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Abstract
We tackle the problem of simulating seat- and vote-shares for a party system of a given size. We show

how these shares can be generated using unordered and ordered Dirichlet distributions. We show that a

distribution with a mean vector given by the rule described in Taagepera and Allik (2006, Electoral Studies
25, 696–713) fits real-world data almost as well as a saturated model where there is a parameter for each

rank/system size combination.
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1 Introduction
Consider two scenarios:

1. A consultant is asked to advise on a country’s choice of electoral system, and specifically

a proposal for a legislature with 125 members (S = 125) and a mean district magnitude of 5

(M = 5). Sheknows that sucha system is likely to featureMS1/4 = 5 seat-winningparties and

that the seat share of the largest party, s1, is MS−1/8 ≈ 45% (Shugart and Taagepera 2017,

149), but legislators want to know the probability that a single party will have a majority.
2. A political scientist wishes to test a generativemodel of coalition formation (Golder, Golder,

and Siegel 2012). She wishes to compare predicted coalition outcomes to observed out-

comes in party systems with different numbers of seat-winning parties NS0—but must first

simulate distributions of seat shares.

In both scenarios, researchers lack ways of simulating realistic outcomes for party systems

of different sizes. Although it is possible to perturb existing outcomes (Laver and Benoit 2015,

282–3), this approach cannot handle situationswhere researchers need to simulate party systems

ex nihilo.
Here, we show how realistic party systems of a given size can be simulated using ordered

and unordered Dirichlet distributions. The mean vector of these Dirichlet distributions is given

by a formula for seat shares proposed by Taagepera and Allik (2006) which relies only on two

parameters (party rank and the number of seat winning partiesNS0). We show that the fit of these

simulations to real-world data is almost as good as a saturatedmodel where the seat share of the

ith ranked party in a system of size NS0 is given by the empirical mean for parties of that rank in

systems of that size.

2 Theory
To the best of our knowledge, the only attempt to predict the size of vote- or seat-winning parties

in a party system of size N0 comes from Taagepera and Allik (2006), who suggest that the seat

(vote) share of the largest party is equal to the geometric mean of two logical extremes: one

extremewhere the largestpartywins [100−ε]%ofseats (votes),whereε is sometiny sharedivided
between the remaining parties, and another extreme where the largest party wins [ 100N0

+ ε]% of
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seats (votes), and is only fractionally larger than the remaining parties. By repeatedly appealing to

the geometric mean of logical extremes, they construct the following formula for the seat (vote)

share of the ith largest party:

si =
1−∑i−1

j=1 sj√
NS0− i +1

. (1)

Thus, for a system with five parties, the seat share of the first party is 45% (one divided by the

square root of 5), the seat share of the second party is 27% (the remaining 55% divided by the

square root of 4), and so on.

Taagepera and Allik (2006) also propose a second, “politically adjusted” model, which is like

the model above, except that the seat share of “small parties” is half what it would be under the

probabilisticmodel, with this surplus distributedbetween larger parties. Small parties are defined

as parties whose rank is greater than 1/s1. Thus,

s ′i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
si +

0.5
∑NS0

i=�1/si �
si

∑
1(si ≤ 1

si
)
, i > 1/si ,

0.5 si , otherwise.

(2)

The predictions of these two models are compared visually to binned averages of election

results for the nth largest parties taken from Mackie and Rose (1997). The authors conclude that

the politically adjusted model fits the data better. Whether this conclusion is sound or not, these

models remain deterministic. As such, they make it difficult to answer questions of the form,

“what is the probability that a party system with five seat-winning parties will have a single party

majority,” even if we know our best guess as to the seat share of the largest party remains 45%.

3 Methods
Modeling party systems is difficult because seat and vote shares are ordered compositional data.

They are ordered data because, since different parties compete in different countries at different
times, we typically lack any way of referring to parties except by their rank within the system,

and so we refer to the seat share of the first-largest party, the seat share of the second-largest

party, and so on. They are compositional data because both seat and vote shares add up to one.
Compositional data can be modeled by transforming d-dimensional compositions into a (d − 1)-

dimensional data through appropriate transforms (Aitchison 1986), or by using probability distri-

butions defined on the simplex. The Dirichlet distribution is the most common such distribution.

A Dirichlet distribution is typically governed by a vector of nonnegative concentration param-

eters θ. These parameters hold two different pieces of information. First, their relative magni-
tude determines the location of each element of the probability distribution. For instance, both
three-dimensional simplexes sA ∼ Dir(θA) with θA =

[
15 7.5 2.5

] ′
and sB ∼ Dir(θB ) with θB =[

0.30 0.15 0.05
] ′
yield expected values of �[sA] = �[sB ] =

[
0.6 0.3 0.1

] ′
. Second, the

absolutemagnitudedetermines the scaleof the correspondingdistributions:whileboth simplexes
sA and sB have identical expected values, the low values of θB result in high dispersion, and high

density near the extremes of 0 and 1 for the elements of sB . In contrast, the high values of θA result

in high concentration such that there is high density around the expected values of the elements

of sA (see Figure 1).

We therefore characterize theDirichletdistribution in termsofa scalar concentrationparameter

α and a location vector of probabilities p = (p1,p2, . . . ,pN0 ),
∑
p = 1:

θ = αp,

s ∼ Dir(θ).
(3)
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Figure 1. Marginal distributions of two Dirichlet distributions with same expected values for each compo-
nent but different degrees of dispersion. Dashed red line shows mean value. sA ∼ Di r ([15,7.5,2.5]); sB ∼
Di r ([0.3,0.15,0.05]).

Parameterizing θ in terms of a product of a general concentration parameter α and a loca-

tion vector p has attractive properties. It allows us to use past work which has formulated

(deterministic) expectations regarding party seat (vote) shares p, while quantifying the dispersion

around those expectations through the concentration parameter α , which can be estimated from

real-world data.

We have described seat and vote share data as ordered data, but draws fromDirichlet distribu-

tions described by Equation (3) need not be ordered. Although Equation (1) gives us an ordered

location vector (p), whether or not draws from this distribution will be ordered will depend on

the concentration parameter α . If α is very large, draws from the distribution will more closely

approximate the ordered location vector, andwill in turn bemore likely to be ordered. Ifα is small,

as in our discussion above, values of all componentswill bemorehighly dispersed, and it becomes

less likely that the resulting draws from a Dirichlet distributionDi r (αp) will be ordered.

It is possible to guarantee an ordered draw by using an ordered Dirichlet distribution (van Dorp

and Mazzuchi 2004):

θ� = αp�,

s ∼ OrdDir(θ�),
(4)

where p� is an increasing ordered vector with length N0 + 1, and values equal to the differences

between successive values of [0,p,1]. If our value of p for the five-party case is [0.03, 0.08, 0.16,
0.28, 0.45], then our value ofp� is [0.03, 0.05, 0.08, 0.12, 0.17, 0.55]. Phrased slightly differently, the

ordered Dirichlet is the result of generating Dirichlet-distributed differences between party shares
and taking the cumulative sum. The parameter α acts as a concentration parameter, and can be

interpreted in the same way as in the standard Dirichlet distribution.

The ordered Dirichlet distribution respects the ordered property of the data, but poses prac-

tical problems. First, the ordered Dirichlet distribution requires shares to be strictly, not weakly
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ordered. While vote shares in national elections are almost always strictly ordered, seat-winning

parties sometimes win exactly the same number of seats. We deal with this by adding or sub-

tracting negligible values from the seat shares of tied parties. Second, using the ordered Dirichlet

means, we cannot (directly) use certain useful analytic properties of the standard Dirichlet distri-
bution, such as the expression for the variance of each component si :V ar [si ] = si (1−si )

1+α (Aitchison

1986, 59). This may not be a problem if our sole focus is simulation. We note these problems now,

and return to them later when we discuss the performance of our models.

4 Models
We fit Dirichlet and ordered Dirichlet distributions to data drawn from parliamentary elections

around the world. We estimate four different models:

• The null model: p is given by the equation 1
N0
, and α is estimated.1

• The logicalmodel:p is givenbyEquation (1), andp�by takingdifferences,withα estimated.
• The political model: p is given by Equation (2), and p� by taking differences, with α
estimated.

• The saturated model: p is estimated for each size of party system (N0 = 2, . . . ,20); α is

estimated.

Note that the null model is the only model which is not estimated using an ordered Dirichlet
distribution. In the null model, all components have the same expected value, and so the differ-
ences between these components are equal to zero. Because Dirichlet-distributed values must be
greater than zero, it is not possible to estimate an ordered Dirichlet version of the null model.

Our focus is understandably on the second and third models. The null and saturated models

provide performance benchmarks, but it seems unlikely that the null model will ever capture the

patterns in the data. Each model is estimated on vote- and seat-share data, for both the Dirichlet

andorderedDirichlet distributions, for a total of 14models.Weestimate thesemodels inStan (Stan

Development Team2022); Stan code is given in the SupplementaryMaterial, togetherwith further

details on the generation of ordered Dirichlet deviates.

5 Evaluationmetrics
We evaluate models using the following metrics:

• Root mean squared error (RMSE): root mean squared error is calculated at the election

level and then averaged across elections.

• Calibration: we calculate, for each election, the proportion of seat (vote) shareswhichwere

greater than or equal to the corresponding 5th percentile and less than or equal to the

corresponding 95th percentile in the posterior distribution. We then average this across

elections. Calibration ranges between 0% and 100%; values closer to 90% indicate a better

model.

• Proportional error on NS (or NV ): we calculate for each simulation the effective number

of simulated parties. We then subtract the actual effective number for each election. To

draw meaningful comparisons across party systems with different effective numbers, we

then divide this difference by the actual effective number. This quantity, expressed in

percentages, ranges from −100 to +100. Values greater than zero indicate the effective
number of parties was overestimated; values closer to 0 indicate a better model.

• Proportional error on s1(or v1): we take the share of the largest party in each simulation
and subtract the actual share for each corresponding election. To enable comparison, we

once again divide this difference by the share of the largest party. This quantity ranges from

−100 to+100. Values greater than zero indicate the seat share of the largest party was over-
estimated; values closer to 0 indicate a better model.

• Proportional error on s2(or v2): as above, but for s2 instead of s1.

1 This is equivalent to a symmetric Dirichlet model.
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We calculate these quantities because each taps an important aspect of party systems. RMSE

is closest to an overall measure of fit to the data. Calibration is important because ours is a

probabilistic model, and in order to improve on deterministic models like that proposed by

Taagepera and Allik (2006), we need to show that the set of shares to which we assign 90%

probability actually occurs 90% of the time. Proportional error on NS is important because NS

is the key continuous property of party systems, and arguably more important than the discrete

measureof party systemsizeNS0. Finally, proportional error on s1 and s2 is necessary to assess the

claim that “political adjustments” are necessary to explain whether small parties lose a portion of

the seat (or vote) share they would gain under a probabilistic model, and because the share of the

largest party is arguably the secondmost important quantitative feature of a party system (Magyar

2022).

6 Data
We estimate our models using data from ParlGov (Döring and Manow 2021). ParlGov collects

comprehensive information on electoral outcomes in a number of parliamentary and semi-

presidential regimes. Information is recorded for all elections after 1945 or after full democra-

tization, and for a limited number of countries from 1900. Parties are included if they won more

than 1% of the vote or two seats or more. ParlGov covers 813 elections in 37 unique countries, far

exceeding Mackie and Rose (1997). The raw number of seat- and vote-winning parties ranges from

2 to 20; the modal number of seat-winning parties is 5.

We use ParlGov data because its coverage of seat- and vote-shares in included elections is

more complete than any other source we are aware of. ParlGov does, however, have certain

limitations. Most notably, it lacks information on seat- and vote-shares in presidential regimes.

It also does not cover elections in smaller parliamentary regimes located outside of Europe, such

as the Westminster-model democracies in the Caribbean. We claim, however, that it would be

unlikely, when conditioning on the number of seat- or vote-winning parties, for these systems to
have very different expected seat- or vote-shares p (Shugart and Taagepera 2017, 187–92), or to

alter substantially our parameter estimates for concentration α .2

7 Results
Table 1 shows evaluation metrics for models of seat shares. The null model performs poorly, with

a large RMSE and an effective number of parties that is 13% too high (i.e., themodel predictsmore

fragmentation than there really is). The logicalmodels providemuchbetter fit, asmeasuredby the

RMSE, and calibration that is close to nominal. The (unordered) logical model does give values of

NS which are roughly 9% too high. However, this is not due to systematically underestimating

the share of the two largest components: our average estimates of s1 and s2 are close to zero,

and the 90% credible interval encompasses zero. The political models, which might address the

issue of over-estimating NS , provide a worse fit to the data, as measured by RMSE. The fit of the

logical models is impressive, with RMSE within 7% of the value for the saturated model. When

comparing between logical models, the ordered Dirichlet ends up giving a less realistic picture of

the effective number of parties, and has a worse fit to the data as measured by RMSE. Given the

greater ease of use of the unordered Dirichlet distribution, the ordered Dirichlet does not repay its

greater complexity.

Table 2 presents the samemetrics for vote share. As before, the politicalmodels areworse than

the logical models, and the logical models are worse than the saturated model only by a small

2 Section A6 of the Supplementary Material tests this claim by modeling vote shares from 304 legislative elections in 20
presidential democracies in the Americas.We find slightly smaller estimates forα than those reportedbelow,which results
in only a minor increase in the dispersion of the simulated shares. We note that whenever researchers expect substantial
heterogeneity in α , they can use the statistical models we implemented for estimating α across any subsets of elections,
provided that data on seat or vote shares are available.
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Table 1. Evaluationmetrics formodels of seat shares. RMSEmeasured inpercentagepoints. Errors onNS , s1,
s2 are expressed in percentages of the true values [-100, +100]. Figures in square brackets are 90% credible
intervals. Figures from best-performing model on each criterion (excluded the saturated model) are in bold.

Model α RMSE Calibration Error NS Error s1 Error s2

Null Dirichlet 5.87 18.9 89.8 12.8 −0.151 0.108

[5.71, 6.05] [18.6, 19.2] [11.0, 14.7] [−0.541, 0.257] [−0.317, 0.538]
Logical Dirichlet 39.1 7.75 87.4 8.95 0.0242 −0.0378

[38.0, 40.4] [7.60, 7.90] [8.03, 9.86] [−0.141, 0.182] [−0.198, 0.124]
Ordered 18.5 9.30 94.8 16.9 0.0252 −0.0391

[18.1, 19.0] [9.11, 9.49] [13.7, 20.2] [−0.219, 0.263] [−0.296, 0.217]
Political Dirichlet 37.2 8.06 79.5 −6.03 −0.0107 −0.0505

[36.2, 38.3] [7.90, 8.22] [−6.75, −5.31] [−0.164, 0.146] [−0.217, 0.112]
Ordered 16.2 9.75 90.6 2.16 −0.0114 −0.0517

[15.8, 16.6] [9.55, 9.95] [−0.737, 5.05] [−0.260, 0.237] [−0.303, 0.205]
Saturated Dirichlet 41.9 7.24 90.6 5.00 0.0364 0.0100

[40.6, 43.2] [7.10, 7.39] [3.81, 6.17] [−0.116, 0.190] [−0.150, 0.169]
Ordered 16.5 12.1 87.5 −7.50 1.14 0.732

[15.9, 17.0] [11.7, 12.4] [−11.8, −3.22] [0.837, 1.45] [0.416, 1.05]

Table 2. Evaluation metrics for models of vote shares. RMSE measured in percentage points. Errors on NV ,
v1, and v2 are expressed in percentages of the true values [−100, +100]. Figures in square brackets are 90%
credible intervals. Figures from best-performingmodel on each criterion (excluded the saturatedmodel) are
in bold.

Model α RMSE Calibration Error NV Error v1 Error v2

Null Dirichlet 6.32 17.4 90.2 8.66 −0.0941 0.0211

[6.16, 6.48] [17.1, 17.7] [6.94, 10.4] [−0.493, 0.321] [−0.388, 0.440]
Logical Dirichlet 50.0 6.34 88.2 4.12 0.00891 −0.0227

[48.5, 51.4] [6.22, 6.46] [3.35, 4.88] [−0.129, 0.154] [−0.165, 0.121]
Ordered 21.8 7.93 95.6 9.98 0.00644 −0.0203

[21.3, 22.4] [7.77, 8.08] [7.31, 12.9] [−0.208, 0.233] [−0.244, 0.212]
Political Dirichlet 45.1 6.83 79.1 −11.1 −0.0240 −0.110

[43.9, 46.3] [6.70, 6.95] [−11.7, −10.5] [−0.169, 0.122] [−0.255, 0.0362]
Ordered 18.8 8.49 90.3 −4.66 −0.0245 −0.114

[18.3, 19.2] [8.32, 8.67] [−7.06, −2.06] [−0.254, 0.214] [−0.356, 0.128]
Saturated Dirichlet 59.7 5.81 90.4 3.05 0.0340 0.00369

[57.8, 61.6] [5.70, 5.92] [2.04, 4.04] [−0.0975, 0.163] [−0.132, 0.141]
Ordered 20.8 10.1 89.5 −9.88 0.901 0.716

[20.2, 21.5] [9.83, 10.5] [−13.6, −5.74] [0.625, 1.17] [0.443, 0.992]

amount. Once again, the fit of the ordered Dirichletmodels is inferior to the unorderedmodels. All

models save thepoliticalmodels over-estimate the effectivenumber of parties, even the saturated

models. Indeed, NV is very badly under-estimated in the saturated ordered model.

8 Conclusion
Our results show that realistic looking party systems of a given size can be simulated using

a (standard, unordered) Dirichlet distribution where mean seat or vote shares are given using

Equation (1), and where the concentration parameter is roughly 40 (for seat shares) or 50 (for
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vote shares). We can achieve similar results using an ordered Dirichlet distribution, but the

ordered Dirichlet generally provides a worse fit to real-world data, and we know that the ordered

Dirichlet is harder toworkwith than the standardDirichlet. For these reasons,we recommend that

researchers who are interested in simulating party systems use a standard Dirichlet distribution.

Tools to simulate party systems of different sizes can be found in an accompanying R package

sharesimulatoR and in an interactive web page.3

The ability to simulate party systems allows researchers to answer practical questions

(provided, of course, that they know, or have expectations regarding the number of seat- or

vote-winning parties). To return to the questions asked in the Introduction: a consultant who

knows that the most likely number of seat-winning parties under a proposed system is 5 can use

our work to show, through simulation, that the probability of a single-party majority is roughly 1

in 4. Researchers interested in coalition formation can use our work to evaluate the probability

that a party system with five, seven, or nine seat-winning parties is an “open” system (per Laver

and Benoit (2015), one where even the top-two parties do not have a majority). Because the

numberof seat- andvote-winningparties is stronglydeterminedby the“seatproduct,” researchers

evaluating proposed electoral systems can simulate likely distributions of seat and vote shares

given predicted numbers of seat- and vote-winning parties (Shugart and Taagepera 2017, 149).

In our view, the questions which we can now answer with this method of simulation (“what is

the probability that a single party will have a majority?” and “what is the probability that no two

parties will have a majority”) are simple questions which are fundamental to the operation of

a party system, and which could not have been satisfactorily answered without the simulation

methods given here.

Acknowledgment
The authors thank the anonymous reviewers whose suggestions materially improved the

manuscript.

Funding Statement
There are no funding sources to report for this letter.

Conflict of Interest
The authors are not aware of any conflicts of interest.

Data Availability Statement
Replicationcode for this article is available inCohenandHanretty (2023)athttps://doi.org/10.7910/

DVN/3WILXI.

Supplementary Material
For supplementary material accompanying this paper, please visit https://doi.org/10.1017/

pan.2023.13.

References
Aitchison, J. 1986. The Statistical Analysis of Compositional Data. London–New York: Chapman & Hall.
Cohen, D., and C. Hanretty. 2023. “Replication Data for: Simulating Party Shares.” Harvard Dataverse, V1.
https://doi.org/10.7910/DVN/3WILXI

Döring, H., and P. Manow. 2021. “Parliaments and Governments Database (Parlgov): Information on Parties,
Elections and Cabinets in Modern Democracies.” Development Version.

Golder, M., S. N. Golder, and D. A. Siegel. 2012. “Modeling the Institutional Foundation of Parliamentary
Government Formation.” Journal of Politics 74 (2): 427–445.

3 R package is available at https://github.com/chrishanretty/sharesimulatoR. Interactive web page is available at
https://chanret.shinyapps.io/shareSimulatoR/.

Denis Cohen and Chris Hanretty � Political Analysis 146

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
3.

13
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.7910/DVN/3WILXI
https://doi.org/10.1017/pan.2023.13
https://doi.org/10.7910/DVN/3WILXI
https://github.com/chrishanretty/sharesimulatoR
https://chanret.shinyapps.io/shareSimulatoR/
https://doi.org/10.1017/pan.2023.13


Laver, M., and K. Benoit. 2015. “The Basic Arithmetic of Legislative Decisions.” American Journal of Political
Science 59 (2): 275–291.

Mackie, T. T., and R. Rose. 1997. A Decade of Election Results: Updating the International Almanac. Glasgow:
Centre for the Study of Public Policy, University of Strathclyde.

Magyar, Z. B. 2022. “What Makes Party Systems Different? A Principal Component Analysis of 17 Advanced
Democracies 1970–2013.” Political Analysis 30 (2): 250–268.

Shugart, M. S., and R. Taagepera. 2017. Votes from Seats: Logical Models of Electoral Systems. Cambridge:
Cambridge University Press.

Stan Development Team. 2022. “Stan Modeling Language Users Guide and Reference Manual, V2.29.”
Taagepera, R., and M. Allik. 2006. “Seat Share Distribution of Parties: Models and Empirical Patterns.”
Electoral Studies 25 (4): 696–713.

van Dorp, J. R., and T. A. Mazzuchi. 2004. “Parameter Specification of the Beta Distribution and Its Dirichlet
Extensions Utilizing Quantiles.” In Handbook of Beta Distribution and Its Applications, Statistics Textbooks
and Monographs, 174, 283–318. New York: Marcel Dekker.

Denis Cohen and Chris Hanretty � Political Analysis 147

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
3.

13
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2023.13

	1 Introduction
	2 Theory
	3 Methods
	4 Models
	5 Evaluation metrics
	6 Data
	7 Results
	8 Conclusion

