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Abstract

How should students be assigned to schools? Two mechanisms have been
suggested and implemented around the world: deferred acceptance (DA)
and top trading cycles (TTC). These two mechanisms are widely consid-
ered excellent choices because they are strategy-proof, in addition to DA’s
no justified envy and TTC’s Pareto optimality. We show theoretically and
empirically that both mechanisms perform poorly with regard to two key
desiderata such as efficiency and equality, even in large markets. In con-
trast, the rank-minimizing mechanism (RM) is significantly more efficient
and egalitarian. It is also Pareto optimal for the students, unlike DA, and
generates less justified envy than TTC.
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1. Introduction

School choice is a common way to assign students to schools based on the
students’ and schools’ preferences. Students and schools rank their poten-
tial matches and submit this information to a centralized clearinghouse.
Afterwards, an algorithm (also known as a mechanism) is applied to the
submitted data and an allocation of students to schools is generated.

But which mechanism should we use to assign students to schools? Che
and Tercieux (2018) convincingly argue that: “the selection must be based
on some measure of aggregate welfare of participants. For instance, if one
Pareto efficient mechanism yields a significantly higher utilitarian welfare
level or a much more equal payoff distribution than others, that would con-
stitute an important rationale for favoring such a mechanism’”.

We show that the mechanism that minimizes the sum of ranks for the stu-
dents (henceforth RM, Featherstone, 2020) outperforms two of the most
popular mechanisms used in school choice with respect to the two desider-
ata named above, i.e. utilitarian welfare and equality. RM is superior to
Gale’s and Shapley’s deferred acceptance (DA) mechanism and to Gale’s top
trading cycles (TTC) mechanism in that: i) RM assigns the average student
to a school they prefer more (i.e. it is more efficient), and ii) RM assigns
the worst-off student to a school that they prefer much more (i.e. it is more
egalitarian).

In particular, if there are n students and n schools with one seat each,
and preferences for both sides are drawn uniformly at random, TTC and
DA asymptotically assign the average student to approximately their log(n)
most preferred school, whereas RM assigns them to a school better than
their second choice. If we focus on the worst placement, rather than the
average, the difference is even bigger: RM assigns them to their logs(n)
most preferred school, whereas DA assigns them to their log?(n) and TTC
to a school in the bottom half of their rank list (see Fig. 1 for the rank
distribution). In addition, because all Pareto optimal and strategy proof
mechanisms are equivalent (TTC and serial random dictatorship included),
our results show that requiring strategy-proofness in school choice mecha-
nisms can significantly hurt efficiency and equality.

Furthermore, RM is Pareto optimal for the students, unlike DA, and gener-
ates justified envy for fewer students than TTC, which is surprising because
RM does not use schools’ priorities but TTC does. We prove these prop-
erties for random markets where preferences are drawn independently and
uniformly at random (see Table 1), and document them by analyzing real
data from the student assignment system in Budapest (see Fig. 2).
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Figure 1: Rounded average rank distribution in 1,000 random markets with n = 100.
Preferences are drawn independently and uniformly at random. The x-axis is truncated
at the highest value with positive density. See Appendix B for details.
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Figure 2: Rank distribution generated for 10,131 students in the secondary school admis-
sions in Budapest. The maximum rank is 244. See Section 5 for details.

Table 1: Theoretical properties of school choice mechanisms in large random markets.

RM TTC DA

Average rank <2 log(n)  log(n)
Maximum rank logy(n) > 0.5n  log?(n)
Students w. justified envy 0.33n  0.39n 0
Pareto optimal Yes Yes No
Strategy-proof No Yes Yes




2. Related Literature

The question of which mechanism should be used to assign students to
schools has been frequently asked. The answer to this question in the mar-
ket design literature is that all frequently used mechanisms generate equiva-
lent rank distributions. This equivalence has been established theoretically
for a wide class of mechanisms (Che and Tercieux, 2018; Pycia, 2019) and
empirically using real-life data (Abdulkadiroglu et al., 2009; Pathak and
Sonmez, 2013; Che and Tercieux, 2018; Abdulkadiroglu et al., 2020). Our
paper challenges the literature consensus by showing that Pareto optimal
mechanisms are not equivalent, as can be observed in Figs. 1 and 2.! Three
reasons explain the discrepancy between our results and those in the liter-
ature, namely i) different model specifications, ii) we consider non-strategy
proof mechanisms, like RM, and iii) RM has not been used in empirical
studies. We explain these differences in detail below.

The closest paper to ours is Che and Tercieux (2018). Using a random mar-
ket approach, they show that the normalized payoff distribution generated
by any Pareto optimal mechanism is asymptotically equivalent. Further-
more, they compare the rank distribution generated by DA and TTC (but
not RM) using data from the New York City school choice program. The
main lesson from their paper is that all Pareto optimal mechanisms are
equivalent in large markets, and therefore there is no reason to prefer any
Pareto optimal mechanism over another. Our paper shows that the payoff
equivalence between Pareto optimal mechanisms breaks down once i) ranks
are used instead of normalized payoffs, and ii) students are allowed to rank
all available schools, rather than just a few.

Pycia (2019) obtains a similar equivalence result to that of Che and Tercieux:
he shows that any anonymous statistics, such as rank distribution, generated
by Pareto efficient and strategy-proof mechanisms are equivalent, even in
finite markets (note that RM is not strategy-proof).? This implies that all
of our results for TTC’s poor performance with regards to efficiency and
equality also apply to the random serial dictatorship mechanism (RSD),
which “has a long history and is used in a wide variety of practical allocation
problems, including school choice, worker assignment, course allocation, and
the allocation of public housing” (Pycia and Troyan, 2021).

To show that RM is more efficient than DA and TTC, we connect the school

LA two-sample Kolmogorov-Smirnov test rejects the null-hypothesis that any two dis-
tributions in Figures 1 or 2 are the same at the 1% significance level.

2Pyicia’s result builds on a previous, more general equivalence result for large markets
by Liu and Pycia (2016).



choice problem to that of assigning one of n jobs to each of n workers so
to minimize costs.> Worker 4 incurs a cost c¢i; when completing job j. The
matrix C' contains all such costs. When each row of C' is an independent
random permutation of {1,...,n}, this problem is equivalent to that of find-
ing the rank-minimizing allocation of students to schools, ignoring schools’
priorities. Each entry ¢;; denotes the rank (cost) of school (job) j for student
(worker) 4. To show that the RM is more efficient than TTC and DA, we
invoke a result in Parviainen (2004) which shows that the cost-minimizing
allocation has an average cost smaller than 2, and compare it with the well-
known average rank in TTC and DM, which is around log(n). Obtaining the
maximum rank lower bound and the fraction of students with justified envy
is easy using the limit distribution of ranks in RM, which is also provided
by Parviainen.

The result of average rank being bounded in RM was recently independently
discovered by Nikzad (2022), who provides a bound of 7.75 (ours is 2). His
proof uses random graph arguments and is different (and significantly more
involved) than ours. Sethuraman (2022) shows that Nikzad’s bound can be
improved to 2 using the cost assignment problem with costs distributed in
(0,1) (Aldous, 2001), without using Parviainen’s result. These papers do
not study the maximum rank and justified envy in RM, TTC and DA, and
do not analyse the performance of these three mechanisms using real-life
data in which preferences are correlated.

The RM mechanism was first studied in economics by Featherstone (2020).
He documents that RM has been used in practice to assign teachers to
schools in the US, and shows that any selection of the RM mechanism can-
not be strategy-proof. Nonetheless, he shows that truth-telling is a best
response in RM when students have little information about other students’
preferences and do not truncate their preference list. He shows that a rank
efficient allocation must be ordinally efficient (and thus ex-post efficient),
but the converse is not necessarily true. He also shows that an inefficient
assignment can converge to the RM outcome by performing local swaps.
Troyan (2022) has recently shown that RM is non-obviously manipulable,
meaning that although potential manipulations exist, they cannot be rec-
ognized by cognitively limited agents. Therefore, RM has better icentives
proprties than the well-known Boston mechanism, which is obviously ma-
nipulable.

The fact that DA is inefficient is well-known: Kesten (2010) shows that, in a

3A large literature in mathematics, uncited in economics, has studied this problem.
See Olin (1992) and Krokhmal and Pardalos (2009) for a summary of it.



worst-case scenario, it may assign each student to her worst or second-worst
school. We show that DA is also inefficient in an average-case scenario. The
inefficiency of TTC is less known, partially because the matching literature
often focuses on the weaker efficiency notion of Pareto optimality. Nonethe-
less, Manea (2009) has shown that the number of preference profiles for
which RSD is ordinally efficient (and thus rank efficient) vanishes when the
number of agents grows. Our result complement his by showing that RSD
(and TTC) not only rarely produces a rank efficient allocation, but also the
size of its inefficiency does not vanish in large markets. To our knowledge,
the inequality of both mechanisms has remained largely unstudied in the
economics literature.

TTC minimizes justified envy among all Pareto optimal and strategy-proof
mechanisms (Abdulkadiroglu et al., 2020). Neither DA nor RM are in this
class of mechanisms. We find theoretically that fewer students experience
justified envy in RM than in TTC. In practice RM and TTC generate
roughly the same amount of justified envy.

3. Model

We study a standard one-to-one school choice market (Abdulkadiroglu and
Sonmez, 2003), which consists of:

1. A set of students T' = {1,...,n},

2. A set of schools S = {si,...,s,}, with each school having space for
one student only,

3. Strict students’ preferences over schools >:= (>1,...,>,), and

4. Strict schools’ priorities over students > = (bg,,...,>s, ).

An allocation x is a perfect matching between T and S. We will denote
by x; the school to which student ¢ is assigned, and by x, the student that
school s is assigned to. Student ¢ experiences justified envy in allocation z
if there exists a school s such that s >=; x; and ¢ >, z,.

The function rk;(z;) returns an integer between 1 and n corresponding to
the ranking of z; in the preference list of student ¢, i.e. the most desirable
option gets a ranking of 1, whereas the least desirable one gets a ranking
of n. A mechanism is a map from school choice markets to (a probability
distribution over) allocations. An allocation x Pareto dominates a different



allocation y if, for every student ¢, rky(z;) < rk¢(y;) and for some student j,
rk;j(z;) < rk;(y;). An allocation is Pareto optimal if it is not Pareto domi-
nated. A Pareto optimal mechanism returns a Pareto optimal allocation in
every school choice problem.

We use %M to denote one of the (possibly many) allocations that minimizes
the sum of ranks for students, which we henceforth call rank efficient or rank
minimizing. X®M denotes the set of all rank efficient allocations. The rank-
minimizing mechanism (henceforth RM) is one that returns a rank efficient
allocation for every matching market.*

Two other mechanisms are of interest. The first is top trading cycles (TTC),
in which the following two steps are repeated until all agents have been
assigned an object:

1. Construct a graph with one vertex per student or school. Each student
(resp. school) points to their top-ranked school (resp. student) among
the remaining ones. At least one cycle must exist and no two cycles
overlap. Select the cycles in this graph.

2. Permanently assign each student in a cycle to the school they point
to. Remove all students and schools involved in a cycle.

The second mechanism of interest is student-proposing deferred acceptance
(DA). It works as follows:

1. All unmatched students apply to their most preferred school that has
not rejected them. Each school that has received a proposal puts the
one sent by the highest priority student in a waiting list and perma-
nently rejects all other received applications (if any).

2. Repeat step 1 until all schools have received at least one application.
Assign each student to the school which has them on a waiting list.

We use 2TTC and 2P to denote the allocation obtained by the TTC and
DA mechanisms, respectively. Schools’ priorities are used to compute TTC
and DA, but are irrelevant in RM.

4Rank efficiency is a stronger efficiency notion than ordinal efficiency and Pareto
optimality (Featherstone, 2020). We simply write efficiency to refer to rank efficiency.



4. Results

Our theoretical results relate to the properties of the expected allocation
generated by RM, TTC and DA when students’ preferences and schools’ pri-
orities are drawn independently and uniformly at random. This assumption
is commonly used to analyze matching markets.” We study the asymptotic
behavior of: i) expected average rank (efficiency), ii) expected maximum
rank (inequality), and iii) expected number of students with justified envy
generated by RM, TTC and DA in the next subsections.5

Efficiency. We first study the expected average rank generated by RM, TTC
and DA in random markets. To do so, we define T := 2 3" | rk;(«;), which
denotes the average rank of the school to which students are assigned in
allocation .

Proposition 1 shows that the expected average ranking in RM is smaller
(i.e. better) than that in TTC and DA. It follows directly from a result by
Parviainen (2004) that has not yet been cited in the economics literature. In
contrast, the results for DA and TTC are well-known and we simply restate
them for completeness.

Proposition 1. The expected average rank in RM, TTC and DA is:

lim E[zfM]) < 2 (1)
tim B 2)

n—oo  logn -

T i (3)

n—oo logn

Proof. Statement 1 is proven by Parviainen (2004, Theorem 2.1, p. 105).7
Statement 2 is proven by Knuth (1996, equation 4, p. 439).® Statement 3
is proven by Pittel (1989, Theorem 2, p. 538).

5See Che and Tercieux (2018) and references therein.

SExpected ranks are commonly used in matching markets to measure welfare (e.g.
Ashlagi et al., 2017).

"Parviainen (2004) also provides a lower bound, and thus the expected average rank
in RM is such that 72/6 < lim,—e B[] < 2.

¥Knuth shows that E[}"7_, rk; (27 *°)] = (n+1)H, —n, where H,, is the n-th harmonic
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Proposition 1 shows that the rank inefficiency of DA and TTC does not
vanish as the market grows large because, even if the average rank obtained
by DA and TTC grows slowly with the size of the market, the average rank
obtained by RM is constant and does not grow with n.

Inequality. We measure inequality as the rank of the object obtained by the
worst-off agent in the market, i.e. the maximum rank in the rank distribu-
tion. This measure follows John Rawls’ idea that the welfare of a society is
that of its worst-off member.” To do so, we define x = max; rk;(z;), which
denotes the rank of the object obtained by the worst-off agent in allocation
x.

Proposition 2 shows that RM generates a significantly more egalitarian al-
location than DA and TTC. In particular, TTC generates an allocation so
unequal that the worst-off student is assigned to a highly undesirable school
in the lower half of their preference list. Such rank is much higher than the
corresponding value for RM (logy(n)) and DA (log?(n)).

Proposition 2. The expected mazimum rank of RM, TTC and DA is:

E[QRM} B
I Togy(m) @
lim E[szC] > 0.5 (5)
By ©)

n—o00 ]og2 (n)

Proof. Statement 5 was proven by Knuth (1996, p. 440). Statement 6 was
proven by Pittel (1992), theorem 6.1, p. 382 and note before references, p.
400.

number and, therefore, lim,—o 2E[> rk(z;  ©)] = log(n). See also the note after the

acknowledgements in Frieze and Pittel (1995), p. 807.

9 Alternatively, one could define inequality as the difference in ranks between the worst-
and best-off agent. Because the rank of the object obtained by the best-off agent is 1 in
any Pareto optimal allocation (Abdulkadiroglu and Sénmez, 1998), both measures are
equivalent.



To prove statement 4 we use the asymptotic rank distribution in RM. The
probability that a student is assigned to their i-th choice is asymptotically
equal to % (Theorem 1.3 in Parviainen (2004)), so that a student is assigned
to a school with rank 1 with probability 1/2, to a school with rank 2 with
probability 1/4, and so on. This probability distribution is very similar to
the number of consecutive heads in n independent coin tosses, in which 0
heads obtains with probability 1/2, 1 heads with probability 1/4 and so on
(the distribution of ranks in RM is shifted by +1). Finding the longest run
of heads is a known problem, in which the longest run is equal to lol(g)g(zé? )

(Schilling, 2012). Therefore, the maximum rank in RM is equal to lcii(g?%z +

1 = logy(n).10 O

Although we only provide a lower bound for the maximum rank in TTC
(of 0.5n), simulations suggest that the maximum rank in TTC converges to
0.63 n.

Justified Envy. We use e eTTC and ePA to denote the fraction of students
who experience justified envy in the allocation obtained in RM, TTC and
DA, respectively. Proposition 3 shows that RM generates fewer cases of
expected envy than TTC, which is interesting since TTC is envy minimal in
the class of strategy-proof and Pareto optimal mechanisms (Abdulkadiroglu
et al., 2020).

Proposition 3. The expected fraction of students with justified envy in RM,
TTC and DA is:

: RMy _
nh_)IglOE[e ]=0.33 (7)
lim E[e?7) = 0.3863 (8)
n—oo
- DAy _
nlglgoE[e =0 (9)

Proof. Statement 9 is well-known, as DA does not generate justified envy
(Gale and Shapley, 1962).

0Frieze and Sorkin (2007, Theorem 2, p. 1436) proves that the maximum cost in the
cost assignment problem when costs are uniformly distributed in [0, n] is ©(log(n)).

10



For the remainder of the proof we use the fact that the number of students
with justified envy in TTC (eT7¢) and RSD (eR5P) is asymptotically equiva-
lent (Che and Tercieux, 2017). Since schools’ priorities are irrelevant in both
RM and RSD, a student who is assigned to their i-th most preferred school
does not experience justified envy with probability 21%1 To see this, notice
that students placed into their 1st choice trivially do not experience justi-
fied envy with probability 1; students placed into their second best choice
do not experience justified envy if the student who is accepted at his most
preferred school has a higher priority than them, which occurs with proba-
bility 1/2; for students who are assigned to their third choice, they do not
experience justified envy if their first and second most preferred school rank
their assigned student above them, i.e. with probability 1/4, and so on.

Thus, to obtain the total fraction of students who do not experience justified
envy in RM and RSD (TTC), we just need to multiply i) the probability that
a student matched to their i-th most preferred school does not experience
justified envy, times ii) the fraction of students who are assigned to such
a choice in RSD and RM. The fraction of students assigned to their i-th
choice in RM asymptotically equals % (Theorem 1.3 in Parviainen (2004)),
whereas in RSD the probability that the k-th dictator is assigned to his j-th
most preferred school is given by py ; = %(I;j)(j —Din =)l (n+1-k)
(Knuth, 1996).!! Putting these expressions together, and after some algebra
for the RSD case detailed in Appendix A, we obtain:

n n

11 1
RM __ _
e _1—Z?><F_1—Z%+0.33 (10)
1=1 =1
RSD R N e AP 1
e :1_g225 i1 (=D n=j)!(n+1-k) 5= — 0.3863 (11)
=1 j=1

eTTC]

which finalizes the proof, since lim,, o E[ = lim,, oo E[eRSP]. d

HFor example, if k = 1, then p1; = 1 and p1; = 0 for any j > 1. Similarly, when
j =1, then py1 = 2*=F Note that (4) =1and () =0 for any m > n.

n

11



5. Data

One critique that can be made to our random market results is that they
assume that students’ preferences are independent, whereas students’ pref-
erences tend to be correlated, and such correlation may improve the perfor-
mance of DA and TTC with regards to efficiency and equality. We show that
this is not the case by using real-life data from secondary school admissions
in Hungary in 2015. In summary, we find that TTC and DA perform even
worse than when we assumed independent uniform preferences.

Our data contains the preferences and priorities of 10,131 students and 244
schools in Budapest. Because students only rank a few schools and schools
only rank students who apply to them, we apply RM, DA and TTC to
i) the actual reported preferences and priorities (Hungary assigns students
to schools using DA (Bird, 2008), so using the reported preferences as real
preferences is a sensible strategy), and ii) the estimated, complete prefer-
ences and priorities.'? Figures 2 and 3 present the distribution of the ranks
realized after applying RM, DA and TTC to the estimated and reported
preferences, respectively. Table 2 presents summary statistics.

Table 2: Rank descriptive statistics for Budapest.

Preferences Estimated Preferences | Reported Preferences
Variable \ Mechanism RM TTC DA RM TTC DA
Mean 2.7 8.9 12.3 1.5 1.9 2.1
Maximum 16 244 241 6 14 13
Variance 4.7 6074 220.1 0.6 1.7 1.9
Share of students 0.58 0.64 0 0.46 0.44 0
w. justified envy

Unassigned students - - - 2,655 2,508 2,704

For reported preferences, the mean is computed dividing by the number of assigned
students.

The lessons we learn from computing the rank distributions in Budapest
are similar to those we learned from looking at random markets. Table 2

2The complete preferences are estimated using the original students’ reported pref-
erences assuming that i) students do not use dominated strategies, and ii) the realized
assignment is stable. For the complete estimation procedure see Aue et al. (2020). In
both cases, we balanced the demand and supply for seats by adjusting the schools capac-
ities (this is because there are substantially more school seats than students, repeating
the exercise with the unbalanced market does not change the comparison between mecha-
nisms). When a student only ranks k schools, we use k+1 as the rank of being unassigned.
RM chooses the rank minimizing assignment randomly among all rank efficient allocations.

12



shows that RM performs better than TTC and the currently used DA with
regards to efficiency and equality with reported and estimated preferences.
When full, estimated rank lists are used, the average student substantially
improves their placement (average rank in RM is 2.7, compared to 8.9 in
TTC and 12.3 in DA). RM still generates a better average rank when we
use stated preferences, but the difference with the average rank generated
by TTC and DA is smaller (this is because the average student only ranks
4.1 schools on average). RM assigns the average student to a school in their
16 percentile of their preference lists, whereas the corresponding percentile
for DA and TTC are 35 and 29, respectively.

70
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Figure 3: Rank distribution generated for 10,131 students in the secondary school ad-
missions in Budapest using reported preferences. The last bar (0) denotes unassigned
students.

With regards to inequality, RM performs much better than DA and TTC
with complete preferences, assigning the worst-off student to the 16th best
choice rather than to their 241th and 244th, respectively (out of 244). It
also assigns less than 2% of the student population to their 10th ranked
school or worse, whereas TTC and DA assign 16% and 41% of the student
population to such school, respectively. RM also generates a significantly
more egalitarian allocation with reported (incomplete) preferences, assigning
the worst-off student to the 6th best choice rather than their 13th or 14th
best. With estimated and reported preferences, we find that DA and TTC

13



are incomparable in terms of equality, since TTC assigns more students
to a really undesirable school, but also assigns more students to a top 3
school. The number of students unassigned in RM, TTC and DA is roughly
equivalent when reported (incomplete) preferences are used.

Our rank distributions are similar to those documented in other studies. Che
and Tercieux (2018) and Abdulkadiroglu et al. (2020) also document that
TTC assigns more students to their first choice than DA. Both studies also
find that DA and TTC generate a similar number of unassigned students.

Our empirical analysis has used the preferences that students submit in
DA (arguably their true ones) to generate the TTC and RM allocations.
One potential concern is that students would submit different preferences
when allocations are determined by RM, which is not strategy-proof. To
tackle this concern, we computed the rank distribution generated by RM
when a fraction of the students who have incentives to misrepresent their
preferences do so. We have found that the rank distribution and number of
students with justified envy remain largely unchanged, and thus is safe to
conclude that the rank distribution generated by RM is more efficient and
equal than the ones generated by DA and TTC, even when a fraction of
agents misrepresent their preferences.!?

Moreover, RM is non obviously manipulable, and thus cannot be manipu-
lated by cognitively limited agents (Troyan, 2022). Furthermore, the po-
tential gains from manipulation are small (the average student can only
improve by less than one rank in their preference list with iid preferences,
and by less than 2 ranks in the data). Finally, there is evidence that truthful
behavior can be more common in non strategy-proof mechanisms than in
strategy-proof ones (Cerrone et al., 2022).'* Thus, whether students would
actually misrepresent their preferences in RM more than they do in DA or
TTC is an interesting open question.'®

13Gee the Appendix for detailed summary statistics.

M Cerrone et al. (2022) find that almost twice as many people (70% versus 40%) be-
have truthfully in the efficiency adjusted deferred acceptance (EADA) mechanism versus
standard DA, even though DA is strategy-proof and EADA is not.

15Substantial strategic behavior in strategy-proof mechanisms such as DA and TTC
has been documented in the lab (Chen and Sénmez, 2006; Rees-Jones and Skowronek,
2018; Hakimov and Kiibler, 2021; Guillen and Veszteg, 2021; Cerrone et al., 2022) and in
real life (Hassidim et al., 2017; Rees-Jones, 2018; Shorrer and Sévégd, 2018).

14



6. Conclusion

Our paper highlights the efficiency loss and inequality generated by the
celebrated deferred acceptance and top trading cycles mechanisms.

October 19, 2022
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Appendix A - Proof of Proposition 3

In RSD the probability that the k-th dictator is assigned to his j-th most
preferred school is given by

po= (8 1) 0= - - (12)
In equation (12), if k = 1, then p;; = 1 (the probability that the first
dictator gets his first school is one) and p; ; = 0 for any j > 1 (the probability
that the first dictator gets a school worse than his top one is zero). Similarly,
when j =1, then py 1 = %l_k (this is the probability that the k-th dictator
gets his top school, or equivalently, the probability that the kK — 1 dictators
before him are assigned to the school that dictator k ranks as first). Note
that (j) = 1 and (") = 0 for any m > n, so that the probability that

0
dictator k is assigned to a school with a rank higher than k is zero.

Equation (12) can be rewritten as:

e gy DG = Dl j)!
Prj = ( +1 k) n'(]— )( ) (13)
N O L R O U DL
I T [ s TR a4
k
B (n+1—k)Q 15)

Since RSD is independent of schools’ priorities, a student placed in their j-th
most preferred school does not experience envy with probability 2]%1 There-
fore, the total number of students without justified envy in RSD (N ERSP)
equals

n 41—k () 1
NERSD _ kz:l]zl;( +k )(?)le (16)
= 1 G (n+l1-k)(k
RS GPEP I <j> (17)
~ 1 L1k = [k
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A
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Where

Plugging this in our expression for NERSP | we have

NERSD — zn: (?);_1 [nj 1 HZI <j ﬁ 1) - :. (i)}

j=1 k=j—1 =J

Using the Hockey-stick identity > j_ y (’;) = (?ill), we obtain

we = 3 [5H(0) - ()
) Z Gpalen () - 5=
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We divide both sides by n + 1 to obtain

el ) 2
=22 () i (d) @
gROBDAOR
- —2§<;>J;+1‘<nil> G)M 2
- ‘ﬂé(iﬂ“ﬂnjl) @M_”l 0
- ‘22(;>j;+2‘<nil> <§>+ oy
= (ni 1) @)H _2;: (;)]; ()

B D

As n goes to infinity, B goes to 0 and C'is the Taylor expansion for —In(1/2).

NERSD NERSD 1
lim = lim = lim 2+ 2111(5) = 0.6137 (33)

n—o00 n n—oco T, + n—o00

Thus, the fraction of students who experience justified envy in RSD tends
to eRSP = 1-0.6137 = 0.3863, which is what we wanted to prove. We thank
Peter Kosinér for suggesting this approximation.
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Appendix B - Simulations

In simulated markets (see Tables 3 and 4), we clearly see that RM dominates
TTC and DA in efficiency (average rank) and inequality (maximum rank).
Given the large ranks that realize in TTC, it is unsurprising that the variance
of the rank distribution is large too. The variance of RM is much smaller,
which shows that the ranks are heavily concentrated among the first four top
choices. Table 3 also allows us to assess the accuracy of the random market
results presented in section 4. For TTC, the mean rank is surprisingly
close to the theoretical prediction (£1 of log(n)). In RM, the upper bound
provided of 2 for the mean is quite tight, and the approximation logy(n) for
the max rank is also remarkably accurate.

Table 3: Rank descriptive statistics. Average over 1,000 simulations.

Variabl n = 100 n = 500

anable  pM TTC DA RM TTC DA
Mean 18 43 50 1.8 58 6.7
Max 6 64 9232 8 315 426

Variance 1.3 73.3 185 1.34 421.0 37.6

The severity of the inequality generated by TTC is fully exposed in Table
4. TTC not only makes someone really worse off, assigning them a really
bad object (0.63n), but it assigns an object in the bottom 90% (not top
10%) of their preferences to over 1.5% of the agents. In contrast, RM does
not assign such a poor option to any agent. RM also assigns more agents to
their top choice than TTC.

Table 4: Percentage of agents who receive an object with rank higher (worse) than m.
Average over 1,000 simulations.

n = 100 n = 500
m RM TTC DA RM TTC DA
1 46 50 96 46.6 49.8 93.2
2 21 33 72 21.0 332 796

3 20 40 06 142 398

0 8 12 0 1.8 0
0.25n 0 3 0 0 0.6 0

0 1 0 0 0.2 0
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Appendix C - Strategic applicants

To understand the impact of manipulating students on the rank distribution
generated by RM, we compute the RM allocation when a fraction (20%,
40%, 60% and 80%) of students who have incentives to manipulate do so.
We consider two possible manipulations.

Drop-Assigned: In the reported preference data from Budapest, 5,183 stu-
dents are not assigned their first preference in the RM. A first possible
manipulation we consider is for them to move their assigned school to the
end of their preference list in the hope of increasing admissions chances at a
more preferred school. That is, a student who ranks s > -++ > s; = -+ = s,
and gets s; will perform a manipulation of the form sy > --- > s, > s;. This
is equivalent to not ranking the school to which the applicant would have
been assigned.

Drop-First: Another 3,369 students are neither assigned their first nor their
second preference in the RM. A second possible manipulation we consider is
for them to move their first preference to the end of their preference list in
the hope of increasing admissions chances at their second preference. That
is, a student who ranks s; > so > s3 = -+ > s, and gets s3 or worse
will perform a manipulation of the form so > s3 = --- > s, > s1. This
manipulation has been observed in real life applications (Abdulkadiroglu
and Sonmez, 1998).

Table 5 shows that the summary statistics in RM remain largely unchanged
in the presence of strategic applicants. The statistics for the RM with a share
of 0% strategic applicants are equivalent to the RM results with reported
preferences in Table 2. With an increasing share of strategic applicants,
the average and maximum rank change marginally, remaining well below
the corresponding ranks for DA and TTC. Justified envy remains about the
same. The number of unassigned students slightly decreases for the first
manipulation, and slightly increases for the second one.

Figure 4 presents the rank distributions. Overall, the results show that
the rank distributions remain largely unchanged, even for large shares of
strategic applicants.
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Table 5: Rank descriptive statistics for RM with strategic applicants.

Reported Preferences Share (number) of strategic applicants
Variable \ RM mechanism 0% 20% 40% 60% 80%
(0)  (1,036) (2,073) (3,109) (4,146)

Panel A: Drop-Assigned

Mean 1.48 1.50 1.51 1.53 1.54
Maximum 6 7 6 6 7
Variance 0.58 0.70 0.70 0.81 0.82
Share of students 0.46 0.45 0.45 0.46 0.46
w. justified envy

Unassigned students 2,555 2,599 2,590 2,636 2,625
Panel B: Drop-First

Mean 1.48 1.50 1.52 1.54 1.56
Maximum 6 6 6 6 6
Variance 0.58 0.61 0.63 0.65 0.67
Share of students 0.46 0.46 0.46 0.47 0.47
w. justified envy

Unassigned students 2,555 2,526 2,503 2,479 2,449

oooos
s3538
$F23FE

zmmm@fo

3 4
n

(a) Drop-Assigned. (b) Drop-First.

Figure 4: Rank distribution generated by RM for 10,131 students in the secondary school
admissions in Budapest using reported preferences by fraction of strategic applicants. The
last bar (0) denotes unassigned students.
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