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Abstract

This thesis deals with the weak and strong numerical approximation of so-called stochas-
tic volatility models. In particular, the focus is on the log-Heston model and its asso-
ciated Fuler methods, for which there have been only a few convergence results with a
polynomial rate in the literature so far. The biggest challenge here is the approximation
of the CIR process, which models the stochastic variance and whose diffusion coefficient
is not Lipschitz continuous.

We first study the weak order of convergence of two Fuler methods that keep the ap-
proximation of the CIR process positive. When the Feller index v of the CIR process is
greater than one, weak convergence of order one is obtained as under standard assump-
tions. For v < 1 we obtain a weak order of convergence of v — ¢ for € > 0 arbitrarily
small. For the L'-error for a large class of Euler methods, we can recover the order 1/2
obtained under standard assumptions under the condition v > 1. Moreover, we prove
that this is already the optimal L'-convergence order for the log-Heston model. Finally,
in the last part of this dissertation we deal with the optimal L? approximation of more
general stochastic volatility models.

Zusammenfassung

Diese Dissertation befasst sich mit der schwachen und starken numerischen Approxi-
mation von sogenannten Stochastischen Volatilitdtsmodellen. Im Fokus stehen hierbei
konkret das log-Heston-Modell und die zugehorigen Euler-Verfahren, fiir die es in der
Literatur bisher nur weniger Konvergenzresultate mit polynomieller Rate gab. Die grof-
te Herausforderung stellt hierbei die Approximation des CIR-Prozesses dar, welcher die
stochastische Varianz modelliert und dessen Diffusionskoeffizient nicht Lipschitz-stetig
ist.

Wir untersuchen zunéchst die schwache Konvergenzordnung von zwei Euler-Verfahren,
die die Approximation des CIR-Prozesses positiv halten. Wenn der Feller-Index v des
CIR-Prozesses grofer als eins ist, so ergibt sich eine schwache Konvergenz der Ordnung
eins wie unter Standardannahmen. Fiir v < 1 erhalten wir eine schwache Ordnung von
v — ¢ fiir € > 0 beliebig klein. Fiir den L!-Fehler kénnen wir fiir eine grofe Klasse von
Euler-Verfahren die Ordnung 1/2, die unter Standardannahmen erreicht wird, unter der
Bedingung v > 1 wiederherstellen. Zudem beweisen wir, dass dies bereits die optimale
L'-Konvergenzrate fiir das log-Heston Modell ist. Im letzten Teil dieser Dissertation
beschiiftigen wir uns schlieklich mit der optimalen L?-Approximation von allgemeineren
Stochastischen Volatilitdtsmodellen.



Acknowledgments

This thesis was written during my time as a researcher at the University of Mannheim
and as a member of the DFG Research Training Group 1953 "Statistical Modeling of
Complex Systems and Processes".

I started my PhD studies during the first Covid-19 "lockdown" and the pandemic had
a major impact on the following three years. Under these difficult circumstances I was
greatly supported by my supervisor Prof. Dr. Andreas Neuenkirch. I am deeply grateful
to him for his excellent guidance, advice and the extremely valuable lessons in academic
writing and presenting.

I am thankful to Prof. Dr. Andreas Rofsler and Dr. Larisa Yaroslavtseva for being the
co-referees of this thesis and the examination committee for kindly agreeing to evaluate

my thesis defense.

I am very thankful for my colleagues at the University of Mannheim, especially Alex,
André and Thomas, who made my office days extremely enjoyable.

Last but not least I would like to thank my family and my partner for their enormous
support and for eliminating my insecurities.

ii



Contents

1__Introductionl 1
LI Outlind . . . . . ..o 1
.................................... 2

2_The Heston Modell 3
2.1 The CIR Processl . . . . .. . . . . .. .. . . ... 4
22 The CEV Procesd. . . . . .. .. . .. .. .. ... ... 8
23 The Price Processl. . . . . . . .. ... o oo 8

I3 Simulation Algorithms for the log-Heston Model 11
[3.1 (Almost) Exact Simulation Methods| . . . . ... ... ... ... .. 12
3.2  Semi-Fxact Simulation Methodsl. . . . . . ... ..o 0oL 13
3.3 Time-Discrete Simulation Methodsf . . . . . . . .. ..o 14
3.4  Monte Carlo Methodsl . . . . . .. .. ... ... 0. 17

|4 Properties of Explicit Euler Schemes for the log-Heston Modell 21
4.1  FEuler Schemes - Case Il . . . . . .. ... ... ... ... ........ 21
42 Fuler Schemes - Case Il . . . . . ... ... ... ... ... ..... 24
4.3 The Euler Scheme for the Log-Price Process| . . . . . . . ... ... .. 35

5 Regularity Results for the Kolmogorov backward PDE]| 37

6 Weak Convergence] 41
6.1 Semi-Fxact Discretization Schemes . . . . . . . .. ... ... 0. 42
6.2 Weak Convergence Order of two Kuler-Type Discretization Schemes|. . . 44
6.3 Proof of TheoremI6.3l. . . . . .. ... ... ... ... ... ...... 45
6.4 Weak Convergence Order of a Milstein-Type |

[ Discretizationl . . . . . . . . . ... 52
6.5  An Overview of Weak Convergence Results] . . . . ... ... ... .. 56

[7 L'-Approximation of the Log-Heston SDE: Upper Bounds| 57
[T Previous Resultsl . . . . . .. . . . ... . ... 58
[(.2 Preliminaries . .. ... ... ... ... ... ... . ... 61

iii



7.3 L'-approximation of the CIR process| . . . . . . . . . ... ... ..... 62

7.4 L'-Approximation of the Heston Model| . . . . ... ... ... ..... 74
[7.5  Summary| . . . . . . . . e e 77
[8 L'-Approximation of the Log-Heston SDE: Lower Bounds| 79
8.1 Proof of Theorem I8 1. . . . . . . . . . ... ... ... ... ... ... 80
9 _Numerical Results| 89
9.1 Weak Convergence| . . . . . . . . . . . .. ... ... 89
9.2 Strong Convergence| . . . . . . . . . ..o 94
[10 Optimal L°-Approximation of Stochastic Volatility Models| 101
[0I Tower Boundl . . . . . ... ... ... ... .. 102
110.2 Proof of Theoreml10.3 . . . . . . . . . . .. ... ... ... ....... 103
[10.3 Upper Bound| . . . . . ... ... . 118
[10.4 Proof of Proposition [10.12] . . . . . . . . .. ... ... ... .. ... .. 120
[10.5 Application to the Generalized Log-Heston Model|. . . . . . .. .. . .. 126
(11 Conclusion| 133
|List of figures| 135
G Ftables 137

v



Chapter 1

Introduction

This thesis deals with the numerical approximation of the Heston model from [36]. Its
dynamics are described by the following two stochastic differential equations (SDEs)
which typically model an asset price S and its variance V:

dS, = rSidt + \/V;S, (det V11— deBt),

dV; = k(0 — Vy)dt + o/ VydW.

The Heston model is an extension of the famous Black-Scholes model. The latter as-
sumed the variance (or respectively the volatility which is its square root) to be deter-
ministic. In contrast to this, the Heston model falls into the class of stochastic volatility
models because the variance is modeled here as a stochastic process.

Although a very classical model in mathematical finance, even very simple time-discrete
simulation methods for the Heston model are not well understood. The main reason for
this is the second SDE. Its diffusion coefficient is not globally Lipschitz continuous and
therefore standard textbook results cannot be applied. Our main focus is on the analysis
of explicit Euler methods which are arguably the simplest time-discrete simulations
schemes for SDEs. Despite this fact, weak and strong convergence results for Euler
methods in the context of the Heston model are rare and often do not match observations
from numerical experiments. As a consequence, Euler schemes are used in practice
without theoretical guarantees. In this thesis, we try to close some of these gaps. Apart
from the analysis of explicit Euler methods, we also provide new results for the implicit
Milstein method and we present new results concerning the optimal approximation of
more general stochastic volatility models.

1.1 Outline

This thesis is structured as follows: In Chapter 2] we introduce the Heston model and its
properties. Thereafter, we present some popular simulation algorithms for it in Chapter
Chapter [ lays the groundwork for our analysis of explicit Euler schemes. Here,



their properties in the context of the Heston model are analyzed. Chapter [5] establishes
the connection between the solution of the log-Heston SDE and its associated partial
differential equation (PDE). Our first main result is then carried out in Chapter [f| where
we analyze the weak convergence behavior of Euler and Milstein-type discretizations of
the log-Heston model. Chapters [7| and |8 examine upper and lower bounds for its L'-
approximation. We support our theoretical results by numerical simulations carried out
in Chapter[0] Finally, we turn to the analysis of more general stochastic volatility models
in Chapter Here, we deal with the question of their optimal L?-approximation. We
summarize our findings in the last chapter.

1.2 Notation

For a multi-index | = (I1,...,13) € N%, we define |I| = Z?zl l; and for y € RY, we define
8:2 = 83611 e 81%. Moreover, we denote by |y| the standard Euclidean norm in R?. Let
D C R? be a domain and ¢ € N. CY(D;R) is the set of all functions on D which are
g-times continuously differentiable. Cgol (D;R) is the set of functions g € C'(D; R) such
that there exist C,a > 0 for which

0Lg(y)l < C(L+yl*) yeD, || <q.

We set Czol 7 (D;R) the set of functions v € CIEZ{QJ’Q ([0,T) x D;R) such that there exist
C,a > 0 for which

sup |07 dyu(t, y)| < C(1L+1yl") y €D, 2k +[| <q.
t<T

For € € (0,1), we denote by C7t¢ (D; R) the set of all functions from C? (D;R) in which
partial derivatives of order ¢ are Holder-continuous of order e, and CJ™° (D;R) is the
set of all functions from C%*¢ (D;R) which have compact support.

We use the notation 2% to denote the positive part of z: 7 = max{z, 0}.

Constants, which depend only on the parameters of the respective SDE such as T', xg,
v, K, 0, 0 and p in the case of the Heston model, will be denoted in the following by
C, regardless of their value. Other dependencies will be denoted by subscripts, i.e. C, g
means that this constant depends additionally on the function h and the parameter (.
Moreover, the value of all constants can change from line to line.

Throughout almost all of the chapters we require the following well-known Burkholder-
Davis-Gundy (BDG) inequalities, see e.g. Theorem 3.28 in Chapter III of [49).

Proposition 1.1. Let M = (M;)icpo,1] be a continuous martingale and o > 0. Then,
there exist constants cq,Cy > 0 such that

ca E[(M)F] <E [ sup [M,[**| < CLE[(M){],  t€[0,T].

u€[0,t]




Chapter 2

The Heston Model

The Heston model was proposed by Steven L. Heston in 1993 [36]. It is given by the
SDEs

S, = rS,dt + \/V;S, (det V1o deBt>, So = s,
AV, = k(0 — V,)dt + o/ VidWy, Vo = v,

with k,0,0 > 0, r € R, p € [-1,1], T > 0 and independent one-dimensional Brownian
motions W = (Wi)sco,11, B = (Bt)iejo,r] Which are defined on a filtered probability

space (Q, F, (]:t)te[O,T] ,IP’) and the filtration satisfies the usual conditions. Furthermore,

the initial values s,v > 0 are assumed to be deterministic. Here (St)te[o,T} models
the price of an asset and (W)te[O,T] its variance, which is given by the so called Cox—
Ingersoll-Ross (CIR) process. Usually, the log-Heston model instead of the Heston
model is considered in numerical practice. We therefore set X; := log(S;). This yields
the SDEs

dX; = <7« - ;Vt) dt + ﬁ(det + ﬂdBt)’ Xo=2,

dVy = k(0 — V;)dt + o/ VidWy, Vo =,

by a simple application of the Ito formula. Note that the square root coefficient is not
globally Lipschitz continuous. Thus, the (log-)Heston SDE does not satisfy the standard
assumptions for the numerical analysis of SDEs.

The Heston model is a natural extension of the celebrated Black-Scholes model because
it considers a stochastic volatility rather than a constant one. As a consequence, the
Heston model takes the asymmetry and excess kurtosis of financial asset returns into
account which are typically observed in real market data. The analysis of the Heston
model is not only of theoretical relevance. With the rise of volatility trading in financial
markets, stochastic volatility models are becoming more important.



2.1 The CIR Process

The CIR process is the solution to the following SDE:
dVy = k(0 — Vi)dt + o/ VidWr, Vo=v>0. (2.2)

It was first used by Cox, Ingersoll and Ross [20] to model short term interest rates. In
this thesis, we assume the parameters to be strictly positive. They can be interpreted
as follows: 6 is the long run mean of the process, k is its speed of mean reversion and o
is its volatility. Since the coefficients of SDE are continuous and of linear growth,
a weak solution exists (e.g. Theorem 2.4 in [44]). By the Yamada-Watanabe condition
(e.g. Theorem IV 3.2 in |44]), pathwise uniqueness holds. Since the existence of a weak
solution and pathwise uniqueness imply the existence of a strong solution (e.g. Chapter
IX, Theorem 1.7 in [68]), we know that SDE has a unique strong solution. The
CIR process has an important relation with the squared Bessel process which is the
unique strong solution of

dZt = ddt + 2\/ thVVt7 Z(] =2>0

where we assume § > 0. From e.g. Proposition 6.3.1.1 in |45], we know that the CIR
process can be expressed as a squared Bessel process with § = 40%9 degrees of freedom
and the following space-time changes:

_ —Kt
V}—e Z%(e“t—l)'
Groundbreaking work to understand the dynamics of squared Bessel processes was al-

ready done in the 1950s when Feller (e.g. in |27]) studied the parabolic PDE
u = (axu)ze — ((bx + c)u),, , 0<z<o0. (2.3)

Here, a, b, c are constants and Feller only assumed a > 0. Equation can be seen
as a Kolmogorov forward (or Fokker-Planck) equation for an SDE with drift coefficient
bz + ¢ and diffusion coefficient v/2az. For given initial conditions, Feller showed that
the only norm preserving solution of (that leads to a transition density of the
associated stochastic process) has to have ¢ > 0 and a flux zero at the origin, i.e.

iig(l) — ((azu(t,x)), — (bx + c)u(t,x)) = 0.

This means that a reflecting barrier condition has to be imposed. For ¢ > a, this solution
vanishes at © = 0. Furthermore, Feller derived the Laplace transform of the transition

density. For the squared Bessel process we obtain a = 2, b = 0 and ¢ = § and for the

CIR process, we have a = 202, b = —k and ¢ = k6. Because of Feller’s work, the ratio

2
s = 20—“29 is often called Feller index in the context of the CIR process.

To exactly determine the behavior of the squared Bessel process at 0 and oo, we need
to distinguish the cases 0 < < 2, § =2 and § > 2 and we set

T=inf{t>0:2 ¢ (0,00)}
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to be the exit time from (0,00). For all choices of § the infinite point co is a natural
boundary, it cannot be reached in finite time (see e.g. [50] Chapter 15.6). For 0 < § < 2

we have P (T < oo) =1 and

PllimZ, =0)=P| sup Zy < | =1
2 0<t<T

by applying Theorem 5.29 and Proposition 5.22 from [49]|. The point 0 is instantaneously
reflecting (see Chapter XI, Proposition (1.5) in [68]). This means that the time spent
by Z in the point 0 has Lebesgue measure 0. For § = 2, we obtain

P(T:oo) :]P)<0§S;1<pooZt :oo> :]P’<0<1g1<fooZt:0> =1

by Proposition 5.22 from [49]. Finally for § > 2, we have P (T = oo) = 1 by Theorem
5.29 from [49| and

P(Iim Zt:oo> —IP( sup Zt>0> =1
t—o0 0<t<oco

by Proposition 5.22 from [49]. From this, we can deduce the following well-known
proposition for the CIR process:

Proposition 2.1. We denote the Feller index by

_

|28 B}

g

For v > 1, the solution of the CIR process is strictly positive, i.e.
P(V; € (0,00),Yt > 0) = 1.

For 0 <v <1, we have
P(V; € [0,00),¥t > 0) =1,

the origin is attainable but instantaneously reflecting.

The Feller index also plays an important role when we look at the moments of the CIR
process.

Proposition 2.2. The CIR process has bounded moments, it holds that

E[sup VPl < o0

te[0,7

forallp>1 and

sup E[VP] < oo
t€[0,T]

forallp > —v.



Proof. The proof of the second statement can be found in Section 3 of [24] where the
results of [42| are used. To show the first assertion, we use Jensen’s inequality and the
BDG inequality. Let p > 2, then
P
S

t
sup / k(0 — Vs)ds sup
] t€[0,T]

[ )] vy )

<G, <1+ sup E[VP]+ sup ]E[Vsp/z]>

¢ ¢
E v+//<:(6?—V5)ds+a
0 0

sup V¥
te[0,T7]

te(0,7

—E[sup

P
+E

<Gy (vp—i-E

{l)

<Cp<vp+Tp+]E +E

s€[0,T) s€[0,T)
<Gy

by the second statement. The case p € [1,2) follows by the Lyapunov inequality. O

Furthermore, we have the following LP-result for the increments of the CIR process.

Lemma 2.3. For all p > 1 there exist a constant Cp, > 0, such that

sup E

|:|Vt — VilP
0<s<t<T

rap] <

Proof. First, let p > 2. Then we have with the BDG and the Holder inequality
t
k(O—V,)du+o

¢ W—_SE/E ] T [ . ]
A Joee f viean)

or—1 <
t t £
t—slP+t—sPt | E[VPldu+E Vi, du
‘p/2 u
t P
p _ 2
slp/2 <|t S|P+ |t — s[5~ LE[VJ@)

ST
<G, (172 +1)

S Cp7

k(0 —Vy)du

\t — s‘p/2

)

where we used Proposition The case p € [1,2) then follows by the Lyapunov
inequality. O
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As already mentioned, Feller derived the Laplace transform of the transition density
which is the solution of (2.3). By inverting this Laplace transform it is possible to find
the conditional distribution of the CIR process (e.g. 6], [20]).

Proposition 2.4. Let F\2 be the cumulative distribution function of the non-central
chi-squared distribution with non-centrality parameter \ and d degrees of freedom, i.e.

d i1t
(x;d, \) Zeii ) fo FHle it
Tl g)

where I is the gamma function. Let 0 < s <t <T. Conditional on Vg, V; is distributed

2(1—e—n(t—s)
% times a non-central chi-squared distributed random wvariable wit

4ke=r(t—5) :
02(1_e—n(t—s)) ‘/87 .€.

4 4 4 —k(t—s)
P (V; < 2|Vi) = Fyo (”x;’w Ke ))‘/;) ‘

as h 450

degrees of freedom and non-centrality parameter

o2e—HK(t—s) o2’ 0.2(1 — e—h(t—s

Since we know the conditional distribution from Proposition we can calculate the
expectation and variance of V; given V.

Corollary 2.5. Let 0 < s <t <T. Conditional on Vs, the expectation and variance of
Vi are

E Vi V] = 0+ (Vs — )e "7,

Var (Vi|Vs) = 1/8026:(158) (1 — e‘”(t—s)> + 92(; (1 . (t—S))Q_

Proof. Let Y be a non-central chi-squared distributed random variable with d degrees
of freedom and non-centrality parameter A. Then,

EY]=d+ A, Var (Y) = 2(d + 2)).

Now, easy calculations give us

2 (1 = g—nlt—s) —k(t—s)
By - — ) (4“9+ e )v;>

4k 02 = 02(1 — e Hlt—9)
—0 (1 - efn(tfs)> + ‘/Sefﬁ(tfs)

and

82 o2 o2(1 — e rlt=s

4(1 = —k(t—s) 2 —k(t—s)
Var (Vi|Vs) = gl s ) Arf + Sric ))VS

2 o —k(t—s))2 2 ,—k(t—s)
_ o (1 26; ) + Vso eH (1 . e—m(t—s)) )



2.2 The CEV Process

The constant elasticity of volatility (CEV) process is given by the solution of
dVy = k(0 — V) dt + oV, dW4, Vo = v

where v € [%, 1). It is a generalization of the CIR process and can be used together with
the Heston price process for a generalized version of the Heston model. Similar to the
CIR process, the CEV process has a unique, strong solution by the Yamada-Watanade
condition. For v € (%, 1) the CEV process has some desirable properties. In contrast to
the case v = %, it is then always strictly positive with no restrictions on the parameters,
ie.

P(V;>0,Vt>0)=1

for v > 0 (see e.g. |7]). Furthermore, it has bounded moments for the whole parameter
range (see [9]).

Proposition 2.6. For the CEV process with v € (%, 1), it holds that

E < 00, sup E[V[p} < 00

te[0,T]

sup V7
t€[0,T)

for allp > 0.

By similar calculations as in Lemma [2.3] we get the following result using Proposition
2.0l

Lemma 2.7. For all p > 1 there exist a constant C), > 0, such that

sup E

[!Vt — VilP
0<s<t<T

rmap] <O

2.3 The Price Process

The price process of the Heston model is given by the solution of the SDE

dS, = rSidt + /V;S, (,oth FV1- ,02dBt)

where (Vi)ejo 7 is the solution of the CIR process. In the generalized Heston model,
the latter would be the CEV process. Here, » € R models the risk-free interest rate and
p € [—1,1] the correlation of the price and the variance process. The Brownian motions
W and B are independent. The parameter r is often omitted since the transformation
Sy, = 7S, by the Ito formula leads to a Heston model where r = 0. From [7], we have
the following result:
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Proposition 2.8. The process (St)te[o 7] can neither reach 0 nor oo in finite time. In
the case of the CIR process (’y = %), (St)te[o 7] is a martingale. For~ € (%, 1), the price
process is a martingale for p < 0 and a strict supermartingale for p > 0.

In [7] it is shown that the moments of the price process can become infinite in finite
time. Rewriting the results in terms of the correlation parameter p leads to the following
proposition.
Proposition 2.9. Define
T*(p) :=inf {t > 0,E[SF] = oo}
forp e (1,00). For~y= %, we have
* p—- 1 K
T*(p) =00 <= p< —|— + —.
p 20p

For~ € (%, 1), it holds that

—1
T*(p) = o0 if p< — pT-

For p = 0, we have T*(p) < oo for all p > 1 and for p > 0, we have T*(p) < oo if
~1
p > (1 — p;) .

Recall that an application of 1to’s formula with X; = log(S;) gives

X, = (r= 3V ) de+ /T (paii VT a). 2.9

The solution of this SDE with Xy = x is the log-Heston price (or the generalized
log-Heston price). Looking at the integral representation of and applying the
Burkholder-Davis-Gundy inequality and Proposition (or Proposition , we get
that the moments of the log-price process are bounded.

Proposition 2.10. [t holds that

E

sup | XiP| <oo Vp>1.
t€[0,T

Analogously to Lemma[2.3] we can prove the following L? result for the log-price process.
Lemma 2.11. For all p > 1 there exist a constant C, > 0, such that
X — X|P
sup E [“3’2‘} < .
0<s<t<T it — s|p/

Furthermore, ([2.4)) is a representation of the log-price process which only depends on the
volatility v/V since S cancels out. These two properties are favorable for the numerical
analysis.






Chapter 3

Simulation Algorithms for the
log-Heston Model

Consider the SDE in R4
dY; = b(Yy)dt + o(Yy)dW;,  Yo=ycR? (3.1)

with drift and diffusion coefficients b : R? — R?, o : RY — RY™ where (Wt)iefo,r 1s an
m-dimensional Brownian motion. Furthermore, assume that (3.1) has a unique strong
solution. The calculation of

p:=E[p(¥7)] (3.2)

for functions ¢ : R — R is of great interest in many applications especially in mathe-
matical finance where represents the fair price of an option and ¢ plays the role
of a (discounted) payoff function. In general, it is not possible to calculate exactly
and the value has to be estimated. A standard method is to simulate sample paths of
the corresponding SDE and to use a (Multilevel) Monte Carlo estimator.

In the case of the Heston model, we are interested in the approximation of

E{g(S7,Vr)]

with ¢ : [0,00) x [0,00) — R. Since most of the time we will use the log-Heston price,
we replace g by a function f : R x [0,00) — R with f(z,v) = g(exp(x),v). The value of
interest is then

E[f(Xr,Vr)]. (3-3)

Note that in many financial applications the value of f only depends on Xr.

A large number of research articles has been published on the efficient simulation of
the log-Heston price. The main difficulty of the log-Heston Model is to efficiently sim-
ulate the CIR process. In several articles (e.g. [14], |69], |74]) direct simulation via
the non-central chi-square distribution is used. Some researchers proposed algorithms
to approximate this distribution for a faster simulation (e.g. [6], [72]). Time-discrete

11



methods such as the Euler scheme are nevertheless popular for the CIR process because
of their simplicity and fast computation times. Due to the square root in its diffusion
term, a well-defined approximation scheme of this kind must preserve the positivity of
the CIR process. Since the standard FEuler scheme does not have this property, several
Euler-type schemes were proposed that avoid negative values (see [67] for a summary
and a numerical comparison). For the log-price process, most of the simulation methods
then use a simple Euler or trapezoidal scheme.

In the next three sections, we present a number of simulation schemes for the log-
Heston model that were proposed in the scientific literature. Let us remark that this
presentation is by no means complete. Rather, it should give an impression of the
challenges that arise from simulating the log-Heston price and its variance. At the end
of this chapter, we give a brief summary of the standard and the multilevel Monte Carlo
estimator for the value . We also explain why this motivates the weak and strong
error estimation in Chapters [6] and [7]

3.1 (Almost) Exact Simulation Methods

Broadia and Kaya |14] were the first ones to develop an exact simulation method for the
log-Heston Model. Although their approach is very valuable from a theoretical point
of view, it comes with the disadvantage of high computational costs and is therefore
considerably slower than other algorithms. First, they simulate the CIR process from
the non-central chi-squared distribution. Looking at the SDEs , one crucial idea
of their simulation is then to substitute the integral equation for (V),cop into the
equation for (Xt)te[o,T]- For any s,t € [0,7] with s < ¢, we have

t t
/Vuqu—l(Vt—Vs—nﬁ(t—s)+n/ Vudu>.

g

Since the term on the left side also appears in the integral equation of X, we can
substitute it as follows:

Xo=Xstr(t—s)+ 2 (Vi—V, — k8t — 5))
o

1\ [t ¢
+<P“_2)/ mwm/ VVudB,
g s s

(3.4)

Now, the Brownian motion W disappears from this equation which is very convenient
for the simulation and also for the theoretical analysis. Later, we refer to this as the
Broadie-Kaya trick.

For the next step, Broadie and Kaya derived the Laplace transform of fst V.du and
calculated the characteristic function and the cumulative distribution function from
there. Then, the latter is evaluated by a trapezoidal rule with a finite step size (which
leads to discretization and truncation errors). To sample now from the distribution of

12



3. Simulation Algorithms for the log-Heston Model

fst Vudu, they use the inverse transformation method. This again causes an error since
either Newton’s method, a bisection search or a similar method has to be applied.

Having generated samples of fst Vidu, the simulation of (3.4) is now straightforward.
Since (Vi)yepo,r) @nd (Bt)yeo.r) are independent, we can generate a normal random

variable with mean 0 and variance fst Vudu for the last integral from (3.4)).

Nevertheless, the algorithm has only a theoretical relevance since the simulation of
fst Vudu is very costly which is due to the evaluation of its characteristic function. In
[69], the computational time of the Broadie/Kaya algorithm is reduced by precaching
values for the characteristic function. Still, this simulation method is not widely used
in practice.

3.2 Semi-Exact Simulation Methods

The class of semi-exact simulation methods for the log-Heston model mostly contains
algorithms that simulate the CIR process exactly or approximately from the non-central
chi-square distribution and use a simple Euler or trapezoidal discretization for the log-
price process.

We denote the discretization grid as

O=to<ti<..<tny=T
and the increment of the Brownian motions as
AkW - Wtk+1 - Wtkv AkB - Btk+1 - Btk

for k € {0, ..., N — 1}. Here, N € N is the number of time-steps. By using the Broadie-
Kaya trick and discretizing (3.4) with the Euler scheme, we get the following iteration
for k€ {0,.... N — 1}

K 1
Tp1 = +r(tppr — ) + g (Vks1 — vk — KO(tpr1 — tr)) + <p - ) Ok (ty1 — tk)

o 2
+ Vv 1- p2 \/EA]QB
(3.5)
where we set g = log(Sp). The values v; are here simulated from the conditional
distribution of the CIR process. In [54], we presented and analyzed a so-called semi-
trapezoidal scheme for the log-price process:

p
Thy1 = Tp + (e — te) + > (Ve1 — vk — KO(tks1 — tr))

k 1\1
+ <’; - 2) 5 (st 08) (tegs = 1) + V1= P VoR AL B.

(3.6)

13



Many algorithms (e.g. [6], [72], |[74]) use a full trapezoidal discretization of X as follows:
Tp1 = T + (k1 — te) + g (Vg1 — vk — KO (k1 — )

Kk  1\1 1
+ <p — 2) B (k41 + vg) (tgr1 — te) + V1 — p2§ (,/Uk_;_l + \//lTk) ALB.

o
(3.7)
One disadvantage of the exact simulation from the non-central chi-squared distribution
is that it heavily depends on the Feller index v. Recall that v determines the degrees
of freedom of the non-central chi squared distribution (see Proposition and as a
result, low Feller indices cause long computational times. Therefore, many schemes were
proposed that simulate the CIR process by approximating the non-central chi-squared
distribution. The QE-scheme from [6] starts with vg = Vj and simulates viy1 depending
on the value of v either as a moment-matched squared Gaussian random variable or
as an ordinary chi-squared random variable. The latter is used for low values of wvy.
The log-price process is then simulated according to (3.7). The NCI-scheme from [72]
simulates from the non-central chi-squared distribution via direct inversion and uses
precaching. Again, the full trapezoidal discretization is used for the log-price process.

3.3 Time-Discrete Simulation Methods

Even though a lot of research concerning the development of exact simulation methods
has been carried out, simple time-discrete simulation methods for the log-Heston model
are a highly relevant topic for researchers since they are not only interesting from a
scientific point of view but also very relevant for practical use. Since this chapter is
restricted to the presentation of the different schemes, a survey of the respective weak
and strong convergence results from the literature will be given in Chapter[land Chapter

@

3.3.1 Explicit Euler schemes

Fuler schemes are very popular in practice since they are very easy to implement. The
challenge of simulating the log-Heston model with Euler schemes is once again the
simulation of the CIR process. A naive Euler scheme would look like this:

Vg1 = Uk + K (0 — k) (tg1 — te) + o /o AW, v9 =V

This leads to

P (oger <0) = @ (k — (0 — ) (i — tk>>

o/ Uk (te1 — )

where ®(-) is the cumulative distribution function of the standard normal distribution.
Therefore, the probability of simulating a negative value during the iteration is strictly
positive and the scheme is not well defined due to the square root coefficient. To prevent

14



3. Simulation Algorithms for the log-Heston Model

this, the Euler scheme must be "fixed". A summary of the existing Euler schemes for
the CIR process and a numerical comparison can be found in [67], where a general
framework for Euler schemes for the CIR process is proposed as

Ukt = f1(0k) + £ (0 — fo(0r)) (trs1 — te) + o/ f3(O0) AW

- (3.8)
Vkt1 = f3(Uks1)
where 79 = vg = Vp and suitable functions f; that are chosen from

id: R — R, id(x) ==,
abs : R — [0,00), abs(z)=2aT,
sym: R — [0,00), sym(x)

Table [3.1] shows all Euler schemes that are presented in [67] in detail.

Scheme filz) | fa(z) | f3(x)

Absorption (AE) ()t | ()" | ()"
Symmetrization (SE) || || ||
Higham and Mao (HM) x x ||

Partial Truncation Euler (PTE) x x (x)*
Full Truncation Euler (FTE) x ()t | ()"

Table 3.1: Euler schemes from [67].

The full truncation Euler was introduced in the same paper. The origin of the Euler with
absorption fix is unknown, the symmetrized Euler was analyzed in [10]. The scheme
from Higham and Mao was first analyzed in [37] and the partial truncation Euler was
first introduced in |23|. The log-price process can then be discretized with the standard
Euler scheme:

1
Thyl = Tk + <’I“ — 2”k> (tk+1 — tk) + \/ﬂ (pAkW +v1-— p2AkB) (3.9)
with z¢ = log(Sp).

3.3.2 Milstein schemes

The CIR process can also be discretized with an implicit Milstein scheme.

Vk+1 = Vg + K (9 — ’l)k+1) (tk+1 — tk) + O'\/TT]CA]CW

o2

+ 7 (AW = (trer 1)

15



with vg = V4. This can be rewritten to

1
+ H(tk+1 — g

) ((\/FH %AkW>2 + (w - ‘j) (b1 — tk)) (3.10)

Vg+1 = 1

where we can immediately see that this scheme is positivity preserving and therefore
well-defined for v > % In |5|, this scheme was combined with the standard Euler scheme
(3.9) for the log-price process. In |48| the authors propose the discretization

1
Tpg1 = Tp + 1 (b1 — ) — 1 (Vg1 + k) (bet1 — ti) + PO AW
1 1
+v1- ,025 (Vr + Vi) AxB + i ((AkW)Q — (tg+1 — tk))

for the log-price process. Together, this is called the IJK-IMM scheme. In [32], the
following truncated Milstein scheme for the CIR process was analyzed:

2
[o? o2 o
Vk+1 = (max { Z(tk+1 - tk), \/max {4(tk+1 — tk), ’Uk} + QAkW}>
2

+ (H(Q — k) — 2) (L1 — tk)>+-

This scheme is well-defined for the whole parameter range.

(3.11)

3.3.3 Drift-implicit Euler schemes

Another way to discretize the CIR process is to look first at its Lamperti transformation.
This was first proposed in [1]. Therefore, we consider the process Z; = +/V;. With the
Ito formula, we obtain

4k — 02 1 K o
Ji=|——-— — =7 —dW Zo =/ Vp.
dZ; < 3 7 5 t>dt+2d t 0 Vo

The drift-implicit Euler scheme for this process is given by

4k — 0?1 K o
= — thrr — tr) + = ARV
T ( S o 2”““) (B = 1) 5 B (3.12)
Vk+1 = ZI%H
with zp = /vy = v/Vp. The first line of ([3.12) can be rewritten as
2
- Z + %AkW (Zk + %AkW)Q <’%9 - UT) (tk+1 - tk) (3 13)
k p— . .
T 2w (e — 1) (2+ K (thp1 — ti)” 2+ K (L1 — ty)
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3. Simulation Algorithms for the log-Heston Model

Again, this is well-defined and positivity preserving if v > % In [4], the authors propose
a method to approximate p = E [h(S7)] especially for discontinuous functions h. They
prove that

where H : Rt — R is the antiderivative of h and
1 T 1
14+
TV1-p2Jo VvV

is a Malliavin weight. They use the drift-implicit Euler for the Lamperti transformation
of the CIR process and the standard Euler for the price process and the Malliavin weight.

II = dBy

3.4 Monte Carlo Methods

The standard Monte Carlo algorithm is a straightforward way to approximate the ex-
pectation of a random variable which can be simulated exactly or approximately. In the
first case, the standard estimator for (3.2)) is given by

1 :
e =57 20 (1)
=1

where Yj(f) fori =1,..., M are M iid copies of Y. We can also define the Monte Carlo
estimator if we do not simulate Y exactly. Let yy be an approximation of Y7 which
was simulated via some time-discrete scheme with N time steps. Then, the standard
Monte Carlo estimator for is given by

. 1 - (3)
PNM = qub (Z/N>
i=1
(@)

where y5/,% = 1,..., M are iid copies of yy. The root mean square or L?-error of the
estimator depends on the variance of the estimator and its bias:

rmsq (py.r) = ||p — Pyl 2 = Ellp — pnve 42

= (Var(ﬁN,M) + ’]E[p - ﬁN,MH2)1/2

. ) ) 1/2
= <MVar (¢ (yn)) + | E[p — pn,aml| )

In the case of an exact simulation, the bias is zero and the error only depends on the
first term, i.e.

) —L ar
TmS(](PM)—\/M Var (¢(Yr)).
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The computational costs of the exact estimator are O(M). If we want to achieve an
accuracy of

rmsq (Pur) < €,

we have cost(pys) = O(¢72). This leads to the following error-cost relation:

_1
2-

assuming that Var (¢(Yr)) is bounded. For non-exact schemes, the weak convergence
order « plays an important role for the relation of the root mean square error and the
computational costs. The weak error is defined by

eweak(N) = ’E [¢ (yN)] —-E [¢ (YT)} ’

We say that a scheme has a weak convergence order « if
eweak(N) <Cq- N™® (314)

for an a € [0,00) and a constant C, > 0 which does not depend on N. More precisely,
the weak convergence order is the largest o for which holds. The computational
costs of the standard Monte Carlo method for time-discrete schemes are O (N - M). To
illustrate the impact of a in our Monte Carlo simulation let us now assume that we have
an equidistant discretization, i.e

kT
tk: W7 kZO,,N

and that Var(¢(yy)) is bounded. Balancing of N and M leads to an optimal choice of
M = [N?*] (see e.g. |25]). Again, if we want to achieve an accuracy of ¢, i.e.

rmsq (P ) < €,
the computational costs of the estimator behave in the following way:
~ 91
cost(py,v) = O (5 a) .

The relation between L?-error and computational costs can then be described as

e

Hp - ﬁN,MHL2 < Coc,va’r’ : COSt(ﬁN,M)_ 1+2a,

This emphasizes how important it is to know the weak convergence order for non-exact
schemes. Low weak error orders will slow down the convergence speed of the Monte
Carlo estimator drastically.

The efficiency of the standard Monte Carlo method can be significantly improved by
combining standard Monte Carlo estimators of different step sizes. This idea was first

18



3. Simulation Algorithms for the log-Heston Model

used in the context of parametrical integration problems in [35|. Let L > 2 be the
number of levels, 0 < Ny < N1 < ... < Ny, the number of steps and My, M, ..., My, the
number of Monte Carlo samples for every level. The Multilevel Monte Carlo (MLMC)
estimator ppsr, is defined as

My _ LS,
ﬁMOL = MO qu (yNo>
i=1
M

= 5 (0 (0) 8 () =1t

=1
L
N M,
ML = Puyrr-
=0

In 28| this was first used for SDEs. Simulating ¢ (y%?) and ¢ (yg\lf?il) from the same

Brownian path guarantees a low variance of the estimator. The computational costs of
the MLMC method are proportional to the total number of discretization steps:

L
cost(pyr) = C (MONO + Z M;y(N; + Nl_1)> .
I=1
For MLMC, the knowledge of the strong error is crucial. There does not exist a uniform
definition of the strong error in the literature. We can analyze the global error which is

(1a) = F

6strong T

»
sup !Yt—.@tl”] , p>1
t€[0,T]

where (Z)t)te[o 7] 1s a time-continuous version of the numerical scheme. Sometimes it is
)

easier to study

1) = sup E[Y, —g")p, p>1.

Note, that it holds that egifzmg < egifgng. Furthermore, we can look at the maximal

error in the discretization points, that is

|=

ehirong = E remax Wi = gu|” Lop>1
or alternatively,

egflng = ke%ﬁi{N}E (Y2, — Gt ]p]% , p>1. (3.15)
Analogously, we have egfgng < egfc)mg. For the MLMC estimator, the knowledge of

(3.15) for p = 2 is sufficient. Let o be defined as in (3.14]) and let the L?-error at the
terminal time 71" be of order £, i.e.

E [|YT _ yNﬂ < 3N~
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with Cg > 0, @ > 1/2 and 8 > 0. Furthermore, we assume that the function ¢ is
globally Lipschitz continuous. Then, the number of levels L and the number of paths
N, for each level can be chosen in such a way that

\lp—DPmrllpe < e

and there exists a constant C > 0 such that

g2 if g >1/2
cost(prr) < C 1 (log(e))2e™2 if f=1/2
22 g <1)2

(see Theorem 3.1 in [28]). So for f > 1/2, the Multilevel Monte Carlo recovers the
optimal convergence rate of the standard estimator even for a non-exact simulation of
the SDE. Consequently, the knowledge of a and S is crucial for the efficient computation

of (3.2) and in particular of (3.3) in the case of the log-Heston model.
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Chapter 4

Properties of Explicit Euler
Schemes for the log-Heston Model

In this chapter, we study the properties of the explicit Euler schemes from Equations
(3.8) with f; given by

fl = id, f2 € {id7 abs, Sym}7 f3 € {abs, sym} (41)

or
fi = f2 = f3 € {abs, sym}. (4.2)

These include all schemes from Table 3.1l The first set of conditions modifies the
coeflicients of the CIR process to deal with negative values which may arise in the
computation. For example, /vy, is replaced by \/E or \/W . After the approximation
Uk+1 has been computed, f3 is again applied to obtain viy1, since ¥Ux41 may be still
negative. The second set of conditions is different. Here after each Euler step, sym or
abs is applied to avoid negative values.

In this chapter, we prove important properties of these two cases of explicit Euler

schemes that are crucial for our proofs in Chapters [6] and []] We need the notation
n(t) := max{k € {0,..., N} : t, < t} and n(t) := tpp).

4.1 Euler Schemes - Case 1

For the choice (4.1]), the time-continuous extensions of (vg);c {0,...N} which are denoted
by ¥ = (Vt)ejo,r) and © = (¥¢);e[o,) Tead as

t

t
Uy =7 +/ H@—fﬂsds—l—a/ f3(U,6))dWs,

T (0= foltn) n(t) (0e) tel0,T), (4.3)
O = f3(vt),
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with fo € {id, abs, sym}, f3 € {abs,sym} and vy = v. Note that f, and f3 are globally
Lipschitz continuous with Lipschitz constant L = 1 and satisfy

lz—fily) <lz—yl, 2>0yeR, i=23.
Moreover note that

VIfi(z)] <1+ |z, reR, i=1,23.

The next lemma shows that the moments of (E)te[o 7] are bounded. Furthermore, we
have the same smoothness result as for the CIR process in Lemma [2.3]

Lemma 4.1. Let p > 1. There exists a constant Cp, > 0 such that

E | sup |ofP| < Cp.
te[0,T)
Furthermore, we also have
b, — 5. |P
sup E [M] < 00.
o<s<t<T ||t —s|P/
Proof. For the first term, we prove that
sup E[|5P] < 0. (4.4)

te[0,T]

Let p > 2 and let 7, be the stopping time defined by 7, := inf{0 < t < T;v; > n} with
inf{(@} = 0. Then, since fi(Tyy)) < Oy for i € {2,3}
|

tATh tATh
v+/ k(0 — fo(V,(s)))ds + o f3(0,(6))dWs
ot | 0= falTy) V)

/ 70— faliiy))ds ]

E [[tinr, /] < E [

§0p<v8+E[

r tATh p
+E i g 0 \/f3(l_)n(s))dWs :|>
r tATh V4
<c, <1+]E / k(6 — FalTys)))ds ]
LIJO
tATH p/2
+E 0'2/ (1+ |17,7(s)‘)2d8
0

IA

tATh
Cp <1 +E [/ |Q_]n(s) ’pd8:| +E
0
tATh
Cp <1 +E |:/ |U77(S)|pd8:|>
0

22
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4. Properties of Explicit Euler Schemes for the log-Heston Model

by applications of the Holder and the BDG inequality. Therefore, we have shown that

¢
E [|viar, [P] < Cyp (1 +/ E “7771(8)/\%1 ’p] d5>
0

and we consequently obtain

t
sup E [|Usar, [P] < Cp 1+/ sup E[|Uynr, [P]ds | .
s€[0,] 0 u€l0,s]

The Gronwall inequality now yields

sup E[[vinr, [F] < Cp
te[0,T)

where C), does not depend on n. Taking the limit n — oo, we obtain (4.4). For p € [1,2)
(4.4) follows then by the Lyapunov inequality. Since we have
p)

/Otff\/f:%(vn(s))

the assertion now follows from the properties of f3, an application of the BDG inequality
and Equation (4.4]). For the second statement, we begin again with p > 2. We have

E[\vt—vs|P]§]E[ k(0 — f2 (Uyu)) du+a/1/f5 ]
gC,,(E[/S (6 12 (5, ))du]+ﬂ£[ /\/fa—

<0, (1o 1t =P~ [ E ool du

S

t
i — s> / E [ [ty "] du)

Cy (Jt = s + 1t = 5?)

T
sup |o|P <Cp |1 —|—/ |Ts) " ds + sup
te[0,T] 0 t€[0,T]

)

by using Holder’s inequality, (4.4) and the properties of fo and f3. It follows that

‘vt US|] 2
sup E |t Uk gC(Tp/+1>.
0§s<£)§T Lt — s|p/? P

Again the application of the Lyapunov inequality for p € [1,2) finishes the proof. O
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4.2 Euler Schemes - Case 11

For the choice (4.2)), we obtain the symmetrized Euler (SE) and the Euler with absorp-
tion fix (AE). We can write the time-continuous extension o*¥™ = (9;%"™);cjo 7] of the

SE as
o0 = [t (0 585) =00+ T (0= o)

and the time-continuous extension 9% = (4¢%);c( 7] of the AE as

ot = (it + (0= 5285 ) (0 = (1) + o focte (We = W)

Now, let * € {sym, abs}. We define

and use the Tanaka-Meyer formula (see e.g. equation 7.9 in Chapter III in [49]) for

~sym ~abs (Zgbs)"'

0y {z ‘ and for f to obtain

t t
oY = @;Z(T + /77(t) sign (z3V™) k (0 — @Zz(m)z) ds+o /n(t) sign (z39™) ﬁff(’:;dWs
+ (L?(zsym) - Lg(t)(zsym)) . telo,T),

and

t t
~abs __  ~abs ~abs ~abs
Vg = Un(t) + A(t) ]l{ngs>0}/<& (9 77(3)) ds + U\/n(t) l{ngs>0} MdWS
1 abs abs
+§(L?(zb)—L2(t)(zb)), t [0, 7).

Here L°(z*) = (L?(Z*))te[o,T] is the local time of z* in z = 0. For almost all w € Q the
map [0,T] 3 t — [LY(2*)](w) € R is continuous and non-decreasing with LJ(z) = 0. See
e.g. Theorem 7.1 in chapter III of [49].

We can rewrite both schemes as

t
Ak o~k
O =0t /n o" (0-55) ds+o /n o Ve s

t t
[ax * - 4.6
— 2c¢%0 /n(t) ]1{z;§0} Un(s)dWs —2c /,7(t) ]l{zggo}lﬁ (9 - U;(s)> ds (4.6)
+o (L) = 150 (), teloT),

sym abs _ 1
= 3.

with ¢ =1and ¢

The Euler schemes in this section also have bounded moments and increments.
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4. Properties of Explicit Euler Schemes for the log-Heston Model

Lemma 4.2. Let x € {sym,abs} and p > 1. Then, there exists a Cp, > 0 such that

E | sup [97]7| < Cp. (4.7)

te[0,7)

Furthermore, we have

oF — 0% [P
sup E ‘tn(t)|2 < 00.
teo,r] | It —n(t)[P/

Proof. The proof of can be found in Lemma 2.1 in [10] for the symmetrized Euler
scheme and can be obtained analogously for the absorbed Euler scheme. For the second
statement, we give a proof for the absorbed Euler. The proof for the symmetrized Euler
can be done analogously. We drop the abs-label to simplify the notation. Since

|(v+2)" —v] < 7]

for v > 0 and z € R, we have that

+
(i) + 5 (0 = o)) (€ = (D) + 7o) (W = Way)) ) = By
p
< |5 (0 = ) (¢ = 1) + 04 [ (Wh = W)

<27 (= n(0))" | (0 = by |+ 2 PO (W= W |

Using (4.7]), we obtain

|{’t - @n(t)‘p =

and

[
[NIiS]

( [|Wt - Wn(t)f”Dé < G, (t—n(t))

[ n(t) ‘Wt n(t)’p} = (E [@ﬁmb
Therefore, we have
E [|i = ty0|"] < Gy (Jt = n®F + [t = n(0)”?)
and the statement follows. O

For the remainder of this section, we will assume that the discretization is equidistant.
So, our discretization grid is defined as

ty =kAt, k=0,...,N

with At := T/N. We are now interested in the probability of z; becoming less or equal
to 0. The next lemma is similar to Lemma 3.7 in [10].
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Lemma 4.3. Let At < % We have

. @;(t)(l — kAt)?
P(zf <0) <E |exp vy wa— te[0,77,
for x € {sym, abs}.
Proof. First, note that
P = 0ol = y) = P23 = 0|@g€f> =y) =0, y>0,te(0,T],

and so P(zf =0) =0 for all t € [0,T], and * € {sym, abs}. Therefore, we only need to
consider P(zf < 0). By the definition of z in (4.5)), we have

(1 (t — (1)) — RB(t - n(t)))
o\

Pz <0loyy =y) < P (Wt -~ Wy < -

for y > 0 and
P(z < 0]ty = 0) = 0.

For a centered Gaussian random variable G with variance ¢2 > 0, it holds that

for B < 0. Therefore, we have

Pz <0)<E |exp | - - Log o >0r

Since
(1= w(t —n(t)))?
t—mn(t)
the assertion follows.

tc [O,T]\{to,tl,...,t]\f}

v

O

For the further control of P(zf < 0) we will need the following technical result on
a sequence that was analyzed by Cozma and Reisinger in [21]. We are now giving a
different and simplified bound which is crucial for our error analysis.
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4. Properties of Explicit Euler Schemes for the log-Heston Model

Lemma 4.4. Suppose that At < é and set

1 — kAt
aN:T.

(i) Consider the sequence (cj)o<j<n with

2 2 2 .
co = ay, €1 = QN — ay, Cj+1 = ¢ + an — ay, j=1,...,N —1.

Then, we have

e(l—¢) .
<1 — - 7 =1,...,N
Cj = an 1+€(j—1)7 J ) 3 4V
for all e € (0,1/2].
(it) Define the sequence (aj)o<j<n by
2(an —¢j) :
aj:w’ jZO,,N

Then, we have a; >0 for j =0,...,N. Moreover, let € € (0,1/2] and
2 221\
¢ = exp <I€ <VT+ U;)) (max{l,m}> . (4.8)
o vpe

k—1

At I/(I—E)
exp | —k# Z a;j+1At | exp (—voag41) < ¢ <>
=0 y

Then, we have

forallk=1,... N.

Proof. (i) Since At € (0, 1), we know that
11— kAt

<1 > E =0
aN = 9 27 aN -

and therefore ay € (0,1/2). Now let € € (0,1/2]. We show that

1—¢

e

j=1,...,N,

by induction. For j = 1, we have

[a—y

1—c¢

clzaN—a?Vzl—aN—(l—aN)QSl—aN—ZSl—aN—j,
€

since 1/4 > (1 — ¢)e.
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Suppose that the statement holds for a fixed j € {1, ..., N}. Then, we have

1—¢ 2
1-¢ 1-¢
2 2
= — 1-2any —2——— 2
anN —ay + anN j—1+a—1+aN+ an e —|
(1-¢)?
(j—14e1)2
1—¢ (1—¢)?

=1- —-2(1 - .
an = 2( O[N)j—1+5_1+(j—1—i—5—1)2

For the statement to be true, it must hold that
1-— 1—¢)? 1-—
R ) S €

j—1l+et (G—-14e1)22 7 j+e!

since 2(1 — ayv) € (1,2). This can be verified by a simple computation.

(ii) Since ¢j41 = 0]2 +ay — 0‘?\[ and ¢yg = an, c1 = ay — a?\, < ay, we can establish by
induction that ¢; < ay. Since

o 2av —¢)
J o2 At
we therefore have a; > 0 for j =0,..., N. It follows that
k—1 k—1 k-1
2k0 2k0 1—¢
_HQZCLJ‘+1A1€:? : (C‘j+1_aN)§OQZ<1_2aN_j+£_1>
7=0 7=0 7=0
260 [* 1—¢
< 1—2ay — dj
=2 o ( o j+a—1> ’
2k0(1 —¢) _ _
== (In(e™") —In(k+¢71))
2K0
+ %F&Atkj
o

1
< — — )+ i
v(l—¢)ln (1 5]4:) kT

Using the definition of a1 and ay, as well as the estimate for cxq from (i) we obtain

0
exp (—voag41) = exp <02At (Chs1 — OéN))
20y e(l—¢)
1-2ay — 2
(UQAt< N ek ))
< ox 200k N S 2ve(l-e) 1 1
=GP T2 )P o? At 1+ ek

29K o voe 1 1
xp | - — =
02 P o2 Atl+ek)’
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4. Properties of Explicit Euler Schemes for the log-Heston Model

since we have € € (0,1/2]. Thus, we obtain
k-1

exp —m@ZajHAt exp (—voak11)
§=0

< T + 20 voe 11 Ly

<exp|k|V o2 ) )P\ T o2 At r ek ) \ T+ 2k

_ P 20 Y e (L2 L L Y (e L 1 oA
=exp |k |V o2 exp o2 Atl+ck 02 At1+ck wvge .

The inequality

x%exp(—z) < a®exp(—a), a>0,z>0,

and using again that ¢ € (0, 1/2] now yield

k—1
exp | —k0 Z a;j+1At | exp (—voag+1)
=0
. v(l—¢) 2 v(l—e)
<o (w(vr+29)) (MU22) (22
o e VoE
2 v(l—e¢) v(l—e)
cen (e 32)) () ()
o voe 9
9 2 VN v(l—g)
< exp (/{ <1/T+UQO>> <max{1,0 V}) <t> ,
o vpe €
which finishes the proof. O

The next proposition gives an upper bound for the expression from Lemma[4.3] It plays
the same role as Lemma 3.6 in [10] and in comparison to this lemma it removes the
restriction on v and also obtains a better estimate in terms of v for P(z; < 0).

Proposition 4.5. For At < 1 and e € (0,1/2] we have that

i (1 — kAt)? A\ (12
[, N —— < —— = Ce .
E [exp ( ST AL <cl , k=0,...,N, (4.9)
and
At v(l—e)
P(ZZ( SO) SC(€> , S [O,T]\{to,tl,...,t]\f}, (4.10)

for x € {sym,abs}, where c is given by (4.8)).
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Proof. Lemma and (4.9) directly give (4.10]). So it remains to show (4.9).

The first step of this proof is to describe a sequence (a;j)o<;j<ny whose first element is

- 2
equal to % and which has some suitable properties to bound the term on the left
side of (4.9)). Suppose that At < % Define the sequence (a;)o<j<n as in the previous

Lemma, i.e.

e 2(an —¢j)
J o2At
with
_ _ 2 2 2 .
co = ap, €1 = any — ay, Cjt1 = ¢ +an — ay, j=1...,N—-1,
and ay = %"‘At. In particular, we have ag = 0,
o — 203 _ - KAt)?
o2 At 202 At
and

2(0&]\7 - Cj+1) . 2(0‘?\7 - C?) N 4OZN(OZN - Cj) - 2(aN - Cj)2

Qi1 = = -
A oZAt o2At o2\t

1
=2ana; — ia?UZAt.

Next, we take a look at
E [exp (=07, a;)] = E [E [exp (=] a) | F,_.]]

and bound the inner expectation, using that |v| > v and v+ > v, respectively. We have
E [exp (=07, a;) | F,_, ]

<E [exp <—al- (mem + o7 (1— kAL + a\/I (Wi, — Wtk_l)» \ftk_l}

= exp (—a; (ROAE+ 55, (1= kA1) ) E [exp (—aioy [37,_, (Wee = We,_) ) |[Fo |

= exp (i (w0AL 4, (1~ 5AD) ) exp <;a302@;k_1m> .
Since

ait1 = a;(1 — KAL) — %Q?UQAt,

it follows

E [exp (=07, ai)] < exp (—a;ixfAt)E [exp (—'IA)Zkilai+1>:| .
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4. Properties of Explicit Euler Schemes for the log-Heston Model

Plugging in a1 and applying this upper bound k times, we arrive at

oF (1 — kAt)? .
E |exp <—'M =E [exp (—0j,a1)]
k—1
<exp | —kb Z aj 1At | exp (—voak+1) -
§=0
The assertion now follows from the second part of Lemma [4.4 O

We now need an upper bound for the expected local time that z* spends in 0. Our proof
follows similar ideas as the proof of Proposition 3.5 in |10] but adds the results from
Proposition [4.5] to obtain a better convergence estimate.

Proposition 4.6. Let 5 >0, >0, e € (0,1/2], At < i and * € {sym,abs}. Then,
there exist constants Cs > 0 and Cg s > 0 such that

1—¢
At V1Fs
E [Lg (z%) — Lg(t) (z*)} < CsAt <5 ) , t€0,77,

and

1 1—¢
1+81 1+8 1 v 132
] : < O (AL) 0+972 <At> o

B |[20(:) - L3 () :

Proof. (i) To simplify the notation, we drop the x-label. By the occupation time formula,
see e.g. Theorem 7.1 in chapter III of [49|, we have for any t € [tx,tx+1] and for any
non-negative Borel-measurable function ¢ : R — R that P-a.s

t t
[ 9ta) (L () - L, () do = [ 60 =0 [ 6lan)inds
R (27

173

Here L*(z) is the local time of z in x € R. Since

Pl00=Y = N (y + k(6 — y) (s — 1(s)), 0%y(s — 1(s)))

we have for any y > 0 that

t
/ $(2)E [LF (=) — IE. () oy, = y] dz = 0 / yE [6(25) |6, = y] ds
R ty
<m—y—n<9—y><s—tk>>2> dsd

o [ow) [ e (-
R te \/27m(s — tr) 20%y(s — ty)
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Since the above equation holds for any non-negative Borel-measurable function ¢, we
must have that

E[L} (2) = Li; (2) |0y, = y]

B L Y N e il | Gt ) W
te \/27m(s — tg) 202y(s — t1,)

for any x € R. Setting x = 0 yields

t (0 — ) (5 — £.))2
BILY(2) L0, (2) o, =] =0 | %f_ e (— W+ Qgiy (Z)_( » ) ) s

i s-ss-w)?)
S“/m/%(s—tk) p( 207 (5 — t) )d‘

Since for 6 > 0 there exist a cs > 0 such that vbexp(—b) < ¢5 exp (—l—ié) for all b > 0,

we have

ﬂ(l—ms—tk»exp(_y(l—fs(s—mf)SC&GXP( y(l—m(s—m)?)_

202 (5 — t1,) 202 (s — ty,) 202 (s — ty) (1+0)

Moreover, since 1 — k(s — tg) € [1/2, 1] we obtain

VY y(1— k(s —t)? y(1—r(s—t))°
mexp(- 202 (5 — 11 )Sﬁacgexp(—2g2(8_tk)(1+6)>.

It follows

010 (» . t&ex _@tk(l—ﬁ(s—tk))z <
E[Lt(z) Ltk()‘ftk]g tkm p( 202 (s — tg) >d

20 (* Uy (1—;<;(3—tk))2
< cs— _ %
Cs exp( B 2(8 tk)(l 5) ds

20 [* by, (1 — KkAL)?
< - _ 'k .
“ xp ( 202At(1 +9) ds
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4. Properties of Explicit Euler Schemes for the log-Heston Model

Now, the Lyapunov inequality and Proposition [£.5] yield

0T by, (1 — KAL)
E[L} (2) - L}, (2)] < 05/ E P <_202At(1+5)> -

ty

1
t ~ 2\ 1+5
Uy, (1 — KAL)
=C E k7 d
’ /tk P ( 202At N

B 1
t A 2 +6
Oy, (1 — KAY)
<C E e d
<af ( GXP( 2oad :

< CsAt (Agt>

(ii) For the second statement note first that

1
14+8] T3
B |[28) - 23] ]

- [<Lg(2) _Lg(t)(z)> v (LD( )~ L%(t)(z))ﬂﬂ 1+B]HB

S@Pﬂ)%MMMW@<mwﬂm@f§]ym

by Holder’s inequality. Now, consider first z = 2%¥" and note that

P
E[|L? (=) - L ()] ]
t t
O — Opt —/ sign (zs) k (0 — @ S)ds—a/ sign (zs) 1/ Op(s)dWs
n(t) () n(s) () n(s)

P
/ sign (zs) 9—17,7(5)) ds ]
n(t

t p
o sign (zs) ) Op(s)dWs ] )
/n(t) n(s)

for since |z+y+z[P < 3P~ L(|z[P+|y|P+|2|P) for x,y,2 € R, p > 1. We can conclude from
Lemma [£.2] the Holder inequality and the Burkholder-Davis-Gundy inequality that

=E

pl

+E

tesEépT E HLt L?;(t) (z)m < 0.

bs

The case z = 2%°° can be done analogously. Applying the estimate from the first part,

33



we obtain

1
148 748 L
E “L?(z) — LYy (2)] ] < Gy (B[L0(2) = 15 ()] ) 7"
y—l—e
S CB,(S (At)m (At) (1+5)(1+ﬁ)2 ‘
g

O

The following lemma gives a control of the non-martingale terms, which arise addition-
ally in the expansion of SE and AE.

Lemma 4.7. Let At <
g :R? = R be bounded an

, e € (0,1/2], B > 0 and x € {sym,abs}. Moreover, let
h:R — R be of linear growth. Then we have

1—¢
At\ 7178
| <cuns (%)
At\V175
+
e (27

|

<1 + sup |"IA)Z(|> ]]'{ZZ<O}] du
te[0,7)

with [|gllcc = sup, yer [9(2,y)|. An application of Hélder’s inequality together with
Lemma [£.2] yields

1
2K
d

t
sup E [/0 9V, 03) R85 ) Lz <0y du

te[0,7)

and

t
sup E[ / o(Va, 6)dLO()
0

te[0,T

Proof. For the first assertion note that

t
sup E[ [ otV siney) 1 o da

te[0,7

T
< Chllglloo / E

T
| < Cus [ (Pt <o)
0

t
sup E{/o 9V, 05) 107y L2z <0y du

te[0,7

for all 3 > 0. Proposition [£.5] implies now that

l—¢
At\ 7158
| <cun (2

For the second assertion, we note that the integral under consideration is a pathwise
Riemann-Stieltjes integral, since L°(2*) is positive and non-decreasing with LJ(2*) = 0.
We then have

t
sup E[/O 9V 03) (07 )) Lz <0y du

te€[0,T]

t
lglloe L3z < / (Vi 0)dLO() < lglloL% (=), t € [0,T).
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4. Properties of Explicit Euler Schemes for the log-Heston Model

It follows

¢
sup E[/ g(Vu,sz)dLg(z*)
0

te(0,7

N-1
} < gl Y_E [L?k+1 (=) - I (Z*)}
k=0

and Proposition [£.6] gives

1—¢
AN ANREY
J=e ()

which finishes the proof. O

t
sup JE[/ g(Vu,ﬁz)dLg(z*)
0

t€[0,T]

4.3 The Euler Scheme for the Log-Price Process

The time-continuous extension Z = (#;)icp,r] of the Euler scheme for the log-price
process in the Heston model is given by

N 1 -
Ty = () + (T - 2%(t>> (& = (1) + oy By (We = W)
+ VL= %[Oy (B = Byq) -

(4.11)

For (9¢).[0,7], We can choose one of the previously introduced schemes for the CIR pro-
cess. We have the same results concerning the moment stability and the local smoothness
as before.

Lemma 4.8. Let p > 1. For the Euler scheme (4.11)) together with the scheme (4.3)) or
(4.6), there exists Cp, > 0 such that

E| sup |af

te[0,7

<Gy

and

b &P
sup E M < 00.
o<s<t<T | |t — s|”/

Proof. Using the bounded moment results from Lemma [4.T]and Lemma both state-

ments follow again by standard computations. For the first term, we use the Hélder and
the BDG inequality. Let p > 2. Again, the case p € [1,2) for both terms follows by the
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Lyapunov inequality. Then,

E | sup |&°
t€[0,T]

1 rt t t p
=E | sup m0+rt—/@ Sds—{—p/ A/ SdWs+\/1—p2/ 1/ U ()dBs
rel01] 2 o n(s) 0 n(s) 0 n(s)

t p
<G, 1+1:§+E sup /@n(s)ds
t€[0, 7] 1J0

p p

+E

sup

t
/ Uy(s) AW
te[0, 7] 1J0

T T
<6, (14 a1t [ 8 ool s+ 72 B [Joy

<G,

sup
t€[0,T]

t
/ Uy (s)dBs )
0
’p/Q] ds>

Furthermore, we have that

E[lZ: — 25/"]

r(t—s) — / du+p/ de +\/1_7/ FdB ]
/: Uy ]HE[/S By (uydWa p] +IEH/ By (u)dBu

t t
Cp <|t — 5?4 |t — s / E ([t "] du+ |t — s> / E | [onw|”?] du)

<C, (|t —s[P 4 |t — W) ,

s

1)

<Gy <\t—sV’+E[

IA

from which the second statement follows. O
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Chapter 5

Regularity Results for the
Kolmogorov backward PDE

There is a rich connection between partial differential equations (PDEs) and SDEs
which was, amongst others, studied by Kolmogorov and Feller. It is a now classical
technique to use this connection to study the weak error of numerical approximations
which was introduced in Section [3.4] Solutions of elliptic and parabolic PDEs can be
represented as expectations of stochastic functionals. One of the most famous results
for this connection is the Feynman-Kac theorem (see e.g. Theorem 5.7.6 in [49]). In
the case of the Heston model, classical results do not apply. Therefore, we will present
a result by Briani et al. |13] which links the solution of the log-Heston SDE with the
solution of a degenerate parabolic PDE.

First, we present a theorem from [66] which establishes the connection between PDEs
and SDEs under standard textbook assumptions. We assume that we have a stochastic
process Y = (V}),», with state space [0,7] x R? and Lipschitz continuous drift and

diffusion coefficients b : R* — R?, ¢ : RY — R4*™ which is the unique strong solution of
dY; = b(Y)dt + o(Yy)dW;, Yy =1y € RY

Again, (W})scjo,r) is an m-dimensional Brownian motion in this scenario. Moreover,
we denote by Y;>" the solution at time ¢ > 0 which starts in = at time s < ¢t. The
infinitesimal generator £ of Y is defined by

0y\] _
) :%E[f (v t)] 1)

Here, we denote by D the set of functions f : R* — R for which the above limit exists
for all y € RY. If we have f € C? (Rd) then f € Dy and the generator has the form

d af 1 <& o f
EDW =205, 5 3 (07), W, (5.1)
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see e.g. Theorem 7.3.3 in [66]. The right side of is called the second order differ-
ential operator associated with the drift vector b and the diffusion matriz . The next
result is Theorem 8.1.1 from [66] which establishes the connection between SDE and
PDE solutions.

Theorem 5.1. Let Y be as defined above with infinitesimal generator L and let f €
C2(RY).

(i) Define
u(ty) =E | ()] (5.2)

Then, u(t,-) € D for each t € [0,T] and

ug — Lu =0, te (0,T),y € R?
w0,9) = f(y),  yeR”

where L is applied to the functiony — u(t,y). Equation (5.3) is called Kolmogorov
backward equation.

(5.3)

(ii) Moreover, if w(t,z) € CY2([0,T] x R?) is a bounded function satisfying (5.3) then
w(t,y) = u(t,y) given in (5.2).

Remark 5.2. In financial applications f is often considered as a (discounted) payoff
function which is applied at the final time point T'. It is therefore useful to perform a
time-shift from t to T —t. Because of the Markov property of our solution Y, Equation

then changes to
v(t,y) =u(T —t,y) =E [f (Y;‘;y)}

and v satisfies
v+ Lu =0, t>0,yeR?
o(T,y) = fly), yeR™

For our main proof in Chapter [f] we need a similar result as Theorem (i) for the
Heston model. This was given by Briani et al. in [13].

Proposition 5.3 (Briani, Caramellino, Terenzi (2021)). Let ¢ € N and suppose that
8%7)0 e CTV(R x Ry;R) for every j =0,1,...,q. Set

pol

u(t,z,v) =E [f <X%$’”, V;?”)} )
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5. Regularity Results for the Kolmogorov backward PDE

Then, u € C;gol,T (R x Ry;R). Moreover, the following stochastic representation holds:
For m 4+ 2n < 2q
o oNu(t, z,v)
- - 7t7 b ’t7
- [6 nx(T t)a;nagf (X;L« xv’ VQCL v):|

T
1 1
+ nE |:/ e*nK(T*S) [28gn+2831u + 28;n+1aglu:| (S7X;”L,t,x,v’ ‘/antjv) ds
t

where OO 1u = 0 when n = 0 and (X"’m’”, V”7t’”), n > 0, denotes the solution to
the log-Heston SDE starting in (x,v) at time t with parameters:

TL0'2

Pn=17p Tn =T+ npo Kp = K 9n29—|—2— op = 0.
K

In particular, if ¢ > 2 then u € C;ﬁ ([0,T] x R x Ry;R) solves the PDE

{atu(t, 2,0) + (Au)(t,z,0) =0 (t,z,v) € [0,T) x R x R, 54)

w(T,xz,v) = f(z,v) (x,v) e Rx Ry

where A is the second order differential operator associated with the log-Heston SDE,
i.e.

(Au)(t,2,0) = = Fus(t, 2, v) + K (0 v)uy(t,2,0)
+ g (s (t, 2, 0) + 2pougy(t, 2,v) + 0 Uy (t, 7, 0)) .

Remark 5.4. Briani et al. prove this proposition for functions f that fulfill éﬁjf €

Cfo’(’)‘f—j (R x R4 ;R) which means that they are additionally in LP. They show that then

u € Cﬁ(’)’f,T (R x Ry, R) holds. As they stated in Remark 5.4 of [13], the Proposition also
holds if one drops the LP-property.

Remark 5.5. Proposition[5.3 tells us that for the weak error analysis, we need test func-
tions (e.g. payoff functions) f € C;gl with ¢ > 2 to get a solution u of the Kolmogorov
backward equation that is q-times differentiable and polynomially bounded.

For our weak error analysis in Chapter [0 we need an additional result for
u(t,z,v) = u(t,z,v+7)
where v € [0,1]. A direct application of Proposition gives:

Lemma 5.6. Let f € Cgol(R x Ry;R). Then, there exist Cy > 0 and a > 0 such that

sup  sup |0L07u (t,z,v)| < Cp(1+ |2]* + |1 +0[*), =€ R,v >0,
~v€[0,1] t€[0,T)

if 4+ 2m < 6.
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Moreover, note that the function w” satisfies by construction the PDE

u] (t,0) + (A7) (t,2,0) = 2 (RuT)(t2,0),
where

(Ru)(t, x,v) = ug(t, ,v) + 2ku)(t, 2,v) — ug,(t, =, v)

2

— 2poul, (t,z,v) — oul,(t,x,v).

Lemma then yields

sup sup |[(Ru?)(t,z,v)] < Cr(1+J2|*+]14+0]*), ze€R,v>0,
ve[0,1] te[0,T)

%(Rtﬂ)(t,x,v)

sup sup
v€[0,1] t€[0,T)

<Cr(1 4+ |z|"+ 1 +v]|"), zeR,v>0,

i(RuV)(t, x,v)

sup sup
~v€[0,1] t€[0,T)

<Cr(l+|z|"+ 1 +v|"), zeR,v>0.

for f € Cgol(R x Ry;R).
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Chapter 6

Weak Convergence

As we have seen before, the knowledge of the weak error

eweak(N) = |E[f (zn,vn) — f(X7, VD)]|

plays an important role for Monte Carlo simulations. Despite the apparent simplicity
of the Heston model, only a few results concerning the weak convergence order of its
discretizations have been proven. Since the square root function which appears in both
of the SDEs is non-Lipschitz, standard results cannot be applied. Additionally, all
of the proposed time-discrete schemes for the CIR process require "fixes" to preserve
the positivity of the scheme either for the full parameter regime (e.g. explicit Euler
schemes) or when the Feller index is low (e.g. drift-implicit Milstein and drift-implicit
Euler). This makes their analysis even more challenging.

The first proof for a full discretization of the Heston model can be found in [5] where
the implicit Milstein scheme for the CIR process and the Euler scheme for
the log-price process were analyzed. Under the assumption that v > 2, Altmayer and
Neuenkirch prove weak convergence order 1 for functions f which are twice continuously
differentiable with compact support and which have a Holder-continuous second deriva-
tive of order € > 0. The assumptions on the function f arise from using the results
from [26] where the regularity of the solution of certain degenerate parabolic PDEs was
studied. The article |74] analyzes a semi-exact scheme where the CIR process is simu-
lated exactly from the non-central chi-squared distribution and the log price process is
discretized with the trapezoidal scheme from Equation . Here, a weak convergence
order of 2 is proven for polynomials for the whole parameter range, i.e. v > 0.

The (positivity preserving) weak approximation of the CIR process has been studied by
Alfonsi in [1,2]. In particular, weak first and second order schemes have been derived
in these references. The article [10] studies the weak error of the symmetrized Euler
scheme for the CIR process.

First, we present some of our own results concerning the weak convergence of semi-
exact discretization schemes. In the main part of this chapter, we analyze the weak
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convergence rate of two Euler type discretization schemes, the symmetrized Euler (SE)
and the Euler with absorption fix (AE) which were presented in Chapter [3|and analyzed
in Chapter [d For these two schemes, we prove a weak convergence order of 1 for v > 1
and a weak convergence of order v—e for arbitrarily small € > 0 for the case v < 1. These
results have been published in [56]. Then, we extend the findings from [5] for the implicit
Milstein scheme using the results from Chapter [ Finally, we give an overview of all
schemes and their convergence rates that can be proven with the presented techniques
and results from this chapter. In our analysis, we observe the usual trade-off between
the smoothness assumption on f and the restrictions on the Feller index v.

Recall for the following results that our discretization grid is

O=to<ti<...<ty=T

and that we denote n(t) := max{k € {0, ..., N} : t <t} and n(t) := t,().

6.1 Semi-Exact Discretization Schemes

Inspired by the two results which we presented in the introduction of this chapter, we
analyzed a semi-exact discretization scheme in [54]. We assumed that the CIR process
can be simulated exactly and studied the Euler and semi-trapezoidal discretization for
the log-price process from Equations and . Using the results from [26], we
could prove a weak convergence order of 1 for both schemes.

Theorem 6.1. Let € > 0 and

At = max t — .
ke{o,...,Nq}' k41~ Bl

Let the variance process be simulated exzactly, i.e. vy = Vi, for k€ {0,...,N}, and the

log-price process be discretized as in (3.5) or (3.6)).
(i) If f € C2*5(R x [0,00);R) and v > 3, then both schemes satisfy

limsup N [E [f(zn, vn)] — E[f (X7, V1)]| < .

N—o0

(ii) If f € C4¢(R x [0,00); R), then both schemes satisfy

limsup N [E [f(zn,vn)] — E[f (X7, Vr)]| < o0

N—oo

Note that it was possible to drop the restrictions on the Feller index in the second case.
Using the results from [13] which we stated in Proposition we could give an error
expansion for both schemes.
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6. Weak Convergence

Theorem 6.2. Suppose that f € pol(]R x [0,00);R). (i) Then, the Euler scheme (3.5)
satisfies

E[f(zx,on)] — E [f(X, Vir)] = Z/tt”“ /ttE[H(s,t,is,:%t,I/;,%)] dsdt + O((AD)?),

where
A 1 pr . 2 .
H(Svt>$sa T, Vv& V;f) = 5 - (/’/‘7(9 - ‘/;)um(taxtv ‘/t) +o ‘/sumv(svxsa ‘/s))
g
=) (0= Vit 1, Vi) + 02V, i, V.
9 H( s)uaxc( y Lt t) +o sua:mv(syx& s))
and

. . Pk 1
Tt = Ty + (U - 2) Vi (t )+ V1= 02 Vow) (B = By)-

In particular, for an equidistant discretization with tp, = kT /N, k=0,...,N, we have

T T
lim N (E [f(acN, ’UN)] — E [f(XT, VT)]) = 5 /(; E [H(t, t, Xt, Xt, V;g, VZ)] dt.

N—o0

Here, u denotes the solution of the associated Kolmogorov PDE, see Equation (5.4)).
(ii) For the semi-trapezoidal scheme (3.6)), we have

tn+1

E[f(zxn,vn)] — E[f(X7, V)] / / (s,t, &5, 8¢, Vs, V)] dsdt + O((At)?),
tn tn

where

1— 2
H(S,t,.ﬁs, T, Vs, Vt) = _( 2,0 ) (5(9 - Vs)umt(ta Ty, V;t) + U2Vsummv(37£'37 V;))

and

o 2 2

A A pr 1\ Vi+ Vo
T = Zy(r) + ( - > S () + V= 924 Vi (Be—
In particular, for an equidistant discretization t, = kT/N, k=0,...,N, it holds

T T
Jim N (E [f(zx, vx)] = E[f(Xr, Vr)]) = 2/ E[H(t,t, Xi, X, Vi, Vo)) dt.
—00 0

Here, u denotes again the solution of the associated Kolmogorov PDE as in Equation

6.
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6.2 Weak Convergence Order of two Euler-Type Discretiza-
tion Schemes

Now, we turn to a full Euler discretization of the log-Heston model. In particular, we

will analyze the scheme (|3.8|)
Vk41 = fl(@k) t K (‘9 - f2(@k)) (tk+1 - tk) tovy f3(6k) (Wtk+1 - Wtk)

) (6.1)
Vkt1 = [3(Up41)

for the choice

fi = fo = f3 € {abs, sym}. (6.2)
which are the symmetrized Euler (SE) and the Euler with absorption fix (AE) (see Table
. The price process is discretized as in (3.9)), i.e. the standard Euler scheme

1
Tpy1 = Tk — §Uk(tk+1 - tk) + \/QTk (/0 (Wtk+1 - Wtk) +v1- P2 (Btk+1 - Btk)) : (6-3)
Our analysis leads us to the following main result of this chapter:

Theorem 6.3. Let [ € CSOZ(R x [0,00); R) and (vy, k) peqo...ny be given by (6.1), (6.2)
and (6.3). Furthermore, let the discretization grid be tp, = kAt,k € {0,..., N} where
At = % Then, we have

limsup N |E [f(zn,vn)] — E[f(X7, Vr)]| < o0

N—o0

ifv>1 and

limsup N® [E[f(zn,vn)] — E[f(X7, V7)]| =0

N—o0
foralla € (0,v) if v < 1.

Thus, for v > 1 we have weak convergence order one and for v < 1 we have weak
convergence order v — ¢ for arbitrarily small € > 0.

Remark 6.4. The decay in the weak convergence rate for v < 1 is due to the appli-
cation of Propositions [{.J and [{.6. However, this decay is also observed in numerical
simulations of the respective Euler schemes (see Chapter @ Interestingly, the conver-
gence order v also appears for the CIR process in a different context, namely for the
L'-approzimation at the terminal time point (see Chapter @

Remark 6.5. Our analysis unfortunately does not carry over to Euler schemes for the
choice

fl = 1id, f2 € {ida abs, Sym}7 f3 € {abs, Sym}u

i.e. schemes that take negative values. As a consequence, the approximation of the CIR
component is not bounded from below which prohibits our application of the Kolmogorov
PDE and Ito’s lemma.
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6. Weak Convergence

Remark 6.6. Bally and Talay analyze in (8] the weak error of the Euler scheme for
SDEs with Cp°-coefficients, i.e. coefficients which are infinitely differentiable and whose
deriatives of any order are bounded, that satisfy an additional non-degeneracy condition
of Hormander type (UH). They establish weak order one for the Euler scheme for test
functions f that are only measurable and bounded. However, the log-Heston model does
not satisfy the above assumptions and an adaptation of the approach of [8] to the log-
Heston model leads to the restrictive assumption v > % in [3].

6.3 Proof of Theorem (6.3

All preliminary results for the proof were presented in Section and Chapter [} We
recall the time-continuous extensions of the SE and AE;, i.e.

t t
oF =0 —l—/ k(0—05, ds+a/ /05 AW
t T n(t) () ( n( )) 0(t) n(s)
t t
— 26*0'/ 1 2% <04 /o* s dWS - 2C*/ 1 <OWVR 0 — o s ds

te (Lg(z*) — L2 (z*)) . telo,T],

with ¢ = 1 and ¢ = % We start with the now classical approach of Talay
and Tubaro [70|: Since E [u(T,zn,vn)] = E[f(zn,vn)] and w(0, z0,v0) = u(0,z,v) =
E [f(XT, Vr)] the weak error is a telescoping sum of local errors:

E[f(zn,vn)] = E[f (X1, V1)]| = ZE [u(tn; Tn, vn) — u(tn—1,Tn—1,0n-1)]

n=1

] ‘

Since ﬁ?bs can be zero with positive probability, technical difficulties with the Ito-formula

for u at v = 0, i.e. at the boundary of the state space, arise. Therefore, we will analyze

first
N

ZE [U(tn, Ty, Up + '7) - u(tn—ly Tp—1,Vn—1+ 7)]

n=1

with v > 0 and in a second step exploit that

[E[f(zn,vn) = f(X7, V)] |

N
Z E [U(tnu T, Up + ’7) - u(tn—la Tpn—1,Up—1t+ 7)]

n=1

= lim sup

T\O

This regularization is not required for the symmetrized Euler scheme, but to present
both proofs in a concise way, we use it for both schemes.
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After the previous preparations, we now apply the Ito formula with v € (0,1] to the
summands of the telescoping sum. Using (4.6) and (4.11)) we have

el :=E[u (tnt1, Tnt1, Unt1) — U (tn,y Tn, Un)]
tn+1 1
= [ R e at i) - oyttt ) + w6 - oy,
tn
1 Ak ¥ Sk ok Ak o7 Sk sk 1 2~k o Ak sk
+§Un(t)uzz (ta TtV ) + POV (1) Uy (t’ Lt Uy ) + 50- Un(t) Yov (t’ Lt Vg ) dt
tn+1 ~ R R ~ R .
_ 20*/t E [ﬂ{ztgo} (/{(9 — By ug (8, 27, 0F) + podpygyuldy (L, &7, v:))} dt

tn+1
‘E [ / uz<t,f:,@:>dL9<z>} .
tn

Note t — L;(z) is pathwise increasing and that fttn”“ ug (t, &5, 0F)dLY(z) is a pathwise

Riemann-Stieltjes integral. We again drop now the x-label to simplify the notation.

Since
u] (t2,0) + (A (t,2,0) = 2(Ru?)(t2,0)
with
(A (t,2,0) = = Sud(te,v) + K(0 = v)ul(t2,v)
+ g (uly (. 2,0) + 2poul, (t, 2, v) + o], (t, z,v))
and

(RuY)(t, z,v) = u)(t,x,v) + 2ku) (¢, z,v) — u), (¢, z,v)

2

— 2poul, (t,z,v) — o“ul,(t, z,v)

we can write

tn+1 @t — {;n(t) o o o
el = E — (wl(t, &, 0p) + 260 (t, Ty, 0r) — u) (t, &y, Or)
tn
—2pou, (t, &, 0¢) — o2, (t, B¢, 0¢)) ] dt

py tn+1
+ 5 / E [(Ru”’)(t, .i‘t, ’LA)t)] dt
tn
tn+1
— 20*/ E []l{ztSO} (/{((9 — ﬁn(t))uz(t, i’t, @t) + paﬁn(t)ugv(t, .ﬁ't, ﬁt))] dt
tn

tn+1
IE [ JAREEROE
tn

— e'ng”Y) _|_ 6%277) _.I_ 67(1377) + 67(7/477)
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6. Weak Convergence

with
tn+1

eglla"/) = E |:/ UZ(t,:%ta,[)t)dL?(z) )

tn
) tnt1

2 = _9c* /t E [1z<0) (R0 = by ud (6, 20, 00) + pordyayug (&, 00))] dt,
tn+f

B = / E [(8r — Oye)) (Ru?) (L, &4, 0r)] d,
tn

tn41
o) .= 7 / E [(Ru")(t, &, o)) dt.
tn

6.3.1 The first term
Recall that fttn”“ ug (t, &4, 0;)dLY(2) is a pathwise Riemann-Stieltjes integral and L(z) is

pathwise increasing. Therefore we have

< sup |’U,Z(t, jh ﬁt)‘ (Ltn+1 (Z) - Ltn (Z)) :
te[tnytn+1]

tn+1 0
[ e ananarie)
tn

With Lemma [5.6] it follows

tn+1
/ (8,30, 8)dLO)| < O sup (L4 [& + 11+ %) (Lo, 1 (2) — Lo, (2)) -
tn

te[0,7

The Lemmas [£.2) and [4.§] yield the existence of a constant Cj, > 0 such that

(=] 1ym§@,

and Holder’s inequality then gives
1
1) < Cp (B[ Ltyen (2) — Ly (2] *7]) 7

for B > 0. With Proposition we can therefore conclude that

sup (14 |2 4+ |1 + 9¢]%)
t€[0,T]

v 1l—g >
At) 1+8)(1+8)

eI < Cps (At) T2 <
g

, (6.4)
uniformly in v € (0, 1].

6.3.2 The second term
Recall that

tn+1
6%2’7) = —26*/t E []l{ztSO} (/1(9 — @n(t))UZ(t, .Cﬁt, @t) + pa@n(t)ugv(t, .Cﬁt, f)t))] dt.
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An application of Holder’s inequality yields

1

tn+1
e27) < 90+ / (P(z < 0))TH
t7L

A o ) ]\
: <IE [(5(0 — By U (E, &y, 00) + podyyudy, (t, &, 0r)) }) dt.

Lemma [5.6) and the Lemmas [1.2] and [£.8] give that

2 <E [(5(9 — Oty o (t; Tt, 0r) + PODy (1) Uz (t, B4, 0y)) P ]) <Crp

for g > 0. Since

A v(l—e¢)
Pl <0)<c (;) . tenT),

by Proposition we end up with
(2.7) AR I
ez, < CpAt = ;

uniformly in v € (0, 1].

6.3.3 The third term
Now, we consider

1 tn+1 R N ~ A~
B = / E [(6; — vn(t))(RUV)(t,xt,vt)] dt.
tn

Due to our assumptions the function k7 := Ru” belongs to C;OLT. Using the expression
for v; from Equation (4.6) we have

t t
( / k(6 — iy))ds + 0 / @n(s)dWS> K (8 e, m)] dt
n(t) n(t)

tn+1 t
+/ E (—20*0/ Liz.<o0y @n(s)dWs> k’v(t,fﬁt,@t)] dt
tn nt)

i t
—2c* /(t) ]l{zsgo}li (0 — @U(S)) dS) k‘w(t,:i't,f}t)] dt
n

tn+1 -
+/t E _(L? (2) = Ly (z)) m(t,:f:t,ﬁt)} dt.
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6. Weak Convergence

Looking at the first term, we have using Hoélder’s inequality, Equation (5.5) and the
Lemmas that

t
E K/ k(0 - 0n(8))ds> K (¢, 4, 61)
n(t)

By an application of the law of total expectation, the Holder and the Minkowski in-
equalities we have

t
IE/ S dWok (24, 01)
[n(t) n(s)
t
IE/ b, dWe (K (L, 3y, 00) — K7 (4 &y gy, 6
[n(t)\/ n(s)AWs (K7 (t, e, 00) — K7 (t, @) n(t)))”

t
<E / V(AW
{ () \/ “n(s)

The mean value theorem now gives

< CpAt. (6.6)

1
212
1/2
] . (E [‘k’y(t’jt”ﬁt) - k;’y(t,i'n(t),'at)}Q}

1/2
+E Ukﬁ(tain(t)vﬁt) - W(t,in(t),@n(t))ﬂ ) :

1
k,y(tv Ty, 615) - k(t> :ﬁn(t)aﬁt) = / k’;(t, ATt + (1 - )‘)a}n(tﬁﬁt)d)‘ ('i%t - '@n(t))
0
and so

1/2 1 1/4
E [W(ta B0, ) — k(t,@n(t),@t)f] < / E [\k;(t, Ady + (1— A)@n(t),@t)ﬂ X
0

}1/4

B [[d |

Equation (5.6) and the Lemmas imply that

1 471/4
sup / E [\kg(t, iy + (1= Ny, )] } X < C.
te[0,7] J0

Thus, we have again by Lemma [4.8] that
PN A NNPIRE 1/2
E Uk”(t,xt,vt) - k'y(t,xn(t),vt)‘ ] < CrAt 2,
Similarly, we obtain

R . . . 1/2
E [‘kv(ta Lo(t)s Ut) - k,y(ta Lo(t)s Un(t)) ‘2} < C’fAtl/Q
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by Equation (j5.7) and the Lemmas Since

t
/U5y dWs
/n(t) n(s)

by Lemma [4.2] and the Ito-isometry, we end up with

[ et
1[«:/ Sy dWk (34,
oy VIO (001

1
212

< C(an'?

E

< CfAt. (6.7)

Similarly, we obtain

t t
E —2c*o/ 1., <opy/On(s)dWs — 2c*/ La,<op (0 — Dy(s)) ds | K7 (¢, 24, 5r)
n(t) B n(t) -
< CfAt
(6.8)
With the Holder inequality for some § > 0, we have
tn+1
[ B2 - Bgta)) e eana0)]
tn
tn+1 0 0 1+8 ﬁ 148 %
< / E ULt(z) . Ln(t)(z)‘ } E [|k”(t,:ﬁt,ﬁt)] 5t
t’IL
As before, we can show that there exists a constant C'y g3 > 0, such that
1187145
sup E [’m(t7§7t,@t)\ 7 } < Cyp.
te[0,7)
Since . -
1+8] T+8 1 A\ Troas)2
" UL?(Z) _Lg(t)(z)‘ ] < Cp6 (At)+92 (s) ’
again by Proposition we obtain that
lnt1 0 0 o
/t E[(LU(2) ~ Ly (2)) K (1,30, 00)| dt‘
1—¢
1 A\ TFo+8)2
< CrpsAt (At) 1497 ( £ ) o (6.9)
Summarizing , (6.7]), and we have shown that
1—¢
1 A\ T2
€3N < O} 5,508 (At + (Af)TT? <8> (roaes ) : (6.10)

uniformly in v € (0, 1].
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6. Weak Convergence

6.3.4 The fourth term
Finally, consider

tn+1
i) =1 / E [(Ru”)(t, &1, o)) dt.
tn

Since

sup E[(Ru”)(t, &, 0:)] < Cf
te[0,T

due to Equation (5.5) and the Lemmas we have that

leg;w < CAtL, (6.11)
gt

uniformly in v € (0, 1].

6.3.5 The conclusion

Recall that At = T/N. Adding the Estimates (6.4)), (6.5)),(6.10) and (6.11]), we have
derived that

1—

v
At) (1+5)(1+8)

1
1] < Cf .6 (A1) 067 (

€
1—¢
At\ V18
+ CfﬁAt <6> ¥
1—¢
1 At V—

+Cf,ﬁ,§At (At—i— (At)(1+/3)2 <6> (14-8)(1+8) )
+ CpyAt.

For any given € € (0,1/2) we now can find € € (0,1/2], 8 > 0 and § > 0 such that

! +v 1-c >1+v(l—c¢)
1+p)? (A+6)A+p6)>
and 1
1+I/1_:; >14v(l—e).

Consequently, we obtain
€3] < Creat (At + (A)7079) 4 CrAt.

and

N-1

> lenl < Cpy+ Cpe (At + (A0)079).
n=0
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Since

N-1
E[f(zn,vN) = f(X7, V)] | < 1imS(1)1P > el
v n=0

we have that
E[f(zn,vn) = f(X7, VD)l | < Cpe (At + (At)V(l—e)) ’

which concludes the proof.

6.4 Weak Convergence Order of a Milstein-Type
Discretization
We can use the techniques of the proof of Theorem [6.3|and the results of Briani et al. [13]

to give new results for the scheme from [5] which was mentioned in the introduction of
this chapter. We assume that the CIR process is discretized by the implicit Milstein

scheme ({3.10)), i.e.
o
Vg1 = Vg + K (0 — vgg1) (tps1 — t) + ook AW + vy
1 o 2 o?
- IA ) 0— 7 ) (trpr —t
1+ K(tgtr — te) <<\/7Tk+2 e +<F6 4>(k+1 k)>
(6.12)

and the price process is discretized by the standard Euler scheme (6.3). As in [5], we
define the time-continuous extension of the implicit Milstein scheme as

(A~ (e~ )

A t t - o?
w=%m+/ w@+/ G—W@+20ﬂ—mm0“%
n(t) n(t)
1

T 14wt —(t)

(6.13)

’lA)t Vt.
Before we start, we need some preliminary results for the implicit Milstein scheme.
From [5], we have the following Lemma:

Lemma 6.7. Let v > % The implicit Milstein scheme has bounded moments, it holds
that

E[sup | <C

t€[0,7

forp>1 and
sup E [ﬁt_p} <C
t€[0,T]

for0<p<wv-—-1.
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6. Weak Convergence

We also need the following results.
Lemma 6.8. Let p > 1. We have

sup E [0 vs/’2 < 00
stelo,1] | [t — s|?
and
A~ _ ~ p_
sup E M < 00.
5,t€[0,T] |t — s|p/ |

Proof. The proof of the second statement is analogous to the proof of Lemma [1.8] except
that we now use the results bounded moment result from Lemma For the proof of
the first assertion, we rewrite (6.13). For this, we denote additionally n™(t) := min{k €
{0,..., N} 1ty > t} and 7 (t) := t,,+ (). First, we have

. A t . t - 0.2
Ut = Uy (p) +/ K (9 — vt) ds +/ (U Un(t) + ? (WS — Wn(s))) dW
n(t) n(t)

and

tr tE 0.2
Vg, = Vo + / K (9 — @n+(5)) ds + / <U 1777(5) + 5 (Ws - Wn(s))> AW
0 0

for all k € {0, ..., N}. Combining both terms, we obtain
t

n(t)
f)t:f)o—i-/ n(9—®n+(s))ds+/ k(0 — ) ds
0 n(t)

¢ - 52
+/0 <O’, [Un(s) + 0} (WS — Wn(S))> dW
t

t
= 0 + / Kbds — / (Ot () Lissn(yy + 0L gssn(eyy) ds
0 0

t - 0.2
+ /0 (0\/%3) +5 (W - Wn(s))> dw

Now, let p > 2. We have

t
E [|f}t — f}s|p] =E |: /{9(75 - S) - I{/ (ﬁn'*‘(u)]l{ugn(t)} + @t]l{u>n(t)}) du
s

t t 2 p
+ 0/ ,/@n(u)dWﬁ/ 5 (W= W) W, }
t

<G <It — 8P4 |t~ slp‘l/ E [[y+ () Liusn) + 0L pusny|"] du

t p/2 t ) p/2
/ By (uydu / (W = Wywy)” du

<G, (yt — 8P+ |t — syp/2>

+E +E
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where we used Lemma and Holder’s inequality again. The case p € [1,2) can be
treated by using the Lyapunov inequality. O

By assuming the same regularity for f as in Theorem we can prove a weak con-
vergence order of one for the whole parameter range where the Milstein scheme is well-
defined.

Proposition 6.9. Let f € C’gol(R x [0,00);R), v > % and let (v, Tk)keqo,.., N}y be given
by Equations (6.12) and (6.3)). Furthermore, we set At = % Then, we have

limsup N [E[f (e, vn)] - E [f(Xr, V)] < oc.

N—oo

Proof. We only need to make some slight changes to the proof from [5| but we present
them for completeness. As before, the weak error is a telescoping sum of local errors:

N-1
|E [f(l’N, UN)] —-E [f(XT’ VT)” = Z E [u(tn+1a Tn41, UnJrl) - u(tna Tn, Un)] .

n=0

Note that vy for all k € {0, ..., N}, is strictly positive since v > % From [5], we have

en =K [u(tn-i-l: Tn+1, Un—l—l) - u(t, Ty Un)]

= C'E’LI) + 6,22) + 6,5,743)

with
tni1 2
1) ._ kT .
ey’ = t—n(t))E U — O)uy(t, Ty, 0
Wi [ e | gy = Ot )
K ) o o o k0 R
20 = ) (ug(t, &, 1) — e (t, 34, 01)) — —— U (t, 21, D)

2 1+ w(t —n(t)

) Uy (L, ¢, 6t):| dt

o? 4kf — o2

C2(L+ (- n(1)) (Kﬁt AT+ Al ()

tni1
e@ / E[ Oty (Wi = Wiy (%ux(t,;ﬁt,ﬁt) - %um(t,:ﬁt,f}t))]

po’

+E { by (We = W) (—2(1 e n(t)))um(t, i, m)] dt
e — /t:"“ E [((Wt - Wn(t))Q —(t— n(t))) <"82 (ug(t, &4, 1) — um(t,a:«t,@t))ﬂ

FE (W= W) = (1= (1)

(Caarsramyeettania)
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6. Weak Convergence

From Proposition we know that for f € Cgol there exist C'y > 0 and a > 0 such that

sup |0L0Mu(t, z,v)| < Cp(1+|z|* + v|*), = €R,v >0,
t€[0,T)

if I +2m < 6. Now with Lemma [6.7, Lemma and the Holder inequality, we obtain
tnt1
ey [ = DB+ ) 1+ a0l + )
< Cy (Ant)Q.
By the same arguments, we have that
(eﬁf’)‘ < Cf (At)2.

For the second term, we first set

po’

21+ k(t —n(t

A g Ao g A PN
k(tvxtvvt) = §u$(t7xt7vt) - §u$$(t7 xtavt) - )))ul"u(taxtavt)'

By an application of the law of total expectation, we get

tnt1
o= [ [y (VW) bt 070

tn+l
= /t E[\/one) (We = W) (k{31 50) = B(t By, y0)) |

And again, by Holder’s and Minkowski’s inequality
E[\/onw (We = W) (k(t, 1, 50) = k(t, g, Oe)]

971/2
<E U\/ﬁn(w (Wi = Wy)| ]
1/2 1/2
: <E “k(t-’i’t,@t) - k(tajn(t)a@t)lﬂ +E Uk(t’jjn(t)a@t) - k(tvin(t)v@n(t))‘Q] > .

As in the proof of Theorem [6.3] the mean value theorem together with Lemma [6.7] and
Lemma [6.8] gives

1/2 1/2
E |kt 20, 00) = bty 0[] + B | Bt o), 80) — Bt ey, ey

< Oy (Aan)!?

and therefore,

E /o) (We = W) ((t, 0, 0) = k(t. 201, 0y0)) | < CrAt
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by Lemma [6.7] as well as
‘69‘ < Cj (A1),

Summarizing, we have

lenl < Cy (At)?

and
N-1
B [f (xn, on)] — B [f (X, Vo)l = | Y en| < CpAt
n=0
and the proof is done. O

6.5 An Overview of Weak Convergence Results

Since we presented many different time-discrete schemes for the log-Heston model, Table
[6.1] gives an overview of weak convergence rates that were proven so far. We do not claim
this table to be complete. However, we can observe a well-known characteristic of weak
convergence proofs that involve the CIR process: The trade-off between the regularity
of the function f and the restrictions that we impose on the Feller index. Parameter
restrictions for the CIR process are usually necessary due to the need of finite negative
moments (recall Proposition . In Chapter @ we will perform numerical simulations
with the schemes that were analyzed in this thesis.

Scheme Regularity Parameter range Order From
Exact + Euler fecr= v>3 1 [54]
Exact + Euler fecis v>0 1 [54]
Exact + Semi-Trap. feczts v>3 1 [54]
Exact + Semi-Trap. fecCts v>0 1 [54]
Exact + Trap. f polynomial v>0 2 [74]
SE + Euler fe Cgoz v>0 min{l,v — e}  This thesis
AE + Euler fecs, v>0 min{l,v —e} This thesis
Impl. Milst. + Euler f measurable, bounded v> 4 1 13]
Impl. Milst. + Euler fects v>2 1 [5]
Impl. Milst. + Euler fe Cgol v > % 1 This thesis

Table 6.1: Overview of weak convergence rates
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Chapter 7

Li-Approximation of the
Log-Heston SDE: Upper Bounds

We are now turning to the analysis of the strong convergence of numerical schemes for
the Heston model. In particular, we study the L'-convergence of the explicit Euler
schemes from Table Explicit Euler schemes for the CIR process and for the full
Heston model are popular among practitioners because they are easy to implement and
computationally cheap. However, results involving a (polynomial) strong convergence
rate for these Euler schemes are rare and usually come along with a strong restriction
on the Feller index.

Recall the general framework for explicit Euler schemes for the CIR process

U1 = f1(0) + £ (0 — f2(0k)) (trs1 — te) + 0/ f3 () (Wi, — Wiy

- (7.1)
Vg1 = f3(Uk11)
where we can choose the f; as
fl = id, f2 € {id7 abs, Sym}7 f3 € {abs, sym} (72)
or
fi = fo = f3 € {abs, sym}. (7.3)

For the first case, we have the following time-continuous extension from Section

t

t
Uy =0 + k(6 — Up(s)))ds + / Un(s))AWs,
t = Un(e) / (0 — fa(ty(s)))ds +o " J3(On(s)) te0,T]. (7.4)

o7



For the second case, the time continuous extensions for the SE and the AE are

t t
’IA)Z( = ’IA};(t) —+ / K (9 — @:](S)> dS + O'/ A /ﬁ;(s)dWS
n(t) n(t)
t t
—26*0/ Tyrcory /0F dWs—Qc*/ Liscorb (0 — 00 ) ds (7.5)
() {z5<0} n(s) {zz<0} ( n( ))
¢ (L)~ Liy(z9),  teloTl,

with ™ = 1 and ¢®* = % This was shown in Section The time-continuous
extension of the Euler scheme (3.9) of the log-price process is given by

. . 1.
Ty = Zyy) + <7" - 2U77(t)> )+ P/ Oy Wt (t)
++v1- \/ Bt n(t

Furthermore, we also analyze the strong convergence of the implicit Milstein scheme
for the CIR process. We recall the time-continuous extension of the implicit Milstein
scheme which is

(7.6)

. A t . t - 0.2
Oy = Vpyy + / k(0 —0)ds + / <O’ Oty + - (WS — Wn(s))) dWs
n(t) n(t)

1 . /t /t ( 0.2 )
== o+ [ wbds+ o\ [ + o (We = Wyie) ) dW,
[T nl—1@) ( ot/ " nw + 5 ( n(s))
(7.7)

This chapter is now organized as follows: First, we summarize existing strong approx-
imation results for the CIR process and the log-Heston model. Then, we present some
preliminary results which are needed for our proofs. In the third part, we then prove
upper bounds for the L'-approximation of the CIR process by explicit Euler methods
and by the implicit Milstein method. Afterwards, we combine these schemes with the
explicit Euler scheme for the price process and prove upper bounds for the L!-error of
the full Heston model. Finally, we summarize our results.

In our proofs, we assume an equidistant discretization grid with At = %

7.1 Previous Results

The strong approximation of the CIR process has been intensively studied in the last
years. The first works on this topic are [1,123,37]|, which prove strong convergence
(without a polynomial rate) of various explicit and implicit schemes using the Yamada-
Watanabe approach.
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7. L'-Approximation of the Log-Heston SDE: Upper Bounds

7.1.1 Drift-implicit Euler

One of the schemes of |1] is the drift-implicit Euler scheme which we presented in Section
in Equation . It is positivity preserving for v > % This scheme turned out
to be accessible to a more detailed error analysis, see [2,24,43,62]. In |2|, the following
time-continuous extension of for t € [tg, tr+1] was analyzed:

2+ 5 (Wy — Wy,) (2 + § (Wi — Wy,)? (%0—%2) (t —tx)
24K (t—tr) (24 (t — tg))* 2+ K (t—ty) (7.8)

by = 32,

Forv>2and 1 <p< %V, it was then proven that

1/p
E| sup |V; — ﬁt|p] < CAt.

t€[0,T]

Another possibility is to look at the linear interpolation between yj and yi11 which is

.tk —t t— 1t
2t = 2k + Z

N (7.9)
by = 22,

In |24], the authors show

1/p
E | sup \Vt—ﬁtlp] < Cpy/|log (At)|VAL

te[0,7)

for v > 1 and 1 < p < v. For the same scheme, we also have

min{u,l}f%

1/p
sup |V — ﬁt|p] <Cp (At w7 F
te(0,7)

E

from [43] for v > J and p > 1.

7.1.2 (Truncated) Milstein

A breakthrough for the (very challenging) case v < 1 was provided by [32] and [31]. For
the truncated Milstein scheme (3.11) from Section we have

R 1/ min{%,u} e
sup B[V, —a,["]/" < Cp (At) 7
te[0,7T
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for p > 1 from [32]. Here, the continuous-time extension v is a constant interpolation,
ie.

Uy = @tk t e [tk,tk+1).
In particular, the truncated Milstein scheme attains L!-convergence order min{3,v} —e¢
for the whole parameter range. For the implicit Milstein scheme (3.10) from Section
m we can find strong convergence results in [62]. For the linear interpolated scheme
similar as in (7.9)), we have
1/2

< C/|log(At)|[V AL

E | sup [V; — o

te[0,7)

for v > 3. Furthermore,

sup E H%k - @tkH < CAt)
ke{0,...,N}

again for v > 3.

7.1.3 Explicit Euler schemes

In contrast to this, convergence rate results for explicit Euler schemes have been rare.
In [9], the authors proved

1

2
E | sup |V — 0| < C,VAt
te[0,7)
for the Symmetrized Euler (SE) (7.5) under the (strong) restriction
2
o

< - 12> k(p—1)V (20(2p —1))%.

For FTE, which is ([7.4)) with fo = f3 = abs, the LP-convergence order % for2<p<v-—1
and v > 3 is shown in [21], i.e.

sup E[|V; — &, P)"/? < C,VAL.
t€[0,T]

Further contributions on the strong approximation of the CIR process can be found
in |11}/1730].

7.1.4 Full Heston model

We are not aware of any results concerning the strong approximation of the log-Heston

model except [4,51]. In [4] the drift-implicit Euler (3.13]) for the CIR process is combined
with the Euler discretization (3.9) of the log-Heston process and it is proven that

E[ X7 —an|P]'? < CpV/AL

for p < %V and v > 2. The article [51] uses a drift implicit Milstein discretization of the
CIR process instead and obtains L*-convergence for v > 1 without a rate.
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7. L'-Approximation of the Log-Heston SDE: Upper Bounds

7.2 Preliminaries
In this section, we present some preliminary results that are needed for our main theo-
rems in this chapter. The following lemma gives us a bound for the expected local time

in zero of a semimartingale. This is Lemma 5.1 from [22].

Lemma 7.1. For any § € (0,1) and any real-valued, continuous semimartingale Y =
(Yt)tefo,r) we have

Ys
5

t
E[L)(Y)] <45 —2E UO (1{Y56(0,5)} + Iy, sap€ ) dY;]

1 ! A
+ gE |:/0 ]l{y5>5}€1_};d<Y>s:| , t e [O,T]

The following inequality will be helpful for all proofs in this chapter.

Lemma 7.2. For A € [0,1] and z,y > 0, we have

VE— vl <a 20 Ve -y 7

Proof. For the case x = 0 and/or y = 0, the inequality holds trivially. By using the
binomial expansion, the assertion follows from standard calculations.

2 — A
V=il = Ve = Vi Ve = il = Ve = il e s

v — g
< (\/Ix—y\)AW

We also need Doob’s maximal inequality, see e.g. Theorem 3.8 in Chapter I of [49].

Proposition 7.3. Let M = (My),c(o,1) be a continuous martingale and p > 1. Then, it
holds that

E

p
sup |M,[? s(p) E[MP],  te[oT].
ue0,1] p—1
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7.3 L'-approximation of the CIR process

7.3.1 Euler schemes - Case 1

We first look at the discretization from (7.4)) under the condition v > 1.

Theorem 7.4. Let (@t)te[O,T] be given by (7.4) and v > 1. Then, for all € > 0 there
exists a constant C. > 0 such that

sup E[|V; — 0] < Co (At)2 5.
t€[0,T]

Proof. Define e = (et);cjo,1] by €t = Vi — vt
(i) The Tanaka-Meyer formula, see e.g. equation 7.9 in Chapter III in [49], yields

E(le]] = E Uot sign(eu)deu] +E [L{(e)]
= e[ [ sigm(ea) (~n (Vi ate))

v [ [ sign(ea)e (V¥ — o) div] + B [£060)].
]E[/szgneu (\F W)dw]_o

due to Proposition Lemma, and the martingale property of the Ito integral.
Looking at the first term, we have

We have

E [ /O sign(e) (= (Vo — Faloy) du}
— k| [ sign(en) (Va— fa(w)) du] — w [ [ signea) (fa(8) — o) du
J -]
< K/Otnz[yeul] du+/</0t}E (150 — By(u|] du
< C(At)? + /OtIEHequu

due to Lemma[l.1]and |z — fao(y)| < |z —y| for z > 0,y € R as well as |fa(z) — fa(y)| <
|z — y| for z,y € R. Therefore, we obtain

t
sup E[ley|] < C(At)% / sup E[le,]]du+ E[LY(e)] . (7.10)
u€l0,t] 0 vel0,u]
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7. L'-Approximation of the Log-Heston SDE: Upper Bounds

(ii) With Lemma we can derive a bound for the expected local time in 0 of e. Let
5 €(0,1), then

¢
E [L?(e)] <46 —2E [/ (1{%6(0’6)} 4 l{es>5}€1775> des}

}E |:/ ]l{e >5}6 %Sd<€>5:| .

We define Y := 1c,c0,6)) + Il{es>5}el_%s and look at the second term of ([7.11)), i.e. at

ELAth%]—-—nELAt S (Vs — tﬁ(mSDd4

where we already used the martingale property of the Ito integral. Since 0 < Y; < 1,
we obtain proceeding as above that

o[ e

(7.11)

>

t
H/o E [|Vs = 0ys)l] ds
t
< C(Anh + / E [leu] du
0

(7.12)

The third term of (7.11)) can be bounded as follows with Lemma [7.2[ (using A = 0) and
the properties of fj:

1 t s
5ﬂA%MM6W4:

E/]l{es>5}€ 50<\F—M) ]

Vs — f3(v )‘
E 1 1—¢&s 2} Un(s) d
/0 fee>0} V. ’

IN
SO N O N

[ t €s ‘/S - 2
0 Vs

IN
| =

With Lemma Proposition the Minkowski inequality and Holder’s inequality it
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follows

1 t Ces
e Uo Lie,55p€ 0 d<e>5] =

(7.13)

Now let o € (0,1). Since

sup E[les]?] < Cp
s€[0,7T

for all p > 1 due to Proposition [2.2] and Lemma we have that

1 t ,‘LS|65|2
5 [/0 Lie,>ay¢! Py

_sa—1
by another application of Holder’s inequality and lim sups_, 65% =0.

Summarizing ([7.11]) — (7.14) we have shown that

t
E[L(e)] < 46 + C(At)z + ﬁ./ E flewl] du 4+ Cud® 1 + C%.
0
(iil) Setting & = (At)'/2 gives
t
E [|eu]] du + Co(At)> /2

<K

t
sup E[|ey|] du + Co(AL)>~Y2,
0 ve0,u]

<K

J
J
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7. L'-Approximation of the Log-Heston SDE: Upper Bounds

Combining this with (7.10)) yields

t
sup E e < Ca(A0 2 + 26 [ sup Blles]}du
u€(0,t] 0 vel0,u]

and choosing &« = 1 — ¢ and an application of Gronwall’s lemma gives

sup E[|V; — ] < C- (At)2 ¢ (7.15)
te[0,T
The assertion now follows since |z — f3(y)| < |z —y| for x > 0, y € R. O

Now we study again the discretization from ([7.4) but under the condition v < 1.

Proposition 7.5. Let (@t)te[o,T} be given by (7.4) and v < 1. Then, for all € > 0 there
exists a constant C. > 0 such that

sup E[|V; — ] < C- (At)2 5.
t€[0,T]

Proof. Define again e = (e¢);cjo,) by e: = Vi — vt
(i) Proceeding as in the proof of Theorem we obtain

t
sup E[jea]] < C(A1)3 + H/ sup E [leo]] du + E [L0(c)] (7.16)
u€[0,t] 0 ve0,u]
and
1 t 1 t es
E[L{(e)] <45+ C(At)z + K;/ E [|ey|] du + EE [/ L, 516’ % d(e)s (7.17)
0 0
with

(e)r = o /Dt <\/Vs— \/f3(’l_)n(s)))2d5-

(ii) For the remaining term in (7.17) we apply Lemma with A =1 —v(1 — () for
¢ € (0,1) and Proposition Lemma Holder’s and Minkowski’s inequality to
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obtain

1 t s
e [/0 Lie,sspe’ 3 d<€>s}

t e _ & | 1Hv(1-=0)
/Il{es>6}€15 [V — | ds]
0

VSV(l—C)

_ _ 1+v(1-C)
Us = ()| ds]

t
/0 esape'™ ¢ =0
t e e[V (1=0)
e (Af)I+v(1=0)/2 /Ot <]E %V(ll_@)])H N
/t 1 el_e;wds]
0 {es>d} Vsu(kg)

Ap)(Hr(1=0)/2
+ CC <( ) 5 .

Now let again o € (0,1). Since

sup Efles[’] <G
s€[0,T]

for all p > 1 due to Proposition 2:2] and Lemma [£.1], we have that

t 1_eés ’6 |1+V(1_C)
Tge.>51€ Tt ———ds
/O {es>d} yra=9

1| 1 s PO
= -E / 1 es€(6,62)1€ -5 = ds
S 0 {es€(6,6%)} yra=9
1 ¢ e |€S‘I+V(1—C)
+ S]E /0 ]]'{63250‘}6 5 st

t
< §HvI-¢)a-1 / E
0

504—1

e t
E
+05/0(

< CC a5(1+ll(17<))a71

1
1 1+¢
v;”(1<2)] ) ds

by another application of Holder’s inequality and Proposition as well as

_50471

limsup;_,o “5z— = 0.
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7. L'-Approximation of the Log-Heston SDE: Upper Bounds

Summarizing the previous steps we have shown that
(At)IH(1=C)/2
4]

¢
4 m/ E [Jew]] du + C(AL)Y2.
0

E[L)(e)] <40+ C¢ + O potHrii=C)a—l

Setting 6 = (At)Y/? and a = 1 — ¢ gives

t
E [LY(e)] < & / sup E[le,]] du+ C¢ (At)"1=92 4 Cp(AL)1-0"=0/2,
0 ve0,u]

Combining this with ([7.16|) yields

t
wup Bl < Cea000F0% 425 [ sup B e
u€(0,t] 0 vel0,u]

Now, choosing ¢ sufficiently small and an application of Gronwall’s lemma gives

sup E[|V; — o] < C. (At)2~° (7.18)
te(0,7)
and the assertion follows since |z — f3(y)| < |z — y| for x > 0, y € R. O

7.3.2 Euler schemes - Case I1

In this section, we analyze both schemes from (7.5) under the condition v > 1.

Theorem 7.6. Let (f’t)te[o 7] be given by (7.5) and v > 1. Then, for all € > 0 there
exists a constant Ce > 0 such that

sup E[|V; — o] < C. (At)
te[0,7)

Proof. The proof is very similar to the proof of Theorem [7.4] Differences are only due

to the additional terms in the expansion of the schemes and we will give the required
additional steps in the following. For e; = V; — ©; we have

et:/OtH(Vv()derU/ <\/> \/7>dW
+200/ Lzz<opy ) AWs + 26" / Uz <op (0= ) ds

— & LY(2%).
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(i) The Tanaka-Meyer formula yields
t
Elle]] =E [/ sign(eu)deu} +E [L}(e)]
0
t
= —kE [/ sign(ey)(Vy, — @;(u))du]
0

t
+E|o /0 sign(ea) (VVa = \[35) qu] +E [L(e)]
- t
+]E2*/ gn(ew) Ly <1 /0" qu]
_ co ; sign(ey,) {“SO}\/%

t t
+E 20*/ sign(ew)Li: <oy (9 - ﬁ;(u)> du — c*/ sign(ey)dLd (2%)] .
L 0 0

However, Lemma [4.2] and the martingale property of stochastic integrals imply

t
E 20*0/ sign(ey) Ly x<gry/0F qu} =0
|: 0 ( ) {z <0} n(u)

and Lemma [£.7] gives

Vl—s

t
‘E [/ sign(ey) (1{%@}2#;(0 — By () du — dLg(z*))} ) < C: (At)"1+=
0
by choosing 5 = €. Thus, we have

t
sup E [jea]] < (A1) +n/ sup E[leo]] du +E [L0(e)] (7.19)
u€l0,t] 0 ve[0,u]

as in the first step of the previous proof by choosing ¢ appropriately (and since v > 1).
(ii) In the same way Lemma [4.7] and Lemma [4.2] also yield

t
‘E [/ }/Sd€5:|
0
¢ 2
e=0" [ (V¥ g + 2 Lo i)

But again Lemma [£.7| with 8 = ¢ gives that

1 t _es 2 t s —\ 2
5" Uo Lie,>5)¢' 5d<€>8] =5" Uo Teoare' ™% (VVa= i) }ds

(At)y 1+e
0

t
< (A} —1-/-@/ E [Jey|] du.
0

Finally, we have

+C:
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7. L'-Approximation of the Log-Heston SDE: Upper Bounds

and proceeding as in the previous proof we obtain that

t
E [L?(e)] < 45+C’(At)% +,£/ E [Jey|] du + Cpd2*!
0

(At)V 15

+C: 5

(iii) Setting & = (At)'/2 and using v > 1 now yields
t —€
B [206)] < [ Bllelldu+ ColA) 2 4 C.(A 2
0
Combining this with (7.19)) yields

1—¢ t
sup E[le,]] < Ca(At)“1/2+CE(At)1+s_l/2+2m/ sup E[e,|] du
uel0,] 0 vel0,u]

Choosing o = 1 — ¢ and observing that % —e> %T_—i — % for all € € (0,1) an application

of Gronwall’s lemma give then

1= _1/2
sup Eley]] < C-(A1)TF
u€(0,T]

and the assertion follows by choosing € appropriately.
O

Remark 7.7. We are not able to establish the analogous result to Proposition 7.5 for
Case II of the Fuler schemes ( -, since we have in that case

b= [ (7 a2 )
% :5/ (V¥ /8 S>>d3

The additional term gives a contribution of order %At”ﬁ, which will lead to a worse
error bound than the one given in Proposition [7.5

instead of

7.3.3 The Implicit Milstein scheme

Proposition 7.8. Let (@t)te[o,T} be given by (7.7) and v > 1. Then, for all € > 0 there
exists a constant Ce > 0 such that

sup E[|V; — o] < C. (At)*
te[0,7)
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Proof. (i) Again, we denote n* (t) := min{k € {0,..., N} : tx >t} and 5t (t) := t,+(y).
We define (et)te[o,T] by e; = V; — ;. Then,

tey1 tk41
etk+1 = / —H V ?A}tk+1) ds + / (\/ — v/ Utk W Wtk)> dWS

tr ty
tet tr+1
— / Vi — s + D5 — ﬁtkﬂ)ds—l—/ (\/> \/vtk)
tr tr
k+1 0‘
/ (Ws — Wy, )dWy
th
b+ 173
= ey — / Kesdg+/ f (01, — 0s) ds +/ (\F \/vtk)
tr t
. U tg k
/ (Ws — Wy, )dWy

for every k € {0,..., N — 1}. Summing over k, we get

tr tx Lk
e, = —/0 mesds—l—/o K (Ot (5) — Os) d5+/0 o (\/‘73— \/{T(s)) aw.

tko.Q
_/0 7 (W W) dW..

Analogously, we have

et:etk—/tnesds—i-/t (0y — s) ds—l—/ (\F @)

tr tE
t 0_2

- / 7 W= Wy, )W,
tk

for all t € [tg,tr+1]. Combining the two terms yields

t n(t) t
e = — / Kesds + / K (@n+(8) - ﬁS) ds + / K (0 — 0s) ds
0 0 n

® (7.20)

+ [ o (VT o) W [ (0= W)

Again, the Tanaka-Mayer formula, the Martingale property, Proposition 2.2 and Lemma
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7. L'-Approximation of the Log-Heston SDE: Upper Bounds

7] vield
B ) = & [ [ sign(es)de] + £ [4(0)

=K

t n(t)
—/ sign(es)kesds + / sign(es)k (Dt (s) — 0s) ds]
0 0

2

t t
/ sign(es)w (6 — 05)ds| — E [ / (W, = W) dWS]
() 0 2

+E [L{(e)]

t n(t) t
gﬁ/ E[|es|]ds+/</ E [|+(s) — s]] dsm/ E (|9 — 0s]] ds
0 0

n(t)

+E

+E[L{(e)] .
By Lemma [6.8] we then have
t
sup Elle|] < C(ADY? + /{/ sup E[le,|]ds +E [LY(e)] . (7.21)
u€l0,t] 0 vel0,s]

(ii) Proceeding as in the proof of Theorem [7.4] we obtain

t

t
E[L{(e)] <45+ C(At)z + K&/O E [|ey|] du + %IE [/0 ﬂ{es>5}el_e§d<e)s] (7.22)

(e) = /Ot <a (VVe = \fouw) - "22 (W, — Wn(s))>2ds.

For the remaining term in ((7.22), we obtain

1 t e C t e - 2
SE [/O ﬂ{65>5}el s d(e)s} < KE [/0 ﬂ{es>6}el 5 o2 (1 IV, — /UW(S)) d8:|

C t __€s 0'4 2
+ EE |:/0 ]1{65>5}€1 3 Z (Ws — Wn(s)) d8:| .

(7.23)

For the first term in Equation ([7.23)), we can proceed as before and get with Lemma
and Proposition [2.2]

C ¢ e T\ 2 o At
EE |:/0 ]l{es>6}61 s (72 (\/‘78— Un(s)) dS:| < Ca(52 ! +C <5>

for an a € (0,1) and for v > 1. For the second term, we obtain

with

C [/ e o 2 C [/ 2 At
<E U Lie,sspet s 7 Ws =Wy ds] <<E U (Ws = Wys) ds} <C <5> :
0 0
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Therefore, combining all results as before, we have

! A
E [L0(c)] < 46 + C(AD)} + /-@/ E [[ea]] du + Cad?~ ! + C (;) _
0

(iii) Setting 6 = (At)"/? and combining with (7.21)), we finally get

t
sup E[lea]] < Cal(A)* V2 + 2% / sup E (e, du
u€(0,t] 0 ve[0,u]

and the assertion follows by choosing o = 1 —¢ and an application of Gronwall’s lemma.
O

Now we study again the discretization from ((7.7) but under the condition % <v<l1
where still no truncation is needed.

Proposition 7.9. Let (ﬁt)te[O,T] be given by (7.7) and % < v <1. Then, for alle >0
there exists a constant C. > 0 such that

sup E[|V; — o] < C- (A)2 <.
te[0,T]

(i) Proceeding as in the proof of Theorem we obtain

t
sup E[le,|]] < C’(At)% + KZ/ sup E[ley|]du+E [L?(e)] (7.24)
u€(0,t] 0 ve(0,u]

and

E [L0(e)] <45+ C(At)2 + H/O E [leu|] du + %E UO 1{65>5}el_e§d(e>s} (7.25)

with

(e)y = /Ot <a <\/‘73— M) + 022 (W — Wn(s))>2 ds.

(ii) Then, as in the proof of Proposition we apply Lemma with A =1—-v(1—-()
for ¢ € (0,1) in the remaining term of ([7.25)). With Proposition Lemmal6.7, Lemma
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7. L'-Approximation of the Log-Heston SDE: Upper Bounds

[6.8] Holder’s and Minkowski’s inequality we obtain

1 t _es
e [/0 Lic.>s1€" 5d<e>s]

t e — p.|rr(A=0)
/Oﬂ{es>6}el_5 Vs — 9 ds]

VSV(l—C)

¢ e — % ‘l-i-l/(l—()
1—<s [Ys ™ Un(s)
/0 ]l{es>5}€ 5 ‘/SV(I_O ds

t Les |68|1+V(174)
/0]1{55>6}e ’ st

Ap)AHv(A=0)/2 et
+ CC( 2 / E
0

(%)

0

At (1+v(1-())/2 At
+c<<( ) : +c<5>.

Now let o € (0,1). For the first term, we again have

t es |€ |1+V(1_C)
Tge.sore T ds
/0 {es>d} yra=0

due to Proposition Lemma and Lemma as in the proof of Proposition [7.5
Summarizing the previous steps we have shown that

(Af)IH(1-0)/2

5
t A

+n/ ]E[|eu|]du+C(At)1/2+C<5t>.
0

Cep

< s+v(1=0)a—1
5 < Cea

E [LY(e)] < 46 + C; + O o=t

Setting § = (At)"/? and a = 1 — ¢ gives
t
E[L}(e)] < /i/ sup E ey du+ C¢ (At)Y179/2 4 Cg(At)(”U*OQ*O/Q.
0 ve0,u]

Combining this with ([7.24)) yields

t
sup Ele.] < C(an®1-9"97 1 26 [ sup Blles)}du
u€[0,t] 0 vel0,u]

and the assertion follows by choosing ¢ sufficiently small and an application of Gronwall’s
lemma.
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7.4 L'-Approximation of the Heston Model

In this section, we show in particular that the results from Theorem [7.4 Theorem [7.6]
Theorem [7.8 Proposition [7.5] and Proposition [7.9] carry over to a discretization of the
log-Heston model where the log-price process is additionally discretized with the Euler
scheme.

7.4.1 Euler schemes - Case 1

The key ingredient here and also for the second case is the observation that two con-
tinuous martingales M = (My)ejo,r) and M = (My);ejo,1), whose quadratic variation
coincides, have equivalent moments. This directly follows from Proposition

Theorem 7.10. Let (z,0) be given by (7.6) and (7.4]). Then, for all € > 0 there exists
a constant C¢ > 0 such that

min{1l,v}

E| sup |X;—&|| <C.(At) z €.

te[0,7)

Proof. (i) Without loss of generality, we can assume r = 0. We have to analyze

s [ e ast [ (VWi o) o

E | sup |X; — |

t€[0,7]

sup
te[0,7

with

U = pWi + /1 — p?By.

Using Estimate (7.15) from Theorem Estimate ((7.18) from Proposition and
Lemma [4.1] we obtain

e e

E | sup |X;— @] < / EHVS—ﬁSHdS—i—/ E[@S—v (s )Hds—i—IE sup | M
t€[0,T] 2 Jo 2 Jo +€[0,]
min{1,v} e
<O (M) LR | sup My
te[0,7)
(7.26)
where .
= [ (V7= o) v

(ii) Let

= [ (V7= fa) W te o)

Clearly, we have
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7. L'-Approximation of the Log-Heston SDE: Upper Bounds

and so Proposition [I.1] yields

E [ sup | M|

1 .1 C -
< CipE [<M>gp] — CipE [(M>;] < 12g [ sup |Mt]] .
te[0,T)

C1/2 te[0,T]

Now, the Lyapunov inequality and an application of Doob’s maximal inequality, i.e.

Proposition give

E Dl/(l+6) .

sup [My|| < Cljag (E [\MTyHﬂ (7.27)

te[0,7]

for 8 > 0. Using ((7.4) and the SDE for the CIR process, we have

T
MT: l <VT—UT+I<&/O (‘/s_f?(ﬁn(s))) d8>

g

and we obtain

- 1 r r
B [Iitrl] < 2 (EIVe-vrll 45 [ IV -vllds+n [ B [fo,— o) ds)
min{l,u}_
<C(At) 77,

(7.28)
where we used Theorem [7.4] Proposition Lemma and the properties of fo.
Moreover, for all p > 1 there exists a constant Cp, > 0 such that

E||Mrl] <G,

due to Lemma [4.1] and Proposition [2.2l Thus, a standard application of Hélder’s in-
equality as in the proof of Proposition part (ii), yields
1

B [|02r[+7] < (B [1302)] )7

which in turn together with (7.27) and (7.28]) gives

min{1,v} —a) 1

E | sup |M SC’Igﬁ(At)( 2 1+ (7.29)

te[0,T]

(iii) The assertion follows now from (7.26)) and (7.29)) by choosing e and g sufficiently
small. O

75



7.4.2 Euler schemes - Case 11

The second case can be treated analogously for v > 1, except at one point. Here the
martingale M is given by

M, = /Ot (\/‘75_ \/%) s
2c% (1

“ c* 0
+7 ; ]l{z;SO}H (9—’[):;(5)) dS—;Lt(z*)’ t e [O,T]

However, the additional terms can ble treated with the Lyapunov inequality and Lemma
and are (at least) of order (At)27°. Using Theorem and Lemma {.2| instead of
Theorem [7.4] and Lemma [4.I] and proceeding as in Case I we obtain

B [|6r]] < Co(8)3,

Therefore, we also have the following result:

Theorem 7.11. Let v > 1 and (&,0) be given by (7.6) and (7.5). Then, for all € > 0

there exists a constant C¢ > 0 such that

E | sup |X; — ]| < C.(At)F .
te[0,T]

7.4.3 Implicit Milstein and Euler

The Milstein case can be again treated analogously for v > %, except at one point. By
rearranging Equation ((7.20)), the martingale M is given by

= [ (V)
t

1 n(t) ¢
== W—@t—i-/ﬁ/(%—ﬁs)ds—/{/ (@n-k(s)—’[)s)ds—/ﬁ/ (0y — 0s) ds
o 0 0 n(t)

t g
[ 5w,

Therefore, My is given by

N 1 T T
Mp == <VT—@T+/€/ (Vs — 0s) dS—H/ (’[}n+(5) —@S) ds)
0 0

(2

T g
- /O 7 (Wa = W) dW,.
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7. L'-Approximation of the Log-Heston SDE: Upper Bounds

These terms can be treated with Proposition [7.8] Proposition Lemma [6.§ and
standard estimations. We can proceed as in Case I and obtain

min{1,v}
2 €.

E[|itr] < C.(a)
Therefore, we also have the following result:

Proposition 7.12. Let (&,0) be given by (7.6) and (7.7). Then, for all € > 0 there

exists a constant C. > 0 such that

min{l,v}
2

€

E
te[0,T

sup |X¢ — :Et\] < C¢ (At)

7.5 Summary

Let us briefly summarize our results. We proved an upper bound of the L'-convergence
order of a large class of explicit Euler schemes for the CIR process and for the log-Heston
model under the assumption that the Feller index is larger than 1.

Theorem 7.13. Let v > 1, € > 0 and (04, T1, )reqo,..,n} given by Equations (7.1)),
(7.2), (3.9) or by Equations (7.1)), , (13.9). Then we have

lim NY/2e E[| Xy, — 4 E[|Vi, — o1,]] ) = 0.
R el (1 X, — o, |] + pefnax (Ve =04 l] ) =0
This follows directly from Theorem [7.4] Theorem [7.6], Theorem and Theorem
Thus, we recover (up to an arbitrarily small € > 0) the standard convergence order of
the Euler scheme for SDEs with globally Lipschitz continuous coefficients. For the Case
v < 1, we proved an L'-convergence order of 5 for the first case of Euler methods.

Proposition 7.14. Let v < 1, ¢ > 0 and (@tkai'tk)kg{(),._”]\[} given by Equations (7.1)),
(7.2), (3.9). Then we have

lim Nv/27¢ < max K[| Xy — 2 ||+ max E[|V;, — f%”) =0.

N—o0 ke{0,...,N} ke{0,...,N}

This is due to Proposition [7.5] and Theorem [7.10} However, our numerical simulations

in Chapter |§| indicate that the sharp rate should be min{3, v}.

For the implicit Milstein scheme in combination with the standard Euler {ap roximation
min{v,1

of the log-price process we could prove an L'-convergence order of ——5— — € which

holds for the whole parameter range where this scheme is positivity preserving.

Proposition 7.15. Let v > %, € > 0 and (g, T1, ) pefo,...,ny given by Equations (3.10)
and (3.9). Then we have

min{v,1}
li z € El|X: —2 E|[|V;, —0 =0.
Jim. (oo, B0 — 01+ _max BV~ 1)

7



This follows from Proposition [7.8] Proposition [7.9) and Proposition

Remark 7.16. By a standard application of Hélder’s inequality, we could deduce LP-
convergence orders for p > 1 for all presented schemes. These would be % — € for the

setting of Theorem |7.15 ﬁ — € for Proposition |7.14| and %};”1} — € for Proposition
7.15. However, these bounds are unlikely to be sharp, see e.qg. ,@/, , so we do not
spell out these results in detail.

Remark 7.17. The results of Theorem and Proposition appear in . This

manuscript has been accepted for publication in the Journal of Computational Finance.
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Chapter 8

Li-Approximation of the
Log-Heston SDE: Lower Bounds

In the last chapter, we derived upper bounds for the L!-approximation of the log-Heston
SDE by Euler-type and Implicit Milstein methods. Now we would like to know: Which
order is the best possible when we use an equidistant discretization? This question has
been answered for the CIR process by the works [33] and [34], which yield
%nj;lof i1} ueizf}(fm E [|w(Wi, Wiy, ..., Wiy ) = Vir|] > 0,
where U(N) is the set of measurable functions u : R — R and we have t;, = k:% for
k € {0,..., N}. Recalling the presented results from Section the convergence order
of the truncated Milstein scheme for v < % and the order of the drift-implicit Euler for
v > 2 are optimal. However, the optimal approximation of the log-Heston SDE has not
been studied yet up to the best of our knowledge.
In this chapter, we show that for v > 1 and |p| # 1 the convergence orders of the studied
schemes from Chapter [7] are optimal, since arbitrary methods that use an equidistant
discretization of the driving two-dimensional Brownian motion (W, B) can achieve at
1

most order 5 for the L'-approximation at the final time point.

Theorem 8.1. Let v > 1, |p| # 1, tj, = kAt for k € {0,..., N} with At = L, let U(N)
be the set of measurable functions u : R*N — R and

e(N) = uei;}(fm E [|u(We,, Wiy, ..., Wiy, Biyy Biy, -, Biy) — Xr|] -

Then we have that

oT 2

liminf VN e(N) > 1—p2.
N—oo

Remark 8.2. A modified version of this result has been accepted for publication in the
proceedings of the 15th International Conference on Monte Carlo and Quasi-Monte Carlo
Methods in Scientific Computing, a standard outlet for complexity results. A preprint
can be found in [53].
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The pioneering work on optimal approximation of stochastic differential equations is [18].
Clark and Cameron studied in particular the optimal L?-approximation of

dX; = V,dB
t t ts te [0’ 1]7
d‘/;‘, = tha
at the final time point by an equidistant discretization of the driving Brownian motion.
Here, the optimal method is given by

E[X{|Wa,..,Wi,Ba,..,Bi]
N N

and one has

N2
<IE [)Xl —E[X)|Wy,..,W1,Bu, ...,Bl]‘ D — N2,
N N 2

Since then, a detailed and exhaustive study for the optimal approximation of general
SDEs under standard assumptions has been carried out for various error criteria. See
e.g. [15,16,38},39,140141,57.|58},59,63} 64, 65| and [60] for a survey.

Recently, the analysis of the optimal approximation of SDEs has been extended to the
case of non-standard coefficients. We already mentioned the works [31,33}/34] which
analyze the optimal approximation of the squared Bessel process respectively of the
CIR process. In |46/61,73] SDEs with arbitrary slow best possible convergence rates are
constructed.

8.1 Proof of Theorem [8.1]
We will simplify the analysis of

e(N) = 1_1LI€lZf:I E HU(th,WtQ,...,WtN,Btl,BtQ,...,BtN) —XTH

in several steps until we end up with the optimal L'-approximation of fOT BidW; by
arbitrary methods, which use an equidistant discretization of B and have complete
information of W, i.e. with the analysis of the quantity

where V is the set of measurable functions v : C([0, T]; R) x RY — R. This quantity can
be then analyzed in a final step by a symmetrization argument. The latter is a simplified
version of Lemma 1 in [46] and is a particular case of the radius of information concept
in information based complexity, see |71].

T
inf E |:/U(VV7-Bt17Bt27"')BtN)_/ Btth
veY 0
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8. L'-Approximation of the Log-Heston SDE: Lower Bounds

8.1.1 Allowing complete information on W

Let
OGN =0 Wy Wiy, ... ;. Wiy, Bt,,Bty,....Bty), Hn =0 (W,By,,B,,...,Bty)
and
Zy={Z:Q—R: Zis Gy measurable}, 2y = {Z: Q — R: Z is Hy measurable}.

Since
Zy C 2y

it follows that

Zlenzg/l E[|Z - Xr|] = inf E [|w(Wy, Wy ... . Wiy, Bey, By, ..., By ) — X
> Zlenzf;v E[|Z - XTH = inf E [lv(W, By, By, ..., Bey) — Xrl],
where V is as above. Thus, it is sufficient to analyze the quantity
inf E[|Z— Xr|] = inf E[|v(W,By,By,,...,Biy) — X1|] (8.1)

ZeZy veY

to obtain a lower bound for e(N).

8.1.2 Rewriting Xr and removing the measurable part

Now, we rewrite X7. Note that the CIR process V' = (V;)icpo,1] is o(W)-measurable
and therefore H y-measurable as the unique strong solution of SDE ({2.2)).

Lemma 8.3. For v > 1 we have that

T T
XT:YT—F\/l—p?/ AtdBt—;m—p?/ B, dW,
0 0

where
YT:x+§(VT—v—n9T)+uT+ (ff—i) /OTVudu
— p2(\/VrBr — ArBr)
and

4k — o2

< /Otﬁ /\qu t 0,77

In particular, A = (At)ico,r) and Y7 are Hy-measurable.

A =
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Proof. Since
T T
\%a :U—I—/ /@(H—Vu)du—i-a/ v/ Vo, dW,
0 0

we have that -

Xr=YM+/1- p2/ VVudB, (8.2)

0
with
(1) P pr 1\ [T
Y =2+ =Vr—v—rbT)+ puT + < - )/ Vaudu.
o o 2] J

Since almost all sample paths of V' are strictly positive due to v > 1 we can use Ito’s
lemma to write

\/Vt:\/EJrAtJr%Wt, te (0,1, (8.3)

where

4k — o2 [T 1 k [t
A = du — — wdu, t 1.
= /Om " 2/0\/1/ w,  te[0,T]

So vV is a continuous semi-martingale with representation (8.3). Integration by parts
now gives

T T T
/ VVudB, = \/VyBr — / BydA, — % / BdW,
0 0 0

and
T T
/ BidA; = ArBr — / AdBy,
0 0

respectively. This gives

T T o [T

/ \/ VudBy = \/VrBp — BrAp —I—/ AdBy — 2/ BidW;

0 0 0

and (8.2) yields
. ) T o [T
Xp =YV 4y 4 /12 (/ AtdBt—2/ Btth>
0 0

with

Yj(«2) =V 1-— ,02(\/ VTBT - BTAT),

which finishes the proof. O

|

As a consequence, we have

T T
inf E[|Z—Xg|] = inf IEHZ—YT—\/I—pQ </ AtdBt—;/ Btth>
0 0

ZEZV ZEZV
~ T o T
= ~inf E HZ — 1\ 1-— p2 </ AtdBt — / Btth) H
Zezy 0 2 Jo
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and it remains to analyze

inf E [
veEY

8.1.3 Removing the smooth part

T o T
’U(VV,Btl,BtQ,...,BtN)—/ AtdBt+2/ Btth
0 0

] . (8.4)

Since A = (At)iefo,7) is smooth enough, fOT A¢dB; does not matter asymptotically for
our approximation problem.

Lemma 8.4. Let v > 1. Then, there exists a constant C' > 0 such that

E <(C-NL.

T N-1
/ AdBy = Y Ay, (B, — By,)
0 i=0

¢
At:/ aydu
0

4k — o2 1 K
y = —- — =V, ,T).
e N uweloT]

Since v > 1 we have by Lemma and Jensen’s inequality that

Proof. We have

with

sup E [|a;|?] < o0, sup E [|A*] < .
t€[0,7) te[0,T]

The Ito isometry now gives

2

T
E =E / (Ar — Aypy)dBy,
0

T ¢ 2
= / E / aydu
0 n(t)

Moreover, the Cauchy-Schwartz inequality yields

t
/ a,du
n(t)

T N-1
/ AtdBt - Z Ati (Bti+1 - Btz)
0 i=0

dt.

2

E <T? sup E Uat|2] (t—n(t)* < C- (At)?

te[0,7

and so we have
T N-1 2
E ‘/ AwdBy = Y Ay (B, — By)| | <C-N72
0 i=0

The assertion follows now from the Lyapunov inequality. O
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Since Zﬁgl Ay, (By,,, — By;) is H y-measurable, we obtain that

T T
inf]E[U(W,Btl,BtQ,...,BtN)—/ AtdBt+U/ Btth}
veY 0 2 0
) ~ o T T
_%rel]f)E[v(I/V,Btl,BtQ,...,BtN)—i—2/0 Btth—/O (At—An(t))dBt}
T
ZiIl]f)E|:17(I/V,Bt1,Bt2,...,BtN)+;/ Btth:|_CN1
S 0

using that |z| — |y| < |z — y| for all z,y € R. Consequently, we have reduced our initial
problem to the study of

ianE[

T
U(th17Bt27"'7BtN)_/ Btth
veEY 0

] . (8.5)

8.1.4 Inserting Brownian bridges and symmetrization

For the final step let us denote the piecewise linear interpolation of B on the grid
to,...,tny by B, i.e. B is defined as

t—t

By =By, +
Pt — tg

(Bt),., — Bt,), t € [ty tis1], k=0,...,N —1.
Then the process B° given by

By = B, — By, te[0,T7],
is a Brownian bridge on [tg, txy1] for K =0,..., N — 1, and moreover the processes

(Bl?)té[to,tl]v (Bf)te[tl,t2]7 R (Bf)tE[thl,th E? w

are independent. Since

T N-1 N-1 Btk+1 _ Btk l41
/ BydWy = Y B, (Wi, — We) + Y —=H——* / (t — t1,)dW;
0 =0 o W~ Jy,

is H y-measurable, we have that

T
inf E [U(WBtl,BtQ,...,BtN)—/ Btth
veEV 0

|

= %IGI]f; E[|o(W, By, Bty, ..., Bty) —Z(B°, W)|]

with
T T
I(BO,W):/ Btth—/ BidW;.
0 0
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8. L'-Approximation of the Log-Heston SDE: Lower Bounds

Furthermore B° and —B° have the same law, so the independence of B° from (W, B)
implies that
(W,B,B°) £ (W, B,-B°). (8.6)

Now we will analyze Z(B°, W) in more detail.

Lemma 8.5.

(i) Let
£ T
= —— £=0,. 2"
Te,n on N? ) ) )
and
N—-12"—-1
Z tk+'ren Wtk+TZ+1n Wtk-i-Tz,n)‘
k=0 (=0

We have that
Z(B°,W) = lim Z"(B°,W)

n—oo

almost surely and in L.

(ii) It holds
1/2

T
(B°, W) £ w, </ |B,§’|2dt>
0

Proof. (i) We have
th+1 o1
/ BidW; — / BidW; = IF — I§

tr tr
with . 5 5 .
k+1 — k1
Ik —/ (B, — By )dW;,  IF = tk““/ (t — t)dW,
tr tk+1 - tk tr
and
2" —1
k, k,
Z Btk—i-nn Wtk+TZ+1,n - Wtk+Te,n) - Il " I2 "
with
2" —1
k’
I t= Z (Btk""rl,n — By,) (Wtk+Te+1,n - Wtk-i-Té,n) )
/=0
2" —1
B - B
k, t t
12 "= — : Z Ten (Wtk+‘re+1,n - Wtk+T€,n) .
S e

By straightforward calculations using the independence of B and W and the Ito isometry

we have 9
1 /T
E[I’f—f’“”] (=) 2
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and )
1/T

E[Ik—lk’”ﬂ:f L) 92,
P =1

E [|I(B°,W) _ B, W)\Q] <o,

Thus

which yields the L?-convergence, and also implies
oo
Z E [|I(B07 W) - In(Boa W)H < 00,

from which the almost sure convergence follows by an application of the Borel-Cantelli
lemma.
(ii) Recall that W is independent of B°. The conditional law of Z"(B°, W) given

BYyr,, =ake (=0,...2"—1k=0,...,N—1,

. . . . —_ n_
is therefore Gaussian with zero mean and variance Z,ivzol 2 \xk o2 (Tex1n — Tem)-
We thus have

1271 1/2
(5w (ZZrBtmn >) .

k=0 ¢=0

Since also
N-127—1

T
/ BePdt = tim S 3" (B] P (e — 7o)
0

k:OEO

almost surely (by continuity of almost all sample paths of B°), the assertion follows now
from part (i). O

The equality of the laws in yields that
(W, B,7"(B°,W)) £ (W, B, -T"(B°, W)
and (i) from previous lemma now gives
(W, B,Z(B°,W)) £ (W, B, ~Z(B°, W)).
Consequently, we have
E[lv(W, By, B, ..., Biy) — Z(B°,W)[] = E[[u(W, By,, B, ..., By, ) + Z(B°, W)]|
and so
E[Z(B%, W)l

=E[|(Z(B°, W) —=v(W, By, ..., Biy)) + (0(W, By, ..., Bey) + Z(B°, W))|]
< 9E [[o(W, By, By, ..., Bey) — Z(B°, W)]].
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It follows that

;Iel]f} E HU(W Btl’Bt27 R 7BtN) - I(BO’ W)H > E HI(BOa W)”

and therefore we have

T 1/2
inf E([o(W, By, By, ... Biy) —~ I(B,W)[] > E[[Wi[] [( | iBiat) ]
v 0

> \FEHWH]/T [|B;]] dt

by Lemma (ii) and by Jensen’s inequality. Using E[|X|] = \/ga for X ~ N(0,02?)

we obtain .
O O 1/2
E[|B7|] / |B dt.

Straightforward calculations give

. t— 1) (tpey —t
E [’Bt ’2] - ( k)( as )7 te [tkytk+1]7

te+1 — Uk

which in turn yields

T o211/2 5, TIN J{(T/N —t) T3t
/OEUBtF] dt_N/o T/th_\/;/o V(l —z)dz.

Since fol Vz(l — z)dr = 5, we have shown that
VN inf E [

veEY

T
U(thl,Bt2,...,BtN)—/ Btth
0

] > % (8.7)

Combining subsections with Equations (8.1)), (8.4}, (8.5) and concludes
the proof of Theorem
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Chapter 9

Numerical Results

In this chapter, we test our results from Chapters [6] [7] and [§] by performing numerical
simulations on an exemplary parameter set. We start with weak convergence simulations
for the Heston model and then continue with L'-error simulations for both the CIR
process and the full Heston model.

9.1 Weak Convergence

In this section, we test numerically whether the weak convergence orders of Theorem
and Proposition [6.9)are attained even under milder assumptions on the test function
f. We consider a call, a put and a digital option. These payoffs are at most Lipschitz
continuous which is typical in financial applications. This lack of smoothness is in
contrast to the usual assumptions on f for a weak error analysis. See also Remark
Besides the SE, AE and implicit Milstein, we also numerically test the drift-implicit
Euler for the CIR process in combination with the standard Euler for the log-price
process. For simplicity, we call the scheme Drift-Implicit. We have seen in Chapter
[7 that the strong error behavior of the drift-implicit Euler for the CIR process is well
analyzed and seems to be superior to the one of the Euler schemes. Weak convergence
results are not available to the best of our knowledge. We would like to compare their
weak convergence behaviors in the context of the full Heston model.

Our model parameters are displayed in Table

Model | So K Vo K 0 o p | T r v (approx.)
1 100 | 100 0.04 5 0.04 | 0.61 | -0.7 | 1 | 0.0319 1.075
2 100 | 100 0.04 5.5 0.04 | 0.55 | -0.7 | 1 | 0.0319 1.45
3 100 | 100 | 0.010201 | 6.21 | 0.019 | 0.61 | -0.7 | 1 | 0.0319 0.63
4 100 | 100 0.09 2 0.09 1 -0.3 | 5 0.05 0.36

Table 9.1: Parameters for the weak convergence test.

We have v =~ 1.075 in Model 1, v = 1.45 in Model 2, v ~ 0.63 in Model 3 and v =~ 0.36
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in Model 4. The parameter sets for Model 3 and 4 are taken from [14]. For Model 1
and Model 2 we adjusted the parameters of Model 3 such that they have Feller indices
around 1 and 1.5. With these examples we set our focus on low values of the Feller
index v since this is the most interesting parameter range. For each model, we use the
following payoff functions:

1. European Call: g;(S7) = ¢! max{Sr — K,0}
2. European Put: go(S7) = ¢ max{K — St,0}
3. Digital Option: g3(St) = e*TTIl[()’K](ST)

Note that none of these payoffs satisfies the assumption of Theorem[6.3] Thus, numerical
convergence orders which coincide with the orders of our Theorem indicate that the latter
might be valid under milder assumptions.

In order to measure the weak error order, we simulated M = 2-107 independent copies

gi(sg\],)), j=1,...,M, of g; (sy) with sy = exp(zy) to estimate

E[gi(sn)]
by

1 <~ )
PMN = 57 Z;gi(s]\], )
p

for each combination of model parameters, payoff and number of steps N € {23, ..., 28}
where At = % To obtain a stable estimate of the convergence orders, we started with
a At which is smaller % (which is required also for some auxiliary results of the proof
of our main result). The Monte Carlo mean of these samples was then compared to a
reference solution py.f, i.e.,
€(N) = ’pref - ﬁM,N|7

and the error e(NV) is plotted in Figures We measure the weak error order by
the slope of a least-squares fit. The reference solutions can be computed with sufficiently
high accuracy from semi-explicit formulae via Fourier methods. In particular, the put
price can be calculated from the call price formula given in 36| via the put-call-parity.
The price of the digital option can be computed from the probability P» given in [306];
it equals e="7 (1 — P,).

In Table and Figures (9.1 we can see the measured convergence orders and the
error plots for Model 1. Because of our results in Theorem [6.3] and Proposition [6.9] we
would expect SE, AE and implicit Milstein to have a weak convergence order of 1 and
this is indeed the case in this example. The implicit Milstein seems to have a lower
convergence order for put and call but the plots show that this might be due
to the low error that this scheme produces right from the start. Also, its convergence
behavior is not very regular in these cases. The Drift-Implicit scheme seems to have an
overall lower convergence order than the other schemes. Only for the digital option it
has a lower absolute error.
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9. Numerical Results

Method Call Put Digital
SE 1.00 0.96 0.93
AE 1.03 1.01 0.91

Drift-Implicit 0.55 0.73 0.33
Implicit Milstein 0.73 0.72 1.04

Table 9.2: Estimated weak convergence orders Model 1
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Figure 9.1: Call Model 1

Symmetrization
* Absorption

* - Drift-Implicit

* Implicit Milstein

Symmetrization
* Absorption -5
* Drift-Implicit
* Implicit Milstein

ror)

log, (Er

log, (Steps) log, (Steps)

Figure 9.2: Put Model 1 Figure 9.3: Digital Model 1

For the next model, we would again expect a convergence rate around 1. The results

from Table and plots in Figures indicate that for particular payoffs even a
higher numerical order is obtained if the Feller index is larger than 1. The orders of SE

Method Call Put Digital
SE 1.34 1.27 1.18
AE 1.36  1.36 1.31

Drift-Implicit 0.74 0.79  0.65
Implicit Milstein 0.35 0.47  0.88

Table 9.3: Estimated weak convergence orders Model 2
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and AFE are around 1-1.3 and the convergence behavior is regular. The implicit Milstein
shows a similar behavior as in the first model. Again, its error for call and put is very
low but it does not seem to have a fast convergence. For the digital option, it also has
a higher absolute error than the AE. The Drift-Implicit scheme performs again worse
than the other schemes for call and put. It has a smaller absolute error in the digital
case for our step size range but its estimated convergence order is lower.

Symmetrization
* Absorption
* Drift-Implicit
Implicit Milstein

or)

Err

2 (
o b N &5 & A b b L o

log,

w
IS
@
@
~
®

log; (Steps)

Figure 9.4: Call Model 2
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Figure 9.5: Put Model 2 Figure 9.6: Digital Model 2

Table [0.4] shows the estimated convergence orders for Model 3. This model has a Feller
index around 0.63. The simulation results indicate that this is also the convergence
order for SE, AE and the Drift-Implicit scheme. The implicit Milstein has an estimated
convergence order around 1. This is in line with our theoretical findings for smoother
payoff functions. All plots are very regular (see Figures .

Method Call Put Digital
SE 0.60 0.60 0.55
AE 0.57 0.57  0.55

Drift-Implicit 0.63 0.64 0.53
Implicit Milstein 1.05 0.94 1.30

Table 9.4: Estimated weak convergence orders Model 3
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9. Numerical Results
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Model 4 has the lowest Feller index which is around 0.36. Again, Table confirms this
number as the numerical convergence order for SE and AE. Since v < %, we replaced
the implicit Milstein by the truncated Milstein from Equation . Note that there
are no weak convergence results available for this scheme to the best of our knowledge.
We are not aware of a truncation of the drift-implicit Euler which was analyzed in the
literature. The convergence order of truncated Milstein seems to be slightly higher and
around 0.5. Our simulations confirm simulation studies in the literature that show a
slow convergence for low Feller indices. Looking at Figures[9.10}9.12] the absolute values

Method Call Put Digital
SE 0.47 0.47 040
AE 0.38 0.39 0.35

Truncated Milstein 0.53 0.52 0.45

Table 9.5: Estimated weak convergence orders Model 4

of all errors are quite high. The AE performs best up to N = 28. We again have a very
regular convergence behavior.

Summarizing, we can confirm a (minimum) numerical convergence order of min{v, 1}
for the symmetrized and absorbed Euler and of 1 for the implicit Milstein scheme under
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even milder assumptions on the regularity of the payoff function. We saw slightly better
numerical convergence results of the Euler schemes for a higher Feller index. In most
cases, the Drift-Implicit scheme performed worse than the other schemes. Furthermore,
we cannot use it for low Feller indices which often occur in calibrations to real-world
data. The implicit Milstein seems to have superior weak convergence properties in most
of the cases than the two Euler schemes considered here. However, this effect seems to
vanish for low values of ¥ when a truncation is needed.

9.2 Strong Convergence

In this section, we test numerically our results from Theorem [7.13] Proposition [7.14]
Proposition and Theorem We perform the tests for all Euler schemes from
Table [3.1] and, as before, for the implicit Milstein and the drift-implicit Euler.

First, we describe the design of the numerical experiments. We would like to estimate
the order of the decay of the errors

eo(N) =E HVT - @t(va)H . es(N)=E HXT - geg)u :

for the numerical scheme oY), #(N) with step size At = % Since we cannot compute
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9. Numerical Results

these quantities exactly, we approximate their decay, see e.g. [1], by calculating

( o) — tijvv))() , err, (N ;

Lton

( (V) A<2N>> @

M
err, (N g

where M is the number of Monte Carlo repetitions and (vt(N) vgﬁ))(i),i =1,....M,
~(N)

are iid copies of 0, ~ — ISQN ). The same holds for (& gg) - fngi\j))(i),i =1,..,M. In our

simulations, we chose M = 10° and N € {2} ...,2!5}. To cover a wide range of different
Feller indices, we will perform numerical simulations with four different parameter sets.
We always choose T' = 1 and Sy = 100. The other parameters can be found in Table
Model 1,3 and 4 are the same parameters as before (except for the time horizon) and
we added Model 2 with a high Feller index. The estimates err,(N) and err,(N) for

Model Vo K 0 o p m v

1 0.04 5 0.04 0.61 -0.7 | 0.0319 | 1.075
2 0.0457 | 5.07 | 0.0457 | 0.48 | -0.767 0 2.0113
3 0.010201 | 6.21 | 0.019 | 0.61 -0.7 | 0.0319 0.63
4 0.09 2 0.09 1 -0.3 0.05 0.36

Table 9.6: Parameters for the strong convergence test.

the seven schemes are plotted in Figures [0.13}0.16] against the corresponding number of
steps 2N. For each model, we show first the convergence behavior of the error for the
CIR process and then for the Heston model. Additionally, we plotted solid reference lines
with suitable slopes together with the error estimates. Blue reference lines always have
a slope of 0.5. We also estimated the order of convergence by the slope of a least squares
fit, see Tables — Here, we only take errors with step sizes N € {26,...,21%}
into account to get a stable result. For all models, our simulation study shows that
the numerical convergence orders of the Euler schemes do not change significantly if we
extend the simulation from the CIR process to the Heston model. This indicates that
the parameters of the CIR process (and especially the Feller index) solely determine the
convergence behavior.

Scheme | Rate CIR | Rate Heston

SE 0.51 0.52

AE 0.51 0.52
FTE 0.52 0.53
PTE 0.52 0.52
HM 0.51 0.53
IMP 0.92 0.51
MIL 0.96 0.51

Table 9.7: Estimated strong convergence orders Model 1
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Figure 9.13: Error estimates for Model 1

For the first model which has a Feller index around 1, our main result from Theorem
[7.13] provides a strong convergence order of 0.5 for the Euler schemes. This can be
numerically confirmed in Figure The implicit Milstein (MIL) and the drift-implicit
Euler (IMP) seem to converge with strong order 1 (which is the slope of the red solid
line) which is optimal for the CIR process by the results from [34]. This indicates that
our rate from Proposition is not sharp and that the results from for the latter
might hold for values v < 2. However, this advantage vanishes for the full Heston model
where all schemes seem to have the same strong convergence order of 0.5. This is in line
with our result from Theorem .11

2 5
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Figure 9.14: Error estimates for Model 2

For Model 2, which has a higher Feller index, Figure [0.14] and Table 0.8 confirm again
the expected strong convergence order of 0.5 for the Euler case. Note that the differences

96



9. Numerical Results

Scheme | Rate CIR | Rate Heston

SE 0.52 0.52

AE 0.52 0.52
FTE 0.52 0.52
PTE 0.52 0.52
HM 0.52 0.52
IMP 0.98 0.51
MIL 0.99 0.51

Table 9.8: Estimated strong convergence orders Model 2

between the different Euler schemes vanish for small step sizes and for high Feller indices.
The Euler schemes only differ if the approximation of the CIR process becomes negative.
For small step sizes and for high Feller indices this is unlikely to happen in a Monte
Carlo simulation. Again, the implicit Milstein and the drift-implicit Euler seem to have
a strong convergence order of 1 for the CIR case which decreases to 0.5 when applied
to the full Heston model.

logy (L' — error)

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
log, (steps) log, (steps)

(a) CIR, v = 0.63 (b) Heston, v = 0.63

Figure 9.15: Error estimates for Model 3

Model 3 has a Feller index of 0.63 and we have shown that we can expect a strong
convergence order of at least 0.315 for FTE, PTE and HM. However, looking at Table
and Figure [9.15] we can see that the rate for the Euler schemes is still around 0.5,
even for SE and AE, for which we did not derive a convergence order in this case. For
the IMP and MIL the convergence order dropped to a value around the Feller index
itself. The red solid line in [9.15| on the left has now a slope of 0.63. This is in line with
the lower bound result from [34] and indicates again that these schemes are optimal for
the CIR process. For the full Heston model, all schemes seem to have a convergence
order of 0.5.

The last model has the lowest Feller index. As in Section [Q.1l we simulated the truncated
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log, (L' — error)

Scheme

Rate CIR

Rate Heston

SE
AE
FTE
PTE
HM
IMP
MIL

0.49
0.47
0.49
0.48
0.47
0.67
0.66

0.50
0.48
0.50
0.49
0.50
0.50
0.52

Table 9.9: Estimated strong convergence orders Model 3
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Figure 9.16: Error estimates for Model 4

Scheme | Rate CIR | Rate Heston
SE 0.41 0.41
AE 0.38 0.40
FTE 0.37 0.39
PTE 0.37 0.38
HM 0.38 0.37
Tr. MIL 0.44 0.46

Table 9.10: Estimated strong convergence orders Model 4
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9. Numerical Results

Milstein alongside the Euler schemes since the Feller index is now below % Again, we

can see an estimated convergence order of the error for the Euler schemes that is better
than expected. Here, we chose v as the slope of the reference line in both plots from
Figures We already know that the truncated Milstein scheme is optimal in this
parameter range (see Section .

The last two examples indicate that it might be possible to obtain a convergence order
of min{v, 1} for all Euler schemes for the CIR process and for the Heston model.

Our numerical simulations underline our result that, at least for v > 1, the L'-convergence
order of simple Euler schemes for the Heston model is already optimal. More advanced
schemes can reach better error orders for the CIR process but their additional benefit
in terms of the strong convergence order is not clear when applied to the full Heston
model.
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Chapter 10

Optimal L?-Approximation of
Stochastic Volatility Models

Now, we would like to move on to the analysis of more general models. In this chapter
we study the strong approximation of the stochastic volatility model

1
AX, = <'r -5 (Vt)> dt + f (V3) (det +/1- deBt) , Xo = 1,
dVy = b (V) dt + o (V) AW, Vo =0,

where V = (V;f)te[O,T} takes values in an open set D C R, f,b,0 : D — R are appropriate
functions, p € [-1,1}, r € R and W = (Wi)eo,1), B = (Bt)iepo,r] are independent
Brownian motions. The initial values of the SDE are assumed to be deterministic and
we have x € R, v € D. The prototype example for SDE is the generalized
log-Heston model.

We analyze the minimal L?-error for the approximation of X7 that can be obtained by
arbitrary methods that use N € N evaluations of each Brownian motion, that is

: . 91\ 1/2
e(N) = (Si,ti)izll,],j,l,f:NEH(N) uellf{l(fN) (IE [‘U(Wsl, coisWsny By ooy Biy) — XT‘ ])

where U(N) is the set of measurable functions u : R?¥ — R and
II(N) = {(si,ti)i=1,.N : (sist;) €[0,T)?i=1,...,N,sy =ty =T}.
Our standing assumption is

Assumption 10.1. The SDE (10.1)) admits a unique strong solution and there exists a
set D = (I,r) with —oo <1 <r < oo and

P(V;e D,t>0)=1.
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In the introduction of Chapter [§] we gave a brief overview of the extensive study on
the optimal approximation of SDEs that has been carried out so far. In particular, if
the coefficients of SDE are Lipschitz continuous with Lipschitz continuous first
derivative, then we have

_ T
Jim VN ev) = 7 4p2/0 (E[(F'0)* (W)t

from [58], where a result for more general multi-dimensional SDEs has been established.
However, the coefficients of stochastic volatility models, as e.g. the log-Heston model,
typically do not satisfy a global Lipschitz condition.

10.1 Lower Bound
For our first theorem, we need the following additional assumptions:
Assumption 10.2.

(a) We have f € C*(D;R) and o € C*(D; (0, 0)).

(b) We have
1 2
sup E ‘(f’b+f”a2> (V)| | < oo
te[0,7 2
and
/ (! 2
wp & [ EDWD = 0P] _
5,t€[0,7] |t — s

These assumptions are mainly needed to establish the Ito-Taylor expansion of the process
(f(Vi))tefo,r) and to control the smoothness of the martingale part.

Theorem 10.3. Let Assumptions and[10.4 hold, let U(N') be the set of measurable
functions u : R2N — R and let

e(N) = inf inf )(]E [‘U(WSI,..., SN,Btl,...,BtN)—XT\ZDI/Z.

(85,ti)i=1,..,NEIL(N) u€eld (N

Then, we have that
N 1—p? T /N2 1/2
liminf VN e(N) > (E[(f'o)*(Vy)]) "~ dt.
N—oo 6 0
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10. Optimal L?-Approximation of Stochastic Volatility Models

10.2 Proof of Theorem [10.3

Before we start with the proof of Theorem [10.3] we need to introduce some notation.
Recall that

II(N) = {(sisti)iz1,..n : (si,t) € [0,T)%i=1,...,N, sy =ty =T}.
We also introduce
Op(N) ={(ti)i=1,.n: t; €[0,T],i=1,...,N, ty =T}.
Let

gH(N) = U(W817W827'--vWSNaBtMBtz?'"aBtN)a
HHB(N) = O'(WS,S S [O,T],Btl,Btz,.. . 7BtN) .

We also use the notation
Hitg(ny = 0 (W, Briy(w)) -
We set

ZS(N) ={Z:Q—->R: Zis gnv measurable},

ZSB(N) ={Z:Q = R: Z is Hy,(n) measurable}

and denote by V the set of all measurable functions v : C([0,T]; R) x RV — R. Since
we have 1) ()
Z,0 C 2,50,

it follows that

inf (B2~ XT\QDI/Q

zez ™)
. 2 1/2
— inf (IE [‘u(Wsl,WSQ,...,WSN,Btl,BtQ,...,BtN)—XT] D
1/2
> i (E[|z-x7])
zezyB™)

— inf (E DU(VV, By, Bi,....Bi) — XT\QDI/Q.

veY

Thus, it is sufficient to analyze the quantity

(1o Ze;ig}fw) (&]1z- XT’2D1/2

i - 51\ 1/2
N (tz)Ellr'Ili(N) 5I€1£ (E [‘U(W’ By, By, - - '7BtN) - XT} :|> )

to obtain a lower bound for e¢(NN). Here and in the following we write (t;) instead of
(ti)i=1,..N-
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10.2.1 Rewriting X7 and removing the measurable part

Recall that the SDE under consideration is given by

1
0X, = ( lp <v;>) dt+ 1 (V0) (paWs + /1= 2B,
dVi = b (Vi) di + o (Vi) dW,
Now we are going to rewrite Xp following [47].

Lemma 10.4. Let Assumptions and[10.3 hold. We have that

T
XT = UT + vV 1-— p2/ f(‘/;g)dBt
0

where
Upr=xz+p(F(Vp)— F(v))+rT
[ o s (L ler—an)w)a
, \o/ WPt lel e v )
with
y
Fo) = [ L
forye D.
Proof. We apply Ito’s formula to obtain
f 1L (of —d'f
ar ) = Laavi+ 5 (L) o aw,
fb

= Dyt + @, + 3 (o~ ') (V) i

Then, (X, V) solves

dX, = pdF(Vy) + h (Vi) dt + /1= p2f (Vi) dB,

t €[0,T],
dVy =b (V) dt + o (V) dWy,

where
1 bf 1
b= (r=37200) =0 (L4 S 05 =)
o 2
Therefore, we can rewrite X as

T
XTZUT+\/1—P2/ f(Vi)dBy
0

where

te0,T].

Up = 2+ p(F(Vy) — F(v)) + 1T — /OT (;fz(vt) . (Zf £ (of - a’f)) (Vt)) dt.
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10. Optimal L?-Approximation of Stochastic Volatility Models

Expanding f(V}) using Ito’s formula yields

f(Vt)zf(v)Jr/O <f’b+;f”02> (Vs)der/0 (f'o) (Vs)dWs,  te0,T).

Thus, we have

T T
Xr=Ur+ 172 (f(vo>BT + / AdB, + / m&)
0 0
with
t 1 t
At = / <f/b+ 2f//02> (‘/;)ds) }/t = / ( /U) (‘/S)dWSu te [OvT]
0 0

It follows that

inf (E||Z- XT\QDW

zezyB™N)

I T T 2
= inf <E ‘Z — UT —\ 1-— p2 <f(U)BT + / AtdBt + / Y%dBt)
0 0

)1/2

r T T 2 1/2
= inf E ‘Z —\V 1-— p2 </ AtdBt +/ Y;gdBt>
ZezyB™) i 0 0

and it remains to analyze

T T 2
’Z—/ AtdBt—/ Y,dB;
0 0

10.2.2 Removing the smooth part

)1/2

Since A = (A¢)¢efo,7) is smooth enough, fOT A:dB; does not matter asymptotically for
our approximation problem.

inf inf E
(t)ENB(N) 7 Zl1B(Y)

Lemma 10.5. Let Assumptions and[10.3 hold and let

T 2T 1
OE(N) = {75 7 o Tiya} = 4 0 s s T g a€<71>-
B(N) = {70", 71 vet} { [N’ [N } 2

There exists a constant C' > 0 such that
29\ 1/2

T [N*]—1
E / AdBy— Y Age(Bre | — Bro) <C-N—°
0 k=0
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Proof. First, we define n®(t) := max{r* € g (N) : 7* < t}. Using the Ito-isometry we

have
[No]-1 2

T
E / AdBy— Y Age(Bre, — Bre)
0 k=0

2
=E

T
/0 (At - Ana (t))dBu

T t ! 1 1" _2 ’
:/O E /na(t)(beerff)(Vs)ds

Moreover, the Cauchy-Schwartz inequality and Assumption m (b) yield

2
/ t < f'o+ 1 f”02> (Vi) du
0! 2

1
<| sup E ’(f’b - f”oQ) (Vs)
s€[0,7] 2
S C . N*QQ

dt.

E

2

) (t—n%(1)?

and so we have

[Ne]-1 2

T
E / AdBy— > Ase(Bre — Bro)| | <C- N7
0 k=0

Next, we introduce
Hitpv)mg(v) =0 (W7 Brig(ny, BH%(N)) ;

the set V, of all measurable functions v : C([0, T];R) x RN+IN“T 5 R and

ZSQB(N)UH%(N) ={Z:Q = R: Zis Hiy(v),mg (n) measurable}.
Note that
ZSB(N) c ZSQB(N)UHQB(N).

Lemma 10.6. Let Assumptions and[10.9 hold. We have
lim inf v Ne(N)

N—o0
2
> liminf VNv1 —p?  inf inf E
T N—ooo P (t;)Ellg(N) ZGZHB(N)UH%(N) (
Vo

T
‘Z—/ Y,dB,
0

)1/2
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10. Optimal L?-Approximation of Stochastic Volatility Models

Proof. Since ZLZSW—l Are (B.rlg+1 — Bye) is Hitp (N, 113, (v)-measurable, we have
T T 271/2
zezyB™) 0 0
r T T 27 1/2
Z inf E||Z— / AtdBt - / deBt
Pt | 0 0
r T T 271/2
= inf E||Z— / (At - Ana(t))dBt - / Y;gdBt
P | 0 0
r T 27 1/2 T 271/2
2 inf E || Z— / Y;gdBt —E / (At — Ana(t))dBt N
Zezgf(mun%(zv) 0 0

where we applied the Minkowski inequality in the last step. Therefore, using Lemma

[[0.5 we have
T T 271/2
inf inf E ‘Z — / AtdBt — / Y;gdBt
(ti)€lp(N) Zeng(N) 0 0
T 271/2
> inf inf E ‘Z —/ Y, d By -0 (N_o‘) .
(ti)ellg(N) ZeZ‘I;IB(N)UH%(N) 0
O
So, we have reduced our initial problem to the study of
T 271/2
inf inf E ’Z - / Y:dB; (10.2)
(t:)EIlp(N) ZGZEB(N)UH%(N) 0

In the following, we denote points from IIg(NN) UIIE(N) by tf and we assume without
loss of generality that these points are ordered, i.e.

HB(N)UH%(N):{Oztggt?g... <t :T}

with m(N) = N + [N“].

10.2.3 Inserting Brownian bridges and symmetrization

Now we apply a symmetrization argument similar to [46,61}/73|. To analyze ((10.2)) let
us first denote the piecewise linear interpolation of B on the grid tf, ..., t%( N) by B, i.e.
B is defined as

— t—t
B = Btg + 7k(Bt2+l - Btg% te [tg7tg+1]7 k=0,.. 7m<N) - L

(6% o
tk+1 - tk:
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Then, the process B° given by
By = B, — By, te[0,T7,
is a Brownian bridge on [tf, tg_H] for k=0,...,m(N) — 1. Moreover, the processes

o o o o)
(BY)tejta o1 (B tepoig] s - - - » (By )te[tfn(N)il,tfi“N)]a B, W
are independent. Since

M- e

T m(
- 1
/ YidBy = Y ——— / Yidt (Big,, — Big)
0

67 «
i U T e

is Hipp( N)II% ( ~)-measurable, we have that

inf E
ZGZSE(N)UH%(N)

0

_ inf (E “Z—IN(KBO)
P T

with

T T

In (Y,B°) ::/ Y,dBs —/ Y,dBs.

0 0
Furthermore B° and —B° have the same law, so the independence of B° from (W, B)
implies that

(W§7 BO) g (W7§7 _BO) : (104)

We would now like to analyze Zy (Y, B°). Recall that (Y;),cp ) is independent of
(Bs)seo,r]- We define

g: t?—i—l _tgv AI?B = Bt?H - Bt‘,jv
for k=0,...,m(N)—1 and

!
(0% _ « o {67 (0% « P
Tink = 5Bk Bkt = Thank ~ Tk BB =By, — B, o

forl=0,...,2", k=0,...,m(N) — 1.
Lemma 10.7. Let Assumptions[10.1] and [10.9 hold.

(i) Let
m(N)—12n_1 A%z
IR, B) = > > Y, < kB — A% A?B) :
k=0 1=0

We have that
In(Y,B°) = ILm (Y, B°)

almost surely and in L?.
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(ii) It holds that

T 1/2
In(Y,B°) £ Z ( / \cbg“)’arzds)
0

with
m(N)—1 to
1 k41
t;), o .__
B =Y = Y (A;: /t Y“d“) Vg g, (o)
k=0 k
and

Z ~ N(0,1).

Proof. To simplify the notation we drop all a-superscripts in this proof. Note that
Assumption [10.2] (b) implies that

Y — Y, |?
s,t€[0,T] |t — s]
and
sup E [|Yt|2} < 0.
t€[0,T]
(i) We have
tet+1 tet1 -
/ Y;st—/ Y.dB, = I} — I}
tg tk
with
(%] te+1 -
ﬁ:/ Y,dB;, ng Y,dB,
tr 173
and
on—1
Ak _ km kn
ZY;%JrTz,n,k Akle* A ApB | =1 — 1
=0 k
where
2n_1 on_1
=Ny, Ay, B Ik = Bty ALB
1 — Z te+7 0,k 2k 2 - Tk te+7 e DELD
1=0 1=0

For brevity, we write Y4, s, ., = Y. Using the Ito-isometry, polarization and the
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smoothness of Y, it follows

2 r tk+1 277.71 2
E Uff e ] —E /t YedB, — 3 YA B
k 1=0
21 te+Ti41,m,k 2]
=E || / (Y — Yi)dB,
1=0 Yk tTink
271 te+Ti4+1,m,k 2]
=E / (Ys — Yi,1)dBs
| =0 te+Tin,k ]
2" -1 te+Ti41,n,k
= / E[|¥: - Yif?] ds
1=0 YtktTink
2" —1
<C) A} <CART
1=0

Furthermore, we have

B n 2
9 tha1 o 2n—1 A
R D s — bn ] _E /t YydB, — > Ak:Yk,lAkB
k 1=0

[ 2n-1 tr+T 2
1 k 1+1,n,k Ak}l
=E — YsdsApB — —=Y; 1AL B
Z (Ak/t SAL Ak k=K >

1=0 k+Tln,k
1271 1 tet+Ti41,m,k 2
=E[|) (Ys = Yiy) dsAg B
1=0 A U +Ti,n,k
With similar computations as before, we also obtain
2
E “15 - } < CAZ2™.
Now,
m(N)—1 2
E|IZn(Y, B°) ~ (v, B)?| =E || Y- (i -1t + B - 1f)
k=0
m(N)-1 9 m(N)—1 )
<2 Y EUI{“—I{“’” ] +2 ) E[‘Ié“—[f’” ]
k=0 k=0
m(N)—1
<C Y Apzh<c2
k=0
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10. Optimal L?-Approximation of Stochastic Volatility Models

which yields the L?-convergence, and also implies

oo
> E[|Zn(Y, B°) — IR(Y, B°)|] < o0,
n=1
from which the almost sure convergence follows by an application of the Borel-Cantelli

lemma.
(ii) Recall that Y is independent of B°. The conditional law of Z} (Y, B°) given

Yitrpe =Ykt, 1=0,...,2" =1 k=0,...,m(N) -1,
is therefore Gaussian with zero mean and variance

m(N)—12m_1 2

E Z Z Ykl (Ak,lB - AAk’ZAkB)

k=0  1=0 k

m(N)-1 yan_1 AL 2
=E Z (Z Ykl <Ak7lB — A]; AkB)>

k=0 =0

m(N)—1 san_1 Ap 2" -1 A
+2E| > (Z Ykl (Ak,lB - AI; AkB)> (Z Yl (Aj,lB - Aj’, AjB))
1=0 J

j<k=0 \ i=0

The Brownian increments in the second term are from disjoint intervals. Therefore, its
expectation is zero. Moreover, we have

m(N)—1 son_1 Ar 2
E Z (Z Ykl (Ak,zB - AI; Ak3>>

k=0 =0
m(N)—1  r2n—1 Apy 2
= kZ:O E ZZ:; (yk,l <Akle - Ak AkB>>
m(N)-1 | 2n—1 Aps A
+ 2 Z E Z (yk,l <Akle - A]; AkB>> <yk,j (Ak’jB - A:AkB>>
k=0 J<I=0

Looking at the first term, we obtain

m(N)=1  r27—1 Ay, 2
> E [Z <yk7l <Ak,zB - Ak’ Ak3>>

k=0 =0

m(N)—12n_1 Ap, 2
— Z Z yl%,lE (Ak,lB — A’ AkB)
k
k=0 =0
m(N)—19n_
Al 2 Ai,l
= > > v Ak- A
k
k=0 =0
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The second term yields
m(N)—1 on_q

AV ‘ ‘ Ay j
S5 (o 090) (o - 20)

j<i1=0

m(N)—1 271

_ Yk 1Yk,j Dk 1 Dk, j
S S mastut
k=0 j<I=0

Summarizing, we have

m(N)—12n_1 2

E kzo Z Ykl < AAM >

m(N)—1 n
_ (Z): 221y2 A A% Z Yk 1Yk, j Dk 1 Ak, j
k,l k1l — A Ak

k=0 j<I=0
m(N)—1 san—1 1 2
- > <Z yklAkl> - (Z Ykl kl) :
k=0
This in turns implies that
m(N)—1 son_q on_1 2\ 1/2
oy d
IR, B)=Z | Y. (Z Yk%lAk,l> - (Z Yszkz>
k=0 =0
with
Z ~N(0,1).
Now, note that
m(N)—1 fon_1 A 2" —1
) Y5 1Yi i Ak Ay
Jm D ZY’”<A’”_A>_2Z Ax
k=0 7<I=0
N) 1 tht1 1 tet1 2
- 3 (U ) = ()
k=0 th Ak \Jy,
almost surely by continuity of almost all sample paths of Y. Defining
m(N)—1 ¢
] 1 k+1
o) =Y, — Z (Ak/ Yudu> Lty tr0)(8)s s € [0,7],
k=0 t
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we can see that

tht1 Loyt 1 th1 2
/ 19l 2ds = / Y2ds — — </ sts> .
ti tr Ak tr

Therefore, the assertion follows now from part (i). O

Using ((10.3)), a symmetrization argument based on ((10.4) and the Lemma [10.7, we
obtain the following results.

Lemma 10.8. Let Assumptions and[10.9 hold. Then, we have

21\ /2 T a2 2
HB(ll{fl)funaB(N) (E [‘Z_IN(Y’B )’ }) = <E l:/O ‘(bsh | ds])

Zez,

with
m(N)—l o
N 1 k+1
¢gtz)v = YS — g (AIOCZ /ta Yudu> H[t(lz’tg+1)(s)7 S € [O,T]
k=0 k

Proof. Again we drop all a-superscripts in this proof. The equality of the laws in (10.4)
yields that

(W, B, T5(Y, B°)) £ (W, B, ~T}(Y, B°)) .
and (i) from the Lemma now gives

(W, B, Zn (Y, B°)) £ (W, B, —~In(Y, B%)) .

0

_ (1[«: UU(W, Biy, Buy, Biys -+ Bipy o)) + In (Y, BY)

Consequently, it follows that

<IE UU(W, Bigs Buys Bias -+ Byyiny) — In(Y, BY)

0

and so
2 (e [zt 7))
= (E[lza v, B°) + Zn (v, B )

- (IE H (IN(Y, B°) —v(W, By, By, . .. ,Btm(m)>

1/2

21\ 1/2
+ (U(W BtO?Bt17""Btm(N)) +IN(Y7 BO))‘ :|>

%

<2 <E Uv(w, BuysBuy, Bigs -+ By o)) — In (Y2 BY)

113



by the Minkowski inequality for any v € V,. It follows that

0

nf (1[«: Uv(w, Biys Biy: Bigs -+ Biyyy) — In(Y, B°)
1/2

> (B [1Zx (v, B°)P))

Using the Lemma |10.7] we then have

0

inf (E UU(W, Bis Bir, Bigs - By, ) — In (Y, B)
vEVq

T 1/2
= (=] [ o))
0

since E [|Z|?] = o for Z ~ N(0,0%). The assertion now follows from minimizing over
all possible discretizations. ]

10.2.4 Conclusion
Combining Lemma m, Equation ((10.3)) and Lemma we have shown that
T 1/2
liminf vV Ne(N) > liminf VNy/1 — p2  inf (E U y¢gtf>va\2ds]> . (10.5)
N—oo N—oo (tZ)EHB(N) 0
The last part of the proof requires the following two auxiliary results:

Lemma 10.9. Let Assumptions[10.1] and[10.9 hold. Then, the function

@ : [O,T] — R, (p(t) — (E [(f/U)Z(‘/t)])l/Q
satisfies
[ =* () _
s,tSeLEST] |t — s|1/2 < (10.6)
and
sup 1E0 =50 <o (10.7)

stefor] |t — s[4
Proof. We have
E[(f'0)*(Vi)] —E [(f'0)*(V3)]|
= [E[((f'0) (V) + (f'0) (Vi) ((f'o) (Vi) = (f'o)(Va))]]
and so equation follows from Assumption m (b) and the Holder inequality.
Equation is a consequence of

(1) ~ (5)] = [ V() — V()| < VIR — 2]
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Lemma 10.10. Let Assumptions and[10.9 hold and let o € (2/3,1). There exists
a constant Cy, > 0, such that

T m(N)—1
sup E / \¢§ti)7a|2ds - = Z 902<t%)(tg+1 _ t%)2 <C.. N—Sa/2’
(t;)ENg(N) 0 6 par
where

e*(t) =E [(f'0)*(Vi)] , t € [0,7].

Proof. As before, we drop the superscript . By the definition of ¢, we have

T
E (ti)Qd}
[/ 61 Pt

[ 2
T m(N)—1 ;
1 k+1
=k / Y- / Yudul s) | ds
0 ;) A i [tk7tk+1)( )
[ 2
T m(N)—1 ;
1 k+1
=" /0 Z Kk . (¥ Y“)dUH[tk tk+1)(5) ds
k=0 k
[ (M
=" /O k/t (Y; h Yul) dul]l[tkytlwrl)(s)
k=0 k
m(N)—1 1 tin
l/t (1/5 o YuQ)duZ]l[thtHﬂ(s) ds
=0 l

m(N)—1

1 tkr1  fle+1 ptr+1
k=0 k Jtg k k

Recalling the definition of Y, we have for s,u € [tx, tx+1] that

YS—Yu:/O (f'o) (W)dWr—/o (f'o) (Vi)dW,.

To calculate the value of E[(Y; — Yy,,) (Vs — Yu,)], we first observe that

tkr1  fle+1 fle+1
/ / / E[(Ys — Yy,) (Ys — Vi, )] duiduads
th th th

tkr1  fle+1  pu2
- 2/ / / E[(Y, — Yu,) (Vs — Vi, )] durdusds.
ti t tr

Now, we consider three cases.
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Case 1: s < wuj < ug. Using the Ito-isometry and polarization we have
r Ul uz
BV~ V) 00 = V) =B | (= [ (o) o0y, ) (= [ (7o) vy, )|
s )
—E / (f'o) (m)dr]

= E[(1'0)* (V)] (= ) + 705, )

with
T,(gl)(s,ul) =E [/sul ((f/0)2 (V) — (f'J)Q (Vtk)) dr]

and
(s )| < 0y

since s,u1 € [tg, trt1].
Case 2: u; < s < wug. Here it follows

S

B~ Vo) 00 - vl =B | ([ () o ) (= [ (7o) 0y ) | <o

1

Case 3: u1 < wug < s. Similar to Case 1 it follows that
B - ) (- Yol = | ([ (o) oaw, ) ([ (70) vy, )|
_E / (f'o)? (V,ﬂ)dr}

=B [(70)? (h0)] (s = ) + {250

with

r(s,up) = E [/u ((F'0)* (Vo) = (f'0) (Vi) dT]

2

and
| < 0ot

Summarizing the different cases we have
tkr1  fle4+1 pu2
2/ / / E [(}/s — Yul) (YS — Yug)] dU1dUQdS
tr tr ti

) te+1 fley1 pu2
=2¢ (tk)/ / / ((ul - S)]l{sgulSUQ} + (s — u2)]l{u1§1t2§5}) duydugds
tr ti tr

+0(AY?).

116



10. Optimal L?-Approximation of Stochastic Volatility Models

Now straightforward calculations yields that

u2 u2 1
/ (u1 — S)ﬂ{sﬁulﬁw}dul = / (u1 — S)]l{sﬁw}dul = §(u2 - 5)21{8§u2}

tr s

tkr1  fle4+1 pu2 1 A
/ / / (u1 - 3)1{3§u1§uQ}dU1dU2dS = fAk
tr ti tr 24

and

as well as

u uz
/ (5 —u2) Ly, <up<sydur = / (5 —u2)Lyy,<srdur = (s — u2)(ug — t) Liy,<s)

tk tg

1 fles1 pu2 -
/ / / (S - uz)l{ulquSS}duldUQdS = —Ak
tk tr ti 24

Consequently, we have shown that

and

ter1 e+l fTr+1 1 9 9/2
[ [T R - Ya) (- Yo dundunds = gt a)at+ O(AY)
th th th

and that

T
E (ti)Qd:|
[/O 612t

m(N)—1 ber ftein tk+1
Z AQ / / / Y Yu1) (Y YuQ)] duldU,st

=0
m(N) 1

> PPt AR+ O(AY)
k=0

cn\r—‘

with Apax = maxg_o,  m(n)—1 [tk+1 — tk|. Since by construction

Apax < Co - N7
uniformly over all discretizations, the assertion follows. O
Thus, we have shown

T
B | [ loltepas) -
0

m(N)—1
0 ( 2+ O(NT),
k=0

| =
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uniformly in (¢;) € IIg(IN). Now we can apply Jensen’s inequality, to obtain

m(N)—1

o (E [/OT |¢gti)’a’2dtbl/2 = VN (6 PPN+ O(N3a/2)) "

k=0

m(N)—1

1/2
>vﬁ(é§j¢%m<@ﬁ — O(N/2el

k=0

B O(N1/2—3a/4)
VN
> i %

Since ¢ is a Holder-1/4-function due to ((10.7]), we have that

ta Aoz _ (N1/2—3a/4)'

m(N)—1

T
wﬁ)zz/’wmﬁ+mNﬂ“>
k=0 0

and

ﬁ“@ﬂlﬂwmﬂﬂ>wzymmm¢s;

uniformly in (¢;) € IIp(IN). Choosing a € (2/3,1) we finally obtain

thD1/2 > ﬂ\% /OTap(t)dt

= 1. Together with ([10.5)), this finishes the proof of Theorem

_ O(N—a/4) _ O(N1/2_3a/4),

liminf  inf \F\/1—7< [/

N—oo (t;)€llg(N)

since liminfy_yoo

10.3l

VN
m(N)

10.3 Upper Bound

As shown in Lemma a key step in our analysis is an idea of [47] to rewrite SDE

(10.1) as
dX; = pdF(V;) + h(V,)dt + /1 — p2f(V;)dB,, Xo = 1,

(10.8)
AV = b(V;) dt + o (Vy) dW, Vo =,
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where

F(y) = /yf(Z)dzv h(y) =1 — %Jd(y) —p (bf % (of — f)> (y)-

(o}

We now provide a matching upper bound to the lower bound from Theorem [10.3] by
constructing a suitable discretization scheme for X7. Using SDE ([10.8]), an approxima-
tion scheme of X7 on the discretization grid {0 =ty < t; < ... < ty = T} is then given
by

N-1
jftN :x—i-p(F(vtN + Zh 'Utk tk+1—tk)
k=0
N1 (10.9)
2 1 - -
+ 1_,0 (Zz(f(vtk)+f(vtk+l)) (Btk+1 _Btk)) )
k=0
where v is an approximation of the volatility process V. We need the following assump-

tions:

Assumption 10.11. (a) We have f,h € C*(D;R) and

2\ 2
sup E <h’b + h”02> (V) 00, sup E [(h’0)2 (V,})] < 00,
te[0,T] t€[0,1]
o2\
sup E <f’b + f”2) (V)| < oo, sup E [(f'a)2 (Vt)} < 00
te[0,T] te[0,1]

(b) The mapping
(Yol [O,T] — R, Sp(t) — (E [(f/O')Q(‘/t)])l/z

satisfies p € C([0,T7; (0,00)) and the discretization points are given by
ty = @ H(k/N), k=0,...,N,
where

foy p(t)dt

o :[0,7] — [0,1], d(y) = fOT (1)

(¢) Consider the scheme (10.9) and let € > 0. We assume that there exists a constant
C: > 0 such that

sup E |[A(Ve,) — h(on,)| < CoALE

k=0,...,.N max
sup B [1f(Ve,) = f(0, )] < C-ALE

k=0,...,N
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and

B[|F(Vr) = Flony) ] < C-AYE,

where

Amax = kjrllaXN |tk — tk_1|.

Ly

This second set of assumptions is to (a) control the Ito-Taylor expansion of (h(V;))ic(o,1]
and (f(Vi))eejo,r), (b) to define the discretization points and (c) to bound the error of
the approximation of the volatility.

Proposition 10.12. Let Assumptions |10.1] and |10.11| hold. Then, the scheme (|10.9)
satisfies

lizl\lIljélop\/N (E [|XT _ “%tzv|2D1/2 - \/1_47 OT (]E [(f’o’)Q(Vt)])l/z dt.

10.4 Proof of Proposition [10.12

We split the proof of Proposition [10.12] into several parts and use the notation

Ap=tpi1 —tr, AB=By,, —By, k=01,....N—L

First, we show the following lemma.

Lemma 10.13. Let Assumptions[10.1] and[10.11] hold. For the approximation scheme
(110.9) there exists € > 0 such that

g @XT—wW

I ‘/ F(Vi)dBs - vazsk>+2f<v;k+l>AB

2 1/2

+O <A§$§> .
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Proof. First, we have by the Minkowski inequality

27 1/2

2:| 1/2

2

N-1

S [ )~ hto )

k=0 *tk

1/2

= A+ B+ C.

N-1 tht1 1
1- p2 (/ f(Vy)dBy — B (f({)tk) + f(@t/wl)) AkB)
k=0

Then, we have by Assumption [10.11] (¢) that

A= ol [|F(Ve) ~ Fliny)P] " < Ol 145,

N

For the second term, we have

- 1/2
N—1 N—1 271/

B=E Z/tw (h(V}) — h(V3,)) dt + Z/tkﬂ (h(Vi,) — h(dy,)) dt
| | k=0 "k k=0 “ "k

r 27 1/2

N-1 .
<E || [t - b ae
k=0 "tk

27 1/2

+E

N-1 g,
2:/ (h(V,) — h(by,)) dt
k=0 Ytk

=: B1+ By

by the Minkowski inequality. By Ito’s formula, integration by parts, the Ito-isometry,
the Cauchy-Schwarz inequality, the Minkowski inequality and Assumption [10.11](a), we
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have

T pten o? N=letyyy pt 2]/
B =E Z/ / (h’b+2h”> (Vs)dsdt + Z/ / (R'o) (Vs)dW,dt
k=0 "tk k=0 1k b
MN-—-1 tk+1 0_2
=E (thy1 — s <h'b + h”) (Vs)ds
Ll k=0 1k 2
N-1 trt1 271/2
+ / (tip1 — s) (K'o) (Vi)dW,
k=0

1/2

. 1/2
/O<n+<> B (Wo vtdwt]

< (T(Amax>2 [E ' (h’b +Z )

+ (T(Am)2 /0 "k [(h’a)2 (Vt)] dt>1/2
< CAnax,

2

<E /OT(n+(t) _4) <h’b + U;h> (Vi)dt

+E

where n*(¢) := min{ty € {to,t1,....,tN} : tx > t}. By the Holder inequality and As-

sumption (c), we obtain
T 2
By =E [(/0 (Vo) = 1 (8yn)) dt> ]

<T'? (/OTE 18Vaw) = b ()] dt)

< C(Amax)2 72,

1/2

where n(t) := max{t; € {to,t1,....,tn} : tx < t}. The third term can be written as

C=+1-p°E
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T N-1 271/2
<vi-ge||[ o -y T )y g
k=0
B lN_l 27 1/2
++/1-pE (2 > (V) = f(@r) AkB>
k=0
- 97 1/2

N—-1
+v1-— p2E (; (f(wk+1) - f(ﬁtk+1)) AkB)

=:C1+ Cy+ (5.

The terms C and C5 can be bounded analogously using Assumption [10.11] (¢) and the
independence of W and B. That is, we have

— i Vot 1/2
Oy = Y= (Z E[I(/(Vi,) - f(ﬁtk))A’“B‘ZD

k=0
< C(Amar)?H3
and
O3 < O(Amax)?*3
This concludes the proof of this lemma. O

The discretization points given by

Yo(t)dt
ty = ® '(k/N), k=0,1,...,N, where @(y):fgL), xz € 1[0,T],
Jo e)dy
are regular, since
1
Cyp i= sup < o0
v z€[0,T] o(r)
due to Assumption |10.11] (b). More precisely, we have
1
Apax = max Ity — th—1] < cp - N (10.10)

=1,...,
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Since ®'(z) = ¢(x), this follows from an application of the mean value theorem. We
have

1 (k+1 _ k _ 1 1 1 1 1
ot (D) ot (B) = 0 (08 = g e e =
N N N=F@ TGN om) N
with &, € [%, %] and 17, = ®71(&,) € [tr, tps1]. This gives
k+1 k 1
o () e (2 <0, =
k=0,...,N—1 ( N > <N)’ =%
which is equation (|10.10)).

Assumption|10.11|(a) and an Ito-Taylor expansion also imply that there exists a constant
C > 0 such that

Apax = max

sup E[[f(Vy) = (V)] <C-Jt -3, (10.11)
s,t€[0,T]

Using ((10.10]) and (|10.11)) we can proceed analogously to the proof of Lemma and

obtain the following result.

Lemma 10.14. Under Assumptions and[10.71 we have

N-1
/OT f(‘/;)dBt B f(‘/;fk) +2f(vtk+1) AkB

k=0

d N=Lootygy 1 2 12
= Z<Z/ <f(‘/;‘/)_2<f(vtk)+f(%k+1))> dt)

k=0 'tk
with
Z ~N(0,1).
Thus Lemma gives that
E [|XT _ aetNﬂ e A PRy 40 (N*%*E)

with
N-1 thi1 2 1/2
Ry = (Z/ E <f(‘/;f)_;(f(vtk)+f(%k+1))> ] dt) :
k=0 'tk

The following result finishes the proof of Proposition [10.12
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10. Optimal L?-Approximation of Stochastic Volatility Models

Lemma 10.15. (i) Under Assumptions|10.1) and|10.11] we have

1 N-1 th1 1/2
Ry == (Z / (thy1 — tk)<p2(t)dt> + O(N73/%.
tg

k=0

(11) Under Assumptions|10.1 and|10.11] we have

1/2 1—p2 (T
limsup VN E [|XT - i'tN|2} <y =2 /

Proof. (i) An Ito-Taylor expansion yields

2f(‘/t) - (f(‘/tk) + f(‘/;flwrl)
= (f(V)) = f(Vi) + (f(Ve) = (Vi)

= [ (o575 ) wagas [iporam,

ty

_/ttk“ <fb+f”a )( )ds—/tw(f’a)(Vs)dWs

:/t’““ sign(t — s) (fb+f”“ )( )ds+/tk+l sign(t — s)(f'a)(Vs)dWs.

tg tg

Under Assumption |10.11] (a) and using the Cauchy-Schwarz inequality, the Holder in-
equality and the Ito-isometry there exists C' > 0 such that

2 2
no

E /tHl sign(t — s)(f'b+ f )( Vy)ds| | <C-N72
ty
and
trt1 tkt1
E[/ szgn(t—s)(fb—i—f” )( )ds/ sign(t — s)(f'o)(Vs) S] <C-N3/2
tr t

Another application of the Ito-isometry gives

tot1 tk+1 1/2
/ / 2(Vy)] dsdt | +O(N—3/*%),
tr ti

which concludes the proof of part (i).
(ii) With part (i), we have shown that

1/2 1—p2 [ [ien 1/2
" .

k=0
+ O(N_3/4) + O(N—1/2—z-:)
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Recall that

k+1 k 11
thpr — =1 (= | -0 [ =) = —
=97 (557) =07 (3) - e

with 7 € [tg,tg+1]. Therefore, we have

N-1 trt1 N-1 thi1 2
(1)
N / (tx 1—tk)g02(t)dt = / dt
kZ:O e i kzzo e P(Tk)
N-1 N-1 thtl A2 £ — 9 .
=3 et -t + Y [ so()(so)u) i
k=0 k=0 Ytk P\Tk

Since continuous functions with a compact domain of definition are uniformly continu-
ous, we have that

lim sup sup  |p(t) — ()| = 0.
N=00 =0,...,.N—1 €[ty tps1]

The strict positivity and Riemann-integrability of ¢ imply now that

N-1 1 T
i NS~ [ e -0 = [ e
N—oo —0 th 0
and this gives the desired result together with Equation (10.12)). O

10.5 Application to the Generalized Log-Heston Model

As already mentioned, the prototype example for SDE (10.1)) is the generalized log-
Heston model

dX; = (r —~ ;m) dt+/V; (det + ﬂdBt) ) Xo =1,

AV, = k(0 — Vi)dt + oV, dWs, Vo = v,

(10.13)

where k,0,0 > 0, v € [%,1] with v > 1 if vy = 1/2. For vy = %, V is the CIR process,
for v € (%, 1) the volatility process is the CEV process (see [19] and Section and
for ¥ = 1 we are in the case of the Brennan-Schwartz model [12].

In this setup, it is well known that SDE has a unique strong solution and that
we have

P(V; € (0,00),t > 0) =1, (10.14)

which is Assumption [I0.1] See Sections 2] and 2.2] for v < 1. For v = 1, equation
(10.14])) follows from the explicit representation

o2
Vi =vexp <— <m+2>t+aWt>

T L R
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10. Optimal L?-Approximation of Stochastic Volatility Models

(see Satz 42 in [52]).

10.5.1 Verifying Assumption (10.2
We have
f(y) = \/@7 U(Z/) =oy’,

so Assumption m (a) is also satisfied, since these maps are infinitely differentiable on
D = (0,00).
Now, it remains to verify condition [10.2] (b). Here we have

1 K0 K 0% 5 3
(f’b+ 2f”02> (y) = 2 2 Y- §y2v 2
and o
(Fo)w) = Ty

We will need the following Lemma:
Lemma 10.16. We have

sup E[V/F] < o0
t€[0,T]

forallp e R if y=1.
Proof. For v =1, equation (10.15)) yields

1 1 2
%Svexp<<ﬁ+(;>t—aWt>

and the statement follows in this case from

2

E [exp (aW})] = exp <O;t) , aeR, t>0. (10.16)

the exponential integrability of the Brownian motion.
O

Now Proposition 2.2 Proposition 2.6 Lemma [I0.16] and the Minkowski inequality yield
that

1 2 K0 K 02 o, 3|7

sup E ’(f’b—l—f"02> Vi = sup E ‘— Vi——=—V ' 2 < 00
t€[0,7] 2 () t€[0,T] 2/, 2¥V 1 8t

for v € [4,1] with v > 1 if v = 1/2. Note that

4
/ u* Ldu
Y
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for « € R,y,z > 0. For v > 1/2, we thus have

1/2
< C|t — s

4

(|00 - (Fovaf] < OB || [ w0 - Voo [ viaw,

by Proposition 2.6 Lemma [I0.16, the Minkowski, Holder and the Burkholder-Davis-
Gundy inequality. For v = 1/2, the function f’o is constant. Hence, Assumption m
is fulfilled and we have established the following proposition:

Proposition 10.17. Assume that v € [%, 1] and that v > 1 if y = % For SDE (|10.13))
we then have

o o/1—p2 [T 211\ 1/2
1}&135@6(1\7)2@/0 (E[V; D dt. (10.17)

For the cases v € {%, 1}, we can write the right side of ((10.17) in a more explicit way.
For v = %, we have

E [Vf”‘l} =E[V? =1, te0,T],

and for v = 1 we have

E |:‘/t2’Y_1} —ry [V%] = pe +0 (1 — eim) , t e [O,T]

10.5.2 Verifying Assumption (10.11

For the upper bound the functions of interest in the generalized Heston model are

fW)=vy, by =rl-y), oy =0y’

and
Fly) = —— (57 =i ),
7 (3-7)
1 kO@—y) 1, o 11
hy)=r—-y—p| ——=y2 7+ —y" - — .
(y)=r-35y p< Y+ gy 2<2 v))
In the following we focus on v = % and v = 1. The case v € (%, 1) can be analyzed

similarly by extending the results from |2| and [62] to suitable non-equidistant (but non-
adaptive) discretizations, but is not treated in this thesis for the sake of conciseness.

The case v = %

Here we have

fly) =y'2, by) =k —y), oly) = oy'/?
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and

and the functions

o2
(0,00) 2y <h'b + h"2> (y) € R, (0,00) 2y (h'o)(y) € R,

2
no

0.3y (704 PG )G R (0.00) 3y (FO)0) €,
appearing in Assumption (a) are bounded (in absolute value) by the function
(0,00) 3y C(l +y+y_1/2) € (0,00),

for a suitable constant C' > 0. Thus, this assumption is verified due to Proposition
In particular (f'o)(y) = § and so Assumption (b) is trivially satisfied. Note
that the corresponding discretization points are equidistant, since ®(y) = y/7T. For
condition (c) we need to choose a particular approximation scheme. Here, we take the
drift-implicit Euler scheme from Section which approximates the process Z = vV
and is given by

4K6 — 02 1 K o
2l = 2 + | ————— — =z At + =AW,
LTk ( 8 1 2 ’““) 2=k (10.18)
UVk+1 = Zl%—i—l
where At = T/N, ty, = kAt and zp = /v. In |2] it is shown that
N p N
sup E HZtk — Vi, } < Cp(At)P, sup E Hztzk — V}k‘p] < Cp(At)P

k=0,..,.N k=0,..,.N
for its time-continuous extension from Equation (7.8) if v > 2 and 1 <p < %1/ and

sup E[|2,[P] < oo
k=0,...,N

for all p > 1. For ¢ € (0, %) and v > 2 a standard argument using Hoélder’s inequality
yields

sup E “ztk /i

k=0,...,.N

Since f(y) = /y, and F, h are linear, Assumption [10.11] (c) is satisfied for

2] < CL(At)3, sup E [|2§k - Vt,ﬂ < C.(At)5~=.
k=0,....N

- 52
O, = Zp kE=0,...,N.

Combining the upper and the lower bound and taking into account that (f'o)(y) =
we obtain the following result:

g
2
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Proposition 10.18. Assume that v = % and v > 2. For SDE (10.13)) and scheme

(110.9) where (@tk)ke{o N} 18 given by the drift-implicit Euler scheme (10.18|) with dis-
cretization points t, = kT/N, k=0,..., N, we have

V1=p?T
Iv-_ 7 <liminf VN e(N)
V24 N—oo

1/2 1— p2T
§limsup\/NE([|XT—g%tN|2]) < IV
N—o0 4

The case v =1

In this case the coefficients of the SDE read as

fly) =y'? b(y) =k (0 —y) a(y) = oy
and
F(y)zg(yl/g—vw) h(y)zr—;y—p<w—2yw>-

The functions
2

(0,00) 3 y <h’b 4 h"2> W) ER,  (0,00) Dy (Wo)(y) € R,

0.2
(0,00) >y (f’b + f”2) (y) €eR,  (0,00) 3y~ (f'o)(y) €R,

appearing in Assumption [10.11| (a) are of the form

k

(0,00) 2y — Z cyt’? e R
(=—k

for a suitable k € N and ¢y € R for £ = —k,—k + 1,..., k. Lemma [10.16| implies then
that Assumption [10.11] (a) is satisfied. Moreover, the function ¢ is given by

o) = (B [(fo)2(V)]) " =

for t € [0, T] which is continuous and strictly positive. Therefore, also Assumption|10.11
(b) is satisfied. For condition (c) we need to choose again a particular approximation
scheme. Here, we take the Euler-type discretization

o2
U, = Vexp <— (/1 + 2) tr + aWtk>

2

+ kz:lme exp (— (m + 02> (tk —t1) + o (Wy, — Wtz)> (L = 1)
1=0

(E [Vt])l/z _ % (,er—nt +0 (1 . e—nt))1/2

N[ Q

(10.19)
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for k=0,...,N. We set
Anax 1= aXN ’tk+1 — tk’.

For scheme (|10.19)), we have the following estimates:

Lemma 10.19. Let p > 1 and g € R. There exist constants C, > 0 such that

sup E[|Vi, — 01, ] < Cp(Amax)?- (10.20)
k=0,....N

Moreover, we have

sup E[|dg, |7 < oo. (10.21)
k=0,...,N

Proof. Let

s s (- (50 2 Y tw) . oo (14 %) 1),

Then we can write .
Vi = g(t, W) (U + /@'9/ h(s, Ws)ds>
0
and

tk
B = glte, Wi,) <v - / hn(s), Wn(s))ds> .
0

It is well known that

max E[

p
< p .
k=0,...,N } < Cp(Amax)?, (10.22)

tk 23
/ h(s, Ws)ds — / h(n(s), Wy(s))ds
0 0

however we could not find a reference for this. The closest reference is [29], which con-
siders SDEs with bounded coefficients instead of geometric Brownian motion. However,
the above estimate can be shown using standard arguments based on an Ito-Taylor ex-
pansion, the Minkowski, Holder and Burkholder-Davis-Gundy inequalities, see also the
proof of Lemma [10.13] Thus, another application of the Holder inequality, of equation

(10.16)) and of equation (10.22) yield

sSup E HVtk - @tk‘p]

k=0,....N
< (s0)" sup (E [g(ty, W;,)?])"?
k=0,....N
tr tk Zp 2
- sup E h(s, WS)dS - h(n(s)7 WU(S))dS
k=0,...,N 0 0

< Cp(Amax)pa
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which is (10.20]), i.e. the first statement.
For the second statement (10.21)) note that

1 1 2
- _exp<<m+0>tk—aWtk>,
Uy, — 0 2

and for ¢ < 0 the assertion follows again from equation ((10.16)). For ¢ > 1 we can use
that

vtk = ‘/tk + (@tk, - ‘/tk,)

Lemma [10.16] the estimate ((10.20]) and the Minkowski inequality. Finally, for ¢ € [0,1)
we can apply |y|? < 1+ |y|. O

Now recall that
fw)=vy,  Fly) =
h(y)zr—;y—pcel— (E+%) \/17>

T o
Since
and
L 53/2 3/2
\f \[—2< +y~ )\Z yl,  y,z2>0,

Lemma |10.16|and [10.19[ now imply that also Assumption [10.11](c) is satisfied. Thus we
obtain the following result:

Proposition 10.20. Assume thaty =1 cmd let o(t) = (ve‘“t +6(1— _”“t))l/2 t e

[0,T]. For SDE (10.13) and the schemes cmd with discretization points
given by tp = ®~Y(k/N), k=0,1,...,N, where D(y fo (t)dt/ fo o(t)dt, we have

/1_
(t) dt < liminf V'N e(N)
N—00
1/2 1—p2 (T
glimsup\/N(EDXT—getNFD </ 4’)
N—oo 0
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Chapter 11

Conclusion

In this thesis, we analyzed several numerical schemes for the log-Heston model and the
CIR process. Our main motivation was to provide weak and strong convergence results
for explicit Euler-type discretization schemes which are very easy to implement. For
these schemes, results from the literature were rare and came with strong restrictions
on the parameter range.

Our first main result was Theorem [6.3] where we provided the first weak convergence re-
sult for an Euler discretization of the log-Heston model. We could also observe in Section
that our theoretical convergence rates are attained under even milder assumptions.

In Chapter [7] we could prove strong convergence rates for all known Euler-type schemes
of the CIR process and the log-Heston model (Theorem and Proposition . For
the first group of Euler schemes, which allow negative values of the CIR approximation
throughout the simulation, our results hold without any additional assumptions. For
the second group, our proof is valid for v > 1. Together with Theorem [8:I] we could
show that the achieved convergence order of the Euler schemes is already optimal for the
log-Heston model in this parameter range. In terms of the convergence order, there is no
advantage in using a more sophisticated scheme. Our simulations in Section [9.2] confirm
these theoretical results. For the parameter range v < 1, the numerical simulations
indicate that an even better convergence order than the one from Proposition
might be possible.

In Proposition [6.9) we extended existing weak convergence results for a Milstein-type
scheme. In Proposition [7.15] we could also show new strong convergence results for this
method. Both proofs hold for the whole parameter range where the implicit Milstein
scheme is positivity preserving.

Finally, we analyzed the minimal L2-error for general stochastic volatility models in
Chapter We could prove a lower bound in Theorem and a matching upper
bound (up to a factor 1/3/2) in Proposition |10.12]
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