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Abstract 

Expertise develops as a result of deliberate practice, that is, as a result of activities that are designed 

with the primary purpose of attaining and improving skills. As a by-product of deliberate practice, 

experts acquire superior memory for information from their domain. This superior memory is 

enabled by chunking and by the rapid access to long-term memory. Chunking denotes a process of 

searching for known sequences in encoded stimuli and, if found, recoding them as single units. The 

present work investigated expertise in the cognitive processing of musical notation. More 

specifically, the three studies of the present work respectively examined (1) chunking in short-term 

memory for musical note symbols, (2) working memory for musical note symbols in the context 

of the Time-Based Resource Sharing model, and (3) eye movements during sight-reading, i.e., 

during the instrumental performance of unfamiliar notated melodies. 

The first study was based on the finding that chunking in short-term memory for musical notation 

is supported by systematic compared to random tonal structures. To extend this finding, I analyzed 

which specific features of systematic tonal structures support chunking. To this end, I designed a 

serial recall task with single quarter note symbols as memoranda. The number of memoranda and 

the tonal structure of the note sequences were varied within-participants. Chunking-supportive 

tonal structures resided in a clearly recognizable tonal context, i.e., contained only notes from the 

scale defined by the first note of the sequence, and contained meaningful melodic cells with clear 

labels. In the first simple span experiment, these melodic cells were major triads, while in the 

second, they were based on authentic cadences. Note sequences that had a chunking-obstructive 

tonal structure did not reside in a clearly recognizable tonal context and did not contain melodic 

cells with clear labels. Participants’ musical expertise was indicated by the Gold-MSI 

questionnaire. I expected that participants on a higher expertise level would recall notes more 

accurately, that chunking-supportive sequences would be recalled more accurately, and that the 

advantage in chunking-supportive sequences would be larger for participants on a higher expertise 

level. Analyses provided evidence for both expected main effects. Probably due to a ceiling effect, 

the expected interaction was only found in the long sequences containing authentic cadences. I 

conclude that, given that a note sequence has a systematic tonal structure, the combination of a 

clear tonal context with meaningful melodic cells might support chunking. 

The second study investigated expert working memory in the context of the Time-Based Resource 

Sharing (TBRS) model. This theoretical model assumes that working memory involves a rapid 



vii  

switching between maintaining already encoded information and processing new stimuli. It was 

translated into a computational model that simulates recall in complex span tasks. In a recent 

version of this computational mode (TBRS*C), a chunking mechanism was added. Although 

various theories, such as template theory or long-term working memory theory, conceptualize 

working memory as being inherently influenced by expertise, TBRS does not account for expertise 

differences. Thus, using a newly developed complex span task for musical notation, I investigated 

how expertise might be conceptualized in the context of the TBRS model. 

In the task, participants had to memorize single quarter notes for serial recall of pitch. In between 

the visual presentation of each note symbol, they had to perform a distractor task, i.e., they had to 

sight-read a short melody. To manipulate the potential for chunking, the tonal structure of the 

sequences of to-be-remembered notes was varied. The sequences contained melodic cells that were 

either more meaningful (major triads) or less meaningful (arbitrary trichords). The complex span 

task was completed by a music student and a hobby musician sub-sample. Using the Gold-MSI 

questionnaire, a higher-expertise and a lower-expertise group was created in both sub-samples. 

Recall was simulated using TBRS*C. Estimates for certain parameters, namely the strength of 

encoding (R), the chunk search duration (cSD), the probability of chunk retrieval (PCR), and the 

time used for distractor processing (Ta), were compared between expertise groups. I expected to 

find evidence for experts’ more rapid LTM access (i.e., a larger R and a smaller cSD) and more 

reliable chunking (i.e., a larger PCR). This expectation was supported in the hobby musician sub- 

sample. In addition, it was found that lower-expertise hobby musicians might have spent less time 

on the processing of distractors. They might have compensated inefficient memory processes by 

increasing refresh times during the distractor task. Parameter differences in the music student sub- 

sample were marginal, which probably was due to a ceiling effect. I conclude that expert working 

memory in the TBRS model might be conceptualized by rapid LTM access which increases refresh 

times, and by reliable chunking which increases the efficiency of refreshing. 

In the domain of musical sight-reading, there is some initial evidence that sight-reading accuracy, 

i.e., how accurately notes are performed on an instrument, might be associated with eye 

movements. This was found for measures such as pupil size, the size of the eye-hand span, or 

overall gaze duration. However, a systematic investigation of the association between eye 

movements and performance accuracy during sight-reading is still missing. I developed a software 

tool, the MidiAnalyzer, to assess the accuracy of experimental MIDI (Musical Instrument Digital 

Interface) data. Using eye movement and MIDI data from the sight-reading task that was embedded 
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in the complex span task, I investigated how the number and duration of fixations during sight- 

reading was associated with the accuracy of pitch and note onset. In the statistical analyses, I 

controlled for the effect of certain covariates, namely musical expertise, practice, and features of 

notes. Musical expertise was indicated by the Gold-MSI questionnaire. Practice was represented 

by the number of trials participants had already completed. Rhythmical features of notes were 

accounted for by the type of note pair (eighth-eighth, eighth-quarter, quarter-quarter, quarter- 

eighth) that participants were currently reading. Results showed that the number of fixations was 

negatively associated with the accuracy of note onset in both the reading of the whole melody and 

the reading of note pairs. I conclude that reading with fewer fixations might require less cognitive 

resources as eye movement planning and information integration is less demanding. The saved 

cognitive resources might be used to increase the accuracy of the instrumental performance. 

In summary, the present work provided evidence for experts’ superior processing of musical 

notation in short-term memory, working memory, and sight-reading. It highlighted the central role 

of chunking in expert memory, and showed that chunking is a process with both universal and 

domain-specific aspects. In addition, the present work demonstrated that unraveling the role of eye 

movements in accurate sight-reading is substantial for the comprehensive understanding of this 

skill. 
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1. Articles 

The present thesis is based on three manuscripts of which two are published and one is 

submitted for publication: 

 
Lörch, L. (2021). Chunking in tonal contexts: Information compression during serial recall of 

visually presented musical notes. Psychology of Music. 

https://doi.org/10.1177/03057356211013396 

Lörch, L., Lemaire, B., Portrat, S. (2021). A computational simulation of expertise in the Time- 

Based Resource Sharing model. Manuscript submitted for publication. Cognitive 

Computation. 

Lörch, L. (2021). The association of eye movements and performance accuracy in a novel sight- 

reading task. Journal of Eye Movement Research, 14(4). 

https://doi.org/10.16910/jemr.14.4.5 

 
In the following, I will explain the overarching theoretical foundation for these three 

manuscripts and provide a general discussion. For the sake of logical structure, the manuscripts are 

located between the general introduction and the general discussion, not in the Appendix. 

https://doi.org/10.1177/03057356211013396
https://doi.org/10.16910/jemr.14.4.5
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2. Introduction 

Since the pioneering work of Binet (1894), the exceptional performances of experts have 

stirred the interest of psychologists. As described by Ericsson and Charness (1994), prior to the 

scientific investigation of the phenomenon, exceptional performances have classically been 

considered as resulting from an innate talent, from a gift provided by some divine source. This 

view was overthrown, though, by the recent decades of scientific research, which revealed that 

individual differences in basic abilities are poor predictors of performance (Ericsson et al., 1993). 

Rather, the amount of individualized training activities, and environmental factors that foster them 

are associated with individual differences in performances (Ericsson & Lehmann, 1996). 

With this insight, research on expertise gained a much broader relevance. First, if expertise 

is not merely based on innate talent, it is not restricted to some gifted individuals. Anyone is a 

potential expert. This is especially true, as modern society offers broad access to training and 

education. For example, most citizens in industrialized nations are highly trained in their respective 

language, having practiced speaking, reading, and writing for hundreds of hours. Second, if training 

and experience play a role in the development of expertise, this gives rise to new research questions, 

such as “How do cognitive processes change with training and experience?”. This moves the focus 

of interest from the specific characteristics of experts to the general functioning of the human mind. 

Gobet (2019) stated that expertise research is “aimed to address general questions of cognition, 

using expertise as a means” (Gobet, 2019, p. 49). Lastly, the understanding of expertise might tell 

us something on how the environment can be adapted to individuals and thereby, foster them with 

maximal efficiency. Researchers nowadays not only want to understand experts but want to use 

their discoveries to derive suggestions how to structure learning environments, teaching methods, 

and everyday technological aids. Gobet (2012) claimed that “studying experts can illuminate which 

training methods are efficient and which ones are not, again with applications for nonexperts and 

even for education in general” (Gobet, 2012, p. 951). 

The idea that practice and training are essential for expertise was mainly advanced by the 

studies on chess expertise by de Groot (1946) and Chase and Simon (1972). De Groot (1946) found 

that the accuracy of the recall of briefly presented chess boards was a function of chess skill. Chase 

and Simon (1972) replicated this finding and extended it by showing that the effect of skill vanished 

when using randomly rearranged chess boards. They concluded that experts’ vast knowledge 

enabled them to perceive meaningful patterns of chess pieces. By encoding these meaningful 
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patterns instead of individual pieces, they increased their short-term memory capacity, a process 

which they termed chunking. 

The theory of Chase and Simon (1972) has sparked a lot of interest and has led to the 

development of further theories of skilled memory, such as template theory (Gobet & Simon, 

1996), skilled memory theory (Chase & Ericsson, 1982; Ericsson & Staszewski, 1989), and long- 

term working memory theory (LT-WM; Ericsson & Kintsch, 1995). These theories have in 

common that they describe another advantage of experts besides their use of known meaningful 

patterns, namely the rapid access to information in long-term memory (LTM). 

In addition, chunking has been incorporated into various computational models such as 

CHREST (Gobet et al., 2001), ACT-R (Anderson et al., 2004), and TBRS*C (Portrat et al., 2016). 

In these models, verbal theories are translated into computer programs. These programs simulate 

the behavior of participants in certain cognitive tasks. To validate the models, their simulations are 

compared to empirical data. The advantage of computational models is that they provide a new 

perspective on participants’ behavior, as they describe it with theoretically meaningful parameters. 

Moreover, they allow to derive new theoretical assumptions. Parameters in the model, for example 

the speed of processing a stimulus, can be easily varied and simulations then reveal how these 

parameters might affect participants’ behavior. 

The research introduced in the recent paragraphs refers to cognitive tasks in which 

information is encoded, maintained, and recalled. Musical notation, though, is often not processed 

to memorize it, but to perform it on a musical instrument. If the person is unfamiliar with the 

performed melody, this activity is called sight-reading (Ericsson & Lehmann, 1996; Kopiez & Lee, 

2006; Wolf, 1976). Waters et al. (1998) stated that “sight-reading is a complex transcription task 

involving a series of overlapping perceptual, cognitive, and motoric processes” (Waters et al., 1998, 

p. 123). The understanding of the psychological processes involved in sight-reading is both of 

practical interest to understand the acquisition of the skill and of theoretical importance for the 

more general understanding of expertise (Waters et al., 1998). 

During sight-reading, the eyes move across a printed score and, through movements on a 

musical instrument, the note symbols are translated into specific sounds. The movement of the eyes 

is based on an action schema (Land & Furneaux, 1997). During their musical training, musicians 

learn how to move their eyes to provide the required continuous stream of information. Thus, 

moving the eyes during sight-reading denotes a highly relevant skill by itself. This notion has led 

to numerous studies on the topic in the recent decades (reviewed by Puurtinen, 2018). However, 
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potentially due to methodological inconsistencies, “the collective data in the field are inconclusive 

and rather confusing” (Madell & Hébert, 2008, p. 166). 

Based on these considerations, the main goal of the present work was to investigate 

expertise in the cognitive processing of musical notation. I focused on two cases in which musical 

notation is cognitively processed. These were the memorization of a single note symbol in a recall 

task, and the translation of a notated melody into movements on an instrument during sight-reading. 

With respect to these cases, the more specific goals of the present work were to investigate (1) 

expertise in the short-term and working memory for musical notation, and (2) the role of eye 

movements during musical sight-reading. Table 2.1 depicts how the three manuscripts of the 

present work relate to these research goals. The theoretical and methodological foundation of the 

manuscripts as shown in Table 2.1 will be introduced in the following. To increase readability, I 

will henceforth use short titles to refer to the respective manuscripts, namely Chunking in tonal 

contexts, Expertise in the TBRS model1, and The association of eye movements and sight-reading 

accuracy. 

2.1 A psychological understanding of expertise 

 
2.1.1 Development of expertise 

In their seminal work, Ericsson et al. (1993) studied how the reported amount of practice 

related to the skill level of violinists. There were four groups of participants: (1) music students 

who were nominated by their professors as excellent violinists, (2) music students who were 

nominated by their professors as good violinists, (3) music education students, and (4) professional 

violinists engaged at renowned symphony orchestras. Participants indicated relevant biographical 

information, estimated the hours they spent practicing the violin up to the age of 18, and rated a 

list of everyday and musical activities with respect to the time invested in it in the previous week, 

its relevance for violin skills, the effort it required, and how enjoyable it was. In addition, 

participants completed a seven-day diary to record their activities in this time. 

 

 

 

 

 

 

 

 
 

1 This manuscript was co-authored. For the sake of consistency, I nevertheless use the singular (e.g., “I 

investigated...”) when talking about this manuscript in the general introduction and discussion. 



 

Table 2.1 

Overview of methods and theoretical foundations of the present manuscripts 
 

Research goal Manuscript Research question Paradigm Design Hypotheses 

Investigate Chunking in tonal Which tonal features of Simple Within-participant Interaction of musical 

expert memory 

for musical 

note symbols 

contexts: information 

compression during 

serial recall of visually 

presented musical 

notes 

melodic sequences support 

chunking in STM? 

span task factors tonal structure 

(meaningful vs. arbitrary) 

and list length (short vs. 

long) 

expertise and tonal 

structure: additional 

advantage for participants 

on a higher expertise level 

in chunking-supportive 

     sequences 

 
A computational 

simulation of expertise 

in the Time-Based 

How can expert memory be 

conceptualized in the Time- 

Based Resource Sharing 

Complex 

span task 

Within-participant factor 

tonal structure (major 

triads vs. arbitrary 

Faster encoding (larger R); 

faster chunk search 

(smaller cSD); more 

 Resource Sharing 

model 

model?  trichords) reliable chunking (larger 

PCR) of experts 

Investigate eye 

movements 

The association of eye 

movements and 

How are number and 

duration of fixations during 

 
Within-participant factor 

type of note pair (eighth- 

Exploratory analyses on 

the level of melodies and 

during sight- 

reading 

performance accuracy 

in a novel sight- 

musical sight-reading 

associated with accuracy of 

 eighth vs. eighth-quarter 

vs. quarter-eighth vs. 

on the level of different 

note pairs 

 reading task pitch and note onset?  quarter-quarter)  

 

 

 
 

5 
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Results revealed that solitary practice was judged as most relevant for violin skills. The 

week-long diary showed that the excellent and good violinists practiced almost three times longer 

than the music education students. The accumulated hours of practice up to the age of 18 increased 

from music education students to good violinists to excellent violinists with the latter group 

indicating a similar amount of practice than the professional musicians (Ericsson et al., 1993). 

The results obtained by Ericsson et al. (1993) promoted the theoretical development in 

expertise research as it led to the concept of deliberate practice. The concept assumes that expert 

performance cannot merely be explained by the amount of experience as there are many activities, 

such as work or play, that provide few opportunities for the systematic improvement of certain 

kinds of skills. So, rather than mere experience, the amount of deliberate practice, i.e., “activities 

invented with the primary purpose of attaining and improving skills” (Ericsson et al., 1993, p. 367) 

is central for expertise development. For this practice to be most effective, the person should be 

motivated to attend to the task, the task should be oriented at the person’s current state of 

knowledge, and the person should receive immediate informative feedback on their performance. 

A crucial theoretical assumption associated with the concept of deliberate practice is the monotonic 

benefits assumption, which claims that there is a monotonic positive relationship between the 

amount of deliberate practice and an individual’s acquired level of performance. However, there 

are several hindrances or constraints an individual must overcome to engage in deliberate practice. 

Deliberate practice requires time, energy, and money for teachers and training material (resource 

constraint), it is not inherently motivating (motivational constraint), and can be executed only for 

a limited time as it leads to exhaustion (effort constraint) (Ericsson et al., 1993). 

In the domain of music, the deliberate practice of a musical piece might comprise activities 

such as the variation of performance tempo, the targeting of specific errors, the isolation of musical 

dimensions such as pitch or rhythm, the focus on segments of a piece or on specific movements, 

and even non-playing strategies such as listening to recordings or silently reading a printed score 

(Mishra, 2019). As the practice is usually directly related to the demands of the respective task, the 

specifics of practicing might vary with instruments, genres, and musical activities (accompanying, 

sight-reading, conducting, etc.) (Lehmann et al., 2018). While deliberate practice in many domains 

is typically associated with solitary practice, practice in some musical genres might involve 

activities such as taking lessons, group performances, or practicing together with others (Mishra, 

2019). Moreover, the quality of practice is at least as important for skill development as the duration 

(Lehmann et al., 2018; Mishra, 2019). 



7  

With regard to the time it takes to develop expertise, Ericsson et al. (1993) developed the 

so-called ten year rule. It evolved from the claim by Chase and Simon (1972) that it takes about 

10,000 hours or ten years of practice to acquire the knowledge that is necessary to reach expert 

level in chess (see also Gobet, 2019). This initial statement together with further empirical data led 

Ericsson to derive the general statement that irrespective of the domain of expertise, “not even the 

most ‘talented’ individuals can attain international performance without approximately 10 years of 

preparation” (Ericsson & Lehmann, 1996, p. 278). The improvement of skill is generally assumed 

to be continuous without any evidence for abrupt leaps (Ericsson, 2018a). In the domain of music, 

analysis of musical works has shown that the ten year rule even applies to outstanding performers 

such as Mozart (Hayes, 1981) and The Beatles (Weisberg, 1999). 

The progression through the thousands of hours of practice described in the ten year rule 

can be segmented into different phases, described by the three-phase model (Bloom, 1985). These 

phases comprise: (1) the first contact with the domain through playful activities often in childhood 

age, (2) the start of instruction and limited amounts of deliberate practice, and (3) the transition 

into full-time commitment. Ericsson et al. (1993) claimed the necessity to add a fourth phase to 

account for eminent performance, which involves unique and innovative contributions to the 

respective domain. 

In the domain of music, Mishra (2019) developed a musical performance hierarchy to 

categorize the different stages on the path to musical expertise. The lowest stage is the non- 

performer, a person who has not made any efforts to systematically improve instrumental skills. 

The second stage, the student musician, addresses persons who have studied or are currently 

studying an instrument. This stage is followed by the developing expert: musicians who have 

demonstrated a certain level of skill but continuously strive to improve under the supervision of a 

teacher. A music major at a university would be a typical example for a person at this stage. The 

last two stages, the expert musicians and the influential expert respectively denote persons who 

publicly perform concerts which they prepare without supervision, and persons who make 

significant and influential contributions to the field (Mishra, 2019). 

For the study Chunking in tonal contexts participants from a broad range of expertise levels 

were addressed. The resulting sample contained student musicians, developing experts, and expert 

musicians. For the other two studies, I specifically targeted developing experts and student 

musicians by recruiting music students and musically literate students of other subjects than music, 

respectively. As a label for the latter group, I used the term hobby musicians. In the literature, the 
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term amateur musicians might be more common. However, in a strict sense, music students are 

amateurs as well, as they do not yet work as professional musicians. Thus, I deemed the term hobby 

musicians to be most appropriate. 

2.1.2 Components of expertise 

When a person engages in deliberate practice and progresses through the stages of expertise 

development, this results in the development of domain-specific skills and knowledge. Fadde and 

Jalaeian (2019) claimed that “deliberate practice includes the thousands of hours that performers 

typically invest in acquiring a body of declarative knowledge and mastering requisite technical 

skills” (Fadde & Jalaeian, 2019, p. 928). Thus, skills and knowledge can be considered the main 

components of expertise. While cognitively oriented expertise researchers often understand 

knowledge simply as the availability of information in LTM, skill denotes the practice-related 

superiority of goal-directed action. A rationally and intentionally controlled action can be seen as 

the manifestation of a specific skill (Stanley & Krakauer, 2013). 

Typically, knowledge is classified in declarative and procedural knowledge with skill being 

independent from the former and identical with the latter. However, according to Stanley and 

Krakauer (2013), this is a misconception. Skill involves both declarative (or factual) knowledge 

and components that are not knowledge-based. Concerning the former, the authors claimed that 

“knowing what to do to initiate an action and knowing how to do something are both kinds of 

factual knowledge, factual knowledge required by skill possession” (Stanley & Krakauer, 2013, 

p. 5). In contrast, one component of skill that is not knowledge-based is motor acuity, i.e., the 

practice-related decrease of movement variability and increase of movement smoothness (Stanley 

& Krakauer, 2013). 

For the present work, the relevant components of expertise were the skill to read and 

perform musical notation on an instrument and declarative knowledge on music theory. According 

to Lehmann (2005), music reading is one of the basic skills of musicians (see also Mishra, 2019). 

In many areas in which music is performed, musical notation is used to communicate complex 

musical information. The skill to perform notated melodies comprises action schemata for eye 

movements (Land & Furneaux, 1997) and for movements on an instrument as well as the 

knowledge on the association between note symbols and musical sound. Sight-reading is a special 

form of music reading in which the musician is not familiar with the performed melody. 

In addition, the part of music theory that was relevant for the present work was how certain 

combinations of notes form chords and scales. As will be described in more detail below, 
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declarative knowledge on this part of music theory might affect memory processes. For example, 

stimuli that entail expected musical patterns were found to be recalled more accurately (Lehmann 

et al., 2018; Mishra, 2019; Snyder, 2016). In summary, an expert in the present work was defined 

as someone who has deliberately practiced a musical instrument and while doing so, acquired 

declarative knowledge on music theory and the skill to perform unfamiliar notated melodies on an 

instrument. The former feature, declarative knowledge on music theory, was central for the 

manuscripts Chunking in tonal contexts and Expertise in the TBRS model, while the latter feature, 

sight-reading skill, was rather relevant for the manuscript The association of eye movements and 

sight-reading accuracy. 

2.1.3 Assessment of expertise 

Musical expertise has typically been assessed on the basis of self-reported amount of formal 

instruction, membership to certain groups such as professional musicians, or performance 

evaluations (Mishra, 2019). However, the operationalization of musical expertise often varies 

considerably across studies which limits their comparability (Mishra, 2019; Puurtinen, 2018). 

Thus, I chose a different approach in the present work by using a standardized questionnaire, the 

Goldsmith Musical Sophistication Index (Gold-MSI, Schaal et al., 2014). This questionnaire is 

based on the concept of musical sophistication, which refers not only to instrumental performance 

but to a broader range of musical activities. The questionnaire consists of 31 statements for which 

participants indicate their agreement on a 7-point Likert scale, and seven items with seven 

answering options that ask for the frequency and intensity of different musical activities. From 

these 38 items, five sub-dimensions of musical sophistication can be calculated, namely active 

contact with music, musical perceptual abilities, musical training, vocal skills, and emotions 

(author’s translations of the German labels). The global dimension termed general musical 

sophistication is calculated from 18 items across the different sub-dimensions. In the context of the 

present work, I considered a high relative level of musical sophistication to indicate musical 

expertise. 

Accordingly, whenever possible, musical expertise in the present work was not treated as a 

dichotomous feature but as a continuum. If two participants differed in their Gold-MSI musical 

sophistication score, the one with the larger score was considered to be on a higher expertise level. 

This is in line with Mishra (2019) who claimed that “musical performance expertise is generally 

considered to develop along a continuum” (Mishra, 2019, p. 575). In addition, using a continuous 
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variable has statistical advantages over a dichotomous measures such as group membership 

(Royston et al., 2006). 

The English version of the Gold-MSI has been found to be positively associated with 

performance in two listening tasks (Müllensiefen et al., 2014) and with performance of rehearsed 

music, playing by ear, playing from memory, and improvising (Zhang et al., 2020). While further 

evidence for the validity of the Gold-MSI is needed, its usage as an indicator of musical expertise 

has several advantages. Its questions do not solely refer to musical performance. Thus, it can be 

used with musicians outside the performance-oriented tradition of classical western art music. 

Moreover, it possesses good psychometric qualities (Müllensiefen et al., 2014) and allows a direct 

comparison across studies. 

2.2 Expert memory 

 
2.2.1 The emergence of the concept of chunking 

The classical work by Chase and Simon (1972) on chess expertise was considerably 

influenced by the work of Miller (1956), who reviewed findings on the limited capacity of humans 

to process information. In his talk, Miller (1956) referred to two cognitive tasks: absolute judgment 

tasks and immediate memory tasks. In absolute judgment tasks, a newly presented stimulus has to 

be compared to a set of stimuli represented in memory (Wever & Zener, 1928). Typically, the 

stimuli are of physical nature, like colors, tones, or tastes, and the dimensions on which they should 

be compared are physical properties, like brightness, loudness, or saltiness. An example of a typical 

experimental procedure would be to present five different pitches and then present one probe pitch. 

Participants have to identify this probe pitch by comparing it to the set of pitches represented in 

memory. In immediate memory tasks, a set of sequentially presented stimuli has to be reproduced 

immediately after the presentation. The employed stimuli typically are numbers, letters, or words, 

which means they are rather abstract than physical. The most common experimental procedure 

would be to present ten words at a rate of one word per second and ask the participants to recall 

the words directly afterwards. 

The main statement of Miller was that both the number of stimuli that we can hold in 

memory and compare new stimuli to, and the number of stimuli than we can hold in memory and 

recall immediately afterwards is limited. But he suggested that certain stimuli can be organized or 

grouped into familiar units and that thereby, in immediate memory tasks, the memory limit refers 

to the number of items and not to the amount of included information. He introduced the idea of a 
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chunk of information consisting of multiple bits of information and states that “the number of bits 

of information is constant for absolute judgment and the number of chunks of information is 

constant for immediate memory” (Miller, 1956, p.349). 

To explain how chess experts expanded their memory capacity for chess boards, Chase and 

Simon (1972) picked up on Miller’s concept of a chunk. They assumed a cognitive chunking 

process that involves sorting features of visual stimuli through a discrimination network and 

thereby recognizing known patterns. They assumed that this allows to represent a stimulus by using 

the information in semantic memory associated with it (Chase & Simon, 1972; de Groot & Gobet, 

1996; Gobet et al., 2001). The concept of a chunking mechanism in the human mind has become 

highly influential in cognitive psychology. However, despite its popularity, “our understanding of 

chunking remains incomplete” (Gilchrist, 2015, p. 1) and “most attempts to define chunks are 

somewhat vague, ad hoc, or severely limited in scope” (Mathy & Feldman, 2012, p. 347). 

Accordingly, I will formulate clear definitions of the terms chunk and chunking in the present work. 

As chunking takes place in short-term and working memory, I will now introduce these concepts. 

2.2.2 Working memory and its measurement 

While short-term memory can be conceived as a storage unit that allows the temporary 

maintenance of a limited amount of information (Cowan, 2008), working memory is generally 

defined as a set of processes that maintain information during the concurrent performance of other 

cognitive tasks (Shah & Miyake, 1999). Various explanations have been developed how working 

memory maintains information during concurrent processing. In the Time-Based Resource Sharing 

model of working memory (TBRS; Barrouillet et al., 2004), this is achieved by “a rapid and 

frequent switching between processing and maintenance that occurs during the completion of the 

task” (Barrouillet & Camos, 2007, p. 61). The model is based on four main proposals, namely (1) 

that limited attentional resources have to be shared between processing and maintenance, (2) that 

any information that is not in the focus of attention suffers from time-based decay but might be 

refreshed by retrieving it from memory, (3) that attention can be directed to only one central process 

at a time, and (4) that consequently, the sharing of attention between processing and maintenance 

needs to be time-based. 

According to Barrouillet and Camos (2007), the Time-Based Resource Sharing model is 

most suitable to explain performance in complex span tasks. In contrast to simple span tasks, in 

which a list of memoranda is presented one at a time directly followed by serial recall, complex 

span tasks involve the maintenance of memoranda during the performance of a secondary task (also 
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called distractor task) (Macnamara et al., 2011). The most classical example of a complex span 

task is the reading span task developed by Daneman and Carpenter (1980). In this task, participants 

have to read a set of sentences and are asked to remember the final word of each. Upon 

encountering a recall prompt, participants are asked to recall all remembered words. With each 

trial, the number of sentences presented before the recall prompt increases, typically from two to 

six. A participant’s reading span is quantified as the largest number of words reliably recalled in 

this task. 

As was initially supposed by Daneman and Carpenter (1980), complex span tasks have been 

repeatedly found to be predictive for complex cognitive activities such as reading comprehension, 

language learning, or mathematical abilities (Ackerman et al., 2005; Daneman & Merikle, 1996). 

Following the classical reading span task, several types of complex span tasks have been 

developed, such as the operation span (Turner & Engle, 1989), the counting span (Case et al., 

1982), and the picture span task (Tanabe & Osaka, 2009). Although complex span tasks mainly 

measure domain general executive abilities, performance in these tasks is also influenced by 

domain-specific abilities, such as chunking (Conway et al., 2005). 

The time-based sharing of attentional resources within complex span tasks as described by 

the TBRS theory has been implemented in a computational model called TBRS* (Oberauer & 

Lewandowsky, 2011). Then, Portrat et al. (2016) added a chunking mechanism to this 

computational model, creating TBRS*C. In TBRS*C chunking comprises the searching for 

sequences of stimuli in long-term memory and, if this search is successful, the representation of 

these sequences by single units of information. This makes refreshing more efficient as all pieces 

of information that are part of the single unit can be refreshed at once. Consequently, recall 

becomes more accurate. In line with this notion, a chunk in TBRS*C denotes a known sequence of 

information in LTM. Portrat et al. (2016) claimed that chunking involves several sub-processes 

like the reactivation of previous memoranda, comparison with LTM, and recoding. These processes 

take place in the focus of attention and therefore, prevent other cognitive processes to occur 

simultaneously. Moreover, chunking requires that the focus of attention simultaneously holds 

multiple items. Otherwise, it would not be possible to compare a whole sequence of previously 

encoded stimuli with the information in LTM. 

Due to their superior declarative knowledge on music theory, I generally assumed that 

participants on a higher expertise level would be more likely to know certain musically meaningful 

note sequences. For example, they might know the sequence of tones C-E-G as it denotes a C major 
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triad, or they might recognize the sequence of tones D-G-A-D as denoting the chord roots in a 

common cadential progression I–IV–V–I2 in the key of D. Sequences of this latter type constitute 

a common elaboration of the authentic cadence V–I. For the sake of simplicity, I will in the 

following use the term authentic cadence for sequences of notes with this structure. Due to their 

knowledge of these sequences, I assumed participants on a higher expertise level to be more likely 

to recognize them as chunks in LTM, recode them as a single unit and, because of the more efficient 

refreshing, to be more accurate in recalling them. 

I tested this assumption in a both a simple span and a complex span task. In the simple span 

task, sequences of single quarter note symbols were presented for immediate serial recall; in the 

complex span task, single quarter note symbols had to be memorized while short, notated melodies 

had to be sight-read. The tonal structure of sequences of to-be-remembered notes was varied 

within-participants such that more musically meaningful sequences were contrasted with rather 

arbitrary sequences. In both the complex span task and one of the simple span tasks, major triads 

were compared to arbitrary trichords. In the other simple span task, authentic cadences were 

compared to arbitrary cadences. Table 2.1 provides an overview of these paradigms, designs, and 

hypotheses. 

2.2.3 Limits in working memory capacity 

In his initial work, Miller (1956) suggested that immediate memory3 is limited to 7±2 

chunks of information. As this limit consistently and repeatedly appeared in the data of various 

experiments, Miller termed it a “magical number”. Cowan (2001) summarized the huge body of 

research on mental storage capacity that followed Miller’s work. This research provided 

comprehensive empirical evidence that the capacity of immediate memory rather amounts to 4±1 

chunks. 

Mathy and Feldman (2012) provided an explanation why Miller might have repeatedly 

found the limit of seven elements. They suggested that meaningful sequences of information appear 

by chance in random stimuli. They showed that the typical rate of occurrence of these meaningful 

sequences enabled the increase in memory capacity from four to seven elements by means of 

chunking. If participants are presented, for example, with a string of twelve random letters, it might 

contain two two-letter acronyms by chance. This might support recall in such a way that these two 

acronyms and three single letters are recalled successfully. This notion is supported by Sala and 

 

2 Roman numerals in this context refer to scale steps in diatonic scales 
3 Immediate memory in this context is an umbrella term that includes both short-term and working memory 
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Gobet (2017), who found superior memory of experts even when stimuli from their domain were 

arranged randomly. 

2.2.4 Theories of expert memory 

In the studies that followed Chase and Simon (1972)`s work, several findings emerged that 

were inconclusive with their chunking theory. For example, it was found that delay intervals and 

interfering tasks did not decrease the recall accuracy of shortly presented chess boards (Charness, 

1976), that supplementary information on the presented chess positions, which was expected to 

affect the level of processing, increased recall accuracy (Frey & Adesman, 1976), and that chess 

players were able to play blindfold simultaneous games (Saariluoma, 1989). Based on these 

findings, Gobet and Simon (1996) concluded that “skilled players sometimes retain more chunks 

than could be held simultaneously in short-term memory” and that “the Chase-Simon model may 

need modification” (Gobet & Simon, 1996, p. 10). 

They developed the template theory by introducing a distinction between different types of 

chunks stored in LTM: clusters of pieces, position templates, and retrieval structures. Clusters of 

pieces are congruent with the concept of a chunk proposed by Chase and Simon (1972). They 

denote known patterns of pieces that frequently occur in chess games. Templates have a 

comprehensive core and contain slots that can be filled with variable information. For example, a 

situation from a chess game with a familiar opening might denote a template. Slots would account 

for the fact that each game with such an opening progresses individually. Lastly, retrieval structures 

are identifiers for individual positions. For example, the name of a world champion who played a 

certain position might be used as an identifier to access this position in LTM. By these theoretical 

developments, template theory provided a more coherent connection of low-level to high-level 

knowledge (Gobet, 1998). Although template theory was originally developed especially for the 

domain of chess, it has been the basis for the CHREST cognitive architecture (Gobet et al., 2001) 

which was also applied to various other domains. 

Another line of theoretical developments on expert memory besides template theory was 

skilled memory theory (Chase & Ericsson, 1982) which was later advanced into long-term working 

memory theory (Ericsson & Kintsch, 1995). Skilled memory theory is based on three principles, 

namely (1) the meaningful encoding principle, (2) the retrieval structure principle, and (3) the 

speed-up principle (Ericsson & Staszewski, 1989). The meaningful encoding principle refers to the 

concept of chunking. It assumes that experts have a well-organized body of concepts and relations 

stored in LTM, and that they use them to encode information. Thereby, experts “form more 
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elaborate and accessible memory representations than novices” (Ericsson & Staszewski, 1989, 

p. 239). The retrieval structure principle assumes that experts develop cognitive structures that 

facilitate retrieval from LTM. In these retrieval structures, retrieval cues are used to encode 

information in LTM in an organized and elaborate way, enabling efficient access. The speed up 

principle refers to the speed of LTM encoding and retrieval operations. The principle states that, 

with expertise, the speed of these processes approaches the speed and accuracy of short-term 

memory processes. 

Although the concept of skilled memory has been repeatedly used to describe exceptional 

memory (e.g. Anderson, 1990; Baddeley, 1990), critics have doubted its generalizability to 

working memory. The concept of skilled memory implies that the information encoded in LTM 

would be distorted by interference when other information is processed in a concurrent task 

(Ericsson & Kintsch, 1995). Hence, the theory needed to be adapted to account for expert working 

memory performance. 

This reasoning has led to long-term working memory theory, which is based on the 

principles of elaborative encoding and recency (Ericsson & Kintsch, 1995). The former is 

analogous to the retrieval structure principle of skilled memory theory. Experts build complex, 

hierarchical retrieval structures, which denote organized and stable systems of retrieval cues. On a 

low level, the encoded information is associated with a retrieval cue. On a higher level, additional 

information can be used to build supergroups of multiple retrieval cues. The second principle, 

recency, denotes the usage of temporal separation as a retrieval cue in its own right. New 

information that is associated with a retrieval cue is extended by the time point and sequence of its 

encoding. This allows to distinguish it from other information previously encoded with the same 

cue and thereby protects the information from interference. In summary, skilled usage of working 

memory in LT-WM theory is explained by including “cue-based retrieval without additional 

encodings and cue-based retrieval with an elaborated structure associating items from a given trial 

or context” (Ericsson & Kintsch, 1995, p. 220). 

The aspect of template theory and LT-WM theory that is relevant for the present work is 

that they both assume that experts’ superior memory is not only based on chunking, but also on a 

more efficient, i.e., faster access to information in LTM. This assumption was the basis for the 

manuscript Expertise in the TBRS model. The TBRS*C computational model is especially suited 

to model the time course of cognitive processes during complex span performance. Accordingly, I 

used this model to separately simulate the recall performance of higher-expertise and lower- 
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expertise musicians (this part of the work required a dichotomization into groups). The resulting 

differences in the model parameters enabled me to explore the expertise differences in chunking 

and in the time-course of cognitive processing. To clarify this analytical approach, I will now 

describe the functioning of the TBRS*C simulations as well as the parameters of interest. 

2.2.5 Exploring expertise differences in cognitive processing with TBRS*C 

TBRS*C is a computer program that mimics four basic cognitive processes, namely 

encoding, refreshing, distractor processing, and recall, to simulate performance in complex span 

tasks. Due to the central attentional bottleneck (Pashler, 1999), the program performs only one of 

these processes at a time. The data structure that the program uses to represent information in 

memory is a fully interconnected two-layer network. One layer holds the memoranda; another layer 

holds sets of markers that represent item positions. Each item is associated with all sets of position 

markers and one parameter indicates the strength of the association. If a memorandum is encoded, 

the strength of its association with the set of markers representing its position is increased. During 

encoding, the association strength is bound to a certain maximum. The R parameter defines the rate 

of increase of the association strength. Thus, a larger R leads to more rapid encoding, as the 

maximum association strength is reached faster. 

Refreshing takes place in any period in the task that is not assigned to other processes. It 

works in a similar manner than encoding and hence is also affected by the R parameter. Cycling 

through all memoranda beginning with the first, the association between a memorandum its 

respective set of position markers is strengthened. While during encoding, the association strength 

is always increased to the maximum, during refreshing, it is only increased for a brief period of 

fixed duration. 

The processing of distractors is not modeled per se in TBRS*C. It is rather implemented as 

a period in which no other central process (encoding, refreshing, chunking) takes place and thus, 

in which the strength of the association between memoranda and item positions decreases due to 

time-based decay. The length of this period is represented by the parameter Ta. In the present 

experiment, the distractor task was the performance of a short, notated melody on a piano. In this 

task, I assumed that each performed note would catch the attention of the participant for a short 

amount of time and in between the performed notes, attention would switch back to the refreshing 

of memoranda. This assumption might seem strange for anyone who is a musician. Attention during 

instrumental performance is completely captured by the task. It does not seem possible to “do 

something in parallel”. However, in the Time-Based Resource Sharing model, the rapid and time- 
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based switching of attention is not assumed to be a conscious process. Thus, it is reasonable to 

assume that it occurred during sight-reading. 

Chunking is implemented in TBRS*C as a process of searching for strings of memoranda 

in a pre-defined LTM. This search is performed right after the encoding of a memorandum. It is 

defined by two parameters, namely the chunk search duration (cSD) and the probability of chunk 

retrieval (PCR). The former defines how much time is invested in the search for chunks; the latter 

defines how likely it is that the simulation recognizes a stimulus as a chunk in LTM. Once a chunk 

is successfully recognized, the single memoranda are chained, and the chunk is associated with the 

set of markers representing the position of the first memorandum of the chunk. This makes 

subsequent refreshing more efficient, as all three notes can be refreshed at once. In the present 

study, the pre-defined LTM contained the major triads used in the experiment. Starting at the third 

note, after the encoding of each new note, the program searched for the last three notes in LTM. If 

the program would for example recognize the note sequence C-E-G as a known triad, it would 

associate the group of three notes with the markers representing the position of the note C. 

To provide insights into experts’ chunking and working memory processes, I explored 

expertise differences in the parameters R, cSD, PCR, and Ta. Theories of expert memory assume 

that experts can access information in LTM rapidly. Thus, I assumed that encoding and searching 

for chunks in LTM would be faster for experts. In the simulations, this would result in a larger R 

and a smaller cSD parameter. Moreover, due to their superior knowledge, experts might be more 

likely to recognize chunks in LTM, i.e., might have a larger PCR parameter. Lastly, I was interested 

if these changes in recall processes would lead to changes in distractor processing. Therefore, I 

explored expertise differences in the time used for the attentional capture of distractors (Ta). 

Table 2.2 depicts an overview of the theoretical foundation for the analyzed TBRS*C 

parameters. In the analysis, the simulation was performed with various values for the parameters 

R, PCR, cSD and Ta. Each simulation provided a serial recall accuracy. Using model fit statistics 

and Chi-square tests, these simulated recall accuracies were compared with the empirical recall 

accuracies of the participants. Thereby, it was possible to investigate which parameter combination 

provided the best fit to the data. By using a computational model to study expertise and by 

exploring fundamental cognitive processes with this model, I addressed two demands by Gobet 

(2019) to “develop more rigorous theories, implemented as computer programs” and to “go back 

to fundamental questions, including setting the value of the parameters of cognition” (Gobet, 2019, 

pp. 48–49). 
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2.3 Sight-reading 

 
2.3.1 Theoretical models of sight-reading skill 

One of the first systematic attempts to describe the cognitive processes involved in sight- 

reading was made by Wolf (1976). He conducted two sets of semi-structured interviews, one with 

pianists who were excellent sight-readers and one with pianists who were professionals but lacked 

excellence in sight-reading. From the first set of interviews, he concluded that (1) recognizing 

familiar musical configurations is central for sight-reading, (2) some parts of the melody are 

guessed or predicted based on what is expected, (3) sight-reading is analogous to reading text with 

single notes being the analogue of letters, and (4) sight-reading skill is rather independent from 

other instrumental skills. 

Wolf considered the first of these statements to be most crucial: “The musician does not 

sight-read note-by-note but instead looks for familiar musical patterns” (Wolf, 1976, p. 146). 

Referring to Miller (1956) and to the study on chess memory by Simon and Barenfeld (1969), Wolf 

introduced the concept of a chunk to sight-reading research. He claimed that sight-readers “will 

recognize familiar constellations of notes and process them as single units, or chunks, of 

information” (Wolf, 1976, p. 156). 

Wolf then combined this idea with the multi-component model by Atkinson and Shiffrin 

(1968) and the link between memory and muscles proposed by Broadbent (1958) to develop a 

cognitive model of musical sight-reading. In the model, external input is stored in a multi- 

component sensory store, is compared with LTM, and then passed through a filter into short-term 

memory. In short-term memory, there are seven slots that each can hold one chunk of information. 

Information from these slots is passed through an effector system to the muscles. Wolf (1976) used 

the second set of interviews to “validate” this cognitive model. 
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Table 2.2 
 

Overview of TBRS*C parameters that were investigated for expertise differences 
 

Theoretical foundation Assumption TBRS*C parameter Parameter meaning 
 
 

Chunks (chunking 

theory); clusters of 

pieces (template 

theory); meaningful 

encoding principle 

(skilled memory 

theory) 

Experts have 

superior knowledge 

on meaningful 

patterns in their 

domain and use this 

knowledge to 

compress 

information during 

encoding 

Probability of chunk 

retrieval (PCR) 

Likelihood of 

recognizing that a 

stimulus is a chunk in 

LTM 

 

Retrieval structures 

(template theory); 

speed up principle 

(skilled memory 

theory); elaborative 

Experts can access 

information in LTM 

rapidly 

Encoding strength (R)  Rate of increase of 

the association 

strength during 

encoding 

encoding (LT-WM) 
Chunk search 

duration (cSD) 

Time invested in the 

search for chunks 
 

 

No assumption – exploratory analysis Distractor processing 

(Ta) 

Time used to process 

a distractor 

 
 

 

The next step in the development of a theoretical understanding of sight-reading was made 

by Waters et al. (1998). They measured the accuracy of sight-reading performance of thirty pianists 

and designed several experimental tasks that they though to reflect the skill to recognize musical 

pattern, to predict the progression of music, and to generate auditory representations from printed 

notes. Using ANOVAs, correlations, and hierarchical regressions, Waters and colleagues analyzed 

how the performance in these experimental tasks was associated with sight-reading performance. 
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They concluded that “auditory skills and prediction skills are important factors underlying skilled 

sight reading over and above basic pattern-recognition skills” (Waters et al., 1998, p. 147). 

More recently, Kopiez and Lee developed two models of sight-reading skill, namely the 

dynamic model of skills involved in sight-reading (Kopiez & Lee, 2006) and the general model of 

skills involved in sight-reading (Kopiez & Lee, 2008). 52 piano students and graduates performed 

five musical pieces of increasing difficulty at first sight. In addition, data on general cognitive skills 

(such as working memory), elementary cognitive skills (such as processing speed), and expertise- 

related skills (such as sight-reading experience) was collected. The same data set was used for both 

models. The dynamic model described how the significance of specific predictors for sight-reading 

skill changed with the difficulty of the sight-reading task. In easy tasks, the predictor piano 

expertise was sufficient to explain sight-reading performance. In tasks with intermediate difficulty, 

the predictors psychomotor speed, processing speed, inner hearing, and sight-reading experience 

explained significant amounts of variance in sight-reading accuracy. At the highest level of 

difficulty, psychomotor speed became the strongest predictor. The authors concluded that sight- 

reading skill is determined by a combination of innate and practice-related skills. 

To complete this dynamic model, Kopiez and Lee developed the general model of skills 

involved in sight-reading (Kopiez & Lee, 2008). For this model, the association between the 

different component skills and sight-reading accuracy was analyzed irrespective of task difficulty. 

Using correlations, hierarchical regression, and factor analysis, the authors found that the 

combination of psychomotor speed, sight-reading experience up to the age of fifteen, processing 

speed, and inner hearing was optimal and explained about 60 % of the variance in sight-reading 

accuracy. 

2.3.2 Eye movements as a distinct skill 

While all these theoretical considerations might provide an idea of the skills that contribute 

to accurate sight-reading performance, they neglect one issue: the eye movements. The eyes play 

a central role during sight-reading as they provide the information that is required for an accurate 

performance. To this end, the oculomotor system needs to know which information is relevant and 

where this information can be found, i.e., it needs to have its own knowledge base (Land & 

Furneaux, 1997). This knowledge base might take the form of a prototypical sequence of actions, 

a so-called action schema. This logic suggests that eye movements during sight-reading can be 

considered a skill in their own right. 
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Fadde and Jalaeian (2019) defined a skill as the practice-related superiority of goal-directed 

action. Accordingly, if eye movements denote a skill, they should vary with expertise, as expertise 

results from practice. And indeed, various studies found expertise differences in eye movements 

during sight-reading (for a summary see Sheridan et al., 2020). Goolsby (1994) analyzed how eye 

movements during the singing of an unknown song changed with expertise of the reader, notational 

complexity, and rehearsal of that song. Two groups of differing expertise were confronted with 

four melodies of different notational complexity that they had to sing three times. While the first 

two times that they performed the melodies were without prior rehearsal, there was a practice 

period before the third trial. Participants were asked to perform in a fixed and steady tempo, but 

without metronome. Goolsby (1994) found that the duration of fixations differed between 

musicians of varying expertise levels while the number of fixations did not. 

Gilman and Underwood (2003) used a moving window paradigm in their study, in which 

only a pre-defined area around the point of fixation was visible. Pianists had to perform three tasks 

of varying cognitive demand: an error detection task in which music had to be read silently and 

parts that did not fit into the given key had to be identified (low cognitive load), a sight-reading 

task in which a song had to be played at first sight (medium cognitive load), and a transposition 

task in which a song had to be transposed during its performance (high cognitive load). The 

performance tempo was freely chosen by participants in all tasks. With the help of a pretest, the 

music reading expertise was deduced a priori. The size of the moving window was varied across 

repeated measurements (one-beat, two-beat, four-beat window, no window). The authors found 

that more experienced participants read with fewer fixations of similar duration. 

Penttinen et al. (2015) measured the eye movements of education majors minoring in music 

education and of music performance majors during the performance of a children’s song. The 

performance was temporally controlled, meaning that participants played the song on a piano in 

time with a metronome. The participants performed the song four times. In two of the trials the 

song contained unexpected melodic alterations. The performance majors read with shorter average 

fixations than the education majors, i.e., expertise was negatively associated with fixation duration. 

Arthur et al. (2016) asked participants to sight-read individually composed four-bar 

melodies and their visually disrupted counterparts. These disrupted counterparts consisted of the 

same melodies than the originals, but bar-lines were removed, and stem directions and inter-note 

distances were varied. In the employed experiment, four seconds after a signal sound, the melody 

appeared. Participants were asked to start immediately with the performance and to play as quickly 
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and accurately as possible without stopping. Results showed that more experienced participants 

performed faster but with equal number and duration of fixations than less experienced participants. 

It becomes clear that, across these four studies, the association between expertise and eye 

movements was inconsistent. This might be due to the methodological inconsistencies of these 

studies. Puurtinen (2018) claimed that studies investigating eye movements during sight-reading 

showed considerable variation concerning the selection of musical stimuli, the control of 

performance tempo, the measurement of participants’ musical expertise, and the methods of 

statistical analysis. This methodological variation is especially problematic as “the effect of 

expertise on fixation duration seems to be largely task- and stimulus-dependent” (Holmqvist & 

Andersson, 2018, p. 531, see also Bertram et al., 2013). However, the fact that eye movements 

during sight-reading have repeatedly been found to differ with expertise supports the idea that eye 

movements denote a distinct skill. 

2.3.3 Eye tracking technology 

Eye movements during sight-reading are investigated by means of eye tracking. While there 

are many different types of eye trackers (reviewed in Holmqvist & Andersson, 2018), the one used 

in the present study (a Tobii TX 300) was a video-based eye tracker. These machines consist of an 

infrared light transmitter and a camera, often connected with a screen that displays the stimuli. The 

transmitter produces patterns of reflections on the eyes of the participant with infrared light, 

commonly of 870 nm wave length (Holmqvist & Andersson, 2018). The camera records the eyes 

and complex algorithms use the infrared reflections to deduce the 3D position of each eyeball. 

From the raw data produced by these eye trackers, oculomotor events, such as fixations and 

saccades, need to be derived, again by using algorithms. To calculate oculomotor events in the 

present study, a velocity-based algorithm was used. In this algorithm a velocity threshold was 

defined and all movements of the eyes with a velocity above this threshold were defined as 

saccades. Events between two consecutive saccades were defined as a single fixation. Both the raw 

data as well as the derived oculomotor events provide a vast number of eye movement measures. 

Holmqvist and Andersson (2018) distinguished four classes of measures, namely movement 

measures (e.g., direction, amplitude, duration, velocity, shape), position measures (e.g., dispersion, 

similarity, duration), count measures (e.g., saccade rate, number of fixations, blink rate), and 

distance measures (e.g., saccade distance). The psychological meaning of these measures is largely 

dependent on the paradigm and the stimulus material. In the present work, due to their widespread 
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use in sight-reading research, the number and duration of fixations were the central eye movement 

measures. 

2.3.4 A missing piece in the puzzle 

In addition to expertise, various aspects of the eye movements during sight-reading have 

been researched (for a review see Puurtinen, 2018). One aspect that remains largely unclear, 

however, is how eye movements are related with performance accuracy. Chitalkina et al. (2021) 

found that performance errors were associated with a decrease in pupil size. In the study by Lim et 

al. (2019), complexity of the melody moderated the association between performance accuracy and 

the eye-hand span. The eye-hand span denotes the distance between the point of fixation and the 

point of performance. In simple melodies, performance accuracy and the size of the eye-hand span 

were positively associated, while in complex melodies, they were negatively associated. Finally, 

Drai-Zerbib et al. (2012) discovered that for non-experts, the overall gaze duration during sight- 

reading was positively associated with the number of errors. While these studies provided first 

evidence that eye movements and sight-reading accuracy might indeed be associated, this 

association was not their major focus; the findings reported here were merely secondary findings. 

It is surprising, however, that the association between eye movements and sight-reading 

accuracy was largely neglected by previous research. If eye movements and sight-reading accuracy 

are related, eye movements could potentially mediate the effect of other predictors. For example, 

sight-reading experience, which was established as a predictor of sight-reading accuracy by Kopiez 

and Lee (2008), might actually influence eye movements which, in turn, affect sight-reading 

accuracy. Thus, I argue that knowledge on the association between eye movements and sight- 

reading accuracy is crucial for a comprehensive understanding of the cognitive processing of 

musical notation during sight-reading. The goal of the present work was to explore this association. 

During the complex span task, participants performed a short, unfamiliar, notated melody on an 

electric piano. Performance tempo was controlled at 70 beats per minute (bpm) by using a 

metronome. During this performance, participants’ eye movements and the MIDI data of their 

performance were tracked. I developed an algorithm that assessed the accuracy of the musical 

performance from the MIDI data (see Appendix). Using these measures, I investigated if the 

number and duration of fixations were associated with the accuracy of pitch and note onset. 



24  

2.4 Overview of the present work 

 
In the previous paragraphs, I introduced chunking as a general cognitive mechanism that 

needs to be conceptualized within the context of a given domain. In the processing of musical 

notation, tonal features were found to be highly relevant for chunking (Deutsch, 1980; Halpern & 

Bower, 1982; Kalakoski, 2007). Thus, the manuscript Chunking in Tonal Contexts investigated the 

effect of specific tonal features on chunking processes. The manuscript presents two simple span 

experiments that were administered online. Participants were presented with sequences of musical 

note symbols for immediate serial recall. The note sequences were varied in a 2 x 2 within- 

participants design with the factors tonal structure (chunking-supportive vs. chunking-obstructive) 

and list length (short vs. long). Chunking-supportive melodic sequences resided in a clearly 

recognizable tonal context and contained meaningful melodic cells with clear labels. In chunking- 

obstructive melodic sequences, the tonal context was unclear and melodic cells were rather 

arbitrary. Different types of melodic cells were used in the two experiments. The first experiment 

involved major triads and arbitrary trichords; the second experiment involved authentic cadences 

and arbitrary cadences. Arbitrary melodic cells involved intervals of eight and nine semitones to 

the root note, as these intervals are not part of diatonic major scales. 

Based on the results of these simple span experiments, I developed a musical complex span 

task. In this task, participants were presented with sequences of single quarter note symbols for 

serial recall. In between the presentation of these to-be-remembered notes, participants had to 

perform an unfamiliar, notated melody on an electric piano. In other words, participants were 

presented with a single quarter note which they had to memorize, then they had to sight-read a 

short melody, then they saw another note they had to memorize, sight-read another melody, and so 

on, until recall was prompted. As the evidence for chunking processes was clearer in the simple 

span experiment involving triads than in the one involving cadences, I used this manipulation of 

tonal structure in the complex span task. That is, in the present complex span task, it was varied 

within-participants if to-be-remembered notes formed major triads or arbitrary trichords. 

Moreover, as I found a ceiling effect for sequences consisting of up to nine notes in the simple span 

experiment, I increased the list length to twelve notes in the complex span task. 

The manuscript Expertise in the TBRS model used the recall data of this musical complex 

span task. By comparing the recall of major triads with the recall of arbitrary trichords in another 

paradigm, this experiment extended the findings from the simple span task. However, music theory 



 

and tonal considerations did not play a central role in this manuscript. Rather, music was considered 

to be an exemplary domain in which domain-general cognitive phenomena can be investigated. 

Chunking was not only investigated by analyzing the association of recall accuracy with stimulus 

structure and participant expertise, but also by means of computational modeling using TBRS*C 

(Portrat et al., 2016). Based on theories of expert memory, such as skilled memory theory (Chase 

& Ericsson, 1982) and template theory (Gobet & Simon, 1996) it was assumed that expert memory 

would be characterized by chunking and a faster access to information in LTM. Hence, expertise 

differences were investigated in those TBRS*C parameters that represent the speed of encoding 

(R), the chunk search duration (cSD), and the probability of chunk retrieval (PCR). In addition, 

expertise differences in the parameter representing the time used for distractor processing (Ta) were 

explored. By considering rapid LTM access in addition to chunking, this manuscript provided a 

broad perspective on expert memory. 

The manuscript The association of eye movements and sight-reading accuracy used the eye 

movement and musical performance data of the musical complex span task. I analyzed if the 

number and duration of fixations were associated with the accuracy of pitch and note onset. In 

doing so, I controlled for three other variables that can be assumed to affect both eye movements 

as well as performance accuracy, namely musical expertise (Arthur et al., 2016; Cara, 2018; 

Penttinen et al., 2015), practice (Burman & Booth, 2009; Goolsby, 1994; Rosemann et al., 2015), 

and features of notes (Ahken et al., 2012; Lim et al., 2019). Thereby, the present work provided 

the first systematic and comprehensive insights into the association of eye movements and 

performance accuracy during sight-reading. In the following, you find the three manuscripts of the 

present work exactly as they were published or submitted. Thereafter follows a general discussion. 
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3. Chunking in Tonal Contexts 

 
This article can be found under the following link: 

https://doi.org/10.1177/03057356211013396 

 

 

 

4. Expertise in the Time-Based Resource Sharing 

Model 

This article can be found as a revised preprint under the following link: 

https://doi.org/10.21203/rs.3.rs-2533819/v1 

 

 

 

5. The association of eye movements and sight- 

reading accuracy 

This article can be found under the following link: 

https://doi.org/10.16910/jemr.14.4.5
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https://doi.org/10.21203/rs.3.rs-2533819/v1
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6. General discussion 

The present work investigated three aspects of expertise in the processing of musical 

notation. First, it provided insights how specific tonal features enable chunking (Chase & Simon, 

1972; Gobet et al., 2016; Mathy & Feldman, 2012; Miller, 1956) in short-term memory for musical 

notation. Second, it explored chunking and rapid LTM access in working memory for musical 

notation with reference to the Time-Based Resource Sharing model (Barrouillet & Camos, 2007). 

Third, it analyzed the association between number and duration of fixation with the accuracy of 

pitch and note onset during sight-reading of notated melodies. Table 6.1 provides an overview of 

the main findings of the present work, the interpretation of these findings, and unresolved 

questions. 

The manuscript Chunking in tonal contexts reports two experiments which tested the 

interacting impact of tonal structure and musical expertise on the recall accuracy in a simple span 

task with musical note symbols. I created two types of tonal structures, namely chunking- 

supportive and chunking-obstructive tonal structures. Chunking-supportive tonal structures were 

more meaningful in the context of traditional tonal music theory. They resided in a clearly 

recognizable tonal context and consisted of melodic cells with clear labels. In the first of the 

reported experiments, melodic cells were three-note arpeggiated major triads. In the second 

experiment, they were four-note sequences corresponding to a common tonal progression of chord 

roots representing the scale degrees I–IV–V–I. These sequences were labeled authentic cadences, 

for short. In addition, in both experiments, list length was varied as a within-participants factor 

with two levels (short vs. long). Based on chunking theory (Kalakoski, 2007; Miller, 1956), I 

hypothesized that there would be two main effects and a positive interaction. I expected notes to 

be recalled more accurately by more experienced participants and when the sequences have a 

meaningful tonal structure; I expected that the advantage for meaningful tonal structures would be 

larger for more experienced participants. 

I found that recall was more accurate in stimuli with a meaningful tonal structure. The 

expected interaction was found in short sequences containing authentic cadences. Transitional 

errors implied that notes were grouped into melodic cells when stimuli had a meaningful tonal 

structure.  
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Table 6.1 

Overview of the findings of the present work. 

 
Manuscript Main finding Interpretation Unresolved questions 

 

Chunking in 

tonal contexts 

More accurate recall for more 

experienced participants and in 

chunking-supportive sequences. 

Variation of the interactional pattern 

(expertise by tonal structure) across 

experiments and conditions. 

Chunking in short-term memory for 

musical note symbols is supported by the 

combination of a clear tonal context and 

of melodic cells with clear labels. 

Was the unexpected interactional 

pattern due to a ceiling effect? What 

are the individual effects of a clear 

tonal context and of melodic cells 

with clear labels? 

 

Expertise in the 

TBRS model 

Larger R, smaller cSD, larger PCR, 

and larger Ta for higher-expertise 

hobby musicians than for lower- 

expertise hobby musicians. Marginal 

expertise differences in the music 

student sub-sample. 

In the context of the TBRS model, expert 

memory can be conceptualized by rapid 

LTM access, which increases 

opportunities for refreshing, and by 

reliable chunk recognition, which 

increases the efficiency of refreshing. 

Were the marginal expertise 

differences in the music student sub- 

sample due to a ceiling effect? Are 

valid estimates of Ta provided by 

fitting simulated to empirical data? 

 

The association 

of eye 

movements and 

sight-reading 

accuracy 

Negative association of number of 

fixations and accuracy of note onset 

while controlling for expertise, 

practice, and type of note pair. 

Sight-reading with few fixations is 

advantageous as less cognitive resources 

are needed for the planning of saccades 

the integration of information. 

Do eye movements affect sight- 

reading performance or vice-versa? 

How is the association between other 

eye movement measures and sight- 

reading accuracy? 

 

 

 

124 



125 

 

 

However, there were also unexpected effects. There was no interaction in the recall of major triads 

and there was a reversed pattern of interaction in the recall of short cadential sequences. These 

unexpected data pattern potentially resulted from a ceiling effect, as many participants performed 

the task with perfect or near perfect accuracy. As meaningful tonal structures in these studies were 

created by combining clearly recognizable tonal contexts with the presence of melodic cells with 

clear labels, the individual effects of these two factors remain unclear. 

The manuscript Expertise in the TBRS model aimed to provide a first account how expert 

memory might be conceptualized in the context of the Time-Based Resource Sharing model 

(Barrouillet & Camos, 2007). I conducted an experiment involving a complex span task with 

musical notation. Participants were shown sequences of twelve single quarter note symbols and 

had to recall the pitch of these notes at the correct serial position. In between the presentation of 

each of these to-be-remembered notes, participants had to perform an unfamiliar, notated melody 

on an electric piano. This task was completed by a hobby musician and a music student sub-sample. 

Both sub-samples were split in a higher-expertise and a lower-expertise group by performing a 

median split on the general musical sophistication score of the Gold-MSI questionnaire (Schaal et 

al., 2014). The serial recall accuracy of each group was then simulated with the TBRS*C 

computational model (Portrat et al., 2016). I searched for differences between the expertise groups 

on parameters that represent the speed of accessing LTM and the reliability of chunking processes. 

The former comprised the speed of encoding to-be-remembered notes (R) and of searching for 

chunks in LTM (cSD). The latter refers to the probability of chunk retrieval (PCR). In addition, I 

explored if changes in these parameters would be associated with changes in the sharing of 

attentional resources between the task components. To this end, I analyzed expertise differences in 

the time used for the processing of distractor notes (Ta). 

In the simulations, higher-expertise hobby musicians encoded memoranda faster, invested 

less time in chunk search, found chunks with a larger probability, and used more time to process 

distractor notes than lower-expertise hobby musicians. In the music student sub-sample, the only 

parameter difference concerned the time invested in chunk search (Ta). Higher-expertise music 

students in the simulations invested more time in chunk search than lower-expertise music students. 

However, auxiliary regression analysis revealed that there were in fact no expertise differences in 

recall accuracy in the music student sub-sample. Thus, I deem the difference in Ta between higher- 

expertise and lower-expertise music students to reflect random variation in the data. As other 
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studies used reaction times to estimate Ta, it is unclear if it is a valid approach to estimate Ta by 

fitting simulated to empirical data. 

The paper The association of eye movements and sight-reading accuracy investigated how 

the number and duration of fixations were associated with the accuracy of pitch and note onset 

during sight-reading. To this end, I used eye movement and MIDI performance data collected from 

the distractor task of the musical complex span task. Eye movements on specific note pairs within 

the melodies were analyzed using AOIs. To ensure that the association between eye movements 

and performance accuracy was not due to a third variable, I controlled for expertise, practice, and 

rhythmical features of notes. Expertise was measured by the Gold-MSI global scale score. Practice 

was operationalized by the number of trials participants had already completed. Rhythmical 

features of notes were represented by the type of note pair (quarter-quarter, quarter-eighth, eighth- 

quarter, eighth-eighth) that participants were reading. 

Number of fixations during reading of the melody was negatively associated with accuracy 

of note onset while controlling for the effect of expertise and practice. Number of fixations during 

reading of the note pairs was negatively associated with accuracy of note pair onset while 

controlling for the effect of expertise, practice, and type of note pair. I conclude that reading with 

fewer fixations might be beneficial for sight-reading as eye movement planning and information 

integration becomes less demanding. This saves cognitive resources which can be used to increase 

performance accuracy. However, the present experiment does not allow to establish causality. 

Thus, it remains unclear if eye movements affect sight-reading accuracy or vice-versa. Besides, 

fixational measures only represent one specific aspect of eye movements. It remains an unresolved 

question if and how other eye movement measures are associated with sight-reading accuracy. 

6.1 A comprehensive notion of expertise in processing musical notation 

 
The three experiments of the present work provide a comprehensive view on expertise in 

the processing of musical notation. First, when musical notation is processed in the context of a 

recall task, experts seem to be characterized by superior memory. I found more experienced 

participants to recall sequences of note symbols more accurately in both simple span and complex 

span task. Under specific circumstances, more experienced participants’ recall was especially 

accurate in sequences with a meaningful tonal structure. Second, when musical notation is 

processed in the context of sight-reading, experts seem to be characterized by efficient perception 

and accurate performance of notes. I found more experienced participants to perform the notated 
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melodies more accurately, and to read the note pairs with fewer fixations and a shorter gaze 

duration. So, in summary, expertise in the processing of musical notation might comprise chunking 

and rapid encoding of note symbols in recall tasks, and efficient perception and accurate 

performance of notated melodies in sight-reading tasks. 

The samples in the present studies were highly heterogenous, comprising musicians of 

different instruments, genre, and backgrounds. It is highly likely that the way of practicing and the 

musical activities varied considerably among participants. It is also likely that participants were 

not specifically trained in memorizing and recalling musical notes. Nevertheless, evidence of 

expert memory could be found in all samples. This supports the notion that expert memory 

develops as a by-product of deliberate practice in domain-specific activities. Ericsson (2018b) 

claimed that experts do “not practice to improve their memory directly, but rather the superior 

working memory is a unintentional consequence of efforts to improve the selection and execution 

of superior actions” (Ericsson, 2018b, p. 700). In addition, though, the superior working memory 

of experts can reasonably be assumed to facilitate task-specific activities and thus to support 

deliberate practice. 

Figure 6.1 depicts this logic. Deliberate practice is deployed to cultivate domain skills. 

Expert memory develops as a by-product of deliberate practice but supports it by enabling superior 

processing of domain-specific 

information. For example, a 

musician might practice 

performing a notated melody to 

develop instrumental skills. As a 

by-product, she might learn that 

the sequence C-E-G is a common 

Figure 6.1. The role of expert memory in the development of 

domain-specific skills. 

sequence which is called “C major 

triad”. Eventually, she might be 

able to access this information 

rapidly and to treat the three notes as a single mental unit when processing them. These changes in 

information processing then might come into effect when she practices a new melody. 

It might be asked, though, why there is no arrow from domain skills to expert memory in 

Figure 6.1. For example, sight-reading skill might comprise the ability to fluently perform a certain 

major triad on an instrument. Just like deliberate practice, this action schema might contribute to 
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the memorization and recall of such a note sequence, i.e., to expert memory. However, I find it 

more intuitive to assume that skills (expert memory and domain skills) develop as a result of an 

activity (deliberate practice). To assume that expert memory is enabled by other domain-specific 

skills would rather suggest that it is a component of these domain-specific skills and not a distinct 

concept. 

It becomes apparent that the relationship of expert memory and domain-specific skills 

should be investigated to develop a comprehensive idea of the cognition of expertise. “Simply 

showing that experts display superior performance on memory tasks [...] does not necessarily help 

us understand how the superior memory performance is related to the superior expert performance” 

(Ericsson, 2018b, p. 708). Tasks such as the musical complex span task which allow to investigate 

expert memory and domain skills simultaneously might proof useful in this pursuit. 

Concerning the development of expertise, the present study is in in line with the claim by 

Ericsson (2018a) that experts’ advantages develop gradually. Although the sample was rather 

heterogenous, I found certain measures like the recall accuracy in the simple span task and the gaze 

duration on the note pairs to change gradually with the Gold-MSI score. But if expertise develops 

gradually, is it justified to think about stages of expertise development as proposed by Mishra 

(2019)? Gobet (2012) claims that it is an open question “whether there are stages in the 

development of expertise [...]. The presence of power laws seem to suggest that expertise 

development is continuous, but stages keep appearing in theories of expertise” (Gobet, 2012, 

pp. 952–953). Concerning this question, the manuscript Expertise in the TBRS model provides 

interesting insights. Higher-expertise hobby musicians had a similar Gold-MSI score (M = 77.84; 

SD = 5.66) than lower-expertise music students (M = 79.32; SD = 5.52). Nevertheless, there was a 

marked difference in recall accuracy (higher-expertise hobby musicians: M = 0.39; SD = 0.22; 

lower-expertise music students: M = 0.77; SD = 0.16) and sight-reading accuracy (higher-expertise 

hobby musicians: M = 0.62; SD = 0.26; lower-expertise music students: M = 0.94; SD = 0.13). 

While this is only a descriptive comparison, the data still suggests that there was a difference 

between musicians on different stages of expertise. In addition, defining and labeling different 

stages of expertise development might be helpful to think and speak about expertise. 

With reference to the measurement of expertise in the domain of music, the Gold-MSI 

(Schaal et al., 2014) has proven as useful tool. It is freely accessible, easy to administer, 

standardized, and it was predictive for recall of musical notation, eye movements, and sight-reading 

accuracy in the present experiments. As the Gold-MSI measures general musical sophistication, 
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this finding is in line with the meta-analysis by Mishra (2014), which found sight-reading to be a 

skill that improves with the general musicality of a person. However, the present finding that the 

Gold-MSI was predictive for sight-reading accuracy contradicts the study by Zhang et al. (2020). 

They found that the Gold-MSI was predictive for performing rehearsed music, playing by ear, 

playing from memory, and improvising, but not for sight-reading. There are a number of 

methodological differences between the present work and the study by Zhang et al. (2020) that 

provide a potential explanation for the contradictory findings. Zhang et al. (2020) measured sight- 

reading skill by means of self-report on one item (which was “I am very bad at ‘sight-reading’ – 

that is, I am not good at reading a new piece of music and performing it straight away”). The present 

study, in contrast, used the actually obtained accuracy in a sight-reading task. Furthermore, Zhang 

and colleagues did not use the global scale of the Gold-MSI but used a score that was the sum of 

the answers across all items. One drawback of the Gold-MSI score in the present study, however, 

was that it might not have differentiated well between participants on a high expertise level. This 

calls for additional diagnostic instruments that allow to measure expertise reliably even on high 

levels. 

6.2 Implications for expert memory 

 
The present work provided various evidence of experts’ superior memory. First, more 

experienced participants showed more accurate recall from short-term memory. This is in line with 

findings by Meinz and Salthouse (1998) and Kalakoski (2007) who found that experts recall 

musical notes more accurately. Second, I found some evidence of chunking in both short-term as 

well as working memory. In short cadential sequences of the simple span task and in the hobby 

musician sub-sample of the complex span task, experts recall was especially accurate in more 

meaningful note sequences. This supports the notion of Croonen (1991) and Deutsch (1980) that 

tonal structure is a crucial aspect in the recall of musical information. Third, simulations with 

TBRS*C suggested that experts accessed LTM rapidly. This is in line with template theory (Gobet 

& Simon, 1996) and skilled memory theory (Chase & Ericsson, 1982) which also assume that 

experts are characterized by rapid LTM access. 

The superior short-term memory of experts in the present study can be explained by the 

larger knowledge network of experts that supports redintegration. Redintegration denotes the 

reconstruction of partly degraded memory traces (Ritchie et al., 2015). Previous studies have found 

that long-term knowledge in a task domain supported redintegration (Botvinick, 2005; Botvinick 



130 

 

 

& Bylsma, 2005; Jones & Farrell, 2018). Experts’ knowledge has been described as a cueing 

structure for the retention of information in memory (Bellezza & Buck, 1988). In the present study, 

it can be assumed that the information that was activated when a note symbol was encoded was 

more extensive for more experienced participants. This associated information might have helped 

experts to restore the required pitch information during recall. 

In working memory, however, not redintegration, but refreshing might be the key to 

experts’ superiority. This was implied by the TBRS*C simulations. The rapid access to LTM might 

increase the time that is available for refreshing; chunking might increase the efficiency of 

refreshing. Thus, the interpretation of the present results calls for a detailed understanding of the 

process of refreshing. Camos et al. (2018) defined refreshing as a domain-general and attention- 

demanding process with the purpose of keeping mental representations active. Refreshing 

processes “increase the activation of recently presented, encoded, or retrieved information to keep 

it in an accessible state from moment-to-moment, thereby enabling real-time thinking” (Camos et 

al., 2018, p. 19). This increase in activation is accomplished by focusing attention on inner 

representations or thoughts. Unlike articulatory rehearsal that only concerns verbal information, 

refreshing might target information in all kinds of formats. 

In the context of the Time-Based Resource Sharing model, refreshing is assumed to be a 

rapid process outside the focus of explicit awareness. Consequently, refreshing can be assumed to 

occur during demanding and complex tasks, such as sight-reading. Moreover, if refreshing happens 

unconsciously and rapidly, even small free periods during a cognitive task might be utilized for 

refreshing. Camos et al. (2018) claimed that prior knowledge and expertise might influence the 

efficiency of refreshing. However, they also stated that “the actual process of refreshing should be 

independent of LTM”, as “refreshing interacts directly only with representations that are active in 

WM and no critical role assigned to LTM” (Camos et al., 2018, p. 27). The present work suggests 

a slightly different notion. If certain sequences of items are present in LTM and if these sequences 

are recognized in a stimulus, they might be refreshed by a single act of cognition. Thus, the role of 

LTM might indeed be described as critical, as LTM information represents the necessary condition 

for chunking. 

6.2.1 Implications for chunking 

One central theoretical notion in the present work was chunking (Miller, 1956). The 

hypothesis associated with this notion was an interaction between musical expertise and tonal 

structure in such a way that more experienced participants would have an additional recall 
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advantage in more meaningful note sequences. This hypothesis only received partial support as it 

only was confirmed in long cadential sequences of the simple span task and for hobby musicians 

in the complex span task. However, the absence of the expected interaction can be explained with 

a ceiling effect. Although I increased the number of memoranda from up to nine in the simple span 

task to twelve in the complex span task, the data suggests that such a ceiling effect occurred in both 

experiments. 

However, there were also various aspects of the present results that supported the idea of a 

chunking process in the processing of musical notation. There was some evidence for the expected 

interaction in both the simple and the complex span task. The proportion of transitional errors (see 

Figure 3.2) showed that note sequences might have been grouped into melodic cells in memory. 

TBRS*C simulations suggested that hobby musicians’ probability of chunk recognition changed 

with expertise and that chunking was advantageous for recall even if this probability was low. With 

respect to the specifics of chunking in the processing of musical notation, the present work showed 

that the presence of melodic cells with clear labels might support chunking both by itself and in 

combination with a clearly recognizable tonal context. 

Concerning the measurement of chunking, the presented studies supported the usefulness 

of transitional errors as claimed by Gilchrist (2015). This statistical measure allows to visualize 

groups in memory which is a valuable information in the context of chunking. However, 

transitional errors can only be calculated for the transition following a correctly recalled item. If an 

item is recalled incorrectly, the following transition produces a missing. Thus, I claim that the other 

two types of transitions – from incorrect to correct and from incorrect to incorrect – should also be 

considered. This would avoid missing data and would provide a comprehensive information on the 

transitions between memoranda. 

One topic that is closely associated with chunking is limits of human memory capacity. 

When applying the proportion of correctly recalled notes in the complex span task (see Figures 4.3 

and 4.7) to the total number of memoranda, it becomes apparent that the present work found 

evidence for both “magic numbers” 7±2 (Miller, 1956) and 4±1 (Cowan, 2001). Hobby musicians 

recalled 4±1 notes (i.e., 5.04 notes in the major triads condition and 3.24 notes in the arbitrary 

trichords condition); music students recalled 4±1 melodic cells in sequences of major triads (i.e., 

3.2 melodic cells) and of 7±2 notes in sequences of arbitrary trichords (i.e., 7.32 notes). The fact 

that a limit of seven notes was found only for experts under conditions with limited opportunity for 

chunking supports the notion by Mathy and Feldman (2012) that the “magical number 7” results 
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from the powerful structure detection of experts. Music students apparently managed to compress 

information even in sequences of arbitrary trichords, enabling the recall of seven notes. Hobby 

musicians lacked this powerful structure detection and hence were not able to compress 

information in these sequences, leading to the recall of only four notes. 

To explain this phenomenon, Mathy and Feldman claimed that “Miller’s magical number 

7 is essentially an artifact of statistically typical compression ratios. That is, random sequences [...] 

contain some number of accidental patterns which result in chunking and thus compressed 

representations” (Mathy & Feldman, 2012, p. 359, italics added). The present stimuli, however, 

were not random but systematically ill-structured. The sequences of arbitrary trichords were 

created based on rules that were deliberately at odds with the regularities of the tonal system. So, 

while my findings provide evidence for the general notion that the “magical number 7” results from 

the powerful information compression of experts, the explanation of Mathy and Feldman does not 

fully account for them. As my stimuli were not random, the recall of seven elements in my data 

cannot result from the typical compression ratio in random stimuli. 

My findings show that one of the most important pitfalls in chunking research is the 

hierarchical nature of chunking. In his article, Miller (1956) stated that the term chunk might denote 

a single sound in Morse code, the letter associated with a pattern of several such sounds, or the 

word multiple letters form. So, memory capacity limits can be approached from multiple 

perspectives, referring to these different hierarchical levels of a stimulus. In this work, the two 

“magical numbers” only became apparent as I considered recall in terms of notes (lower 

hierarchical level) and three-note melodic cells (higher hierarchical level). Moreover, my 

considerations show how important the comparison of different expertise levels is for the 

understanding of chunking. If the data presented by Miller (1956) would have included participants 

that were unfamiliar with the respective stimuli, the limit of seven elements might have never 

developed into an omnipresent “magical number”. 

Another pitfall of chunking is that the term is “used with a variety of meanings, which are 

often conflated, leading to considerable confusion” (Gobet et al., 2016, p. 1). In the literature that 

this work refers to, there are at least three different ways of conceptualizing chunking. First, there 

is the classical understanding coined by Miller (1956) that chunking is a process of data 

compression that can be found in memory tasks. Second, there is the notion proclaimed by Wolf 

(1976) that chunking denotes an increase in the efficiency in transcription tasks such as sight- 

reading by processing familiar constellations of symbols as single visual units. Third, there is the 
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idea by Snyder (2016) that chunking denotes a deliberate segmentation of the musical surface when 

listening to a musical piece. 

Of course, there are certain common aspects in all these conceptualizations of chunking. 

All of them are based on the idea that multiple single elements are treated as a single compound 

unit in cognitive processing – as a meaningful sequence of memoranda, a familiar constellation of 

note symbols, or a phrase in a musical piece. Moreover, chunking is beneficial in all three accounts, 

enabling more efficient refreshing, more efficient perception of note symbols, or memory 

representations with a clearer structure. Lastly, all accounts are based on knowledge or experience. 

This is most obvious in the former two, but even the segmentation of a piece of music into parts or 

phrases requires some knowledge on musical pieces and their structure. 

Besides these similarities, however, there are various profound differences between these 

three accounts. Information compression is commonly assumed to be a distinct cognitive process 

that competes with other cognitive processes for attentional resources (Portrat et al., 2016). It 

utilizes information that has already been encoded. Thus, the different elements of a meaningful 

unit do not have to be presented simultaneously (Kalakoski, 2007). In sight-reading, chunking does 

not involve an additional cognitive process. The cognitive processes still comprise the retrieval of 

motor actions as a reaction to visual symbols. It is rather the associations between symbols and 

movements that change. In chunked sight-reading, instead of a single movement being associated 

with a single symbol, a whole sequence of movements is associated with a constellation of symbols. 

Lastly, the segmentation of heard music denotes a specific way of encoding in which a 

hierarchically structured internal representation is created in a conscious and deliberate act of 

cognition. 

Because of the different cognitive processes that are tapped by the three accounts, the tasks 

in which evidence of them might be found also differ. Information compression might become 

apparent by recall accuracies and transitional error probabilities in serial recall tasks. Processing of 

constellations of symbols might be shown using performance accuracies and eye movements in 

sight-reading tasks. The segmentation of heard music into phrases might become apparent when a 

musical piece is played to participants, and they have to recall it by writing down musical notes. 

So how can future studies avoid these conceptual problems I just described? First and 

foremost, a clear and precise definition of the terms chunking and chunk is needed whenever they 

are referred to. This is also demanded by Gobet et al. (2016): “progress in our understanding of 

chunking will be difficult until researchers recognize these different meanings and are more precise 



134 

 

 

in the way they refer to them” (Gobet et al., 2016, p. 102). In doing so, researchers might refer to 

the relevant features of the stimulus, the relevant knowledge, the involved cognitive processes, and 

the ways in which they are beneficial for the performance in the task. For example, in the present 

complex span task, the relevant feature of the stimulus is its tonal structure, the relevant knowledge 

is the knowledge on major triads, the involved cognitive process is recoding, and the way in which 

it is beneficial is that it supports subsequent refreshing. 

Another solution would be to start introducing more specific terms. However, if these terms 

are not chosen sensibly and are themselves not defined thoroughly, this proliferates rather than 

diminishes the problems. For example, Gobet et al. (2001) introduced the terms goal-oriented 

chunking and perceptual chunking. Other than one might intuitively assume, though, the term 

perceptual chunking does neither refer to the perception of symbol groups during reading nor to 

the segmentation of a perceived stimulus but denotes an automatic compression of information 

during perception. Apparently, Gobet realized that the terms were confusing, as he later changed 

them to deliberate and automatic chunking (Gobet et al., 2016). 

6.3 Implications for sight-reading 

 
In line with Chitalkina et al. (2021), Lim et al. (2019), and Drai-Zerbib et al. (2012), the 

present work found an association between eye movements and performance accuracy during sight- 

reading. Analysis revealed that reading with fewer fixations was associated with more accurate 

performance. I conclude that reading with fewer fixations might save cognitive resources as fewer 

eye movements have to be planned and less information needs to be integrated. The saved cognitive 

resources might be invested in the translation of visual information into motor actions which might 

lead to an increase in the accuracy of these actions. This finding shows that, in order to provide a 

comprehensive perspective on sight-reading, component skill models such as the one developed by 

Waters et al. (1998) should incorporate the role of eye movements. 

In addition, the present results question the role of certain predictors used in the model of 

Kopiez and Lee (2008). Eye movements represent both a potential mediator and a potential 

covariate for certain of their predictors. In their study, working memory capacity was a significant 

predictor for sight-reading accuracy. Based on the present findings, however, it might be assumed 

that this effect was mediated by eye movements. A larger working memory capacity might support 

eye movement planning, which, in turn, might enable accurate sight-reading performance. Working 

memory capacity has been found to play a role in the generation of volitional eye movements 
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(Unsworth et al., 2004). In a study on text reading by Kennison and Clifton (1995), the number of 

progressive fixations was significantly smaller in participants with a large working memory 

capacity. Moreover, the short-term musical memory test and the inner hearing test used by Kopiez 

and Lee (2008) involved the reading of a melody in limited time. Thus, eye movement schemata 

that are beneficial for music reading might have facilitated performance in these tests. This would 

mean that eye movements are a covariate that needs to be statistically controlled when the 

association of these tests with sight-reading performance is investigated. 

Besides these implications for theoretical models on sight-reading, the present study might 

also contribute to the understanding of the inconsistency of previous findings on the effect of 

musical expertise on eye movements during sight-reading. Goolsby (1994) and Gilman and 

Underwood (2003) used measures of performance accuracy merely to check if more experienced 

participants performed more accurately. They did not control for the statistical effect of accuracy 

measures in their analysis of the association between expertise and eye movements. In the study 

by Arthur et al. (2016) it was not reported if or how measures of performance accuracy were used 

in the analyses. Only the study by Penttinen et al. (2015) controlled for differences in performance 

accuracy by excluding inaccurate performances. As performance accuracy appears to be associated 

with eye movements and as more experienced participants might perform more accurately, the 

different ways of using performance accuracy measures in the analyses of Goolsby (1994), Gilman 

and Underwood (2003), Arthur et al. (2016), and Penttinen et al. (2015) might explain the 

inconsistency in their results. 

As a by-product, the present analyses provided findings on the effect of expertise on eye 

movements during sight-reading. The main purpose of the Gold-MSI score was to control for the 

effect of expertise when analyzing the association of eye movements and performance accuracy. 

However, there is no reason why the resulting statistical effect should not be interpreted. In the 

regression models, Gold-MSI score was negatively associated with the number of fixations and the 

gaze duration on note pairs. This effect was found while the statistical effects of performance 

accuracy, practice, and type of note pair were controlled for. Shorter fixations have previously been 

found to be associated with expertise in silent reading of music (Penttinen et al., 2013), sight- 

reading (Truitt et al., 1997), and musical pattern matching (Waters et al., 1997). According to 

Sheridan et al. (2020) the fewer and shorter fixations of experts can be explained with their 

parafoveal preview benefit. Experts can perceive information from areas that are currently not 
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fixated but lie in the periphery. This preview enables them to spare fixations and perceive notes 

rapidly. 

6.4 Limitations 

 
For the present work, I developed a new experimental task – the musical complex span task. 

While it provided some interesting findings, several aspects of it are worth to be pointed out 

critically. I adapted the procedure of the complex span task to the skill level of the participant 

groups. Consequently, the computational simulations needed to be performed separately for hobby 

musicians and music students, and the results could not be directly compared between these two 

sub-samples. A joint simulation and direct comparison would have provided much stronger 

insights. This case shows how challenging it can be to develop experimental procedures for 

participants of varying expertise levels. 

Moreover, the distractor task, i.e., the sight-reading, did not allow to measure the time of 

attentional capture of single distractors. Thus, the Ta parameter needed to be estimated by fitting 

TBRS*C simulations to empirical data. This approach is uncommon and of questionable validity. 

Oberauer and Lewandowsky (2011) claim that the validity of the distractor task is dependent on 

the degree of experimental control over participants’ strategies and over the time they devote to the 

processing component. The present task provided limited experimental control of both aspects. 

Besides, the sight-reading was rather challenging. Thus, excluding trials with inaccurate distractor 

processing, as is common practice in complex span tasks (Conway et al., 2005), would have led to 

a large loss of data. Hence, the accuracy in the distractor task was not restricted to a high level. 

Consequently, though, the meaning of certain TBRS*C parameters in the present study differed 

from their usual meaning. For example, the Ta parameter can commonly be interpreted as the time 

needed to successfully process a distractor. In the present case, it was unclear if distractors were 

processed successfully. Thus, I rather interpreted the parameter as the time used for distractor 

processing. The fact that parameters can be theoretically interpreted is a strength of computational 

simulations. The change in parameter meaning due to the present design limits this strength. 

In addition, the distractor task was domain-specific, i.e., its difficulty varied across 

participants of different expertise levels. This is usually avoided as an easier distractor task might 

provide additional opportunities for refreshing. Lastly, the long presentation of memoranda and the 

periods of free time during the task (e.g., during the count-in or during the saving of the eye tracking 
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data) might have allowed participants to apply mnemonic strategies that might have affected the 

outcomes of the recall task. 

Lastly, the failure to create experimental procedures with a sufficient difficulty was 

problematic for both the simple as well as the complex span task. First, if a task has an insufficient 

difficulty, cognitive processes might change, as task requirements render certain cognitive 

processes unnecessary. Second, statistical information on the differences between experimental 

conditions might be lost due to ceiling effects. This might occur especially in highly experienced 

participants, as they perform most accurately. In the context of the present work, this might have 

been especially problematic, as my main assumption was that there would be a pronounced 

difference between experimental conditions for highly experienced participants. 

6.5 Future studies 

 
It is central for the phenomenon of chunking if a stimulus is meaningful in the respective 

domain. However, in the domain of music, it is especially difficult to systematically vary the 

meaningfulness of stimuli. In music, meaning is not a fixed concept but is individual and fluent, 

depending on the tonal context. In addition, this tonal context might be interpreted differently, 

depending on musicians’ knowledge and musical background. In other words, a melodic sequence 

that appears arbitrary to one musician might seem meaningful for another. It might be even difficult 

to find melodic cells that do not have a clear label for musicians with a certain knowledge. The 

theory of atonal music (Forte, 1973) provides a system that allows to label all kinds of note 

sequences. A musician who is highly familiar with this theory might even have been able to label 

the arbitrary melodic cells used in the present work. 

This has implications for the research on chunking in the processing of musical notation. 

In other domains, it would be most appropriate to create stimuli according to a clearly defined 

experimental design. However, due to the fluent nature of meaning in musical stimuli, I rather 

suggest future studies to gather extensive information on participants’ individual perspective on 

the employed stimuli. After completing a serial recall task, participants could be asked how they 

interpreted the tonal context of the stimuli, if they recognized melodic cells, and if they used labels 

to memorize them. This would allow to unravel the individual role of clearly recognizable tonal 

contexts and of melodic cells with clear labels in chunking during processing musical notation. 

Additionally, such an approach might provide further insights into the kinds of note sequences that 

are perceived as more meaningful for musicians with a certain background. 
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Moreover, if future studies want to avoid the limitations of the complex span task described 

above, I suggest that they use notes as memoranda and a spatial judgment task as the distractor 

task. In such a spatial judgment task, participants have to react on the location of an object on the 

screen with a key press. For example, a black square might appear on either the left or the right 

side of the screen and participants would have to indicate the location as fast as possible with 

pressing either a key on the left or right, respectively (see Portrat et al., 2016). In addition, 

memoranda should be presented rather briefly (1,000 ms) and there should not be any free periods 

in the task over and above some brief interstimulus intervals. This procedure would have numerous 

advantages compared to the one used in the present study. It would allow to use the same procedure 

for participants of varying expertise levels. The distractor task would have the same difficulty for 

all participants. The reaction time of distractor processing could be measured. The distractor task 

would be easy and thus, trials with inaccurate performance could be excluded. By varying list 

length (e.g., 9, 12, 15, and 18 memoranda), ceiling effects could be avoided. Furthermore, this task 

procedure would allow to compare different ways of estimating the Ta parameter in the context of 

the TBRS*C computational model. Ta could be estimated based on the measured reaction times 

and by fitting the simulated to the empirical recall data. If the latter method would provide similar 

estimates than the former one, it could be established as a valid estimation method. 

Lastly, future studies should investigate the causal relationships between eye movements 

and performance accuracy. To this end, I propose to employ a classic sight-reading task in which 

short, simple melodies have to be performed at first sight with performance tempo being controlled 

by a metronome. To check the assumption that sight-reading with fewer fixations requires less 

cognitive resources, I suggest to use the Index of Cognitive Activity (ICA, Marshall, 2002). It has 

been found that the size of the pupil is never constant but shows a high-frequency tremor. The ICA 

computes the frequency of this tremor, which is independent of changes in light. The ICA has been 

found to indicate cognitive workload across a range of tasks (Bartels & Marshall, 2012). Thus, the 

ICA can be used to check if cognitive workload is reduced when few fixations are performed during 

sight-reading. In addition, the MidiAnalyzer could be used to derive the location of errors in the 

performances. AOIs could be defined at these locations. Thereby, it would be possible to 

investigate if errors affect eye movements. 

Besides these rather specific suggestions, I identified two general issues in sight-reading 

research. These are (1) the inherent confounding of visual and musical information in the system 

of musical notation and (2) the dependency of eye movements on musical and graphical 
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parameters. For both issues, I will now provide some general suggestions how they might be 

addressed in future studies. 

In the system of musical notation, musical information is represented by visual symbols. 

Thus, both types of information are inherently confounded. However, this renders it rather difficult 

to investigate what drives the eye movements used to read the notes. It would be useful to develop 

methods to decouple the visual and the 

musical dimension. Figure 6.2 shows one 

approach of how this might be achieved. Using 

a tie, as shown in the top row, allows to create 

notes with a sound of equal duration that differ 

in their visual appearance; using accidentals, 

Figure 6.2. An approach to circumvent the 
confounding of visual and musical information in 

musical notation. 

as shown in the bottom row, allows to create 

notes with a sound of equal pitch that differ in 

their visual appearance. Future studies might 

use this logic to create melodies that sound identical but look differently. However, it should be 

noted that different ways of notation are used in different musical contexts and hence, evoke 

different associations and expectations about the progression of the melodies. Thus, if this approach 

is employed by future studies, the experimental design needs to be planned carefully to avoid 

confounds. 

Another issue of sight-reading research is the dependency of eye movements on musical or 

graphical parameters. For example, the duration of fixations probably depends on the musical 

tempo, and the distance of saccades probably depends on the size of the staff. Accordingly, it might 

be helpful for future studies to develop music- and layout-dependent eye movement measures, such 

as the duration of fixations per beat duration, the number of fixations per beat, or the distance of 

saccades per bar size. Such measures could be intuitively interpreted, and they could be directly 

compared across studies. 

6.6 Practical implications 

 
From the age of nine to the age of fourteen, I took music lessons. Naturally, reading and 

performing notation was taught in these lessons. Then, with sixteen, I started to play in a band in 

which pieces were not written down. Rather, when one of us had come up with an idea for a melody, 

he performed it for the others, and we talked about it. After eight years of playing in that band, with 
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the age of 24, I took lessons again. When my new teacher asked me if I was able to play notes, I 

denied. I had not done so for ten years and assumed that I had forgotten how to do it. When I started 

the first attempt, I was amazed. My eyes and my fingers new what to do by themselves. In quite a 

short time, I was able to perform complex notated pieces. In a sense, this anecdote exemplifies 

quite well the topic of the present work. LTM has an unlimited capacity. It can store huge amounts 

of information for very long periods. However, if certain information is not used, its accessibility 

ceases. Cues and external input can reactivate it and re-enable its usage. This notion supports the 

importance of institutionalized education. Learning in adolescence, when the brain is still flexible, 

builds a basis of knowledge that can be reactivated throughout life if needed. This demand for 

education is further supported by the idea, that expert skill is not limited to some few gifted 

individuals but develops gradually in everyone that attends to deliberate practice. In other words, 

if anyone is a potential expert, everybody deserves to be fostered to their full potential. 

With respect to specific teaching methods, the present work supports the claim that 

“curricula should provide means to acquire [...] chunks in a given domain” (Gobet et al., 2001, 

p. 241). Chunking improves working memory, which, in turn, might facilitate domain-specific 

tasks and activities. So, while expert memory might develop as a by-product of domain activities, 

it should nevertheless be specifically fostered by training and education. While doing so, teachers 

should direct learners’ attention to the crucial features of a given material (Gobet, 2005). In 

addition, it might be helpful to gather diagnostic feedback on the knowledge of chunks. For 

example, computer programs might be designed that show information of the given domain with 

increasing complexity. The task of students could be to simply name the depicted information as 

fast as possible. This would provide valuable insights, if chunks are known to students and how 

rapidly they can access them. This principle is already implemented in some commercial apps (for 

a list of examples, see https://nolaschoolofmusic.com/blog/best-sight-reading-music-note-apps- 

for-iphone-ipad) and is the basis of a test that has been developed at our lab for research purposes. 

As discussed by Anderson et al. (2000), this teaching method is opposed to the logic of situated 

learning and constructivism that knowledge cannot be decomposed and decontextualized. 

With respect to sight-reading, the present study implies that teachers might look not only 

on students’ movements on the instrument but might also observe their eyes. The eyes should move 

smoothly and steadily. If the eyes move chaotically with many fixations, the teacher should 

intervene. Then, it would be important to check if the student knows where to find the required 

information. Moreover, single phrases might be practiced separately and in a slower tempo. This 

https://nolaschoolofmusic.com/blog/best-sight-reading-music-note-apps-for-iphone-ipad
https://nolaschoolofmusic.com/blog/best-sight-reading-music-note-apps-for-iphone-ipad
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strategy would allow to learn the patterns contained in the melody which would enable to read 

them with fewer fixations. Of course, the information that is provided by simply observing eye 

movements is not as detailed as the one provided by an eye tracker. Nevertheless, the eyes play 

such an important role during the performance of musical notes that it would not be warranted to 

completely ignore them as a teacher. 

6.7 Conclusion 

 
To conclude, the present work provided several methodological developments to the 

research on expertise in the processing of musical notation: (1) I demonstrated how musical stimuli 

might be systematically created based on music theory, (2) I showed how the TBRS*C 

computational model can be combined with Bayesian regression models to analyze group 

differences in cognitive processes, and (3) I designed an open-source software tool for the 

assessment of musical performance MIDI data. 

In addition, this work contributed to the development of the theoretical understanding of 

expert processing of musical notation. I extended findings by Deutsch (1980) that a systematic 

tonal structure supports chunking, by developing the idea that, given a melodic sequence has a 

systematic tonal structure, chunking is further supported by the combination of a clear tonal context 

with melodic cells with clear labels. Based on the idea that working memory in complex span tasks 

involves a rapid switching between task components (Barrouillet & Camos, 2007) and a chunking 

process (Portrat et al., 2016), I developed a novel conceptualization of expert memory that 

comprises rapid LTM access and reliable chunking. Lastly, starting from initial findings on the 

association of eye movements with sight-reading accuracy (Chitalkina et al., 2021; Drai-Zerbib et 

al., 2012; Lim et al., 2019; Zhukov et al., 2019), I established the notion that reading with few 

fixations might be beneficial for sight-reading as fewer eye movements have to planned and less 

information from subsequent fixations needs to be integrated. It is these methodological and 

theoretical developments that constitute the essence of the present work and took us one step further 

towards a comprehensive understanding of expertise in the processing of musical notation. 
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General idea and purpose 

MidiAnalyze is a Python software package to analyze musical performances on MIDI instruments. 

It has been developed for usage in the context of scientific experiments. The program uses two 

kinds of MIDI files: stimulus melodies, i.e., MIDI files that hold the notes that participants were 

asked to perform, and performances, i.e., MIDI files that hold what the participants played. The 

functions of the program compare the performances with the stimulus melodies and store the 

resulting accuracy measures in a spreadsheet. 

Technical specifications 

MidiAnalyze was developed and tested with Python 3.7.1 on Spyder IDE 4.0.0b7 under Windows 

10. It has not yet been tested on other operating systems or with other versions of Python. It requires 

the Python packages music21, sys, os, glob and pandas. 

Instructions 

1. Prepare software and MIDI files 

 Install Python and the packages music21, sys, os, glob and pandas. These packages are 

needed by MidiAnalyze. 

 Open the file MidiAnalyze v1-0.py in Python and run the whole code. Now the functions 

of MidiAnalyze are available. 

 Create one folder that contains MIDI files of all the original stimulus melodies, i.e., of the 

melodies participants had to perform during your experiment. These MIDI files need to be 

named according to the item name. For example, if one melody constitutes the first item 

of condition 1, the filename could be condition1_item1.mid. When choosing a name, 
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consider the overall number of conditions and items. If you would have, for example, 

more than 10 conditions and more than 10 items, you should name your files 

condition01_item01.mid 

 Create one folder that contains all the experimental data, i.e. the MIDI files that you 

collected during participants' performances. These MIDI files need to be named according 

to the participant identifier and the item name. For example, if participant 15 performed 

item 1 of condition 1, you could name the file participant15_condition1_item1.mid. It is 

very important that the names of the MIDI files holding the original stimulus melodies 

and the names of the MIDI files holding the experimental performances are congruent. 

Only if this is the case, the stimulus melodies can be assigned correctly to the 

experimental performances. In the example above, if you would name your experimental 

file participant15_condition_1_item_1.mid, the program would not be able to assign the 

stimulus melody condition1_item1.mid to it, as the item identifier differs. Moreover, it is 

important that your MIDI files contain only one performance and that this performance is 

aligned with the beat. In some experiments, one might just let the recording running 

during the whole experiment, comprising the performance of multiple stimulus melodies. 

If this is the case, it is necessary to use some software that is able to edit MIDI and to 

extract the single melodies and export them as MIDI files. 

2. Import the MIDI files to MidiAnalyze 

 

 Run the command getyourMidiFiles(performanceDataPath, solutionDataPath, 

startItemName, endItemName, startSubjectName, endSubjectName) in Python. 

As perfomanceDataPath, enter the path to the folder with the performance data in 

quotation marks. Note that Python requires double-backslashes in filepaths under 

Windows. For example, if your performance data is in a folder "Experiment" on the 

desktop, the path would be "C:\\Users\\YourName\\Desktop\\Experiment\\". 

As solutionDataPath enter the path to the folder with the original stimulus melodies in 

quotation marks. 

As startItemName and endItemName, enter the position at which the item identifier starts 

and ends in the file names of your performance MIDI files. Note that in Python, the first 

position is indicated by 0. For example, if your file name would be 

“participant15_condition1_item1.mid”, the item identifier (which is “condition1_item1”) 

starts at the 14th position (at the c) so startItemName would be 14. The identifier ends at 

the 30th position (at the .) so endItemName would be 30. 

As startSubjectName and endSubjectName enter the position at which the participant 

identifier starts and ends in the filenames of your performance MIDI files in the same 

manner. So the full command could for example read 

getYourMidiFiles("C:\\Users\\YourName\\Desktop\\Experiment\\", 

"C:\\Users\\YourName\\Desktop\\Stimuli\\", 14, 30, 0, 13) 

 If needed, all MIDI files can be quantized by running the command 

quantizeMidi(noteValue, quantizeOffsets, quantizeDurations) in Python. 
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As noteValue, indicate on which note value the quantization should be based (1=quarter, 

2=eighth, 4=sixteenth, 0.5=half, 0.25=whole, 3=eighth triplets). Set the number in square 

brackets. If quantizeOffsets is set to TRUE, the beginning of each note is quantized. If 

quantizeDurations is set to TRUE, the end of each note is quantized. The quantization 

moves the beginning and/or the duration of each note to the closest note with the value 

specified. For example, if the specified note value is eighth note and quantizeOffsets and 

quantizeDurations is set to TRUE, both the beginning and the end of each note is moved 

to the closest eighth note. The whole command in this case would be quantizeMidi([2], 

TRUE, TRUE). Note that the MIDI information is only changed internally. The MIDI 

files themselves are not affected by the quantization. 

 

3. Analyze the performances and export the resulting spreadsheet 

 Run the command analyzeMidi() in Python. MidiAnalyze calculates the accuracy 

measures and descriptives for all performance files and stores them in a spreadsheet. 

 Run the command exportResults(resultsFileName) in Python. 

As resultsFileName, indicate how you want to name the file that will be generated. Use 

quotation marks. MidiAnalyze then exports all results as a .csv spreadsheet in the folder 

with the original stimulus melodies. The full command could for example read 

exportResults(“MyExperiment_results”). Then the file MyExperiment_results.csv would 

be created in "C:/Users/YourName/Desktop/Stimuli". 

 

Functions 

Utility functions 

These functions handle the steps necessary to perform the analysis. They import the MIDI files and 

create or export the resulting spreadsheet. 
 

Function Description 
 
 

indicateFilePaths(“performanceDataPath”, 

“solutionDataPath”) 

Checks and defines the two central file paths, 

i.e., the performanceDataPath which is the path 

to the MIDI files that resulted from 

participants’ performance and the 

solutionDataPath which is the path to the MIDI 

files that hold the stimulus melodies. 

 

importMidiFiles(“performanceDataPath”, 

startItemName, endItemName, 

startSubjectName, endSubjectName) 

Imports all performance MIDI files. Creates a 

spreadsheet with a row for each file. If the 

filenames of the MIDI files contain item and 
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participant identifiers the location of these 

identifiers in the filename can be indicated and 

then, these identifiers are also added to the 

spreadsheet. 

Creates the columns MidiFile, item, participant 

in the spreadsheet. 

importCorrectSolutions(“solutionDataPath”) Imports all stimulus melodies. 

addCorrectSolutions() Matches the stimulus melodies to the 

performances. Works only if the item identifier 

is identical in filenames of stimulus melodies 

and performances. 

Creates the column correct in the spreadsheet. 

 

quantizeMidi([noteValue], quantizeOffsets, 

quantizeDurations) 

Quantizes the performances. If quantizeOffsets 

is set to TRUE, the beginning of each note is 

quantized. If quantizeDurations is set to TRUE, 

the end of each note is quantized. The 

quantization value is specified by noteValue 

(1=quarter notes, 2=eighth, 4=sixteenth, 

0.5=half, 0.25=whole, ect.). Beginning and/or 

end of the note are moved to the closest note 

value. 

 

exportResults() Creates a .csv file from the spreadsheet and 

stores it in the folder with the stimulus 

melodies. 

 

 

Compare functions 

These functions compare the performances with the stimulus melodies on three main parameters: 

the beginning (also called position), pitch and duration (also called note value) of the notes. These 

functions are the main part of the program as they provide an analysis of performance accuracy. 
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Function Description 
 

compareNumberOfNotes() Creates a column ommissionAddition and compares 

the number of performed notes with the number of 

notes in the stimulus melodies. 0 means that the 

correct number of notes was performed. -3 means 

that the performance contained three notes less than 

the stimulus melody. +1 means that the performance 

contained one note more than the stimulus melodies. 

 

compareNotePositions() Compares the onset of each note in each 

performance with the stimulus melody and stores a 

relative accuracy value in the column 

ACC_notePosition (0.5 means that 50% of the 

performed notes started at the correct position) 

 

compareNotePositionsOfSingleNotes() For each note X in each stimulus melody, a variable 

ACC_notePosition_noteX is created in the 

spreadsheet. For each performance, the program 

indicates if it contains a note that starts at this 

positions (1) or not (0). 

 

comparePitch() Compares the pitch of each note in each 

performance that starts at a correct position and 

stores a relative accuracy value in the column 

ACC_pitch (0.5 means that 50% of the notes that 

started at the correct position had a correct pitch). 

The octave is not considered, i.e. if C4 had to be 

played and C5 was played, this counted as correct. 

 

comparePitchWithOctave() Same as comparePitch, but takes octaves into 

account, i.e. if C4 had to be played and C5 was 
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played, this is counted as wrong. Stores a relative 

accuracy value in the column ACC_pitchWithOctave 

 

comparePitchOfSingleNotes() For each note Y in each performance that started at 

a correct position, a variable ACC_pitch_noteY is 

created in the spreadsheet. The program indicates if 

this note had a correct pitch (1) or not (0). 

 

compareDuration() Compares the duration of each note in the 

performances that starts at a correct position and 

stores a relative accuracy value in the column 

ACC_duration (0.5 means that 50% of the notes that 

started at the correct position had a correct 

duration). 

 

compareDurationOfSingleNotes() For each note Z in each performance that starts at a 

correct position, a variable ACC_duration_noteZ is 

created in the spreadsheet. The program indicates if 

this note had a correct duration (1) or not (0). 
 

 

Describe functions 

These functions do not compare but describe the performances. This can be especially useful to 

check the validity of the performance MIDI files by checking if certain measures such as the length 

of the performance or the pitch range take plausible values. 
 

Function Description 
 

describeNumberOfNotes() Creates a column numberOfPerformedNotes in the 

spreadsheet and indicates the number of notes in the 

performances. 

 

describeNumberOfChords() Creates a column numberOfPerformedChords in the 

spreadsheet and indicates the number of chords 

(simultaneously performed notes) in the performances. 
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describePitchSpan() Creates a column pitchRange in the spreadsheet and indicates 

the lowest and highest pitches of the performances. 

 
describeNoteValues() Creates a column performedNoteValues and indicates a list of 

which note values were contained in the performances. 

 
describeDuration() Creates a column durationOfPerformanceInQuarterNotes 

and indicates the duration of the performances in quarter 

notes. 

 

describeNumberOfBars() Creates a column numberOfPerformedBars and indicates the 

length of the performances in bars. Works only if the MIDI 

files contain bar markers. 

 

describeMeter() Creates a column meter and indicates the meter of the 

performances. 

 
describeInstrument() Creates a column instrument and indicates the instrument 

information of the MIDI files. 

 
describeClef() Creates a column clef and indicates the clef of the 

performances. 

 

describeTempo() Creates a column tempo and indicates the tempo of the 

performances 

 
describeKey() Creates a column key and indicates the key of the 

performances. 

 

describePerformedNotes() Creates a column performedNotes that contains the whole 

performance in the format [{Note1: [{offset: 0}, {pitch:A4}, 

{notevalue:0.5}]},{Note2:...}] So for each note, its beginning 

(offset), its pitch and its duration (notevalue) is indicated. 

 

 

Comprehensive functions 
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These functions integrate several of the previous function in order to support usability. They do not 

provide anything new, but only allow to call sets of functions with one command. In principle, all 

functions of the program can be called with the getYourMidiFiles and the analyzeMidi functions. 
 

Function Description 
 
 

getYourMidiFiles 

(performanceDataPath, 

solutionDataPath, startItemName, 

endItemName, startSubjectName, 

endSubjectName) 

Calls the functions indicateFilePaths, importMidiFiles, 

importCorrectSolutions and addCorrectSolutions. 

 

compareMidi() Calls the functions compareNumberOfNotes, 

compareNotePositions, comparePitch and 

compareDuration 

 

describeMidi() Calls the functions describeNumberOfNotes(), 

describePitchSpan(), describeNoteValues(), 

describeDuration(), and describePerformedNotes(). If 

the performance MIDI files contain information on 

instrument, clef, tempo, key, bars and if they contain 

chords, the respective describe functions are called. 

 

analyzeMidi() Calls both the describeMidi and the compareMidi 

functions 
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