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Abstract
In this article, we consider transport networks with uncertain demands. Network
dynamics are given by linear hyperbolic partial differential equations and suitable
coupling conditions, while demands are incorporated as solutions to stochastic differ-
ential equations. For the demand satisfaction, we solve a constrained optimal control
problem. Controls in terms of network inputs are then calculated explicitly for dif-
ferent assumptions. Numerical simulations are performed to underline the theoretical
results.
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1 Introduction

Transport networks play an important role for the description of flows between enti-
ties (see [1, 5] for an overview). Typical examples include road networks, pipeline
networks, power grids, or production lines. Such networks ensure that there is light in
a room after pressing the light switch or that the production line works efficiently and
without larger idle times in an automobile plant. Especially, if uncertainty comes into
play, there is a strong interest to analyze the perturbed systems in order to understand
how the stochasticity influences the dynamics.
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There are different approaches such as classical network flows [1, 12] or dynamic
transport networks [5, 7, 13, 21] to describe the deterministic system dynamics. The
approaches mainly differ in static respectively dynamic considerations of flows and
associated effects. In the case of supply networks (e.g., energy or production), hyper-
bolic partial differential equations (PDEs) have been established [3, 4, 14, 15, 23]
using appropriate coupling conditions at nodes. For production lines, there also exist
network approaches on different scales, i.e., from a microscopic perspective using
queuing theory [26] or discrete event systems [29] up to a macroscopic perspective
governed by PDEs of hyperbolic type (as shown in [2]).

In this work, we focus on macroscopic models using densities as the quantity of
interest and model the dynamics on each arc in the network by linear hyperbolic
partial differential equations. The optimal control problem under consideration is to
find the optimal input into the system such that stochastic demands are satisfied.
The latter are represented by solutions to stochastic differential equations (SDEs).
In contrast to [16, 17], where the setting of an Ornstein-Uhlenbeck process has been
considered, we focus on a different stochastic process, i.e., the Jacobi process, to
model the demand. Originally, the Jacobi process was used to determine interest rates
on financial markets [8]. Recently, the Jacobi process has been also applied in the
case of electricity markets to either model electricity prices [11] or to investigate
intraday electricity demand [6].

For the identification of the optimal control, we pursue an explicit representation
under suitable assumptions on the network dynamics. In the special case of the linear
advection equation on a single line only, similar investigations have been presented
in [17]. In this work, we allow for a wider class of linear hyperbolic PDEs where
additional complexity for the computation of the control arises due to the network
structure. Depending on different levels of information, we distinguish between a
non-updated scenario (MS1), a scenario where we update the control with a given
frequency (MS2) and a scenario in which we additionally update the conditions at the
nodes (MS3). All scenarios are analyzed in detail and also studied from a numerical
point of view.

The paper is organized as follows: Section 2 introduces the optimal control model.
Afterwards, we investigate a Jacobi process with time-dependent mean reversion
level in Section 3. A deeper insight into the network dynamics and the explicit
computation of the optimal inflow is presented in Section 4. Section 5 deals with
the discussion of the different levels of information. Finally, in Section 6, we
present a numerical study for the network model and also give a comparison to the
Ornstein-Uhlenbeck demand process.

2 Model description

The considered model consists of three parts as can be seen in Fig. 1. First, the quan-
tity of interest is the time-dependent control variable u(t) describing the inflow into
the network. The control variable will be chosen such that stochastic demands are
satisfied. Second, we face a transport network consisting of a single source and a
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Fig. 1 Schematic presentation of the model components

finite number of internal nodes J and end nodes C. We assume that networks are con-
nected, directed, and tree-structured graphs. The dynamics for the densities z(i)(x, t)

on network arc i are governed by a linear hyperbolic partial differential equation
equipped with initial conditions z

(i)
0 (x). The functions f (i) and g(i) denote the flux

function and a damping function for arc i, respectively. In Section 4, we discuss
the different choices. Due to the network structure, we denote by vi the subsequent
node of arc i. For a fixed node vi , we have to impose distribution parameters αi,k(t)

describing the share of the flux directed from arc i to arc k at time t . We require that
the αi,k(t) sum up to 1 for any fixed node vi to ensure flux conservation. The choice
of the distribution parameters will be extensively discussed in Section 5. Third, at the
sinks of the transport network, we assume uncertain demands modeled via stochastic
processes (D

(vi )
t )t∈[t0,T ]. In Section 3, we theoretically investigate the Jacobi process.

A numerical comparison to an Ornstein-Uhlenbeck process in Section 6 highlights
the key differences.

To control the inflow into the network f (1)(z(1)(0, t), t), we aim to minimize the
expected quadratic deviation of the demand from the actual supply f (i)(z(i)(1, t), t).
This leads to a demand tracking type cost function and hence to the following
stochastic optimal control problem: Consider a finite time horizon T and a network
where all arcs have length 1. The demand processes (D

(vi )
t )t∈[t0,T ], vi ∈ C are

defined on a probability space (�,A, P ) which are equipped with a family of filtra-
tions (Ft )t∈[t0,T ]. Let t̂ ≤ t0 be the time from which the latest demand information is
available. Then, the problems reads for all x ∈ (0, 1) and t ∈ [t0, T ]:

min
u∈L2

∑

{i:vi∈C}

∫ T

t0

E

[(
D(vi )

s − f (i)(z(i)(1, s), s)
)2 ∣∣∣ Ft̂

]
ds (2.1a)

s.t. z
(i)
t (x, t) + f (i)(z(i)(x, t), t)x + g(i)(z(i)(x, t), t) = 0, ∀i s.t. vi ∈ J ∪ C (2.1b)

z(i)(x, t0) = z
(i)
0 (x), ∀i s.t. vi ∈ J ∪ C (2.1c)

f (1)(z(1)(0, t), t) = u(t) (2.1d)

f (k)(z(k)(0, t), t) = αi,k(t)f
(i)(z(i)(1, t), t), ∀i s.t. vi ∈ J, k outgoing arc of vi (2.1e)

∑

k outgoing arc of vi

αi,k(t) = 1, ∀i s.t. vi ∈ J (2.1f)

dD
(vi )
t = κ(vi )

(
θ(vi )(t) − D

(vi )
t

)
+ σ (vi )

√
D

(vi )
t

(
1 − D

(vi )
t

)
dW

(vi )
t , D

(vi )
0 = d

(vi )
0 , vi ∈ C (2.1g)
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In the following section, we address the demand modeling via the Jacobi process
in (2.1g). Following the ideas presented in [17], we intend to reformulate the cost
function and then explicitly compute the control u(t) depending on the dynamics of
the hyperbolic PDE.

3 Demandmodeling using a Jacobi process

Due to the inherent stochastic nature of demand, there exist various approaches to
capture the behavior. However, in the course of the day or a year, an underlying
pattern can be observed. For example, considering gas or electricity consumption, the
demand is larger in the mornings or afternoons than at night. In most applications,
only positive demands occur. This applies to production systems but also to gas,
water, and electricity networks. It also seems reasonable to assume that there exist
a maximum demand. Therefore, we require a demand process that follows a mean
level and only takes values in a bounded interval.

A stochastic process that captures most of these characteristics is the Jacobi
process given by the solution to the following stochastic differential equation (SDE)

dZt = κ(θ − Zt)dt + σ
√

Zt(1 − Zt)dWt , Zt0 = z0, (3.1)

where κ, σ > 0 and θ, z0 ∈ R are parameters and (Wt )t∈[t0,T ] is a Brownian
motion. The equation consists of a deterministic drift term κ(θ −Zt)dt which pushes
the process back to the mean reversion level θ , where κ determines how fast the
mean reversion occurs. The second part is the stochastic diffusion σ

√
Zt(1 − Zt)dWt

which is mainly influenced by the Brownian motion Wt . The scale of this stochastic
influence is governed by σ and by the distance of the Jacobi process to the border
values, which are 0 and 1 in this case. The closer the process approaches one of the
borders, the smaller gets the stochastic influence of the diffusion part. The Jacobi
process admits for the Markov property and belongs to the wide class of Pearson
diffusion processes consisting of a deterministic drift term and a stochastic diffusion
term. Other members of this class, as for instance the Ornstein-Uhlenbeck process or
the CIR-Process, have been used to model uncertain demands in various applications
[9, 17, 18, 25]. The Ornstein-Uhlenbeck process is given by the solution to the SDE

dẐt = κ̂(θ̂ (t) − Ẑt )dt + σ̂ dWt , Ẑt0 = ẑ0, (3.2)

where (Wt )t∈[t0,T ] is a Brownian motion, ẑ0 an initial demand, and κ̂, σ̂ are posi-
tive constants. The function θ̂ models the time-dependent mean reversion level of
the Ornstein-Uhlenbeck process. For application purposes, they appear very popular
since they are easy to handle, admit for an explicit solution, and allow for the most
basic properties. However, the Ornstein-Uhlenbeck process and the CIR-Process do
not allow for bounds or only for bounds from below. Therefore, and supported by the
recent work [6] where a parameter fitting for a Jacobi process in an electricity mar-
ket has been provided, we concentrate on the Jacobi process and come back to the
Ornstein-Uhlenbeck process in Section 6.
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The Jacobi process given by the solution of (3.1) is bounded and stays in the
interval [0, 1]. By a linear transformation, the Jacobi process can be shifted to any
bounded interval [α̃, β̃]:

Z̃t = α̃ + (β̃ − α̃)Zt .

Therefore, and to keep notation simple, in the following, we restrict the Jacobi
process to [0, 1].

For the Jacobi process in (3.1), the transition probability for moving from state x

at time s to y at time t is given by

p(x, s; y, t) =
∞∑

n=0

knψn(x)ψn(y)w(y)e−ηn(t−s),

where

kn = (a + b + 2n − 1)
(a + n)
(a + b + n − 1)

n!
(a)2
(b + n)
,

w(x) = xa−1(1 − x)b−1, ψn(x) =
∑n

k=0
(−1)k

(
n

k

)

(a + b + n − 1 + k)
(a)


(a + b + n − 1)
(a + k)
xk

with 
(·) being the Gamma function and

a = 2κθ

σ 2
> 0, b = 2κ(1 − θ)

σ 2
, ηn = κn + σ 2

2
n(n − 1).

Using the transition probabilities, the conditional expectation for the Jacobi process
and t0 < t can be calculated by

E[Zt |Zt0 = z0] = θ + (z0 − θ)e−κ(t−t0). (3.3)

The conditional second moment is given by

E[Z2
t |Zt0 = z0] = (2κθ + σ 2)θ

2κ + σ 2
+ 2κθ + σ 2

κ + σ 2
(z0 − θ)e−κ(t−t0)

+
(

z2
0 − 2κθ + σ 2

κ + σ 2
z0 + κθ(2κ + σ 2)

(2κ + σ 2)(κ + σ 2)

)
e−(2κ+σ 2)(t−t0). (3.4)

Both derivations are well known and can be found in, e.g., [8]. For a deeper discus-
sion of the Jacobi process, we refer to [19]. The calculation of the first two moments
of the Jacobi process will enable us at the end of this section to find a deterministic
representation of the a priori stochastic optimal control problem (2.1).

3.1 A Jacobi process with time-dependent mean reversion level

So far, the mean reversion level has been assumed to be constant. However, in many
applications, the averaged demand is not constant in time. Considering electricity
demands or the demand of manufactured goods, there are predictable fluctuations

Control strategies for transport... Page 5 of 33    74



within a day or also within a year. So we extend (3.1) by adding a time dependency
into the mean reversion level

dZt = κ(θ(t) − Zt)dt + σ
√

Zt(1 − Zt)dWt , Zt0 = z0. (3.5)

The parameter θ(t) is now considered as a function in time. Existence and uniqueness
of solutions to (3.5) can be guaranteed under similar assumptions as for (3.1) finding
appropriate estimates for θ (see [28]).

Unfortunately, there is no explicit distribution of solution to neither (3.1) nor (3.5).
However, it is possible to calculate a limit distribution for t → ∞ in which the
solution to (3.1) is distributed as a Beta distribution with parameters α = 2κθ

σ 2 and

β = 2κ(1−θ)

σ 2 (see [19]).
For an illustration of the Jacobi processes, we plot the evolution with and without

time-dependent mean reversion levels and different parameters in Fig. 2. The sim-
ulation is performed using a truncated Euler-Maruyama scheme and will be further
explained in Section 6.

For a constant mean-reversion level, the processes fluctuate around θ where the
oscillations increase for larger σ and smaller κ . It can be observed that especially if σ

is large or if κ is small, the Jacobi process approaches its boundaries. In Fig. 2c and
d, the processes follow the mean-reversion level with a small delay, except for the
representation where σ = 1.8 is chosen. The stochastic influence dominates the mean
reverting behavior and therefore shows larger deviations from the mean-reversion
level.

To proceed with the transport network analysis, we are interested in finding the
first two conditional moments for (3.5). Therefore, we note that the conditional
expectation of the Jacobi process can be rewritten by

E
[
Zt |Zt0 = z0

] = E

[
Zt0 +

∫ t

t0

dZs |Zt0 = z0

]

= z0 + E

[∫ t

t0

κ(θ(s) − Zs)ds|Zt0 = z0

]
+ E

[∫ t

t0

√
Zs(1 − Zs)dWs |Zt0 = z0

]
.

Since

E

[∫ t

t0

(√
Zs(1 − Zs)

)2
ds|Zt0 = z0

]
≤ t − t0

4
< ∞

the martingale property of the Ito integral (see, e.g., [22]), yields

E

[∫ t

t0

√
Zs(1 − Zs)dWs |Zt0 = z0

]
= 0.

Therefore, it holds

E
[
Zt |Zt0 = z0

] = E

[
Z̆t |Z̆t0 = z0

]
= Z̆t

for the solution to the deterministic linear inhomogeneous initial value problem

d

dt
Z̆t = κ(θ(t) − Z̆t ), Z̆t0 = z0. (3.6)
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Fig. 2 Influence of different parameters on the Jacobi process with constant mean reversion level θ(t) =
0.4 and time-dependent mean reversion level θ(t) = 0.4 + 0.25 sin(t)

The solution to (3.6) is explicitly known and given by

Z̆t = z0e
−κ(t−t0) + κ

∫ t

t0

e−κ(t−s)θ(s)ds.

Summarizing, we obtain for the conditional expectation of the Jacobi process with
time varying mean reversion level

E[Zt |Zt0 = z0] = z0e
−κ(t−t0) + κ

∫ t

t0

e−κ(s−t0)θ(s)ds. (3.7)

For the reformulation of the optimal control problem, we also require an explicit
representation of the second conditional moment of the Jacobi process with time
varying mean reversion level. It is given by

E[Z2
t |Zt0 = z0] =

∫ t

t0

(2κθ(s) + σ 2)

(
z0e

−κ(s−t0) + κ

∫ s

t0

θ(r)e−κ(s−r)dr

)
e−(2κ+σ 2)(t−s)ds

+ z2
0e

−(2κ+σ 2)(t−t0). (3.8)
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The computational details are provided in the Appendix. In the following, the
demands D

(vi)
t will be described by individual Jacobi processes with time-dependent

mean reversion level.

3.2 Deterministic reformulation of the optimal control problem

After having investigated the Jacobi process properly, we can decompose the
expectation in the objective function of (2.1) in the following way:

E

[(
D

(vi )
t − f (i)(z(i)(1, t), t)

)2 |D(vi )
t0

= d
(vi )
0

]

= E

[(
D

(vi )
t

)2 |D(vi )
t0

= d
(vi )
0

]
− 2E

[
D

(vi )
t |D(vi )

t0
= d

(vi )
0

]
f (i)(z(i)(1, t), t) +

(
f (i)(z(i)(1, t), t)

)2
.

Further applying the results for the Jacobi process from (3.7) and (3.8), we obtain
for the objective function as

E

[(
D

(vi )
t − f (i)(z(i)(1, t), t)

)2 |D(vi )
t0

= d
(vi )
0

]

=
∫ t

t0

(
2κ(vi )θ (vi )(s) +

(
σ (vi )

)2
)(

d
(vi )
0 e−κ(vi )(s−t0)κv(i)

∫ s

t0

θ(vi )(r)e−κ(vi )(s−r)dr

)

· e−(2κ(vi )+(σ (vi )
)2

)(t−s) − 2f (i)(z(i)(1, t), t)κ(vi )e−κ(vi )(s−t0)θ (vi )(s)ds

+
(
d

(vi )
0

)2
e−(2κ(vi )+(σ (vi )

)2
)(t−t0) − 2f (i)(z(i)(1, t), t)d

(vi )
0 e−κ(vi )(t−t0) +

(
f (i)(z(i)(1, t), t)

)2
. (3.9)

This contains exclusively deterministic and known variables and enables us to
write the optimal control problem (2.1) without the stochastic demand constraint by
using the deterministic explicit representations of the first two conditional moments
of the Jacobi demand processes. Consequently, the minimization problem

min
u∈L2

∑

{i:vi∈C}

∫ T

t0

E

[(
D(vi )

s − f (i)(z(i)(1, s), s)
)2 ∣∣∣ Ft̂

]
ds (3.10a)

s.t. z
(i)
t (x, t) + f (i)(z(i)(x, t), t)x + g(i)(z(i)(x, t), t) = 0, ∀i s.t. vi ∈ J ∪ C (3.10b)

z(i)(x, t0) = z
(i)
0 (x), ∀i s.t. vi ∈ J ∪ C (3.10c)

f (1)(z(1)(0, t), t) = u(t) (3.10d)

f (k)(z(k)(0, t), t) = αi,k(t)f
(i)(z(i)(1, t), t), ∀i s.t. vi ∈ J, k outgoing arc of vi (3.10e)

∑

k outgoing arc of vi

αi,k(t) = 1, ∀i s.t. vi ∈ J . (3.10f)

D
(vi )
0 = d

(vi )
0 , vi ∈ C (3.10g)

can be solved deterministically by interpreting (3.10a) as given in equation (3.9). The
following theorem states a general result on minimizing the mean-square error.

Theorem 3.1 Let (�,F, P ) be a complete probability space and let G ⊂ F a sub-
σ -algebra ofF . Let X, Y be two real-valued and square integrable random variables
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on � where Y is G-measurable. Then E[X|G] is the minimizer of the mean-square
distance from X

min
Y

(
E[(X − Y )2]

)

for all such random variables Y .

For a proof, we refer to [20]. In the setting of (3.10), this means that in terms of L2-
minimization, the outflow flux should be chosen to be the conditional expectation of
the demand with respect to the available information, i.e., E[D(vi)

t |D(vi)

t̃
= d

(vi )
0 ] for

some t̃ ∈ [t0, T ]. In Section 5, we will discuss the aspect of information availability
more carefully while in the next section, we consider the different networks dynamics
given by linear hyperbolic PDEs.

4 Network dynamics and optimal input

In this section, we focus on the dynamics in the network on all arcs i given by con-
straint (2.1b) of the optimization problem, i.e., the shape of the functions f (i) and
g(i) governed by

z
(i)
t (x, t) + f (i)(z(i)(x, t), t)x + g(i)(z(i)(x, t), t) = 0, (4.1)

where f (i) denotes the flux function and g(i) is the diffusion function which leads
to damping of the transported quantity in the supply system. We restrict ourselves to
linear hyperbolic partial differential equations. For simplicity, all investigations are
executed in the 1-1 and 1-2 case and can be generalized to arbitrary tree networks
in a straightforward way. Under some assumptions, we will be able to calculate the
optimal input explicitly.

4.1 Linear transport with time-dependent velocity function

We start with the consideration of a linear transport dynamic using a time-dependent
velocity function, i.e., we choose the flux function f (i)(z, t) = λi(t)z, where λi(·)
is a strictly positive and bounded function. In this section, we assume no damping,
i.e., g(i)(z, t) = 0. Then, the method of characteristics [24] leads to a trajectory plot
as illustrated in Fig. 3. Since the trajectories do not intersect, the dynamics are still
linear.

4.1.1 1-1 Network

In the simple case of a 1-1-network, we now demonstrate how the optimal input at
the initial node can be determined. This procedure can be seen as a straightforward
extension of the results in [17] where only one arc and only a constant velocity has
been considered. The structure of the 1-1 network is shown in Fig. 4.
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Fig. 3 Trajectory plot for a time-dependent velocity function λ(t) = 8 + 3 sin(πt)

To determine the optimal input at some time tin ∈ [t0, T ], we have to calculate
when the corresponding units injected in tin reach node v1 (denoted by t1) and the
time t2 when they reach the demand node v2. Having this information obtained, one
can calculate the conditional expectation of the demand process at t2. Since the con-
ditional expectation of demand according to Theorem 3.1 minimizes the expected
quadratic deviation, it is a main driver for the optimal injection into the supply net-
work. In the special case of arcs with length 1, both times t1 and t2 are implicitly
given by the system of equations

∫ t1
tin

λ1(r)dr = 1,
∫ t2
t1

λ2(r)dr = 1 (4.2)

where λ1 and λ2 denote the velocity functions on arc 1 and arc 2, respectively. These
equations can be generalized for arbitrary lengths of the arcs by replacing the right
hand sides of (4.2) by the particular lengths. We present a result that enables us to
express t1 and t2 explicitly under certain assumptions.

Lemma 4.1 If the velocity functions λi have an antiderivative 
i, i = 1, 2 which is
invertible, then for an injection time tin ∈ [t0, T ], t1 and the output time t2 are given
by

t1 = 
−1
1 (1 + 
1(tin))

t2 = 
−1
2 (1 + 
2(


−1
1 (1 + 
1(tin)))). (4.3)

Fig. 4 The supply system as a 1-1-network with one source and one demand node
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Proof Using the fundamental theorem of calculus and the second expression of (4.2)
leads to


2(t2) = 
2(t1) + 
1(t1) − 
1(tin).

The first equation in (4.2) can be reformulated to express t1 explicitly by

t1 = 
−1
1 (1 + 
1(tin)).

Then, we have

t2 = 
−1
2 (
2(t1) + 
1(t1) − 
1(tin))

= 
−1
2 (
2(t1) + 1)

= 
−1
2

(
1 + 
2(


−1
1 (1 + 
1(tin)))

)
.

Another aspect of the 1-1 network that should be understood well is the coupling
condition of the two arcs in node v1. In our model, we require flux conservation, i.e.,
f (1)(z(1)(1, t), t) = f (2)(z(2)(0, t), t). Since f (1) and f (2) do not necessarily have to
coincide, there can be discontinuities in the densities in node v1. These discontinuities
have to be taken into account for the calculation of the optimal input. An outflow
out of the system of f (2)(z(2)(1, t2), t2) is equivalent to a density of z(2)(1, t2) =
f (2)(z(2)(1,t2),t2)

λ2(t2)
at the end of arc 2. Since our dynamics are linear, it holds z(2)(1, t2) =

z(2)(0, t1). But as the velocity function is allowed to be time-dependent, the inflow in
arc 2 at time t1, given by f (2)(z(2)(0, t1), t1) = z(2)(0, t1)λ2(t1), might differ from the
system outflow at t2. Therefore, even though the dynamics are linear, the fluxes along
the characteristics can vary, while the densities stay constant. The relation between
inflow in arc 2 at t1 and outflow out of arc 2 at t2 is given by

f (2)(z(2)(0, t1), t1)

λ2(t1)
= z(2)(0, t1) = z(2)(1, t2) = f (2)(z(2)(1, t2), t2)

λ2(t2)
.

Flux conservation yields that

z(1)(1, t1) = f (1)(z(1)(1, t1), t1)

λ1(t1)
= f (2)(z(2)(0, t1), t1)

λ1(t1)
= f (2)(z(2)(1, t2), t2)

λ2(t1)

λ1(t1)λ2(t2)
.

Additionally, using the linearity of the dynamics on arc 1, we get

f (2)(z(2)(1, t2), t2) = z(1)(1, t1)
λ1(t1)λ2(t2)

λ2(t1)

= z(1)(0, tin)
λ1(t1)λ2(t2)

λ2(t1)

= f (1)(z(1)(0, tin), tin)
λ1(t1)λ2(t2)

λ1(tin)λ2(t1)
.

Plugging in that the system outflow should be chosen according to the conditional
expectation of the demand process, we obtain the following relation for the optimal
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system inflow

u(tin) = λ1(tin)

λ1(t1)

λ2(t1)

λ2(t2)
E

[
D

(v2)
t2

| Ft̂

]
, (4.4)

where we condition on some time t̂ ∈ [t0, tin]. The result can inductively be adapted
to 1-1 networks of larger size by multiplying additional factors λi(ti−1)

λi (ti )
on the right

hand side of (4.4) for any additional node vi .
Note that we assume that our system has unlimited capacity, meaning that there is

no upper bound on the densities on the network arcs. This assumption avoids that our
system reaches a congested state as it has been investigated in [10].

4.1.2 1-2 network

Since we concentrate on tree networks, we explain next the procedure for the 1-2
case. This network consists of four nodes and three arcs and is presented in Fig. 5.

Similar to the 1-1 case, under the assumptions of Lemma 4.1, i.e., the existence
and invertibility of the antiderivatives 
i of λi, i = 1, 2, 3, we are able to calculate
the times ti , i = 1, 2, 3 which are the times when a unit injected at v0 at tin reaches
node vi as

t1 = 
−1
1 (1 + 
1(tin))

t2 = 
−1
2

(
1 + 
2(


−1
1 (1 + 
1(tin)))

)

t3 = 
−1
3

(
1 + 
3(


−1
1 (1 + 
1(tin)))

)
.

(4.5)

To calculate the optimal inflow for one of the demand nodes, it is sufficient to con-
sider a subnetwork that contains only the relevant nodes and arcs for the particular
demand node. Due to the tree network structure, these subnetworks are 1-1 networks.
Hence, following the discussion for the 1-1 network, the optimal input ui(tin) for a
single demand node vi is given by

u2(tin) = λ1(tin)

λ1(t1)

λ2(t1)

λ2(t2)
E

[
D

(v2)
t2

| Ft̂

]

u3(tin) = λ1(tin)

λ1(t1)

λ3(t1)

λ3(t3)
E

[
D

(v3)
t3

| Ft̂

]
,

where t̂ ∈ [t0, tin]. The total inflow u(tin) is then given by summing up the individual
inflow shares, i.e., u(tin) = u2(tin)+u3(tin). Again, choosing the velocity functions λi

Fig. 5 The supply system as a 1-2-network with one source and two demand nodes
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constant, we end up in the special case of linear advection on networks. The approach
can be easily extended to larger arbitrary tree networks by calculating the individual
inflow shares of the demand nodes which are basically larger 1-1 networks. The
overall inflow results in the sum of the individual inflow shares.

So far, we only consider the optimal inflow using backward calculation. The dis-
cussion on the distribution parameters at the nodes for the forward calculation starting
with the inflow will be postponed to Section 5 because it might be additionally
dependent on the degree of information that is provided by the system.

4.2 Linear transport with time-dependent velocity and damping function

In this section, we extend the framework by an additional damping term g(i)(z, t) =
μi(t)z, where μi ∈ L1([t0, T ]) is chosen to be a non-negative function. The flux
function on arc i is chosen as before f (i)(z, t) = λi(t)z with λi(·) strictly positive.
The damping reflects a loss in the transported quantity over time, which may be due
to some physical property as for instance friction or electrical resistance. We allow to
have an individual shape of the damping function for any arc which may additional
be dependent on the time.

4.2.1 1-1 Network

For a 1-1 network, we show how to calculate the optimal input at the initial node
taking the additional damping into consideration. We work with the network from
Fig. 4 and use the same notation as before, meaning t2 is the time in which a unit
injected at tin reaches the demand node v2 and t1 the time when it reaches node v1.
Under the assumptions of Lemma 4.1, the values for t1, t2 are given by (4.3) and are
not influenced by the damping term.

To incorporate the damping into the calculation of the optimal input, we consider
again the characteristics from the PDE in equation (4.1) with g(z(i), t) = 0, i.e.,
the situation without damping, for an arc i and denote them by (x(t), t). Along this
curve, the density z(i) stays constant, meaning that d

dt
z(i)(x(t), t) = 0. If we now add

a damping term, the density is reduced proportional to μi(t)z
(i)(x(t), t) which can

be formulated by the ordinary differential equation

d

dt
z(i)(x(t), t) = −μi(t)z

(i)(x(t), t).

Adding the injection information into the arc at time ti−1, the initial value problem

d

dt
z(i)(x(t), t) = −μi(t)z

(i)(x(t), t), z(i)(x(ti−1), ti−1) = zti−1

has the unique solution

z(x(t), t) = zti−1e
− ∫ t

ti−1
μi(s)ds

. (4.6)

The integral in the exponential function stays bounded since μi ∈ L1([t0, T ]). Apply-
ing this result to the 1-1 case, the initial injection at node v0 has to be scaled up such
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that after the damping on both arcs, the optimal flux reaches the demand node. Back-
ward calculating the inflow-outflow relation, using equation (4.6) and the previous
assumption on the flux conservation at the nodes, we get

f (2)(z(2)(1, t2), t2) = z(2)(1, t2)λ2(t2) = z(2)(0, t1)e
− ∫ t2

t1
μ2(s)ds

λ2(t2)

= f (2)(z(2)(0, t1), t1)
λ2(t2)

λ2(t1)
e
− ∫ t2

t1
μ2(s)ds

= f (1)(z(1)(1, t1), t1)
λ2(t2)

λ2(t1)
e
− ∫ t2

t1
μ2(s)ds

= z(1)(1, t1)
λ1(t1)λ2(t2)

λ2(t1)
e
− ∫ t2

t1
μ2(s)ds

= z(1)(0, tin)e
− ∫ t1

tin
μ1(s)ds λ1(t1)λ2(t2)

λ2(t1)
e
− ∫ t2

t1
μ2(s)ds

= f (1)(z(1)(0, tin), tin)
λ1(t1)λ2(t2)

λ1(tin)λ2(t1)
e
− ∫ t1

tin
μ1(s)ds

e
− ∫ t2

t1
μ2(s)ds .

Since the outflow should match the conditional expectation of the demand, we
find the optimal inflow at node v0 by

u(tin) = λ1(tin)

λ1(t1)

λ2(t1)

λ2(t2)
E

[
D

(v2)
t2

| Ft̂

]
e
∫ t1
tin

μ1(s)ds
e
∫ t2
t1

μ2(s)ds . (4.7)

The solution procedure can iteratively be extended to larger 1-1 networks by

multiplying factors of the type λi(ti−1)

λi (ti )
e

∫ ti
ti−1

μi(s)ds to the right hand side of (4.7).

4.2.2 1-2 Network

Finally, we transfer the results from the 1-1 network to the 1-2 network from Fig. 5
combining the techniques from Sections 4.1.2 and 4.2.1. Assuming that the condi-
tions in Lemma 4.1 hold true the times ti , i = 1, 2, 3 are given as in equation (4.5).
For both of the demand nodes, we calculate the optimal injection backwards focusing
on the relevant subnetworks which reduce to two 1-1 networks. Equation (4.7) then
leads to the individual optimal inflows of

u2(tin) = λ1(tin)

λ1(t1)

λ2(t1)

λ2(t2)
E

[
D

(v2)
t2

| Ft̂

]
e
∫ t1
tin

μ1(s)ds
e
∫ t2
t1

μ2(s)ds

u3(tin) = λ1(tin)

λ1(t1)

λ3(t1)

λ3(t3)
E

[
D

(v3)
t3

| Ft̂

]
e
∫ t1
tin

μ1(s)ds
e
∫ t3
t1

μ3(s)ds .

The total optimal inflow u(tin) at node v0 is then given by u(tin) = u2(tin) + u3(tin).

5 Different control strategies based on the degree of information

This section deals with different control strategies based on different information
levels. We are able to adjust two influencing factors in the supply network. On the
one hand, we can control the inflow at node v0 (represented by equation (2.1d) in
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the optimization problem) and on the other hand we can rearrange the distribution
at each inner node (represented by (2.1e) and (2.1f)). An additional adjustment at
the inner nodes seems reasonable if there is more recent demand information avail-
able than at the time of the injection. The choice of the optimal injection has been
mainly discussed in Section 4. It remains to determine the optimal distribution param-
eters αi,k(t). Before we investigate the different scenarios further, we introduce some
notation.

Let us define a function p̃ that maps a given node to the direct predecessor node.
Similarly, the function q̃ maps a given arc i to the directly preceding arc. The function
c̃ maps a node vi to all demand-nodes which are successors of vi . The set J out

vi
is

defined to be the set of all directly outgoing arcs of node vi . Additionally, the function
t̃ assigns, given two nodes vi , vj and a time t , the time t̃ (vi , vj , t) at which the
electricity that leaves node vi at time t reaches node vj . Last, denote η(vi, vj ) to be
the sequence of all network arcs leading from the inner node vi to the demand node
vj .

5.1 Model setting 1: single demand update

In model setting 1 (MS1), we consider the least information about demand that is
possible. We assume that there is only one demand update right at the beginning of
the time period at t0. Further developments of the demand processes are not taken
into consideration for the injection at the source or the distribution at the inner nodes.
Therefore, according to Section 4, the optimal inflow is given by

u(tin) =
∑

{i : vi∈C}
E

[
D

(vi)

t̃(v0,vi ,tin)
|Ft0

] λ1(tin)

λ1(t1)
e
∫ t̃ (v0,v1,tin)
tin

μi(s)ds

˙
∏

l∈η(v1,vi )

λl(t̃(v0, p̃(vl), tin))

λl(t̃(v0, vl, tin))
e

∫ t̃ (v0,vl ,tin)

t̃(v0,p̃(vl ),tin)
μl(s)ds

. (5.1)

In contrast to Section 4, where we focus on 1-1 and 1-2 networks only, we now gen-
eralized the idea of building sub 1-1 networks for any demand node by introducing
the set η(v1, vi).

We note that also the distribution parameters at the inner nodes are chosen opti-
mally with respect to the knowledge at t0. Since we have already calculated the
optimal inflow shares for any demand node, they can be reused to determine the opti-
mal distribution parameters. For any inner node vi this can be done by allocating all
(demand) nodes included in the set c̃(vi) to the corresponding outgoing arc k of vi .
Then, the distribution parameter for the share of ingoing flux moving from arc i to
arc k at time t is given by

αi,k(t) =
∑

vq∈c̃(vk)
E

[
D

(vq)

t̃(vi ,vq ,t)

∣∣ Ft0

]∏
l∈η(vi ,vq )

λl(t̃(vi ,p̃(vl ),t))

λl(t̃(vi ,vl ,t))
e

∫ t̃ (vi ,vl ,t)

t̃(vi ,p̃(vl ),t)
μl(s)ds

∑
vr∈c̃(vi )

E

[
D

(vr )

t̃(vi ,vr ,t)

∣∣ Ft0

]∏
l∈η(vi ,vr )

λl(t̃(vi ,p̃(vl ),t))

λl(t̃(vi ,vl ,t))
e

∫ t̃ (vi ,vl ,t)

t̃(vi ,vl ,t)
μl(s)ds

.
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The distribution parameters are mainly driven by the expected demands condi-
tioned on the state of the system at initial time t0. In contrast to the calculations for
the inflow at the source node in (5.1), the terms which stem from the flux conserva-
tion property and the damping are now starting in node vi and not in the source node.
Since c̃(vk) ⊂ c̃(vi) if arc k is a successor of arc i and all quantities are non-negative,
it holds αi,k(t) ∈ [0, 1]. Additionally, it holds that, due to the tree network structure,
c̃(vi) can be comprised of the disjoint union

⊎
k∈J out

vi

c̃(vk) which directly leads to the

property

∑

k∈J out
vi

αi,k(t) = 1 (5.2)

for any inner node vi and t ∈ [t0, T ].

5.2 Model setting 2: multiple time-delayed demand updates

In model setting 2 (MS2), we allow for regular demand updates to improve the accu-
racy of the injection at the source node v0. The update times are given by a sequence
{t̂1, . . . , t̂k} with t0 = t̂1 < · · · < t̂k ≤ T . We denote by t̃−1 the inverse of the
function t̃ with respect to the time argument such that t̃−1(v0, vi, s) returns the time
at which the unit that reaches node vi at time s has been injected in the system at
v0. The notation of 
s�t̂j

assigns the largest update time which is smaller than s. To
account for the update times, we now consider a family of optimization problems of
the following type:

min
u∈L2

∑

{i : vi∈C}

∫ min{t̃ (v0,vi ,t̂j+1),T }

min{t̃ (v0,vi ,t̂j ),T }
E

[(
D(vi )

s − f (i)(z(i)(1, s), s)
)2 ∣∣∣ Ft̂j

]
ds

s.t. z
(i)
t (x, t) + f (i)(z(i)(x, t), t)x + g(i)(z(i)(x, t), t) = 0, ∀i s.t. vi ∈ J ∪ C

z(i)(x, t̂j ) = z
(i)
old(x, t̂j ), ∀i s.t. vi ∈ J ∪ C

z(1)(0, t)λ1(t) = u(t)

f (k)(z(k)(0, t), t) = αi,k(t)f
(i)(z(i)(1, t), t), ∀i s.t. vi ∈ J, k outgoing arc of vi∑

k∈J out
vi

αi,k(t) = 1, ∀i s.t. vi ∈ J

x ∈ (0, 1), t ∈ [t̂j , t̂j+1]. (5.3)

In addition to the initial condition at t0, we have to set initial conditions at t̂j
for each optimization problem, which are naturally given by the system state of the
predecessor problem at its terminal time. By z

(i)
old(x, t̂j ), we denote the state of the

densities on the network arcs in the system at time t̂j .
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Compared to MS1, the inflow choice is not based on the demand information at
t0, but on the information that is available when the last demand update happened.
Therefore, the optimal inflow at some time tin ∈ [t̂j , t̂j+1) is given by

u(tin) =
∑

{i : vi∈C}
E

[
D

(vi)

t̃(v0,vi ,tin)
|Ft̂j

] λ1(tin)

λ1(t1)
e
∫ t̃ (v0,v1,tin)
tin

μi(s)ds

·
∏

l∈η(v1,vi )

λl(t̃(v0, p̃(vl), tin))

λl(t̃(v0, vl, tin))
e

∫ t̃ (v0,vl ,tin)

t̃(v0,p̃(vl ),tin)
μl(s)ds

. (5.4)

At the inner nodes, there is also an update procedure for the distribution parame-
ters. For MS2, we follow the idea that the distribution parameters for particular units
are determined when they enter the supply network at node v0. Therefore, we always
use the demand information which is available at the time a particular unit has been
injected into the system. Then, the optimal distribution parameter for the share of the
flux moving from arc i to arc k at node vi and time t is given by

αi,k(t) =
∑

vq∈c̃(vk)
E

[
D

(vq )

t̃(vi ,vq ,t)

∣∣ F
t̃−1(v0,vi ,t)� ˆtj

]∏
l∈η(vi ,vq )

λl (t̃(vi ,p̃(vl ),t))

λl (t̃(vi ,vl ,t))
e

∫ t̃ (vi ,vl ,t)

t̃(vi ,p̃(vl ),t)
μl (s)ds

∑
vr∈c̃(vi )

E

[
D

(vr )

t̃(vi ,vr ,t)

∣∣ F
t̃−1(v0,vi ,t)� ˆtj

]∏
l∈η(vi ,vr )

λl (t̃(vi ,p̃(vl ),t))

λl (t̃(vi ,vl ,t))
e

∫ t̃ (vi ,vl ,t)

t̃(vi ,vl ,t)
μl (s)ds

.

The main difference to MS1 is that we explicitly have to calculate the time
t̃−1(v0, vi, t) at which we have the latest information about the demand. The proper-
ties of αi,k(t) presented in MS1 apply also for MS2. If we choose t0 to be the update
time, we end up with the distribution parameters developed in MS1.

5.3 Model setting 3: multiple instantaneous demand updates

Similar to MS2, the last model setting 3 (MS3) also allows for regular demand
updates at {t̂1, . . . , t̂k} with t0 = t̂1 < · · · < t̂k ≤ T . Therefore, we again consider a
family of optimization problems presented in equation (5.3). Also the choices of the
optimal injection at the source node v0 from MS2 in equation (5.4) remain unchanged
because we assume the injection is always chosen optimally with respect to the latest
demand update. The new aspect of MS3 is that also at the inner nodes the flux dis-
tribution is arranged optimally with respect to the latest demand information and not
only with respect to the latest demand information when the particular unit entered
the supply network. Therefore, the distribution parameters at the nodes are not given
by the injection shares, but we have to consider an additional family of optimization
problems for each inner node. The ingoing flux is considered to be given and flux
conservation is required. Based on the choice of the distribution parameters αi,k(t),
we aim to minimize for a given inner node vi and a time t the expected quadratic
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deviation of the difference of demand and supply, i.e.,

min
αi,k(t)∈[0,1]

∑

{r:vr∈c̃(vi )}
E

[(
D

(vr )

t̃(vi ,vr ,t)
− f (r)(z(r)(1, t̃(vi, vr , t)), t)

)2 | F
t�t̂j

]

s.t. f (k)(z(k)(0, t), t) = αi,k(t)f
(i)(z(i)(1, t), t), k ∈ J out

vi∑

k∈J out
vi

αi,k(t) = 1

f (k)(z(k)(0, t), t) =
∑

{r:vr∈c̃(vk)}
f (r)(z(r)(1, t̃(vi, vr , t)), t)

·
∏

l∈η(vi ,vr )

λl(t̃(vi, p̃(vl), t))

λl(t̃(vi, vl, t))
e

∫ t̃ (vi ,vl ,t)

t̃(vi ,p̃(vl ),t)
μl(s)ds

, k ∈ J out
vi

. (5.5)

In Section 4, we have explained that the flux at the demand node is related to the
fluxes at the inner nodes taking into account the damping and the weighted den-
sities at the inner nodes. Using these relations and introducing the following two
definitions for the sake of better clarity, we can rewrite (5.5) where we additionally
choose the supply at the demand nodes to be the optimization variable and replace
the distribution parameters for a second.

min
mr

i (t)

∑
{r:vr∈c̃(vi )}

E

[(
D

(vr )

t̃(vi ,vr ,t)
− mr

i (t)
)2 | F
t�t̂j

]

s.t. f (i)(z(i)(1, t), t) = ∑
{r:vr∈c̃(vi )}

mr
i (t)γ

r
i (t),

(5.6)

where

γ r
i (t) :=

∏

l∈η(vi ,vr )

λl(t̃(vi, p̃(vl), t))

λl(t̃(vi, vl, t))
e

∫ t̃ (vi ,vl ,t)

t̃(vi ,p̃(vl ),t)
μl(s)ds

(5.7)

mr
i (t) := f (r)(z(r)(1, t̃(vi, vr , t)), t). (5.8)

We end up with a family of optimization problems with one constraint. The constraint
ensures flux conservation at the inner node vi . The following Lemma provides an
optimality result on how the distribution of the flow at an arbitrary inner node vi

should be arranged according to the latest demand information at t̂j .

Lemma 5.1 Fix an inner node vi . For t ∈ [t̂j , t̂j+1] consider the optimization
problem

min
mr

i (t)

∑

vr∈c̃(vi )

E

[(
D

(vr )

t̃(vi ,vr ,t)
− mr

i (t)
)2 |Ft̂j

]

s.t. f (i)
in (t) := f (i)(z(i)(1, t), t) =

∑

{r:vr∈c̃(vi )}
mr

i (t)γ
r
i (t),
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where t̂j is the time until which information is available. The optimal choices for
mr

i (t), for which vr ∈ c̃(vi), are given by

mr
i (t) = E

[
D

(vr )

t̃(vi ,vr ,t)
|Ft̂j

]

+ γ r
i (t)

∑
vc∈c̃(vi )

(
γ c
i (t)

)2

⎛

⎝f
(i)
in (t) −

∑

vc∈c̃(vi )

γ c
i (t)E

[
D

(vc)

t̃(vi ,vc,t)
|Ft̂j

]
⎞

⎠ .

Proof We set up the Lagrangian function for ξ ∈ R:

L(m
r1
i (t), . . . , m

r|C|
i (t), ξ) =

∑

vrl
∈c̃(vi )

E

[(
D

(vr )

t̃(vi ,vrl
,t)

− m
rl
i (t)

)2 |Ft̂j

]

− ξ

⎛

⎝f
(i)
in (t) −

∑

vrl
∈c̃(vi )

γ
rl
i (t) · m

rl
i (t)

⎞

⎠ ,

where |C| denotes the number of demand nodes in c̃(vi). The partial derivatives of L
are given by

∂L
∂m

rq
i (t)

(
m

r1
i (t), . . . , m

r|C|
i (t), ξ

)
= −2E

[
D

(vrq )

t̃(vi ,vrq ,t)
|Ft̂j

]
+ 2m

rq
i (t) + ξγ

rq
i (t), vrq ∈ c̃(vi ) (5.9)

∂L
∂ξ

(
m

r1
i (t), . . . , m

r|C|
i (t), ξ

)
= f

(i)
in (t) −

∑

vrl
∈c̃(vi )

γ
rl
i (t) · m

rl
i (t). (5.10)

Setting (5.9) equal zero, we obtain the following two expressions

m
rq
i (t) = E

[
D

(vrq )

t̃(vi ,vrq ,t)
|Ft̂j

]
− ξ

2
γ

rq
i (t) (5.11)

ξ

2
= 1

γ
rq
i (t)

(
E

[
D

(vrq )

t̃(vi ,vrq ,t)
|Ft̂j

]
− m

rq
i (t)

)
. (5.12)

Using equation (5.11) for an arbitrary but fixed vr1 ∈ c̃(vi) and plugging in (5.12)
for arbitrary but fixed vr2 ∈ c̃(vi), vr1 �= vr2 , we get

m
r1
i (t)=E

[
D

(vr1 )

t̃(vi ,vr1 ,t)
|Ft̂j

]
− γ

r1
i (t)

γ
r2
i (t)

E

[
D

(vr2 )

t̃(vi ,vr2 ,t)
|Ft̂j

]
+ γ

r1
i (t)

γ
r2
i (t)

m
r2
i (t). (5.13)
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Setting (5.10) equal zero and solving for m
r2
i (t) we get together with plugging in

m
rl
i (t) from (5.11)

γ
r2
i (t)m

r2
i (t) = f

(i)
in (t) −

∑

vrl
∈c̃(vi ),vrl

�=vr2

γ
rl
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)

Solving this equation for m
r2
i (t) yields

m
r2
i (t) = 1

γ
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.

Plugging m
r2
i into (5.13) we get

m
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Next, we collect all terms of m
r1
i (t) on the left side. Additionally, we expand the

factors of the conditional expectations such that they are gathered in one summation
over all demand nodes.
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The optimal inflow from arc i into arc k is then given by

f (k)(z(k)(0, t), t) =
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Using this result, we can directly deduce the values for the optimal distribution
parameter αi,k(t) of the flux directed from arc i to arc k at time t in MS3 by

αi,k(t) =
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.

The property from equation (5.2) that the distribution parameters sum up to 1 still
holds true in MS3. But we face the drawback that we cannot guarantee anymore
that αi,k(t) ∈ [0, 1] especially in environments in which demand is highly volatile
and the inflow is low. Negative distribution parameters lead to a negative inflow into
an arc which represents an incorrect and not meaningful solution. This issue can
be avoided by setting potential negative distribution parameters to 0 and add the
remaining shares proportional to the other outgoing arcs. In the special case in which
the inflow into node vi matches the expected demand scaled by the damping and
density-discontinuity compensation, i.e.,

f
(i)
in (t) =

∑

vr∈c̃(vi )

γ r
i (t)E

[
D

(vr )

t̃(vi ,vr ,t)
|Ft̂j

]
,

we end up with the distribution parameters from MS2.

6 Numerical study

In this section, we present simulation results for the theoretical investigations pre-
sented in Sections 4 and 5 on the optimal injection and the different information
settings. We compare a simulation using the optimal injections and distribution
parameters derived in Section 5 with a scenario in which we solve the deterministi-
cally reformulated optimization problems (3.10) using the Matlab routine fmincon. In
the end, we focus on the comparison between demands given by the Jacobi process
and the Ornstein-Uhlenbeck process.
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We start with the introduction of the numerical discretization for the SDE given
by the constraint (2.1g).

Discretization of (2.1g) The Jacobi process in the form of (3.5) which represents the
constraint (2.1g) can be approximated using an Euler-Maruyama-scheme on a time
grid (tj )j∈N with tj + t0 + j�t for some �t > 0 small enough:

Zj+1 = Zj + �tκ(θ(tj ) − Zj ) + σ
√

�tZj (1 − Zj )Xj ,

where Xj is a realization of a standard normal distributed random variable. Since the
standard normal distribution takes values in an unbounded interval, we need to avoid
values outside the interval [0, 1] for Zj+1. Therefore, we add a truncation into the
Euler-Maruyama scheme such that the process is reflected back into [0, 1]

Zj+1 =

⎧
⎪⎨

⎪⎩

1, Z∗
j+1 ≥ 1

Z∗
j+1, Z∗

j+1 ∈ (0, 1)

0, Z∗
j+1 ≤ 0,

where Z∗
j+1 = Zj + �tκ(θ(tj ) − Zj ) + σ

√
�tZj (1 − Zj )Xj .

Discretization of (2.1b) For the numerical discretization of the network dynamics
from (2.1b), we use a splitting algorithm to separate the flow dynamics and the damp-
ing effects. To solve the flow dynamics on arc l, we use an adaptive upwind scheme
on a time grid (t lj )j∈N with t lj+1 = t lj + �tlj and the spatial discretization (xi)i∈N
where xi = x0 + i�x. Note that the time grid of the stochastic differential equa-
tion and the partial differential equation do not have to coincide. The step sizes are
chosen such that the CFL condition is satisfied with equality in every time step, i.e.,
�tlj
�x

λl(tj ) = 1. Therefore, the temporal grids depend on the velocity functions of the
particular arc:

z̃
(l),j+1
i = z

(l),j
i + �tlj

�x
λl(t

l
j )
(
z
(l),j
i − z

(l),j

i−1

)
.

In a second step, we take into account the damping and calculate z
(l),j+1
i by

z
(l),j+1
i = (1 − �tljμl(tj ))z̃

(l),j+1
i .

The choice of the upwind scheme is reasonable here, since we have linear dynamics
with a fixed direction of movement. However, because of the different temporal step
sizes on the different arcs, there might be a mismatch in the time grids of two con-
secutive arcs. To ensure flux conservation at every node, it is necessary to align the
temporal grids of the discretization. Therefore, we introduce a time grid (t#

j )j∈N with

fixed step size �t# > 0 and t#
j = t0 + j · �t# which is not dependent on the veloc-

ity functions of the arcs. At every node vl , the ingoing flux f
(vl)
in on this time grid is

calculated by

f
(vl)
in (t#

j ) = z
(l),k
end λl(t

l
k)

t lk+1 − t#
j

�tlj

+ z
(l),k+1
end λl(t

(l)
k+1)

t#
j − t

(l)
k

�tlj

, for t#
j ∈ [t lk, t lk+1),
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where z
(l),k
end denotes the density at the last spatial grid point of arc l at t lk .

Analogously, the outgoing fluxes of node vl given by f
(vl)
out have to fulfill

f
(vl )
out (t#

j ) =
∑

m∈J out
vl

z
(m),k
1 λm(t

(m)
k )

t
(m)
k+1 − t#

j

�t# + z
(m),k+1
1 λm(t

(m)
k+1)

t#
j − t

(m)
k

�t# , for t#
j ∈ [tmk , tmk+1).

The values of z
(m),k
1 act as the boundary conditions for arc m ∈ J out

vl
and are

calculated using the distribution parameter αl,m(tmj ) and a weighted temporal average
by

z
(m),k
1 (tmj ) = αl,m(tmj )

(
f

(vl )
out (t#

k )

λm(t#
k )

tmj − t#
k

�t# + f
(vl )
out (t#

k+1)

λm(t#
k+1)

t#
k+1 − tmj

�t#

)
, for tmj ∈ [t#

k , t#
k+1).

The reformulated and deterministic objective function of the optimization problem
in (3.10a) and the optimization problems resulting from MS3 in (5.6), which can be
similarly interpreted as a deterministic optimization problem, are calculated using
the fmincon solver from Matlab R2021a.

To validate whether our numerical study works in expectation, we perform a
Monte Carlo simulation with N = 500 samples and consider a time period from
t0 = 0 to T = 2.5. For the Euler-Maruyama scheme, a temporal step size of
�t = 10−4 is chosen. In the Upwind-scheme for the discretization of the dynamics
on the arcs, we choose �x = 5 · 10−3 and adjust the temporal step size such that the
CFL-condition holds exactly.

As an error measure, we consider a normalized root mean squared error of the
deviation between the actual demand and the supply for any demand node vi . The
integration is performed on the interval starting at the first time an injected unit
reaches the demand node up to the terminal time T and approximated using a rect-
angular rule. For better comparability, we normalize the error such that the time
an injected unit reaches the demand node does not influence the error measure
significantly, i.e.,

normRMSEi (z
(i)(1, ·)) = 1

T − t̃ (v0, vi , t0)

∫ T

t̃(v0,vi ,t0)

√

E

[(
D

(vi )
s − f (i)(z(i)(1, s), s)

)2 |Ft̂j

]
ds.

6.1 Simulation results for a 1-2 network

We start with the presentation of results for a 1-2-network shown in Fig. 5. Even
though this seems to be a very small example, the main characteristics are observable.

Deterministic demand For validity purposes, we define a benchmark framework in
which we do not consider any stochasticity in the demand, i.e., σ (vi ) = 0. Further-
more, we assume the velocities on the network arcs to be independent of time and
constant all over the network. We investigate a setting without any damping term
(μ1

i (t) = 0) and compare it to a setting with constant and time-independent damping
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(μ2
i (t) = 0.4) in the supply network. The choices of the parameters can be found in

Table 1.
Figure 6 shows the input control at the source node v0 for the case with and with-

out damping when we solve the optimal control problem (3.10) using fmincon. A
simulation with the optimal inflow and distribution parameters from Section 5 leads
to almost exactly the same result. We also present the comparison of supply in all
the model settings (MS1, MS2, MS3) and demand at the two demand nodes v2 and
v3. Since the demand is purely deterministic in this setup, supply matches demand
almost perfectly in all three cases. Due to the deterministic setting, the demand evo-
lution is known in advance and no further improvement can be achieved when adding
demand updates. We do not observe any difference in supply comparing the damped
system with the system in which there is no damping; therefore, we present only one
figure for supply and demand at each node. This is an expected effect since the loss
that occurs due to the damping is known in advance and taken into account when
we determine the control. We will observe this pattern not only in this simple deter-
ministic setting but throughout the whole section. The effect of the damping can be
recognized in the two different controls. In the damped scenario, the control has to be
larger than in the undamped case. Note that the controls of MS2 and MS3 coincide.

We compare the normalized root mean squared errors in a Monte Carlo simu-
lation with N = 500 runs of the different information and update scenarios using
the optimal conditions and fmincon. For MS2 and MS3, we choose update intervals
of �tup = 5

14 which correspond to 6 updates. The normalized root mean squared
errors with superscript 1 and superscript 2 correspond to the undamped and damped
scenario, respectively. Since for a deterministic demand process, all three levels of
information coincide, the error measures look the same for all cases, i.e., for the
fmincon study normRMSE1

2 = normRMSE2
2 = 0.795 · 10−4 and normRMSE1

3 =
normRMSE2

3 = 0.155 · 10−4. The deviations from these error measures for using the
calculated optimal values are negligible.

Stochastic demand and non-constant velocities and damping As a second example
we discuss a scenario, where on the one hand we have highly fluctuating demand and
on the other hand the dynamics which differ from arc to arc may be dependent on
the time. Table 2 shows the particular choices of the parameters. Similar to the first
example, we distinguish between a scenario with and without damping. For MS2 and
MS3, we choose update intervals of �tup = 5

14 which correspond to 6 updates.

Table 1 Parameter choices for the 1-2 network in the first example

Arc λi(t) μ1
i (t) μ2

i (t) Node θ(vi )(t) κ(vi ) σ (vi ) (d0)
(vi )

1 14 0 0.4 - - - - -

2 14 0 0.4 v2 0.45 + 0.2 sin(tπ + 1) 0 0 0.4

3 14 0 0.4 v3 0.5 + 0.3 sin(tπ − 0.5) 0 0 0.6
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Fig. 6 Control at the source node v0 for the undamped scenario (left) and the damped scenario (right) and
the supply in the three different settings plotted together with the actual demand from the first example

Figure 7 shows one particular realization of the demand process with the cor-
responding controls and supplies at the demand nodes. Again, we provide the
illustrations for the study using fmincon. The results for the scenario with optimal
parameters do not differ significantly. Comparing the controls we observe that they
are generally larger in the setting with damping. Additionally, we observe jumps in
the controls of MS2 which correspond to new demand information. The demand at
node v2 generally evolves lower than in mean and approaches 0 occasionally. There-
fore, the supply given by MS2 and MS3 fit demand much better than supply from the
unupdated setting MS1.

To validate whether the update strategies provide smaller errors, we again perform
a Monte Carlo simulation of N = 500 runs and compare the normalized RMSE using
fmincon and the optimal values in Tables 3 and 4.

Table 2 Parameter choices for the 1-2 network in the second example

Arc λi(t) μ1
i (t) μ2

i (t) Node θ(vi )(t) κ(vi ) σ (vi ) (d0)
(vi )

1 14 + sin(2πt) 0 0.4 + 0.2 sin(πt) - - - - -

2 12 + sin(2πt) 0 0.5 + 0.2 sin(πt) v2 0.45 + 0.2 sin(tπ + 1) 2 9
4 0.4

3 12 + sin(4πt) 0 0.5 + 0.3 sin(πt) v3 0.5 + 0.3 sin(tπ − 0.5) 1 3
2 0.6
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Fig. 7 Control at the source node v0 for the undamped scenario (left) and the damped scenario (right) and
the supply in the three different settings plotted together with the actual demand from the second example

The error of the damped and undamped scenarios coincide and we observe, as
expected, that the error reduces when more information is taken into account.

We remark that the run-time for the implementation is mainly driven by the time
that is required to solve the optimization problems using fmincon. For example, the
computation for a sample of N = 100 runs for the 1-2 network in the case of MS1
and MS2 takes about 220 min on a standard desktop PC with a CPU of 3.19 Ghz
using the above chosen parameters. The calculation for MS3 scales approximately
by factor 2 due to the additional optimization problem that has to be solved at node
v1. A simulation using the optimal parameters takes depending on the model setting
between 20 and 40 s.

Table 3 normRMSE for the different Model Settings (MS) in the 1-2-network in example 2 using fmincon
for the optimization problems

normRMSE1
2 normRMSE1

3 normRMSE2
2 normRMSE2

3

MS1 0.3635 0.3561 0.3635 0.3561

MS2 0.3175 0.2612 0.3175 0.2612

MS3 0.3016 0.2525 0.3016 0.2525
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Table 4 normRMSE for the different Model Settings (MS) in the 1-2-network in example 2 using the
calculated optimal values for the inflow and the distribution parameters

normRMSE1
2 normRMSE1

3 normRMSE2
2 normRMSE2

3

MS1 0.3579 0.3488 0.3579 0.3488

MS2 0.3155 0.2614 0.3155 0.2614

MS3 0.2928 0.2517 0.2928 0.2517

In Table 5, we show the evolution of the error reduction for varying the number of
updates. Since this has no influence on MS1, we only consider MS2 and MS3. The
tables show the reduction of the errors compared to a setting without updates. It can
be observed that the errors are significantly reduced using more and more updates.
But since the increases in the reduction get smaller when doubling, the number of
updates at a high level, it seems reasonable to assume that there is some base error
that cannot be undercut.

6.2 Comparison to an Ornstein-Uhlenbeck demand process

Next, we perform a demand simulation using the Ornstein-Uhlenbeck process intro-
duced in (3.2) and compare it with the results we obtained from the Jacobi demand.
The Ornstein-Uhlenbeck process can be also discretized by an Euler Maruyama-
scheme on a time grid (tj )j∈N with tj + t0 + j�t for some �t > 0 small
enough:

Ẑj+1 = Ẑj + �tκ̂(θ̂(tj ) − Ẑj ) + σ̂Xj ,

where Xj is a realization of standard normal distributed random variable.

Table 5 Error reduction for normRMSE at v2 and v3 compared to the setting without updates

v2 MS2 MS3 v3 MS2 MS3

No update 0.3579 0.3579 No update 0.3488 0.3488

1 update 2.71% 3.16% 1 update 7.45% 8.20%

2 updates 4.86% 5.81% 2 updates 12.79% 14.28%

3 updates 6.68% 8.19% 3 updates 17.09% 18.98%

6 updates 11.85% 14.47% 6 updates 25.06% 27.78%

12 updates 17.83% 22.24% 12 updates 31.22% 34.86%

24 updates 22.10% 28.28% 24 updates 36.87% 41.08%

48 updates 24.98% 32.33% 48 updates 40.02% 44.47%

96 updates 26.71% 34.81% 96 updates 41.89% 46.39%

192 updates 27.71% 36.18% 192 updates 42.98% 47.50%

384 updates 28.25% 36.94% 384 updates 43.46% 48.02%
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To compare the Jacobi demand with a demand generated from the Ornstein-
Uhlenbeck process, we assume the same parameters for κ, θ and initial demand as
in Table 2. The stochastic perturbation size in the Jacobi process depends on σ as
well as the state of the process itself and cannot be transferred analogously since
the stochastic perturbation in the Ornstein-Uhlenbeck process is exclusively given by
a factor σ̂ . We use σ̂ (v2) = 0.14, σ̂ (v3) = 0.1 for the Ornstein-Uhlenbeck process
which represents a comparable choice for the intensity of the stochastic fluctuations.

For the same realizations in the probability space as for the simulation that cor-
responds to Figs. 7 and 8 shows the Ornstein-Uhlenbeck demand process with the
corresponding controls and supplies. In contrast to before, at node v2, negative
demand occurs around t = 1.5, and even negative supplies around t = 2, due to
the unboundedness of the Ornstein-Uhlenbeck process. This effect does not have a
natural interpretation and shows the drawbacks that may arise using the Ornstein-
Uhlenbeck process as a demand process. Since we work with the same realizations
in the probability space as in the previous example for the Jacobi process, we can
compare both demands and observe that the Jacobi process also shows low demands
in this area, but due to its characteristics always stays non-negative.
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Fig. 8 Control at the source node v0 for the undamped scenario (left) and the damped scenario (right) and
the supply in the three different settings plotted together with the actual demand from the third example
using an Ornstein-Uhlenbeck process
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7 Conclusion

In this work, we have derived an explicit optimal control strategy, depending on the
level of information, for supply networks with uncertain demand. The properties of
the Jacobi process, in contrast to a demand governed by an Ornstein-Uhlenbeck pro-
cess, are used to guarantee a reasonable interpretation of demand and supply in the
case of supply networks. An explicit representation of the optimal input and the distri-
bution parameters allows for a suitable and efficient numerical treatment. Numerical
examples illustrate the main characteristics of the optimal control problem.

Future work includes the consideration of transport networks with nonlinear
dynamics and uncertain demand using the Lax-Hopf technique [27].

Appendix

We present the detailed calculation of the second moment for a Jacobi process with
time-varying mean reversion level given by the SDE

dZt = κ(θ(t) − Zt)dt + σ
√

Zt(1 − Zt)dWt . (A.1)

Lemma A.1 Let (θ̄n)n∈N be a sequence of step functions converging uniformly to a
function θ ∈ C1([t0, T ]). Additionally, let lim

n→∞tn = T . Then, the conditional second

moment for the solution of (A.1) is given by

E[Z2
T |Zt0 = z0] =

∫ T

t0

(2κθ(s) + σ 2)

(
z0e

−κ(s−t0) + κ

∫ s

t0

θ(r)e−κ(s−r)dr

)
e−(2κ+σ 2)(T −s)ds

+ z2
0e

−(2κ+σ 2)(T −t0).

Proof For a constant mean reversion level, the conditional second moment is pre-
sented in equation (3.4). The idea of the proof is to use this expression to find a
representation of the second moment for piecewise constant mean reversion levels
and then use a uniform limit to show the result for continuously differentiable func-
tions θ . First, assume that for t0 < t1 < . . . < tn on a bounded interval [t0, tn], θ is a
step-function, i.e.,

θ(t) =
n−1∑

i=0

θi1[ti ,ti+1)(t) (A.2)

for θi ∈ R. For n = 1, we obtain the the conditional second moment as in (3.4).
We use an induction to calculate the conditional second moment for an arbitrary
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n+1 ∈ N assuming that the conditional second moment is known for a step-function
with n steps is given by

E[Z2
tn
|Zt0 = z0] =

n−1∑

i=0

[
(2κθi + σ 2)θi

2κ + σ 2
e−(2κ+σ 2)(tn−ti+1) + κθi (2κθi + σ 2)

(2κ + σ 2)(κ + σ 2)
e−(2κ+σ 2)(tn−ti )

]

+
n−1∑

i=1

[
2κθi + σ 2

κ + σ 2

( i∑

j=1

(θj−1 − θj )e
−κ(ti+1−tj )−(2κ+σ 2)(tn−ti+1) − θi−1e

−(2κ+σ 2)(tn−ti )

−
i−1∑

j=1

(θj−1 − θj )e
−κ(ti−tj )−(2κ+σ 2)(tn−ti )

)]

+
n−1∑

i=1

[
2κθi + σ 2

κ + σ 2
(z0 − θ0)

(
e−κ(ti+1−t0)−(2κ+σ 2)(tn−ti+1) − e−κ(ti−t0)−(2κ+σ 2)(tn−ti )

) ]

+ 2κθ0 + σ 2

κ + σ 2

(
(z0−θ0)e

−κ(t1−t0)−(2κ+σ 2)(tn−t1)−z0e
−(2κ+σ 2)(tn−t0)

)
+z2

0e
−(2κ+σ 2)(tn−t0). (A.3)

Then the induction step to n + 1 reads

E

[
Z2

tn+1
|Zt0 = z0

]
= E

[
Z2

tn+1
− Z2

tn
+ Z2

tn
|Zt0 = z0

]
= E

[
E

[
Z2

tn+1
|Ztn = Zn

]
|Zt0 = z0

]

= E

[
(2κθn + σ 2)θn

2κ + σ 2
+ 2κθn + σ 2

κ + σ 2
(Zn − θn)e

−κ(tn+1−tn)

+
(

Z2
n − 2κθn + σ 2

κ + σ 2
Zn + κθn(2κθn + σ 2)

(2κ + σ 2)(κ + σ 2)

)
e−(2κ+σ 2)(tn+1−tn)

∣∣∣Zt0 = z0

]

= (2κθn + σ 2)θn

2κ + σ 2
+ 2κθn + σ 2

κ + σ 2

( n∑

j=1

(θj−1 − θj )e
−κ(tn+1−tj )

)

− 2κθn + σ 2

κ + σ 2

(
θn−1e

−(2κ+σ 2)(tn+1−tn) +
n−1∑

j=1

(θj−1 − θj )e
−κ(tn−tj )−(2κ+σ 2)(tn+1−tn)

)

+ κθn(2κθn + σ 2)

(2κ + σ)(κ + σ 2)
e−(2κ+σ 2)(tn+1−tn) + 2κθn + σ 2

κ + σ 2 (z0 − θ0)
(
e−κ(tn+1−t0) − e−κ(tn−t0)

)

+
[ n−1∑

i=0

[
(2κθi + σ 2)θi

2κ + σ 2
e−(2κ+σ 2)(tn−ti+1) + κθi(2κθi + σ 2)

(2κ + σ 2)(κ + σ 2)
e−(2κ+σ 2)(tn−ti )

]

+
n−1∑

i=1

[
2κθi + σ 2

κ + σ 2

( i∑

j=1

(θj−1 − θj )e
−κ(ti+1−tj )−(2κ+σ 2)(tn−ti+1)

)

− 2κθi + σ 2

κ + σ 2

(
θi−1e

−(2κ+σ 2)(tn−ti ) +
i−1∑

j=1

(θj−1 − θj )e
−κ(ti−tj )−(2κ+σ 2)(tn−ti )

)]

+
n−1∑

i=1

[
2κθi + σ 2

κ + σ 2

(
(z0 − θ0)

(
e−κ(ti+1−t0)−(2κ+σ 2)(tn−ti+1) − e−κ(ti−t0)−(2κ+σ 2)(tn−ti )

))]

+ 2κθ0 + σ 2

κ + σ 2

(
(z0 − θ0)e

−κ(t1−t0)−(2κ+σ 2)(tn−t1) − z0e
−(2κ+σ 2)(tn−t0)

)

+ z2
0e

−(2κ+σ 2)(tn−t0)

]
e−(2κ+σ 2)(tn+1−tn).
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Summarizing, we obtain the proposed equation (A.3). As a last step, we calculate
the limit for n → ∞.

E[Z2
T |Zt0 = z0]

= lim
n→∞

n−1∑

i=0

[
(2κθi + σ 2)θi

2κ + σ 2
e−(2κ+σ 2)(tn−ti+1) + κθi (2κθi + σ 2)

(2κ + σ 2)(κ + σ 2)
e−(2κ+σ 2)(tn−ti )

]

+
n−1∑

i=1

[
2κθi + σ 2

κ + σ 2

( i∑

j=1

(θj−1 − θj )e
−κ(ti+1−tj )−(2κ+σ 2)(tn−ti+1) − θi−1e

−(2κ+σ 2)(tn−ti )

−
i−1∑

j=1

(θj−1 − θj )e
−κ(ti−tj )−(2κ+σ 2)(tn−ti )

)]

+
n−1∑

i=1

[
2κθi + σ 2

κ + σ 2
(z0 − θ0)

(
e−κ(ti+1−t0)−(2κ+σ 2)(tn−ti+1) − e−κ(ti−t0)−(2κ+σ 2)(tn−ti )

) ]

+ 2κθ0 + σ 2

κ + σ 2

(
(z0 − θ0)e

−κ(t1−t0)−(2κ+σ 2)(tn−t1) − z0e
−(2κ+σ 2)(tn−t0)

)

+ z2
0e

−(2κ+σ 2)(tn−t0)

= (2κθ(t0) + σ 2)θ(t0)

2κ + σ 2

(
1 + κ

κ + σ 2

)
e−(2κ+σ 2)(T −t0) − 2κθ(t0) + σ 2

κ + σ 2
θ(t0)e

−(2κ+σ 2)(T −t0)

+ lim
n→∞

[ n−1∑

i=1

[
2κθi + σ 2

(2κ + σ 2)(κ + σ 2)

(
(κ + σ 2)

(
θie

−(2κ+σ 2)(tn−ti+1) − θi−1e
−(2κ+σ 2)(tn−ti )

)

+ κ (θi − θi−1) e−(2κ+σ 2)(tn−ti )

)]
+

n−1∑

i=1

2κθi + σ 2

κ + σ 2
(θi−1 − θi )e

−(2κ+σ 2)(tn−ti+1)

+
n−1∑

i=1

2κθi + σ 2

κ + σ 2

i−1∑

j=1

(θj−1 − θj )
(
e−κ(ti+1−tj )−(2κ+σ 2)(tn−ti+1) − e−κ(ti−tj )−(2κ+σ 2)(tn−ti )

)

+
n−1∑

i=1

[
2κθi + σ 2

κ + σ 2
(z0 − θ0)

(
e−κ(ti+1−t0)−(2κ+σ 2)(tn−ti+1) − e−κ(ti−t0)−(2κ+σ 2)(tn−ti )

) ]]

+ z2
0e

−(2κ+σ 2)(T −t0)

= (2κθ(t0) + σ 2)θ(t0)

κ + σ 2
e−(2κ+σ 2)(T −t0) − 2κθ(t0) + σ 2

κ + σ 2
θ(t0)e

−(2κ+σ 2)(T −t0)

+
∫ T

t0

2κθ(s) + σ 2

(2κ + σ 2)(κ + σ 2)

(
(2κ + σ 2)

(
θ ′(s) + (2κ + σ 2)θ(s)

))
e−(2κ+σ 2)(T −s)ds

+
∫ T

t0

2κθ(s) + σ 2

κ + σ 2

(
−θ ′(s) +

∫ s

t0

−θ ′(r)(κ + σ 2)e−κ(s−r)dr

)
e−(2κ+σ 2)(T −s)ds

+
∫ T

t0

(2κθ(s) + σ 2)(z0 − θ(t0))e
−κ(s−t0)−(2κ+σ 2)(T −s)ds + z2

0e
−(2κ+σ 2)(T −t0)

=
∫ T

t0

(2κθ(s) + σ 2)
(
θ(s) −

∫ s

t0

θ ′(r)e−κ(s−r)dr + (z0 − θ(t0))e
−κ(s−t0)

)
e−(2κ+σ 2)(T −s)ds

+ z2
0e

−(2κ+σ 2)(T −t0)

=
∫ T

t0

(2κθ(s) + σ 2)

(
z0e

−κ(s−t0) + κ

∫ s

t0

θ(r)e−κ(s−r)dr

)
e−(2κ+σ 2)(T −s)ds

+ z2
0e

−(2κ+σ 2)(T −t0)
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