’ is isometric to U @& A| @ E7, which is hyperbolic and a
primitive sublattice of the K3 lattice. Therefore, Picar >~ U & A1 & E7. By similar
computation, one has Picas ~ U @ A| @ E7.

Case 3 Set one-simplices of X as follows:

v =(-1,-1,1), vp=(—-1,—-1,—1), v3 =3, -1, —1),
vy =@3,0,-1), wvs=1(0,2,-1), ve = (—1,1,=1),
v =(—1,-1,0), vg=(0,—1,-1), wv9=(1,—1,-1),
vip=2, -1, -1, vy =(1,-1,0), wvip=(-1,0,-1),
vz = (=1,0,0),
and let 13,- be the toric divisor getermined by the lattice point v; fori = 1, ..., 13,

and D; := D; |—kyx with X = Py. It can be easily seen by formulas (3) and (2) that

2 2 2 2 2
pa=13-3=10, D} =8, D} = D} = =2, D} =0, D{ =2,
D:=...=D%L=-2

Let L be a lattice generated by divisors {D;} }i |- By solving the Eq. (4), one sees that
{Da, D3, D11, D9, D3, D>, D7, D12, Dg, D13} form a basis for L. By taking a new
basis

{ D4, D3+ D4, D1y — D4, Do, Dg, Dy, Dy, Di2, Dg, D13},
one sees that the lattice L is isometric to U @ A @ E7, which is hyperbolic and a

primitive sublattice of the K3 lattice. Therefore, Pica ~ U & A1 & E7.
Set one-simplices of X as follows:

my = (—1,-1,1), mpy=(-1,-1,-1), m3 =4, -1, -1),
mg=3,0,—1), ms5=1(0,2,—-1), me = (—1,2, —1),
m7:(_11_150)’ m8=(07_11_1)3 m9=(1’_17_1)’

m]0:(2,_1,_1),m]] 2(3’_17_1)’ m]2=(_1507_1)5
mi3 = (_17 1? _1)’
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and let 151/ be the toric divisor determined by the lattice point m; fori =1, ..., 13,
and le = le|, Ky With X = I@; It can be easily seen by formulas (3) and (2) that

pa =13-3=10, D} =8, D? = D} = D} = -2, D? =0,
D =...=D%=-2

Let L’ be a lattice generated by divisors {D; }lli |- By solving the Eq. (4), one sees that
{D}, D}, D}, Dy, Dg, D), D}, D',, D}5, Dg} form a basis for L’. By taking a new
basis

( D+ D} + D}y, D+ Dy, D}, Dy, Dy, Db, D, Diy, Diy, Dy}

one sees that the lattice L’ is isometric to U @& A| @ E7, which is hyperbolic and a
primitive sublattice of the K3 lattice. Thus, Picar ~ U & A1 & E7.

Itis well-known that the lattice U @ A | @ E7 is a primitive sublattice of the K 3 lattice
A k3. Moreover, by Lemma 2.1, the relation (PicA)kK3 ~ U5®3 ® (Al)f8 &5} (E7)é8 =
U®? g E7® Ay ~ U & Picp holds.

3.4 No. 26

In all cases, we set one-simplices of fans in terms of a basis of M(1 345 @R
(=3,1,0,0), (=4,0,1,0), (=5,0,0, 1).

Lemma 3.3 [flattices L and L’ have the signature, the discriminant, and the rank of L
and L' are respectively (1, 9), discr L = discr L’ = —13, andrank L = rank L’ = 10,
then, the lattices are primitive sublattices of the K 3 lattice and U & L' is the orthogonal
complement of L.

Proof Note that the discriminant groups Ay, A/ of L and L’ are isomorphic to Z/
137Z, and that the minimal number of the generators is /(A7) = [(A;/) = 1. Since the
signature of L and L' is (z4, t—) = (1, 9) and the rank is rank L = rank L’ = 10, we
have

19—+ =10>0, 33—ty =2>0, and
22 —rank L =22 —rank L' =12 > 1 =1(A7) =1(AL),

by Corollary 2.2, the first statement is shown. Since the discriminant of U is —1, we
have discr (U @ L') = —discr L’ = 13 = —discr L, and thus by Corollary 2.1, the
last assertion is proved. O
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Case 1 Set one-simplices of X as follows:

vi=(-1,-1,1), v, =(-1,-1,-1), v3 = (2, -1, —1),
vy = (2,0, —1), vs =(—1,2,—1), wvg=(-1,1,0),
v7 = (0, —1, 1), vg =(—1,—1,0), wv9=(0,—1,—1),
vio=(l,=1,=-1), v;1 = (=1,0,=1), vip=(=1,1,-1),
vi3 = (1, -1,0),

and let D; be the toric divisor determined by the lattice point v; fori = 1,..., 13,
and D; .= D |-k, With X := }P’g It can be easily seen by formulas (3) and (2) that

pa=13-3=10, D} = D§_1)2 —2, D} =0, D = D} = -2,
D2_0 D; = _Df3=_2,

Let L be a lattice generated by divisors {D,-}l.li |- By solving the Eq. (4), one sees that
{ D7, D4, D3, D13, D1, D9, D3, Dg, D11, D13 } form a basis for L. By taking a new
basis

{ D7, D7+ D13, D3 — D7, D3 — Dy +3D7+ D9 + Do + 2D;3, }
D1o, D2+ Dg + Dy, Dz, D, D11, D12 ’

one sees that the lattice L is isometric to U @ L with some lattice L. By a direct
computation, one sees that sgn L = (1, 9), discr L = —13, and rank L = 10, thus,
discr L = 13 and rank L = 8 hold. In particular, the discriminant group Ay of L is
isomorphic to Z/13Z, and [ (Ar) = 1.

Set one-simplices of ¥ as follows:

mp=(—1,-1,1), my=(-1,—-1,-1), m3 =2, -1, 1),
mg=(2,0,-1), ms5=(-1,1,0), me = (0, —1, 1),

m7=(—1,0,-1), mg = (—1,—1 0), mg9=(0,—-1,-1),
mio = (1, =1, =1), my; = (1,0, =1),  mi2 = (0,0, 1),

mi3 = (17 _19 0)7
and let D~l’ be the toric divisor determined by the lattice point m; fori =1, ..., 13,

and D := ISH_KX with X := Py/. It can be easily seen by formulas (3) and (2) that

pa =13-3=10, D} = DF =D} =-2, D} =0, D? =4, DZ =0,
Df=...= D% =-2.

Let L’ be a lattice generated by divisors {D; }lli |- By solving the Eq. (4), one sees that
{ D}, Dy, D\5, D}, D}y, Dy, D}, Dg, D7, D}, } form a basis for L’. By taking a new
basis

3

Dy, D+ D,, D) — Di5, 2D} + 2D} — D¢ + D}, + Dj,
—-D, + D},. Dy, D, Dg, D/ D},

@ Springer



546 Beitr Algebra Geom (2022) 63:533-559

one sees that the lattice L’ is isometric to U @ L’ with some lattice L’ By a direct
computation, one sees that sgn L’ = (1, 9), discr L’ = —13, and rank L’ = 10, thus,
discr L’ = 13 and rank L’ = 8 hold. In particular, the discriminant group Ay of L’ is
isomorphic to Z/13Z, and [ (A;/) = 1.

Case 2 Set one-simplices of X as follows:

v =(—1,-1,0), vo=(-1,-1,-1), 13 =03, —-1,-1),
v4=(02,0,-1), wvs=(=1,2,-1), vg=(—-1,1,0),

v7 = (0,—-1,1), s =(—1,0,0), vg = (0, =1, —1),
vio=(, =1, =D, vi1 =2, -1, =1, vi2 =(=1,0,-1),

Vi3 = (_15 17 _1)7

and let D; be the toric divisor determined by the lattice point v; fori = 1,..., 13,
and D; .= D |—ky with X := }P’z It can be easily seen by formulas (3) and (2) that

pa=13-3=10, D}=...=D}=-2, D3 =2, D} =---= D}y = 2.

Let L be a lattice generated by divisors {D,-}}i |- By solving the Eq. (4), one sees that
{ D7, D1, Dg, D2, D12, D13, Dy, D19, D11, D3 } form a basis for L. By taking a new
basis

D7 _D87 D3+D7 - D8a Dlv D29 D12a D13s D9a
Do, =D7 + Dg + D11, —=2D3 —4D7 +5Dg '

one sees that the lattice L is isometric to U @ L with some lattice L. By a direct
computation, one sees that sgn L = (1, 9), discr L = —13, and rank L = 10, thus,
discr L = 13 and rank L = 8 hold. In particular, the discriminant group Ay, of L is
isomorphic to Z/13Z, and [(AL) = 1.
Set one-simplices of X’ as follows:
m; =(—1,-1,0), my=(—-1,—-1,-1), m3= (3, —1,-1),
mg=(2,0,—-1), ms=(—1,1,0), me = (0, —1, 1),
m7 =(—1,0,—-1), mg=(-1,0,0), mog = (0, —1, —1),
mio = (1, =1, =), my1 = 2, =1, =1), mi2 = (0,0, 1),
mi3 = (1,0, —1),

and let DNZ/ be the toric divisor determined by the lattice point m; fori = 1, ..., 13,
and le = D;|_ Ky With X := I@; It can be easily seen by formulas (3) and (2) that

pa=13-3=10, D} =.-- =D} = -2, D? =4, D? =2,
Df =...=Dj=-2.

Let L' be a lattice generated by divisors {D; }lli . By solving the Eq. (4), one sees that
{ Dg, Dy, Dg, D}, D}, D}, D\, Dy, D'5, D}, } form a basis for L. By taking a new
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basis

Di+ D), Dy + Dy + D},, —4Dy — 4D} + D; — 2D},
-D}, D, D, —D} — D) + 1)10, D}, :
—2D), — 2D/ D/11 + D13, D,

one sees that the lattice L’ is isometric to U @ L’ with some lattice L. By a direct
computation, one sees that sgn L’ = (1, 9), discr L’ = —13, and rank L’ = 10, thus,
discr L’ = 13 and rank L’ = 8 hold. In particular, the discriminant group Ay of L’ is
isomorphic to Z/13Z, and [ (A;/) = 1.

Case 3 Set one-simplices of X as follows:

v = (—1,—-1,1), =(-1,—-1,-1), v3 =3, -1, —1),
vy = (2,0, —1), =(-1,1,0), ve = (0, —1,1),
v7 =(—1,0,-1), Ug—( 1,—-1,0), wvg=(0,—1,—1),
vio=(1, =1, =1), vi1 = (2, -1, =1), vi2 =(0,0,-1),
viz = (1,0, =1),

and let D; be the toric divisor determined by the lattice point v; fori = 1,..., 13,
and D; := D;|_ —Ky With X = IP’E It can be easily seen by formulas (3) and (2) that

pA:13—3:10,D§ _D%:—Z,D§:4,D§:0,
Di=...=D}=-2.

Let L be a lattice generated by divisors {Di}}i |- By solving the Eq. (4), one sees that
{ Ds, D1, D¢, D4, D13, D12, D3, D11, D19, D9 } form a basis for L. By taking a new
basis
D¢, Dy + D¢, D1 — D3 — D4, Dg, —De + D13,
Dia, D3 — D4 — 4Ds, D11, Dio, Do '

one sees that the lattice L is isometric to U @ L with some lattice L. By a direct
computation, one sees that sgn L = (1, 9), discr L = —13, and rank L = 10, thus,
discr L = 13 and rank L = 8 hold. In particular, the discriminant group A of L is
isomorphic to Z/13Z, and [(Ar) = 1.

Set one-simplices of X as follows:

m;=(—1,—-1,0), my=(-1,-1,-1), my = (2, -1, —1),

m4=(2,0,—l), ms =(—1,2,—-1), mg=(—1,1,0),
= (0, —1,1), mg = (—1,0,0), mg = (0, —1, —1),

mlo—(1 =1,-1),m;; =(,-1,0), mp=(-1,0,-1),

m13_( 1517 1)7
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and let 151/ be the toric divisor determined by the lattice point m; fori =1, ..., 13,
and le = le|, Ky With X = I@; It can be easily seen by formulas (3) and (2) that

pa =13-3=10, D} = Df =D} =-2, D} =0, DZ =D} = -2,
DF=2Dp=" = DZ= 2.

Let L' be a lattice generated by divisors { D]} ll 3 |- By solving the Eq. (4), one sees that
{ D}, D}, D}, D},, D\, Dy, D}, D, D},, D}, } form a basis for L. By taking a new
basis
D+ D}, D}, —2D} — 4D}, + D}, =D, + D},
D/ + Dy, Dy, Dy, Dj, Di,, Diy 7

one sees that the lattice L’ is isometric to U @ L’ with some lattice L’ By a direct
computation, one sees that sgn L’ = (1, 9), discr L’ = —13, and rank L’ = 10, thus,
discr L’ = 13 and rank L’ = 8 hold. In particular, the discriminant group Ay of L’ is
isomorphic to Z/13Z, and [ (A} /) = 1.

Case 4 Set one-simplices of X as follows:

v =(-1,-1,1), vp=(—-1,—-1,—-1), v3 =3, —1,—1),
vy = (2,0, —1), vs = (— 1,2, 1), wvg=(—1,1,0),
vy = (0, -1, 1), vg = (— 1, 1 ,0), wvg=(0,—1,-1),
vip = (1, =1, =1), vi1 = (2, =D, vi2=(-1,0,-1),
vi3=(—=1,1,-1),

and let D; be the toric divisor determined by the lattice point v; fori = 1,..., 13,
and D; .= D |—kyx with X := }P’z One can easily seen by formulas (3) and (2) that

A=13-3=10,D1=---=D¢g=-2, D; =0,
Dg --= D3 =-2.

Let L be a lattice generated by divisors {D,-}ili |- By solving the Eq. (4), one sees that
{ D7, D4, D3, D11, D19, D9, D, D12, D13, Dg } form a basis for L. By taking a new
basis

{ D7, D4+ D7, D3 — D4y — 4D7, D11, Dio, Do, Dy, Dy, D13, Dy},

one sees that the lattice L is isometric to U @ L with some lattice L. By a direct
computation, one sees that sgn L = (1, 9), discr L = —13, and rank L = 10, and
thus, discr L = 13 and rank L = 8 hold. In particular, the discriminant group A; of
L is isomorphic to Z/13Z, and [(Ar) = 1.

@ Springer



Beitr Algebra Geom (2022) 63:533-559 549

Set one-simplices of ¥’ as follows:

m; = (—1,-1,0), my = (—1,—1,—1), m3 = (2, -1, —1),
mg=2,0,—1), ms=(—1,1,0), me = (0, —1, 1),
my7=(—1,0,-1), mg = (0, —1,—1), mg=(1,—1,—1),
myp = (—=1,0,0), my =(,-1,0), mp=(0,0,-1),
my3 = (1,0, —1),

and let 13; be the toric divisor determined by the lattice point m; fori = 1, ..., 13,
and le = D;|, Ky With X := ]P”;/ It can be easily seen by formulas (3) and (2) that

par=13-3=10, Df =D} = D} = -2, D} =0, D? =4,
D=2 D= = 13323 =-2.

Let L' be a lattice generated by divisors { D]} ll 3 |- By solving the Eq. (4), one sees that
{ D},, D}, D}, D3, D},, D}, D, Dg, D}, D}, } form a basis for L. By taking a new
basis

{DQ’/DZWL Dm’/Dﬁ]; Dé/_ Z/D/ /D/13’ }
Dy + Dj,, D}, Dy, Dg, Dy, Dy,

one sees that the lattice L’ is isometric to U @ L’ with some lattice L’. By a direct
computation, one sees that sgn L’ = (1, 9), discr L’ = —13, and rank L’ = 10, thus,
discr L’ = 13 and rank L’ = 8 hold. In particular, the discriminant group A of L’ is
isomorphic to Z/13Z, and [(A;/) = 1.

In all cases 1 to 4, we obtain lattices L and L’ satisfying assumptions in Lemma 3.3.
Therefore, we can conclude that Pch =U®L, Pica, = U & L', with diser L =
discr L’ = 13 and rank L = rank L’ = 8, and that the relation (Pica) L Ay = U & Picar
holds.

3.5 Nos. 35, 36, and 37

Set one-simplices of X in terms of a basis of M(1,1,4,6) ® R

(-1,1,0,0), (-4,0,1,0), (—6,0,0,1) :

v =(—1,—-1,1), v, =(-1,—-1,-1), v3 = (11, -1, —-1),
vy =(—1,2,-1), vs =(—1,—-1,0), = (5, 1 ,0),

v7 =(0,-1,-1), vg=(1,—1,—-1), v9—(2 1, —1),
vio= 3, -1, =1, vi1 =@, —-1,-1), vi2=(G,-1,-1),
vi3 =(6,—1,=1), viga = (7, =1, =1), vi5=(8, -1, 1),
vie = (9, —1,=1), vi7 = (10, =1, =1), vig = (7,0, = 1),
vio =3, 1,=1), wv=(-10,-1), v =(-1,1,-1),
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and let 13,- b~e the toric divisor Qgtermined by the lattice point v; fori = 1,..., 21,
and D; := D;|_g, with X := Py. It can be easily seen by formulas (3) and (2) that

2 2 2 2
pa=21-3=18, D=2, D3 =D3=-2,D;=0
D:=...=D3 =-2.

Let L be a lattice generated by divisors {Di}izi]. By solving the Eq. (4), one sees that
{ D4, D1, D5,D21,D20,D19,D18,D3,D17,D16,D15,D14,D13,
D12,D11,D10,D9,Dg } form a basis for L. By taking a new basis

D4, Dy + D31, —Ds, =Dy +2D4 + D19 + Dz1, —D4 + Doy,

D3 — Dy + D16 + D17 + Dig + D19 — Dyo — D2y, Dig, D3,
Dy7, D14 + Dis + Dyg, Dis, D14, D13+ D14 + Ds, ’
D13, D11, Dyo, Dy, Dg

one sees that the lattice L is isometric to U @ L, where L is a negative-definite of rank
16 and discriminant 1. By the classification of unimodular lattices, we have L >~ E §B 2,

Therefore, Pica >~ U & Eng.
Set one-simplices of X’ in terms of a basis of M(3.5.11,14) ® R

(1,0,1,-1), (2,1,-1,0), (10, -1, -1, —-1) :
mp = (_1701 0)9 my = (01 Ov 1)» m3 = (2a 49 _1)7
myg = (11 _]’O)a ms = (1725 0)1

and let D~l’ be the toric divisor determined by the lattice point m; fori =1, ..., 5, and
D! := D;| gy with X := Px/. It can be easily seen by formulas (3) and (2) that

pa=5-3=2, DP=18 D} =D} =0, D} =8, D& =-2.

Let L' be a lattice generated by divisors {D; }?:1. By solving the Eq. (4), one sees that
{ D}, D; } form a basis for L. By taking a new basis {Dg, D + Dg}, one sees that
the lattice L’ is isometric to U, which is a hyperbolic primitive sublattice of the K3
lattice. Thus, Picar >~ U.

It is well-known that lattices U and U & E?Z are primitive sublattices of the K3

lattice A g3 and it is clear that the relation (PicA)km ~ Ué% &) (Egaz)é@3 =U%2 ~
- 8
U @ Pica’ holds.

3.6 Nos. 38 and 40
Take bases of M(1,1,3,5) ® R, and of M3 4.10,13) ® R, respectively:

{(-1,1,0,0), (=3,0,1,0), (=5,0,0, 1)},
{(1,0,1,-1), 3,1,0,-1), (9,—1,—-1,—-1)}.
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Lemma 3.4 If L is a negative-definite lattice of rank 15 of discriminant —2, then, it is
a primitive sublattice of the K3 lattice.

Proof Note that the discriminant group of L is isomorphic to Z/27Z of number of
generator [ (A7) = 1. Since the signature of L and L’ is (z;, r_) = (0, 15) and the
rank is rank L = 15, we have

19—t =4>0, 3—t4=3>0, and 22 —rank L =7 > 1=1(AL),

by Corollary 2.2, the assertion is proved. O

Case 1 Set one-simplices of ¥ as follows:

vi=(-1,-1,1), v, =(—-1,—-1,—1), v3=(9, —1, —1),
vg = (0,2, —1), vs =(—1,2,—-1), ve=(—1,-1,0),
v7=(0,—-1,-1), vg=(1,—-1,—-1), v9=(2,—-1,—-1),
vio=0G, -1, =D, vn=&-1,-1), vip=(G,-1,-1),
vi3 = (6, -1, =1, vig = (7, -1, =1), vi5=(8,—-1,-1),
vie = (6,0, =1), vi7=(@,1,-1), wvig=(-1,0,-1),
vig = (=1, 1, =1), va0 = (4, —1,0),

and let D; be the toric divisor determined by the lattice point v; fori = 1,...,20,
and D; := D;|_ —Kky With X = IP’E It can be easily seen by formulas (3) and (2) that

A=20-3=17, D}=2, Dj=---=D3=-2.
Let L be a lattice generated by divisors {D,-}l-zg |- By solving the Eq. (4), one sees that

{ D4, Ds, D19, D13, D2, D1, D2, D3, D16, D15, D14, D13, D12, D11, D1o, D9, D3 }
form a basis for L. By taking a new basis

D4 + Ds + Dig, Dy + Ds, Dy, Dy —4D4 — 4Ds5 — 2Dyo,
D), —D4 — Ds + Dig, D2, D3, Dig, Dis, D14, D3, ,
Di3, D11, Dyo, Dy, Dg

one sees that the lattice L is isometric to U & Z, where discr L = —2 and rank L = 15.
Set one-simplices of X’ as follows:

my = (1,0,0), my = (0, 1, 0), m3 = (0,0, 1),
myg = (01 _21 _3)1 ms = (_1a _37 _5)7 me = (Os _11 _1)1

and let D~l’ be the toric divisor determined by the lattice point m; fori =1, ..., 6, and
D} := D;| gy with X := ]I/’E/r It can be easily seen by formulas (3) and (2) that

pa=6-3=3, D =0, D} =6, D = 16,
D} =-2,D? =0, D@ = 2.
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Let L' be a lattice generated by divisors { D] }?:1. By solving the Eq. (4), one sees that
{ D}, D}, Dy } form a basis for L'. By taking a new basis {Di, D} + D}, D; — D] },
one sees that the lattice L' is isometric to U @ A1, which is hyperbolic and a primitive
sublattice of the K3 lattice. Therefore, Picay >~ U @ A. Note that the discriminant
group of Pica/ is isomorphic to Z/2Z since 2 is a prime number.

Case 2 Set one-simplices of X as follows:

v =(—1,—-1,—-1), v»n = (1,1, 3), vz =(1,3,9)
vg = (1,3, —1), v5=(1,0,—l), vs = (0,0, 1),
7= (0,1, 4), =(0,1, vg = (1,2, 6),
vio=(1,2, -1, vy =(,1, 1) vi2 = (1,3,8)
viz = (1,3,7), vig = (1,3,6), vi5=(1,3,5),
V1 = (1, 3,4), V17 = (1, 3, 3), vig = (1 3 2)
vig = (1,3, 1), vy = (1,3,0),

and let D; be the toric divisor determined by the lattice point v; fori = 1,...,20,
and D; := D;|_ —Kky With X = IP’E It can be easily seen by formulas (3) and (2) that

pa=20-3=17, D} =2, D; =--- =D = =2,
Dz =0, D} =---=Dj, = 2.

Let L be a lattice generated by divisors {D; }1.221 . By solving the Eq. (4), one sees that
{ Ds, D1, D11, D2, Dy, D3, D12, D13, Dia, Dis, D16, D17, D13, D19, D20, D4, Dg }
form a basis for L. By taking a new basis

Ds, Ds + D1y, Dy —2Ds — Dyy, —D1 + Dy +2Ds5 + Dy,
Dy, D3, D12, D13, D14, D15, Dis, D17, Dig, D19, Dyg, D4, Dg

one sees that the lattice L is isometric to U @ Z, where L is of rank 15 and of
discriminant —2.
Set one-simplices of ¥’ as follows:

m1=(—1,0,0), m2—(2 _170)’ m3 (O O ])
my = (=2,4,-1), ms = (=1,3,=1), mg = (—1,2,0)
and let 13; be the toric divisor determined by the lattice point m; fori =1, ..., 6, and

D! := D~lf|_ Ky With X = Py It can be easily seen by formulas (3) and (2) that

par=6—3=3, D} =16 Df =6, D{ =0,
Dé? — D/Z D/2 —2.

Let L' be a lattice generated by divisors { D] }1.6:1. By solving the Eq. (4), one sees that
{ Dg, Dy, D5 } form a basis for L', with respect to which the intersection matrix of

01 0
"is given by (1 20 ) By taking a new basis { D}, D} + D;, D.}, one sees that
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the lattice L’ is isometric to U @ Ay, which is a primitive sublattice of the K3 lattice.
Therefore, Picar ~ U & Aj.

In cases 1 and 2, we obtain a lattice L ~ U @ I:, where L is a lattice satisfying
the assumption of Lemma 3.4. Therefore, L is a primitive sublattice of the K 3 lattice,
and that Pica = L holds. Since discr Pica = discr (U @ Picar) = 2, by Corollary 2.1,
the relation (PicA)kK3 ~ U @ Picp holds. Moreover, by Lemma 2.1, we have Picy =~

U ® Ay, ~U & E7 ® Es.

3.7 Nos. 41,42,and 43

Set one-simplices of X in terms of a basis of M(1,13,4) ® R
(-1,1,0,0), (-3,0,1,0), (—4,0,0,1):

vl = (_112’ _1)’ v = (_17_19_1)7 U3 = (87 _19_1)7
v = (0, -1, 1), v5=(—1,—1,1), ve = (2,1, —1),

v7 = (5,0, —1), =(0,-1,-1), wvw={1,-1,-1),
vio = (2, -1, =D, U11 =G, -1 =D, vio=& -1, -1,
viz = (5, -1, -1, v14 =6, -1, =D, vis=(7,—-1,-D),
v = (4, —1,0), =(—1,—1,0), vig = (—1,1,—1),
vi9g = (—1,0, —1),
and let D; be the toric divisor determined by the lattice point v; fori = 1,...,19,

and D; := D |-k, With X := IF’E It can be easily seen by formulas (3) and (2) that
pa=19-3=16, D?}=0, Di=---=Djg=-2.

Let L be a lattice generated by divisors {D; }l.lil. By solving the Eq. (4), one sees that
{De, D1, D4, D13, D19, D2, Dg, D9, Do, D11, D17, Ds, D16, D3, Dis, D14} form a
basis for L. By taking a new basis

Dy + D4, Dy, D1 — D4 — D5 + D¢ — D17 + D13, D17, Dyo,
D> + Dyg, Dg, Dy, Dyo, Dii,

3Dy + Dy — Ds + Dg + Dy + Dyo + D11 + Di1g + Dy, ’
—3D1 + D5 — D¢, —D1 + D16, D3, D15, D14

one sees that the lattice L is isometric to U @ L with some lattice L. By a direct
computation, one sees that sgn L = (¢4, t—) = (1, 15), discr L = —3, andrank L =
16, and thus, discr [ = 3 and rank . = 14 hold. In particular, the discriminant group
Ay, of L is isomorphic to Z/3Z, and [(A1) = 1. Therefore, one observes that

19—t =4>0, 3—1,=2>0, 22—rankL =6> 1 =[(A})

and by Corollary 2.2, L is a primitive sublattice of the K3 lattice. Therefore, Picy =~
U & L with discr L = 3 and rank L = 14.
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Set one-simplices of ¥’ in terms of a basis of M(34,11,18) ® R

(-1,8,—1,-1), (0,-1,2,-1), (-1, -1, —=1,1):

m1 = (1,0,0), my = (0, 1, 0), m3 = (0,0, 1),
myg = (=1, =3, -4), m5s = (0, =2, =3), mg = (0,0, —1),
m7 = (0, —1, =2),

and let DNZ/ be the toric divisor determined by the lattice point m; fori = 1,...,7, and
D! := D;|_ky with X := Px/. It can be easily seen by formulas (3) and (2) that

pa=7-3=4, D2 =0, D} =6, D} = 12,
D} =0, DZ =D} = D} = 2.

Let L’ be a lattice generated by divisors {D/}/_,. By solving the Eq. (4), one
sees that { D}, D;, Dj, Dy } form a basis for L’. By taking a new basis
{D‘/‘, D} + Dz, DZ‘ + D/, } one sees that the lattice L’ is isometric to U @ A»,
which is a primitive sublattice of the K 3 lattice. Therefore, Pica >~ U @ A».

Since discr PicA —discrUDL = —discrU®? @ Ay = 3, by Corollary 2.1, the
relation (Pica)+ Ay ~ U @ Pica’ holds. Moreover, by Lemma 2.1, we have Picpy =~

(U @ A2y, = U @ E¢ @ Es.

3.8 No. 46
Set one-simplices of X in terms of a basis of M(1,1,12) ® R

(-1,1,0,0), (-1,0,1,0), (=2,0,0,1) :

v =(—=1,—-1,1), v, =(-1,2,0), v3 = (2,—1,0),

vy =4, —-1,-1), vs=(—1,4,—-1), vg=(—1,—1,—1),
vy =(—1,—-1,0), vg =(1,0,0), vg = (0, 1, 0),
vio=03,0,-1), vn=Q2,1,=-1), vi=(,2,-1),
vi3=(0,3,-1), viu=(-13,-1, vis=(-1,2,-1),
vie = (=1, 1, =1), vi7 = (=1,0, =1), vig = (0, =1, 1),
vig = (1, =1, =1), v20 = (2, =1, =1), v21 = (3, =1, 1),

and let D; be the toric divisor determined by the lattice point v; fori = 1,...,21,
and D; := D;|_ —Kky With X = IP’E It can be easily seen by formulas (3) and (2) that

oa=21-3=18, D}=0, Di=..-=D3 =-2.

Let L be a lattice generated by divisors {D; }l.zi] . By solving the Eq. (4), one sees that
{ D1,D3,D3,D7,D2,D5,D13,D12,D11,D10,D14,D15,D16,

D17,D¢,D13,D19,D>0 } form a basis for L. Since rank L = 18 is strictly greater than
12, the lattice L is isometric to U @ L with some lattice L. By a direct computation,
one sees that sgn L = (¢4, t—) = (1, 17), discr L = —5, and rank L = 18, and thus,
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discr L = 5 and rank L = 16 hold. In particular, the discriminant group A of L is
isomorphic to Z /57, and [(A) = 1. Therefore, one observes that

19—t-=2>0, 3—t;4=2>0, 22—rankL=4>1=1[(AL)

and by Corollary 2~.2, Lisa primiti~ve sublattice of the K3 lattice. Therefore, Picy >~
U & L with discr L = 5 and rank L = 16.
Set one-simplices of ¥’ in terms of a basis of M4 57.9) ® R

(49 07 _17 _1)7 (37 _17 _19 0)’ (07 _17 23 _1) :
m; = (0,0,1), my =(2,-3,-1), m3 = (-1, 1,0),
m4 = (0,1,0), ms = (1,0,0),

and let ﬁ{ be the toric divisor determined by the lattice point m; fori =1, ..., 5, and
D! := D}|_g, with X := Iﬁ’; It can be easily seen by formulas (3) and (2) that

pn=5-3=2, DF=DP=2 D{=10, D} =D?=-2.

Let L’ be a lattice generated by divisors {D] }?:1. By solving the Eq. (4), one sees
that {D’, Dg} form a basis for L, with respect to which the intersection matrix of L is
given by (% _12 ) One sees that the lattice L' is a hyperbolic lattice, that is, of signature
(ty, 1) = (1,1) of rank L’ = 2 and discr L’ = —5. In particular, the discriminant
group Ay of L' is isomorphic to Z/5Z, and [(A/) = 1. Therefore, one observes that

19—7 =18>0, 3—1,=2>0, 22—rankL =20> 1=1(A;)

and by Corollary 2.2, L' is a primitive sublattice of the K 3 lattice. Therefore, Picas >~

(22, (3 5))-

Since discr Pica = — discr Pica = —5, by Corollary 2.1, the relation (Pica)+

[

. Ak3
U & Picps holds.
3.9 Nos. 48 and 49
Set one-simplices of X’ in terms of a basis of M(56.3.11) ® R
(=1,0,2,-1), (=1,-1,0, 1), (5, -1, -1, =1) :
my = (1,0,0), my» =(0,1,0), m3 = (0,0, 1), mg = (-1, 3, —1),
and let D~l’ be the toric divisor determined by the lattice point m; fori =1, ..., 4, and

D! = D~l’ |_ky With X := Iﬁ’; It can be easily seen by formulas (3) and (2) that
pa=4-3=1, DPF=D}=2 D}=18, Df=2
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Let L’ be a lattice generated by divisors {D] }?:1. By solving the Eq. (4), one sees
that {D{} form a basis for L’. Therefore, Pica’ > (2). It is well-known that the lattice
(Z, (2)) is a primitive sublattice of the K 3 lattice.

Set one-simplices of ¥ in terms of a basis of M(1,1,1,3) ® R

(-1,1,0,0), (—-1,0,1,0), (-=3,0,0,1) :
vi=(-1,-1,1), vp=(—-1,—-1,—1), v3 =(5, -1, —1),
vy = (—1,—-1,5), vs=(—1,—-1,0), vg=(2,—1,0),
v7=(—1,-1,2), vg=(0,—1,—-1), wv9=(1,—1,—-1),
vio=2,-1,-D, vn =G, -1,=-1, vp=&,~-1,-1),
viz3=4,-1,0), vig=@G,-1,1), wvi5=(2,-1,2),
vie=(1,-1,3), vi7=(0,-1,4), wvig=(-1,-1,4),
vig = (=1,=1,3), v20 = (=1,-1,2), va1 =(=1,-1,1),
v = (—=1,-1,0),

and let D; be the toric divisor determined by the lattice point v; fori = 1,...,22,
and D; := D;|_ —Kky With X = IP’E It can be easily seen by formulas (3) and (2) that

pr=22-3=19, D}=0, Di=---=D3 =-2.

Let L be a lattice generated by divisors {D; }l.zi] . By solving the Eq. (4), one sees that
{ D21, Do, D19, Dig, Da, D17, Di6, Dis, D14, D13, D3, D12, D11, D10, Dy, De, D1,
Ds, D; } form a basis for L. By taking a new basis

Dy, Dy + Ds, Dyg, D13, D4, D7, Dig, D15, D4, D13, D3, Dy2,
D11, Dyo, D9, —Dy — Dy — D5 + D¢, D31, Dy, Dy — Dy ’

one sees that the lattice L is isometric to U @ L with some lattice L.

By a direct computation, one sees that sgn L = (t4, r—) = (1, 18), discr L = 2,
and rank L = 19, and thus, discr [ = —2 and rank L. = 17 hold. In particular, the
discriminant group Ay of L is isomorphic to Z/27Z, and I[(Ar) = 1. Therefore, one
observes that

19—t =1>0, 3—t4,=2>0, 22—rankL=3>1=1I(AL)

and by Corollary 2.2, L is a primitive sublattice of the K3 lattice. Therefore, Picy =~
U @ L with discr L = —2 and rank L = 17.

Since discrPica = —discr (U & Picpr) = 2, by Corollary 2.1, the relation
(Pch)l ~ U @ Picy holds.

Slnce the rank-one lattice (Z, (2)) can be primitively embedded into the hyperbolic
lattice U = (e, f)z of rank 2 as an element e + f, the orthogonal complement
(Z, (2 ))U in U is a rank-one lattice (Z, (—2)) = (e — f)z. Therefore, we have

Pica' ~ (Z, 2N @ U @ ES* ~ (Z, (-2) ® U ® EP*.
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3.10 No. 50
Set one-simplices of X’ in terms of a basis of M(7.3.9.12) ® R

(_1’27_170)7 (_1’_173’_1)5 (_17_1’_1’2):
mi] = (1705 0)7 my = (05 170)7 m3 = (0’ 07 1)7 my = (_15 _17 _1)5

and let D~l/ be the toric divisor determined by the lattice point m; fori =1, ..., 4, and
D! := D]|_g, with X := Iﬁ’;/ One can easily seen by formulas (3) and (2) that

IOA:4_3:17 D/zzDézz gzzD:tz:

Let L’ be a lattice generated by divisors {D; };‘21. By solving the Eq. (4), one sees that
{D}} form a basis for L’. Therefore, Picy’ = (Z, (4)). Itis well-known that the lattice
(Z, (4)) is a primitive sublattice of the K3 lattice.

Set one-simplices of 3 in terms of a basis of M(1,1,1,1) ® R

(-1,1,0,0), (-1,0,1,0), (-1,0,0,1) :
vi=(-1,-1,-1), v =@3,-1,-1), v3=(-1,3,—-1),
vy =(—1,-1,3), vs=(0,-1,-1), vg=(1,—1,—1),
v =02,—1,—-1), v3=(—1,0,—-1), v9g=(—1,1,-1),
vio=(-1,2,-1), vi1 =(-1,-1,0), vip = (-1, -1, 1),
vi3=(—1,-1,2), viu=(2,0,-1), wvis=(1,1,-1),
vie=(0,2,-1), wvi7=(-1,2,0), wvig=(-1,1,1),
vig =(—1,0,2), w0 =(0,-1,2), vy =(,-1L1),
v =(2,-1,0),

and let D; be the toric divisor determined by the lattice point v; fori = 1,...,22,
and D; .= D |-k, With X := IP’E It can be easily seen by formulas (3) and (2) that

A=22-3=19, D}=...=D3=-2

Let L be a lattice generated by divisors {D,-}izi |- By solving the Eq. (4), one sees that
{ D¢, Ds, Dg, D1, D11, D12, D13, D4, D19, D1g, D17, D3, D1o, D16, D15, D14, D2,
D3, Doy } form a basis for L. Since the rank of L is strictly greater than 12, the lattice
L is isometric to U @ L with some lattice L.

By a direct computation, one sees that sgn L = (t, r—) = (1, 18), discr L = 4,
and rank L = 19, and thus, discr L = —4 and rank L = 17 hold. In particular, the
discriminant group Ay, of L is isomorphic to Z/47Z, and [(A;) = 1. Therefore, one
observes that

19—t =1>0, 3—t4,=2>0, 22—rankL=3>1=1[(AL)

and by Corollary 2.2, L is a primitive sublattice of the K3 lattice. Therefore, Picy =~
U & L with discr L = —4 and rank L = 17.
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Since discrPica = —discr (U @ Picpr) = 2, by Corollary 2.1, the relation
(PicA)km ~ U @ Picy holds.

Since the rank-one lattice (Z, (4)) can be primitively embedded into the hyperbolic
lattice U = (e, f)z of rank 2 as an element 2e + f, the orthogonal complement
(z, (4))5 in U is a rank-one lattice (Z, (—4)) = (e — 2 f)z. Therefore, we have

Pica' =~ (Z, ()G © U @ ES* ~ (Z, (—4) ® U & ES~.
Therefore, the assertion of Theorem 3.1 is verified. O

4 Conclusion

We see in the main theorem that all coupling pairs that are polytope-dual with trivial
toric contribution can extend to lattice duality among families of K 3 surfaces. Thus,
the coupling is partly translated to be the lattice-duality. Moreover, all except Nos. 46,
48 and 49, and 50 admit a pair of families of K3 surfaces with generic sections being
elliptic: indeed, the Picard lattices Pica and Pica’ contain the hyperbolic lattice U of
rank 2.

We can conclude that the Picard lattices of the families studied in the article are
independent from the choice of reflexive polytopes. In other words, since the choice
of a reflexive polytope is that of a way of blow-up of the ambient space, the Picard
lattice in the subfamilies is birationally independent.
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