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A B S T R A C T

Real-time functional magnetic resonance imaging neurofeedback (rtfMRI NFB) is a promising method for targeted
regulation of pathological brain processes in mental disorders. But most NFB approaches so far have used rela-
tively restricted regional activation as a target, which might not address the complexity of the underlying network
changes. Aiming towards advancing novel treatment tools for disorders like schizophrenia, we developed a large-
scale network functional connectivity-based rtfMRI NFB approach targeting dorsolateral prefrontal cortex and
anterior cingulate cortex connectivity with the striatum.

In a double-blind randomized yoke-controlled single-session feasibility study with N ¼ 38 healthy controls, we
identified strong associations between our connectivity estimates and physiological parameters reflecting the rate
and regularity of breathing. These undesired artefacts are especially detrimental in rtfMRI NFB, where the same
data serves as an online feedback signal and offline analysis target.

To evaluate ways to control for the identified respiratory artefacts, we compared model-based physiological
nuisance regression and global signal regression (GSR) and found that GSR was the most effective method in our
data.

Our results strongly emphasize the need to control for physiological artefacts in connectivity-based rtfMRI NFB
approaches and suggest that GSR might be a useful method for online data correction for respiratory artefacts.
1. Introduction

In recent years the development of real-time fMRI neurofeedback
(rtfMRI NFB) approaches is transforming fMRI from a knowledge-
generating technology into a neurobiological intervention tool for
mental disorders (Bagarinao et al., 2006; Kohl et al., 2019; Paret et al.,
2019; Weiskopf et al., 2003). In rtfMRI NFB, covert brain processes are
displayed in near real-time to make them accessible for targeted regu-
lation by participants in the MRI scanner. However, the plethora of po-
tential confounding noise sources in fMRI, like respiratory artefacts,
requires special caution in the development of meaningful rtfMRI NFB
approaches.

Lately, a growing number of studies could demonstrate the general
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ability of rtfMRI NFB to change neural activation patterns related to
aberrant brain function in mental disorders (Ramot et al., 2017; Young
et al., 2018; Zilverstand et al., 2017). For example, recent rtfMRI NFB
studies could show that the NFB procedure induced changes in the ac-
tivity of targeted brain areas (Karch et al., 2015, 2019; Kirsch et al.,
2016). Several rtfMRI NFB studies have been carried out with schizo-
phrenic (SCZ) patients as a target population. It was found that these
patients were able to downregulate activity of the superior temporal
gyrus (Orlov et al., 2018), upregulate the insula (Ruiz et al., 2013), or
control anterior cingulate cortex (ACC) activity (Cordes et al., 2015)
during rtfMRI NFB. Additionally, a recent study demonstrated a height-
ened pairing of default mode network (DMN) and language areas because
of rtfMRI NFB (Zweerings et al., 2019).
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However, most rtfMRI NFB research has hitherto mainly focused on
regional BOLD activation as the target process (Caria et al., 2012; Dyck
et al., 2016; Karch et al., 2015; Nicholson et al., 2017; Paret et al., 2016).
Although alterations in brain connectivity has been identified as a rele-
vant mechanism in many mental disorders (Braun et al., 2018; Fornito
and Bullmore, 2015), much fewer studies have utilized functional con-
nectivity (FC) measures (Megumi et al., 2015; Yamashita et al., 2017;
Zhao et al., 2019) and even fewer studies used more complex measures
like network-based approaches (Ramot et al., 2017) or effective con-
nectivity (Koush et al., 2013, 2017). Thus, rtfMRI NFB requires further
development until fully its potential of translating the results obtained
with modern fMRI analysis methods like network analysis into directed
interventions for regulating and normalizing distributed and complex
brain processes in mental disorders is achieved.

Despite even higher risks of confounding noise effects accompanying
more complex rtfMRI NFB approaches, the development of such methods
might be a path worth following to address complex pathological neural
phenotypes. These include changes in large scale neural networks in
mental disorders such as Major Depressive Disorder (Kaiser et al., 2015),
ADHD (Qian et al., 2019), or SCZ. SCZ has been characterized for a long
time as a network disorder of brain dysconnectivity (Friston et al., 2016;
Friston and Frith, 1995; Pettersson-Yeo et al., 2011), including reduced
connectivity of frontal with subcortical regions of which frontostriatal
hypoconnectivity is most prominent (Lin et al., 2018; Shukla et al., 2019;
Su et al., 2013). Patients with schizophrenia are showing aberrant
extra-striatal connectivity during psychosis, for example decreased FC of
the putamen with right anterior insula and dorsal prefrontal cortex
(Peters et al., 2017). Moreover, there is evidence of a relationship be-
tween decreased ventral striatum – ACC FC and SCZ symptoms (Lin et al.,
2018). First-episode psychosis patients had lower FC between the puta-
men and anterior cingulate cortex, and this connectivity was predictive
for the further development of negative symptoms and general func-
tioning (Oh et al., 2019). Consequently, disease-related brain networks
might be a promising target for connectivity-based rtfMRI NFB in SCZ.

As a first step towards this goal we developed a novel large-scale
network connectivity-based rtfMRI NFB approach to target frontos-
triatal connectivity deficits of the DLPFC and ACC with the striatum in
SCZ and applied the method in a preregistered double-blind randomized
yoke-controlled single-session pilot study with healthy controls (N ¼ 38)
which we report here. In this manuscript we were unable to test our
preregistered hypotheses, because during analysis we realized the pres-
ence of massively confounding physiological, especially respiratory, ef-
fects in the data. While we applied online motion parameter regression,
spike regression of volumes affected by frame-to-frame movement, and
regression of a cerebrospinal fluid (CSF) signal to clean the NFB signal
from confounding factors, we did not collect prior measures to address
physiological contamination of the feedback signal.

Importantly, the BOLD signal can be influenced by a variety of sources
that can be labelled as noise. Examples of noise include structured noise
i.e. gross subject movement and physiological sources (e.g. respiration
and cardiac features) (Liu, 2016) as well as random noise (e.g. thermal
noise). Unsurprisingly, it is longstanding knowledge that retrospective
corrections should be applied to the data to ensure reasonable quality of
the findings - a notion pointed out in 1995 (Hu et al., 1995).

Especially rtfMRI NFB methods using FC-based signals as the feed-
back source face a number of methodological problems which might be
more pronounced than in activation-based feedback (Power et al., 2012;
Power et al., 2015). In the analysis of FC-fMRI data, particularly physi-
ological artefacts that strongly affect connectivity must be considered
(Nikolaou et al., 2016). Physiological features such as heart rate and
respiration mostly influence the connectivity of resting state networks
(Chu et al., 2018; Nikolaou et al., 2016), underlining the need to control
for these factors.

The experimental procedures we based our study on, however, are in
line with general procedures in the fMRI field. While motion correction is
nowadays applied by default in fMRI analyses, physiological noise
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correction is still conducted only in a much smaller, although growing,
number of studies. This is despite physiological artefacts forming one of
the largest proportions of noise in general (Kruger and Glover, 2001).
Therefore, in rtfMRI NFB, it is of large interest to subtract as many of
these noise sources as possible from the data as the outcome of the whole
procedure strongly depends on the validity of the feedback signal. Failure
to correct for any of these sources might bias the whole procedure to-
wards training unwanted strategies that are relatively easy to apply for
participants, like changing breathing patterns.

Alarmed by our findings of confounding physiological effects, we
tried to identify possible ways to control the identified confounding ef-
fects in our data and present the results of analyses with two different
techniques for physiology correction, namely global signal regression
(GSR) (Aguirre, Zarahn, & D’Esposito, 1998; Power et al., 2015) and
model-based correction for physiological noise signals with the TAPAS
PhysIO Toolbox (Kasper et al., 2017).

2. Methods

2.1. Participants

Healthy participants with normal or corrected-to-normal vision,
eligible for MRI scanning, andwithout a history of mental or neurological
disorders, prior and current psychiatric diagnoses, pregnancy, or acute
intake of any medication except for oral contraceptives were recruited
from the student population at Mannheim and Heidelberg. Two partici-
pants of the original sample of N ¼ 40 had to be excluded from analysis
due to technical problems that occurred during scanning and N ¼ 38
healthy participants (23 women; age: 23.39 � 4.24 years; age range:
18–35) were analyzed. Before participation, the experimental procedures
were explained and participants provided written informed consent.
During the experiment, participants were automatically assigned in a
double-blind procedure to one of the two experimental groups: real
neurofeedback (real NFB) or yoke neurofeedback (yoke group) through a
predefined randomization list. The study was approved by the Ethics
Committee of the Medical Faculty Mannheim at the University of Hei-
delberg, Germany (2018-520N-MA) and all procedures complied with
the World Medical Association’s Declaration of Helsinki.

2.2. Preregistration

The study was originally planned for testing the capability of partic-
ipants to modulate the target network with rtfMRI NFB and was pre-
registered at the Open Science Foundation (OSF NeCoSchi https://osf.
io/d6fre/). The confounding physiological effects described in this
paper were not expected a priori and thus not preregistered, thus the
reported analyses are exploratory.

2.3. Data/code availability statement

Raw fMRI data cannot be made publicly available due to protection of
sensitive personal data. The summary data the analyses were based on
are available at the OSF project site. We further provide the code to es-
timate the summarizing respiratory parameters at the OSF project site
(OSF NeCoSchi https://osf.io/d6fre/).

2.4. MRI scanning

MRI scanning was conducted at two 3T Siemens Trio TIM Scanners
(Siemens Healthineers, Erlangen, Germany) at the Central Institute of
Mental Health in Mannheim, Germany. MR images were obtained with a
32-channel head-coil. T1-weighted structural images were acquired with
a repetition time of TR¼ 2.3 s, echo time of TE¼ 3.03ms, flip angle¼ 9�,
192 slices, slice thickness ¼ 1 mm, voxel dimensions ¼ 1 x 1 � 1 mm3,
FOV ¼ 256 � 256 mm and a matrix size ¼ 256 x 256. BOLD signals were
measured using an echo planar imaging (EPI) sequence with TR ¼ 1.64s,
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TE¼ 30 ms, flip angle¼ 73�. The whole brain was partitioned in 30 axial
slices (3 mm of thickness) with a voxel size of 3 � 3 � 3 mm3 and a field
of view of 192 mm. All functional runs were acquired with the same EPI
sequence.
2.5. Brain network definition

We focused the rtfMRI NFB approach and our further analyses on a
bilateral network comprising the dorsolateral prefrontal cortex (DLPFC),
the anterior cingulate cortex (ACC) and the striatum. The ACC was
defined based on the Neuromorphometrics Atlas included in SPM12
(Wellcome Department of Cognitive Neurology, London, UK). The DLPFC
was extracted from an automatical metaanalysis with Neurosynth (https
://neurosynth.org/; Yarkoni et al., 2011) on the term ‘DLPFC’. In the next
step we used the brain parcellations by Schaefer et al. (2018) for the
cortical regions and by Choi et al. (2012) for the striatum and extracted
the ROIs that fell into the defined regions, providing 22 DLPFC ROIs, 23
ACC ROIs, and 13 striatum ROIs in both hemispheres which adds up to a
total of 58 regions. Both approaches that we used are based on the
7-network parcellation of the cerebral cortex by Yeo et al. (2011). While
this network definition procedure is relatively complex, it was chosen
because we are aiming toward developing the basis for a flexible
network-based neurofeedback approach that enables the estimation of
complex graph-theoretical network measures and allows identification of
potential sub-networks to further refine target networks.
2.6. rtfMRI NFB training

MRI scanning was conducted in a single session. Before scanning,
participants provided demographic information and answered question-
naires including the German Version of the Beck Depression Inventory-II
(BDI-II) (Beck et al., 1996), the NEO Five-Factor Inventory (NEO-FFI)
(Costa Jr andMcCrae, 2008), Schizotypal Personality Questionnaire (SPQ)
(Raine, 1991) and a sensory inventory (Zamoscik et al., 2017).

The scanning session comprised a 5:21 min T1-weighted anatomical
MPRAGE scan, a resting state run, two NFB runs, and a transfer run of
9:29 min each. During the resting state measurement a fixation cross was
shown at the center of the screen and participants were instructed to keep
their eyes open while not thinking about specific things. A transfer run is
often included in NFB experiments to test whether regulation ability
transfers to situations without feedback. In our case the transfer run was
exactly similar to the resting state run except that participants were
instructed to use the strategies learned in the NFB runs to upregulate the
target network. During NFB, a thermometer display was presented on the
left and right side of a fixation cross and continuously updated every TR.
This feedback signal showed averaged dynamic FC of DLPFC/ACC ROIs
with striatum ROIs, and participants were instructed to upregulate the
feedback signal. Participants in the yoke control group did not receive
Fig. 1. Experimental setup and design. a) rtfMRI Neurofeedback Setup. Acquired im
preprocess the images and extract the neurofeedback signal. The feedback is sent to a
scanner as a thermometer value. During scanning physiology measures (respiration an
averaged functional connectivity of ROIs in the ACC (upper left) and the DLPFC (up
cross is shown to the participant in the scanner. After approximately 1 min, the feedba
represent the latest FC value estimated from the last 30 volumes. During resting sta
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their own feedback signal, but the saved signal of a participant from the
real NFB group. Data of participants from the real group were saved in a
first in first out queue, meaning that each recorded signal is used once in
the yoke procedure, and a yoke participant always receives the first un-
used recorded signal. To ensure availability of data for the yoke pro-
cedure, the first three participants were assigned to the real feedback
group. After completion of the scanning session, participants were
interviewed, and group assignment was disclosed. For a graphical rep-
resentation of the experimental setup and design, please see Fig. 1.
2.7. Online data analysis

All online and offline analyses were conducted in MATLAB (R2017a,
MathWorks Inc., Sherborn, MA, USA). Online rtfMRI NFB processing was
conducted with in-house software based on SPM12 functions.

During the resting state scan, the acquired anatomical image was
segmented and normalized to the SPM 12 TPM template. The inverse
projection of the normalization was then applied to map the ROI masks
into individual subject space. During rtfMRI NFB scanning each newly
acquired volume was directly written to the analysis laptop and realigned
to the first volume of the series. Then, averaged intensity values from all
ROIs in this image were extracted and added to the ROI signal time series.
At each step a general linear model (GLM) was applied over the whole
available data to correct for movement parameters estimated during
realignment, a cerebrospinal fluid (CSF) signal, and spikes associated
with head movements (framewise displacement (FD) > 0.5 mm). Fisher
Z-transformed Pearson correlations were then calculated from the last 30
points (i.e. implementing a sliding window size of 30 vol) of the cor-
rected time courses of all cortical ROIs with all striatal ROIs and averaged
to determine the feedback value presented to the participant. To assure
availability of sufficient data for the online correction algorithm, the first
feedback value was calculated after 37 vol (60.68 s). The feedback signal
was only calculated from windows that included at least 15 vol not
affected by head motions (FD < 0.5 mm), otherwise the feedback value
would not be estimated and the thermometer display would be kept
constant until a window with sufficient data occurs.
2.8. Offline data analysis

Offline data analysis was conducted with SPM 12 (v7219). The
anatomical image was segmented and normalized to SPM 12 TPM tem-
plate MNI space. The first 15 vol of the functional data were discarded
and the functional images were slice-time corrected, realigned, co-
registered to the MPRAGE, normalized, and smoothed with an
isotropic Gaussian kernel of 6 mm full width at half maximum.

A first level GLM was set up that included six movement parameters,
the CSF signal, and dummy regressors for volumes affected by head
motion (framewise displacement > 0.5 mm; scan-to-scan global signal
ages are reconstructed and sent to a laptop running in-house MATLAB scripts to
computer running Presentation software and presented to the participant in the
d cardiac) are recorded. b) Target Network. The feedback signal represented the
per right) with ROIs in the striatum (below). c) Experimental Design. A fixation
ck signal is displayed as a thermometer value. This value is constantly adapted to
te and transfer runs, only the fixation cross is presented.
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change z > 4) and a constant. Runs which exceeded a level of 20%
movement-affected volumes were excluded from further analysis (3 runs
in 3 subjects). Runs with problems with physiology recording were also
excluded from analysis (2 runs in 2 subjects).

To assess possible methods to correct for physiological associations,
the analyses were repeated with global gray matter signal regression
(GSR), model-based physiological nuisance regression (Physio), as well
as both (Physio & GSR) implemented in the first level model. To be more
comprehensive we also added a repetition with white matter signal
regression (WMR). Then, the time courses from the ROIs used in the
online NFB procedure were extracted from the residual images of the first
level analyses and large-scale network connectivity was estimated from
averaged Fisher Z-transformed Pearson correlations between the DLPFC/
ACC ROIs and the striatal ROIs.

Second level analyses were conducted based on these DLPFC/ACC-
striatum large-scale network connectivity values. In all second level an-
alyses, age, gender and scanner were included as covariates. For group
comparisons, we used two-sample t-tests implemented in a GLM model,
which allowed for the addition of covariates. Associations of connectivity
values with physiological parameters were assessed with partial corre-
lations. As our main analyses are aiming at demonstrating confounding
physiological effects, we did not correct the reported p-values for mul-
tiple comparisons, because multiple comparison correction might
potentially hide nuisance effects in this case.

2.9. Physiological noise correction

Respiration and heart rate were recorded with a pulse finger clip and
a respiration belt during MRI at a sampling rate of 50 Hz using built-in
equipment (PMU Wireless Physio Control, Siemens Healthineers, Erlan-
gen, Germany). Before estimating physiological parameters, we cut the
physiological recordings based on recorded volume triggers so that they
were exactly aligned with the analyzed fMRI data. Then we used the
TAPAS PhysIO Toolbox (Kasper et al., 2017; https://doi.org/10.1016/j
.jneumeth.2016.10.019) to estimate 20 physiological nuisance re-
gressors, including cardiac, respiratory, cardiac � respiratory interaction
(RETROICOR order 1), heart rate variability (HRV; RETROICOR order 3),
and respiratory volume per time (RVT; RETROICOR order 4) terms. The
derived physiology nuisance regressors were included in the first level
GLM of the respective analyses (see above), and an F contrast over all
physiology regressors was estimated to test whether physiology correc-
tion worked (see Supplementary Fig. 1 for six examples.). We also
repeated the analyses with a more complex model with 39 regressors that
included temporally shifted versions of the respiratory response function
before convolution with RVT (shifts from -24 s to 18 s in 6 s steps and
additional shifts of -3 s, -1 s, 1 s and 3 s) and HRV as described by
Biancardi et al. (2009).

2.10. Physiological parameters

While the PhysIO toolbox provides physiology time courses, we also
calculated additional summarizing respiratory and cardiac parameters
from the time courses that are potentially associated with the BOLD
signal (Zamoscik et al., 2018) to test for confounding associations over
subjects.

We created a set of respiration parameters: Breath Rate (peaks/
breaths per minute), expiratory pause duration, its variance, and
expiration-to-inspiration time ratio. For these parameters, expiration was
defined as starting at each maximum peak and ending at the lowest local
minimum before the next maximum peak, and correspondingly, inspi-
ration was defined as the opposite. With these data we calculated the
expiration-to-inspiration time ratio. For detecting expiratory pauses, we
calculated the slope of the respiration curve with a sliding window
approach (window size of 5 samples) to find clusters of minimum peaks
which were then used to determine rough temporal markers for a pro-
visional pause onset. This was recursively extended into both directions
4

based on the slope parameters to determine pause onset and offset. In
addition to the expiratory pause duration, we calculated the coefficient of
variance (standard deviation divided by the mean) of pause duration
(Pause CV; see Supplementary Fig. 5). For a more detailed description of
the respiratory parameters please see also (Zamoscik et al., 2018).
Additionally, we estimated heart rate (beats per minute) and two heart
rate variability parameters, namely the standard deviation of the length
of all beat intervals (SDNN [ms]) and the root mean square of successive
differences of intervals (RMSSD [ms]).

3. Results

3.1. Functional connectivity group comparison

Connectivity estimates of the NFB runs were compared between the
experimental groups with a one-sided independent samples t-test in
accordance with the preregistered hypotheses. Higher large-scale
network connectivity between DLPFC/ACC and striatum was found in
the real NFB group in comparison to the yoke group during the first NFB
run (NFB1: t (31) ¼ 1.81, p ¼ .040). Comparisons of connectivity esti-
mates of the second NFB and the transfer run did not yield significant
effects (NFB2: t (32)¼ 0.66, p¼ .258; transfer: t (30)¼ 0.615, p¼ .277).
After including physiological nuisance regressors estimated with the
PhysIO toolbox in the first level model, the group comparison of NFB1
remained significant (t (31) ¼ 1.70, p ¼ .049). However, when GSR or
GSR and physiology correction combined were applied to the data, the
effect in the first NFB run was no longer significant (GSR: t (31)¼ 1.09, p
¼ .142; GSR and physiology correction: t (31) ¼ 0.84, p ¼ .205) (see
Fig. 2 and Supplementary Fig. 12).

3.2. Physiological associations

3.2.1. Correlations between physiology measures and functional connectivity
We then investigated the correlations of physiological measures with

the target FC of the respective runs. These analyses were conducted
separately for each correction method. Here we report the associations
with Breath Rate, Pause CV and RMSSD in the first NFB run. The results
for the other parameters and the other runs are similar and are presented
in detail in the supplement.

3.2.2. Data not corrected for physiology
The analyses consistently showed strong significant correlations of

respiratory physiological parameters with the target FC during NFB1 (see
Fig. 3, a and e and Supplementary Figs. 4–7 for all runs). Cardiac pa-
rameters showed no correlation with our FC estimate in NFB1 (RMSSD:
rho ¼ �0.026, p ¼ .888) (see Fig. 4, a), but a relatively weak association
in the resting state data (Supplementary Figs. 8–10).

3.2.3. Physio correction
When physiology correction with nuisance regressors estimated with

the PhysIO toolbox was used, only minor changes in the association of
physiology and target FC were seen. As shown in Fig. 3 (b,f), Breath Rate
and Pause CV both exhibited highly significant correlations with the
target FC during NFB1 (Breath Rate: rho ¼ �0.448, p ¼ .009; Pause CV:
rho ¼ 0.606, p ¼ 1.8659e-04). For further details, see Supplementary
Figs. 4–7. In line with the uncorrected analyses, the cardiac parameter
RMSSD showed almost no association with the respective BOLD signal
(rho ¼ �0.027, p ¼ .883) as can be seen in Fig. 4 (Supplementary
Figs. 8–10). Using a more complex model with shifted respiratory
response functions did only slightly diminish these associations during
NFB1 (Breath Rate: rho ¼ -0.400, p ¼ .023; Pause CV: rho ¼ .477, p ¼
.006; see Supplementary Fig. 14).

3.2.4. Global signal correction
In comparison to the previous approach, applying GSR in the first

level analyses yielded non-significant correlations between target FC and
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Fig. 2. Group effect in the first neurofeedback run (NFB1). a) Group comparison of network connectivity between the real NFB and yoke NFB group uncorrected for
physiology. b) Group comparison of network connectivity between the real NFB and yoke NFB group in data with global signal (GSR) and model-based physiology
(Physio) correction.
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all parameters for respiration (Breath Rate: rho ¼ �0.079, p ¼ .662;
Pause CV: rho ¼ �0.060, p ¼ .74; Fig. 3 (c, g)) and HRV (RMSSD: rho ¼
0.047, p ¼ .797; Fig. 4 (c)) during NFB1 (Supplementary Figs. 4–10). In
an exemplary subject we show a strong association of the global signal
with the data (Supplementary Fig. 2a). In contrast to GSR, white matter
regression (WMR) did not eliminate the associations during NFB1
Fig. 3. Association of respiratory parameters with network connectivity in the first n
and Pause CV (standard deviation of respiration pause duration divided by its mean)
different physiology corrections. Physio: model-based physiology correction; GSR: g
nectivity estimates towards 0.
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(Breath Rate: rho ¼ �0.27, p ¼ .129; Pause CV: rho ¼ 0.558, p ¼
7.4163e-04; see Supplementary Fig. 14).

3.2.5. Global signal and physio correction
The combination of GSR and model-based physiology nuisance re-

gressors likewise resulted in non-significant correlations across all
eurofeedback run (NFB1). Correlations of the respiratory parameters Breath Rate
, a measure for regularity of breathing, with target network connectivity for the
lobal signal regression. Please note that, as expected, GSR overall shifted con-



Fig. 4. Association of cardiac parameters with network connectivity in NFB1. Correlations of the cardiac parameter RMSSD (root mean square of the successive
differences [ms]) with target network connectivity for the different physiology corrections. Physio: model-based physiology correction; GSR: global signal regression.
Please note that, as expected, GSR overall shifted connectivity estimates towards 0.
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parameters (Breath Rate: rho¼�0.156, p¼ .387; Pause CV: rho¼ 0.016;
p ¼ .93; RMSSD: rho ¼ 0.007, p ¼ .969), see Fig. 3 (d, h) and 4 (d) and
Supplementary Figs. 4–10. The association of the global signal with the
data is much larger than the association of model-based nuisance re-
gressors (Supplementary Fig. 2b).

3.2.6. Change in physiological parameters between runs in the experiment
Because of the associations between respiratory parameters and

connectivity estimates we explored whether respiration changed be-
tween runs differently in the groups (Supplementary Fig. 11). to identify
training effects on respiratory parameters. We first tested whether the
parameters changed between the resting state run and the first NFB run.
On a descriptive level, Breath Rate was slightly increased in the real
feedback group (mean change: .245) and even more in the yoke feedback
group (mean change: 1.22), but the groups did not show significant
differences in Breath Rate between rest and NFB1 (t(31) ¼ -1.007, p ¼
.322). However, the change in Breath Rate was negatively associated
with the change in connectivity (rho¼ -.533, p¼ .001). For Pause CV, the
change was significantly different between the groups (t(31) ¼ 2.085, p
¼ .045) with a mean change of .258 in the real group and a mean change
of .017 in the yoke group. Furthermore, we found a strong relationship
between Pause CV change and change in connectivity (rho ¼ .757, p ¼
3.3812e-07).

Between the first NFB run and the second, we did not find significant
group differences in the change of these respiratory parameters. On a
descriptive level, Breath Rate was reduced in the real feedback group
(mean change: 0.742) and not in the yoke group (mean change: 0.007),
but the groups did not significantly differ in Breath Rate change between
NFB1 and NFB2 (t (31) ¼ �1.257, p ¼ .218). However, the change in
Breath Rate was negatively associated with the change in connectivity
(rho ¼ �0.515, p ¼ .003). For Pause CV, the real group had a mean
change of �0.064 and the yoke group of .037, and the change was also
not significantly different between the groups (t (31) ¼ �1.092, p ¼
.283). For Pause CV there was no association between parameter change
and change in connectivity (rho ¼ 0.232, p ¼ .201).

4. Discussion

We conducted a double-blind randomized yoke-controlled single-
session pilot trial originally designed and preregistered to test the feasi-
bility of a newly developed large-scale FC rtfMRI NFB approach targeting
DLPFC/ACC-striatum FC. When testing the preregistered hypotheses we
found only a weak effect in the first NFB run (NFB1). After applying
corrections for physiological artefacts, this effect could not be detected
any longer. This allowed us to assess the influence of physiological pa-
rameters on our FC estimates in exploratory analyses. In our data we
identified worryingly strong relationships between parameters reflecting
the rate and regularity of breathing and our target large-scale network FC
6

signature during all runs of the experiment, as well as a putative training
effect on the regularity of respiration (Pause CV) from the resting state to
the first NFB run.

Of note, our results are based on second-level analyses, where inter-
individual differences in respiration between participants were strongly
associated with differences in large-scale network connectivity. This is
relevant in rtfMRI NFB because the comparison of different subjects in
different groups is often used as the level of analysis, and differences in
respiration or changes in respiration during NFB training might lead to
false positive results. We are aware that a single NFB training sessionmay
not provide enough data to assess whether our large-scale rtfMRI NFB
approach worked, or whether a training effect of physiological parame-
ters occurred. However, we collected a sufficient amount of data to
clearly identify the associations of our large-scale network FC measure
with respiratory parameters.

With hindsight, these relationships should have been expected. In
general, the existence of respiratory artefacts has been well described for
fMRI (Caballero-Gaudes and Reynolds, 2017; Chu et al., 2018; Nikolaou
et al., 2016; Power et al., 2018; Power et al., 2017). These low-frequency
confounds reduce the sensitivity of the signal (Murphy et al., 2013) and
are not extracted by standard physiology corrections (Birn et al., 2006)
and low pass filtering (Liu et al., 2017).

Physiological artefacts have an especially heavy influence on FC es-
timates (Nikolaou et al., 2016). Particularly respiration effects are diffi-
cult to distinguish from FC due to identical spatial locations and temporal
characteristics (Birn et al., 2006). Our target network was more strongly
affected by respiration than by cardiac features, suggesting that in
frontostriatal networks cardiac features have little effect on the BOLD
response. Here, our results are in line with the finding that cardiac
properties generally influence the global BOLD signal only to a small
degree (Power et al., 2018). Whereas CSF regions and regions near
greater arteries and draining veins are especially vulnerable for noise of
cardiac nature (Bhattacharyya and Lowe, 2004; Birn et al., 2006; Cab-
allero-Gaudes and Reynolds, 2017).

Thus, the consequences of respiratory artefacts are concerning and it
is important to control for them. This is of even higher importance in the
case of rtfMRI NFB, where the fMRI signal or a derived measure is the fed
back to be modulated by the participants in addition to being the main
analyzed data. If confounding effects in the feedback signal are not cor-
rected, it might be much easier for the participants to manipulate the
target signal by changing physiological parameters like breathing pat-
terns instead of regulating brain processes. For example, Ramot et al.
(2017) reported that subjects stated that they have changed their
breathing patterns as a behavioral strategy to regulate the neurofeedback
signal. Indeed, a common objection against rtfMRI NFB is the danger of
confounding noise that might contaminate the feedback signal. Our
empirical results suggest that there is indeed a real danger for respiratory
artefacts, at least in connectivity-based rtfMRI NFB, which may simply
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lead to a costly form of breathing training, rather than an effective NFB
treatment. To identify ways to control for the unintended associations,
we assessed two possible approaches to correct for the identified artefacts
in our data, the inclusion of model-based physiological nuisance re-
gressors estimated with the TAPAS PhysIO toolbox, and the simpler but
also disputed inclusion of the global gray matter signal in the first level
model. While we tested these approaches offline with already acquired
data, we chose them because both could be implemented relatively easily
in the online rtfMRI NFB procedures.

In general, the PhysIO toolbox and the regression of physiological
nuisance parameters seemed to work at least satisfactorily. F-contrasts
over all physiological regressors included in the respective first level
analyses showed strong relationships with the data, with only very few
runs showing weak relationships (see Supplementary Fig. 1). However,
the model-based physiology corrections resulted in virtually no change of
the second level association of connectivity estimates with physiological
parameters. This was surprising, as the model-based approach represents
the current state-of-the-art for physiology correction. It nonetheless
seems relatively unlikely that this was due to failures in the application of
the toolbox or in the toolbox itself. We have carefully double-checked our
analyses, and even if physiology correction did not work as perfectly as
possible, the large amount of variance removed together with its very
small influence on the second level associations makes it unlikely that
this would be substantially changed if the removed variance would not
be increased much further. Nonetheless, we cannot exclude the possi-
bility that the used physiological recordings are not of optimal quality as
the built-in recording devices probably provide suboptimal measure-
ments which could influence the quality of the model-based physiolog-
ical correction. However, our data quality should be at a comparative
standard level and reflect the level available at other sites with similar
standard equipment.

In comparison to model-based physiology correction, model-free GSR
was capable of attenuating the associations between the same physiology
parameters and target measure sufficiently, resulting in non-significant
correlations. The association was even further attenuated when a com-
bination of GSR and Physio correction was used. GSR seemed to reduce
variance in both groups, as well as the mean difference between groups.
After GSR the residual variance in the first NFB run seems to be relatively
larger in the yoke group than in the real group (Fig. 2), which might be
expected. Participants in the yoke group have no control about the brain
process they try to regulate. Therefore, they should apply diverse stra-
tegies that randomly influence the target process and increase variance.

Several issues might be related to the difference between the model-
based and model-free GSR approaches. An apparent difference between
GSR and Physio correction is the strength of association with the data,
and thus the amount of variance removed by the approaches, which is
much larger for GSR (Supplementary Fig. 2). This might reflect the ability
of the global signal to capture more noise in the data than the model-
based physiology nuisance regressors. Another possibility might be that
the intraindividual physiology nuisance regressors do not eliminate
interindividual differences in the baseline of physiological parameters,
which are then taken up by the second level analyses at the group level.
Furthermore it was recently shown that the used measure of respiratory
volume over time (RVT) can have inferior correction performance for
respiratory artefacts in comparison to alternative approaches like RVT
envelope of the waveform or windowed variance in the waveform
(Power et al., 2020), which might provide an explanation for the
failure of the physiological model to capture much variance in this
studyThere is also the option that a real relationship between respiration
and the target brain process exists, and that the frontostriatal network is
in fact controllable by changing respiration, or that another brain region
controls both, the network and respiration.

It should be noted that our results are not in line with the report of
Hellrung (2018) who conclude that in activation-based rtfMRI NFB of the
amygdala training effects are not mainly driven by physiological arte-
facts. It might be the case that our large-scale network NFB approach is
7

specifically sensitive for the artefacts.
Taken together, in our analyses GSR was the single most effective

method to correct for the undesired physiological associations that we
detected in the group data. This fits to prior research emphasizing the
ability of GSR to capture not only the activity of voxels located in the
major clusters of the brain (Chen et al., 2012), but also reflects noise of
different origins i.e. scanner driven-noise, motion, respiratory and
heart-rate (Murphy and Fox, 2017).

According to Zarahn et al. (1997) inclusion of the global signal as a
covariate decreases the effects of spatially related noise, which again
allows for a better detection of effects in fMRI studies (Aguirre et al.,
1997). Interestingly, after correlating the global signal with fMRI data,
Birn et al. (2006) found that these maps were identical to maps of regions
with signs of respiration. These correlations were particularly strong in
gray matter regions elucidating the need to take this knowledge into
account for fMRI analyses. GSR has also been suggested recently as a
method to correct for noise of respiratory nature in modern multi-echo
fMRI sequences (Power et al., 2018), although this has been debated
(Power et al., 2019; Spreng et al., 2019).

Despite the ability of GSR for noise correction, it remains a contro-
versial technique because it is unclear what the global signal in fact
measures. As it is a hard problem to delineate low-frequency artefacts
from neural effects, real signal could potentially be removed by the
method (Hahamy et al., 2014). Another common remark about GSR is
that it might induce spurious negative correlations (Saad et al., 2012),
e.g. of task-negative and task-positive networks (Fox et al., 2009).
However, similar negative correlations might also appear when only
physiological noise correction is applied (Chang and Glover, 2009) and
some negative correlations might reflect real neural signal instead of
artefacts (Chai et al., 2012).

However, it has to be noted that GSR may skew results in clinical
populations. It was shown that the global signal is changed in SCZ,
although it is unclear in which direction the changes occur, since
opposing results were reported (Hahamy et al., 2014; Yang et al., 2014).
While Caballero-Gaudes and Reynolds (2017) emphasize caution in the
application of GSR to task-based activity or FC, it currently seems to be
the most effective approach for eliminating global artefacts (Power et al.,
2017) and shows superior output than different state-of-the-art correc-
tion methods, like e.g. ICA in terms of eliminating motion artefacts
(Burgess et al., 2016; Liu et al., 2017).

So far it remains unclear how well GSR would work in rtfMRI NFB,
and which correction method is providing the best online signal for
learning to modulate brain networks. Thus, further research is needed to
replicate the results and better understand the reported effects.

It is also crucial to mention that respiration is indeed truly associated
with neural activity (Heck et al., 2016; Herrero et al., 2018; Ito et al.,
2014) and the removal of the respiratory signal might thus also result in
the loss of actual neural information. The reasons why we consider all
physiological associations as artefacts here are that it is not clear how
nuisance and real effects could be separated, and that rtfMRI is probably
too costly to be the method of choice to measure and feedback signals
that are strongly coupled to respiration, which could be assessed in a
more direct and cheaper way.

Importantly, it was only possible to identify and examine the re-
lationships between FC and physiology in this study because we recorded
physiological parameters during fMRI scanning, otherwise the detected
associations might have gone unnoticed. It thus follows as a clear
recommendation for fMRI NFB research that physiological signals are
recorded during scanning, and that the contamination of the target signal
by physiological parameters is assessed and reported. To foster replica-
tion and further research on this topic we provide the scripts that we used
to estimate physiological parameters as an open source script.

5. Conclusion

Our results suggest that it might be necessary to account for
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physiological artefacts in connectivity-based rtfMRI NFB, for example by
applying online GSR. Failures in correction of physiological artefacts
from online signals might lead to a confounded feedback which un-
dermines the methodology of a study and challenges the validity of the
conclusions. Given the massive impact physiological artefacts have on
the BOLD signal, caution seems to be needed when interpreting the re-
sults of studies that do not use working physiology correction.
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