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The question of whether recognition memory should be measured assuming continuous memory strength (signal 
detection theory) or discrete memory states (threshold theory) has become a prominent point of discussion. In 
light of limitations associated with receiver operating characteristics, comparisons of the rival models based on 
simple qualitative predictions derived from their core properties were proposed. In particular, K-alternative 
ranking tasks (KARTs) yield a conditional probability of targets being assigned Rank 2, given that they were not 
assigned Rank 1, which is higher for strong than for weak targets. This finding has been argued to be incom
patible with the two-high-threshold (2HT) model (Kellen & Klauer, 2014). However, we show that the in
compatibility only holds under the auxiliary assumption that the probability of detecting lures is invariant under 
target-strength manipulations. We tested this assumption in two different ways: by developing new model 
versions of 2HT theory tailored to KARTs and by employing novel forced-choice-then-ranking tasks. Our results 
show that 2HT models can explain increases in the conditional probability of targets being assigned Rank 2 with 
target strength. This effect is due to larger 2HT lure-detection probabilities in test displays in which lures are 
ranked jointly with strong (as compared to weak) targets. We conclude that lure-detection probabilities vary with 
target strength and recommend that 2HT models should allow for this variation. As such models are compatible 
with KART performance, our work highlights the importance of carefully adapting measurement models to new 
paradigms.   

Without the ability to identify previously encountered information, 
we would not be able to function properly. Recognition memory is a 
fundamental ability of our cognitive system. To investigate memory 
abilities and deficits in basic and applied research, mathematical mea
surement models disentangle effects of recognition memory from 
response tendencies and thereby provide more valid memory measures. 
Over the years, various models have been proposed, tested, revised, and 
rejected. The models currently best supported by data triggered a debate 
on the nature of recognition memory. At the heart of this discussion 
stands the question of whether recognition judgments stem from a direct 
mapping of graded familiarity signals or whether they originate from 
discrete memory states. The former view is represented by signal detec
tion theory (SDT; Green & Swets, 1966), whereas the latter view is cen
tral to threshold theory, most prominently the two-high-threshold (2HT) 
model (Egan, 1958). 

The most common approach for testing both rival models is based on 

a comparison of their goodness-of-fit to empirical old–new recognition 
data (i.e., receiver operating characteristics [ROC] data). Recently, how
ever, this approach has been criticized for requiring strong and debat
able auxiliary assumptions (e.g., the choice of familiarity distributions in 
the SDT model or the mapping of memory states onto confidence-rating 
responses in the 2HT model; Kellen, Winiger, Dunn, & Singmann, 2021). 
As an alternative, one can rely on more informative recognition para
digms that offer tests of qualitatively different predictions of the models 
under a minimal set of assumptions and using a simple paired compar
ison of observed response frequencies. In line with the idea of strong 
inference (Platt, 1964), these tests are typically designed as an exper
imentum crucis, in which the empirical result rules out one of the models. 

One such critical test was proposed by Kellen and Klauer (2014) for 
the K-alternative ranking task (KART). On each trial of this task, one 
previously studied item (target) and K − 1 non-studied items (lures) are 
presented simultaneously, while participants are asked to rank all K 
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items according to their belief that each item is old. Of main interest is 
the conditional probability of targets being assigned Rank 2 given they 
were not assigned Rank 1, denoted as c2. More specifically, the crucial 
question is whether c2 does or does not differ between targets with a 
weak memory signal versus targets with a strong memory signal. From 
the rival recognition models, Kellen and Klauer derived the following 
hypotheses: If the SDT model holds, c2 will increase monotonically with 
target strength (ℋSDT: cw

2 ≤ cs
2); whereas if the 2HT model holds, c2 must 

not differ between weak and strong targets (ℋ2HT: cw
2 = cs

2).1 The results 
of two experiments that manipulated the frequency of target presenta
tion (once vs. three times) were consistent with ℋSDT and in conflict with 
ℋ2HT. 

Although we agree that extensions and generalizations of old–new 
recognition tasks provide excellent empirical benchmarks for testing 
continuous-strength versus discrete-state models, we are cautious about 
Kellen and Klauer’s (2014) conclusions drawn from the KART paradigm. 
The predictions of the 2HT model they proposed are based on a 
restrictive auxiliary assumption, namely, that the probability of lure 
detection is the same in the context of weak versus strong targets when 
target detection fails (termed lure-detection invariance assumption 
here). In the following, we first describe the 2HT model for the old–new 
recognition paradigm and summarize the formal argument regarding 
ranking judgments put forward by Kellen and Klauer. We then develop 
an alternative version of the 2HT model without the lure-detection 
invariance assumption (the 2HT-KART model) and show that this 
model predicts an increase in c2 with target strength. To test the critical 
assumption empirically, we investigate the probability of lure detection 
in KART data. Experiment 1 is a direct replication of Kellen and Klauer’s 
experiments. The data are analyzed with the new 2HT-KART model, 
providing model-based estimates of lure-detection probabilities given 
unsuccessful target detection. Experiments 2 and 3 employ a novel 
forced-choice-then-ranking paradigm, in which the probability of 
correctly selecting a lure in a 2AFC test conditional on target non- 
selection in a subsequent 4ART test is analyzed as a proxy for lure 
detection in the absence of target detection. All three experiments sug
gest that lures are more easily detected in the presence of a strong than a 
weak target—even when this target was not detected itself. Thus, the 
observations of Kellen and Klauer are compatible with a discrete-state 
account of recognition memory as represented by 2HT theory. This 
demonstrates the importance of considering auxiliary assumptions when 
applying measurement models to new experimental paradigms. 

Discrete-state models for old–new recognition tasks 

In standard recognition tests, participants have to decide for a ran
domized list of previously studied targets and non-studied lures whether 
each item is old or new. Correct decisions include hits (i.e., “old” re
sponses to targets) and correct rejections (i.e., “new” responses to lures), 
whereas incorrect decisions include misses (i.e., “new” responses to 
targets) and false alarms (i.e., “old” responses to lures). The relative 
frequencies of the aforementioned events are fully described by the hit 
rate (denoted as H; the probability of responding “old” to targets) and 
the false-alarm rate (denoted as FA; the probability of responding “old” 
to lures). However, neither H nor FA represents an appropriate measure 
of recognition memory because both rates simultaneously increase when 
old-responding becomes more liberal. In order to disentangle the con
tributions of memory and response bias, measurement models have been 
applied to recognition data for more than six decades (since Egan, 
1958). 

A prominent and frequently used measurement model is the 2HT 
model, which assumes three latent states (Bröder & Schütz, 2009). With 

probability Do, the target crosses the old-recognition threshold and an 
old-detection state is entered (see Fig. 1). Likewise, with probability Dn, 
the lure crosses the new-recognition threshold and a new-detection state 
is entered. Because the detection parameters are probabilities, item 
detection can vary between 0 (never detected) and 1 (always detected). 
However, as soon as a target or a lure is detected as old or new, 
respectively, the detection state always leads to the correct response. 
With complementary probabilities to the detection probabilities, an 
uncertainty state is reached and participants are assumed to guess “old” 
with probability g dependent on their response bias, but independent of 
the item type. 

To compare the 2HT model to other models, such as SDT, the shape 
of ROC curves has traditionally been used. Empirical ROCs are obtained 
by plotting the proportion of correctly recognized old items (hit rate) 
against the proportion of falsely recognized new items (false-alarm rate) 
across different levels of confidence or response bias. While the 2HT 
model is typically assumed to predict a straight line, the SDT models 
predicts a concave curve. However, in many cases, the shape is not as 
informative with respect to the underlying model as hoped for (e.g., 
Erdfelder & Buchner, 1998; Malmberg, 2002; Province & Rouder, 2012). 
Furthermore, the collection of ROC data is hampered by practical limi
tations (e.g., Kellen, Klauer, & Bröder, 2013; Malejka & Bröder, 2019; 
Van Zandt, 2000). As a consequence of the growing skepticism regarding 
the use of ROC analysis, various novel approaches to discriminate be
tween continuous-strength models and discrete-state models have been 
proposed recently (e.g., Heck & Erdfelder, 2016; Kellen et al., 2021; 
Starns, 2021). In particular, tests of the models’ core properties in 
recognition paradigms that extend beyond binary old–new judgments 
have gained popularity (e.g., Harlow & Donaldson, 2013; Malejka & 
Bröder, 2016), and Kellen and Klauer (2014) proposed to look at ranking 
judgments. 

Discrete-state models for K-alternative ranking tasks 

In two experiments, Kellen and Klauer (2014) presented one target 
word and three lure words (4ART; Experiment 1), or one target word 
and two lure words (3ART; Experiment 2), and asked participants to 
rank the words according to their belief that each was studied previ
ously. Of particular interest in this task is the conditional probability of 
the target being assigned Rank 2 given that it was not assigned Rank 1, 
defined as c2 = π2

1− π1
, where π1 and π2 are the unconditional probabilities 

of the target being assigned Rank 1 and 2, respectively. In both exper
iments reported by Kellen and Klauer, the observed c2 estimates were 
higher for targets studied three times than for targets studied only once. 
While we agree that the SDT model predicts a monotonic increase in c2 
as target strength increases, we disagree on the claim that such a result is 

Fig. 1. Standard two-high-threshold model for binary old–new recognition 
tasks with three discrete memory states and a probabilistic decision process in 
case of response uncertainty. The left-hand side shows the displayed old or new 
item. The right-hand side shows the response given by the participant. The 
parameters between items and responses represent transition probabilities be
tween discrete cognitive states. 

1 Please note that we use the term target strength to refer to the experimental 
manipulation of weak and strong targets, whereas the term memory strength is 
reserved for the continuous familiarity signal assumed by SDT. 
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necessarily incompatible with 2HT theory. Depending on the choice of 
auxiliary assumptions, the 2HT model can predict either invariance or 
variability of c2 across different levels of target strength. As detailed in 
the following sections, these assumptions make up different 2HT model 
variants and are implemented alongside the model’s core properties in 
order to adapt the standard 2HT model to the ranking task. 

In Kellen and Klauer’s (2014) adaptation of the 2HT model, the 
probability πi of a target being assigned Rank i among K alternatives is 
given by: 

πi =

{
Do + (1 − Do)⋅ξi if i = 1,
(1 − Do)⋅ξi if 2 ≤ i ≤ K,

(1)  

where ξi denotes the probability of assigning Rank i to the target con
ditional on target non-detection. The target is assigned Rank 1 either 
when it is detected as old with probability Do, or when it is not detected 
as old with probability 1 − Do but selected with probability ξi. Impor
tantly, ξi is affected by two distinct psychological processes according to 
2HT theory. First, ξi depends on the probability of detecting lures as 
new—a process that results in assigning the lowest ranks to detected 
lures (similar to assigning Rank 1 to detected targets but opposite in 
direction). Second, ξi depends on guessing among items that did not 
reach a detection state, which are basically the non-excluded alterna
tives that are still competing for the highest rank (one non-detected 
target and up to K − 1 non-detected lures). Kellen and Klauer 
modeled both processes jointly under the assumption that they are both 
independent of target strength. 

Based on Kellen and Klauer’s (2014) adaptation to KARTs, what does 
the 2HT model predict regarding the conditional probability c2? Obvi
ously, Equation (1) states that all unconditional probabilities πi of a target 
being assigned Rank i depend on the target-detection probability Do. In 
contrast, the conditional probabilities ξi of non-detected targets being 
assigned Rank i are assumed to be independent of Do. That is, when 
computing the conditional probability c2 = π2

1− π1
, all terms that include 

Do cancel out, leaving ξi as the only relevant factor: 

c2 =
(1 − Do)⋅ξ2

1 − [Do + (1 − Do)⋅ξ1 ]
=

(1 − Do)⋅ξ2

(1 − Do)⋅(1 − ξ1)
=

ξ2
∑K

i=2ξi
. (2)  

Because ξi is assumed to be independent of Do, it follows that c2 must be 
independent of target strength. In other words, different values of Do will 
not affect the predicted value of c2 in Equation (2). Hence, Kellen and 
Klauer’s 2HT model variant predicts that the c2 values must be equal for 
weak and strong targets (ℋ2HT: cw

2 = cs
2)—a prediction that is at odds 

with the data of their Experiments 1 and 2. 
Based on the set of assumptions that entered into their derivations, 

Kellen and Klauer’s (2014) conclusions regarding the 2HT model are 
fully justified. However, a closer look reveals that Kellen and Klauer’s 
adaptation of the 2HT model to KARTs includes two new—seemingly 
small but important—auxiliary assumptions. These two assumptions, 
which we termed target-detection dominance assumption and lure- 
detection invariance assumption, require closer inspection. 

Regarding the target-detection dominance assumption, Kellen and 
Klauer (2014) maintained the idea that the optimal ranking decision 
would be made whenever a target is in the detection state (i.e., detected 
targets are always assigned Rank 1 and lures are assigned Ranks 2 to K). 
In other words, detected targets dominate the ranking of other items. 
This assumption may be considered problematic in confidence-rating 
tasks, in which confidence ratings for detected targets do not neces
sarily dominate those of lures (Bröder & Schütz, 2009; Erdfelder & 
Buchner, 1998; Malmberg, 2002). However, because ranking judgments 
do not require explicit or implicit confidence assessments, we agree with 
Kellen and Klauer that ranking tasks lack requirements that “would lead 
one to assigning anything else than Rank 1 to detected old items” (p. 
1802). We thus follow their claim and base our analyses on the target- 
detection dominance assumption. 

The second auxiliary assumption of Kellen and Klauer (2014), 
however, is more problematic. According to the lure-detection invariance 
assumption, lures are detected as new with the same probability in the 
context of test displays with a weak versus a strong non-detected target. 
In other words, the probability of lure detection, Dn, in the 2HT 
framework is assumed to be invariant under different target strengths. 
This assumption, which seems very plausible at first glance, let Kellen 
and Klauer to jointly model guessing and lure detection by parameter ξi 
for all target-strength conditions and without further specifying the 
exact predictions conditional on target non-detection. As we outline 
next, this assumption may be overly restrictive. Importantly, the rejec
tion of the 2HT model for the KART hinges on it: The crucial prediction 
that c2 should be independent of target strength does not hold anymore 
when Dn increases monotonically with the strength of the target in an 
item tuple. 

Does the conditional Rank-2 probability increase with the 
probability of lure detection? 

In the following, we show that ℋ2HT: cw
2 ≤ cs

2 follows from an 
adaptation of 2HT theory to ranking tasks based on the assumptions that 
(1) c2 increases with Dn and (2) Dn increases with target strength. The 
former assumption is derived from a formal model analysis, whereas the 
latter requires an empirical test. For both purposes, we propose a new 
multinomial processing-tree (MPT) model based on 2HT theory that is 
tailored to the KART paradigm: the 2HT-KART model (for general 
overviews of MPT models, see Batchelder & Riefer, 1999; Erdfelder 
et al., 2009). 

Fig. 2 illustrates the special case of the 2HT-KART model in which 
participants have to rank a tuple of K = 4 items. Similar to the standard 
2HT model for binary old–new recognition, the adapted model assumes 
that targets are detected with probability Do and lures are detected with 
probability Dn, where the latter is conditional on target non-detection.2 

Furthermore, it is assumed that each lure is detected independently from 
other lures, and that detected targets and lures are always assigned the 
first and last ranks, respectively (thus relying on the target-detection 
dominance assumption). Finally, the model assumes that participants 
assign ranks to the remaining items in the uncertainty state by pure 
guessing. For instance, when only two lures are detected (see the three 
branches with two Dn and one 1 − Dn in Fig. 2A), they are assigned 
Ranks 3 and 4, whereas the non-detected target and the non-detected 
lure receive Ranks 1 and 2 by guessing (i.e., with a probability of 12 for 
each of the two possible combinations). The proposed model for the 
KART paradigm builds on similar psychological assumptions as Province 
and Rouder’s (2012) 2HT model for two-alternative forced-choice tasks, 
Luce’s (1963) low-threshold (LT) model for two-alternative forced- 
choice tasks, and Kellen, Erdfelder, Malmberg, Dubé, and Criss’s (2016) 
extension of the LT model to ranking tasks (see also Iverson & Bamber, 
1997). 

Following the notation of Kellen and Klauer (2014), the 2HT-4ART 
model can be generalized to any number of items K in order to model 
the probability πi of a target being assigned Rank i among K alternatives 
as a function of Do and ξi(Dn). However, in contrast to Kellen and Klauer, 
we explicitly account for lure detection on the KART trials. In particular, 
we model the probability ξi(Dn) of assigning Rank i to a non-detected 
target as a function of Dn: 

ξi(Dn) =
∑K

j=1

(
K − 1
j − 1

)

⋅DK− j
n ⋅(1 − Dn)

j− 1⋅ζij, (3)  

where the response-mapping function ζij determines the probability of 

2 We restrict the 2HT-KART model to Dn ∈ [0,1) because c2 is not defined for 
Dn = 1. 
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assigning Rank i to the target conditional on j items being in the un
certainty state (i.e., the target and j − 1 lures), while K − j lures were 
already excluded as potential targets. Note that ζij represents memory- 
unrelated guessing probabilities (i.e., this term neither depends on 
target detection nor on lure detection) and is fixed to 1j in the 2HT-4ART 
model shown in Fig. 2A (to reflect equiprobable guessing among non- 
detected items). 

The proposed 2HT-KART model predicts that the conditional prob
ability of assigning Rank 2 to non-detected targets increases when the 
number of detected lures increases. This effect essentially emerges 
because the detected lures are excluded from the set of alternatives 
competing for high ranks. Hence, the conditional probability c2 of 
assigning Rank 2 to targets increases as the lure-detection probability Dn 

increases. When assuming equiprobable guessing among non-excluded 
items, ζij = 1

j , this prediction follows when inserting Equation (3) into 
Equation (2): 

c2(Dn) =
ξ2(Dn)

∑K
i=2ξi(Dn)

=

∑K
j=2

(
K − 1
j − 1

)

⋅DK− j
n ⋅(1 − Dn)

j− 1⋅1
j

∑K
i=2

∑K
j=i

(
K − 1
j − 1

)

⋅DK− j
n ⋅(1 − Dn)

j− 1⋅1
j

. (4)  

As before, the target-detection probability Do cancels out. However, the 
conditional probability c2 still depends on the lure-detection probability 
Dn. As shown in Fig. 2B, c2 increases monotonically as a function of Dn 

irrespective of the number of alternatives K. 
In sum, Kellen and Klauer’s (2014) 2HT model variant is based on the 

idea that lure-detection probabilities are independent of target strength, 
whereas our model variant allows for different lure-detection proba
bilities that are dependent on target strength—Ds

n for item tuples with a 
strong target and Dw

n for item tuples with a weak target. Of course, other 
adaptations of 2HT theory to ranking tasks are possible. For example, it 
is possible to relax the assumption of equiprobable guessing by assuming 
that higher levels of target strength would bias participants to guess a 
target rank of 1 more often. However, this version would violate the 2HT 
theory’s assumption of complete information loss, which is a core 
assumption of 2HT theory (for a detailed account of complete infor
mation loss, see the General Discussion). 

Although Kellen and Klauer’s (2014) model is more parsimonious 
than ours in describing behavior in KARTs (e.g., it uses fewer parame
ters), our model was designed as a means to test the lure-detection 
invariance assumption that inspired Kellen and Klauer’s interpretation 

of 2HT theory. As such, our model is necessarily more complex. 
Furthermore, the process theory underlying our model can be read as 
discretizing a continuous memory signal at the level of the item tuples 
(see the Appendix). While this may call for a direct comparison of the 
models controlling for their different complexities, we followed Kellen 
and Klauer’s call for simple tests of competing hypotheses using off-the- 
shelf statistical techniques and tested the assumption in three qualitative 
tests as described next. 

Does the probability of lure detection increase with target 
strength? 

Given that c2 increases monotonically with the lure-detection prob
ability Dn according to our 2HT-KART model, it is necessary to test 
empirically whether Dn actually increases with target strength. First 
support for this hypothesis comes from recognition-memory studies that 
rely on fitting the 2HT model to data: Do and Dn are often constrained to 
be equal without compromising the model’s goodness-of-fit (e.g., Bayen, 
Murnane, & Erdfelder, 1996; Klauer & Wegener, 1998; Snodgrass & 
Corwin, 1988). Such findings suggest that manipulations of item 
detection typically affect Do and Dn simultaneously, such that any 
change in Do is accompanied by a corresponding change in Dn, and vice 
versa. 

One might argue that findings on the link between Do and Dn are not 
relevant to Kellen and Klauer’s (2014) paradigm because they manip
ulated target strength within the study list and selected lures from a 
homogeneous pool of new items. In this experimental setup, it may seem 
unproblematic to assume that Dn must be equal in the context of weak 
versus strong targets. However, we argue that lure detection in KART 
tests differs from lure detection in old–new recognition tests: KART tests 
do not present items individually (i.e., K = 1 per trial; single-item 
recognition); instead, they present multiple items at the same time (i. 
e., K ≥ 2 per trial; multiple-item recognition). Hence, the test stimulus 
is not a single item, but a tuple of items (i.e., one target and K − 1 lures). 
This stands in stark contrast to old–new judgments in which test stim
ulus and test item are identical (i.e., one target or one lure). Further
more, we propose that lure detection in KART tests may depend on the 
context provided by all items that are presented in a given test trial and 
not only on the currently attended item. 

This distinction is supported by a recent finding of Voormann, 
Spektor, and Klauer (2021), who showed that multiple-item recognition 
decisions cannot be treated as a sequence of independent single-item 

Fig. 2. (A) New two-high-threshold model for ranking tasks. The item quadruple on the left-hand side consists of one old item and three new items. The probabilities 
of target and lure detection (the latter conditional on target non-detection) are denoted as Do and Dn, respectively, with Dn ∈ [0,1). Guessing probabilities are given by 
1
2, 

1
3, and 14, and depend on the total number of non-detected items. The numbers in quotation marks on the right-hand side represent the four possible ranks that can be 

assigned to the target depending on the memory-state combination and possible guessing outcome for all four test items. (B) Conditional probabilities c2 of targets in 
a KART test being assigned Rank 2 given that they were not assigned Rank 1 as a function of the probability of lure detection Dn for different numbers of items K per 
tuple. Note that c2 is only defined for Dn < 1. 
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recognition decisions. Their participants showed higher hit rates in 
single-item tests than in multiple-item tests, and data analysis revealed 
that recognition decisions for words in a word pair were interdependent. 
Likewise, research on eyewitness identification has shown that simul
taneous lineups require comparative judgments, whereas sequential 
lineups do not (Lindsay & Wells, 1985), and that the eyewitness’s 
knowledge that no more than one person in the lineup could be the 
perpetrator affects their decision-making (Wixted & Mickes, 2014). 

For these reasons, we propose that, in order to arrive at a ranking 
decision in the KART, all items in the test display are taken into account 
jointly and evaluated in direct comparison. Successful discrimination 
then depends on all items in the display, and it becomes implausible to 
assume that detection of a lure in a weak-target tuple (with probability 
Dw

n ) is as likely as detection of a lure in a strong-target tuple (with 
probability Ds

n). Hence, we hypothesize that lure detection is facilitated 
when the lures are presented in the context of a strong target as 
compared to a weak target, which results in the prediction that Dw

n ≤ Ds
n 

even when the target has not been detected itself. For a more detailed 
formal account of familiarity-contrast mechanisms assumed to underlie 
target and lure detection in KART displays, we refer to the Appendix. 

The broader idea that items influence each other’s recognition rates 
is supported by research on ensemble recognition. In this task, partici
pants make old–new recognition judgments for item tuples consisting 
only of targets or only of lures, thereby including all items of the tuple 
into their recognition decision (Benjamin, Diaz, & Wee, 2009). In a 
recent investigation of the paradigm, Dubé, Tong, Westfall, and Bauer 
(2019) found support for aggregation of statistical representations in 
recognition memory. However, the precise processes involved in pro
ducing the average estimates remain unclear. Outside of the recognition- 
memory literature, vision research has long been investigating ensemble 
recognition (e.g., Dubé, 2019). Although readers may argue that visual 
perception and short-term memory cannot illustrate the workings of 
long-term recognition memory, the structural similarity between 
recognition-ranking tasks and ensemble recognition tasks stimulates the 
question whether there is also a conceptual similarity of the involved 
processes. Of course, models and theories need to be validated anew for 
a structurally similar task taken from a different domain. Therefore, we 
believe that it is important to test whether and how the probability of 
detecting an item—as an essential parameter of any 2HT mod
el—depends on the other items in a tuple. 

The question whether Dn increases monotonically with the strength 
of the target in the KART display is ultimately an empirical one. To 
answer it, we present two approaches to test the lure-detection invari
ance assumption: a model-based replication approach using Kellen and 
Klauer’s (2014) 4ART paradigm analyzed with the 2HT-4ART model 
(Experiment 1) and an approach based on a new forced-choice-then- 
ranking paradigm (Experiments 2 & 3). In the former approach, the 
measure of interest is the probability of lure detection conditional on 
target non-detection obtained from fitting the proposed 2HT-4ART 
model in Fig. 2A to 4ART data. In the latter approach, the measure of 
interest is the probability of correctly selecting a lure in the presence of a 
non-detected target. The measure is obtained in two novel forced- 
choice-then-ranking tasks, which allow analyzing lure-selection rates 
in a 2AFC test conditional on target non-selection in a 4ART test. The 
results of both approaches suggest that the probability of lure detection 
is higher in the context of strong than weak targets, thereby casting 
doubt on the lure-detection invariance assumption. 

Experiment 1 

Experiment 1 was a direct replication of Kellen and Klauer’s (2014) 
experiments to test the crucial effect of cw

2 < cs
2 in a 4ART paradigm. The 

sample size, the repetition scheme of words in the study phase, and the 
number of lures in the tuples presented at test followed their Experiment 
1. The reward scheme during the test was adopted from their 

Experiment 2, such that participants received points contingent on the 
rank assigned to the target. 

To test whether the strength of targets in item tuples influences the 
probability of lure detection, we first looked at the individual goodness- 
of-fit scores of the proposed 2HT-4ART model assuming pure, equi
probable guessing as described above. In this model, the lure-detection 
probability Dn is conditional on target non-detection because Dn only 
affects the predicted rank frequencies for the target when target detec
tion fails (cf. Fig. 2A). This allows to test the null hypothesis that Dn is 
equal for weak and strong targets (ℋ0: Dw

n = Ds
n) against the alternative 

hypothesis that Dn is higher for strong than for weak targets 
(ℋ1: Dw

n < Ds
n). If the person-specific estimates of Dn are larger for test 

displays with a strong target than for test displays with a weak target, it 
follows that the probability of lure detection must be context-dependent. 

Data availability 

All raw data, analysis code, and multinomial processing-tree models 
used in this article are publicly available through the Open Science 
Framework at https://osf.io/yx39t/. All computations were performed 
with R (R Core Team, 2019) in combination with JAGS (Plummer, 2017). 

Method 

Participants 
Twenty-two undergraduate students (19 females, 3 males) from the 

University of Mannheim participated in exchange for €3.50 or partial 
course credit with a maximum performance-based reward of €3.00, 
respectively. The sample size was selected a priori to match Kellen and 
Klauer’s (2014) Experiment 1. A sensitivity analysis using G*Power 3.1 
(Faul, Erdfelder, Buchner, & Lang, 2009) revealed that this sample size 
suffices to detect an above-medium effect of size dz = 0.56 in the test of 
interest (i.e., a directional Wilcoxon signed-rank test assuming an un
derlying normal distribution, significance level α = .05, and power 
1 − β = .80).3 All participants were native or fluent speakers of 
German, and their mean age was 22.14 years (SD = 3.83, range =
18–33). The study took place in a computer laboratory with individual 
cubicles, and participants were tested in small groups of up to five 
people. 

Materials 
Following the selection criteria provided by Kellen and Klauer 

(2014), German nouns were taken from Lahl, Göritz, Pietrowsky, and 
Rosenberg (2009). Word lengths ranged from four to eight letters and all 
words were of medium valence (3.5 to 6.5 on an 11-point scale) and low 
arousal (0.5 to 4.5 on an 11-point scale). For each participant, 150 and 
450 words were randomly selected from the word pool to serve as old 
and new items, respectively. 

Design and procedure 
The experiment comprised a study phase and a test phase. During the 

study phase, target strength was manipulated as a within-subjects factor, 
such that 75 of the targets were presented once (weak targets) and 75 
were presented three times (strong targets). As in Kellen and Klauer’s 
(2014) Experiment 1, each of three blocks in the study list contained all 
strong words interspersed with one third of the weak words. The pre
sentation order within each block was randomized, but it was ensured 
that at least three other words were presented between the presentation 
of a strong word and its next presentation. Each word was presented 
individually for 600 ms at the center of the computer screen in black 

3 Although the Wilcoxon signed-rank test is distribution-free, calculating 
numerical values in a power analysis requires the user to specify a response 
distribution because the effect of a deviation from symmetry depends on the 
specific form of this distribution (for details, see G*Power, 2020). 
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Arial font on gray background with all letters capitalized. Before the 
next word appeared, a blank screen was shown for 100 ms. 

A practice phase for the 4ART test immediately followed the study 
phase. The first practice display explained the ranking of the four words 
and the second practice display exemplified the reward scheme. The 
4ART test consisted of 150 displays (with a total of 150 targets and 450 
lures). All test displays showed one target and three randomly selected 
lures in one rectangular box each. The four boxes were arranged in a 2 ×

2 matrix around the center of the screen, and the positions of the target 
and the three lures were randomly determined. In line with Kellen and 
Klauer’s (2014), ranks could be assigned to each word by clicking in the 
boxes with the computer mouse. The first word selected received Rank 1 
and the rank number appeared above the word’s box, the second item 
selected received Rank 2, and so forth. At any stage of the ranking, 
participants could erase all assigned ranks by clicking “DELETE.” When 
all items were ranked, participants could confirm the given response and 
proceed to the next item quadruple by clicking “OK.” The reward 
scheme allowed participants to win one point for each assignment of the 
target to Rank 1 and lose two, three, or four points for assignments of the 
target to Rank 2, 3, or 4, respectively. Participants were told that no 
feedback would be provided and that they could not lose money from 
the fixed show-up fee of €3.50, but that they could win up to €3.00 when 
cashing in the maximum number of 150 points. After the test, partici
pants were thanked, debriefed, and compensated for participation. 

Results 

Analysis of probability estimates 
Table 1 shows the mean estimated probabilities πi of the target being 

assigned Rank i among K alternatives and the mean conditional proba
bilities c2 of the target being assigned Rank 2 given that it was not 
assigned Rank 1. These mean probability estimates closely replicate the 
ones reported by Kellen and Klauer (2014) for their Experiment 1. To 
avoid strong, and perhaps misspecified, distributional assumptions when 
testing statistical hypotheses, we followed Kellen and Klauer by con
ducting non-parametric tests across participants. A directional Wilcoxon 
signed-rank test showed that the difference in accuracy between weak 
and strong targets as measured by individual πw

1 and πs
1 parameters was 

significant, V = 249, p < .001, dz = 1.78. This shows that the study- 
repetition manipulation successfully led to better memory for strong 
than for weak targets. Fig. 3A plots the individual c2 estimates for strong 
targets against the individual c2 estimates for weak targets. Most obser
vations lie above the main diagonal, which suggests that strong targets are 
more often assigned Rank 2 than weak targets when both were not 
assigned Rank 1. This impression was supported by a significant direc
tional Wilcoxon signed-rank test examining whether the mean cs

2 value 
was higher than the mean cw

2 value, V = 222, p = .001, dz = 0.90. 
Sharing Kellen and Klauer’s (2014) concern that the Wilcoxon test is 

based on a different number of observations for each individual and each 
target-strength condition, which results in different standard errors of 

the estimates for c2, we used the hierarchical Bayesian model reported in 
Kellen and Klauer’s Supplemental Materials to compute a Bayes factor 
(BF). The BF quantifies the evidence for ℋ1: δ > 0 relative to ℋ0: δ = 0, 
where δ is the effect size capturing the mean difference between cw

2 and 
cs

2 on the group level. Because we were interested in an order-restricted 
test of the c2 estimates (i.e., a directional test), we used a normal prior 
for δ that was truncated from below at zero. The estimated BF indicated 
that the data were more than 33 times more likely to have occurred 
under ℋ1 than under ℋ0. This can be considered as strong evidence in 
favor of ℋ1 according to Jeffreys (1961). 

Model-based analysis 
The 2HT model for the 4ART with equiprobable guessing among 

non-excluded alternatives competing for Rank 1 in Fig. 2A was fitted to 
the data of each individual separately. In total, the responses of 20 of the 
22 participants were described well by the model, all G2(2) ≤ 5.47, 
p ≥ .065, whereas the responses of two participants were not described 
well, both G2(2) ≥ 8.75, p ≤ .013. The mean maximum-likelihood 
parameter estimates (and the corresponding standard errors of the 
mean) for item detection were .19 (.03) for Dw

o , .39 (.04) for Ds
o, .06 (.02) 

for Dw
n , and .15 (.03) for Ds

n.4 

Fig. 4A plots the individual Do estimates for strong targets against the 
individual Do estimates for weak targets. This allows checking whether 
more repetitions of targets during the study phase resulted in a higher 
probability of target detection in the 2HT model during testing. As ex
pected, all estimates—except two—lie above the main diagonal. A 
directional Wilcoxon signed-rank test confirmed that the Ds

o estimates 
were on average significantly larger than the Dw

o estimates, V = 248, 
p < .001, dz = 1.62, supporting the impression that strong targets had 
indeed a higher probability of being detected as old. 

Regarding the test of the crucial lure-detection invariance assump
tion, Fig. 4B plots the individual Dn estimates of the lure-detection 
parameter for contexts with strong targets against contexts with weak 
targets. A majority of 14 participants had higher Ds

n estimates than Dw
n 

estimates. As predicted, a directional Wilcoxon signed-rank test 

Table 1 
Mean Probability Estimates (and Standard Deviations) in the Ranking Task of Kellen and Klauer (2014, Experiment 1) and of Experiments 1, 2, and 3 Reported Here.  

Experiment Target π1 π2 π3 π4 c2 

Kellen & Klauer Weak .38 (.08) .23 (.05) .21 (.05) .18 (.05) .37 (.09)  
Strong .55 (.15) .19 (.07) .14 (.06) .13 (.05) .43 (.09) 

Experiment 1 Weak .40 (.11) .21 (.04) .21 (.08) .18 (.05) .37 (.09)  
Strong .57 (.15) .19 (.05) .13 (.06) .11 (.06) .46 (.09) 

Experiment 2 Weak .54 (.13) .20 (.06) .15 (.06) .12 (.06) .44 (.11)  
Strong .64 (.16) .16 (.06) .12 (.07) .08 (.06) .47 (.13) 

Experiment 3 Weak .45 (.10) .20 (.04) .16 (.05) .18 (.07) .38 (.09)  
Strong .63 (.14) .15 (.05) .11 (.05) .11 (.06) .43 (.10) 

Experiment 3* Weak .50 (.14) .18 (.08) .13 (.07) .19 (.11) .38 (.20)  
Strong .68 (.15) .13 (.07) .08 (.06) .11 (.09) .44 (.22) 

Note. πi = estimated probability of the target being assigned Rank i; c2 = estimated conditional probability of the target being assigned Rank 2 given that it was not 
assigned Rank 1; Experiment 3 = results based on all 4ART displays; Experiment 3* = results based on 4ART displays that followed a 2AFC display with a target–lure pair.  

4 As a robustness analysis, we also fitted a hierarchical version of the 2HT 
model for the 4ART (Klauer, 2010) using the R package TreeBUGS (Heck, 
Arnold, & Arnold, 2018). The hierarchical group-level estimates and credibility 
intervals did not differ substantially from the posterior means and standard 
deviations aggregated across the individual parameter estimates reported in the 
main text. The model fit to the observed response frequencies and correlations 
was slightly below the conventional threshold of .05 with posterior predictive 
p-values of .045 and .039 for test quantities T1 (assessing whether the model 
can recover the observed mean category frequencies) and T2 (assessing whether 
the model can recover the observed covariance structure), respectively. Note, 
however, that the conventional threshold cannot be applied with the same 
meaning as in a G2-test because posterior predictive p-values are not uniformly 
distributed under ℋ0. 
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confirmed that the probabilities of lure detection were on average 
significantly higher in the context of a strong target than in the context 
of a weak target, V = 174, p = .005, dz = 0.67. 

Discussion 

Experiment 1 replicated Kellen and Klauer’s (2014) finding that the 
conditional probability c2 is higher for strong than for weak targets. This 
finding is inconsistent with Kellen and Klauer’s assumption that the 
probability of lure detection in 2HT theory is unaffected by the strength 
of the non-detected target in the test display, and as such inconsistent 
with their 2HT model. In contrast, the finding is consistent with our 
2HT-4ART model that dispenses with the lure-detection invariance 
assumption and allows Dn to differ between displays with a weak and a 
strong non-detected target. This supports our argument that the lure- 
detection invariance assumption in Kellen and Klauer’s model is 
overly restrictive and at odds with empirical data. 

Although Experiment 1 clearly shows that the 2HT-4ART model is 
consistent with ranking data, one could criticize that this 2HT model 
version (a) is more flexible than the one considered by Kellen and Klauer 
(2014) and (b) has not been directly validated so far (especially with 
respect to the crucial model parameter Dn). Even though the model- 
fitting results are plausible and in line with previous results on the 
2HT model, we deemed it necessary to provide additional evidence for 
our argument. Therefore, we developed a novel paradigm to test the 
crucial prediction that the probability of lure detection in the 2HT model 

increases with the strength of the target in the same test display—even 
when this target is not assigned Rank 1 in a ranking task, implying that it 
was not detected. 

A novel forced-choice-then-ranking paradigm 

Experiments 2 and 3 implemented a novel paradigm including two 
successive recognition tasks based on the same targets, which we called 
the forced-choice-then-ranking (2AFC-KART) paradigm. We developed 
this paradigm to test the lure-detection invariance assumption in a more 
direct way and thereby provide converging evidence on the Dn results 
obtained with the 2HT-KART model in Experiment 1. After the study 
phase, in which weak and strong targets were presented once and three 
times, respectively, participants completed (1) a two-alternative forced- 
choice (2AFC) test in which they had to choose the word in a test pair 
that was more likely to be new and (2) a 4ART test identical to the one 
already used in Experiment 1. The 4ART test either followed as a 
separate block after the end of the 2AFC block (Experiment 2) or every 
4ART test display immediately extended the corresponding 2AFC 
display from two to four items (Experiment 3). Note that the 2AFC test 
asked for the new rather than the old item for two reasons. First, this task 
mirrors our interest in lure detection. Second, it has the practical 
advantage that an arbitrary number of 2AFC displays with a lure–lure 
pair can be added as fillers to the 2AFC displays with a target–lure pair of 
main interest. Such fillers are necessary to ensure that participants 
cannot restudy the targets in the 2AFC test prior to the 4ART test 

Fig. 3. Individual probability estimates of assigning Rank 2 to weak versus strong targets given they were not assigned rank 1 in the 4ART tests of Experiments 1, 2, 
and 3. c2 = estimated conditional probability of the target being assigned Rank 2 given that it was not assigned Rank 1. (A) Experiment 1, (B) Experiment 2, (C) 
Experiment 3 with results based on all 4ART displays, (D) Experiment 3* with results based on 4ART displays that followed a 2AFC display with a target–lure pair. 
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(Experiment 2) nor will they always need to assign Rank 1 to one word of 
the 2AFC pair (Experiment 3). Because there are only two possible states 
of the world (old vs. new word), selecting the lure should not pose a 
greater challenge than selecting the target to participants. However, the 
switch from selecting the lure in the 2AFC test and selecting the target in 
the subsequent 4ART test may require more attention in Experiment 3, 
in which both questions followed on a trial-by-trial basis. Therefore, 
when analyzing the data, one must pay attention to the response stra
tegies used to solve the consecutive tasks. 

As will become clear in the following, by considering only those 
2AFC pairs with a target that cannot have been detected on the subse
quent 4ART test according to 2HT theory (i.e., received a rank larger 
than 1), we can directly test whether the strength of a non-detected 
target affects the probability of lure detection in the 2AFC test. For 
this purpose, we used the lure-selection rate (i.e., the probability of 
correctly selecting the lure in a target–lure pair; denoted as LS) in the 
2AFC test as our core dependent measure. According to 2HT theory, this 
measure depends on the probabilities of detecting the target (Do), 
detecting the lure given target non-detection (Dn), and lucky guessing (g) 
in the 2AFC context. However, there is only one possible combination of 
events that results in lure non-selection, namely when neither the target 
nor the lure is detected and the participant guesses incorrectly with 
probability of .50. Hence, the probability of lure non-selection (1 − LS) 
is given by the product (1 − Do)⋅(1 − Dn)⋅.50, which immediately im
plies: 

LS = 1 − (1 − Do)⋅(1 − Dn)⋅.50. (5) 

Now let us consider the conditional LS probabilities given critical test 
pairs in which the target is known to be detected (LS+) versus known to 
be non-detected (LS− ). By inserting Do = 1 and Do = 0, respectively, into 
Equation (5), we obtain: 

LS+ = 1, (6)  

LS− = 1 − (1 − Dn)⋅.50. (7)  

Thus, the conditional LS− measure depends only on the core parameter 
of interest, that is, the probability of lure detection given target non- 
detection Dn.5 In fact, by solving Equation (7) for Dn, we can write Dn 

as a function of LS− : 

Dn = 2⋅LS− − 1. (8) 

How can LS, LS+, and LS− be estimated empirically? By taking 
advantage of the forced-choice-then-ranking paradigm, we can estimate 
the LS parameters not only based on all target–lure pairs in the 2AFC 

Fig. 4. Individual probability estimates of target and lure detection for test displays with a weak versus strong target obtained from fitting the 2HT models in 
Experiments 1 and 3. Do = estimated probability of target detection, Dn = estimated probability of lure detection conditional on target non-detection. (A–B) 
Experiment 1 based on the 2HT-4ART model, (C–D) Experiment 3 based on the 2HT-2AFC-4ART model. Full points highlight participants for which the models 
showed a misfit as indicated by p < .05 in the G2-test. 

5 Note that this also holds when target and lure detection are not stochasti
cally independent as assumed in our derivation. Since Dn is the conditional 
probability of lure detection given failure of target detection (1 − Do), Equation 
(7) becomes generally valid, irrespective of the independence assumption. 
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test, but also separately for two different subsets of pairs depending on 
the outcome of the subsequent 4ART test: First, for the subset of pairs 
with the target assigned Rank 1 in the 4ART test (LS1), and second, for 
the subset of pairs with the target being assigned Ranks 2 to 4 (LS>1). 

Of course, Rank-1 judgments for targets do not necessarily imply that 
the target was detected. Rank 1 could also have been selected due to lucky 
guessing among the items in the uncertainty state. Thus, the empirical LS1 
estimate cannot be expected to approach the LS+ parameter of 1, which 
was derived for the subset of detected targets (cf. Equation (6)). However, 
more important for our purposes is the fact that targets with ranks larger 
than 1 in the 4ART test must necessarily be non-detected according to 
Kellen and Klauer’s (2014) target-detection dominance assumption. 
Thus, it follows that the LS>1 estimate is based only on those target–lure 
pairs in the 2AFC test in which the target was not detected in the subse
quent 4ART test. If we assume that non-detected targets in the 4ART test 
were also not detected in the preceding 2AFC test, LS>1 may serve as an 
empirical estimate of parameter LS− , that is, the lure-selection rate con
ditional on target non-detection (cf. Equation (7)). 

Based on this assumption, separate LS>1 estimates for 2AFC displays 
with weak targets (LSw

>1) and strong targets (LSs
>1) allow for a test of the 

lure-detection invariance assumption. According to this assumption, the 
lure-selection rates conditional on non-detection of weak and strong 
targets must be equal (ℋ0: LSw

>1 = LSs
>1). In contrast, if lure detection 

depends on the strength of the target in the test display, conditional lure- 
selection rates must be larger for strong targets compared to weak tar
gets (ℋ1: LSw

>1 < LSs
>1). Moreover, by inserting LSw

>1 and LSs
>1 for LS− in 

Equation (8), we can derive estimates of the lure-detection probabilities 
Dw

n and Ds
n of 2HT theory, respectively. 

Experiment 2 

In Experiment 2, the 2AFC test and the 4ART test were completed in 
two separate blocks. Besides the core prediction that LSw

>1 < LSs
>1, we 

expected a general increase in target strength in the final 4ART test 
compared to Experiment 1 because participants were exposed to all 
targets for an additional time during the 2AFC test. This should lead to 
an increase in the number of targets being assigned Rank 1 in the 4ART 
test (i.e., larger πw

1 and πs
1 parameters compared to those in Experiment 

1). As a result, the effect of cw
2 < cs

2 may diminish, or perhaps even 
disappear, for the 4ART test of Experiment 2 because participants have 
seen the weak target words twice by this time (once during study and 
once during the preceding 2AFC test) and the strong target words four 
times (three times during study and once during the 2AFC test). As such, 
weak targets could possibly catch up in relative target strength and 
become more similar to strong targets in the 4ART test because the 
increment in target strength from two to four presentations may be 
smaller compared to that from one to three presentations. However, 
similar to non-detected targets that were assigned Rank 1, an assimila
tion of weak and strong targets in the 4ART test would not threaten our 
crucial test of the conditional LS estimates. Therefore, we did not make a 
strong prediction of whether this would occur. If the probability π1 of 
assigning Rank 1 to a target increases with repeated exposure, the LS>1 
values will include fewer trials, thus rendering our test even more strict. 

Method 

Participants and materials 
None of the participants from Experiment 1 were recruited for 

Experiment 2. Forty-four individuals (28 females, 16 males) from the 
University of Mannheim’s participant pool for psychological studies 
received €5.00 and a performance-based reward between €3.00 and 
€9.00 for participation. Because we expected a smaller difference in the 
c2 values for strong versus weak target displays than in Experiment 1, we 
extended the period of data collection and tested as many participants as 
possible. This led to a doubling in sample size. A sensitivity analysis with 

G*Power 3.1 (Faul et al., 2009) showed that the achieved sample size of 
N = 44 suffices to detect an effect of size dz = 0.39 in a directional 
Wilcoxon signed-rank test assuming an underlying normal distribution, 
significance level α = .05, and power 1 − β = .80. All participants were 
native or fluent speakers of German, and all except one person were 
undergraduate students. The sample’s mean age was 23.05 years (SD =
5.32, range = 18–41). To closely resemble Experiment 1, the study was 
conducted in the same computer laboratory, the word pool was selected 
by slightly extended criteria (valence of 3.0 to 7.0 and arousal of 0.5 to 
4.5 on 11-point scales), the repetition scheme was maintained, and the 
same number of targets was studied. For each participant, 150 and 900 
words were randomly drawn from the word pool to serve as old and new 
items in the recognition tests, respectively. 

Design and procedure 
The experiential session comprised a study phase, a 2AFC test, and a 

4ART test. The study phase and the 4ART test were identical to Exper
iment 1. Between them, the 2AFC test with 300 displays in random order 
was administered. All test displays showed two items in rectangular 
boxes next to each other centered on the screen. The box for each item 
was randomly determined. For each of these item pairs, participants 
were asked to select the word that they thought was more likely to be 
new by clicking in its box. Participants were informed beforehand that 
150 of the 300 displays would include a target and a randomly selected 
lure, while the other 150 displays would include two lures. Participants 
were also informed beforehand that they could win one reward point for 
each correct response, which implies a certain win of one point in case of 
two lures. To maintain a constant level of motivation, participants could 
take a short break after half of the 2AFC trials. 

The lure–lure pairs were included to keep participants from actively 
restudying the words that they thought were the targets, and the number 
of gained points was only displayed at the end of the experiment to avoid 
trial-by-trial feedback. Selecting a lure in a list with only target–lure 
pairs and receiving negative feedback would have allowed participants 
to infer that the non-selected item must be the target. Given that another 
test was expected, such an inference could have prompted participants 
to focus their attention selectively on these items. As we were interested 
in lure detection, paying too much attention to the presumed targets 
could decrease the effort to detect lures. To ensure understanding of the 
unusual task structure, the 2AFC test only started after participants had 
correctly stated that they should find the word that was more likely new. 

Following the 2AFC test, the 4ART test with 150 displays including all 
150 targets and 450 different lures started. Each 4ART display consisted 
of one target and three lures in boxes randomly arranged in a 2 × 2 matrix 
on the computer screen, exactly as in Experiment 1. We used lures 
different from those of the 2AFC test to ensure that lures do not become 
familiar to the extent that they act as very weak targets, thus interfering 
with the true targets on the 4ART test. Again, as in Experiment 1, two 
practice displays explained the task and the reward scheme. In addition, 
the 4ART test only started after participants successfully indicated that 
the old word was now to be identified. For the 4ART test, the order of 
target presentation was randomized anew. At the end of the session, 
participants were thanked, debriefed, and compensated for participation. 

Results 

4ART analysis 
Table 1 shows the mean estimates of the unconditional probabilities 

πi and the conditional probabilities c2. Ensuring that the study-repetition 
manipulation was successful, a directional Wilcoxon signed-rank test 
indicated that the estimates for πs

1 across participants were significantly 
larger than those for πw

1 , V = 896, p < .001, dz = 1.17. However, the 
difference between the cs

2 and cw
2 estimates was no longer significant, 

V = 554.5, p = .246, dz = 0.16. As outlined above, we did not have a 
strong a-priori prediction, but expected such a finding, which is 
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attributable to the assimilating effect of the preceding 2AFC test on weak 
and strong targets. Fig. 3B plots the individual c2 estimates for strong 
against weak targets. The pairs of cw

2 and cs
2 are generally closer to the 

main diagonal than in Experiment 1. In line with this impression, the BF 
of the hierarchical model analysis was 0.98, which indicates evidence 
neither for ℋ0: δ = 0 nor for ℋ1: δ > 0, where δ is again the effect size 
capturing the mean difference between cw

2 and cs
2 on the group level. 

While keeping in mind that comparisons across different experiments 
without random assignment of participants need to be treated with 
caution, our data indicate that the unconditional probabilities πw

1 and πs
1 

of assigning Rank 1 to targets were descriptively higher in Experiment 2 
than in Experiment 1. This provides evidence for the expected boost in 
strength of both target types as a result of the additional presentation in 
the preceding 2AFC test. 

2AFC analysis 
Table 2 shows the mean estimates of the lure-selection rates (LS), the 

lure-selection rates conditional on Rank-1 judgments in the 4ART test 
(LS1), and the lure-selection rates conditional on rank judgments larger 
than 1 (LS>1) separately for lures paired with a weak versus a strong target 
in the 2AFC test. The lure–lure pairs were not considered in the reported 
analyses. Directional Wilcoxon signed-rank tests showed that all three LS 
estimates were significantly higher for lures next to a strong target than 
for a weak target, all V ≥ 820, p < .001, dz ≥ 0.63. Most importantly, the 
result for the LS>1 estimates conditional on target non-detection provided 
evidence against the lure-detection invariance assumption, showing that 
lure detection in the 2HT model was more likely in the context of a strong 
than a weak target, even when the target was not detected in the 4ART test 
(ℋ1: LSw

>1 < LSs
>1). To assess interindividual heterogeneity, Fig. 5A and 

B plot the individual LS estimates for all targets and for the subset of 
targets with a rank larger than 1, respectively. In both panels, the majority 
of points lie above the main diagonal, showing that the expected effect 
was observed for the majority of participants. 

Similar to the crucial test of the conditional probabilities c2, the LS>1 
estimates are based on different numbers of observations across in
dividuals and target-strength conditions. Therefore, we adapted the hi
erarchical Bayesian model using the number of correct lure selections in 
the 2AFC test conditional on target non-selection (instead of the fre
quencies of Rank-2 assignments) and the number of incorrect target se
lections (instead of the frequencies of Rank-3 and Rank-4 assignments) as 
observed response frequencies. The estimated BF indicated that the data 
were over 260 times more likely to have occurred under ℋ1 than under ℋ0, 
which provides decisive evidence for ℋ1: δ > 0, where δ is the effect size 
capturing the mean difference between LSw

>1 and LSs
>1 on the group level. 

In addition to providing a test of our core hypothesis, the observed 
mean LS estimates in Table 2 can be used to derive estimates for the 
probabilities of lure and target detection of 2HT theory in the 2AFC test. 
Based on Equation (8), the observed conditional probabilities LS>1 for 
weak and strong targets on the group level from Table 2 imply estimates of 
Dw

n = .08 and Ds
n = .28, respectively. Moreover, inserting these estimates 

in Equation (5) along with the observed unconditional LS estimates for 

weak and strong targets from Table 2 and solving for the corresponding 
target-detection probabilities results in estimates of Dw

o = .20 and Ds
o =

.33. These estimates are remarkably similar to the model-based parameter 
estimates obtained for Experiment 1, despite different memory-test par
adigms (4ART vs. 2AFC) and non-random assignment of participants to 
Experiments 1 and 2. The only exception is the higher Ds

n parameter, which 
may hint at the possibility that Dn in the 2AFC test is larger than Dn in the 
4ART test. This idea is supported by the process model outlined in the 
Appendix: Comparing a lure against a target in the 2AFC test will often 
result in a stronger familiarity contrast than comparing a lure against the 
mean of a target and two lures in the 4ART test. 

Discussion 

As outlined above, the forced-choice-then-ranking task allows for an 
additional, independent test of the lure-detection invariance hypothesis 
embedded in Kellen and Klauer’s (2014) 2HT model. Of primary interest 
here are the conditional probabilities LS>1 in the 2AFC test, which refer 
only to target–lure pairs with a target that was not detected in the sub
sequent 4ART test. Based on the assumption that these targets were also 
not detected in the preceding 2AFC test, participants can only rely on lure 
detection or guessing in order to decide which item of the pair is more 
likely new. Empirically, we found unequivocal evidence in Experiment 2 
for ℋ1: LSw

>1 < LSs
>1. This finding supports our prediction that the 

probability of detecting a lure in 2HT theory increased with the strength of 
the target next to the lure—even when the target itself was not detected. 

To reiterate, this argument rests on the assumption in 2HT theory that 
targets detected in the 2AFC test will also be detected in the subsequent 
4ART test, or equivalently that targets not detected in the 4ART test were 
also not detected previously in the 2AFC test. For Experiment 2, one might 
object that detecting a target at time point t1 and not detecting it at a later 
time point t2 reflects the nature of forgetting. Accordingly, the subset of 
targets not detected in the 4ART test could still include words that were 
detected in the 2AFC test, thereby threatening our conclusion. However, 
the general argument that the state of an item changes between both tests 
ignores two important aspects. First, the time difference t2 − t1 between 
the 4ART and the 2AFC tests was very small, which leaves not much time 
for interim forgetting. Second and more importantly, forgetting studies 
typically compare the performance in a single memory test administered 
at two points in time, usually including a different set of learned targets. 
In contrast, we employed two separate memory tests in succession using 
exactly the same targets. Such a repeated memory-testing design re
sembles testing-effect studies more closely than forgetting studies (e.g., 
Roediger & Karpicke, 2006; Rowland, 2014). According to the well- 
known testing effect, repeated testing leads to an improvement in mem
ory across time for previously retrieved items as compared to non- 
retrieved items (e.g., Halamish & Bjork, 2011; Jang, Wixted, Pecher, 
Zeelenberg, & Huber, 2012; Rowland & DeLosh, 2015). Thus, if anything, 
the detection probability of targets is more likely to increase rather than 
to deteriorate during this short time interval. 

Our data support this idea. The higher π1 estimates in Experiment 2 
compared to Experiment 1 suggest that the preceding 2AFC test 
increased participants’ performance. Although the majority of findings 
in the testing-effect literature refers to long retention intervals and recall 
tests, the 2AFC test still provides participants with the opportunity to 
restudy recognized and presumed targets. Whether participants actually 
use this opportunity, we cannot control. However, by interspersing the 
target–lure pairs with lure–lure pairs and by informing participants that 
only half of the displays included targets, we prevented intentional 
restudying of those words that were thought to be the targets. Similarly, 
the non-significant difference between the c2 estimates in the 4ART test 
may also be the result of the learning effect from the 2AFC test, causing 
an assimilation of strong and weak targets. As in monotonic, negatively 
accelerated hyperbolic learning curves, the greatest increments in 
learning may occur during the first few occurrences of the material (see 

Table 2 
Mean Estimates of Lure-Selection Rates (and Standard Deviations) for Item Pairs 
With a Weak versus a Strong Target in the 2AFC Tests of Experiments 2 and 3.  

Experiment Target LS LS1 LS>1 

Experiment 2 Weak .63 (.09) .70 (.11) .54 (.09)  
Strong .76 (.11) .82 (.11) .64 (.13) 

Experiment 3 Weak .64 (.09) .95 (.06) .29 (.15)  
Strong .78 (.10) .96 (.06) .35 (.18) 

Note. LS = estimated probability of correctly selecting the lure in a target–lure 
pair; LS1 = estimated probability of correctly selecting the lure conditional on 
the target being assigned Rank 1 in the subsequent 4ART display; LS>1 = esti
mated probability of correctly selecting the lure conditional on the target not 
being assigned Rank 1 in the corresponding 4ART display.  
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Greene, 1992). Hence, the difference between one and two presentations 
may be more pronounced than between two and three. 

Alternatively, the observed increase in Rank-1 judgments and the 
failure to replicate the effect of cw

2 < cs
2 in Experiment 2 could also be 

explained by participants’ awareness of which words were repeated 
(namely the targets). It is not unlikely that participants recognize a 
certain word on the 4ART test and remember that it was already pre
sented during the 2AFC test. If they then make the reasonable conclusion 
that this word must be a target, it would boost performance over all 
targets. This would certainly lead to more targets being detected. 
However, this per se is unproblematic for our critical test because all of 
these targets would be excluded in the calculation of the LS>1 proba
bilities, leading to a stricter test of our hypothesis. 

Although it seems unlikely from a threshold perspective that par
ticipants detect a target in the 2AFC test and fail to detect the same 
target in the subsequent 4ART test, we cannot definitely rule out that 
such events occur. The main reason for this concern is that familiarity 
contrasts underlying detection probabilities in the 2AFC and the 4ART 
tests are assumed to be conditionally independent, unless targets or lures 
occur repeatedly in the same test trial (see the Appendix). Because the 
2AFC display and the corresponding later 4ART display were not part of 
the same test trial in Experiment 2, target and lure detection in 2HT 
models may probabilistically vary between both tasks. Hence, our test 
based on the LS>1 estimates might be contaminated by some test pairs in 
which the target was actually detected in the 2AFC test. As this may 
compromise the logic of Experiment 2, we decided to replicate the 

crucial test of LSw
>1 < LSs

>1 with an improved experimental procedure. 

Experiment 3 

In Experiment 3, the 2AFC test and the 4ART test were not completed 
in two separate blocks, but each 2AFC question was immediately fol
lowed by the corresponding 4ART question in the same test trial, with 
the 4ART question including the 2AFC item pair and two additional 
items. From a threshold perspective, this procedure ensures that detec
tion states for the 2AFC items remain stable across tasks, and thus target 
detection in the 2AFC display goes along with target detection in the 
subsequent 4ART display. Thus, at least for this refined procedure, the 
LS>1 estimates derived from forced-choice-then-ranking paradigm can 
be interpreted as correct lure selections conditional on target non- 
detection. We expected the following results for the new test proced
ure. First, a replication of the LSw

>1 < LSs
>1 effect found in Experiment 2 

(assuming that lure detection is in fact facilitated by increasing target 
strength even when the target is not detected). Second, a replication of 
the cw

2 < cs
2 effect found in Experiment 1 (because in contrast to 

Experiment 2 participants can no longer rely on second-guessing which 
words are repeated in the 4ART part of the test). 

Method 

Participants and materials 
Fifty-two students (37 females, 13 males, 2 non-binary people) of the 

Fig. 5. Individual lure-selection rates and lure-selection rates conditional on target non-detection in the 2AFC tests of Experiments 2 and 3. LS = estimated 
probability of correctly selecting the lure in a target–lure pair, LS>1 = estimated probability of correctly selecting the lure in a target–lure pair conditional on the 
target not being assigned Rank 1 in the corresponding 4ART display. (A–B) Experiment 2, (C–D) Experiment 3. 
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University of Mannheim were recruited for Experiment 3—none of 
which had previously participated in Experiment 1 or 2. Participants 
could choose between €5.00 or partial course credit for their partici
pation, and received a performance-based reward between €3.00 and 
€9.00 in both cases. All participants were native or fluent speakers of 
German, and all except two were undergraduate students. The sample’s 
mean age was 22.31 years (SD = 4.02, range = 18–38). Participant 4 was 
excluded from all further analyses because of a correct response rate of 
100% for strong targets, ruling out calculation of relevant statistics. As 
in Experiment 2, we used a longer data-collection period than in 
Experiment 1 and tested as many participants as possible aiming at a 
larger sample size than in Kellen and Klauer’s (2014) experiments. A 
sensitivity analysis with G*Power 3.1 (Faul et al., 2009) revealed that 
the sample size of N = 51 allows to detect a relatively small effect of size 
dz = 0.36 in a directional Wilcoxon signed-rank test assuming an un
derlying normal distribution, significance level α = .05, and power 
1 − β = .80. The experiment was conducted in the same computer 
laboratory as the previous experiments. The word pool from Experiment 
2 was used and the repetition scheme was maintained. For each 
participant, 200 and 600 words were randomly drawn from the word 
pool to serve as old and new items in the recognition test, respectively. 

Design and procedure 
The experiment comprised a study phase and a single test phase. The 

study phase was identical to the study phases in Experiments 1 and 2, 
except that more targets were studied to compensate for the lure–lure 
pairs in the 2AFC test, as each 2AFC display had to be followed by a 4ART 
display including a target. A total of 100 words were studied once and 100 
words were studied three times, followed immediately by the test phase 
with 200 trials. On each trial of the test phase, two words were shown for 
the 2AFC question (“Which word is more likely a new word?”), and when 
the participant had made a response, two more words appeared for the 
4ART question (“Please rank the words from most likely old to most likely 
new.”). As before the words were displayed in rectangular boxes. The first 
two boxes were shown next to each other in the center of the screen. 
When the additional two words appeared, all four boxes were arranged 
according to a 2 × 2 matrix and the position of each word was randomly 
determined anew to ensure that participants had to read all words pre
sented on the screen when answering the 4ART question. 

All 200 item quadruples in the test phase consisted of one (weak or 
strong) target and three lures. On 75 of the 200 test trials, the word pair 
shown in the 2AFC display consisted of a randomly selected lure and a 
strong target, and on another 75 trials, the word pair consisted of a 
randomly selected lure and a weak target. On the remaining 50 trials, 
participants saw two lures (half of which were followed by 4ART dis
plays with a weak target or a strong target, respectively). The order of 
trials was randomized. To avoid a drop in motivation, participants could 
take a break after half of the trials. The lure–lure pairs were included to 
make sure that participants could not infer that one word of the pair had 
to be a target. Such a conclusion would have prompted them to always 
assigning Rank 1 to one word of the 2AFC pair. Unknown to participants, 
only 25% lure–lure pairs were used to avoid having unnecessarily long 
study and test lists.6 

Prior to the test phase, as in Experiment 2, participants completed 

two practice displays, which explained the tasks and the reward scheme. 
Participants were then quizzed on the questions they had to answer for 
the item pairs and the item quadruples, and they were only allowed to 
proceed without re-reading the instructions if their answers were cor
rect. Finally, participants were informed that some displays would 
include two lures, but they were not told about the exact proportion of 
lure–lure pairs. After completing the test phase, participants were 
thanked, debriefed, and compensated for participation. 

Results 

4ART analysis 
The mean estimates of the unconditional probabilities πi and the 

conditional probabilities c2 are shown in Table 1. They were calculated 
based on all 4ART displays (denoted as Experiment 3) and based on 4ART 
displays that were preceded by a target–lure pair on the 2AFC display 
(denoted as Experiment 3*). Directional Wilcoxon signed-rank tests 
indicated that πs

1 was significantly higher than πw
1 across participants for 

all displays, V = 1225, p < .001, dz = 2.11, as well as for the subset of 
displays following a target–lure pair, V = 1320, p < .001, dz = 2.00. The 
difference between the cs

2 and cw
2 estimates was also significant for all 

displays, V = 957, p = .003, dz = 0.43, as well as for the subset of dis
plays following a target–lure pair, V = 915, p = .004, dz = 0.43. Fig. 3C 
and D depict the individual c2 estimates for strong targets against weak 
targets for all displays and the relevant subset of displays, respectively. In 
line with the results of the statistical tests, both figures are more similar to 
Experiment 1 than Experiment 2 in the sense that the majority of obser
vations lie above the main diagonal. This visual impression was also 
supported by the BF of the hierarchical model analysis comparing ℋ1: δ >

0 to ℋ0: δ = 0, where δ is the effect size capturing the mean difference 
between cw

2 and cs
2 on the group level. The BF was 38 for all displays and 

22 for the subset of displays following a target–lure pair. 

2AFC analysis 
The mean estimates of the unconditional and conditional lure- 

selection rates for target–lure pairs are shown in Table 2. The lure–lure 
pairs were not considered in these analyses. The unconditional lure- 
selection rates (LS) were very similar to Experiment 2, whereas the 
lure-selection rates conditional on Rank-1 judgments in the 4ART test 
(LS1) were higher and the lure-selection rates conditional on rank 
judgments larger than 1 (LS>1) were consequently lower. Fig. 5C and D 
plot the individual LS estimates for all target–lure pairs (LS) and for the 
subset of pairs including a target that was later assigned a rank larger 
than 1 (LS>1), respectively. As in Experiment 2, the majority of partic
ipants showed the expected effects as they lie above the main diagonals. 

Directional Wilcoxon signed-rank tests indicated that the LS esti
mates were significantly higher for strong than for weak targets, V =

1319.5, p ≤ .001, dz = 1.92, whereas the difference in the LS1 estimates 
failed to reach the level of statistical significance, V = 532, p = .051, 
dz = 0.22, most likely because of a ceiling effect. More importantly, the 
directional Wilcoxon signed-rank test for the LS>1 estimate was signif
icant, V = 988.5, p = .001, dz = 0.48. Likewise, the BF showed that the 
alternative hypothesis (ℋ1: LSw

>1 < LSs
>1) was 38 times more likely than 

the null hypothesis (ℋ0: LSw
>1 = LSs

>1), which can be interpreted as 
providing very strong evidence against the lure-detection invariance 
assumption. 

Although the results of Experiment 3 were in line with our prediction 
of higher LS>1 estimates in the context of strong than weak targets, the 
observed mean LS>1 estimates for weak and strong targets in Table 2 are 
smaller than .50, leading to negative estimates of 2HT theory’s Dn if we 
were to apply Equation (7) to the data of Experiment 3. In words of 2HT 
theory, the majority of participants performed below chance level in the 
2AFC test when focusing on item pairs with a target that was later not 
detected in the 4ART test (see Fig. 5D). How can this be explained? A 
plausible explanation is suggested by the nature of the forced-choice- 

6 A consequence of the unequal ratio of target–lure and lure–lure pairs is the 
higher likelihood that the target was already presented in the 2AFC display and 
did not only appear in the 4ART display. Hence, from a threshold perspective, 
participants may (a) no longer show equiprobable guessing (i.e., guessing 
which word is the non-detected target with probabilities of 12, 

1
3, and 14 depending 

on the number of detected lures) and (b) rather show more consistent 
responding between both displays (i.e., a tendency to assign the two words from 
the 2AFC display to Ranks 1 and 4 in the 4ART display, while basically ignoring 
the two additional words that appear in the 4ART display and assigning them to 
Ranks 2 and 3). We account for both possibilities in our data analysis. 

S. Malejka et al.                                                                                                                                                                                                                                 



Journal of Memory and Language 127 (2022) 104356

13

then-ranking task employed here. Because each 2AFC display is imme
diately followed by a 4ART display including the same item pair 
(making it a 2AFC-4ART trial), participants may have been inclined to 
answer consistently in both parts of each trial. Consistent judgments are 
generally considered desired behavior. This could have encouraged 
participants to match their 4ART response with their preceding 2AFC 
response whenever they believed that one of the 2AFC items was the 
target (a belief fostered by the fact that there were three times as many 
target–lure pairs than lure–lure pairs). 

Let us assume that consistent responding occurs for both correct 
and incorrect 2AFC judgments and irrespective of target strength. If 
participants aiming at consistent responding incorrectly select the 
target in the 2AFC display, they will consequently assign Rank 1 to 
the lure and a rank of larger than 1 to the target in the 4ART display. 
Note that these consistent errors would diminish our core measure, 
the LS>1 estimate, as pairs with the target being assigned a rank 
larger than 1 in the 4ART test are included in this measure. 
Conversely, if participants aiming at consistent responding correctly 
select the lure in the 2AFC display, they will consequently assign 
Rank 1 in the 4ART display to the other item correctly assumed to be 
the target. These correct lure selections in the 2AFC test, however, 
are excluded from our LS>1 estimates. Hence, if consistent responding 

happens on many trials, a relatively large proportion of incorrect 
2AFC judgments are included in our LS>1 measure and a large pro
portion of correct judgments are excluded from it—resulting in sys
tematic below-chance LS>1 estimates. More importantly, if we assume 
that 2AFC errors occur more frequently when the target is weak than 
when it is strong, the consistent-response bias in LS>1 estimates 
would be sufficient to explain the observed LSw

>1 < LSs
>1 pattern, 

without the necessity to assume any effect of target strength on lure- 
detection probabilities. 

Model-based analysis 
To address the concern mentioned above and to test our post-hoc 

hypothesis that consistent responding can explain the below-chance 
performance in the 2AFC displays of Experiment 3, we added a model- 
based analysis by adapting our 2HT model for the ranking task of 
Experiment 1 (Fig. 2A) to the forced-choice-than-ranking task of 
Experiment 3 (Fig. 6). Importantly, rather than modeling the rank of the 
target in the 4ART display, we modeled the combined results of the 
2AFC and the 4ART display as one 2AFC-4ART trial. As before with the 
LS>1 estimates, we only looked at 2AFC-4ART trials with target–lures 
pairs in the 2AFC part. The 2AFC part of each trial had two possible 
response outcomes (L for correctly selecting the lure and T for 

Fig. 6. New two-high-threshold model for the forced-choice-then-ranking task in Experiment 3. The item quadruple on the left-hand side consists of one old item and 
three new items. The probabilities of target and lure detection (the latter conditional on target non-detection) are denoted as Do and Dn, respectively. The lure- 
guessing probability for the 2AFC display of each trial is given by g = .50. The probability of consistent responding within the 2AFC-4ART trial is called c. The 
guessing probabilities for the 4ART display depend on participants tendency to avoid response categories that are incompatible with the task structure (given by a1, 
a2, and a3 depending on the total number of task-compatible response options) and pure guessing (given by 12 and 13 depending on the total number of non-detected 
items). The letters in quotation marks on the right-hand side represent the six response categories, which result from crossing the response options in the 2AFC part 
and the 4ART part of a trial. The dashed vertical line separates the cognitive states involved in the 2AFC part of each trial from the cognitive states in the 4ART part. 
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incorrectly selecting the target), whereas the 4ART part had three 
possible response outcomes (T for correctly assigning Rank 1 to the 
target, L for incorrectly assigning Rank 1 to the lure from the 2AFC pair, 
and O for incorrectly assigning Rank 1 to one of the two other lures not 
present in the 2AFC pair). This leads to six possible 2AFC-4ART outcome 
combinations in total: LT, LL, LO, TT, TL, and TO. These six categories 
are repeated in two separate trees—one for trials with a weak target and 
the other for trials with a strong target. 

Fig. 6 illustrates the processing-tree structure of the 2HT-2AFC-4ART 
model. In the 2AFC display, participants either detect the target with 
probability Do or fail to detected it. When target detection fails, partic
ipants can detect the lure with conditional probability Dn or fail to detect 
it. When target and lure detection both fail, participants are assumed to 
guess a response with fixed probability g = .50. In the 4ART display, 
participants aim at consistent responding with probability c and 
will—after a correct 2AFC response—assign Rank 1 to the target and do 
not process the two additional lures. When participants decide to pro
cess the two additional lures, they can detect each with independent 
probability Dn. Importantly, the target and the lure of the 2AFC display 
will not change their memory state from the 2AFC to the 4ART display 
because they are repeated within the same test trial (i.e., there are only 
two more items added). When the target and at least one lure are un
detected in the 4ART display, participants will arrive at a ranking 
response by guessing among these items. This guessing process can be 
pure, such that the guessing probabilities can be fixed to equiprobable 
guessing of 12 and 13, or it can be motivated by participants’ tendency to 
avoid a response that would be incompatible with the task structure (i.e., 
LL for selecting the lure in the 2AFC part and assigning Rank 1 to that 
lure in the 4ART part, and TT for selecting the target in the 2AFC part 
and assigning Rank 1 to the target in the 4ART part of each trial). It is 
assumed that participants will avoid such a response category with 
unknown probabilities a1, a2, and a3, depending on whether they have 
to decide among an incompatible response and one, two, or three other 
responses, respectively. For instance, when the lure was selected 
through guessing in the 2AFC part of a trial and the two additional lures 
in the 4ART part were detected, only the non-detected target and the 
non-detected lure from the 2AFC part compete for Rank 1. As partici
pants then want to avoid the LL response, they will more likely select the 
target. 

The c parameter and all guessing probabilities are assumed to be 
independent of item type, participants’ memory state, and target 
strength. Hence, applied simultaneously to the weak-target and strong- 
target conditions, the model accounts for 2⋅(6 − 1) = 10 free category 
probabilities with 8 free parameters. As the model was developed post 
hoc to account for below-chance performance on the 2AFC test, the 
design of the 2AFC-4ART test was not ideally suited for a model-based 
analysis. Many participants showed empty cells with observed zero 
frequency for response categories LL and TT (for weak-target and strong- 
target displays). Although this lends support to the idea that participants 
avoid inconsistent responses, it is problematic for model fitting as empty 
cells can lead to some parameters being non-identifiable. Therefore, we 
added a constant of 0.1 to every cell frequency, which is common 
practice in MPT modeling (see Hu, 1991; Klauer, Stahl, & Erdfelder, 
2007; Rothkegel, 1999). 

The 2HT model for the 2AFC-4ART paradigm with equiprobable 
guessing shown in Fig. 6 was fitted to the data of each individual 
separately. In total, responses of 44 of the 51 participants were described 
well by the model, all G2(2) ≤ 5.90, p ≥ .052, whereas responses of 
seven participants were not described well, G2(2) ≥ 6.07, p ≤ .048. The 
mean maximum-likelihood estimates for consistent responding (c =

.46) and target-guessing (a1 = .61, a2 = .68, and a3 = .79) were 
reasonable and within the expected range. More importantly, the mean 
maximum-likelihood estimates (and the corresponding standard errors 
of the mean) for item detection were .17 (.02) for Dw

o , .35 (.03) for Ds
o, 

.12 (.02) for Dw
n , and .28 (.03) for Ds

n, which closely resemble the 

estimates calculated from the lure-selection rates in Experiment 2.7 

Fig. 4C plots the individual Do estimates for strong targets against the 
individual Do estimates for weak targets. The majority of estimates lie 
above the main diagonal. A directional Wilcoxon signed-rank test 
showed that the Ds

o estimates were on average significantly larger than 
the Dw

o estimates, V = 1064, p < .001, dz = 0.74, supporting the idea 
that more target repetitions during studying resulted in a higher prob
ability of target detection during testing. Fig. 4D plots the individual Dn 

estimates of the lure-detection parameter for strong targets against weak 
targets. The majority of participants showed higher Ds

n than Dw
n esti

mates, and a directional Wilcoxon signed-rank test confirmed that the 
probabilities of lure detection in the 2HT model were on average 
significantly higher in the context of a strong target than in the context 
of a weak target, V = 1044, p < .001, dz = 0.57. This again supports 
our core hypothesis that target strength does not only affect the prob
ability of target detection in 2HT theory, but also the probability of lure 
detection conditional on target non-detection. 

Discussion 

Experiment 3 replicates the result of higher lure-selection rates 
conditional on strong targets with ranks larger than 1 as compared to 
weak targets with ranks larger than 1 (LSw

>1 < LSs
>1) that was found in 

Experiment 2 in an improved experimental design. Because each 2AFC 
display was immediately followed by the corresponding 4ART display 
(as opposed to the block-wise design in Experiment 2), it is reasonable 
for any threshold model to assume that the detection state of a target in 
2AFC displays remains stable when two more lures are added for the 
4ART display. A possible problem was that a bias toward consistent 
responding across 2AFC and 4ART judgments alone could account for 
the observed LSw

>1 < LSs
>1 pattern in Experiment 3. However, by 

explicitly modeling consistent responding in a 2HT model for the 2AFC- 
4ART paradigm, we showed that Dw

n < Ds
n still holds for conditional 

lure-detection probabilities. 
Taken together, the forced-choice-then-ranking procedure used in 

Experiment 3 overcomes the main concern we had with Experiment 2. 
Because every target in Experiment 2 was tested in the 2AFC test and the 
4ART test, participants might have recognized which word was present 
on both tests and inferred that this word must be the target. Nevertheless, 
another concern could not be ruled out completely in Experiment 3. The 
context of target presentation still changes between the 2AFC display and 
the 4ART display as two additional lures appear for the 4ART test. In 
principle, such a change in context could activate different components 
of memory, which in turn could affect the target-detection probability in 
the 2HT model. However, first, it is extremely implausible for any 
threshold model to assume that a target just detected in the 2AFC display 
will transition to a non-detection state in the 4ART display. Second, even 
if the context change affects the target-detection probability, it will make 
detection more likely, and the trials on which the target was assigned 
Rank 1 are excluded in the crucial LS>1 analysis. Hence, if anything, the 
new procedure provided an even stricter test than Experiment 2. 

General discussion 

The debate between continuous-strength and discrete-state models 
of recognition memory has been an active field of research for decades 

7 As a robustness analysis, we also fitted a hierarchical version of the 2HT 
model for the 2AFC-4ART paradigm (Klauer, 2010). The hierarchical group- 
level estimates and credibility intervals did not differ substantially from the 
posterior means and standard deviations aggregated across the individual 
parameter estimates reported in the main text. The model fitted the observed 
response frequencies and covariance structure very well as indicated by large 
posterior predictive p-values of .212 and .654 for test quantities T1 and T2, 
respectively. 
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(e.g., Bröder & Schütz, 2009; Dubé & Rotello, 2012; Dubé, Starns, 
Rotello, & Ratcliff, 2012; Egan, 1958; Green & Swets, 1966; Kellen, 
Klauer, & Bröder, 2013; Province & Rouder, 2012; Wixted, 2007; 
Yonelinas & Parks, 2007). The corresponding models—the SDT model 
and the 2HT model—make different assumptions about memory rep
resentations and decision processes. The SDT model assumes that fa
miliarity signals elicited by test items vary on a latent strength-of- 
familiarity continuum according to probability distribution for targets 
and a probability distribution for lures, and that a criterion placed along 
the familiarity continuum determines the recognition response. The 2HT 
model assumes that test items enter one of three discrete memory states 
(old-detection, new-detection, and non-detection) and that a probabi
listic response decision is made in case of item non-detection. 

The classical approach of evaluating the goodness-of-fit of the rival 
models to ROC data did not reveal clear-cut conclusions and requires 
strong distributional assumptions. As a remedy, the focus of the debate 
has recently shifted towards new methods for testing the competitors. 
Here we investigated the underlying assumptions of an experimentum 
crucis reported by Kellen and Klauer (2014) that compares simple 
observed response frequencies in a ranking task for which the models 
make competing predictions. Specifically, using a multiple-paradigm 
approach and taking a 2HT perspective, we tested whether lures in a 
K-alternative ranking task are more easily detected in the context of a 
strong versus a weak target—even when the target itself was not 
detected. The answer to this question is central for predictions of the 
2HT model put forward by Kellen and Klauer, but also bears relevance to 
the more general question of how to adapt recognition models to new 
experimental paradigms. 

Summary 

Kellen and Klauer’s (2014) adaptation of the 2HT model to ranking 
tasks predicts that the conditional probability of targets being assigned 
Rank 2 given that they were not assigned Rank 1 (c2) must be equal for 
weak and strong targets. Consequently, when Kellen and Klauer found 
that the c2 estimates were higher for strong than for weak targets, they 
dismissed the 2HT model for KARTs. However, the prediction only holds 
for 2HT models that assume invariance of the lure-detection probability 
(Dn) to changes in target strength—a strong auxiliary assumption that 
we termed lure-detection invariance assumption. We questioned this 
assumption as it entered into Kellen and Klauer’s formal argument. 

After formally showing that an alternative adaptation of 2HT theory 
to the KART paradigm without the lure-detection invariance assump
tion—the 2HT-KART model—predicts higher c2 values for strong tar
gets, we empirically tested this crucial assumption in different ways. In 
Experiment 1, we replicated the effect of target strength on the condi
tional probabilities of assigning Rank 2 to targets (cw

2 < cs
2). The 2HT- 

KART model provided a higher estimate of the lure-detection probability 
in the context of a strong than a weak target even when the target was 
not detected (Dw

n < Ds
n). In Experiments 2 and 3, we implemented a new 

forced-choice-then-ranking paradigm and analyzed the lure-selection 
rates for lures in a 2AFC pair conditional on targets with ranks other 
than Rank 1 in the subsequent 4ART test, which can be interpreted as 
target non-detection according to the target-detection dominance 
assumption. The results supported the findings of Experiment 1 in two 
empirical tests (LSw

>1 < LSs
>1). Furthermore, the mean estimates of Dw

n 
and Ds

n observed in Experiment 1 were matched by corresponding esti
mates in Experiment 2 and by mean estimates from a 2HT-2AFC-4ART 
model accounting for below-chance performance on the 2AFC displays 
of Experiment 3 through the process of consistent responding. 

Possible remaining questions 

Variants of 2HT models and the principle of complete information loss 
MPT models assume that observable responses depend on the latent 

cognitive state from which they emerge and not on the conditions or 
processes that led into this state (Krantz, 1969; Province & Rouder, 
2012). For example, when an item is not detected and thus in the un
certainty state according to 2HT, all information about the item’s history 
will be lost (assumption of complete information loss; Heck & Erdfelder, 
2016; Kellen & Klauer, 2015; Swagman, Province, & Rouder, 2015). 
This entails that non-detected targets and lures are indistinguishable in 
the uncertainty state. Hence, the question arises how it is possible that 
the strength of a non-detected target may nevertheless affect the con
ditional lure-detection probability Dn. Although this may appear like a 
violation of the information loss principle upon first sight, it is not. 

To see this, it is important to acknowledge that the proposed 2HT 
adaptations to different ranking tasks do not consider items in isolation. 
In contrast to the standard 2HT model for old–new recognition, the 2HT- 
KART model and the 2HT-2AFC-KART model both refer to test displays 
consisting of one target and K − 1 lures. Each of the K test items in a test 
display can then be either in a detection state or in a non-detection state, 
which results in 2K possible memory-state combinations for an item 
tuple as the relevant level of analysis. The probability of entering a 
detection state for each item depends on properties of the entire item 
tuple—one property being the strength of the target. As detailed in the 
Appendix, the detection probabilities can be conceived as results of fa
miliarity contrasts between each item in the display and the K − 1 items 
that form its context. It is thus to be expected that the probability of 
detecting a lure in the context of a strong target (Ds

n) exceeds the 
probability of detecting the same lure in the context of a weak target 
(Dw

n ) simply because the familiarity contrast is likely to be more extreme 
in the former case. Notably, this does not depend on whether the 
conditionally independent target-detection process itself results in a 
positive or a negative outcome. In sum, our proposed 2HT models for 
ranking tasks assumes that ranking judgments depend on the specific 
KART-tuple of memory states from which they emerge. Judgments are 
not influenced by the conditions and processes that led into this specific 
memory-state combination. Hence, there is no violation of the 
information-loss principle in the 2HT adaptations for ranking tasks 
proposed here. 

The necessity of 2HT adaptations to different judgment tasks 
It is important to remember that the standard 2HT model in Fig. 1 

was originally developed for binary responses (e.g., yes–no, 
same–different, old–new). In order to model ranking judgments in a 
KART test, the K items presented as the test tuple need to be compar
ed—even when assuming that they were initially processed in isolation. 
This makes the task a multiple-item discrimination task and not a single- 
item recognition task. Hence, the standard 2HT model requires appro
priate modifications to account for this specific task structure. Impor
tantly, these are not ad-hoc modifications, but adaptations of models to 
different research paradigms (i.e., how the models can handle multiple- 
item discrimination in 2AFC tasks, ranking tasks, and combinations 
thereof). This is in line with the philosophy underlying MPT modeling, 
according to which measurement models need to be adapted and tested 
for each experimental paradigm anew even when they were derived 
from the same underlying psychological theory (Erdfelder et al., 2009) 
and therefore adhere to the same set of core assumptions (Kellen et al., 
2021). Put differently, our 2HT model is not a post-hoc modification of 
Kellen and Klauer’s (2014) 2HT model to account for cw

2 < cs
2. It is 

simply a different adaptation of 2HT theory to ranking tasks, which 
performed better in Experiments 1 to 3 of our current research than 
Kellen and Klauer’s adaptation. 

Implications for ranking tasks 

What are the implications of our results with respect to the modeling 
of ranking data? Importantly, most of Kellen and Klauer’s (2014) con
clusions still hold. Our results do not affect the conclusion that variants 
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of continuous-strength models, such as the SDT model, are in line with 
their critical test. This is not only true for SDT assuming normal distri
butions, but for many alternative continuous familiarity distributions. 
However, whereas Kellen and Klauer concluded that the 2HT theory did 
not pass their critical test, we showed that 2HT theory is well compatible 
with the observation of cw

2 < cs
2. As supported by the three experiments 

reported here, the probability of lure detection monotonically increases 
with target strength. Discrete-state models in the 2HT framework that 
take this finding into account are therefore capable of predicting 
cw

2 < cs
2. Thus, it can be argued that ranking data are in line with ver

sions of discrete-state models in the 2HT framework that assume that 
discrete states mediate between a latent familiarity continuum and 
observable responses. 

Further support for discrete-state models was reported by Kellen 
et al. (2016). The authors pointed out that Luce’s (1963) LT model is also 
in line with Kellen and Klauer’s (2014) critical test. The LT model as
sumes just two memory states—detection and non-detection—rather 
than three states as the 2HT model. The threshold between the two states 
of the LT model is supposed to be “low” in the sense that it can be 
exceeded by lures and targets with probabilities qn and qo, respectively 
(with qn ≤ qo). Thus, in contrast to the 2HT model, both item types can 
reach the same detection state, which allows for the possibility that a 
lure is assigned Rank 1 and the detected target is assigned Rank 2. 
Hence, the finding cw

2 < cs
2 is fully compatible with the LT model. 

Implications for Kellen and Klauer’s critical test 

Given that variants of the SDT model, the 2HT model, and the LT 
model pass the test proposed by Kellen and Klauer (2014), can we 
conclude that their critical test is much less diagnostic than previously 
thought? We would not fully subscribe to such a conclusion because the 
test criterion is strong enough to rule out a number of alternative 
discrete-state models discussed in the literature. In particular, any 
threshold model that (1) allows only targets but not lures to enter a 
detection state, (2) assumes that items in the detection state are not 
always ranked higher (i.e., smaller rank values) than items in non- 
detection states, or (3) assumes a fixed, invariant probability Dn = a 
for lure detection is in conflict with the observation that conditional 
Rank-2 probabilities increase with target strength. One prominent 
model that falls in this class of to-be-rejected models is Blackwell’s 
(1953) one-high-threshold (1HT) model. The 1HT model can be seen as 
a special case of the 2HT model based on the assumption that Dn = 0, 
making the model effectively a two-state model without the possibility 
to detect lures. Notably, the 1HT model is known to be at odds not only 
with ranking data but also with old–new recognition data (see Kinchla, 
1994). 

This leads us to an important point. Although our work contrib
utes to the debate between continuous-strength and discrete-state 
models by demonstrating that ranking tasks do not enjoy the exper
imentum crucis character ascribed by Kellen and Klauer (2014), our 
work does not provide a direct comparison of whether SDT or 2HT 
models describe KART behavior better. Future work should therefore 
aim at developing different SDT and 2HT variants for the KART 
paradigm (potentially coupled with alternative tasks like the 2AFC 
task), fit these to appropriate data, and directly compare their 
performances. 

Implications for model adaptations to new experimental paradigms 

What are the implications of our results with respect to using well- 
known models and applying them to new experimental paradigms? 
Our work suggests that binary old–new decisions and ranking decisions 
in recognition memory are not the same (see also Voormann, Spektor, & 
Klauer, 2021), and we should therefore treat them differently (e.g., our 

2HT-KART model makes no prediction for the case of K = 1). In 
particular, evidence obtained by the new 2ART-KART model suggests 
that test items need to be modeled as components of a test display when 
they are presented and processed simultaneously with other test items. 
Put differently, the complete vector of (target and lure) detection and 
non-detection states needs to be considered for each item tuple, instead 
of modeling each item in isolation. This account is compatible with 
Luce’s (1963) LT model and Province and Rouder’s (2012) 2HT model 
for the standard 2AFC task. In the latter case, an item pair is either in a 
state of left-item detection, right-item detection, or non-detection. 
Because the distribution of responses from a cognitive state does not 
depend on target strength, conditional independence holds. However, 
the probability of entering each state does depend on target strength: 
The higher the target strength is, the more likely it is that the item pair 
will enter a state of target detection (i.e., only the target is detected, or 
the target and the lure are detected) or a state of only-lure detection (i.e., 
only the lure is detected). 

As our work highlights the importance of the theoretical treatment of 
auxiliary assumptions, future work should carefully account for 
different auxiliary assumptions for threshold theories. At the same time, 
different 2HT model variants will have to share the same core assump
tions (e.g., complete information loss, high-thresholds). This may not 
necessarily allow for a straightforward model hierarchy (e.g., high- 
threshold placement on the item level versus the tuple level). Howev
er, it shows that recent calls for combined modeling approaches in which 
one model is applicable to different paradigms (e.g., Jang, Wixted, & 
Huber, 2009; Kellen, Klauer, & Singmann, 2012) need to bear in mind 
that task-specific mechanisms may require additional model compo
nents in order to handle experimental data (e.g., Kellen et al., 2021; 
McAdoo, Key, & Gronlund, 2019). 

Implications for the continuous–discrete modeling debate 

What are the implications of our results with respect to the con
tinuous–discrete modeling debate of recognition-memory data? Our 
work shows that using the new variants of continuous-strength and 
discrete-state models, and carefully applying them to new paradigms, 
will allow discriminating between them more sharply. For example, 
Kellen and Klauer (2015) proposed an additional qualitative criterion 
for recognition-confidence ratings based on weak versus strong targets. 
They showed that the 2HT model meets this test criterion, whereas the 
SDT model does not. In contrast, by modeling confidence ratings and 
response times jointly, Starns (2021) provided evidence against 2HT and 
1LT theorythat can be accounted for by SDT and 2LT theory. The latter is 
instantiated by a three-state recognition model similar in structure to the 
2HT model, but with two low-thresholds rather than two high- 
thresholds (see also Starns, Dubé, & Frelinger, 2018; Voormann, 
Rothe-Wulf, Starns, & Klauer, 2020). 

Even more recently, Voormann et al. (2021) showed that the 2HT 
model is more parsimonious in describing 2AFC data than the SDT 
model. In contrast, using a 2AFC test with pairs of targets and lures 
previously classified as old, Ma, Starns, and Kellen (2021) showed that 
the dual-process model (Yonelinas, 1994) outperforms both the SDT and 
the 2HT model. Most recently, using another critical distribution-free 
test, Meyer-Grant and Klauer (2021) showed that an SDT model with 
monotonic rank order probabilities outperforms an 2HT model in a 
simultaneous detection and identification task. Thus, when combining 
the conclusions of recent research as well as our present work, we may 
conclude that both model classes have gained support and suffered 
losses in different paradigms. If recognition memory is considered to be 
context-dependent to the extent that different tasks require either 
continuous-strength or discrete-state recognition (e.g., Malejka & 
Bröder, 2019; McAdoo & Gronlund, 2019; McAdoo, Key, & Gronlund, 
2018), which recognition strategy is applied may well depend on the 
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task at hand and how it can be solved in the most efficient way 
(Malmberg, 2008; Stevens, 1961). 

Closing remark 

Although we questioned one crucial auxiliary assumption required 
for Kellen and Klauer’s (2014) prediction and interpretation of their 
results, we definitely subscribe to their closing remark. The theoretical 
and empirical concerns regarding ROC analysis call for alternative ap
proaches to study recognition memory and to compare rival measure
ment models. Testing core properties of the rival models in modified 
recognition paradigms or in recognition paradigms extended by other 
judgments from memory (such as confidence ratings, response times, or 
source-memory judgments) are elegant and more informative alterna
tives. While old–new recognition judgments provide only a limited, 
often noisy database and require a fairly large number of auxiliary as
sumptions, novel paradigms for testing recognition-memory models 
may provide critical tests with fewer and weaker assumptions. 
Furthermore, the simple qualitative, but yet very specific predictions 
derived from the models for these paradigms allow direct model com
parisons based on standard hypothesis tests rather than complex model- 
selection techniques. However, when testing established measurement 
models in novel recognition-memory paradigms, the competing models 
need to be adapted carefully to the specific design and structure of the 
task. Of course, continuous-strength and discrete-state theories of 
recognition memory are supposed to account for data across as many 
experimental paradigms as possible. Yet it is important to consider the 
paradigm-specific auxiliary assumptions that enter into the derivation of 
precise, testable measurement models from these general theories. 
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Appendix A. Familiarity-contrast model for target and lure detection in K-alternative ranking tasks 

In this appendix, we outline a stochastic process model of familiarity contrasts that may underlie detection of targets and lures in K-alternative 
ranking tasks (KARTs). The model provides an explanation of why lure-detection probabilities will generally increase with the strength of the target in 
the same display (i.e., Dw

n ≤ Ds
n), irrespective of whether the target item itself is detected or not. In other words, even when the target remains un

detected, its strength may affect detection of lures in the same test display. To show this, we assume that attention switches from one item to the next in 
the KART display while performing the ranking task. In each of the K steps, an independent automatic process (described below) takes place, which 
determines whether the attended item (target vs. lure) will enter the detection or the non-detection state. Based on the vector of detection or non- 
detection states determined in these K steps, ranking judgments are derived as defined in the 2HT-KART model illustrated in Fig. 2A of the main text. 

More specifically, we assume that the detection probability for each attended item k (k = 1,⋯, K) in a KART display—Do when k is the target and 
Dn when k is a lure—is determined by a familiarity contrast ψ(xk) between item k and its context (i.e., the other K − 1 items in the display): 

ψ(xk) = xk −
∑

j∕=k

wj⋅xj, (A1)  

where xk denotes the latent familiarity value of item k sampled from its underlying familiarity distribution, which has density fo(⋅) when k is the target 
and density fn(⋅) otherwise. Correspondingly, xj denotes the latent familiarity value of item j (j ∕= k). Finally, wj ∈ [0, 1] is a weight with the constraint 
that 

∑
j∕=kwj = 1. For simplicity, we may assume that all weights are equal, wj = 1

K− 1, in which case 
∑

j∕=kwj⋅xj reduces to the arithmetic mean of the 
context items’ familiarity values (for a similar idea of averaging familiarity values in the context of SDT, see Wixted, Vul, Mickes, & Wilson, 2018). 

Once the familiarity contrast has been determined for item k, attention switches to a new item k′ in the same display, automatically resulting in a 
new familiarity contrast ψ(xk’ ). This is repeated until all K items were attended. In other words, joint processing of the K items in a KART display 
results in K item-specific contrasts—each measuring the mean familiarity difference between an attended item and its context. Importantly, when 
switching attention to a different item k′ (k′

∕= k) in the same display for which a detection state has not yet been determined, we assume that its 
familiarity contrast ψ(xk’ ) is based on a vector of familiarities sampled independently from all K familiarity distributions. 

Hence, to obtain the familiarity contrast of the target in a 4ART display, four values are sampled from each of the familiarity distributions un
derlying the four test items. To obtain the familiarity contrast of any lure in the same test display, four independent values are sampled, ensuring 
conditional independence of familiarity values sampled for different attended items. In addition, when an attended item occurs repeatedly within the 
same test trial (e.g., in the forced-choice-then-ranking paradigm in Experiment 3), it is not necessary to resample any familiarity values because the 
item’s memory state has already been determined. In such a case, the memory state of the repeated item is maintained, that is, detected items remain 
in the detection state and non-detected items in the uncertainty state. 

When test items are selected at random from the same item pool (as was the case in both Kellen & Klauer, 2014, and all of our own experiments), all 
lures are characterized by the same familiarity distribution. Thus, when target strength is manipulated between two levels (weak vs strong), only three 
types of familiarity distributions need to be distinguished—one for strong targets, f s

o(⋅), one for weak targets, fw
o (⋅), and one for new items, fn(⋅), with 

means in descending order. This implies four possible contrast types in KART displays: (1) a strong attended target is compared with K − 1 lures, (2) a 
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weak attended target is compared with K − 1 lures, (3) an attended lure is compared with a strong target and K − 2 lures, and (4) an attended lure is 
compared with a weak target and K − 2 lures. These four contrast types determine the possible distributions of the familiarity contrasts as well as the 
corresponding detection probabilities—Ds

o, Dw
o , Ds

n, and Dw
n , respectively. The detection probabilities, Dn and Do, are defined as follows: 

Dn = P(ψ(xn) ≤ hl), (A2)  

Do = P(ψ(xo) > hu). (A3)  

In these equations, hl and hu denote lower and upper thresholds on the contrast dimension, respectively, such that item k in a KART display enters the 
detection state when either ψ(xk) ≤ hl or ψ(xk) > hu (with hl ≤ hu). In line with 2HT theory, both thresholds are assumed to be “high” in the sense that 
only familiarity contrasts of targets may exceed hu and only familiarity contrasts of lures may fall below hl. Assuming contrasts based on equal weights 
wj =

1
K− 1 as specified above, this implies Ds

o ≥ Dw
o (because contrast values are likely to be larger for strong than for weak targets) and Ds

n ≥ Dw
n (because 

contrast values are likely to be smaller, or more negative, for lures when their context includes a strong rather than a weak target). Attended items with 
hl ≤ ψ(xk) ≤ hu are in the uncertainty state, in which pure guessing applies. Based on this assignment of attended items to memory states as implied by 
their familiarity contrasts, ranking responses are then probabilistically derived from the 2HT-KART model in Fig. 2A of the main text. 

One might argue that the familiarity-contrast model proposed here resembles SDT as it assumes continuous familiarity distributions on the latent 
level. We do not object against such a view, which is admissible for basically any threshold model (e.g., Macmillan & Creelman, 2005; Malejka & 
Bröder, 2019). Note, however, one important difference between the proposed 2HT-KART process model and the SDT model: According to the former, 
discrete memory states fully mediate between the latent continuous level and observable responses in the KART. That is, only a finite number of 
memory states matter in determining response probabilities (as illustrated in Fig. 2A of the main text), whereas familiarity contrasts only serve the 
purpose to determine detection probabilities. Once items are assigned to detection and non-detection states, the contrast values that led to this 
assignment become completely irrelevant. 

However, in contrast to the 2HT model for binary old–new recognition, our 2HT model for the ranking task discretizes memory strength at the level 
of the item tuples and not at the level of the individual items within the tuple. While old–new recognition requires the evaluation of individuals items, 
the ranking task requires comparing multiple items within one trial (i.e., the items in the current test display). Hence, the two high-thresholds must 
operate on the item tuple’s familiarity contrast and not on an individual item’s memory strength. In our opinion, this assumption is more in line with 
multiple-item discrimination than assuming that items are processed in isolation. Hence, single-item and multiple-item recognition tasks are quite 
different, and thus can and should require different process (and measurement) models. 

In a nutshell, we suggest that ranking judgments in KARTs depends on multiple familiarity contrasts among all items in the test display. Moreover, 
lure detection is facilitated when the lures are presented in the context of a strong target as compared to a weak target. This is because the contrast is 
more likely to fall below the relevant threshold hl in the former case, irrespective of whether the target is actually detected in the same display or not. 
This results in the prediction that Dw

n < Ds
n even when the target has not been detected itself. 
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Bröder, A., & Schütz, J. (2009). Recognition ROCs are curvilinear—or are they? On 
premature arguments against the two-high-threshold model of recognition. Journal 
of Experimental Psychology: Learning, Memory, and Cognition, 35(3), 587–606. https:// 
doi.org/10.1037/a0015279 
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