The VLDB Journal (2024) 33:131-161
https://doi.org/10.1007/s00778-023-00800-5

REGULAR PAPER O‘)

Check for
updates

Anytime bottom-up rule learning for large-scale knowledge graph
completion

Christian Meilicke' ® - Melisachew Wudage Chekol? - Patrick Betz' - Manuel Fink' - Heiner Stuckeschmidt'

Received: 11 August 2022 / Accepted: 23 May 2023 / Published online: 16 June 2023
© The Author(s) 2023

Abstract

Knowledge graph completion is the task of predicting correct facts that can be expressed by the vocabulary of a given knowledge
graph, which are not explicitly stated in that graph. Broadly, there are two main approaches for solving the knowledge graph
completion problem. Sub-symbolic approaches embed the nodes and/or edges of a given graph into a low-dimensional vector
space and use a scoring function to determine the plausibility of a given fact. Symbolic approaches learn a model that remains
within the primary representation of the given knowledge graph. Rule-based approaches are well-known examples. One such
approach is AnyBURL. It works by sampling random paths, which are generalized into Horn rules. Previously published
results show that the prediction quality of AnyBURL is close to current state of the art with the additional benefit of offering an
explanation for a predicted fact. In this paper, we propose several improvements and extensions of AnyBURL. In particular,
we focus on AnyBURL’s capability to be successfully applied to large and very large datasets. Overall, we propose four
separate extensions: (i) We add to each rule a set of pairwise inequality constraints which enforces that different variables
cannot be grounded by the same entities, which results into more appropriate confidence estimations. (ii) We introduce
reinforcement learning to guide path sampling in order to use available computational resources more efficiently. (iii) We
propose an efficient sampling strategy to approximate the confidence of a rule instead of computing its exact value. (iv)
We develop a new multithreaded AnyBURL, which incorporates all previously mentioned modifications. In an experimental
study, we show that our approach outperforms both symbolic and sub-symbolic approaches in large-scale knowledge graph
completion. It has a higher prediction quality and requires significantly less time and computational resources.

Keywords Knowledge graph completion - Link prediction - Rule learning

1 Introduction as genders or nationalities. These entities are connected by

labelled directed edges. A label corresponds to a binary pred-

A knowledge graph is a formal representation of a certain
domain. In a knowledge graph, nodes represent entities, such
as people, places, organizations, or abstract entities such

B< Christian Meilicke
christian @informatik.uni-mannheim.de

Melisachew Wudage Chekol
m.w.chekol@uu.nl

Patrick Betz
patrick @informatik.uni-mannheim.de

Manuel Fink
manuel @informatik.uni-mannheim.de

Heiner Stuckeschmidt
heiner @informatik.uni-mannheim.de
University Mannheim, Mannheim, Germany

2 Utrecht University, Utrecht, Netherlands

icate, which is also referred to as relation. A pair of entities
(a, b) that is connected via an edge with label p corresponds
to a fact p(a, b) also called triple. Thus, a knowledge graph
can be understood as a set of facts that are grounded binary
predicates.

Knowledge graphs are widely employed in various domains.
Some examples are Freebase [7], DBPedia [1], YAGO [54],
Google Knowledge Graph, and Microsoft Satori [40]. These
massive graphs can contain up to millions of entities and bil-
lions of facts. As pointed out in [17], knowledge graphs are
often incomplete. The task of constructing missing triples in
such a graph is known as knowledge graph completion or link
prediction. This task can be solved with the help of external
resources (e.g., text in web-pages) or by inferring new triples
solely from the already existing triples in the given graph. We
are concerned with the latter problem.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-023-00800-5&domain=pdf
http://orcid.org/0000-0002-0198-5396

132

C. Meilicke et al.

An approach that does not use external information must
rely on the statistics, patterns, distributions or any other
kind of regularity that can be found in the graph. An intu-
itive choice for solving such a task is to learn and apply
an explicit, symbolic representation of these patterns. While
there is a long history of approaches that are concerned with
learning symbolic representations, such as inductive logic
programming [37] and relational association rule mining
[15], today’s research is following a different paradigm. The
vast majority of methods that are developed nowadays learn
a low-dimensional, sub-symbolic representation of entities
and/or relations that appear in the given graph [47]. As a
result, symbolic approaches are underrepresented in knowl-
edge graph completion research.

As an exception to this general trend in [35] a symbolic
approach has been proposed, which has been specifically
tailored for the task of knowledge graph completion. This
approach is called AnyBURL (Anytime Bottom-up Rule
Learning) due to its anytime behavior and the fact that it
is based on a sampling component that generalizes paths
into rules. The results available in [35] as well as the results
reported in an independent evaluation of the current state of
the art [47] revealed that AnyBURL is not just a symbolic
baseline, but performs on the same level as the best models
proposed in the last five years.

Symbolic approaches are not necessarily restricted to rule-
based methods only. Other symbolic approaches focus on the
notion of paths [13] or on the concept of nearest neighbors
[21]. One of the most important challenges that a rule-based
approach needs to solve is to determine which types of rules
are supported by the approach. We refer to the set of sup-
ported rules as the language bias of a rule-based approach.
The language bias determines which regularities can be
grasped and which regularities are ignored. Contrary to this,
a latent approach does not need to list certain types of rules
or regularities that can be detected by the approach. As a con-
tribution of our work, we show that it is possible to explicitly
define a language bias that can be efficiently used to achieve
top results on very large knowledge graph completion prob-
lems.

The increased focus on sub-symbolic representations in
the past decade, which was mainly driven by the flexibility
and predictive quality achievable with end-to-end learning,
somewhat conversely motivated the revival of the usage of
symbolic methods due to an urgent need for explainability.
Along these lines, it has been shown that AnyBURL can
be utilized to explain predictions made by a latent model
when restricting the types of learned rules [5]. Moreover, a
symbolic model, when performing competitively in regard
to predictive quality, represents a standalone alternative to
a latent model as it is inherently explainable. For instance,
every prediction obtained by a rule-based model can be
backtracked to the respective symbolic rule that made the

@ Springer

prediction and is therefore fully explainable. This is a huge
advantage compared to approaches that are based on latent
representations.

Another advantage of a rule-based approach is its appli-
cability to both transductive and inductive scenarios. In an
transductive setting, the set of entities, for which we want
to derive new facts, is described in a given knowledge graph
that we use to learn a model. In an inductive setting, we might
also be interested to predict missing information for new enti-
ties not seen during the training phase. These entities might
be described in a new set of observations that have emerged
after the training phase. In such a setting, the rules that have
been learned in the training phase can still be applied to make
predictions, while, for example, standard knowledge graph
completion approaches cannot be applied directly in such a
setting [59].

In this paper, we further improve AnyBURL and report
the impact of four major modifications.

Object identity While the previous version of AnyBURL
does not utilize Object Identity [51], we take up the
concept in Sect.3.3 and report about experiments that
illustrate its benefits w.r.t knowledge graph completion
(Sect.6.1). Our results show that it prevents learning a
large number of quasi-redundant rules with misleading
confidence scores. The basic idea of this extension is
rather simple, as it adds to each rule a set of constraints,
which requires that the groundings of different variables
are different entities. We show that these constraints pre-
vent the learning of problematic rules, which have an
overrated confidence score. The removal of these rules
increases the predictive quality and reduces the size of
the learned rule set.

Confidence sampling We explain in Sect. 3.4 why it is
especially important with respect to very large datasets
to avoid a depth-first search (which has previously been
used) when drawing samples for computing the confi-
dence of a rule. The previously implemented method is
problematic if the search tree that is constructed grounds
a variable with a hub entity, e.g., female. In such a situ-
ation, it might happen that the chosen sampling bases its
confidence on women only, while the rule captures a gen-
eral regularity about any kind of person (independently
of the gender of that person). Thus, we would learn a
rule about persons, but use the statistics of the subgroup
of women to compute its confidence. We propose a dif-
ferent sampling procedure that does not run into such
problems.

Reinforcement learning-based path sampling We intro-
duce reinforcement learning in Sect. 4 to guide the search
during sampling paths. We argue and show that rein-
forcement learning is more robust, allows to leverage the
characteristics of a given knowledge graph, and is less

Anytime bottom-up rule learning...

133

negatively affected by choosing a wrong parameter set-
ting. AMIE [22], for example, constructs and scores all
rules of length n before it continues with rules of length
n + 1. The previous version of AnyBURL [35] uses a
similar approach. Instead of mining all rules of a certain
length, it learns nearly all rules based on a completeness
estimation and a threshold which is set manually. Both
approaches are problematic as too much time might be
lost for rules of length 7, while important longer rules of
length n + 1 have not yet been constructed. We propose
instead to construct rules of different lengths in parallel
guided by a reinforcement learning paradigm.
Multithreading In contrast to the previous AnyBURL
version which runs single-threaded, we argue in this work
that the rule mining process can be divided over mul-
tiple threads efficiently (Sect.4.5). This is an important
insight as it is a distinguishing characteristic compared to
approaches that learn knowledge graph embeddings for
which parallelization is non-trivial. Different paralleliza-
tion techniques and their drawbacks have been discussed
in [27]. The multithreaded implementation allows to run
AnyBURL in acceptable runtimes on very large graphs,
and we show, for example, that the new version achieves
a higher predictive performance 20 times faster than the
current state of the art.

Within this paper, we focus mainly on these improvements.
However, we discuss also the language bias and the basic
rule sampling procedure of AnyBURL, which has previously
been introduced in [35].

As a key contribution of this paper, we evaluate our
approach in an extensive experimental study on four large to
very large datasets. The largest of these datasets is Freebase. It
comprises more than 300 million triples that describe around
86 million entities. Our symbolic approach clearly outper-
forms the current state of the art on the two largest datasets
in terms of predictive quality, runtimes, and CO; emission.
Thus, our approach is, according to our experimental results,
the best knowledge graph prediction approach for very large
datasets.

2 Knowledge graph completion

In the following, we introduce the problem of knowl-
edge graph completion and explain the standard evaluation
method. This includes also the usual splitting of the evalua-
tion datasets. We explain also why and how rules can be used
to make a prediction for a given completion task following
the intuitive approach that has already been used in [35]. This
section does not contain a novel contribution but compiles
some preliminary knowledge that helps to better understand
and contextualize the content of the following sections.

A knowledge graph G is defined on top of a vocabulary
(C, R) where C is a set of constants and R is a set of binary
predicates. Hence, G C {p(a,b) | p € R, a,b € C}isaset
of ground atoms or facts. Given a fact p(a, b), we call a the
subject and b the object of this fact. Sometimes we use the
term triple to refer to a fact, which seems to be more common
in the field of knowledge graph completion. A binary predi-
cate is also called a relation. Besides, a constant (or what the
constant refers to) is also called entity.

We call the problem of constructing missing triples in
a given knowledge graph the knowledge graph completion
problem. In real-world scenario, we might be aware that a
graph G is incomplete and the task might be to find every
missing triple or to list as many missing triples without mak-
ing too many mistakes. We might also think of a more focused
setting, where it is known that, for example, every person
must have a nationality and the task is to specify the nation-
ality of every person, for which a nationality is not yet known.

In a real-world setting, the proposals made by a knowl-
edge graph completion method might be checked by a human
expert, before some of them are added to G as new triples.
Thus, it is important that the method can create candidate
rankings such that a domain expert can look at the top-k part
of the ranking only. If we ask for the nationality of a specific
person a possible top-3 ranking might look like this: (/) Nige-
rian [0.72], (2) French [0.68], (3) Dutch [0.23]. The number
in parentheses could be a confidence value, a probability, or
any kind of score that has been used to determine the order
of the ranking.

In an evaluation scenario, there is usually no domain
expert or oracle available that tells us whether the predic-
tion of a knowledge graph completion method is correct or
incorrect. The performance of a knowledge graph completion
method is approximated in an artificial and controlled setting
that mimics the scenario described above. A given knowledge
graph G, which is used as an evaluation dataset, is split into
training Gy, validation G, and test (or evaluation) set G,.
This partition is a disjoint split in terms of triples; however,
the split is not disjoint with respect to constants and rela-
tions, i.e., we have G; C {p(a,b) | p € R, a,b € C,;} and
Ge C {p(a,b) | p € R, a,b € C,} with G; NG, = ¥,
C. € C; and R, C R;. The disjointness relation also holds
between validation and training set.

A knowledge graph completion method, that is evaluated
in a research context, uses the training set to learn a represen-
tation of (some aspects of) the dataset. This representation
is sometimes called a model. For a rule-based approach, this
will be a set of rules. These rules reflect the regularities and
distributions of the training set. Due to the shared vocabulary,
more precisely due to R, C R; and C, C C; these rules can
make predictions for the test cases that are defined in the test
set.

@ Springer

134

C. Meilicke et al.

We call a triple in the test set a test triple, and such a
test triple results into two test cases. Suppose we have a test
triple profession(mozart, composer). This test triple results
into the following two test queries Q1 and Q», which ask for
the profession of mozart and for people that have composer
as profession.

(Q1) profession(mozart, ?)

(Q2) profession(?, composer)

Such a query is answered in terms of a ranking of possible
candidates. As the test case is derived from a known triple,
we know in the evaluation context the correct answer, which
is for the first test case composer and for the second test case
mozart.

The common evaluation metrics, which we use in our
experiments in Sects.5 and 6, are filtered hits@k and fil-
tered mean reciprocal rank (MRR). For a test triple p(s, 0)
let rk(o|s, p) be the position of the target candidate o in a
ranking of candidates for the query p(s, ?) and likewise let
rk(s|p, o) be the position of target candidate s in the ranking
for p(?, 0). Note that for the filtered metrics, in the respective
rankings, a non-target candidate is suppressed if the resulting
triple exists in G;, G,, or G.. MRR and Hits @k are defined
as

MRR = —— 3 (1 N 1)
2|G8|p(s,0)e((}g rk(0|S,p) rk(S|p,()) ,

Z (]l{rk(ols, p) =< k}

p(s,0)€G,

+ 1{rk(s|p, 0) < k}>,

hits@k =

1
2|Ge|

with 1{cond} being an indicator that is one if the condi-
tion inside {.} is true and zero otherwise. The hits @k scores
measure how often the correct answer, which is defined by
the triple that the test case originates from, is among the top-
k ranked entities, whereas the MRR takes into account all
positions. In the following, we always refer to the filtered
scores, as defined in [9], without explicitly stating it.

So far, we explained the purpose of the training set G;
and the test set G,. The validation set G, has a specific
purpose. It is required only for the class of methods for
which performance depends to a high degree on the chosen
hyperparameter setting. Such methods test hyperparameter
settings systematically against the validation set. This pro-
cess is called hyperparameter search. The hyperparameter
setting that performs best is then used to train a model on
the training set, which is finally used to predict rankings for
the test queries, which are defined by the triples in the test
set. The hyperparameter search requires often significantly
more time than running the best setting that has been finally

@ Springer

found. A rule-based approach uses typically a fixed hyperpa-
rameter setting and does not make any use of the validation
set aside from filtering the results, which is part of the stan-
dard evaluation protocol. However, as many models require
a validation set, the standard evaluation protocol is always
defined on a fixed split into training, validation and test set.
Every approach that wants to compare its results to other
approaches needs to adhere to this split.

‘We now explain how rules are used to create a ranking for a
test query, which can then be evaluated in terms of MRR and
hits@k as explained above. The rules that we are concerned
with are strict Horn rules. Given a rule r = r;, < rp, we call
rp the body of the rule and rj, the head of the rule. The head
of the rule is a single atom; the body of a rule is a conjunction
of atoms, which we separate by the symbol A or by comma.
An atom has the form r(¢1, r) where r is a relation with
r € R;. t; and 1, are terms that are either constants from
C; or variables. We use lower-case letters for constants and
upper-case letters for variables. We define the types of rules
that are supported by our approach more precisely in the next
section.

We use the symbol 0 to refer to a substitution, which
replaces a variable by a constant not explicitly specified. A
substitution Oy—, refers to a substitution that replaces X in
a rule or in a part of a rule by a constant c. Sometimes we
call such a substitution a grounding of X. Given a rule r, an
expression such as rfx—. refers to a (partially) grounded rule
where all occurrences of X are replaced by c. Note that we
will often omit the constant, especially when we talk about
all possible groundings or about the existence of a grounding
for a certain variable.

We can now easily explain how we compute the answer
to a query, like for example query Q. Suppose now that we
have the following rule r given in (1), where inf refers to a
relation which describes that a subject influenced an object.

profession(X,Y) < inf(X, A), profession(A, Y) @))

To compute an answer to the given query, we look at the
partially grounded rule r6x—,.q4r:- The answer to our query
is the set {y | ru0x=mozart,A=a,y=y € G;} witha,y € C.
Note that we do not need to iterate over all possible a and y
values, but conduct a depth-first search starting from mozart,
where each step in the tree takes constant time due to the
index structures that AnyBURL created during preprocess-
ing. For our specific example, the result set will probably
contain several professions such as, for example, musician,
artist, and hopefully also composer. Each of these candidates
is annotated with the confidence of the rule, which will be
introduced later as a quality measure of the rule.

Usually, there will be many rules that yield non-empty
results sets for a given query. Moreover, these result sets
might overlap. In the case of overlapping result sets, the can-

Anytime bottom-up rule learning...

135

didate is annotated with the confidence of the rule that has
the highest confidence among the rules that yield this candi-
date. The final ranking is defined by the order implied by the
confidence scores of all candidates. To aggregate rules based
on their max ranking is the most common practice which we
already used successfully in [35]. While there are also other
approaches to aggregate rules [44], which have shown to
perform slightly better, we use the standard maximum-based
approach, which seems to make more sense in a large-scale
setting. It has also the advantage that we can, for each comple-
tion query, start with the application of the rule with highest
confidence. We continue with the second best, and so on,
until we collected the desired number of candidates and until
potential ties in a ranking are resolved by comparing the
respective candidates by their second strongest rule. In our
experiments, we set this number to 100 candidates. Thus, our
hits @k score is correct up to k=100, and our MRR would be
slightly better, if we would construct longer rankings. !

The prediction phase is not a main topic in this paper.
Instead, we are concerned with the construction of rules and
the computation of their confidence scores, which happens
both in the rule learning phase. More details on different
strategies to create a ranking can be found, for example, in [6].

3 Bottom-up rule learning

In this section, we first introduce the type of rules that can
be learned by AnyBURL before we describe how we cre-
ate these rules from given sampled paths. Parts of this were
already presented in a different form in [35]. As a novel con-
tribution, we explain the concept of Object Identity that was
introduced in [51] and argue why it is important for rule-
based knowledge graph completion. Finally, we argue that
the sampling technique used for approximating rule confi-
dence used in the previous version of AnyBURL sometimes
yields distorted confidence scores and we show how to fix
this problem.

3.1 Language bias

We distinguish in the following between three types of rules
that we call binary rules (B), unary rules ending with a dan-
gling atom (Uq) and unary rules ending with an atom that
includes a constant (Uc).2 In the formulas listed below, we
use & and b; to refer to relations (binary predicates), we use

! In the worst case, we would lose ~0.0099 MRR if we would assume
that the correct candidate would always be on position #101, which is
rather unrealistic. More realistic is an estimation of an MRR difference
of less than 0.0005.

2 In [35] binary rules have been called cyclic rules and unary rules

have been called acyclic rules. This convention was slightly confusing,
because a unary rule can also be sampled from a cyclic path.

an upper case letter with or without subscript to refer to vari-
ables, and ¢ or ¢’ to refer to constants, which are also called
entities. When we discuss examples, we will also use words
as married or speaks to refer to relations and proper names as
Jjohn to refer to constants. We define an atom as a formula that
uses a binary predicate to express the relationship between
two terms, which can be a variable or constant. For exam-
ple, h(X,Y), gender(X, female), and married(jane, john)
are atoms.

In our approach, we support the following three types of
rules:

n
B h(Ao, An) < [\ bi(Ai—1, A)
i=1
n
Uqg h(Ao,) < J\ bi(Ai—1, Ai)
i=1
n—1
Ue h(Ag,¢) < (/\ bi(Ai-1, Ai)) Abn(An-1,)

i=1

In contrast to binary rules, the head atom i (Ao, ¢) in unary
rules contains a constant ¢ and one variable Ag. Such an
expression can also be understood as a complex way to write
down a unary predicate, which is the reason for naming these
rules as unary rules. Typical examples are head atoms such
as gender(X, female) or citizen(X, spain).

We refer to the three rule types introduced above as path
rules, because the body atoms b;(A;_1, A;) form a path.
Note that our language bias also includes rule variations with
flipped variables in the atoms: given a knowledge graph G,
a path of length 7 is a sequence of n triples p; (c;, ¢j+1) with
pi(ci,ciy1) € G or pi(ciy1,ci) € G for 0 < i < n. The
(abstract) rules shown above are said to have a length of n as
their body can be instantiated to a path of length n. Instead
of A;, we will sometimes use A, B, C, and so on as names
for the variables. Moreover, we will usually replace the vari-
ables that appear in the head by X for the subject and Y for
the object.

Note also that the relations /# and b; to b,, do not need to
be different relations. Our definition includes also recursive
rules, i.e., rules where the relation used in the head of the
rule appears in one, several, or all body atoms. An exam-
ple can be found in the transitive rule contains(X,Y) <
contains(X, A), contains(A,Y).

B and U, rules are a special form of closed connected
rules. They can be learned by the rule mining system AMIE
described in [22, 23]. Uq rules are not closed because A, is a
variable that appears only once. B rules are usually presented
as typical examples of closed connected rules; however, the
notion of a closed connected rule is wider as it is defined as
arule where each variable appears in at least two atoms. The

@ Springer

136

C. Meilicke et al.

rule 1(X,Y) < b(X,Y),b' (X, A),b"(A, X) is an example
of a closed connected rule that is not a B-rule.

In the following, we show several rules as examples for
some of the rule types. We had to abbreviate some of the
relation names and for some of them the meaning might be
unclear. Thus, we briefly list and explain the relations.

— hypernym(X,Y) - X is a hypernym of Y

— hyponym(X,Y) - X is a hyponym of Y

— prod(X, Y) - X is a movie produced by Y

— sequel(X,Y) - X is asequel of Y

— g(X,Y) - X has gender Y

— profession(X, Y) - X has Y as profession

— actedIn(X,Y) - X acted in / starred in movie Y

— lives(X, Y) - person X lives in country Y

— speaks(X,Y) - person X speaks language Y

— lang(X,Y) - X is the official language of country Y

Examples for binary rules, Rules (2) and (3), are shown
below. They describe the relation between X and Y via an
alternative path between X and Y. This path can contain a
single relation or a chain of several relations. As mentioned
before, we allow for recursive rules, i.e., the relation in the
head can appear one or several times in the body as shown
in Rule (3). Rule (4) is a U, rule which states that a person
is female, if she is married to a person that is male. A typical
example for a Uq rule is Rule (5), which says that an actor is
someone who acts (in a film).

hypernym(X,Y) < hyponym(Y, X) 2)
prod(X,Y) < prod(X, A), sequel(A,Y) 3)

g(X, female) <— married(X, A), g(A, male) “4)
profession(X, actor) < actedin(X, A) &)

All considered rules are probabilistic, which means they
are annotated with confidence scores that represent the
probability of predicting a correct fact with this rule. The
confidence of a rule is calculated as the fraction of body
groundings that result in a correct head grounding based on
the training data (see Sect. 3.4 for a definition of confidence
and how to compute it). It is important to understand the rela-
tion between the three rule types. It is particularly interesting
in the context of probabilistic rules. For that purpose, con-
sider the following set of rules (fictitious confidence scores
added in square brackets).

speaks(X,Y) < lives(X, A), lang(Y, A) [0.8] (6)
speaks(X, english) < lives(X,A) [0.62] @)
speaks(X, french) < lives(X, france) [0.88] ®)
speaks(X, german) < lives(X, germany) [0.95] O]

@ Springer

Rule (6) states that X speaks a certain language Y, if X lives
in a country A where Y is the official language. Rule (7) says
that an entity speaks English if it lives somewhere, which is
just an indirect way to describe that entity as a person. The
remaining rules are specializations of Rule (7) as they inform
about the probability that a person living in a specific country
speaks a specific language.

The interesting aspect of this rule set is the fact that
Rule (7) can be generated from Rule (6) by removing the
second atom in the body and replacing Y in the head with
the constant english. Likewise, Rules (8) and (9) can be con-
structed by additionally replacing A by a constant. It seems
that we do not need these specialized rule variants, if we
already have a more general rule. This is wrong for two rea-
sons: (i) it might be the case that the given knowledge graph
does not contain information about the official languages of
France or Germany; and (ii) the confidences of the specific
rule (7)—(9) differ from the confidences of the more general
rule. The confidence of a general rule is closely related to
the (weighted) average over the specific confidences (e.g.,
by aggregating over all countries and languages). For that
reason, it is necessary to generate both types of rules, even
though they might carry partially redundant information.
Suppose, for example, that the given graph contains the
triples lives(fritz, germany) and lang(germany, german) and
we are interested in the query speaks(fritz, 7). Without
Rule (9) we would assign, based on Rule (6), a confidence
score of 0.8. Taking all rules into account, we would assign—
due to the maximum aggregation strategy mentioned in the
previous section—a confidence score of 0.95. This differ-
ence might result in a different position in the ranking of all
candidates.

3.2 Constructing rules from sampled paths

In the following, we use the notion of a bottom rule to refer
to a rule that contains no variables. Such a rule is not useful
for making any new predictions; however, it can be used as
a basis for deriving more general rules by replacing some
of the constants by variables. We adopt a special variant of
the basic bottom-up approach for learning rules from bottom
rules as proposed in [35]. It is divided into the following
steps:

1. Sample a path from a given knowledge graph.

2. Construct a bottom rule from the sampled path.

3. Build a generalization lattice rooted in the bottom rule.
4. Store all useful rules that appear in the lattice.

The main focus of this section will be the steps 2—4.
Note that we will replace the computation of the lattice men-
tioned in the third bullet point by directly instantiating certain
rule patterns. We will show below that the outcome of our

Anytime bottom-up rule learning...

137

approach is the same as if we would compute the whole lat-
tice. However, it is simpler and more efficient to directly
instantiate these patterns.

The above sketch of our approach is related to the algo-
rithm implemented in Aleph [53]. However, Aleph uses the
bottom rule to define the boundaries of a top-down search.
It begins with the most general rule and uses the atoms that
appear in the bottom rule to create a specialization lattice. A
specialization lattice is a directed graph where each node is
arule and an edge from r to r’ denotes that r’ is more special
than r. While in a specialization hierarchy each rule r’ has
only one more general r rule as parent node, in a lattice r’
might have several more general rules that are specialized by
r.

Similarly, AMIE [22, 23] also does a top-down search,
which in contrast to Aleph is complete because it does not
limit which atoms to use to specialize a rule. Our approach
differs fundamentally from both algorithms because we
instantiate a set of rule patterns that results exactly in the
beneficial subset of those rules that we would collect by cre-
ating a generalization lattice beginning from the bottom rule.
In a generalization lattice, every child rule is more general
than the parent rule. We argue in the following that all rele-
vant rules within the generalization lattice instantiate one of
the rule types defined in the previous section. Based on this
insight, we can directly instantiate these rule types without
the need to create the complete lattice.

To find rules for a fixed relation, AnyBURL samples
triples of that relation from the training set and creates rules
from them. Even though we do not know all the details of the
overall algorithm, which will be available at the end of Sect. 4,
we can already conclude that AnyBURL’s search is obvi-
ously not complete. AMIE, on the other hand, will generate
all rules that fulfill the quality criteria defined in the cho-
sen settings. Thus, it can be described as a complete search.
The incompleteness of our approach seems to be a signifi-
cant drawback; however, we will later argue that it helps to
detect the most important rules quickly at the beginning of
the search. AMIE, on the other hand, might, for very large
datasets, not be able finish at all, as it needs to construct all
possible rules systematically.

Figure 1 shows a small subset of a knowledge graph G. We
use it to demonstrate how rules for the relation speaks would
be learned from it. We construct bottom rules of length n,
beginning from speaks(ed, d), short for (Ed speaks Dutch),
which will be the head of the rules. To do this, we ran-
domly walk n steps in the graph, starting either from ed
or d. Together with the head triple, the result is a path of
length n + 1. In Fig. 1, we have marked three paths that
could be found for n = 2 or n = 1, respectively. The
green and blue paths are acyclic, while the red path, includ-
ing speaks(ed, d), is cyclic. We convert these paths into the

nl (Netherlands) d (Dutch)

lan

lisa

a (Amsterdam)

Fig. 1 A knowledge graph G used for sampling paths. We marked the
path that corresponds to Rule (10) blue, Rule (11) green, and Rule (12)
red

bottom rules (10), (11), and (12) given below.

speaks(ed, d) <— born(ed, a) (10)
speaks(ed,d) <— married(ed,lisa), born(lisa,a) (11)
speaks(ed, d) < lives(ed, nl),lang(nl, d) (12)

We argue that any generalization of a path of length n+ 1 will
be a B, U, or Uq rule of length n or a shorter rule, which can
be constructed from a shorter path, or a rule that is not useful
for making a prediction. We elaborate this point by analyzing
the generalization lattice rooted in Rule (11), depicted in the
lower part of Fig. 2.

Each edge in the lattice transition stems from one of the
following two generalization operations: (i) replace all occur-
rences of a constant by a fresh variable and (ii) drop one of
the atoms in the body. Note that we have only depicted those
rules in the lattice that have at least one variable in the head.
If this would not be the case, the rule would only predict a
triple that is already stated in the knowledge graph, which is
useless for completion. Not all rules that appear in the lattice
are useful in the context of the overall algorithm. We high-
lighted the beneficial rules in Fig.2 by printing the border
of their enclosing rectangles in bold. The remaining rules,
which are not instantiated by our algorithm, belong to one
of the categories described in the following paragraph. We
have associated the symbols T, *, and ¢ to these categories
and used them to mark the nodes in Fig. 2.

Ambiguous prediction” The rule has an unconnected vari-
able in the head, which does not appear in the body of the
rule. Such a rule makes a prediction that something exists
without exactly specifying what it is. Thus, it cannot be
used to create a ranking of candidates. An example would
bearulesuchas gender (X, Y) < lives(X, usa), which
states that an entity that is born in USA has a gender. If we
have a query as gender(john, ?) the rule is not helpful
at all, no matter where john lives.

@ Springer

138

C. Meilicke et al.

<> s(ed,d) < l(ed,nl), g(nl, d

/

(o s(X,d) < U(X,nl), g(nl, d))
—
(1 s(X,d) < g(nl,)

(* s(X,d) < UX,nD))

(s(X,d) < U(X, 4), 9(4, d)]

\

(0 s(ed, Y) « U(ed, n1), g(nl, V)]
\\>

(1 s(ed,Y) + U(ed,n1))
{* s(ed,Y) « g(nl,Y)}

(s(ed,v) l(ed, A), 9(A, 7))

/

(s(x,Y) < 1(xX,4),9(4,1))

[<> s(ed, d) < m(ed, lisa), b(lisa, a)

/

{0 s(X,d) + m(X, lisa),b(lisa,a)}

[T s(X,Y) < m(X,lisa), b(lisa, a)]
/
(0 s(X,d) < m(X, lisa), b(lisa, B)]
I

\

T s(ed,Y) «+ m(ed,lisa), b(lisa, a)}

{T s(X,d) < b(lisa, a))

(+ s(X, d) < m(X, lisa))

(s(X,d) « m(X, 4),b(4,0)]

(s(x,d) < m(X, 4),b(4, B))

Fig.2 In the upper half, we depicted the generalization lattice of the cyclic path (s(ed, d), [(ed, nl), g(nl, d)), in the lower part the generalization
lattice of the acyclic path (s(ed, d), m(ed, lisa), born(lisa, a)). For legibility, we use the abbreviations s = speaks, m = married, b = born,

| =lives and g = lang

Shorter bottom rule* The rule might be useful, but it would
also appear in the lattice of a bottom rule which originates
from a shorter path. This point is detailed in Sects.4.3
and 4.4, where we introduce the notion of a path profile
which determines the length of the bottom rules. We will
see that each path profile has an associated reward in
the context of the overall algorithm, which is computed
by summing up the reward of each rule that stems from
this profile. By suppressing shorter rules, we enforce that
each rule can be uniquely assigned to its path profile and
will only be created from shorter paths.

Useless atom® The body contains an atom without variables
or an atom with a constant and a variable that appears in
none of the other body atoms and also not in the head
atom. Such atoms will always be true in the knowledge
graph from which they were sampled and therefore do
not affect the truth value of the body. These rules need to
be generalized further. This can be done by dropping the
specific atom, which results directly into a shorter rule,
or by replacing a constant by a variable.

@ Springer

Note that a rule in the lattice marked with a ¥ or * does not
need to be generalized any further, because any resulting rule
will be marked again with the same symbol.

When we apply this annotation scheme to the lattice
(Fig. 2, lower half) that originates from the green acyclic path
(in Fig. 1), only two rules are highlighted with a bold rectan-
gle. These two rules are of type Ugq and U.. One can easily
argue that this will always be the result when we generalize
a bottom rule that originates from an acyclic path. Thus, we
do not need to search over the generalization lattice but can
directly create these two rules from a given acyclic path.

We can observe a similar pattern when we generalize a
cyclic path. The corresponding lattice is shown in the upper
half of Fig. 2. It results in three rules that we can leverage for
a prediction; one B rule and two U, rules, where the head
constant (subject/object) appears again in one of the body
atoms. It is not so easy to see why the U, rules are really
required, because every time that one of these rules fire, the
more general B rule will also fire. However, and this is a
point that we already mentioned above, the confidences of
the general binary rule and the more specific U, rules might

Anytime bottom-up rule learning...

139

be different. For that reason, it makes sense to store these
rules to increase the quality of the resulting ranking.

In the upper half of Fig.2, there is a non-marked
inner node remaining that refers to speaks(X,Y) <«
lives(X,nl),lang(nl, Y). It is highlighted by the use of a
dashed line. This rule might indeed be beneficial for a pre-
diction. It is a conjunction of two U, rule bodies where one
is a constraint on the X groundings and the other is a con-
straint on the Y groundings. This type of rule is the only rule
type that appears in the lattice, which is not supported by the
language bias of AnyBURL. However, anytime that this rule
fires the corresponding B rule s(X, Y) < [(X, A), g(A,Y)
will also fire. Moreover, it is possible to create a complete
list of U, rules which cover the same cases that are covered
by that rule. For this reason, it is less important to cover this
rule type. Aside from this exception AnyBURL supports all
types of rules that would appear in the lattice, i.e., that can
be generalized from a simple cyclic or acyclic path.

3.3 Object identity

Object identity (OI) refers to an entailment framework that
interprets every rule under the additional assumption that two
different terms (variables or constants) that appear in a rule
must refer to different entities. This means that each rule is
extended by a pairwise complete set of inequality constraints.
OI was first introduced in [51] and later it is used to propose
refinement operators for the original framework [19]. In this
work, we do not focus on its theoretic properties but on its
impact on correcting the confidence scores of the learned
rules.

In the context of our approach, the most important prop-
erty of Ol is its capability to suppress redundant rules that
negatively affect performance. We illustrate the effect with
the following two rules (4 and b are two arbitrary relations).

h(X,Y) < h(X,Y) (13)
h(X,Y) < b(X, A), b(B, A), h(B,Y) (14)

Interpreting rules under OI can be done by adding addi-
tional constraints to the rules. For instance, the body of
Rule (14) would need to be extended with the inequality
constraints (15).

X#AX#B X#Y,A#B A#Y B#Y (15)

We modified AnyBURL to interpret each rule under OI.
Note that these inequality constraints are not explicitly shown
whenever a rule is displayed or stored in a file generated by
the new version of AnyBURL.

Rule (13) is obviously a tautology that will never generate
any new facts. This is only partially true for Rule (14). The
groundings of its body can be divided into the grounding 6

with B = X, and the grounding 6’ with B # X.In contrast to
a6’ grounding, a 6 grounding does not predict new facts and
is also more likely to result in a true body because both atoms
of relation b can be grounded to the same fact. This means
that, without OI, the confidence score of Rule (14) overesti-
mates its quality as it will always be used to predict unknown
facts. Adding the inequality constraints will suppress the 6
groundings and result in a more realistic confidence score for
the task.

It is important to understand that it is not just variations
of tautology rules that have this problem. For example, if
there are rules with high confidence such as m(X,Y) <«
spouse(Y, X) (m = married), rules like the following are
also affected.

m(X,Y) < son(X, A), son(B, A), spouse(B,Y) (16)

The confidence score of such a rule drastically (and right-
fully) decreases under OI once we ignore groundings in
which X and B are ground to the same son.

While OI helps us to avoid a blow-up of the rule base, a
given rule is harder to evaluate under OI (see also §5.1.1 in
[14]). This holds both for the confidence computation and
for the application of the rule in the context of predicting
new knowledge. If we ignore the inequality constraints, all
possible (X, Y) groundings for Rule (14) can be computed
with two join operations. As a result of the first join, we get
the groundings for (X, B) which can be used to compute
the (X, Y) groundings via a second join. However, when
performing the second join the constraint A # Y requires to
know the variable bindings of A that we used for the first join
to ensure that the constraint is not violated. Keeping track of
all variable bindings makes it more complex to compute body
groundings under OI.

3.4 Sampling confidences

Confidence and support are standard metrics for measur-
ing the quality of a rule. Confidence can be understood as
an estimation of the probability that a rule makes a cor-
rect prediction under the closed world assumption, i.e., the
assumption that everything not stated in a given knowledge
graphis incorrect. However, there are different ways to define
confidence (e.g., [23, 58]). All of them are based on the idea
of dividing the number of groundings for the conjunction of
body and head by the number of body groundings. This infor-
mal definition leaves room for different interpretations that
are based on different ways of counting. In [22, 23], where
the authors introduce AMIE, support and (standard) confi-
dence of a rule are defined as follows. We show the formula
for a rule r that uses variables X and Y in the head and X,
Y, and Z in the body. If more variables are used in the body,
Z has to be replaced in all occurrences by all variables that

@ Springer

140 C. Meilicke et al.
appear in the body only. X b A b b3 Y
support(r) = {Oxy | 30z rpbxyz A rabxy}l (17)
0 360 0 A 10 .
conf(r) = {Oxy | 30z roOxyz A rpOxy}l (18) 50 groundings

HOxy | 30z rpBxyz}l

In the above formulas, Oxy refers to a grounding for the
variables X and Y, which are the variables that appear in
the head r, of r. 8z is a grounding for the variables that
appear in the body r, of r that are different from X and
Y. Oxyz refers to the union of fyy and 6z. According to
this definition confidence is the fraction of body groundings
projected to (X, Y) pairs that are correct predictions made
by the rule, while support just counts the number of correct
predictions.

This definition is an estimation for the probability that
a randomly chosen body grounding results into a correct
prediction. While we use the closed world assumption to
compute the confidence score, we know that this assumption
is not valid when we make a prediction. Otherwise we would
never predict any new triple. For that reason, the confidence
score is a lower bound for the real probability.

It is expensive to precisely compute the confidence of a
rule. Starting from the first atom in the body, any further body
atom requires to compute a join on the variable that this atom
shares with the previous atom. Moreover, since we are using
the principle of object identity, we cannot ignore to which
entities the join variables were bound, because these entities
are not allowed as possible values for the other variables. For
that reason, it makes sense to approximate the confidence
measure by drawing a sample of all body instantiations.

The most straightforward way to do this is to apply a
depth-first search (DFS) over body groundings. This strat-
egy has been applied in the previous version of AnyBURL
[35]. Given a B rule, it picks a random grounding of a head
variable and follows via a DFS the chain of relations in the
body collecting all groundings of the other head variable.
This is done until a sufficient number of body groundings
have been sampled.

An example of applying this approach to a problematic
constellation is shown in Fig.3. Each circle represents a
grounding for a variable. The numbers in the circles denote
the possible node expansion order. In this example, the entity
that is chosen in the second step as grounding for A yields
50 different groundings of the whole body. Entities like this
will appear quite often in a knowledge graph that represents
aspects of the real world. Typical examples for such enti-
ties are the gender female, as in hasGender (..., female) or
an important country or city, as in borniIn(..., paris). Such
“hub" entities are usually related to many other entities via
the same relation. If such an entity appears in one of the sam-
pled groundings at the beginning of the search, it can happen
that only those body groundings are constructed that contain

@ Springer

69
6

remaining groundings

B
(3
19
@)
:Zi
D
D
D
©)

®
&
®
@

Fig. 3 Problematic example for a DFS-based confidence approxima-
tionof h(X,Y) < b1 (X, A), b2(A, B), b3(B,Y)

that specific grounding. This would happen in Fig.3 if we
would draw a sample of 50 groundings. In that case, we are
not drawing a sample that is representative for the general
rule (19), but instead we are drawing a sample for a more
specific rule (20).

h(X,Y) <bi(X,A),by(A, B),b3(B,Y) (19)
h(X,Y) <bi(X,usa), br(usa, B), b3(B,Y) (20)

While an increase of the sample size can circumvent the prob-
lem in some cases, this will not solve the problem in general.
Notice also that large datasets have usually more hub entities
that are related to a number of entities that might be higher
than the sampling size. This makes the DFS-based sam-
pling prone to distorted confidence scores especially when
we apply it to large datasets.

Thus, we implemented a different sampling technique
shown in Algorithm 1. This algorithm describes the proce-
dure that we apply to approximate the confidence of B-rules.
We explain below briefly how to apply the method to U, and
Ug-rules. We assume that the input to Algorithm 1 is a rule of
the form h(Ag, A,;) < b1(Aog, A1), ..., by (A,—1, Ay). The
actual algorithm is a bit more complicated as it has to deal
with flipped positions of A;_; and A;, which can be han-
dled with several additional case distinctions. We divided the
algorithm into two functions. The first function determines
the starting points for the search, while the second function
uses these starting points to search for a full grounding of
the chain of variables Ag to A,. The starting points of the
search are groundings of variable Ag. They are collected in
the set X. As we use a set, each possible value appears only
once. This means that an entity that appears quite often at

Anytime bottom-up rule learning...

141

Algorithm 1 Sampling groundings

Require: r = h(Ag, Ap) < b1(Ag, A1), ..., by(An—1, Ap)
1: function SAMPLEBODYGROUNDINGS(r)
2: a <0

3: B<«0

4: @« {}

5: X < {04, 1304,b1(Ag, A1)}

6: while (¢ < maxy) A (|| < maxe) A (B < maxp) do
7. a<«—a+1

8: x < random element from X
9: y <« BEAM(1, x, 7, {})

10: if y # NIL then

11: if (x, y) € @ then

12: B« B+1

13: else

14: add (x, y) to @

15: B <0

16: end if

17: end if

18: end while

19: return @

20: end function

21:

22: function BEAM(i, v, r, IP)

23: if v € P then > checks the OI constraint

24 return NIL

25: else

26: addvto P

27: endif

28: if i > n then > n is the number of body atoms
29: return v

30: else

31: V < {04, | bi(v, A}

32: if V = () then

33: return NIL

34: else

35: v < random element from V
36: return BEAM(i+1, v, r, P)
37: end if

38: endif

39: end function

the subject position of b is not preferred over an entity that
appears rarely in that position.

The algorithm uses elements x from X repeatedly to find
pairs (x, y) that are the endpoints of a path that correspond
to a body grounding of the given rule. There are several con-
ditions and parameters that define when to stop this process.
Parameter max, determines the overall numbers of attempts
tofind a (x, y) pair no matter if this attempt has been success-
ful or not. Another stopping criteria is related to the number
of groundings found so far. If this number reaches the bound-
ary maxg, the sampling process stops. The third criteria is
an additional condition that allows to stop the sampling pro-
cess early if repeatedly a grounding is sampled that we found
already previously. We count how often this happens in 3,
which s reset to 0 whenever a new grounding has been found.
This criterion ensures that we stop early if the number of

groundings is rather low instead of drawing many times the
same sample. The default values for maxg, maxg, and max,
are 5, 1000 and 100000, respectively.

The beam-function (lines 22-39) searches for a path that
leads from x, which is a grounding of Ag, over the chain of
body relations to a grounding of A,. It can be understood
as an extreme form of a beam search, which selects can-
didates completely randomly and retains in each step only
one candidate. Lines 23 to 27 are responsible for check-
ing the OI constraints. As no variable appears twice in the
subject position of the body atoms, we can simply check if
the current entity stored in v is amongst one of the previ-
ously visited v-values. We use this function repeatedly until
we constructed a set of pairs @ as output of the algorithm.
Now we have to check for each of these pairs (x, y) € @
if it is also a grounding for the head of r. In particular, we
approximate the confidence of the rule as the fraction of pairs
for which A (x, y) € G, holds following Definition 18. We
replace the set that appears in the denominator by @ and the
set that appears in the numerator by {h(x,y) | h(x,y) €
G; ANh(x,y) € D}

The algorithm can be easily modified to be applicable to
U, and Ug-rules. Each of these rules uses only one variable
in the head. Thus, we need to store a set of single values in
@ instead of pairs. The beam-function needs to be modified
to return a truth value that is true if a body grounding for a
specific x value has been constructed and false otherwise. If
it was possible to construct a body grounding, the x value
is stored in @. Finally, @ is again used to approximate the
confidence according to Definition 18.

4 Search strategy

So far we have explained how to create rules from a given
path. We have not yet discussed how to draw such a path
and what policy we should apply when drawing a sequence
of paths. We have already explained why it makes a differ-
ence whether the path is acyclic or cyclic. This difference
is taken up again in Sect.4.1, where we also explain how
we sample cyclic and acyclic paths. In Sect.4.2, we explain
that AnyBURL uses a canonical rule representation to detect
efficiently whether a new rule has been found previously.
In Sect.4.3, we briefly recall the previously implemented
approach, which was based on the concept of saturation.
In Sect.4.4, we present the new policy, that uses reinforced
learning to leverage the available computational resources in
a better way. Finally, in Sect. 4.5, we explain why and how it
is possible to distribute the rule mining process over multiple
threads without any loss.

@ Springer

142

C. Meilicke et al.

4.1 Path sampling

In the paths that we sample for building bottom rules, each
triple on a path is called a step. The steps can be made in the
direction of a stated triple or in reverse direction. A step in
reversed direction causes flipped terms in the corresponding
atom of the resulting rule. Let cg to ¢, be the entities on a
path. We call such a path an acyclic path if it does not visit
the same entity twice, i.e., ¢; # c¢j foreachi # j. Apathisa
closed path if ¢y = ¢, and ¢; # c; for each of the remaining
pairs of nodes. Such a path forms a cycle, as it ends where it
began, and it does not contain any inner cycles.

A closed path results into a binary B rule and a special
form of a U, rule where the constant in the head and body
of the rule is the same. An acyclic path results into a U
rule (with different constants in head and body) and a Ug
rule. Our method to sample a path is to choose a random
entity as a starting point of a random walk. This approach
differs from randomly selecting a starting triple r(co, c1),
which would favor entities that are used more often. Within
the random walk, we randomly select one of the edges that
the current node is involved in, i.e., we consider both in-
and outgoing edges. Each of these edges is selected with the
same probability. Then, we follow the edge to the node that
is connected to the current node and continue from that node.
If the walk arrives at an entity that has been visited before
(prior to the last step), the procedure can be restarted until an
acyclic or closed path has been found. It can be expected that
the majority of sampled paths will be acyclic. Especially for
longer paths it will not often be the case that ¢y = ¢;. This
means that a pure random walk strategy will generate only
few binary rules. This can be a problem for the resulting rule
sets. According to the results presented in [35, 36], we know
that a large fraction of correct predictions can be made with
B rules.

Thus, it makes sense to design a specific strategy to search
for closed paths. We have slightly modified the random walk
strategy by explicitly looking for a fact that connects ¢,—
and ¢y = ¢, in the last step. With an appropriate index, it is
possible to check the existence of a relation p with p(c;, ¢;)
in constant time for any pair of constants. If we find such a
triple, we use this as a final step in the constructed path. If we
find several such triples, we pick randomly one of them. With
this modification, we are able to find more closed paths in
the same time span compared to the standard random walk.
We are aware that there are more sophisticated methods for
finding a closed path of length n, see for example [45].

4.2 Canonical rule representation
Although it is possible that the procedure for path sampling

explained in Sect.4.1 samples a path repeatedly, this rarely
occurs in practice, especially for large graphs. It may happen

@ Springer

more frequently, however, that AnyBURL samples a previ-
ously unseen path from which a rule is constructed that has
been already constructed before. Such a behavior is typical,
and we will in Sect. 4.4 introduce an approach that uses rein-
forcement learning which takes into account repeated rule
construction by the reward and policy design. However, first
we need a method that allows to check efficiently if a rule
has already been seen before or if a new rule has been con-
structed. Such a check is in general non-trivial as the same
rule can be represented in two completely different ways.

In fact, the problem of checking rule equivalence can be
considered as the problem of testing graph isomorphism. Iso-
morphism of graphs can be checked in quasipolynomial time
in the worst case. However, this problem can be solved in
polynomial time for graphs of bounded degree [2]. Because
of our language bias the graphs constructed from the learned
rules are bounded (in such graphs, the maximum degree of a
node is 2). Moreover, since we have a procedure for canon-
ical rule representation, we can formalize the problem as:
given two rules r; and r,, they are isomorphic iff C(r;) =
C(r2) where C(r) is the canonical representation of a rule r
[2, 34]. Here is an example of two equivalent B-rules:

h(X,Y) < bi1(X,A),by(A,B),b3(B,Y) 21
h(Ag, A3) < b3(Az, A3), b1(Ag, A1), b2(A1, A2) (22)

Fortunately, our language bias is so restrictive that it is easy
to define a canonical representation for each rule, which
enforces that there is a bijective mapping between each set
of equivalent rules and their canonical representation.

Rule 21 is a rule in its canonical representation. For a
B-rule, AnyBURL uses always X and Y as the variables in
subject and object position in the head. Then, the body atom
using the X variable is used as first atom and the body atom
using the Y variable is used as last atom in the rule body. The
atoms in between are listed in the order that is implied by
the path that leads from X to Y. AnyBURL uses the variable
names A, B, C, and so on, in the atoms that occur between
the first and the last atoms. A is used as variable that appears
in the same atom as X, B is the variable that appears in the
atom that uses A, and so on.

A similar canonical representation is used for Uc- and
Ug-rules. These rules contain at some positions constants
instead of variables. As there is no specific identity relation,
we can assume that different constants denote different enti-
ties. Moreover, our formalism does not support functions
nor do functions belong to the vocabulary used in standard
knowledge graphs. Thus, each term in an atom is a constant
or variable. This means that we can define a canonical rep-
resentation without special treatment for terms that are not
variables.

AnyBURL hashes the rules based on their canonical rep-
resentation. Moreover, each rule is directly constructed and

Anytime bottom-up rule learning...

143

represented in its canonical representation. This allows to
check the existence of a rule that has been found previ-
ously with a constant-time performance. In the following
section, we measure, for example, the overlap between two
rule sets. As explained, each atomic check in such an opera-
tion requires constant time.

4.3 Saturation-based search

A detailed description of the search policy that was imple-
mented in a previous version of AnyBURL can be found
in [35]. According to that policy, termed saturation-based
search, the learning process is conducted in a sequence of
time spans of fixed length (e.g., one second). Within a time
span, the algorithm learns as many rules as possible using
paths sampled from a specific path profile. A path profile
describes path length and whether the path is cyclic or acylic.
When a time span is over, the rules found within this span
are evaluated. Let S refer to the rules that have been learned
in the previous time spans, let S; refer to the rules found in
the current time span, and let S; = S; N S refer to the rules
found in the current time span that have also been found in
one of the previous iterations. If [S}|/|S;| is above a satura-
tion boundary, which needs to be defined as a parameter, the
path length of the profile is increased by one. Initially, the
algorithm starts with paths of length 2 resulting in rules of
length 1. The higher the path length, the more time spans are
usually required to reach the saturation boundary. The differ-
ence between cyclic and acyclic paths is taken into account
by flipping every time span between the cyclic and acyclic
profiles. The rule counts generated by cyclic and acyclic rules
are independent.

It is an advantage of the saturation-based approach that it
does not require to mine all cyclic (or acyclic) rules of length
n before the algorithm looks at cyclic (or acyclic) rules of
length n 4 1. Instead of that, the rule length is increased if a
sufficient saturation has been reached. However, it is unclear
how to set the required saturation boundary. The default is
0.99 which is motivated by the idea that such a boundary can
be passed, if and only if less than one percent of the rules
found in the current time span have not been seen before.
However, it is hard to estimate whether this is a good choice.
If this boundary is set too high, the algorithm spends a lot
of time sampling paths resulting into rules that have already
been generated previously. Moreover, a threshold that might
work well for a small dataset might be too high for a large
dataset that has a high number of relations. In such a situation,
there is usually a high number of less important rules which
hinder the algorithm to exceed the threshold. This means that
for a (very) long time the algorithm focuses on short rules
even though there might by some more important rules that
have an additional body atom. If the value is set too low,
important rules might be missed and cannot be found any

more. Another disadvantage of the algorithm is that the ad
hoc setting to spend exactly half of the time to search for
cyclic paths and half for acyclic paths. To overcome these
shortcomings, we propose a reinforced approach presented
in the following section.

4.4 Reinforced search

In the following, we consider the path sampling problem
as a special kind of multiarmed bandit problem [26]. This
means that we have to decide about the policy that guides the
overall process and how to quantify the reward associated
with a learned rule.

4.4.1 Reward

In each time span, we have to decide how much effort to spend
on which path profile. A path profile in our scenario corre-
sponds to an arm of a bandit in the classical reinforcement
learning setting. Each arm (or slot machine) in the bandit
problem gives a reward when pulling that arm. The reward
of pulling an arm corresponds in our scenario to the reward of
creating rules from the paths that belong to a certain profile.

In the following, we develop three different reward strate-
gies. They are based on the notion of measuring the reward
paid out by a profile in terms of the explanatory quality of the
rules that were created by that profile. The explanatory qual-
ity of a rule set can be measured in terms of the number of
triples of a given knowledge graph that can be reconstructed
with the help of the rules from the set. Thus, summing up
the support of the rules seems to be a well-suited metric. We
refer to this as reward strategy R;.

Ry(S) =) support(r) (23)

res

where S is a set of rules and support(r) is the support of a
rule r as defined above.

As we are especially interested in rules that make many
correct predictions with high confidence, which might result
into top ranked candidates, we propose a second reward strat-
egy Ryx. that multiplies the number of correct predictions
by their confidence:

Rswc(S) = Z support(r) x conf (r) 24)

res

where S is a set of rules, support(r) is the support and
conf (r) is the confidence of a rule r. A third reward strategy
takes rule length /(r) of a rule r into account. Remember
that we defined the length of a rule as the number of its body

@ Springer

144

C. Meilicke et al.

atoms.

Ry (S) =Y support(r) x conf (r)/2'") (25)

res

This reward strategy is a variant of Ry that favors shorter
over longer rules. It enforces a constraint that assigns at the
beginning of the search more computational effort to short
rules. Thus, the search constraint has some similarities with
a softened saturation-based search as long as we are only
concerned with rule length.

All metrics are based on the capability of a rule set to
reconstruct parts of a given knowledge graph in terms of
the training set. An alternative approach would have been to
compute the same or similar scores with respect to the pre-
diction of the validation set. As we focus on the training set,
we can directly reuse the scores that we already computed.
Additional computational effort is not required.

4.4.2 Policy

All three reward strategies can be combined with each of the
following two policies. The first policy is a well-known pol-
icy referred to as e-greedy policy [57]. The parameter € is
usually set to a relatively small positive value, for example
€ = 0.1. Every time a decision needs to be made, that deci-
sion is a random decision with a probability € and a greedy
decision with a probability 1 — €. When we talk about deci-
sions, we mean the allocation of CPU cores to path profiles.
In the e-greedy policy, a small number of decisions is ran-
domized to reserve a small fraction of the available resources
for exploration compared to an approach that would focus
completely on exploitation.

In our context, a greedy decision assigns all cores, which
have not been assigned randomly, to a path profile that gener-
ated the rule set that yielded the highest reward the last time
it has been selected. Formally, for e-greedy policy, a path
profile pf*, with 1 — € probability, is chosen for time span f;,
according to the following equations

pf* = argmax Q(pf, last(pf , 1r)), (26)
pfeF
1 i—1
i) = R(S@f. 1 S@f 1 27
0wf- 1) = o <<pfr>\jL:J1 ®f) @7

where last(pf , t;) refers to the last time span ¢; prior to # (i.e.,
with i < k) where path profile pf has been used, Q(pf, t;)
is the value of the path profile pf for time span ¢;, F is the
set of path profiles, R denotes a reward strategy Ry, Rgx. Or
Ry /ot and S(pf , ;) refers to the set of rules that have been
mined by the use of path profile pf during #;. The expression
Sf, t)\ U;ﬁ S(pf, t;) refers to the set of new rules that
have been mined in #; but not in one of the previous time

@ Springer

spans. We quantify N, (pf) in terms of the number of cores
that are assigned to pf during #;. This means that the reward
is normalized with the number of allocated cores.

The above definitions can only be applied if there is a
previous time span for each profile pf where that profile has
achieved a reward, i.e., if last(pf,) is defined for each pro-
file pf and for each time span #; with i > 1. This is obviously
not the case in the first time span #1. For that reason we set
last(pf , t9) = oo for each pf € F. This results into a random
selection in #; and ensures that each profile has been chosen
once after the first || time spans have passed.

Note that our scenario differs from the classical multi-
armed bandit setting in the sense that the expected reward of
a certain profile will decrease any time we use this profile
for generating rules. The more often we use that profile, the
more probably it is to draw a path that results into a previ-
ously learned rule, which was created from the same or from
a different path. For that reason, we do not base our deci-
sion on the average of all previous time spans, but look at
the last time span that this profile has been used. The reward
of a profile is shrinking continuously, with random ups and
downs that are caused by drawing only a limited number of
path samples. This results into flips between different profiles
which are not caused by knowing more (exploration) but by
the impact of exhausting profiles over time.

The e-greedy policy might not be a good choice if some
profile pf creates higher rewards than another profile pf’;
however, pf’ would also generate relatively good rules that
could make correct predictions. Suppose further that both
profiles are relatively stable, i.e., their reward decreases only
slightly when they are used for generating rules. In such a
setting, we might prefer to draw rules not only from pf but
also from pf’. For that reason, we propose a second policy
where we distribute the available computational resources to
all profiles proportional to the reward that has been observed
the last time they have been used. We refer to this policy
as weighted policy. For each CPU core with a probability €,
we take a random decision and with a probability 1 — € we
proceed as follows. For each profile pf € I, we compute the
probability of resource allocation P (pf, #¢) at time span #,
given by the following formula:

Q@f, last(pf , 1))

POf, k) =
) = S O lastof 1)

(28)

where Q and last are introduced above. For each core that
is not yet assigned to a profile due to the random assignment
in the 1 — € case, we assign one of the path profiles pf € F
with probability P (pf, tx).

To better understand the impact of combining different
reward strategies and policies, AnyBURL can be run with
a completely random policy where each profile has always
the same probability. This can be achieved by setting € = 1.

Anytime bottom-up rule learning...

145

This setting is not necessarily bad. If there are K different
profiles, in the worst case one of these profiles would gen-
erate many useful rules and none of the other profiles would
generate such rules. An algorithm that makes perfect deci-
sions would arrive K times faster at the same result than the
random policy. However, this is an extreme setting and useful
rules are usually scattered over different path profiles. This
means that an approach that draws paths from each profile
with the same probability is the simplest approach to collect
these scattered rules. At the same time, we can assume—and
the results published in [35] support this assumption—that
the most beneficial rules are often mined first. This means
that running the random policy and the weighted policy for
the same time span will not yield results that are K times
worse. The random policy might even outperform the pre-
vious, saturation-based implementation of AnyBURL. This
will be the case if the saturation threshold is chosen too low
or too high.

4.5 Multithreading

In this section, we explain roughly how and why it is possi-
ble to distribute the rule mining process to different threads.
Contrary to this, approaches that rely on knowledge graph
embeddings cannot be parallelized that easily (see [27] for
an overview on different parallelization techniques and their
challenges). They require to modify the shared representa-
tion in each basic operation, whereas the rule mining process
is additive. Its basic operation is to add rules to a set of rules.

We call threads responsible for mining rules worker
threads and the thread that assigns different path profiles to
different workers controller thread. As explained above, each
rule is generated from a sampled path. This means that each
worker needs to have read access to the knowledge graph
which is stored in RAM together with index structures that
allow to answer basic queries in constant time (e.g., retrieve
all groundings for X with r(c, X)). For each time step, the
worker is informed by the controller about the path profile
that the worker has to use within this time step. Each worker
samples paths from this profile, converts them to rules, and
computes the confidence scores of these rules by drawing
samples as described above. This is done until the time span
is over. We set this time span to two seconds in our experi-
ments.

Once a worker realizes that the end of a time span is
reached, the thread computes the reward and sends this
information to the controller. As soon as this information is
available for all worker threads, the controller aggregates this
information to decide for the next time step which path pro-
files should be used to which degree. The controller assigns
again a path profile to each worker and the next time step

is started. This procedure continues until the overall user-
defined learning time runs out and finally all rules that have
been learned are stored in a file.

Each rule that fulfills a set of predefined quality criteria,
e.g., making a certain number of correct predictions against
the training set, has a certain score that is added to the reward
that the path profile achieved in the time span. However, the
rule needs to be new in the sense that it has not been found by
this worker thread or any other worker thread previously. All
threads use a shared hash table to store new rules and to check
whether the rule has already been found. Storing a rule in this
hash table is the only critical operation because it requires to
modify a synchronized data structure. Nevertheless, such a
basic update operation happens significantly less often than
the basic operations that need to be executed when sampling
and scoring a rule. This means that the overall process will
not slow down as long as the number of threads used will not
be close to the number of basic operations required for com-
puting the score of a rule. In our experiments, we made tests
with up to 50 threads and we observed only a minor slow-
down at the beginning of the mining process where nearly
each rule is a new rule that needs to be stored. After a few
seconds, the number of additions to the shared set of learned
rules decreases significantly as a large fraction of sampled
rules is already known. Thus, the synchronized access is no
longer a bottleneck for the overall performance.

5 Comparative analysis

In this section, we present experiments that compare the
improved version of AnyBURL against other approaches
on four large datasets with respect to predictive quality,
total runtime, and energy consumption. We introduce the
datasets in Sect. 5.1 and provide a detailed discussion about
the used settings, the compared work, and runtime calcu-
lations in Sect.5.2. We compare the results of our approach
against other techniques that have so far been applied to these
datasets in terms of MRR and hits @k in Sect. 5.3. Moreover,
we discuss runtimes and electricity consumption in Sect. 5.4.
Both aspects are neglected in most of the research papers.
Finally, we provide a brief discussion about memory con-
sumption in Sect.5.5. In the comparisons, we focus mainly
on the current state of the art, which is given by knowledge
graph embedding models. However, we also compare our
results against the results of the previous version of Any-
BURL [35] and include the latest version of AMIE, AMIE
3 [30], as another representative of a rule-based approach.
Note that we discuss other rule-based approaches including
some of their experimental results in Sect. 7.

@ Springer

146

C. Meilicke et al.

Table 1 Dataset characteristics. The first three lines refer to number of
entities, relations and triples in the training set. The last line refers to
the number of triples in the test set

FB15k Yago03-10 WikidataSM Freebase
Entities 15k 123k 4,594k 86,054k
Relations 1,345 37 822 15,000
Training set 483k 1,079k 20,625k 338,586k
Test set 59k 5k 5.3k 10k

5.1 Datasets

In the previous years, a large fraction of research on knowl-
edge graph completion techniques was focused on two
evaluation datasets known as FB15k-237 and WNI18RR.
They are subsets of FB15k (a subset of Freebase) and WN18
(a subset of WordNet). Both datasets have been proposed in
[9], and it has been shown that AnyBURL is competitive.>
However, they are rather small-sized and the goal of this
work is to extend symbolic rule learning to larger knowledge
graphs, i.e., to make AnyBURL applicable to more realistic
scenarios.

Therefore, we focus on the datasets used in [27], an
experimental study about different methods for parallel train-
ing of knowledge graph embedding models. In particular,
the datasets are FB15k, WikidataSM (WD5M), Yago03-10,
and Freebase (FB). The characteristics of these datasets are
described in Table 1. Especially for the two largest datasets,
WDS5M and Freebase, it is hard or at least extremely costly to
learn embeddings in non-parallelized settings, for instance,
as model parameters might not fit on a single GPU [27]. They
are thus well-suited for assessing if our improved rule-based
approach can deal with challenging large-scale settings.

In regard to the FBI15k dataset, the best performing
approaches achieve a hits@1 score that is lower than 85%,
suggesting that there is still room for improvement. The
dataset Yago03-10 is described in [33] and has first been
used in the context of knowledge graph completion in [16].
It is the subset of YAGO3 that consists of entities which are
described by atleast 10 triples. Itis two times larger in number
of triples than FB15k, even though it uses only 37 different
relations. WDS5SM [61] is based on the July 2019 dump of
Wikidata. Freebase is the largest dataset that we use and it is
simply the full version of Freebase. We use the version that
has been used in [27, 31]. To make our results comparable to

3 For a detailed treatment, we refer the reader to [47], where an inde-
pendent evaluation study comparing different families of knowledge
graph completion approaches is presented. One of these approaches is
the version of AnyBURL that is close to the version that we describe
in this paper. The results shown in [47] indicate that the approach is
among the best methods with respect to both predictive quality and
runtime efficiency.

@ Springer

the results presented in [27], we use the same subset of the
test set for evaluation and we use the full test set, validation
set and training set for filtering when we compute the filtered
MRR and hits @k scores.

5.2 Experimental settings

The main results of Sect.5 are presented in Table 2. In the
following, we describe the experimental details in regard to
AnyBURL, introduce prior work against which we compare,
and explain settings and some dimensions of Table 2 with a
special focus on runtime.

5.2.1 AnyBURL settings

Throughout all experiments we use, with only one exception,
the default AnyBURL setting. As described in [35], we use
max aggregation to generate predictions from a rule set. We
learn rules up to length three from cyclic paths and restrict
the length of rules learned from acyclic paths to one. Pre-
vious experiments have shown that B rules of length > 4
can improve the results only to a rather limited degree, while
using them for prediction is rather costly in terms of runtime.
It is similar to Uq and Ug rules of length > 2. Moreover, the
search space for U, rules with one body atom is already quite
large, as they use one constant in the head and one constant in
the body. If we would allow a second body atom, this would
increase the number of mined rules by several orders of mag-
nitude. This rule set would not fit into main memory given a
high number of entities and relations.

Confidences of rules are approximated by sampling and
evaluating groundings on the training set followed by a
Laplace smoothing with parameter p. = 5 (see Section 4
in [35] for details). For all datasets, with the exception of
Freebase, we keep all rules with a support of at least two.
For Freebase, we increase this parameter from two to five to
avoid rule sets which might become too large. If not stated
otherwise, we use within this section the weighted reinforced
policy together with the reward strategy R, .o We compare
different policies and reward strategies later in Sect. 6.

We are running the AnyBURL experiments with the
datasets FB15k, Yago03-10, and WD5M on a CPU sever
with 786 GB RAM and two Intel(R) Xeon(R) CPU E5-2640
v4 @ 2.40GHz cores which are virtualized as 40 cores. For
Freebase, we used a CPU sever with 1024 GB RAM and
an AMD EPYC 7413 24-Core Processor with 96 virtualized
cores. We set the number of worker threads in all experiments
to 32.

Note that we do not use the validation set as the same
AnyBURL setting is used for all datasets. The validation
set is only required for computing the filtered scores which
allows to make our experiments comparable to the results
of other models. For the two largest datasets, we present the

Anytime bottom-up rule learning...

147

results based on learning rules for 100, 1000 and 10000s.
For FB15k and Yago03-10, we present only the results for
100s and for 100 and 1000, respectively, as longer learning
times do not provide additional benefits.*

While a knowledge graph embedding model requires to
calculate a complete ranking as triple scores are not known
beforehand, when sorting the rules of AnyBURL before the
prediction stage according to their confidences, it is possible
to efficiently create top-k rankings. For all the experiments,
we calculate the top-100 rankings with AnyBURL and every
candidate not within these top-100 is assigned a score of
0. Tie handling is performed with the random strategy as
proposed in [56].

5.2.2 Current state of the art

In [27], the authors used two standard knowledge graph
embedding models (ComplEx [60] and RotateE [55]) via
different parallelization techniques across multiple GPUs or
machines to perform knowledge graph completion on large
datasets. We compare against the best results of this work.
After an initial small non-parallelized hyperparameter search
with 30 trials and 20 epochs for every dataset, the best config-
urations (measured with the help of the validation set) have
been used in various parallelized settings. From these settings
(compare Table 5 in [27]), we have chosen the approaches
that resulted in the best MRR and the approach that turned
out to be the fastest. We marked these approaches with b
(best) and f (fastest), and added them to our results Table.

Note that parallelization techniques and approaches for
large-scale knowledge graph completion have also been pro-
posed in [31, 66]. However, these papers use a sample-based
evaluation. In [27], the authors have argued that this evalua-
tion technique generates misleading results. Moreover, they
implemented most of the methods proposed in [31, 66] under
a common framework and included them in their experi-
ments.

While [27] has a focus on runtimes and scalability, we
also discuss the most recent state-of-the-art results in regard
to predictive quality on the respective datasets. For WD5M,
to our knowledge, the best results in terms of MRR have been
achieved by a model called KGT5 [50], an ensemble com-
bining an encoder—decoder transformer model and ComplEx.
For the two smallest datasets, we pick additionally the best
and the second best results from the meta study [47], where
sixteen different methods have been evaluated. Finally, for
Freebase we include the results of GRAS H [28] which is the
first algorithm that successfully performed a hyperparame-

4 The current version of AnyBURL, together with all configurations
files and datasets required to rerun our experiments, is available at
https://web.informatik.uni-mannheim.de/ AnyBURL/

ter search on this dataset and achieved state of the art with
respect to predictive quality.

In addition to these state-of-the-art embedding-based
approaches, we also included AMIE 3 [30] in our experi-
ments. AMIE 3 is the latest version of the rule learner AMIE
[23]. It is specifically designed to be applicable to large
datasets. Results of AMIE are not available for the prediction
tasks and datasets used in our experiments. Thus, we had to
run AMIE on our own. We report about results for three set-
tings. We used the default setting, which is rather restrictive.
It does not allow any constants; moreover, only rules with
one or two body atoms are constructed and only those rules
are generated that have a support of more than 100. In addi-
tion to the default setting, we report about the results for two
relaxed settings where we decrease the support threshold to
two (referred to as s > 2 in Table 2) and increase the rule
length from two to three (referred to as / < 3 in Table 2).
We do not report about some initial experiments where we
also activated rules with constants, as AMIE did not termi-
nate within 24 h for three out of four datasets. Note that we
had to use AnyBURLSs rule application module to apply the
learned rules as AMIE does not support the functionality to
solve link predictions tasks based on the learned rules.

We report also about the results of the old version of Any-
BURL [35], which we refer to as AnyBURL-2019 in Table 2.
We do not expect that this version yields results that are on
par with currents state of the art. We included it to illus-
trate the benefits of the improvements and extension that we
described in the paper as a whole.

5.2.3 Runtime calculation

The runtimes of AnyBURL and AMIE can be divided into
three phases. First the dataset is loaded and indexed (Index
column of Table 2). Then rules are learned for one of the
above-defined time spans (Learn column). These rules are
used to make predictions in the final phase (Predict column).
For knowledge graph embedding models, the final runtimes
are composed differently, which will be explained in the fol-
lowing paragraphs.

The runtimes of latent models based on continuous learn-
ing can be divided into a phase called hyperparameter search
(HS column of Table 2) and into the learning/training phase
(Learn column). It is obvious that these models also need to
load the data. We could not find any numbers related to this
point; therefore, we assumed in our calculations that no time
is required.

Loading the data will likely take the same amount of
time for both approaches. However, in regard to prediction
times KGE models are usually faster than AnyBURL when
they are operating on GPUs. Due to vectorized operations,
many candidates can be predicted simultaneously for obtain-
ing rankings. We were not able to find precise prediction

@ Springer

https://web.informatik.uni-mannheim.de/AnyBURL/

148

C. Meilicke et al.

Table 2 Results of AnyBURL compared to the models and paral-
lelization techniques analyzed in [27]. Runtimes of knowledge graph

runtimes are not available in a paper but have been estimated from a
diagram or have been retrieved by contacting the authors of the publi-

embedding approaches have been computed based on the numbers cation
available in the respective publications. Italic type indicates that exact
Dataset / Model Runtimes Rules Predictive Quality
Index Learn Predict HS z hits@1 hits@10 MRR
FB15k AnyBURL 9s 100s 512s - 10.3m 2243k 0.820 0.897 0.847
AnyBURL-2019 [35] 2s 10000s 5260s — 254m 10240k 0.797 0.888 0.825
AMIE, default 2s 58s 11s - 1.2m 37k 0.773 0.824 0.791
AMIE, s > 2 2s 79s 16s - 1.6m 92k 0.803 0.855 0.821
AMIE, [<3 2s 34740s 782s - 592m 1872k 0.775 0.833 0.795
ComplEx (f) 104s 26s—780s 22m-14.7m 0.858 0.766
ComplEx (b) 2360s 118s —3540s 41.3m-98.3m 0.862 0.779
RotatE (b&f) 1104s 925 -2760s 19.9m - 64.4m 0.835 0.725
1st in [47], ComplEx >10h 0.816 0.905 0.848
2nd in [47], HolE >2h 0.759 0.869 0.800
Yago03-10 AnyBURL 8s 100s 186s - 49m 738k 0.495 0.683 0.561
8s 1000s 221s - 20.5m 4079k 0.497 0.689 0.565
AnyBURL-2019 [35] 5s 10000s 5133s — 252m 3903k 0.428 0.640 0.492
AMIE, default 7s 23s Is - 0.5m 224 0.303 0.517 0.375
AMIE, s > 2 7s 38s ls - 0.8m 519 0.305 0.519 0.377
AMIE, [<3 7s 4440s 2s - 74m 2561 0.327 0.557 0.405
ComplEx (b) 8627s 4865 —14580s 151.9m - 386.8m 0.675 0.542
ComplEx (f) 76005 380s — 114005 133m-316.7m 0.669 0.538
RotatE (b) 29640s 14825 —44460s 518.7m - 1235m 0.637 0.451
RotatE (f) 13260s 8165 —24480s 234.6m-629m 0.607 0.438
Ist in [47], ComplEx >20h 0.505 0.704 0.576
2nd in [47], TuckER >10h 0.466 0.681 0.544
WikidataSM 122s 100s 1285s - 25.1m 85k 0275 0.378 0.310
AnyBURL 122s 1000s 2591s - 61.8m 642k 0300 0.413 0.338
122s 10000s 7009s — 285.5m 4294k 0312 0433 0.353
AnyBURL-2019 [35] 82s 10000s 1964s — 207.7m 459k 0261 0.356 0.293
AMIE, default 104s 1443s 4s - 25.8m 3.7k 0.178 0.204 0.188
AMIE, s > 2 104s 1942s 65 - 342m 275k 0.190 0221 0.202
AMIE, [<3 104s >24h - - >24h - - - -
ComplEXx (b&f) 63840s 4560s — 136800s 0.8 days — 2.3 days 0.398 0.308
RotatE (b&f) 35003's 93345 —280020s 0.50 days — 3.6 days 0.344 0.264
KGT5 ~7 days 0.267 0.365 0.300
KGT5+ComplEx ~10 days 0.286 0.426 0.336
Freebase 1150s 100s 264s - 252m 113k 0.690 0.714 0.699
AnyBURL 1150s 1000s 412s - 42.7m 505k 0.698 0.725 0.707
1150s 10000s 971s - 202m 3245k 0702 0.728 0.711
AnyBURL-2019 [35] 539s 10000s 414s* — 182.5m 254k 0.648 0.665 0.655
AMIE, default 886s >24h - - >24h - - - -
ComplEx (b) 7046 118s—3540s 119.4m - 176.4m 0.529 0.426
ComplEx (f) 5916s 26s—1780s 99.0m—-111.6m 0.523 0.421
RotatE (b) 64957 s 925 -2760s 1084.15m — 1128.6m 0.627 0.566
RotatE (f) 9383s 925 -2760s 157.9m - 202.4m 0.621 0.562
ComplEx [28] 32274s >537.9m 0.678

@ Springer

Anytime bottom-up rule learning...

149

times regarding the full datasets and the compared models.
Nevertheless, in [47] average prediction times for individ-
ual queries in milliseconds on Yago03-10 and FB15k are
given for, e.g., ComplEx, RotatE and AnyBURL. AnyBURL
is roughly on average slower by a factor of 10-1000. As we
do not have better estimates, we will suppress the prediction
times of the KGE models and set them to zero.

We will now highlight the runtime calculations that we
performed for the comparison against [27]. As explained
above, the optimal hyperparameter setting has been iden-
tified via a straightforward sequential search using 30 search
configurations (trials) trained for 20 epochs. As the work
investigates the parallelization of the training process instead
of the hyperparameter search, we have to consider that the
search conceptually can easily be parallelized as search trials
can be run independently. For a lower bound, we assume that
all trials were run in parallel. Note that this requires to use 30
GPUs in parallel. As an upper bound we simply assume the
search was run sequentially. For the upper bound, this results
in 20x30=600 epochs used for the search and for the lower
bound it is 20x 1=20 epochs. The epoch numbers are multi-
plied with the epoch runtimes which are provided in the work.
These calculations lead to the HS column of Table 2. Please
note that the energy consumption with respect to GPU usage
is identical in both cases. For the Learn column we multi-
ply the number of epochs used for training the final model
using the best hyperparameter setting, which were provided
by the authors, with the epoch runtimes. For the Freebase
dataset, the authors trained constantly for 10 epochs and did
not perform a hyperparameter search instead the respective
configurations of FB15K were used.

In regard to the runtimes of GRASH [28], which is
designed to perform an efficient hyperparameter search on
large datasets, we obtain the overall time for conducting the
search from the paper. We could not find the training time
for the final model after the search. Hence, we exclude it to
not make an unfair assumption.

Total runtimes for ComplEx, HolE, and TuckER as used
in [47] are directly obtained from Figures 5 and 6 in this
paper. As these runtimes are only shown in a diagram with a
logarithmic scale, we had to estimate alower bound. Note that
these numbers do not include the hyperparameter search. As
no runtimes were specified for KGTS5 in [50], we contacted
the authors and they provided a rough estimation, which we
added to our results table (Table 2).

5.3 Results

In this section, we discuss the results in Table 2 with respect
to prediction quality and briefly mention runtime consid-
erations. As explained above, the entries for ComplEx and
RotatE marked with (b) and (f) correspond to the best and
fastest configuration in [27], the first and second best models

from [47] are added as well as the current state of the art on
WD5M [50] and Freebase [27]. Further details can be found
in the experimental settings section (§5.2). For AnyBURL
and AMIE we calculated filtered hits @1, hits@ 10 and MRR.
For the remaining models, we reused scores available in the
literature. In the ¥ column, we summed up the runtimes of
all operations required to learn a model and to use that model
to solve the prediction tasks of the test sets.

AnyBURL outperforms each combination of knowledge
graph embedding model and parallelized setting described in
[27] for each of the four datasets when we look at the results
based on the rule sets that have been learned after 100s. If we
increase the learning time to 10000s, this holds also for the
ensemble of KGT5+ComplEx on the WD5M dataset, which
has been described as the current state of the art in [50].°
Moreover, AnyBURL outperforms the previous best results
[28] on Freebase with respect to MRR and hits@10.

Our results for FB15k and Yago03-10 outperform Com-
plEx and RotatE results when using different paralleliza-
tion techniques [27], however, several publications reported
slightly better results on these datasets. The best model
from around sixteen models that have been analyzed in [47],
achieved 0.848 on FB15k. In [29] the authors reported an
MRR of 0.86. With an MRR of 0.847 we are close to these
numbers. With respect to Yago03-10 its similar. While we
achieve a score of 0.565, in [29], the authors report an MRR
of 0.58 and in [47] an MRR of 0.576. Runtimes have not
been stated in [29], even though it’s known that the authors
use a very large embedding dimension which may lead to
high runtimes. The results reported in [47] require a training
time (not including the hyperparameter search) of more than
20h for Yago03-10 while AnyBURL require only slightly
more than 20 min. These runtime comparisons might indi-
cate what effort is required to achieve these MRR scores
with an embedding approach; more detailed discussions of
runtimes will be provided in the next section. We conclude
that for datasets limited in size it is possible to find mod-
els that slightly outperform AnyBURL in terms of predictive
quality. However, the results in [47] indicate that in a realis-
tic scenario we might not know which model performs well
beforehand, e.g., the choice for the best model and hyper-
parameters depends on the dataset, and AnyBURL achieves
good results out of the box on each of the datasets with a
fixed universal configuration.

The datasets WD5M and Freebase are significantly larger
than the two other datasets. This means that an exten-

5 There are some works that use instead a sampled MRR [31, 66], where
the correct entity is not ranked against all other entities but against a
relatively small sampled subset. We refer to the considerations in [27],
that clarify why this variant of the MRR should not be used, yields
distorted results, and the respective models perform worse than the
models/techniques used in [27], which are again clearly outperformed
by our version of AnyBURL.

@ Springer

150

C. Meilicke et al.

sive hyperparameter search is very costly. Moreover, these
datasets have not been used for several years in an evaluation
context. This means that experience about hyperparameter
settings (or hyperparameter search spaces) for knowledge
graph embedding models are not yet available. This is a sit-
uation that resembles a realistic evaluation scenario. Indeed,
our symbolic method clearly outperforms the previous state
of the art results in regard to prediction quality while being
faster with respect to total runtime. On WD5M AnyBURL
performs 1.7 percentage points better in terms of MRR
than KGT5+ComplEx, which has an overall running time
of roughly 10 days while AnyBURL needs less than 4h. On
Freebase, the largest dataset, AnyBURL achieves an MRR
that is 3.3 percentage points higher that the MRR that has
been achieved by a ComplEX model using a hyperparameter
setting found by an efficient hyperparameter search tailored
for large datasets [28].

Our results show also that the modifications and exten-
sions presented in this paper improved the previous version
of AnyBURL significantly. In our experiments, we ran the
old version for 10000s. Nevertheless, when comparing the
MRR results from smallest to largest dataset against using
the results of running the current version for 100s, then the
current version is 2.2, 6.9, 1.7 and 4.4 percentage points bet-
ter. Note also that we had to use the rule application module
of the new version to generate the predictions for Freebase in
less than 24 h. For that reason, we marked that runtime entry
in Table 2 with *.

We also conducted experiments with the latest version of
AMIE, called AMIE 3. The default setting of AMIE is rather
restrictive. Thus, we added two other settings by decreasing
the support threshold and by increasing the supported rule
length. If we compare the size of the ruleset learned by AMIE
in all of these settings with the rule sets learned by Any-
BURL, we observe a significant difference. This difference
is mainly caused the large number of rules with constants
that are learned by AnyBURL. As mentioned above, AMIE
did not terminate within 24h on three out of four datasets
when activating constants.

In contrast to AnyBURL, AMIE is not an anytime algo-
rithm. This means that the parameter setting determines
runtime. For some datasets/settings, AMIE did not finish
within 24h. We discuss the reasons and AMIE runtimes
in general in the next section. Whenever AMIE generated
a result within 24h it performed clearly worse than the
results obtained by the 100 s learning time run of AnyBURL.
The best results have been achieved on the smallest dataset,
FB15k, in the setting that uses a very low support thresh-
old. AMIE achieves an MRR of 0.822 in only 1.6 min, which
outperforms the embedding-based approaches from [27].

@ Springer

5.4 Runtimes and carbon footprint

In this section, we present a detailed comparison in regard
to total runtimes and energy consumption with respect to the
results in [27, 28, 47]. A comparison between our approach
and a knowledge graph embedding model (and probably any
deep-learning model), with respect to runtime and usage of
computational resources, is not trivial. The required com-
putation for training a knowledge graph embedding model
is usually conducted on one or several GPUs. AnyBURL
requires no access to a GPU but is multithreaded and runs
on several (virtual) CPU cores. Thus, we report runtimes
together with relevant characteristics of the used computing
devices. Both the experiments reported in [27] and our exper-
iments have been conducted on a CPU server with the same
characteristics (mentioned above in Sect.5.2). An exception
is our experiments on Freebase where we had to use a com-
puting environment with a bigger RAM. The models in [27]
have additionally used up to 8 GPUs (GeForce RTX 2080
Ti). In addition to a discussion of runtimes, we compare the
energy consumption at the end of this section. This allows us
to get a rough idea about required resources within the same
measure.

If we compare, for instance, AnyBURL in the 1000 learn-
ing setting against the fastest way to run ComplEx in [27],
which always performs worse in regard to predictive quality,
we can see that runtimes are slightly worse on FB15k (the
smallest dataset), while AnyBURL is significantly faster on
other datasets: 6-15 times faster on Yago03-10, more than
18-54 times faster on WD5M, and more than 2 times faster
on Freebase. The time for training the model once (no hyper-
parameter search) for only 10 epochs is already 2 times
higher. These are significant differences. In [27], a specific
method for conducting an efficient hyperparameter search
has been proposed. Applying this method to Freebase results
in a runtime that is 21 times longer than learning rules with
AnyBURL for 100s. However, the results of AnyBURL are
nevertheless 2.1 percentage points better.

Inregard to the results in [47] and FB 15k, AnyBURL is 58
times faster than the best-performing model while achieving
a similar predictive quality. On Yago03-10 AnyBURL per-
forms slightly worse considering the MRR but is 7 times
faster (58 times in the 1000s learning setting) than the best-
performing model. AnyBURL is 50 times faster and 1.7
percentage points better in terms of MRR on WD5M com-
pared to the previous state-of-the-art model KGT5+ComplEx
[50]. Finally, for Freebase AnyBURL is 2.5 to 20 times faster
than the previous state of the art presented in [28] while out-
performing this approach in regard to MRR by more than
three percentage points.

The runtimes we measured for AMIE illustrate an impor-
tant difference between the rule mining method of AMIE and
AnyBURL. AMIE’s algorithmic core is a depth-first search

Anytime bottom-up rule learning...

151

that constructs all possible rules of a certain type, where a
search step corresponds to adding an atom to a rule body. This
basic approach is improved by using several sophisticated
pruning strategies and optimizations. The authors of AMIE
argue that, due to these improvements, they do not have to
resort to approximations or sampling, but are able to com-
pute the exact confidence and support of each rule. Our results
show that this claim is not valid if we apply AMIE to very
large datasets. This might be caused by the simple fact that
the potential number of rules is increased by the number of
predicates with each additional body atom. Moreover, some
of these rules have billions of different groundings, which
makes the confidence computation extremely costly. While
pruning techniques might allow to reduce the branching fac-
tor, we can still observe a significant increase in runtimes if
we compare the default setting, where rules can have only
2 body atoms, to the / < 3 setting, where we allow 3 body
atoms. For FB15k runtime increases by a factor of 600, for
Yago03-10 runtime increases by a factor of 193. For WD5M
AMIE requires already 25 min in the default setting. If we
increase the number of body atoms by one, AMIE does not
finish with 24 h. For Freebase, a dataset that has a signif-
icantly higher number of predicates, AMIE does not even
terminate within 24 h in the default setting.

The experiments in [27] have been conducted on a com-
pute server with RTX 2080 Ti GPUs. These GPUs have a
maximal performance of 250 Watt (Thermal Design Power).
As their computational power is probably not always fully
exploited, we estimate an average demand of 200 Watt for
each GPU. Furthermore, we assume that the demand of the
CPU can be neglected in the knowledge graph embedding
setting. Both assumptions are in favor of the embedding-
based approaches. Most runs of AnyBURL are executed on
a CPU server with two Intel(R) Xeon(R) CPU E5-2640 v4
@ 2.40GHz cores which are virtually divided into 40 virtual
cores. Each core demands 90 Watt (Thermal Design Power);
however, we estimate a demand of 100 Watt as there might
be some peak loads. Thus, if our approach makes full usage
of all CPU cores we estimate this as 2 x 100 = 200 Watt.
We conducted the Freebase experiments on a more modern
compute server that has a more modern CPU architecture.
As we restricted the number of worker threads to 32, only
one of the cores of one CPU has been used which results into
a maximal electricity demand of 180 Watt. This means that
AnyBURL has approximately the same electricity demand as
running a knowledge graph embedding model on one GPU.
We are aware that these numbers are a rough estimation.

Let us take a closer look at the two largest datasets. For
Freebase, we ignore in the following the hyperparameter
search, which, in this specific case, has been conducted on
FB15k. The fastest setting, which performs well, is given
by RotatE. In this setting, the training process has been dis-
tributed over 8 GPUs. Although training the model needs

78% of the time required by AnyBURL in the 10000 s learn-
ing setting, the power consumption is 26 times higher than
the power consumption of AnyBURL, while RotatE’s MRR
results are 15 percentage points worse. Even when we con-
sider the 100s learning setting of AnyBURL, there is still a
difference of 13 percentage points. In that setting, the power
consumption of the knowledge graph embedding model is
57 times higher than that of AnyBURL.

On WD5M the differences are even more significant. Here
the best results have been achieved by a setting using two
GPUs for training. The hyperparameter search has been con-
ducted with one GPU. Thus, we have for the ComplEx model
that achieves an MRR of 0.308 an estimated power con-
sumption of 63840s x 400Watt + 136800s x 200Watt =
52,896,000Ws = 52,896 kWs = 14.7 kWh. This amounts
roughly to 1.5 days energy consumption of a 2-person aver-
age household in Germany.® By contrast, AnyBURL requires
in the 10000 s learning setting 17031 s x 200Watt = 3406200
Ws =3406 kWs =0.95 kWh (1005 rule learning yields in an
overall demand of 0.08 kWh). This is a significant difference,
given that AnyBURL generates a result that is 4.5 percent-
age points better in terms of MRR (the 100s rule learning
achieves an MRR that is still 0.2 percentage points better).

We have not yet included any indirect costs, which are
higher for a compute server with several GPUs compared to
a compute server that runs only CPUs. This includes the
costs of (and the electricity required to run) a better air-
conditioning system and the additional space required in
the computing center. We are aware that these costs and
the carbon footprint of a knowledge graph embedding-based
approach might still be justified if the results would be bet-
ter compared to the results of using an efficient symbolic
approach. However, our experimental results show that this
is not the case. We have also not included in our calculations
the fact that we picked a posteriori the combination of model
and parallelization technique that worked best for the specific
datasets. This is usually not known without any previously
conducted experiments.

5.5 Memory consumption

We provide a brief discussion about the memory consump-
tion of the different approaches in this section. One has to
distinguish consumed disk space, RAM memory, and GPU
memory with the latter being the most expensive memory

type.

6 Qur calculation is based on the assumption that an average 2-person
household requires 9 kWh per day. This number is based on the
data available at https://www.destatis.de/DE/Themen/Gesellschaft-
Umwelt/Umwelt/UGR/private-haushalte/ Tabellen/stromverbrauch-
haushalte.html

@ Springer

https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/UGR/private-haushalte/Tabellen/stromverbrauch-haushalte.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/UGR/private-haushalte/Tabellen/stromverbrauch-haushalte.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/UGR/private-haushalte/Tabellen/stromverbrauch-haushalte.html

152

C. Meilicke et al.

Although embedding models and symbolic models are
conceptually different, in regard to disk space complexity,
it is possible to use the sizes of the learned rule set and
embeddings for an approximate disk space usage compar-
ison of model sizes. We estimate model sizes for the latent
models in [28] and [27] by calculating #embeddings_stored
x embedding_dim x 4 bytes. According to the authors, the
embeddings are stored in FloatTensors which take 4 bytes per
number stored. On the Freebase dataset, this resultsin 176.27
GB for ComplEx [28] and 44.07 GB for RotatE and Com-
plEx [27]. The rule set for AnyBURL in the largest setting
(10000 s) has a size of 0.17 GB only. For WD5M, RotatE and
ComplEx in [27] use 2.35 GB each whereas the rule set in
the largest setting requires 0.253 GB. For Yago03-10, RotatE
and ComplEX in [27] both take 0.063 GB compared to the
rule setsize 1.5 GB for AnyBURL. Finally, for FB15k RotatE
and ComplEX in [27] take 0.0084 GB each whereas the rule
set of AnyBURL in the largest setting has a size of 6.6 GB.
While the embeddings sizes are correlated with the size of
the datasets, the same is not the case for the rule sets. Here we
have the smallest rule set for the largest dataset. This counter-
intuitive observation is caused by the fact that the confidence
approximation is more expensive for larger datasets, which
yields less mined rules in the same time compared to smaller
datasets. However, the size of the rule sets is not critical at
all and even relatively small rule sets perform already very
well considering the results of the 100s runs in Table 2 for
the smaller datasets.

In regard to GPU memory, AnyBURL does not use this
memory type, whereas a large portion of research on large-
scale embedding models is centered around the problem that
the model parameters do not fit on a single GPU jointly. We
therefore refer to the respective works for more details [27,
28].

AnyBURL does not need to fit its model on the GPU but
runs on the cores of one or several CPUs instead. It requires
RAM memory to load the dataset and to build up index struc-
tures, which allows to construct body groundings of rule
bodies quickly. The internal representation of the rule set
requires, compared to this, an insignificant amount of mem-
ory. To process FB15k and Yago, AnyBURL requires less
than 16GB, for WD5M around 80GB are required. For the
largest dataset, Freebase, AnyBURL requires around 900GB.
Inregard to main memory consumption, we are unfortunately
not able to provide estimates for the knowledge graph embed-
ding models; however, a multiple of the model sizes might
be needed as, e.g., optimizers such as Adagrad [18] need to
store the parameter values from previous iterations of the
optimization procedure.

@ Springer

6 Ablation study

In the following, we first analyze the impact of the OI con-
straint. We focus on the impact on predictive quality and on
the size of the mined rule sets. Then, we study the impact of
different policies and reward strategies to better understand
how far our approach is capable to adapt itself to the specifics
of the datasets. Subsequently we analyze the differences of
the approximated confidences and exact confidence compu-
tation in regard to performance on the datasets where the
exact computation does terminate. Finally, we report about
an experiment which indicates that rule learning and rule
application scales nearly linear with respect to the available
number of cores.

6.1 Object identity

For the purpose of analyzing the impact of the Object Iden-
tity (OI) constraints, we run AnyBURL under OI constraints
learning rules for 100, 1000, and 10000 s. Then, we repeat the
experiments without OI constraints. The results of our exper-
iments with Yago03-10, WD5M and Freebase are shown in
Table 3. In the first two data columns, we show MRR scores
and the number of learned B-rules under OI constraints. The
left section of the Table reflects the default setting of Any-
BURL. In the right section of the table, we illustrate what
happens if we deactivate OI constraints both in terms of
learned B-rules and MRR. In particular, we show the change
of the MRR in terms of the difference between the MRR with
activated and deactivated Ol-constraints. A negative score
means that predictive quality decreased when deactivating
the constraints.

The last column informs about the number of B-rules
learned without OI constrains compared to the number of
B-rules learned with OI constraint. A value of +33% means,
for example, that additionally 33% more B-rules have been
learned without OI constraints. We focus here on B-rules
because U, and Ugq-rules of length one are not affected by
OI constraints. This means that the impact on the number
of learned rules can only be measured in terms of B-rules.
Moreover, learning an increased number of B-rules requires
more computational resources compared to learning U, and
Ugq-rules. This results sometimes in the counter-intuitive out-
come that the overall number of rules decreases when we
deactivate OI constraints.

We observe that deactivating OI constraints results in a
drop in MRR for all datasets and learning times. There is
only one exception, which is given by a minor improvement
with respect the 100 s learning time for WD5M. However, the
longer we learn the more beneficial are the OI constraints.
By deactivating OI constraints, we lose between 1.5 and 4
percentage points. This means that the predictive quality is
clearly affected by OI constraints. At the same time, we

Anytime bottom-up rule learning...

153

Table 3 Comparing the impact of deactivating the OI constraints in
terms of MRR and size of the learned B-rule subsets

Learn With OI Without OI
MRR #B AMRR #B AB

Yago 100s 0.564 2182 —0.020 2620 +20%

1000 0.565 4814 —0.020 5867 +22%
WD5M 1000s 0.338 8835 —0.005 11037 +25%

10000s 0.353 31190 —0.015 41606 +33%
FB 1000s 0.707 7238 —0.035 7295 +1%

10000s 0.711 22463 —0.041 23890 +6%

observe that up to 33% more B-rules are learned. Again,
we have one exception which is again related to the small-
est learning time. The difference on Yago03-10 is relatively
small, which can be explained by the small number of differ-
ent relations used in the dataset. This results in a relatively
small number of potential binary rules. The OI constraints
are only affecting this type of rules. On FB15k and WD5M,
the impact is much stronger. We observe an increase of 10%
to 55%.

Note that the number of rules can become critical for very
large datasets as all rules have to be kept in RAM together
with some index structures during the prediction phase. This
is also the reason why we omitted an entry for Freebase, as we
were running out of memory with deactivated OI constraints.
We conclude that the OI constraints have a small positive
impact on the predictive quality and reduce the risk of running
out of memory for very large datasets.

6.2 Impact of reward and policy

In the following, we compare the random policy against
all possible combinations of policies and reward strate-
gies. Before we start with the discussion of the results, we
have to emphasize that our approach allocates computational
resources between four different path profiles (cyclic paths
of length one, two and three, as well as acyclic paths of
length one). The random approach distributes computational
effort equally between these four profiles. We will see that the
random approach works surprisingly well. This is partially
caused by the fact that within a profile the most important
rules are found first, as these rules occur more frequently.
At the same time, we have to understand that we distinguish
between only four path profiles. This means that a perfect
adaption to an extreme dataset, in which regularities belong
to only one profile, will converge at most four times faster
than the random approach. Taking both aspects into account,
we can expect that an approach guided by a specific reward
might yield results in the same time span that are only slightly
better and the same results can be achieved by running the
random baseline for a longer time.

The results of our experiments are shown in Table 4.
We evaluated each setting five times and report the result-
ing average MRR scores. We conducted the experiments for
Yago03-10, WD5M and Freebase. As Yago03-10 is, com-
pared to the other two datasets, relatively small, we observed
some variance in the results. We computed the average over
five runs for that reason. We omitted the smallest datasets
FB15k as results converge so quickly to the top scores pre-
sented in Table 2 that it is hard to measure differences
between any of the policies. We compare each non-random
reinforcement setting against the random policy for different
learning times. We show, in particular, the difference of the
MRR scores. A positive number means that the non-random
policy performs better than the random selection of a path
profile.

The weighted policy outperforms the random baseline
consistently independently of the chosen reward strategy.
According to our results, the best combination is the weighted
policy together with the reward strategy R .. For WD5M the
MRR scores is after learning rules for 10,000 s more than two
percentage points higher than the random approach. For Free-
base we observe constantly a performance that is between
0.7 and 0.8 percentage points better. The other two reward
strategies perform worse, however, they are still superior to
the random baseline.

The results of the greedy strategy are inconclusive. It
performs clearly worse than the weighted policy, while it
performs on Freebase a bit better than the random baseline
and on WD5M slightly worse. We believe that a bad perfor-
mance of the greedy approach happens especially if one path
profile is in fact more important while the other path profiles
(or at least some of them) yield also beneficial rules. In such a
situation, the greedy approach will focus on the outstanding
profile until most of its rules have been constructed. During
this time span, the other rules are completely ignored aside
from those rules that are mined randomly from some path
profile with probability €.

Figure 4 shows in detail how greedy (colored bar at the top)
and weighted policy (line plot below) adapt to the specifics of
the Yago03-10 dataset. The first phase (0-505s) is dominated
by mining rules that are generated from the cyclic path profile
of length 1. When 100s have passed, and after an intermedi-
ate period where mixed profiles are used, most of the cores
are used to mine rules from acyclic paths of length 1 result-
ing in Uq and U, rules. We can also see that cyclic paths of
length two receive a low priority throughout the whole pro-
cess. Thus, our approach is capable to put the focus on the
most important path profile and changes its focus once the
most important rules from this profile have been mined.

@ Springer

154

C. Meilicke et al.

Table 4 Comparing policies

. - Learn Rand Greedy Weighted
and reward strategies against the
random policy (Rand) in terms R Rsxe Ryxepnt Ry Rsxe Rysepn
of MRR
Yago 100 0.555 +0.005 +0.006 +0.007 +0.006 +0.005 +0.006
1000s 0.564 +0.002 +0.002 +0.002 +0.002 +0.002 +0.002
WD5M 100 0.308 —0.005 —0.002 —0.002 +0.001 +0.002 +0.006
1000 0.322 —0.002 +0 +0 +0.003 +0.016 +0.005
10000 0.332 —0.001 +0 +0 +0.002 +0.021 +0.004
Freebase 100 0.692 +0.010 +0.002 +0.004 +0.004 +0.007 +0.004
1000 0.700 +0.005 +0 +0.001 +0.002 +0.007 +0.001
10000 0.703 +0.003 —0.001 +0 +0.001 +0.008 +0
Fig.4 Greedy (top bar) and cores
weighted policy (lines) with IS N
reward strategy Ry applied on 20 I T
Yago03-10. Note that the x-axis /\/\/\/\ yene =
uses a logarithmic scale 15 \
\ \/\ ‘ cyclic, 1=2
10
>< /\% | cyclic, 1=3
TS M
0 Mﬂ\— | acyclic, 1=1

6.3 Confidence sampling

The efficiency of our approach is partially based on estimat-
ing confidences by sampling rule bodies instead of correctly
computing the confidence of a rule. It is clear that this has a
significant impact on runtimes, especially when we apply our
method to very large datasets. Instead of enumerating up to
billions of different body groundings, AnyBURL stops, in its
default setting, after 100,000 attempts of constructing a body
grounding. This is also backed by our experimental results,
where we observed that AMIE, which computes exact con-
fidences, does not terminate within 24 h on Freebase in its
default setting. The same happens when we apply AMIE on
WDS5M with a setting where we increased the rule length to
the default rule length of AnyBURL.

However, we do not yet know if the sampling-based
approach has a negative impact on the quality of the gener-
ated rankings. According to the results presented in Table 2,
it is already clear that such a negative impact must be rather
limited, because otherwise it would not be possible to achieve
state-of-the-art results on the two largest datasets and good
results on the other two datasets. Nevertheless, we do not
know if the quality of the results would be further increased
if we would exchange the sampling-based confidence esti-
mation by an exact computation.

To answer this question, we used a rule set learned by
AnyBURL and replaced its approximated confidence scores
with exact confidences. We computed these scores by using

@ Springer

100s 1000s 10000s

a complete variant of the DFS-based method that was previ-
ously used in AnyBURL. Then, we compared the predictive
quality of both rule sets to understand the difference between
using approximated and correct confidences on the same rule
set. We conducted these experiments for the rule sets that
have been learned after 1000s and for the subset that consists
of B-rules only. If there is a systematic deviation between the
exact computation and the approximation it can be expected
that this happens for long B-rules more frequently.

The results of our experiments are depicted in Table 5.
As the exact computation does not terminate within 24h
for the two largest datasets, we can present only results for
FB15k and Yago03-10. For both datasets, there are nearly
no differences between using exact and approximated con-
fidences if we look at the complete rule sets. If we look at
the subset, that consists only of B-rules, there are nearly no
differences for Yago03-10. However, the exact rule compu-
tation is around half a percentage point better on FB15k.
This difference is probably not noise but might be caused by
our sampling technique. However, the minor negative influ-
ence of the approximated confidence scores seems to vanish
if we use the full rule set. Adding U, and Ug-rules miti-
gates the negative impact. These results justify the use of our
approximation method, which are a key element to make a
rule based knowledge base completion approach applicable
to very large datasets.

Anytime bottom-up rule learning... 155
Tablg 5 Comparing the impact Sampled A-Exact
of using exact confidences vs.
approximated confidences hits@1 hits@10 MRR hits@1 hits@10 MRR
FB15k All rules 0.820 0.897 0.847 —0.002 +0.002 —0.001
B-rules 0.805 0.877 0.829 +0.005 +0.006 +0.006
Yago All rules 0.497 0.689 0.565 +0 +0 +0
B-rules 0.396 0.618 0.474 —0.001 +0.001 +0

6.4 Multithreading

In the following, we report about two experiments that illus-
trate in how far rule learning and rule application scales
nearly linear with respect to the number of available cores.
First, we start with analyzing the impact on rule learning.
Due to the fact that many good rules can be mined at the
beginning, we cannot run AnyBURL with different numbers
of threads for a fixed time comparing the number of learned
rules. Instead, we propose the following procedure. We run
AnyBURL with one thread until a certain number of rules
have been found. Then, we repeat the experiment using 2
threads, 4, 8, 16 and 32 threads. We conducted these exper-
iments for YAGO and for WD5M. For YAGO we stopped
after 500k have been found, for WD5M we stopped after
50k rules have been found.

The results in Table 6 show that the approach scales nearly
linear. By using twice as much cores, we reduce the required
time to mine the same number of rules to a range from 50%
to 62%. This holds for each datasets and each pair of set-
ting where we doubled the number of worker threads. If we
compare the runtimes of using one thread against the setting
where we use 32 threads, the reduction of the time required
to learn the specified number is 1/16 instead of 1/32. The
loss is probably caused by single threads that start to com-
pute the confidence scores of a large rule at the end of a time
span which requires the remaining threads to wait. The more
worker threads we use, the higher is the probability that this
happens.

In the rule application phase, each worker thread picks
repeatedly a completion task from a queue of all queries and
generates the top-k ranking for this task until all tasks are
solved. We applied the Yago and WD5M rule set to predict
the candidates for the test sets once with one threads and

once with 32 threads. For Yago it took 23.4 times longer in
the single thread setting, for WD5M it was a factor of 22.1.
An optimal factor would have been 32. While these numbers
show that there is still some loss when distributing the work
over several threads, the rule application scales well enough
to benefit significantly from an increased number of available
cores.

7 Related work

The methods AMIE [22], RuleN [36] and the previous ver-
sion of AnyBURL [35] have been applied to solve knowledge
graph completion tasks as first representatives from the fam-
ily of rule mining approaches. RuleN was designed as a
baseline to better understand which share of test queries can
be solved with rather simple rules. It does not support U,
and Uq rules. AMIE was developed as a generic rule learner
and has only been used in the RuleN paper as alternative
rule-based baseline.

AMIE supports also U, rules; however, as a complete
search is conducted it is not possible to activate this rule type
for larger datasets. This can be seen by the fact that for more
restrictive settings the rule learning already did not terminate
within 24h for some datasets as shown in the experimen-
tal section. We also conducted experiments, not reported in
Sect. 5, including rules with constants where again the mining
process did not terminate within 24 h for the larger datasets.
We conclude that AMIE 3 is applicable to very large datasets
only in rather restricted settings which does not yield com-
petitive results in regard to knowledge graph completion.

The surprisingly good results of RuleN and AMIE, com-
pared to the currents state of the art back in 2018, motivated
the development of AnyBURL, which supported U, and

Table 6 Impact of
multithreading on rule learning.

Time elapsed (seconds) until
500k rules for Yago03-10 and
50k rules for WD5M have been

Number of threads 1 2 4 8 16 32
Yago03-10, learn 500k rules 521s 294 s 181s 102s 53s 32s
WD5M, learn 50k rules 436 229s 134s 85s 53s 33s

learned using different numbers
of worker threads. Runtimes for
loading and indexing the dataset
are excluded

@ Springer

156

C. Meilicke et al.

Uy rules and achieved good results on the standard bench-
marks [35]. However, this previous version of AnyBURL
was not feasible for large datasets such as WD5M and Free-
base due to conceptual and implementation issues discussed
in the previous sections. In this work, we present the required
adjustments for scaling the rule learner to these large datasets.
Additionally, the improvements also affect predictive qual-
ity on small-/medium-sized graphs positively as shown in
Sect.5. AnyBURL’s competitiveness in regard to sixteen
other models is also demonstrated in [47], where the authors
used the version of AnyBURL that we describe in the current
paper.

The rule aggregation technique of AnyBURL has been
improved in an approach called SAFRAN [44]. SAFRAN
computes clusters of redundant rules and applies a Noisy-
OR aggregation of these clusters to compute the final score
assigned to a prediction. In [6], the authors explored in how
far it is possible to improve rule aggregation by embedding
the rules themselves into a multidimensional space. Both
approaches improve the quality of the predictions by learning
a function that aggregates rule confidences to determine the
final ranking. However, both methods are also less efficient
compared to the simple and robust rule application model of
AnyBURL. Thus, we did not change the default maximum
aggregation of the previous AnyBURL version with respect
to our large scale setting.

Several rule mining approaches applicable to large knowl-
edge graphs have been proposed in the previous years [12,
20, 43, 46]. Most of them have not been applied to knowl-
edge graph completion tasks. Instead the quality of these
approaches is mostly measured in the numbers of mined rules
or by estimating how many high-quality rules (= rules with
support and/or confidence above a certain threshold) have
been found within a given time span. We believe that these
evaluations do not help to understand in how far the overall
approach is well suited for knowledge graph completion. This
is also backed by our observations related to object identity,
where we found that smaller rule sets generate better results.

One of the few exception is the approach called RARL
(Relatedness-Aware Rule Learning), which has also been
evaluated on standard knowledge graph completion tasks
[46]. RARL has been inspired by an approach called Onto-
logical Path Finding [11]. It uses TBox information, i.e., a
schema that describes the relations used in the given knowl-
edge graph, to restrict the set of possible rule candidates.
The type of rules that are supported by RARL are restricted
to B rules. Results are available for the datasets WN18RR,
FB15K-237 and YAGO. The current version of AnyBURL
performs on WN18RR more than 10 percentage points better
and on FB15k-237 and Yago03-10 quite similar compared to
RARL. A crucial point about the approach is the availabil-
ity of a schema. Moreover, if the schema is rather generic
and does not distinguish between different types of entities,

@ Springer

the algorithm fails to generate rules that are beneficial for
knowledge graph completion. This becomes visible in the
WN18RR results.

Knowledge graph embedding models are based on latent
representations of the entities and relations, i.e., the instances
are assigned to elements in a low-dimensional vector space
with the goal of capturing semantically relevant features.
Each model is defined by a specific scoring function, and
the latent representations are learned during the training of
the models. RESCAL [39], DistMult [63], and ComplEx [60]
are characterized by bilinear scoring functions with ComplEx
augmenting DistMult to calculations in the complex vector
space. RotatE [55], on the other hand, substitutes the vector
product of the previous models with rotations in the complex
vector space to calculate the triple scores. TransE [8] is a
seminal model for the translation-based approaches, TuckEr
[4] relies on tensor factorizations and HolE [38] combines
circular correlations with matrix multiplications. Please note
that the selection of knowledge graph embedding models in
our comparative experiments is based on the best and fastest
performing models in regard to large-scale evaluation in pre-
vious work. Knowledge graph embedding models are also
heavily used in downstream applications such as visual rela-
tionship detection [3] and entity alignment [10]. In [52], the
embeddings are utilized in a combined approach for entity
and relation alignment demonstrating that these tasks also
have benefits for the completion problem.

There are also several approaches that try to combine
embeddings and rules. An example is the system Ruge [25],
which learns rules, materializes these rules, and injects the
inferred triples as new training examples with soft labels into
the process of learning the embedding. The authors report
results on FB15k which are worse than the results achieved
by AnyBURL after 100s. In [41, 42] the authors proposed a
method to learn rules more efficiently from the embeddings
space instead of learning them directly from the symbolic
representation. The approach is called Rule Learning via
Learning Representation (RLVLR). With respect to the task
of knowledge graph completion RLVLR results are available
for three datasets (FB15k-237, FB75k, and a dataset based on
Wikidata). For two of the dataset we were able to run and eval-
uate AnyBURL in the same way as described in [41] to allow
a fair comparison. The numbers of the third dataset are based
on a random selection of 50 target relations, which does not
allow a fair comparison. On FB15k-237, RLvLR achieved
an MRR of 0.24, whereas AnyBURL achieved an MRR of
0.326. For FB75k, a subset of Freebase which has more enti-
ties than FB15k but less training triples, the RLvLR MRR
is 0.337, where AnyBURL has an MRR of 0.421. Moreover,
AnyBURL has been &8 times faster in our experiments com-
pared to the runtimes of RLVLR as reported in [41]. These
results so far available do not support the overall idea that

Anytime bottom-up rule learning...

157

a tight integration of rule learning and knowledge graph
embeddings has advantages over a pure symbolic approach.

Another interesting line of research is differentiable rule
learning. Examples for this line of research are Neural-LP
[64] and DRUM [49]. Instead of searching and scoring the
rules in the symbolic space, rules are derived from the embed-
ding of a given knowledge graph. This allows to convert
the discrete search problem into a differentiable problem.
It might be an underlying assumption that this conversion
is more efficient compared to learning rules directly as it is
based on differentiable operations. However, to our knowl-
edge there exists no differentiable approach that has been
applied to large datasets. An exception is given by the results
for Neural-LP on FB15k, which is the smallest dataset in
our experiments. While we achieve an MRR of 0.84 within
10 min, the authors report an MRR of 0.76 without specify-
ing any runtimes. For DRUM we found only a remark that
1.2 min are required for the kinship dataset which describes
around 100 entities in 10000 triples. FB15k is already more
than 100 times larger in number of entities and 50 times larger
in number of triples. DRUM has not yet been applied to this
dataset.

Reinforcement learning has already been used for the task
of query answering in [13, 32, 62]. These approaches have
also been applied to knowledge graph completion. Similar to
AnyBURL, they provide explanations; however, they rely on
vector representations and not on symbols. Moreover, they
formulate the knowledge graph completion problem as arein-
forcement learning problem by learning a policy that starts at
a given query variable (entity to be predicted) and using the
relation (in the query) and the path history until the answer
node is reached. The goal is to maximize the reward (reach-
ing the answer node) by following an optimal path from a
query to an answer node [13]. While these approaches use
a reward strategy for paths that lead to answer nodes, Any-
BURL uses reward strategies for path profiles that provide
paths which lead to rules with high predictive power. None
of these approaches has been applied to large datasets. More-
over, an evaluation protocol has been used that deviates from
the standard by evaluating the predictions for tail entities
only. We have adopted this protocol and computed in a 1000s
run the MRR for FB15k-237, which is the largest dataset to
which Minerva [13] and Multihop [32] have been applied.
We measured an MRR of 0.42 for our approach, Minerva
has an MRR of 0.293 and Multihop reports 0.393 or 0.407
depending on the embeddings method that has been used.

In our experiments, the main focus lies on a comparison
with the results reported in [27]. This paper is motivated
by the idea that large-scale knowledge graph completion, if
based on standard knowledge graph embedding models, is
barely possible without methods that parallelize the train-
ing process. The authors argue that parallel training methods
can handle large-scale knowledge graphs and provide rea-

sonable training times, without a (strong) negative impact on
the resulting predictive quality. Note that none of the methods
discussed in [27] is designed to reduce the required electric-
ity demand but tries to reduce training times while keeping
the loss of predictive quality as small as possible. We have
shown that our approach is in most settings faster (compared
to settings that use up to 8 GPUs in parallel), demands sig-
nificantly less energy and yields better predictions.

When knowledge graph embedding models are employed
in large-scale settings, a crucial cost determining factor is
given by the dataset-specific hyperparameter search. The
most basic search strategy (grid search) would require to fully
train the selected model for every distinct configuration of a
specified search space. This is mitigated on smaller graphs,
for instance in [48] where Bayesian optimization is utilized
to only move along promising paths in the search space.
However, in cases where one single training run already
poses a challenge such as on Freebase (compare Sect.5),
this is hardly applicable. Recently, the hyperparameter opti-
mization engine GRASH was introduced in [28]. Based
on successive halving, GRASH combines graph and epoch
reduction techniques to enable hyperparameter searches for
knowledge graph embedding models in large scale settings.
To the best of our knowledge, GRASH is the first algorithm
that successfully was applied to perform a hyperparameter
search on Freebase and achieved state-of-the-art results in
regard to predictive quality [27]. Nevertheless, the improved
version of AnyBURL presented in this work outperforms
G RASH on Freebase with regard to predictive quality, over-
all runtime, and CO2 consumption as demonstrated in the
experimental section.

Another line of research is based on different classes
of graph neural networks (GNNs). In [24], a knowledge
graph embedding model based on a modified graph atten-
tion network architecture is proposed that accompanies a
classification model designed for finding erroneous facts in
a knowledge graph. The combined pipeline is trained in
an active learning framework and is also used for repair-
ing the detected false triples. Recently a branch of GNNs
achieved state-of-the-art results on the knowledge graph
completion task, outperforming prior work by a significant
margin [65, 67]. In contrast to vanilla GNN architectures,
in these approaches message passing follows a progressive
propagation. In the Neural-Bellman-Ford Network [67], in
short NBFNet, message passing is query dependent, that is,
messages are propagated by starting from the source entity
of a given query via each in- or outgoing relation. The effi-
ciency of this approach is improved in [65] by only allowing
a sampled subset of nodes to send messages in each iteration,
i.e., introducing an adaptive propagation path. Nevertheless,
these models are expensive to train and still need to utilize the
whole training graph at inference time for message passing.
For instance, the authors of NBFNet report training times of

@ Springer

158

C. Meilicke et al.

264 min on the small WN18RR dataset, which contains less
than 90k triples, when using 4 Tesla V100 GPUs under basic
data parallelism. This is a larger training time than the over-
all time needed by AnyBURL on the largest dataset used in
this work, which contains more than 330 million triples (see
Table 1) and is therefore more than 3.5 thousand times larger
than WN18RR. Please additionally note that a hyperparam-
eter search would add a multiple of the training time to the
overall cost of the GNN. Therefore, it can be doubted that
these models are able to generate high-quality predictions in
a large scale setting.

8 Conclusion

The problem of knowledge graph completion has been dom-
inated over the last decade by approaches that are based on
the use of embeddings. Even though symbolic approaches
have a long history rooted in inductive logic programming,
purely symbolic methods are an outsider compared to the
majority of methods proposed in the context of knowledge
graph completion. Against this trend, a competitive symbolic
rule mining system called AnyBURL has been proposed in
[35]. In this paper, we described a new version of AnyBURL.
In particular, we replaced a core component, the saturation-
based search procedure, by a method that uses reinforcement
learning. We modified the sampling technique for estimat-
ing the confidence of a rule. We changed the semantics of
the rules by interpreting them under object identify con-
straints. Finally, we implemented the new AnyBURL version
as a multithreaded rule mining process. These modifications
improve AnyBURL in general, but show their strongest bene-
fits in the context of large-scale knowledge graph completion.

We applied the new version of AnyBURL to four large
datasets. The largest of these datasets is Freebase. It consist
of more than 300 million triples, that describe more than
80 million entities. It requires parallelization methods, as
discussed in [27], to train a model that embeds the entities
and relations of the graph into a multidimensional vector
space. Even if we assume that this problem is solved, the
runtime of the hyperparameter search remains a critical issue
and specific search methods have to be designed to speed up
the search process [28]. While large datasets are challenging
for embedding based methods, these problems do not affect
our symbolic approach.

We conducted an extensive evaluation to support this
claim. Our results show that the new version of AnyBURL
is better in terms of predictive quality, runtimes, and energy
consumption compared to current state of the art for the two
largest datasets we used in our experiments. Moreover, within
a time span of only 100s AnyBURL can learn rules that
achieve a predictive quality that is close or even better than the
best models, which require up to 10 days (the ensemble com-

@ Springer

bining an encoder—decoder transformer model and ComplEx
on WD5M) or 9h (ComplEx on Freebase). These differences
get even stronger if we compare the energy consumption.
While we designed the new version of AnyBURL to fully
exploit the capabilities of running multithreaded on a CPU
server, knowledge graph embedding techniques are usually
run ona GPU, or, if parallelized, on several GPUs. Depending
on which settings we focus on AnyBURL requires between
6 to 180 times less electricity on the two largest datasets to
achieve better or similar results than the results of the best
embedding based models known so far.

The differences in the predictive quality measured in terms
of MRR are partially caused by the fact that both datasets
are relatively new with respect to their usage as evalua-
tion datasets for knowledge graph completion. Thus, a good
hyperparameter setting or a good hyperparameter search
space is not known in advance and an extensive search is
extremely expensive in terms of runtimes. As a consequence,
first attempts reported in [27] achieve an MRR that is more
than 15 percentage points below the MRR that we achieved
in the first run. By designing a more efficient hyperparam-
eter search it was possible to learn a good (and probably
not perfect) hyperparameter setting to increase the MRR in
[28]. However, this result is still several percentage points
worse than the result we achieved with AnyBURL. It can be
expected that at some point in time we might have a Com-
plEx model or another embedding-based model that achieves
a higher MRR than AnyBURL. However, these results will
partially be based on the dataset specific knowledge that has
been accumulated via previous research effort and publica-
tions. In a realistic application scenario, we have to deal with
problems and datasets that have not been in the focus of
research for years and a good hyperparameter search space
is usually not known. The results of AnyBURL are based
on a setting which is dataset independent. It works well for
the four datasets used in our experiments, which have very
different characteristics. It can be expected that it will work
well or at least decent out of the box for a novel large dataset.

There is still room for improving the runtime performance
of AnyBURL. In this paper, we have mainly focused on the
rule mining process. It will probably not be easy to speed up
this part of the overall process. However, runtimes for larger
datasets are also heavily affected by the prepossessing time
of loading and indexing the dataset. For Freebase, we were
able to achieve results better than previous state-of-the-art
results within 25.2 min. Seventy-six percentage of the overall
runtime were dedicated to loading and indexing the dataset.
This means that a reduction of loading times would have a
significant impact on the overall runtimes.

One way to further increase the predictive quality is related
to the rule application model. The results published in [44]
and [6] have shown that the rankings generated by AnyBURL
can be improved by learning an aggregation function dif-

Anytime bottom-up rule learning...

159

ferent from ranking the predictions based on the rule with
highest confidence that generated the prediction. However,
both approaches have a clearly increased rule application
time compared to the simple model of AnyBURL. It is an
open challenge how to search and apply better aggregation
functions in an efficient way.

It might also be possible to improve the predictive qual-
ity by supporting other rule types than the rule types that
are covered so far. We have already conducted initial exper-
iments with negative rules, i.e., rules that have a negated
head. These rules prevent or decrease the probability of cer-
tain predictions. First results on WN18RR, a small dataset
which is well suited for exploring the impact of new con-
cepts, showed that a specific type of these rules can improve
the MRR by up to 2.5 percentage points. The integration
of these rules is currently implemented as post-processing
step. A tight integration into the rule application model of
AnyBURL is missing and also challenging for the reasons
mentioned in the previous paragraph.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives,
Z.: Dbpedia: A nucleus for a web of open data. In: The semantic
web, pp. 722-735. Springer (2007)

2. Babai, L.: Graph isomorphism in quasipolynomial time. In: Pro-
ceedings of the forty-eighth annual ACM symposium on Theory
of Computing, pp. 684-697 (2016)

3. Baier, S.,Ma, Y., Tresp, V.: Improving visual relationship detection
using semantic modeling of scene descriptions. In: International
Semantic Web Conference, pp. 53—-68. Springer (2017)

4. Balazevic, ., Allen, C., Hospedales, T.: TuckER: Tensor factoriza-
tion for knowledge graph completion. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language
Processing, pp. 5185-5194. Association for Computational Lin-
guistics (2019)

5. Betz, P., Meilicke, C., Stuckenschmidt, H.: Adversarial explana-
tions for knowledge graph embedding models. In: Proceedings of
the 31th International Joint Conference on Artificial Intelligence,
pp. 2820-2826. Ijcai.org (2022)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Betz, P., Meilicke, C., Stuckenschmidt, H.: Supervised knowledge

aggregation for knowledge graph completion. In: European Seman-
tic Web Conference, pp. 74-92. Springer (2022)

. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Free-

base: a collaboratively created graph database for structuring
human knowledge. In: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pp. 1247-1250.
ACM (2008)

. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching

energy function for learning with multi-relational data. In: Machine
Learning, vol. 94, pp. 233-259. Springer (2014)

. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko,

O.: Translating embeddings for modeling multi-relational data. In:
Advances in neural information processing systems, pp. 2787—
2795 (2013)

Chen, M., Tian, Y., Yang, M., Zaniolo, C.: Multilingual knowledge
graph embeddings for cross-lingual knowledge alignment. In: Pro-
ceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, pp. 1511-1517. Ijcai.org (2017)

Chen, Y., Goldberg, S., Wang, D.Z., Johri, S.S.: Ontological
pathfinding. In: Proceedings of the 2016 International Conference
on Management of Data, pp. 835-846. ACM, Association for Com-
putational Linguistics (2016)

Chen, Y., Wang, D.Z., Goldberg, S.: Scalekb: scalable learning and
inference over large knowledge bases. The VLDB J. 25(6), 893—
918 (2016)

Das, R., Dhuliawala, S., Zaheer, M., Vilnis, L., Durugkar, ., Krish-
namurthy, A., Smola, A., McCallum, A.: Go for a walk and arrive
at the answer: Reasoning over paths in knowledge bases using rein-
forcement learning. In: Sixth International Conference on Learning
Representations (2018)

De Raedt, L.: Logical and relational learning. Springer Science &
Business Media (2008)

Dehaspe, L., Toivonen, H.: Discovery of relational association
rules. In: Relational data mining, pp. 189-212. Springer (2001)
Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional
2d knowledge graph embeddings. In: Thirty-Second AAAI Confer-
ence on Artificial Intelligence, pp. 1811-1818. AAAI Press (2018)
Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy,
K., Strohmann, T., Sun, S., Zhang, W.: Knowledge vault: A web-
scale approach to probabilistic knowledge fusion. In: Proceedings
of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 601-610 (2014)

Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for
online learning and stochastic optimization. Journal of machine
learning research 12(7) (2011)

Esposito, F., Laterza, A., Malerba, D., Semeraro, G.: Refinement
of datalog programs. In: Proceedings of the MLnet familiarization
workshop on data mining with inductive logic programming, pp.
73-94 (1996)

Fan, W., Fu, W., Jin, R., Lu, P, Tian, C.: Discovering association
rules from big graphs. Proceed. VLDB Endowment 15(7), 1479—
1492 (2022)

Ferré, S.: Link prediction in knowledge graphs with concepts
of nearest neighbours. In: The Semantic Web: 16th International
Conference, ESWC 2019, Portoroz, Slovenia, June 2—-6, 2019, Pro-
ceedings 16, pp. 84—-100. Springer (2019)

Galdrraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule
mining in ontological knowledge bases with AMIE+. The VLDB
J. 24(6), 707-730 (2015)

Galdrraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.: Amie:
association rule mining under incomplete evidence in ontological
knowledge bases. In: Proceedings of the 22nd international confer-
ence on World Wide Web, pp. 413-422. International World Wide
Web Conferences Steering Committee (2013)

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

160

C. Meilicke et al.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Ge, C.,Gao, Y., Weng, H., Zhang, C.,Miao, X., Zheng, B.: Kgclean:
An embedding powered knowledge graph cleaning framework.
arXiv preprint arXiv:2004.14478 (2020)

Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Knowledge
graph embedding with iterative guidance from soft rules. In:
Thirty-Second AAAI Conference on Artificial Intelligence, pp.
4816-4823. AAAI Press (2018)

Katehakis, M.N., Veinott, A.F., Jr.: The multi-armed bandit prob-
lem: decomposition and computation. Math. Operat. Res. 12(2),
262-268 (1987)

Kochsiek, A., Gemulla, R.: Parallel training of knowledge graph
embedding models: a comparison of techniques. Proceed. VLDB
Endowment 15(3), 633-645 (2021)

Kochsiek, A., Niesel, F., Gemulla, R.: Start small, think big:
On hyperparameter optimization for large-scale knowledge graph
embeddings. In: European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases
(2022)

Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decompo-
sition for knowledge base completion. In: Proceedings of the 35th
International Conference on Machine Learning, pp. 2869-2878.
PMLR (2018)

Lajus, J., Galarraga, L., Suchanek, F.: Fast and exact rule mining
with amie 3. In: European Semantic Web Conference, pp. 36-52.
Springer (2020)

Lerer, A., Wu, L., Shen, J., Lacroix, T., Wehrstedt, L., Bose, A.,
Peysakhovich, A.: Pytorch-biggraph: a large scale graph embed-
ding system. Proceed. Mach. Learn. Syst. 1, 120-131 (2019)

Lin, X.V., Socher, R., Xiong, C.: Multi-hop knowledge graph
reasoning with reward shaping. In: Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing, pp.
3243-3253. Association for Computational Linguistics (2018)
Mabhdisoltani, F., Biega, J., Suchanek, FM.: Yago3: A knowledge
base from multilingual wikipedias. In: Seventh Biennial Confer-
ence on Innovative Data Systems Research. Cidrdb.org (2015)
McKay, B.D., Piperno, A.: Practical graph isomorphism, ii. J.
Symb. Comput. 60, 94-112 (2014)

Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.:
Anytime bottom-up rule learning for knowledge graph completion.
In: Proceedings of the Twenty-Eighth International Joint Confer-
ence on Artificial Intelligence, pp. 3137-3143. Ijcai.org (2019)
Meilicke, C., Fink, M., Wang, Y., Ruffinelli, D., Gemulla, R., Stuck-
enschmidt, H.: Fine-grained evaluation of rule-and embedding-
based systems for knowledge graph completion. In: International
Semantic Web Conference, pp. 3—20. Springer (2018)
Muggleton, S., De Raedt, L.: Inductive logic programming: theory
and methods. J. Logic Program. 19, 629-679 (1994)

Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of
knowledge graphs. In: Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 1955-1961. AAAI Press (2016)
Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collec-
tive learning on multi-relational data. In: Proceedings of the 28th
International Conference on Machine Learning, vol. 11, pp. 809—
816. Omnipress (2011)

Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor,
J.: Industry-scale knowledge graphs: lessons and challenges: five
diverse technology companies show how it’s done. Queue 17(2),
48-75 (2019)

Omran, P.G., Wang, K., Wang, Z.: Scalable rule learning via
learning representation. In: Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, pp. 2149—
2155. Tjcai.org (2018)

Omran, P.G., Wang, K., Wang, Z.: An embedding-based approach
to rule learning in knowledge graphs. Trans. Knowl. Data Eng.
33(4), 1348-1359 (2019)

@ Springer

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Ortona, S., Meduri, V.V., Papotti, P.: Robust discovery of positive
and negative rules in knowledge bases. In: 34th International Con-
ference on Data Engineering, pp. 1168-1179. IEEE (2018)

Ott, S., Meilicke, C., Samwald, M.: SAFRAN: An interpretable,
rule-based link prediction method outperforming embedding mod-
els. In: 3rd Conference on Automated Knowledge Base Construc-
tion (2021)

Pallottino, S.: Shortest-path methods: complexity, interrelations
and new propositions. Networks 14(2), 257-267 (1984)

Pirro, G.: Relatedness and tbox-driven rule learning in large knowl-
edge bases. In: Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 2975-2982. AAAI Press (2020)

Rossi, A., Firmani, D., Matinata, A., Merialdo, P., Barbosa, D.:
Knowledge graph embedding for link prediction: A comparative
analysis. ACM Transactions on Knowledge Discovery from Data
15(2), 14:1-14:49 (2020)

Ruffinelli, D., Broscheit, S., Gemulla, R.: You CAN teach an old
dog new tricks! on training knowledge graph embeddings. In: 8th
International Conference on Learning Representations (2020)
Sadeghian, A., Armandpour, M., Ding, P., Wang, D.Z.: Drum:
End-to-end differentiable rule mining on knowledge graphs. In:
Advances in Neural Information Processing Systems, pp. 15,321—
15,331 (2019)

Saxena, A., Kochsiek, A., Gemulla, R.: Sequence-to-sequence
knowledge graph completion and question answering. In: Pro-
ceedings of the 60th Annual Meeting of the Association for
Computational Linguistics, pp. 2814-2828. Association for Com-
putational Linguistics (2022)

Semeraro, G., Esposito, F., Malerba, D., Brunk, C., Pazzani,
M.: Avoiding non-termination when learning logic programs:
A case study with foil and focl. In: Logic Program Synthesis
and Transformation-Meta-Programming in Logic, pp. 183-198.
Springer (1994)

Singh, H., Jain, P., Chakrabarti, S., et al.: Multilingual knowledge
graph completion with joint relation and entity alignment. 3rd Con-
ference on Automated Knowledge Base Construction (2021)
Srinivasan, A.: The aleph manual(techical report). Computing Lab-
oratory, Oxford University, Tech. rep. (2000)

Suchanek, EM., Kasneci, G., Weikum, G.: Yago: a core of semantic
knowledge. In: Proceedings of the 16th international conference on
World Wide Web, pp. 697-706. ACM (2007)

Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: Knowledge graph
embedding by relational rotation in complex space. In: 7th Inter-
national Conference on Learning Representations (2019)

Sun, Z., Vashishth, S., Sanyal, S., Talukdar, P., Yang, Y.: A
re-evaluation of knowledge graph completion methods. In: Pro-
ceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 5516-5522. Association for Com-
putational Linguistics (2020)

Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduc-
tion, 2 edn. MIT press (2018)

Tanon, T.P., Stepanova, D., Razniewski, S., Mirza, P., Weikum,
G.: Completeness-aware rule learning from knowledge graphs. In:
International Joint Conference on Artificial Intelligence, pp. 507—
525. Tjcai.org (2017)

Teru, K., Denis, E., Hamilton, W.: Inductive relation prediction
by subgraph reasoning. In: Proceedings of the 37th International
Conference on Machine Learning, pp. 9448-9457. PMLR (2020)
Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.:
Complex embeddings for simple link prediction. In: International
Conference on Machine Learning, pp. 2071-2080. PMLR (2016)
Wang, X., Gao, T., Zhu, Z., Zhang, Z., Liu, Z., Li, J., Tang, J.:
Kepler: A unified model for knowledge embedding and pre-trained
language representation. Trans. Assoc. Comput. Linguist. 9, 176—
194 (2021)

http://arxiv.org/abs/2004.14478

Anytime bottom-up rule learning...

161

62.

63.

64.

65.

Xiong, W., Hoang, T., Wang, W.Y.: Deeppath: A reinforcement
learning method for knowledge graph reasoning. In: Proceedings
of the 2017 Conference on Empirical Methods in Natural Language
Processing, pp. 564-573. Association for Computational Linguis-
tics (2017)

Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding entities
and relations for learning and inference in knowledge bases. In:
3rd International Conference on Learning Representations (2015)
Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of log-
ical rules for knowledge base reasoning. In: Advances in Neural
Information Processing Systems, pp. 2319-2328 (2017)

Zhang, Y., Zhou, Z., Yao, Q., Chu, X., Han, B.: Learning adap-
tive propagation for knowledge graph reasoning. arXiv preprint
arXiv:2205.15319 (2022)

66.

67.

Zheng, D., Song, X., Ma, C., Tan, Z., Ye, Z., Dong, J., Xiong,
H., Zhang, Z., Karypis, G.: DGL-KE: Training knowledge graph
embeddings at scale. In: Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, pp. 739-748 (2020)

Zhu, Z., Zhang, Z., Xhonneux, L.P.,, Tang, J.: Neural bellman-
ford networks: a general graph neural network framework for link
prediction. Adv. Neural Inform. Process. Syst. 34, 29476-29490
(2021)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

http://arxiv.org/abs/2205.15319

	Anytime bottom-up rule learning for large-scale knowledge graph completion
	Abstract
	1 Introduction
	2 Knowledge graph completion
	3 Bottom-up rule learning
	3.1 Language bias
	3.2 Constructing rules from sampled paths
	3.3 Object identity
	3.4 Sampling confidences

	4 Search strategy
	4.1 Path sampling
	4.2 Canonical rule representation
	4.3 Saturation-based search
	4.4 Reinforced search
	4.4.1 Reward
	4.4.2 Policy

	4.5 Multithreading

	5 Comparative analysis
	5.1 Datasets
	5.2 Experimental settings
	5.2.1 AnyBURL settings
	5.2.2 Current state of the art
	5.2.3 Runtime calculation

	5.3 Results
	5.4 Runtimes and carbon footprint
	5.5 Memory consumption

	6 Ablation study
	6.1 Object identity
	6.2 Impact of reward and policy
	6.3 Confidence sampling
	6.4 Multithreading

	7 Related work
	8 Conclusion
	References

