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Abstract

Theory suggests that new market entrants play a special role for the creation of new tech-
nological pathways required for the development and diffusion of more sustainable forms of
production, consumption, mobility and housing. Unconstrained by past technological invest-
ments, entrants can introduce more radical environmental innovations than incumbent firms
whose past R&D decisions make them locked into path-dependent trajectories of outdated
technologies. Yet, little research exists which provides empirical evidence on new ventures’
role in the technological transition towards decarbonization and dematerialization. This is
mainly because patenting is rare among start-ups and also no historical track record about
their R&D investments exists, both data sources commonly used to determine a company’s
technological footprint. To enable the identification of clean technology-oriented market en-
trants and to better understand their role as adopters and innovators for sustainable market
solutions, this paper presents a framework that systematically maps new ventures’ business
models to a set of well-defined clean technologies. For this purpose, the framework leverages
textual descriptions of new entrants’ business summaries that are typically available upon
business registration and allow for a good indication of their technological orientation. Fur-
thermore, the framework uses textual information from patenting activities of established
innovators to model semantic representations of technologies. Mapping company and tech-
nology descriptions into a common vector space enables the derivation of a fine-granular mea-
sure of entrants’ technological orientation. Applying the framework to a survey of German
start-up firms suggests that clean technology-oriented market entrants act as accelerators of
technical change: both by virtue of their existing products and services and through a high
propensity to introduce additional environmental innovations.
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1 Introduction

Given anthropogenic climate change and the rapid depletion of the remaining carbon budget that

limits global warming to a manageable level, the development and diffusion of clean, environmen-

tally sound technologies play an increasingly important role in accelerating the transition to a

low-carbon economy. This has been acknowledged in the Paris Agreement of 2015 which stresses

the ‘importance of [. . . ] technology development and transfer in order to improve resilience to

climate change and to reduce greenhouse gas emissions’ (United Nations 2015, p. 14). According

to the United Nations (2015), this technological shift requires innovations and increased invest-

ment in more sustainable forms of production, consumption, mobility and housing. This clearly

brings entrepreneurs as a crucial source of innovation to the fore. Sustainable entrepreneurship,

in particular, has become an important stream of research to understand the role of dedicated

business models for the technological transition to decarbonization and dematerialization.

While research on sustainable entrepreneurship largely agrees that environmental innovations

are inherent to both established companies and new market entrants (Hockerts & Wüstenhagen

2010; Schaltegger & Wagner 2011; Gast et al. 2017), there is relatively little empirical work

that specifically analyzes the transitional impact of the latter group. Yet, from a theoretical

standpoint, new ventures are attributed a special role for the creation of new technological

pathways. Unconstrained by previous investment decisions, entrants can introduce more radical

environmental innovations than incumbent firms. In this way, theory suggests that entrants act

as accelerators for the diffusion of clean technologies (Hockerts & Wüstenhagen 2010; Fichter

& Clausen 2013) and may also help to overcome transition inertia among incumbents (Diekhof

2015).

Empirically, firm-level indicators that reflect a company’s technological footprint are neces-

sary to identify which role different types of companies - e.g. established firms in contrast to

entrants - play in the diffusion of new technologies. Typically, technology and innovation research

relies on patent and R&D information to determine a firm’s technological profile (Archibugi &

Pianta 1996; Aharonson & Schilling 2016).1 However, unlike established companies, there exists

no historical track record on R&D investments for new business ventures, and patent activities

are also rare among start-ups (Graham & Sichelman 2008; Helmers & Rogers 2011). The lack

of such innovation-related data makes it inherently difficult to empirically narrow down market

entrants’ technology usage and innovation capability. Moreover, existing classification statistics

such as industry affiliation, tend to be too broad to capture a subtle construct such as a firm’s ori-

1Of course, there are also innovation surveys which, apart from common survey problems such as cost intensity
and non-response, appear impractical for measuring company-specific technology portfolios from a very broad
spectrum of different technologies. Nonetheless, see Comin et al. (2020) for a recent attempt to survey companies
across 287 distinct technologies.
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entation towards environmentally-sound technologies. For these reasons, research suggests that

understanding the impact of new ventures on accelerating sustainable market transformations is

much more a question of ‘predictive, modeling-based, ex-ante evaluation than of retrospective,

experienced-based, ex-post evaluation which applies to established companies’ (Trautwein 2021,

p. 3). In other words, for companies that are new to the market, only information available at

or shortly after the company’s foundation can be used to predict its transformational capability

with respect to the development and diffusion of clean technology solutions.

This paper follows this predictive approach by focusing on new ventures’ orientation towards

clean technologies as ex-ante indicator of their contribution to the transition towards more

sustainable market standards. For this purpose, the paper leverages observable and detailed

business summaries that new ventures are typically obliged to report upon business registration.2

The legal obligation to publish a business purpose provides researchers and policymakers not

only with fine-grained information about companies’ original business activities but also gives a

good indication whether specific types of technologies are relevant to their business model. This

is demonstrated by the following example of a business summary of a firm from the geothermal

energy sector.

‘Manufacture, sale, maintenance and repair of heat pumps and other technical equip-

ment, in particular for generating thermal energy.’3

Based on this textual source of firm-level information, this study shows that it is possible to

construct an indicator that reflects a new venture’s potential to contribute to the diffusion

of a specific technology by mere virtue of its technological orientation. For this purpose, the

paper leverages recent advances in the field of natural language modeling to create a mapping

of a technological system and to use market entrants’ business descriptions to determine their

position within this system. In this way, it becomes possible to measure how closely a firm’s

business model is oriented towards a particular technology: a measure referred to as technological

proximity in the remaining of the paper.

The scope of this study is twofold. First, to the best of my knowledge, the proposed measure

of technological proximity is the first one which maps business models to a fine-grained level of

distinct technologies. Most importantly, the indicator is applicable to market entrants which

typically lack track records of alternative technology and innovation indicators. While in theory

the approach is highly flexible and allows to position any kind of company within any kind of

technology system, this study applies the approach to position market entrants within a system

2In Germany, for example, limited liability companies are legally obliged to state their business purpose as
part of the business registration process. See Limited Liability Companies Act (Section 3 (1) No. 2 GmbHG) and
Stock Corporation Act (Section 23 (3) No. 2 AktG) for the legal basis of the obligation.

3Business description retrieved from the Mannheim Enterprise Panel (MUP) which contains various firm
characteristics for the near universe of German companies including textual information on the firms’ business
purpose as retrieved from the German company register (Bersch et al. 2014).
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of well-defined clean technology areas. More specifically, as second contribution of this paper, the

framework is applied to a representative survey of German start-up firms in order to investigate

the environmental innovation capability of clean technology-oriented market entrants as well as

the environmental impact of their products and services. Empirical results suggest that clean

technology-oriented firms’ products and services have positive environmental effects for their

customers in terms of emission reduction, energy efficiency and higher levels of recyclability.

Moreover, a higher cleantech orientation at founding predicts a higher propensity to introduce

environmental innovations over the course of the venture’s lifetime. This suggests that cleantech

ventures have a special role to play in the technological transition towards decarbonization and

dematerialization: besides their existing products and services building on clean technology

solutions, they are also drivers of innovation by introducing new products and services that

have a superior environmental footprint and fundamentally differ from their existing product

portfolio. These results are in line with theory on new technological path creation triggered by

market entrants.

The remaining of the paper is structured as follows. Section 2 discusses the role of new

ventures in the technological transition towards sustainable market transformations from a the-

oretical perspective. In doing so, it relates the study to existing literature on technological path

dependency as well as to the theory on externalities in the diffusion of sustainable technologies

and environmental innovations. Section 3 introduces the methodological framework used to de-

velop a fine-grained measure of technological orientation at the firm-level. To demonstrate the

usefulness of the proposed framework, Section 4 uses the novel measure to assess the clean tech-

nology orientation for a representative sample of German start-up firms and analyzes how clean

technology-oriented business models relate to the firm’s environmental performance. Section 5

concludes.

2 Theoretical background

A key driver of technological change and transformation is the innovative capacity of en-

trepreneurship (Audretsch et al. 2002; Acs & Audretsch 2005). The technological transition

towards decarbonization and dematerialization requires entrepreneurial solutions with a dedi-

cated technological orientation. In literature, sustainable entrepreneurship is seen as an impor-

tant accelerator of sustainability oriented innovations and technological advances required to

leverage cleaner and more sustainable standards of production, transportation and energy gen-

eration (Cohen & Winn 2007; Kant 2018; Leendertse et al. 2021). Research largely agrees that

sustainable entrepreneurship is inherent to very different forms of organizations. Most notably,

it is not exclusive to small innovative entrants, but it is also assumed by large established incum-
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bents (Hockerts & Wüstenhagen 2010; Schaltegger & Wagner 2011; Gast et al. 2017) with much

of its transformative power depending on the interaction dynamics between the two (Schaltegger

et al. 2016). However, from a theoretical standpoint, there are important differences between

established and start-up firms when it comes to their role as cleantech accelerators.

Most notably, incumbent firms are constrained by their past technological investments and

the current technology regime in which they operate (Patel & Pavitt 1997; Aghion et al. 2016).

Stuck in technological path dependencies, this makes them often inclined to preserve their rents

associated with their existing technology portfolio which often builds on inferior and outdated

sustainability standards (Unruh 2000; Bohnsack et al. 2014). When facing technological dis-

continuities, their willingness to implement disruptive innovations is generally limited. Rather,

they focus on incremental technological advancements of their existing technology stock (Hen-

derson 1993; Unruh 2000; Smink et al. 2015; Schaltegger & Wagner 2011). In the context of

transitioning to a low-carbon economy, incumbents’ path dependency, thus, tends to promote

a ‘locked-in’ state of carbon-intensive technological standards and a reluctance to drastically

switch to low-carbon technologies (Benner 2009; Dijk et al. 2016; Sick et al. 2016). So even if

established firms engage in environmental innovation activities, their incremental nature does

not target at accelerating sustainability transformation but rather at preservation of market

power.

New entrants, on the contrary, are not constrained by previous investment decisions and are

thus free from innovation rigidity due to technological path dependencies. This allows them to

tackle market opportunities in a more creative and disruptive manner (Unruh 2000; Schaltegger

& Wagner 2011), especially in energy-intensive industries where technological lock-in tends to

be particularly strong (Erickson et al. 2015). Therefore, many scholars see a key role in new

ventures to spark environmental innovations in order to accelerate the development and diffusion

of clean technologies (Cohen & Winn 2007; Fichter & Clausen 2013; Horne & Fichter 2022).

Most notably, their search for sustainable market solutions, which often begins in niche markets,

has the potential to trigger clean innovation activities among otherwise rigid incumbents in mass

markets (Hockerts & Wüstenhagen 2010; Diekhof 2015). It is this multiplier potential which

explains market entrants’ special role as accelerators of clean innovations.

However, environmental innovations generally suffer the widely studied double externality

problem (Rennings 2000) which affects incumbents and entrants alike. On the one hand, sus-

tainable entrepreneurs face the risk of not being able to fully internalize the value of their

technological developments in light of knowledge spillovers to competitors. On the other hand,

clean innovation efforts are also hampered by the lack of full internalization of the environmen-

tal costs caused by companies whose business models are based on carbon-intensive processes

and ecologically inferior technologies. This double burden presents barriers for innovative en-
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trepreneurs to enter clean technology markets in the first place and calls policy to de-risk and

incentivize their decisions to both enter the market and to innovate (Malen & Marcus 2017;

Goldstein et al. 2020). Consistent with literature on directed technological change, which has

shown that policy can successfully promote clean innovation activities among incumbent firms

(Acemoglu et al. 2012; Aghion et al. 2016; Calel & Dechezleprêtre 2016; Hötte 2020), I argue

that policy instruments that specifically target the creation of new cleantech firms have great

potential to further accelerate the diffusion of clean technologies. In fact, the few empirical

research papers on new entrants in cleantech suggest that policymakers play an important role

in fostering cleantech start-ups. Covering 24 OECD countries, Cojoianu et al. (2020), for ex-

ample, show that more stringent environmental policy regimes make it easier for newly founded

cleantech ventures to attract investments. This facilitates their establishment in the market and

may favor higher technology standards in terms of sustainability in the long term. Moreover, for

the U.S., Doblinger et al. (2019) show that technology development alliances between govern-

ment organizations such as national laboratories and cleantech start-ups increase the innovation

activities of the latter.4

To effectively direct technical change into desirable pathways, policymakers need to under-

stand to what extent new ventures engage in the adoption and advancement of specific clean

market solutions and which cleantech areas are barely tackled by entrepreneurs. In other words,

it requires a framework that allows for a mapping of clean technologies and entrepreneurial ac-

tivities to disclose the interplay between technological advancement and entrepreneurship. The

scope of this study is to provide such a mapping framework which allows to tackle several policy

needs required to direct and monitor technological change towards sustainable market trans-

formations. In this context, the framework serves as useful tool for policymakers to scan, for

example, business registries for clean technology-oriented entrepreneurs. This can be an effective

way to direct R&D subsidies, tax incentives and other start-up support towards ventures with

high potential to accelerate technical change by mere virtue of their business models’ technolog-

ical orientation. Most notably, with the proposed framework, this selection procedure is possible

early on in the lifetime of potential candidates, i.e. upon their business registration.

The paper shows that the framework successfully identifies market entrants which are char-

acterized by a strong environmental performance and high proclivity to innovate. This not only

underpins the framework’s usefulness as a policy tool. It also suggests that clean technology-

oriented entrants act as accelerators in the technological transition towards decarbonization

4Note that Doblinger et al. (2019) obtain information about cleantech start-ups from the i3 Cleantech Group
database (Cleantech Group 2022) which comprises information on cleantech firms collected by a team of industry
and technology experts. Cojoianu et al. (2020) identify cleantech ventures by manually examining the websites
of those start-ups which have been tagged with a green energy label in the proprietary Crunchbase dataset. Both
approaches require labor-intensive manual selection processes that are prone to subjective bias and lack a codified
approach to identifying clean technology-oriented entrants.
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and dematerialization: both, by virtue of their existing products and services and by a high

propensity to introduce additional environmental innovations. The following section presents

the technology mapping framework in detail. In addition to the methodological details on which

the framework is built, it also introduces distinct domains of clean technology solutions that

form the starting point for creating a mapping of a clean technology system.

3 Measuring Technological Orientation

Technological change and entrepreneurship are two interdependent concepts. Following (Au-

dretsch et al. 2002, p. 157), ‘what defines the entrepreneur is the ability to move technology

forward into innovation’. A new technology will only diffuse if it has economic value, i.e., if

it is put into productive use by someone. The economic application of a new technology by

entrepreneurs is thus a necessary condition for the diffusion of the technology and, at the aggre-

gate level, for technological change. This motivates to measure technology usage at firm-level to

capture both direction and drivers of technological change. In light of directed technical change,

capturing technological capabilities of firms may also serve as a useful policy tool. It effectively

allows to identify entrepreneurial ventures whose technological orientation favors a socially de-

sired technological pathway. Focusing on the technological transition towards higher levels of

decarbonization and dematerialization, this section starts with the definition of a well-defined

set of clean technology fields followed by a detailed discussion how a fine-grained measure of

technological orientation at firm-level can be derived by means of textual innovation data.

3.1 Mapping of clean technology system

In this paper, ‘clean technologies’ refer to any process, product or service that aims at reducing

negative environmental impacts. This comprises environmental protection and climate change

mitigation measures, the sustainable use of natural resources and the use of goods that are mod-

ified to be less material- and energy-intensive than the industry standard (dematerialization).

Another field of clean technologies is the reduction of anthropogenic emissions and pollution

(decarbonization). This includes a wide range of different technologies, from renewable en-

ergy generation to carbon capture technologies to clean water technologies, all of which find

application across different sectors and create different markets for companies to operate in.

To define clearly distinguishable areas of clean technologies, this paper follows the European

Patent Office (EPO) classification scheme for green technologies, which ‘cover[s] all significant

climate change mitigation technologies [. . . ] in energy, carbon capture, transport, buildings,

waste, energy-intensive industries and smart grids’ (United Nations Environment Program &

European Patent Office 2015, p. 8). Furthermore, cleantech categories employed in previous
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literature (Doblinger et al. 2019; Cojoianu et al. 2020) and those published by the Cleantech

Group5, a leading research and consulting agency in the market for clean technologies, are also

incorporated. The final list consists of 10 different areas of clean technologies and can be found

in Table 1 along with a specific technology example for each area.

Figure 1: Clean technology fields

Clean technology field Technology example Corresponding
CPC classes by EPO

1 Technologies for the adaption to
climate change (Adaption)

Genetically modified plants resis-
tant to drought

Y02A 10, Y02A 30-60, Y02A 90,
Y02B 80

2 Battery storage and fuel cells
(Battery)

Fuel cell technologies in produc-
tion processes

Y02B 90/10, Y02E 60/30,
Y02E 60/32, Y02E 60/34,
Y02E 60/36, Y02E 60/50,
Y02E 60/30, Y02P 90/40, Y02P
90/45, Y02P 90/50, Y02T
90/40

3 Biofuel technologies (Biofuels) Algae biomass Y02E 50, Y02T 10/30

4 Carbon capture, storage and se-
questration (CCS)

Enhanced coal bed methane re-
covery

Y02C 10, Y02C 20, Y02P 40/18,
Y02P 70/10, Y02P 90/70

5 Energy efficiency (E-efficiency) Insulation technologies inhibiting
radiant heat transfer

Y02B 20-50, Y02B 70, Y02B 90
(Y02B 90/10), Y02D 10, Y02D
30, Y02D 70, Y02E 20, Y02E 40,
Y02P 80

6 Renewable energy generation
(Generation)

Generation of geothermal energy Y02E 10, Y02E 30, Y02B
10, Y02P 10/20, Y02P 20/143,
Y02P 20/582, Y02P 20/584,
Y02P 70 (except Y02P 70/10)

7 Grid and power conversion (Grid) Smart grids Y02E 60/10, Y02E 60/13, Y02E
60/14, Y02E 60/16, Y02E 70,
Y02T 10/70, Y04

8 Low carbon materials and manu-
facturing (Materials)

Technologies to replace cement by
fly ash in concrete production

Y02P 10-40 (except Y02P
10/20, Y02P 20/143, Y02P
20/582, Y02P 20/584), Y02W
90

9 Electric vehicles and low carbon
mobility solutions (Mobility)

Ultracapacitors for efficient elec-
tric vehicle charging

Y02T 10 (except Y02T 10/30,
Y02T 10/70), Y02T 30, Y02T
50, Y02T 70, Y02T 90 (except
Y02T 90/40)

10 Water and wastewater treatment
(Water)

Technologies for the production of
fertilisers from the organic frac-
tion of waste or refuse

Y02A 20, Y02W 10, Y02W 30

Note: Clean technology fields form the basis for deriving a mapping between specific clean technologies and busi-
ness models. Patent documents labeled with the corresponding Cooperative Patent Classification (CPC) classes
by the European Patent Office (EPO) as listed in the last column are used to derive semantic representations of
the respective clean technology field.

These technology fields form the basis for mapping a system of clean technologies. The

mapping approach makes use of semantic information about the underlying technologies as

retrieved from a large corpus of technical patent texts. In essence, the semantic mapping consists

of two steps:

(i) Modeling of semantic technology descriptions for each of the above clean technology fields.

A semantic technology description is best described as a sequence of technological terms

which refer with high probability to the focal technology. These word-based technology

descriptions are derived empirically from a large corpus of expert-labeled patent abstracts.

(ii) Leveraging the semantic technology description to a vector representation by means of text

embedding models. This step shifts the word-based technology description to a context-

5https://www.cleantech.com
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based numerical vector which determines the technologies’ position within technological

space.

In the following, these two steps and the underlying methods will be introduced in more detail.

From patents to semantic technology descriptions

This study uses an expert-labeled corpus of patent abstracts as the basis for constructing se-

mantic representations for the different clean technology fields. Overall, the corpus comprises

more than 550,000 patent documents filed by patent applicants located in Germany.6 Given the

technical content of patent documents, semantic patent analysis poses a natural starting point

for technology-related research such as technology forecasting (Guo et al. 2016; Zhang et al.

2016; Song et al. 2017; Chen et al. 2017; Hwang & Shin 2019), technology roadmapping (Lee

et al. 2008; Choi et al. 2013; Geum et al. 2015; Zhang et al. 2016) and more recently for ana-

lyzing technology profiles (Suominen et al. 2017) and business method innovations within firms

(Moehrle et al. 2018).7 This study leverages the textual content of patents to derive semantic

descriptions of technologies, i.e. to model technologies semantically. Besides the textual content

of the patent documents, the paper also makes use of patents’ metadata which are typically

assigned as part of the patent’s granting process. Most importantly, it uses the patent’s Co-

operative Patent Classification (CPC) classes which help patent examiners to group inventions

by technical area. According to the EPO, at its finest level of granularity, there are about

250,000 distinct CPC labels that map patents to underlying technologies (European Patent Of-

fice 2020). Most importantly, for the case of clean technologies, the CPC scheme incorporates

a class for climate change mitigation technologies, the so called Y02 taxonomy, which allows

for the identification and classification of patents whose invention relate to the clean technology

fields introduced above.8

Acknowledging that clean technologies span various technical fields relevant in very different

industrial sectors, the Y02 taxonomy has been introduced as a complementary scheme to the

already existing classification schemes at EPO.9 For this reason, cleantech patents are typically

6German patent filers are selected because the assessment of new ventures’ proximity to the different cleantech
fields in Section 4 focuses on German start-ups. As country of the Energiewende, Germany has long been regarded
as a regulatory pioneer with regard to its commitment to a low-carbon economy and its promotion of eco-innovative
technologies. With this form of directed technical change, it is expected that policy has also incentivized the
creation of new ventures in the clean technology domain. Thus, it is seen as likely that a representative sample
of German start-ups will contain cleantech ventures.

7Note that these studies are limited to companies that file patents, which is rarely the case for market entrants.
8At its least granular level, the Y02 taxonomy spans eight different subclasses. The definition of the clean

technology fields derived in this paper closely follows these subclasses. The exact mapping between cleantech
fields used in this study and Y02 labels by EPO can be found in Table 1.

9In fact, the Y02 class is the result of an unprecedented effort by EPO to assess all patents ever filed with
EPO that are related to clean technologies. Both specialized patent examiners from EPO together with outside
experts from the various clean technology fields jointly developed the Y02 taxonomy in order to ensure its validity.
Today, more than 3.2M patent documents fall under the Y02 scheme which is why it is seen as the most accurate
labeling of clean technology patents available and the international standard for clean innovation studies (Calel
& Dechezleprêtre 2016).
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not only assigned to one CPC label that uniquely relates to a single technology field. Instead,

most patent documents are co-labeled with CPC classes which refer to different cleantech fields

and non-cleantech related technology fields. This becomes apparent in Figure 2 which shows

that most patents have some degree of technical complementary and are thus applicable to

different technology fields. This makes it challenging to retrieve those technical terms which

closely resemble the technology field of interest. In order to derive technology descriptions from

the technical terms of the patent texts, a statistical procedure is required to disambiguate which

words refer to which technology with highest probability.

Figure 2: Complementarity of cleantech fields in patent corpus

(a) across different cleantech fields
(b) across cleantech fields and
non-cleantech-related CPC classes

Note: Complementarity indicates the percentage of patents assigned to the cleantech field on the horizontal axis
that are also assigned to (a) the cleantech field on the vertical axis as well as to (b) the non-cleantech-related
CPC classes A-H.

Statistically, this translates into the goal to model a probability vector, δt, over the corpus’

vocabulary, V , for each of the technology fields, t.10 The intuition here is that technological

terms accompanying patents that are relatively frequently assigned to a particular technology

field semantically circumscribe that technology. Due to the co-labelling of patent documents,

none of these technical terms is exclusive to a technology field. However, modeling technology-

specific probability vectors over all terms allows to disentangle the terms’ relative importance

of circumscribing a particular technology field. In other words, the word probability vectors δt

for all t ‘distribute’ the corpus’ technical terms to technologies. A common approach to derive

δt is provided by probabilistic topic modeling such as Latent Dirichlet Allocation (LDA) (Blei

et al. 2003). LDA assumes that the patent corpus arose from a generative process that is defined

by a joint probability distribution over both the observed terms in each patent document but

also hidden variables such as the probability vector over the vocabulary for each technology

10In other words, a technology description is defined as probability distribution over the fixed vocabulary of
the patent corpus.
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(Blei 2012). As a completely unsupervised algorithm, LDA does not allow patent labels to be

incorporated into the algorithm. Therefore, this paper follows Ramage et al. (2009)’s Labeled

Latent Dirichlet Allocation (L-LDA) extension which adds supervision to the algorithm by

restricting the generative process to only consider technology fields which accompany the patents

through their CPC labels. So, with the patent corpus, D, that consists of P distinct patent

abstracts each of length Np the generative process can be modeled as follows.

1. For each technology field t ∈ {1, . . . , T}: generate the word distribution from a Dirichlet

prior δt ∼ Dir(β)

2. For each patent p ∈ {1, . . . , P}: generate a patent-specific technology distribution from

another Dirichlet prior λp ∼ Dir(αp). This is where the algorithm includes supervision

since parameter αp restricts the Dirichlet to only consider the technology fields which

accompany the patent through their CPC labels.11

3. For each of the word positions p, n, with p ∈ {1, . . . , P} and n ∈ {1, . . . , Np}:

(a) generate the technology assignment according to zp,n ∼Multinomial(λp)
12

(b) and select words according to wp,n ∼Multinomial(δzp,n)

This way the generative process fully specifies both the observed words from the patent

abstracts, w, and hidden random variables that cannot directly be observed from the corpus

(Blei 2012). These hidden variables comprise the distribution of technology fields over patent

abstracts, λp,
13 the technology assignment for the nth word in patent p, zp,n, and, most im-

portantly in the context of this study, the word distribution for each clean technology field,

i.e. δt. The above specification of the generative process corresponds to the joint probability

distribution

p(δ1:T , λ1:P , z1:P , w1:P ) =
T∏
t=1

p(δt)
P∏

p=1

p(λp)

 Np∏
n=1

p(zp,n|λp)p(wp,n|δ1:T , zp,n)

 . (1)

The statistical learning problem to obtain technology-specific word distributions from the

observed patent abstracts is to infer the posterior distributions p(δt), i.e., to derive the marginal

distributions p(δt) from the above joint probability distribution. Following Ramage et al. (2009),

this study uses Gibbs sampling to derive the posterior word distributions.

A semantic technology description, Xt, is then defined by the technical terms from the

patent corpus whose probability of referring to technology t is highest. For example, the word

11In LDA, all patent documents would share the same set of technologies, but each patent exhibits those
technologies with different proportion. Unlike LDA, the generative process used in this study (L-LDA) restricts
the model to only consider the technology fields which accompany the patent through their CPC labels. It does
so by modeling the technology field attribution, determining αp, via a simple Bernoulli prior for each of the T
technology classes (see Ramage et al. (2009) for details).

12Similar to αp, the generation of zp,n is restricted to technology fields that accompany the patents.
13While the technology fields relevant to a patent are observable through its CPC labels, the patent’s proportion

attributable to each of the fields is hidden.
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probability distribution for Carbon Capture and Storage (CCS) technologies, p(δCCS), yields

the following semantic technology description

XCCS
(1×Q)

= 〈gas, absorption, dioxide, carbon, . . . , scrub, seperation, desorption . . .〉

with the terms ordered by descending probability.14

As sequence of technical terms, the semantic technology descriptions convey an intuitive

understanding of the technology they are intended to describe. For example, the word ‘gas’

by itself gives little indication of CCS technologies. But ‘gas’ taken together with terms like

‘absorption’, ‘carbon’, and ‘scrub’ provide a high context that can closely be inferred to CCS

technologies.15

From semantic technology descriptions to technology embeddings

Text embedding models are a common method for converting word sequences into a vector

format while preserving the context of the sequence. Text embedding models build on the

concept of word embeddings which are dense vector representations of words that allow words

with similar meaning to have a similar representation in vector space. The core idea in deriving

word embeddings is to exploit information about the co-occurrence of words, i.e. the appearance

of two words in close proximity in large text corpora. In recent years, this has been a very active

research field, which has led to major advances in network architectures (see Wang et al. (2020)

for a recent survey on text vectorization models) to derive highly contextualized word and text

embeddings. This paper makes use of a pretrained text embedding model that is based on the

seminal Bidirectional Encoder Representations from Transformers (BERT) network architecture

(Devlin et al. 2018).16 Specifically, I use a pretrained version of Sentence-BERT (SBERT)

(Reimers & Gurevych 2019) to encode the semantic technology descriptions as fixed-size, dense

vectors which I refer to as technology embeddings in the remaining of the paper.

XCCS
(1×Q)

= 〈gas, absorption, dioxide, carbon, . . . , scrub, seperation, desorption . . .〉

SBERT

y
XCCS

(1×384 ∀Q)
= [0.479,−0.016, . . . , 0.483,−0.347]′

14Note that the final number of technical terms used to model the semantic technology descriptions, Q, is
treated as hyperparameter whose optimal value is determined empirically (see Section 3.3).

15See Table 7 in the Appendix for the most relevant technical terms for all clean technology fields.
16Unlike previous language models, BERT’s network architecture and training objective allows it to derive word

embeddings based on the context given before (on the left side of) the focal word and after (on the right side
of) the focal word (Wang et al. 2020). Thus, BERT no more treats word sequences as unidirectional left-to-right
sequence but as bidirectional sequence of word dependencies.
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Note that the last layer in a SBERT network is a pooling operation that averages all word

embeddings and thus produces fixed-size output vectors regardless of the length of the input

sequence (Reimers & Gurevych 2019). In the specification of this study, the fixed size vector

has length 384.

Conducting the encoding for all of the 10 clean technology descriptions yields a mapping

of the clean technologies in semantic vector space. In the next section, I show how to place

companies into the same vector space based on their business descriptions. I then propose a

distance measure between technology and company vectors to determine how ‘close’ or ‘distant’ a

firm is positioned to each of the technologies. Moreover, Section 3.3 shows that the discriminative

‘quality’ of the measure depends on the number of words, Q, that are used to model the semantic

technology description. Ultimately, this number is determined empirically using a technology-

labeled dataset of business descriptions.

3.2 Deriving a firm-level measure of technological proximity

In order to position companies within the clean technology system, I use the same pretrained

SBERT model to derive vector representations of each firms business summary. In this way, it

becomes possible to position companies within the system of clean technologies and ultimately

to determine their proximity (distance) to each of the technologies. Sentence-BERT (SBERT)

has been fine-tuned on semantic textual similarity data, i.e., pairs of word sequences that have

been labeled as ‘contradiction’, ‘entailment’ or ‘neutral’ (Reimers & Gurevych 2019). This

makes SBERT highly suitable for the derivation of a technological proximity measure where the

goal is to determine whether a new venture’s business model is ‘close’ to a certain technology

description or rather ‘distant’ from it. If two word sequences (texts) consist of distinct words but

share a similar context, SBERT will encode the sequences into similar vector representations.

For example, a description of a new venture, Yi, that has specialized in CCS technologies may

look as follows:

‘Development and licensing of direct air capture technology that safely and perma-

nently removes CO2 from the air.’

Although there is no direct word overlap between XCCS and Yi, the word embeddings of some

of the words in both descriptions are likely to be highly correlated. For instance, ‘gas’, ‘carbon’,

‘dioxide’ in XCCS and ‘air’ and ‘co2’ in Yi are likely to be close to each other in vector space as

in very large corpora these words tend occur in close proximity to each other relatively often.

The same applies to ‘absorption’, ‘desorption’ in XCCS and ‘capture’ and ‘remove’ in Yi.

This paper proposes cosine similarity to quantify a ventures technological orientation towards

12



a specific technology.

TechProxt,i := sim(Xt, Yi) = cos(θt,i) = max

(
0,

X̄tȲi
|| X̄t |||| Ȳi ||

)
∈ [0, 1] (2)

Cosine similarity as measure of semantic similarity between two texts is well documented (see for

example Chandrasekaran and Mago (2021) for a recent survey). Intuitively, if the angle between

a company and a technology embedding is small, both vectors point into similar directions in

technology space which means that they share similar context (i.e., they share contextually

similar words). The more a company’s business model relates to a specific clean technology, the

higher the semantic overlap between company and technology description and, thus, the closer

TechProx moves towards its maximum value of 1. If the words in the company description are

however contextually independent from the technology description’s words, TechProx takes

on a value close to 0 indicating that the firm’s business model is not related to the respective

clean technology.17

3.3 Validating the technological proximity measure

Up to this point, this section has shown how patent texts can be used to map a system of different

technologies in vector space. In transferring textual information about companies’ business

model into this vector space, cosine similarity has been proposed to measure how ‘closely’ a

company is oriented towards a particular technology. The overall framework of deriving the

firm-level indicator of technological orientation based on textual innovation data is displayed in

Figure 3.

For the proposed measure of technological proximity to be useful, it should satisfy two

properties:

(i) It should allow for a differentiation of cleantech oriented firms form non-cleantech oriented

firms, i.e. a company whose business model is unrelated to clean technologies should be

distant from any of the clean technology embeddings.

(ii) It should position cleantech companies closest to their most relevant technologies, i.e., a

company specialized in geothermal energy should be identified by a relatively high prox-

imity to the technology embedding for renewable energy generation, while at the same

time it should show a significantly lower proximity to the other embeddings within the

cleantech system, e.g., to the embedding of CCS technologies.

To validate these desirable properties, I use a sample of detailed business summaries of both

17By definition, cosine between two real-valued vectors, which is the case for word embedding based vectors, can
take on negative values. Conceptually, this would indicate the the embeddings consist of contextually opposing
words. For the purpose of measuring a firms proximity to a technology, it is sufficient to assess how ‘closely’ the
firm is technologically oriented towards a certain technology. A value closer to 1 indicates ‘higher technological
proximity’ and a value close to 0 reflects ‘technologically unrelated’. Thus, I truncate negative cosine values to 0.
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Figure 3: Illustration of framework to map technologies to company descriptions

Note: For illustration purposes, 384-dimensional technology and company embeddings are displayed on their three
principal components (PC).

cleantech and non-cleantech firms. More precisely, the sample comprises business descriptions

of all firms that have been listed on the Cleantech 100 list in recent years.18 They are contrasted

against business summaries of all companies listed on the S&P 500 constituting the observations

of non-cleantech firms.19 Overall, the sample comprises 533 business summaries of companies

that have been listed on the Cleantech 100 list since 200920 and business summaries for all of

the S&P 500 firms.

It is reasonable to assume that the business models of the firms that make it onto the

Cleantech 100 list are closely related to at least one of the clean technology fields derived in

Section 3, as an elaborate selection process was conducted to derive the final list. Thus, it is

expected that their company embeddings show a relatively high proximity to at least one of the

clean technology embeddings, thereby allowing to identify them as cleantech firms. Company

embeddings of S&P 500 firms, in contrast, are expected to be more distant from the clean

technology embeddings. Following this line of argumentation, the business summaries of the

firms on the Cleantech 100 list are labeled as ‘cleantech’ and business summaries from the S&P

500 firms are labeled as ‘non-cleantech’.21 Based on this labeled dataset, the technological

18The Cleantech 100 list is published each year by the Cleantech Group and comprises 100 leading companies in
various clean technology sectors. The list results from an elaborate selection process conducted by an independent
expert panel. Starting from an extended nomination list of more than 10,000 firms from close to 100 distinct
countries, the panel applies objective criteria to derive the final list (Cleantech Group 2022). Business summaries
for these cleantech firms are retrieved from https://i3connect.com

19Business summaries retrieved from https://www.cnbc.com
20There are several companies that have made it on the Cleantech 100 list in several years, which explains why

the total number is not larger.
21List of S&P 500 firms has been cleaned by three companies that have also made it onto the Cleantech 100 list.
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proximity measure is used to classify whether a firm’s business model is cleantech oriented or

not. This allows to get a first evaluation of the measure’s quality, since it should yield low

proximity values for any of the non-cleantech firms, while at the same time it should detect

cleantech firms by a high proximity value for their most relevant technology.

Moreover, the binary classification task forms the basis to find the ‘optimal’ number of

words used to model semantic technology descriptions, Q, along with the minimum threshold,

TechProxmin, that must be exceeded for the company to be classified as ‘cleantech’. For

this purpose, the proximity to all 10 cleantech areas is calculated for each company in the

labeled sample and their maximum value, i.e. the proximity value of the firm’s most relevant

technology, is retained. This step is repeated for different numbers of Q. Figure 4 shows the

distribution of TechProx for both the cleantech labeled and non-cleantech labeled companies

along different values of Q. The figure suggests that the discriminative ‘quality’ of the technology

proximity measure depends on the number of words, Q, that are used to model the semantic

technology description. The more words are used, the worse is the segregation into cleantech

and non-cleantech firms. Intuitively, as the number of words increases, terms are added to the

technology description that are less relevant in describing the technology, making the description

increasingly fuzzy. On the other hand, with an insufficient number of words, the word sequence

contains too little context to adequately represent a complex construct such as a technology.

In order to find the optimal values for Q and TechProxmin, the labeled sample of business

summaries is randomly split into a 50% validation set and a 50% test set. On the validation set,

grid search is used to find the optimal values of both parameters. Tuning the F1-Score on the

validation set yields an optimal value of Q = 15. The optimal value of TechProxmin is 0.27.

Thus, if TechProx exceeds a value of 0.27, the respective technology is being considered as

relevant to the business model of the focal company. In this way, the company is identified as

cleantech firm. Given the optimal hyperparameter values found on the validation set, the test

set is then used to evaluate the proximity measure’s performance in distinguishing cleantech

firms from non-cleantech firms. The classification performance metrics are displayed in Table

1. Results show that if the proximity measure detects a firm as a clean technology company, it

is correct in almost 9 out of 10 cases, as it can be seen by the 87% precision for the cleantech

class. The framework retrieves 86% of all cleantech firms and 84% of all non-cleantech firms in

the test dataset (recall). The overall F1-Score is 85%. It is noteworthy that the classification

has only been conducted by means of the technology mapping framework that solely relies

on business descriptions. Arguably, with additional characteristics such as industry affiliation

and patent activities (if applicable), training a classification model could probably improve the

Moreover, after careful validation of the S&P 500 companies’ websites, 27 firms which have a clear focus or a major
business segment in any of the 10 clean technology fields were labeled as ‘cleantech’ instead of ‘non-cleantech’.
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Figure 4: Distinguishing cleantech firms from non-cleantech firms via TechProx

Note: Distribution of technological proximity values between cleantech labeled and non-cleantech labeled firms
(for each firm only the highest technological proximity value to the 10 clean technologies is retained, i.e. the
proximity value of the technology that is most relevant to the company in semantic vector space). Distribution
is displayed as boxplots (median as bar, interquartile range (IQR) as box, 1.5*IQR past the low quartile as
lower whisker and 1.5*IQR past the high quartile as upper whisker, values beyond the whiskers as individual
points). Distribution is shown for different values of Q, i.e., for different numbers of technical terms used to
model technology descriptions. Figure suggests that discriminative power depends on the number of words used
to model technologies semantically. With an increasing number of words, terms are added that relate with lower
probability to a technology causing the technology description to become fuzzy which diminishes the measure’s
discriminative power. On the other hand, too few words means that the word sequence contains too little context
to adequately represent a complex construct like a technology.

Table 1: Performance of TechProx in distinguishing cleantech from non-cleantech firms

Label Precision Recall F1-Score Support

Cleantech 0.87 0.86 0.86 284
Non-cleantech 0.83 0.84 0.83 233

0.85 517

Note: Performance measured on random test set with optimal values of Q = 15 and TechProxmin = 0.27. Op-
timal values for Q and TechProxmin have been determined on the validation set by tuning F1-Score.

identification. These promising results suggest that the proximity measure’s first property is

satisfied: it allows for an effective discrimination between cleantech and non-cleantech ventures.

Next, I validate the measures capability to position cleantech firms close to their most rele-

vant technology while showing significantly lower proximity to all other technologies within the

technological system. To validate this property, I conduct a one-sided Wilcoxon signed-rank test

(Wilcoxon 1945). The test allows for a pair-wise comparison of a firm’s proximity value of the

closest technology with the proximity value of the second closest technology. For each of the

clean technology fields, this test is performed within the top 1% (5%) group of companies which

show the highest proximity values to the focal technology. In this way, it is tested whether the

proximity of a company’s most relevant technology is significantly larger than the proximity

to the second closest technology. For a disambiguation across clean technology fields this is a
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Table 2: Performance of TechProx in positioning cleantech firms within clean technology
space

Clean technology field Confidence levels
Wilcoxon signed rank test in

Fraction of
cleantech labeled firms in

top 1% top 5% top 1% top 5%

Adaption *** 1.00 0.87
Battery ** 1.00 0.98
Biofuels *** 1.00 0.96
CCS ** 1.00 0.98
E-Efficiency ** 1.00 1.00
Generation *** *** 1.00 1.00
Grid *** *** 1.00 1.00
Materials 1.00 0.96
Mobility 1.00 0.90
Water *** *** 1.00 0.98

Note: Table reports confidence levels for rejecting the null hypothesis of one-sided Wilcoxon signed rank test for
pair-wise comparison of highest TechProx value with second highest TechProx value. Null hypothesis states
that the paired differences between a firm’s highest TechProx value and second highest TechProx is zero. Tests
are based on the top 1% (5%) group of firms with highest proximity to the respective cleantech field. Moreover,
table shows fraction of cleantech labeled firms in the top 1% (5%) group of companies with highest proximity to
the focal cleantech field. Significance levels: *: p < 0.10, **: p < 0.05, ***: p < 0.01.

desirable property which TechProx is supposed to fulfill. As a further objective measure, I

also report the fraction of firms within the top 1% (5%) that originates from the Cleantech 100

list. If the proposed approach provides a reasonable mapping of clean technologies to business

models, this fraction is expected to be high, given the technology specialization of the firms on

the Cleantech 100 list.

Table 2 reports both statistics for each of the clean technology fields. The table shows that

the companies on the Cleantech 100 list have the highest proximity in all clean technology areas.

Among the top 1%, all companies originate from the Cleantech 100 list, among the top 5% this

is still true for at least 87%. For most of the clean technology fields, the technology mapping

also allows for a clear demarcation from other clean technology fields. This can be seen in

the high confidence levels of rejecting the null hypotheses that the paired differences between

a firm’s highest TechProx value and second highest TechProx is zero. Only the cleantech

areas ’Mobility’ and ’Materials’ are exempted and show a high proximity to other cleantech

areas, impeding a clear-cut technology attribution. Generally, the demarcation diminishes in

the group of the top 5% of firms. However, all in all, and after careful validation of the top 1% of

companies with the highest proximity values for all of the cleantech fields, it is concluded that the

measure performs well in assigning the most relevant clean technology field to cleantech oriented

firms. To support this conclusion, Table 3 shows, as an example, the business summaries of the

1% of companies with closest proximity to CCS technologies.

Based on the proposed measurement approach and its desirable properties, the following sec-

tion identifies technology-oriented entrants within a representative sample of German start-ups.

Using survey responses about the start-ups’ environmental performance, the section shows dis-
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Table 3: Top 1% companies closest to Carbon Capture and Storage (CCS) technology
embedding

Business summary TechProx

Developer of direct air capture technology that safely and permanently removes carbon dioxide
from the air . . .

0.603

Developer of technologies for the capture of carbon dioxide from the atmosphere at industrial
scale . . .

0.583

Developer of CO2 capture technology that significantly reduces the costs and environmental
impacts of CO2 separation . . .

0.567

Developer of energy- and capital-efficient technology for capturing carbon dioxide from industrial
sources . . .

0.564

Developer and licensor of process technologies to convert carbon dioxide into high-value major
chemicals . . .

0.547

Developer of carbon dioxide mineralization technology for industrial use in capturing, converting
and sequestering carbon emissions as valuable byproducts . . .

0.544

Developer of a carbon capture and reuse technology that transforms abundant waste and low-cost
resources into low carbon fuels and chemicals . . .

0.518

Designer of nanoporous materials for the gas storage and separation industries . . . 0.465
Developer of low-cost building materials from industrial carbon dioxide emissions . . . 0.457
Developer of methane conversion technology for creating fuels and chemicals from natural gas
. . .

0.444

Note: Top 1% of companies which show the highest technological proximity to CCS technologies from the sample
of Cleantech 100 firms and S&P 500 companies.

tinguishable characteristics of cleantech companies in terms of their ability to act as accelerators

of technological change towards decarbonization and dematerialization.

4 Technological proximity mapping of new ventures

In this section, the technology mapping framework is applied to a sample of German start-up

firms. For this purpose, the study makes use of the IAB/ZEW Start-up Panel as provided by the

Research Data Centre of the Centre for European Economic Research (ZEW-FDZ) (Gottschalk

2013). This unique survey data contains detailed firm-level information covering questions about

financials, innovation activities and founder characteristics among other variables. Start-ups

from all economic sectors are included in the survey. They are drawn from the Mannheim

Enterprise Panel (MUP) which covers the near universe of economically active firms (Bersch

et al. 2014) in Germany. For the 2018 wave, specific questions about the environmental impact

of start-ups’ products and services as well as questions about their environmental innovation

activities were included in the survey. This makes the survey wave highly suitable for assessing

whether clean technology-oriented entrants have distinguishable characteristics that indicate

their role as accelerators of a green technological change. For this purpose, I enrich the survey

with the start-ups’ business descriptions as published in their founding year.22 Of the 3,789 firms

that responded to the environmental-related questions, business descriptions are available for

3,081 of them. For the remaining start-up companies, their archived websites were retrieved from

22Business descriptions are retrieved from the MUP, whose panel structure allows for retrieving the business
descriptions at the time of founding.
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the Internet Archive23 at the date closest to their founding date. These historical versions of the

start-ups’ websites are then searched for sub-pages whose link contains keywords such as ‘About

us’, ‘Products’, ‘Services’, ‘Technology’ and ‘Solutions’ in order to extract the textual content

found on these sides as an alternative source for their business descriptions. Overall, the final

sample comprises 3,269 start-up firms for which survey responses on the environmental-related

questions exist and company descriptions close to their time of founding could be recovered.

For these companies, business descriptions are used to calculate their technological proximity

to each of the 10 clean technology areas. In Figure 5, the distribution of the proximity values

is displayed in the form of box-and-whisker plots. The figure shows that the majority of start-

ups in the sample have no technological relation to clean technologies, as indicated by the high

distribution mass close to zero across all of the 10 cleantech fields. At the same time, for

each technology, there are a number of companies that stand out with a high technological

proximity to the corresponding technology field. These are displayed as ‘outliers’ in the boxplot

and correspond to firms whose proximity value exceeds the upper whisker in the respective

distribution. The business descriptions of these start-ups share a high contextual overlap with

the semantic representation of the focal clean technology. If these are indeed ventures whose

business model builds on clean technological solutions, it is expected that their products and

services have a positive environmental impact. In order to verify whether these are indeed market

entrants whose products and services are based on environmentally beneficial technologies, the

following section makes use of one of the environment-related survey questions.

4.1 Environmental impact of cleantech entrepreneurs’ products and services

In the survey, start-ups’ were asked to which extent their products and services have a positive

environmental impact for their customers. Positive environmental impacts include emission re-

ductions, improved energy efficiency, and better recyclability among other factors.24 By virtue

of their technological orientation, the products and services of cleantech entrepreneurs are ex-

pected to have a significant positive environmental impact. In other words, higher values of

TechProx should reflect business models whose products and services have positive environ-

mental outcomes for the ultimate users of these products.

This is tested by regressing the environmental impact of entrants’ business models, EImp,

on TechProx for each of the 10 clean technology fields separately.

EImpi = β0 + β1TechProxt,i + β3Xi + εi ∀ t (3)

X describes additional firm-level characteristics as control variables. These comprise sector and

23https://archive.org/
24See Table 7 in the Appendix for a detailed listing of the environmental impact questions.
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Figure 5: TechProx distribution in start-up survey across clean technology fields

Note: Distribution of technological proximity values of start-up firms in the 2018 IAB/ZEW Start-up survey
across different clean technology fields. Distribution displayed as boxplots (median as bar, IQR as box, 1.5*IQR
past the low quartile as lower whisker and 1.5*IQR past the high quartile as upper whisker, values beyond
the whiskers as individual points). Following Tukey (1977), TechProx values exceeding the upper whisker are
‘outliers’ which correspond to start-ups with a particular high proximity to the respective technology field. Note
that the upper whiskers center around the value TechProxmin = 0.27 which has been found to discriminate
best between cleantech and non-cleantech firms in Section 3.3. This suggests that in this representative sample of
German start-up companies, the identification of cleantech ventures via a TechProx value exceeding 0.27 closely
matches companies whose proximity value is statistically determined as an outlier. In a representative sample,
this seems a desirable property of the measure: it effectively allows for a discrimination of firms whose business
model is based on the focal technology from firms whose business model is unrelated to the technology field. With
this hard cut-off value, 545 of the 3,269 start-ups are classified as cleantech ventures.

product type fixed effects which are both expected to capture already some of the variation in

the environmental impacts of the firms’ products and services. Moreover, it includes variables

capturing whether the firm conducted R&D, whether it received public support grants and

information on the new ventures’ financial performance, its size and age as well as information

about the founders educational background (see Table 5 for an overview of control variables

and their descriptive statistics). Table 4 reports coefficient estimates of the main variable of

interest TechProxt.
25 It can been seen that a higher technological orientation towards any

of the 10 clean technology fields significantly corresponds with the firms’ products and services

having a positive environmental impact. Depending on the technology field, a 0.01 increase in

TechProx is associated with a 1.2 to 5.0% higher probability of having at least a moderately

positive environmental impact .

This positive relationship also holds if the start-ups are classified as cleantech or non-

cleantech based on the hard cut-off value of TechProxmin=0.27. This is captured by the

variable CleanTecht which takes on values of 1 if the entrant’s technological proximity value

exceeds the minimum threshold of 0.27 and 0 otherwise. The significant relationship in this ro-

bustness check only vanishes for firms active in technologies for the adaption to climate change

25Full regression results can be found in Table 8 in the Appendix.

20



Table 4: Relation between TechProx and the environmental impact of the entrants’
products and services, EImp

Dependent
variable

Clean technology (t) TechProxt CleanTecht

(0,1)

EImp

Adaption 1.012* 0.944
Battery 1.046*** 3.083***
Biofuels 1.049*** 1.900**
CCS 1.050*** 2.366**
E-Efficiency 1.045*** 4.319***
Generation 1.042*** 4.375***
Grid 1.038*** 2.156***
Materials 1.036*** 2.234***
Mobility 1.028*** 1.320
Water 1.034*** 2.414***

Note: Environmental impact questions were asked on a Lickert scale with three response possibilities: (1) No pos-
itive environmental impact; (2) moderate positive environmental impact; (3) substantial positive environmental
impact (see also Table 7 in the Appendix). EImp equals (3) substantial positive environmental impact if the firm
responded with (3) to at least one of the questions. EImp equals (2) moderate positive environmental impact if
the firm responded to none of the questions with (3) and to at least one of the questions with (2). Else EImp
equals (1) no positive environmental impact. Coefficient estimates reported as proportional odds ratios reflect
the factor by which an increase in TechProxt of one index point (0.01) corresponds to an increase in the odds
of having at least a moderate positive environmental impact compared to having no environmental impact (c.p.).
Alternatively, coefficient estimates for CleanTecht reflect by how many times the odds of a start-up classified
as cleantech firm in the respective technology field are higher in having at least a moderate positive environmen-
tal impact compared to a non-cleantech start-up (c.p.). Estimates correspond to regression model 3 and are run
individually for each technology. Full model results, including coefficient estimates of control variables, can be
found in Table 8 in the Appendix. Significance levels: *: p < 0.10, **: p < 0.05, ***: p < 0.01

and for start-ups providing clean technology solutions in the field of mobility. Overall, the

results suggest that cleantech firms’ products and services have a positive impact on their cus-

tomers’ CO2 footprint, allow them to reduce consumption of natural resources or improve their

level of recyclability. A key research question is whether cleantech entrants also show a higher

propensity to introduce additional environmental innovations, i.e., whether, for example, their

own R&D efforts lead to a further development and the diffusion of clean technologies. In the

following section, I investigate this question by relying on survey information about the firms’

environmental innovation activities.

4.2 Environmental innovations among cleantech entrepreneurs

I use a second set of questions that asked firms about their environmental innovation activi-

ties to characterize clean technology-focused market participants in terms of their propensity

to innovate. Environmental innovations are defined as products and processes which allow the

venture to reduce its energy and material consumption or its emissions or to improve the recy-

clability and durability of its own products.26 To test whether cleantech entrants, besides their

sustainability oriented business models, are additionally characterized by a higher propensity to

26See Table 7 in the Appendix for a detailed listing of the environmental innovation questions.
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Table 5: Descriptive statistics regression variables

Variable Description Mean SD Min Max

TechProx Degree of start-ups technological proximity to its most
relevant technology (i.e. firms highest technological prox-
imity value across the 10 clean technology fields).

0.174 0.098 0 0.599

CleanTech Indicating whether start-up is classified as cleantech firm
or as non-cleantech firm. Cleantech if TechProx exceeds
threshold of 0.27.

0.167 0.373

size Size of the start-up in number of total employees. 6.330 12.100 1 407
age Age of start-up in years. 3.000 1.560 1 6
R&D Indicating whether start-up conducted own research and

development in 2017.
0.311 0.463

R&D intensity R&D intensity in 2017 measured as number of employ-
ees (including founders) which spent at least 50% of their
working hours on R&D relative to the total number of
employees.

0.106 0.255 0 1

returns Indicating whether the start-up generated returns in 2017. 0.959 0.198
break even Indicating whether the start-up was profitable in 2017. 0.793 0.405
subsidy Indicating whether the firm received a public grant in

2017.
0.139 0.346

team-size Total number of founders. 1.460 0.809 1 15
university Indicating whether at least one of the founders holds a

university degree.
0.393 0.489

Note: Table shows descriptive statistics of main variables of interests, TechProx and CleanTech respectively,
in regression model 4 as well as for control variables used in regression models 3 and 4. Regression models also
include sector fixed effects and product type fixed effects. The latter controls for the following categories: manu-
facturing of product, service, trade, construction, repair, rental.

introduce environmental innovations, I estimate the following regression model.

EInnoi = β0 + β1TechProxi + β3Xi + εi (4)

The dependent variable, EInno, indicates whether or not the venture introduced an environ-

mental innovation after its foundation. The main independent variable of interest, TechProx,

refers to the firm’s highest technological proximity value across the 10 clean technology fields.

Table 6 reports the average marginal effect estimates for different model specifications. In

the most parsimonious specification (1), EInno is only regressed on TechProx (CleanTech)

controlling for basic firm characteristics such as size and age as well as sector fixed effects. The

regression results suggest that, on average, a higher orientation towards clean technologies is

associated with a significantly higher probability to introduce environmental innovations. More

precisely, cleantech firms’ probability to introduce an eco-innovation is, on average, almost 7

percentage points higher as compared to non-cleantech firms. This relationship appears to be

highly robust against the inclusion of a wide range of control variates. In model specification

(2), for example, innovation-related information are included as additional controls. These com-

prise an indicator that reflects whether the start-up received a public subsidy, which usually

indicates that it is an innovative market entrant. Furthermore, it includes information whether

the start-up conducted R&D in 2017 as well as the start-up’s R&D intensity, measured as the

22



fraction of employees actively engaged in R&D activities. While the estimates for TechProx

(CleanTech) remain unchanged, subsidy recipients and R&D oriented entrants show a sig-

nificantly higher probability of adopting environmental innovations. Regression specification

(3) adds information on the entrants’ financial performance which positively correlate with the

firms’ propensity to eco-innovate. Again, estimates for TechProx (CleanTech) remain robust

against inclusion of financial controls. In specification (4), founder characteristics reflecting the

absolute number of founders and whether at least one of the founders holds a university degree

are added to the regression. Interestingly, the propensity to introduce environmental innovations

is significantly lower for firms led by founders with a university degree. Arguably, founders with

a more practical educational background, such as craftsmen, are more likely to develop business

ideas in which technical environmental innovations are of greater importance. The estimates of

the main variables of interest TechProx and CleanTech remain largely robust. Ultimately,

specification (5) adds product type fixed effects which control for the start-ups’ main type of

product or service (manufacturing of product, service, trade, construction, repair, rental). In

this final model specification, cleantech firms’ probability to introduce environmental innova-

tions is, on average, 7.8 percentage points higher as compared to non-cleantech firms which

clearly characterizes them as environmental innovators.

Following the Oslo Manual, a product innovation is defined as ‘a product whose technological

characteristics or intended uses differ significantly from those of previously produced products’

(OECD/Eurostat 2018, p. 32) and a process innovation refers to an ‘adoption of technologically

new or significantly improved production methods’ (OECD/Eurostat 2018, p. 32). Hence, if

a venture introduces an environmental product or process innovation, it means that it adapts

its products or processes in such a way that they are environmentally superior compared to its

previous products and processes. For the case of clean technology-oriented market entrants, the

introduction of environmental innovations imply an additional contribution to the diffusion of

higher sustainable market standards. Besides their clean technology-oriented business model,

they are also characterized by a higher propensity to introduce products and processes that

further add to higher environmental standards. Although the results in this section are only of

descriptive nature, they suggest that market entrants with a strong focus on clean technological

solutions act as accelerators of a technological transition towards green market standards. The

distinguishable characteristics of cleantech entrants are in line with entrepreneurship theory that

attributes new ventures a special role in this technological transition. While disruptive techno-

logical change is barely driven by established firms due to their technological path dependence,

new entrants that focus on clean technology solutions are unconstrained to introduce additional

and often more radical technology innovations. This gives cleantech entrants a special role as

enablers of new technological pathways for sustainable market solutions. The characteristics of
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Table 6: Relation between TechProx and entrants’ environmental innovation activity
EInno

EInno

(1) (2) (3) (4) (5)

TechProx 0.003*** 0.003*** 0.003*** 0.003*** 0.003***
log(size) 0.017*** 0.013*** 0.012*** 0.017*** 0.015***
age 0.001 0.003 0.001 0.001 0.001
subsidy 0.067** 0.073*** 0.080*** 0.089***
R&D 0.078*** 0.079*** 0.105*** 0.110***
R&D intensity −0.055 −0.017 −0.020 −0.040
returns 0.125*** 0.110** 0.102**
break even 0.078*** 0.065*** 0.071***
team size −0.020* −0.023*
university −0.121*** −0.115***
Sector controls Y Y Y Y Y
Product type controls N N N N Y
N 3,269 3,269 3,192 3,192 2,774
Pseudo R2 0.033 0.038 0.043 0.054 0.062

CleanTech 0.068*** 0.068*** 0.064** 0.060** 0.078***
log(size) 0.018*** 0.013*** 0.012*** 0.017*** 0.015***
age 0.001 0.003 0.000 0.001 0.001
subsidy 0.067*** 0.074*** 0.081*** 0.089***
R&D 0.081*** 0.082*** 0.108*** 0.114***
R&D intensity −0.055 −0.016 −0.020 −0.039
returns 0.126*** 0.111** 0.103**
break even 0.078*** 0.065*** 0.071***
team size −0.019* −0.023*
university −0.122*** −0.115***
Sector controls Y Y Y Y Y
Product type controls N N N N Y
N 3,269 3,269 3,192 3,192 2,774
Pseudo R2 0.033 0.037 0.043 0.054 0.061

Note: Environmental innovation questions were asked on a Lickert scale with three response possibilities: (1) No
environmental innovation; (2) environmental innovation with moderate environmental effect; (3) environmental
innovation with substantial environmental effect (see also Table 7 in the Appendix). To facilitate interpretation,
the response variable was converted to a dichotomous variable, and model 4 was estimated as a logistic regression.
Firm is identified as innovator if it responded with at least (2) to at least one of the environmental innovation
questions (EInno = 1). Else EInno equals 0. Coefficient estimates reported as average marginal effects reflect-
ing the percentage point change in the probability to introduce an environmental innovation if the explanatory
variable increases by one unit. Table 9 in the Appendix shows coefficient estimates if ordinal scale of response
variable is kept. Results are robust with respect to how the response variable is defined. Change in observation
numbers due to item non-response. Significance levels: *: p < 0.10, **: p < 0.05, ***: p < 0.01
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cleantech oriented business ventures found in this section support the attribution of this special

role. Together with the proposed framework for identifying cleantech companies, this opens a

new avenue for entrepreneurship research to demonstrate why cleantech entrepreneurs should

be at the center of policies to accelerate the transition to a low-carbon economy.

5 Discussion and conclusion

Current research not only suggests that increased investment in advanced low-carbon technolo-

gies allows for a further decrease of reduction costs of future emissions (Bistline & Blanford 2020)

but also that many near-commercial technologies with substantial emission reduction potential

already exist (Bataille et al. 2018). However, additional innovation and policy prioritization

with a dedicated mix of policy instruments is required to accelerate the technological transi-

tion towards a deep industrial decarbonization (Bataille et al. 2018) and higher sustainability

standards (Edmondson et al. 2019). Path dependence in incumbent technology regimes and

market externalities for environmental innovations are two economic explanations that justify

a policy-induced, directed technical change towards a desirable long-term equilibrium of green

growth. In light of technological path dependencies, policymakers are, however, well advised

to refine their instruments with respect to companies’ willingness to introduce sustainable in-

novations. Constrained by past technological investments, incumbent firms are typically locked

into path-dependent trajectories of their existing technology portfolio with little incentive to

stimulate disruptive environmental innovations. New ventures, in contrast, are technologically

unconstrained in their innovation decisions, seizing regulatory push and market pull effects for

sustainable market solutions with more disruptive innovations (Hockerts & Wüstenhagen 2010).

This gives rise to new market entrants as enablers of a green technological transition. Following

this theoretical consideration, this study has focused on entrepreneurs whose business models

build on clean technology solutions such as renewables, carbon capture and storage or clean

water solutions. It is shown that clean technology-oriented market entrants have distinguishable

characteristics that indeed suggest that they have an important role to play in the technological

transition to higher levels of sustainability. Both by virtue of their business models that build

on clean technology solutions as well as by a high propensity to adopt additional environmen-

tal innovations, they may act as as accelerators in the transition to more sustainable forms

of production, consumption, mobility and housing. This motivates why policymakers should

pay special attention to clean technology-oriented market entrants for the design of optimal

environmental policy.

First and foremost, policymakers need to know and understand both the technological ar-

eas where entrepreneurial activity takes place and the environmental challenges where little
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entrepreneurship is conducted. While for incumbent firms detailed information through R&D

investments and patenting activities allow for assessment of their contributions to the diffusion

of sustainable technologies, data availability concerning new ventures is generally limited. In

fact, assessing whether a new market entrant bears potential to contribute to the diffusion of

clean technology solutions is fundamentally a measurement problem: at the time of founding,

innovation-related data to identify an entrant’s technological orientation is scarce or even non-

existent. This is where the study’s main contribution comes into play. With the technology

mapping framework presented in this study, it is possible to assess the technological orientation

of new ventures at or close to the time of business registration. For this purpose, the frame-

work leverages observable business summaries that new ventures are obliged to report upon

registration. Transferring new entrants’ business descriptions into technology space by means

of state-of-the-art transformer-based language models, it is shown that entrants’ technological

orientation can be determined at a fine granular level of distinct technologies. On an aggregate

level, this gives policymakers a first idea to what extent and in which technological areas en-

trepreneurs are active in the development and diffusion of clean market solutions. Moreover,

in the context of directed technical change, the framework provides a useful policy tool. Once

a new venture registers, the proposed framework makes it possible to measure the ventures’

technological orientation. In this way, policymakers can use the framework to systematically

scan business registries for clean technology-focused entrepreneurs. This can be an effective way

to direct subsidies to companies with high potential to accelerate green technological change or

to pre-select potential candidates for government venture capital funding or public incubator

programs.

The framework also opens up new gateways for economic research, particularly by providing

a codified approach for identifying cleantech start-ups. Future research can benefit from this,

especially for empirical assessments of start-ups’ role in overcoming sustainability inertia among

path-dependent incumbents. For this purpose, it requires empirical strategies that take a closer

look at the interactions between cleantech start-ups and carbon-intensive incumbents. Different

channels of innovation interaction exist that deserve closer investigation. In an alliance perspec-

tive on environmental innovation activities, established companies may act as source of funding

for sustainable entrepreneurs. Besides a high willingness of new ventures to seize market oppor-

tunities of green growth by introducing radical environmental innovations, they typically lack

capital to scale such innovations. In search for funding, corporate venture capital can be bene-

ficial not only for the new venture but also for the corporate investor. It provides the corporate

investor with a source for proof of concepts and allows for experimental learning which requires

the investment target to have a certain distance from the investor’s accumulated knowledge base

(Hegeman & Sørheim 2021). At the same time, the incumbent does not need to leave its existing
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business model and technology pathway but has some degree of control over the technological

advancements which are developed outside its own organization. Once the new technology is

mature enough, the incumbent may decide to integrate it as complementary process or product

line. In this alliance perspective, the funding of clenteach entrepreneurs through established

companies is not just beneficial for both parties but, more importantly, also leads to advances

in the transition to more sustainable forms of technology.

There is also a trading perspective in the green technological transition through innovation

interactions between incumbents and new ventures. Under increased regulatory pressure, in-

cumbent firms possibly see the need to innovate and adapt their business models more directly.

This may incentivize them to pay license fees for the use of clean technologies developed by

cleantech start-ups. It may even lead to the acquisition of cleantech start-ups by the regulated

incumbent. In this scenario, incumbents would not make risky R&D investments themselves,

but could continue to amortize their existing technology investments internally while beginning

to build separate product and service lines based on the acquired clean technology solutions.

This trading perspective on innovation interactions may yet again be an important channel of

accelerating the green technological transition and a futer avenue for innovation research.

Ultimately, there is a competition perspective in overcoming sustainability inertia among in-

cumbents. In the search for new markets and market share, disruptive innovations from cleantech

start-ups can force established companies to adapt their existing business model with more rad-

ical sustainability innovations. In this way, incumbents may try to preempt future competition

in its main product market. Despite their technological path dependence, they may feel forced

to respond to increased competition with the introduction of own environmental innovations

that eventually disrupt their existing knowledge base. However, this competition perspective

may also result in incumbents acquiring entrants to terminate their innovative projects. Estab-

lished firms may use their financial power to hamper nascent technologies to diffuse as they see

their market position threatened by higher sustainability standards. This has been documented

before in the pharmaceutical industry, where incumbents terminated innovative projects in the

companies they acquired in order to retain their monopoly rents from established technologies

(Cunningham et al. 2021).

Presumably, all of these interaction dynamics are technology-specific and industry-dependent.

Fundamental to any empirical investigation of these interaction channels is a codified approach

to identify cleantech start-ups, preferably at a fine level of distinct technology solutions. Fu-

ture research could develop empirical strategies to examine these interaction effects and use the

framework presented in this paper to identify relevant cleantech entrepreneurs in the first place.

There are limitations to the study. The distinguishable characteristics of cleantech entrants

favoring a green technological change have been found by contrasting cleantech start-ups against
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non-cleantech start-ups. Theory suggests a special role for new entrants because, unlike incum-

bents, they are not characterized by technological path dependence. Therefore, it would be

more desirable to empirically determine entrants’ environmental characteristics by contrasting

cleantech ventures against incumbents. Unfortunately, the author does not have survey data

that includes environmental information on both new and established companies. Furthermore,

the technology mapping framework has been applied to company summaries, which can be brief

and arguably provide little insight into a company’s technology usage. While this can theoreti-

cally lead to false negatives in detecting companies that are relevant in a particular technology

area, text embedding models alleviate this concern to some extent. This is because they do

not depend on exact word matches but place words in vector spaces signaling whether distinct

words are close in semantic meaning or not. So even if a business description does not con-

tain technology-specific words, it allows the description’s words to be placed into the developed

technology space capturing associative meaning between business model and technology. More-

over, the proposed framework has the advantage that it can be applied to any source of textual

information about companies. Besides business summaries from business registries, corporate

website content poses another promising source of textual data to conduct the technology map-

ping. I leave it to future research to show how useful webdata is in the mapping of technologies

to business models.
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Schaltegger, S., Lüdeke-Freund, F., & Hansen, E. G. (2016). Business Models for Sustainability:

A Co-Evolutionary Analysis of Sustainable Entrepreneurship, Innovation, and Trans-

formation. Organization and Environment, 29 (3), 264–289. https://doi.org/10.1177/

1086026616633272

Schaltegger, S., & Wagner, M. (2011). Sustainable entrepreneurship and sustainability innova-

tion: Categories and interactions. Business Strategy and the Environment, 20 (4), 222–

237. https://doi.org/10.1002/bse.682

Sick, N., Nienaber, A. M., Liesenkötter, B., vom Stein, N., Schewe, G., & Leker, J. (2016). The

legend about sailing ship effects – Is it true or false? The example of cleaner propulsion

technologies diffusion in the automotive industry. Journal of Cleaner Production, 137,

405–413. https://doi.org/10.1016/j.jclepro.2016.07.085

Smink, M. M., Hekkert, M. P., & Negro, S. O. (2015). Keeping sustainable innovation on a leash?

Exploring incumbents’ institutional strategies. Business Strategy and the Environment,

24 (2), 86–101. https://doi.org/10.1002/bse.1808

Song, K., Kim, K. S., & Lee, S. (2017). Discovering new technology opportunities based on

patents: Text-mining and F-term analysis. Technovation, 60-61 (August 2015), 1–14. ht

tps://doi.org/10.1016/j.technovation.2017.03.001

33

https://www.oecd.org/science/oslo-manual-2018-9789264304604-en.htm
https://www.oecd.org/science/oslo-manual-2018-9789264304604-en.htm
https://doi.org/10.1016/S0048-7333(97)00005-X
https://doi.org/10.18653/v1/d19-1410
https://doi.org/10.1016/S0921-8009(99)00112-3
https://doi.org/10.1016/S0921-8009(99)00112-3
https://doi.org/10.1177/1086026616633272
https://doi.org/10.1177/1086026616633272
https://doi.org/10.1002/bse.682
https://doi.org/10.1016/j.jclepro.2016.07.085
https://doi.org/10.1002/bse.1808
https://doi.org/10.1016/j.technovation.2017.03.001
https://doi.org/10.1016/j.technovation.2017.03.001


Suominen, A., Toivanen, H., & Seppänen, M. (2017). Firms’ knowledge profiles: Mapping patent

data with unsupervised learning. Technological Forecasting and Social Change, 115, 131–

142. https://doi.org/10.1016/j.techfore.2016.09.028

Trautwein, C. (2021). Sustainability impact assessment of start-ups – Key insights on relevant

assessment challenges and approaches based on an inclusive, systematic literature review.

Journal of Cleaner Production, 281, 125330. https://doi.org/10.1016/j.jclepro.2020.

125330

Tukey, J. W. (1977). Exploratory Data Analysis by John W. Tukey. http://www.jstor.org/

stable/2529486

United Nations. (2015). Paris Agreement. https://unfccc.int/sites/default/files/english paris

agreement.pdf. Accessed October 1, 2020.

United Nations Environment Program, & European Patent Office. (2015). Climate change mit-

igation technologies in Europe - evidence from patent and economic data. https : / /

personal.lse.ac.uk/dechezle/climate change mitigation technologies europe en.pdf. Ac-

cessed September 30, 2020.

Unruh, G. C. (2000). Understanding carbon lock-in. Energy Policy, 30 (4), 317–325. https://

doi.org/10.1016/S0301-4215(01)00098-2

Wang, Y., Hou, Y., Che, W., & Liu, T. (2020). From static to dynamic word representations: a

survey. International Journal of Machine Learning and Cybernetics, 11 (7), 1611–1630.

https://doi.org/10.1007/s13042-020-01069-8

Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1 (6),

80–83. https://doi.org/10.2307/3001968

Zhang, Y., Zhang, G., Chen, H., Porter, A. L., Zhu, D., & Lu, J. (2016). Topic analysis and

forecasting for science, technology and innovation: Methodology with a case study fo-

cusing on big data research. Technological Forecasting and Social Change, 105, 179–191.

https://doi.org/10.1016/j.techfore.2016.01.015

34

https://doi.org/10.1016/j.techfore.2016.09.028
https://doi.org/10.1016/j.jclepro.2020.125330
https://doi.org/10.1016/j.jclepro.2020.125330
http://www.jstor.org/stable/2529486
http://www.jstor.org/stable/2529486
https://unfccc.int/sites/default/files/english_paris_agreement.pdf
https://unfccc.int/sites/default/files/english_paris_agreement.pdf
https://personal.lse.ac.uk/dechezle/climate_change_mitigation_technologies_europe_en.pdf
https://personal.lse.ac.uk/dechezle/climate_change_mitigation_technologies_europe_en.pdf
https://doi.org/10.1016/S0301-4215(01)00098-2
https://doi.org/10.1016/S0301-4215(01)00098-2
https://doi.org/10.1007/s13042-020-01069-8
https://doi.org/10.2307/3001968
https://doi.org/10.1016/j.techfore.2016.01.015


Appendix

Figure 6: Descriptive statistics textual data

Source Number of
documents
(N)

Document length
(number of words)

Vocabulary
size (V )

Preprocessing
steps

Min Median Max SD

Patent abstracts 559,367 8 123 2,478 79.38 370,110 lemmatization,
remove punctu-
ation, remove
digits, lowercas-
ing

Cleantech 100 533 4 14 44 6.74 7,831 -
S&P 500 500 92 155 194 17.40 76,290 -
Start-up Survey 3,269 1 18 292 25.57 82,458 -

Note: Table shows descriptive statistics of the different textual data sources used in this paper. Patent abstracts
are drawn from EPO’s World Patent Statistical database (PATSTAT). Business summaries of firms on the Clean-
tech 100 list (https://i3connect.com) and S&P 500 (https://www.cnbc.com) are webscraped. Business summaries
of firms in IAB/ZEW Start-up Panel are drawn from the Mannheim Enterprise Panel (MUP).

Figure 7: 2018 IAB/ZEW Start-up survey questions on environmental impacts and
environmental innovation

Environmental impact
Does your company offer products or services which have the following environmental effects
on the customer or the end user?
1. Reduction of energy consumption or CO2 footprint for the customer.
2. Reduction of other emissions to the air, water, soil or noise for the the customer.
3. Reduction of material or resource consumption, for instance water, for the customer.
4. Improvement of recyclability of customer’s products.
5. Improvement of durability of customer’s products.

Environmental innovation
Since its inception, has your company introduced innovations that have impacted the en-
vironment as follows?
1. Reduction of energy consumption or the overall CO2 balance in your company.
2. Reduction of other emissions to the air, water, soil or noise in your company.
3. Reduction of material or resource consumption, for instance water, in your company.
4. Improvement of recyclability of your own products.
5. Improvement of durability of your own products.

Note: The questions have been asked on a Likert response scale with the following response possibilities. (1) No;
(2) Yes, somewhat; (3) Yes, substantial.
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Table 7: Semantic technology descriptions

Adaption Battery Biofuels CCS E-Efficiency Generation Grid Materials Mobility Water

term prob term prob term prob term prob term prob term prob term prob term prob term prob term prob

plant 0.028 fuel 0.045 biogas 0.024 gas 0.032 heat 0.016 wind 0.023 battery 0.039 gas 0.014 exhaust 0.025 water 0.016

nucleic 0.014 cell 0.036 fuel 0.021 absorption 0.016 power 0.016 solar 0.023 energy 0.022 furnace 0.009 engine 0.025 waste 0.014

polypeptide 0.013 gas 0.018 gas 0.018 dioxide 0.014 voltage 0.012 rotor 0.018 cell 0.020 material 0.007 combustion 0.020 sludge 0.010

trait 0.010 membrane 0.013 biomass 0.016 carbon 0.013 circuit 0.012 turbine 0.016 charge 0.017 catalyst 0.007 gas 0.016 material 0.008

acid 0.010 anode 0.011 fermentation0.015 air 0.010 supply 0.010 blade 0.015 storage 0.016 process 0.006 internal 0.014 fraction 0.006

yield-
related

0.010 cathode 0.011 fermenter 0.014 stream 0.010 control 0.008 layer 0.010 electrode 0.011 powder 0.006 air 0.012 wastewater 0.006

expression 0.010 electrode 0.011 reactor 0.010 CO2 0.009 switch 0.008 tower 0.010 electrical 0.009 reactor 0.006 drive 0.008 process 0.006

encode 0.010 electrolyte 0.009 plant 0.007 overspray 0.009 steam 0.008 photovoltaic 0.009 heat 0.009 reaction 0.005 fuel 0.007 tank 0.005

present 0.009 hydrogen 0.008 percolate 0.007 flow 0.008 lamp 0.008 cell 0.008 accumulator 0.009 stream 0.005 flow 0.006 treatment 0.005

protein 0.009 layer 0.008 combustion 0.006 stage 0.007 current 0.008 power 0.008 electrochemical 0.008 heat 0.005 motor 0.006 mixture 0.005

enhance 0.007 stack 0.008 tank 0.006 exhaust 0.007 gas 0.008 energy 0.007 power 0.008 melt 0.005 vehicle 0.006 flotation 0.004

modulate 0.007 catalyst 0.007 pyrolysis 0.006 process 0.007 converter 0.007 generator 0.007 electrolyte 0.008 mixture 0.005 control 0.006 separate 0.004

concern 0.006 reformer 0.007 engine 0.006 mixture 0.007 exchanger 0.007 module 0.006 electric 0.007 temperature 0.005 system 0.006 suspension 0.004

invention 0.006 supply 0.006 methane 0.006 heat 0.006 air 0.007 organic 0.006 vehicle 0.007 product 0.004 catalytic 0.006 basin 0.004

method 0.006 water 0.005 waste 0.005 adsorption 0.006 energy 0.007 plant 0.005 lithium 0.006 step 0.004 torque 0.006 filter 0.004
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Note: Table shows top 15 terms that describe each of the 10 clean technology fields with highest probability. Terms are learned empirically from corpus of patent abstracts using
L-LDA.
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Table 8: Relation between TechProx and the environmental impact of the entrants’ products and services EImp (full model results)

EImp

t Adaption Battery Biofuels CCS E-Efficiency Generation Grid Materials Mobility Water

TechProxt 1.012* 1.046*** 1.049*** 1.050*** 1.045*** 1.042*** 1.038*** 1.036*** 1.028*** 1.034***
log(size) 1.042 1.029 1.026 1.024 1.049 1.050 1.037 1.032 1.040 1.023
age 0.998 0.983 0.988 0.992 0.985 0.985 0.988 0.989 0.994 0.995
R&D 1.850*** 1.821*** 1.851*** 1.838*** 1.860*** 1.880*** 1.835*** 1.839*** 1.829*** 1.834***
R&D intensity 0.867 0.835 0.826 0.852 0.873 0.865 0.843 0.848 0.864 0.860
subsidy 1.399*** 1.431*** 1.419*** 1.398*** 1.402*** 1.412*** 1.416*** 1.417*** 1.426*** 1.384***
returns 1.393* 1.295 1.342 1.329 1.253 1.289 1.379 1.275 1.335 1.373
break even 1.046 1.049 1.053 1.043 1.046 1.048 1.068 1.032 1.026 1.048
team size 0.936 0.923 0.924 0.921 0.921 0.923 0.926 0.928 0.926 0.933
university 0.795*** 0.792*** 0.807** 0.810** 0.819** 0.792*** 0.813** 0.809** 0.810** 0.806**
Sector controls Y Y Y Y Y Y Y Y Y Y
Product type controls Y Y Y Y Y Y Y Y Y Y
N 2,774 2,774 2,774 2,774 2,774 2,774 2,774 2,774 2,774 2,774
Pseudo R2 0.059 0.072 0.069 0.070 0.073 0.064 0.072 0.068 0.068 0.067

CleanTecht 0.944 3.083*** 1.900** 2.366** 4.319*** 4.375*** 2.156*** 2.234*** 1.320 2.414***
log(size) 1.041 1.048 1.041 1.040 1.053 1.045 1.037 1.042 1.041 1.037
age 0.998 0.993 0.997 0.998 0.993 0.993 0.992 0.994 0.997 0.998
R&D 1.874*** 1.866*** 1.875*** 1.863*** 1.920*** 1.917*** 1.852*** 1.878*** 1.869*** 1.855***
R&D intensity 0.867 0.865 0.864 0.866 0.860 0.868 0.864 0.867 0.868 0.870
subsidy 1.404*** 1.404*** 1.400*** 1.390*** 1.396*** 1.399*** 1.417*** 1.395*** 1.403*** 1.383***
returns 1.375 1.358 1.388* 1.359 1.318 1.333 1.392* 1.348 1.382* 1.422*
break even 1.049 1.059 1.051 1.047 1.061 1.065 1.061 1.049 1.046 1.051
team size 0.937 0.927 0.935 0.933 0.922 0.935 0.934 0.930 0.936 0.942
university 0.804** 0.802** 0.805** 0.805** 0.807** 0.786*** 0.811** 0.806** 0.806** 0.802**
Sector controls Y Y Y Y Y Y Y Y Y Y
Product type controls Y Y Y Y Y Y Y Y Y Y
N 2,774 2,774 2,774 2,774 2,774 2,774 2,774 2,774 2,774 2,774
Pseudo R2 0.058 0.063 0.059 0.060 0.069 0.059 0.068 0.061 0.061 0.062

Note: Coefficient estimates reported as proportional odds ratios. Significance levels: *: p < 0.10, **: p < 0.05, ***: p < 0.01
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Table 9: Relation between TechProx and entrants’ environmental innovation capacity
EInno (ordered logit)

EInno

(1) (2) (3) (4) (5) (6)

TechProx 1.015*** 1.014*** 1.013*** 1.013*** 1.012*** 1.014***
log(size) 1.190*** 1.140*** 1.125*** 1.186*** 1.175***
age 1.001 1.010 1.001 1.005 1.012
subsidy 1.317*** 1.353*** 1.413*** 1.456***
R&D 1.427*** 1.434*** 1.605*** 1.675***
R&D intensity 0.780 0.910 0.904 0.815
returns 1.743*** 1.633** 1.551**
break even 1.295*** 1.226** 1.237**
team size 0.899** 0.887**
university 0.614*** 0.627***
Sector controls Y Y Y Y Y Y
Product type controls N N N N N Y
N 3,269 3,269 3,269 3,192 3,192 2,774
Pseudo R2 0.022 0.026 0.030 0.033 0.041 0.047

CleanTech 1.339*** 1.328*** 1.323*** 1.295*** 1.287*** 1.380***
log(size) 1.192*** 1.140*** 1.125*** 1.186*** 1.175***
age 1.000 1.009 1.000 1.004 1.012
subsidy 1.323*** 1.358*** 1.419*** 1.461***
R&D 1.448*** 1.453*** 1.626*** 1.704***
R&D intensity 0.778 0.909 0.902 0.817
returns 1.751*** 1.641** 1.563**
break even 1.293*** 1.223** 1.235**
team size 0.900** 0.888**
university 0.612*** 0.627***
Sector controls Y Y Y Y Y Y
Product type controls N N N N N Y
N 3,269 3,269 3,269 3,192 3,192 2,774
Pseudo R2 0.021 0.025 0.029 0.033 0.040 0.047

Note: Environmental innovation questions were asked on a Lickert scale with three response possibilities: (1) No
environmental innovation; (2) environmental innovation with moderate environmental effect; (3) environmental
innovation with substantial environmental effect (see also Table 7 in the Appendix). EInno equals (3) envi-
ronmental innovation with substantial environmental effect if the firm responded with (3) to at least one of the
questions. EInno equals (2) if the firm responded to none of the questions with (3) and to at least one of the
questions with (2). Else EInno equals (1) no environmental innovation. Coefficient estimates reported as propor-
tional odds ratios reflecting the factor by which an increase in TechProx of one index point (0.01) corresponds
to an increase in the odds of having introduced a innovation with at least a moderate environmental effect com-
pared to having introduced no environmental innovation (c.p.). Alternatively, coefficient estimates for Clean-
Tech reflect by how many times the odds of a start-up classified as cleantech firm in the respective technology
field are higher in having introduced a innovation with at least a moderate environmental effect compared to a
non-cleantech start-up (c.p.). Change in observation numbers due to item non-response. Significance levels: *:
p < 0.10, **: p < 0.05, ***: p < 0.01
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