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ABSTRACT
Knowledge graphs enriched with temporal information are becom-
ing more and more common. As an example, the Wikidata KG
contains millions of temporal facts associated with validity inter-
vals (i.e., start and end time) covering a variety of domains. While
these facts are interesting, computing temporal relations between
their intervals allows to discover temporal relations holding be-
tween facts (e.g., “football players that get divorced after moving
from a team to another"). In this paper we study the problem of com-
puting different kinds of interval joins in temporal KGs. In principle,
interval joins can be computed by resorting to query languages like
SPARQL. However, this language is not optimized for such a task,
which makes it hard to answer real-world queries. For instance,
the query “find players that were married while being member of
a team" times out on Wikidata. We present efficient algorithms to
compute interval joins for the main Allen’s relations (e.g., before,
after, during, meets). We also address the problem of interval
coalescing, which is used for merging contiguous or overlapping
intervals of temporal facts, and propose an efficient algorithm. We
integrate our interval joins and coalescing algorithms into a light
SPARQL extension called iSPARQL. We evaluated the performance
of our algorithms on real-world temporal kgs.
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1 INTRODUCTION
Knowledge Graphs (kgs) maintaining facts about millions of enti-
ties are ubiquitous in many application scenarios, from semantic
search [14] to fact checking [7]. Most of existing research in the
kg landscape focuses on the analysis of the static part of the data,
although kgs like Wikidata contains millions of facts including
temporal information that can enrich the available body of knowl-
edge. As an example, a fact like (B. Obama, position, President of USA)
carries additional information when considering temporal informa-
tion, that is, (B. Obama, position, President of USA, 20 January 2009,
20 January 2017). What is also interesting is to go beyond single
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temporal facts by considering joins between their validity intervals
according to some temporal relation.

As an example, one can find “who was the German president
during B. Obama’s office", “football players who played in two
German teams during overlapping time periods" or “mayors of a
city whose office was one after the other" or “the intervals during
which a football player was also married". To answer such requests,
kgs like Wikidata, DBpedia, and Yago can be queried upon using
the SPARQL query language [12]. However, this requires to encode
interval comparison using FILTER. On one hand, this will hinder the
readability of the temporal part of the query; indeed, a query about
overlaps would be more readable if directly using this special
keyword. On the other hand, the language is not optimized to
answer such queries; indeed, interval comparison based on FILTER
will be treated as any other kind of FILTER. To given an example, the
query “find players who were married while being a member of a
team" times out when executed on theWikidata SPARQL endpoint1.
The evaluation of this query could benefit from more efficient ways
to solve the interval join problem than using FILTER. For instance,
it is well-known that computing the overlaps between sets of
intervals does not require pairwise interval comparisons as it can
be more efficiently done using Plane Sweep based algorithms [4, 5,
17, 19]. However, these algorithms given two collections of intervals
only compute a single kind of interval join, that is, intersection (i.e.,
overlaps). To overcome this issue, the research question that we
address in this paper is how to enable the computation of different
kinds of interval joins in an efficient way in temporal kgs. This is
a challenging problem since a pure Plane Sweep-based approach
would not allow, for instance, to distinguish between overlaps and
during, both being different forms of overlaps. On top of that, we
are also interested in computing a larger set of temporal relations
including before, starts, meets, eqals and finishes.

We also devise an efficient interval coalescing algorithm. Coalesc-
ing is the problem of merging overlapping or contiguous intervals
of two temporal facts with the same atemporal values. The facts (B.
Obama, position, President of USA, 20 January 2009, 20 January 2013)
and (B. Obama, position, President of USA, 20 January 2013, 20 January
2017) can be coalesced as (B. Obama, position, President of USA, 20
January 2009, 20 January 2017). We incorporate our algorithms in
a light extension of the SPARQL query language called iSPARQL
(Interval SPARQL) optimized to compute both interval joins for all
Allen’s relations [1] and interval coalescing. The previous query
about football players that times out when evaluated via SPARQL
can be answered in a few seconds via iSPARQL (a comprehensive
experimental evaluation will be discussed in Section 5). Moreover,

1 http://query.wikidata.org
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ID Temporal Fact
f1 (Bazoncourt, locatedIn, Moselle, 1790, 1871)
f2 (Bazoncourt, locatedIn, Bezirk Lothringen, 1871, 1920)
f3 (Bazoncourt, locatedIn, Moselle, 1920, 2018)
f4 (Moselle, locatedIn, Grand Est, 2016, 2018)
f5 (Moselle, locatedIn, Lorraine, 1871, 2015)
f6 (France, headOfState, Charles DeGaulle, 1959, 1969)
f7 (France, headOfState, RPoincaré, 1913, 1920)
f8 (France, containsTerritory, Grand Est, 2016, 2018)
f9 (France, containsTerritory, Lorraine, 1956, 2015)
Table 1: An excerpt of temporal kg fromWikidata.

iSPARQL allows to express temporal join conditions in a more con-
cise and readable way than the classic SPARQL approach entirely
based on FILTER.
Contributions and Outline. We tackle interval join and coalesc-
ing problems in large kgs and contribute:

(1) Efficient algorithms to compute different kinds of temporal
relations between intervals. Our approach goes beyond ap-
proaches that only focus on interval intersection (i.e., over-
laps).

(2) An extension of the SPARQL query language called iSPARQL,
which allows to write queries in a more succinct way than
SPARQL.

(3) An algorithm for coalescing intervals of query answers.
(4) An implementation and experimental evaluation on real-

world temporal kgs.
The remainder of the paper is organized as follows. We introduce

some background in Section 2. Section 3 introduces iSPARQL. The
main algorithms are described in Section 4. In Section 5 we discuss
an experimental evaluation. Related Work is reviewed in Section 6.
We conclude and sketch future work in Section 7.

2 PRELIMINARIES
Let I and L be disjoint infinite sets denoting the set of IRIs (identify-
ing resources) and literals (character strings or some other type of
data), respectively. We abbreviate the union of these sets (I ∪ L) as
IL . We also consider a discrete time domain T as a linearly ordered
finite sequence of time points; for instance, days, minutes, or mil-
liseconds. A time interval is an ordered pair [tb , te ] of time points,
with tb ≤ te and tb , te ∈ T, which denotes the closed interval from
tb to te . We adopt the interval-based temporal domain in our data
model. Note that point-based temporal domains can be converted
into interval-based domains by using for every time point t an in-
terval [t , t]. A quintuple of the form (s, p, o, tb , te ) ∈ I× I× IL× T is
called a temporal fact2; s is the subject, p is the predicate, o is the ob-
ject, and tb and te are the start and endpoint of the validity interval
[tb , te ]. The temporal element (interval) represents the time period
in which a triple (s, p, o) is valid, i.e., the valid time of the triple.
A set of quintuples is referred to as a a temporal knowledge graph.
Table 1 shows an excerpt of temporal kg extracted from Wikidata
representing the north eastern region of France. These temporal
facts are interesting, for instance, to understand the evolution of
2 We do not consider blank nodes.

regions; one could ask a query to see which regions contained
Bezancourt before Raymond Poincaré came to power or other queries
about temporal relations between intervals.

Temporal Relations.We tackle the problem of computing tem-
poral relations between (the validity intervals of) facts. We consider
temporal relations defined by Allen [1] and focus on the e following
7 relations plus the inverse of the first 6 (not reported here).

Temporal Relation Constraint
[tb , te ] before [t ′b , t

′
e ] te < t ′b

[tb , te ] meets [t ′b , t
′
e ] te = t ′b

[tb , te ] finishes [t ′b , t
′
e ] tb > t ′b and te = t ′e

[tb , te ] starts [t ′b , t
′
e ] tb = t ′b and te < t ′e

[tb , te ] during [t ′b , t
′
e ] tb > t ′b and te < t ′e

[tb , te ] overlap [t ′b , t
′
e ] tb < t ′b < te and te < t ′e

[tb , te ] eqals [t ′b , t
′
e ] tb = t ′b and te = t ′e

yearf1
f2

f3
f4

f5
f6

f7
f8

f9

(a) Intervals, of the temporal KG in the running Example, on a
time line. We can see the evolution of territory changes.

year
f2

f7

(b) Poincare’s presidency (f7) finishes Bazoncourt’s location in
Bezirk Lothringen (f2).

year
f3

f5

(c) Bazoncourt located in Moselle (f3) overlaps with Moselle lo-
cated in Lorraine (f5).

Figure 1: (a) Time intervals of facts (f1, . . . , f9) in Table 1, (b)
and (c) temporal joins involving finishes and overlaps.

Interval Join Problem. Given two collections of intervals R and
S and a temporal relation t , the goal is to compute output pairs
(r , s ) ∈ R × S such that the intervals r and s are in the temporal
relation t . While existing algorithms mainly focus on the overlaps
temporal relation (e.g., [5]) we consider a larger set of relations.

Fig. 1 reports in red some intervals for facts about locatedIn (f1,
f2, f3, f4 and f5 in Table 1), in violet for headOfState (f6 and f7)
and in blue for containsTerritory (f8 and f9). We can identify the
following relations: before(f1,f7), starts(f2, f7), during(f9, f3),
eqals(f8,f4) and so on.
Query Language. To query kgs there exists a standard query lan-
guage called SPARQL [12]. Several extensions have been proposed
to handle temporal data (see e.g., [10]). However, none of them
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has focused on the problem of computing different kinds of in-
terval joins efficiently. For the most part they focus on syntactic
extensions. We will review the most recent proposals in Section 6.

3 ISPARQL: INTERVAL SPARQL
We define our iSPARQL language on top of an extension of the
SPARQL query language called SPARQL* [13], which is particularly
suitable to query data that use reification. SPARQL* leverages a data
model called RDF* to concisely represent reified statements (we
provide more details in Section 5.1). Let V be a set of variables. An
iSPARQL query is a query of the form: SELECT V WHERE {QP}.
The syntax of SPARQL* query patterns (QP) is given below.

QP ::= IV × IV × ILV × TV × TV | QP1 AND QP2 |
{QP1} UNION {QP2} | {QP1} MINUS {QP2} |
QP1 OPT {QP2} | QP FILTER (R)

Let x ,y ∈ V, c ∈ ILT and tb , te , t
′
b , t
′
e ∈ V. iSPARQL expresses

temporal relations via the SPARQL* built-in expression R formed
according to the following grammar:

R ::= meets(tb , te , t ′b , t
′
e ) | overlap(tb , te , t ′b , t ′e ) |

before(tb , te , t ′b , t
′
e ) | starts(tb , te , t ′b , t ′e ) |

during(tb , te , t ′b , t
′
e ) | finishes(tb , te , t ′b , t ′e ) |

before(tb , te , t ′b , t
′
e ) |!R1 | R1 | | R2 | R1&&R2 |

bound(x ) | x = c | x < y | x ! = y
The iSPARQL semantics is directly derived from that of SPARQL* [13].

3.1 Running Examples
We now show some examples of iSPARQL. The following temporal
query is used to query the KG shown in Table 1.
“Select regions containing Bazoncourt before R. Poincare came to power".
SELECT ?x WHERE {
(Bazoncourt locatedin ?x) ?s ?e.
(?x locatedin ?y) ?s1 ?e1.
(?z containsTerritory ?y) ?s2 ?e2.
(?z headOfState RPoincare) ?s3 ?e3.
FILTER (OVERLAPS(?s, ?e, ?s1, ?e1)
&& OVERLAPS(?s1, ?e1, ?s2, ?e2)&&

BEFORE(?s, ?e, ?s3, ?e3) )
}

The above query involves three temporal join operations, namely,
two overlaps and one before. Variable names starting with ?s
(resp., ?e) are used to denote start times (resp., end times) of validity
intervals. The answer of the query is Moselle which is obtained by
computing the temporal joins using overlaps(1790,1871,1871,2015)
and overlaps(1871,2015,1956,2015); moreover, the additional test
before(1790,1871,1913,1920) is checked. Another example of an
iSPARQL query (the corresponding SPARQL syntax, which is more
verbose because reification is needed in order to encode temporal
aspects, is shown on the right) is:
“Select athletes that played for some team while being married".3

Evaluating such queries that compute interval joins between sets of
intervals can be time consuming on large knowledge graphs such
3 P54, P26, P580 and P582 are shorthands for member of sports team, spouse, start time
and end time, respectively.

has focused on the problem of computing di�erent kinds of in-
terval joins e�ciently. For the most part they focus on syntactic
extensions. We will review the most recent proposals in Section 6.

language on top of an extension of the
], which is particularly

SELECT ?x ?y WHERE {
(?x P54 ?z) ?s1 ?e1.
(?x P26 ?y) ?s2 ?e2.
FILTER
(OVERLAPS(?s1,?e1,?s2,?e2))
}

SELECT ?x ?y WHERE {
?x P54 ?reif1. ?x P26 ?reif2.
?reif1 P54 ?z. ?reif2 P26 ?y.
?reif1 P580 ?s1. ?reif1 P582 ?e1.
?reif2 P580 ?s2. ?reif2 P582 ?e2.
FILTER((?s1 <= ?s2 && ?s2 <= ?e1)

||
(?s2 <= ?s1 && ?s1 <= ?e2))
}

as Wikidata. As an example, the last query times out on Wikidata.
The objective of this paper is to provide efficient algorithms for
computing interval joins over Allen’s relations.

4 INTERVAL JOIN ALGORITHMS
The classical interval join problem, takes as input two collections
of intervals R and S , and outputs the pairs (r , s )∈ R × S , such that
intervals r and s intersect. However, the above examples show
that there are scenarios where computing other kinds of relations
(e.g., after, during) between intervals is interesting. Consider,
for example, the time intervals shown in Figure 1(a), if we apply
the finishes relation, we obtain the intervals ( f7, f2) shown in
Figure 1(b). On the other hand, if we apply the overlaps relation,
we obtain the intervals ( f5, f3). In order to compute such interval
joins based on Allen’s relations, a naive approach that performs
pairwise comparison can be used. However, this approach has a
quadratic complexity that limits its applicability in large knowledge
graphs. We now discuss efficient algorithms, based on plane-sweep
interval join, for the seven Allen relations, namely, before, meets,
finishes, starts, during, overlaps, and eqals. The algorithms
are also applicable to the inverses of these relations.

4.1 OVERLAPS
The interval join based on the overlaps relation for two intervals
R and S is defined as: overlaps(R, S ) = {(r , s ) | ∀r = (tb , te ) ∈
R ∧ ∀s = (t ′b , t

′
e ) ∈ S ∧ tb < t ′b ∧ t ′b < te ∧ te < t ′e }. The algorithm

for computing the overlap of two intervals is shown in Algorithm 1.
The algorithm proceeds as follows: the start and end points of
the intervals R and S are maintained in a list L (line 4). Besides,
we create four lists that keep track of the active/open and closed
intervals (lines 5–6). After sorting L, it is scanned iteratively, for
each t in L if t is in R and it is a start point, then it is added to
the active set AR (line 10–13). Otherwise, it is added to the closed
set AR′ and removed from AR (line 14–20). On the other hand,
if t belongs to S and if it is a start point, then it is added to the
active set AS (line 20–22). Otherwise, it is added to the closed set
AS
′ and removed from AS (line 23). All those intervals that are in

the closed intervals AR and AS are intersecting. However, not all
of them overlaps. Those that satisfy the overlaps relation are
inserted into the output listO (line 28-29). Afterwards, the AR′ and
AS
′ are emptied. It is already established that computing interval

joins can be performed in linear time [5]. By utilizing an efficient
data structure (such as a gapless hash map where insertion, update
and deletion can be done in constant time [19]), Algorithm 1 runs
in O ( |R | + |S | + K ) time, where K is the number of results. Our
algorithm shares commonalities with the classical interval join
based on the plane sweep algorithm [5]. However, the classical
interval join does not allow to distinguish between different kinds
of interval relations such as overlaps, during, meetsand so on.
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Algorithm 1 Plane-Sweep based Interval join for overlaps
1: procedure OVERLAPS(R, S)
2: Input: lists of intervals R and S
3: Output: a list O of intervals (r , s ) ∈ overlaps(R, S)
4: a list L ← {s, e, s ′, e ′ | [s, e] ∈ R, [s ′, e ′] ∈ S }
5: AR ← ∅, AS ← ∅ ▷ active intervals from R, S
6: AR

′ ← ∅, AS ′ ← ∅ ▷ closed intervals from R, S
7: O ← ∅
8: sort L
9: for t ∈ L do
10: if t is in R then
11: [s, e]← interval in R s.t. t = s or t = e
12: if t = s is a start point then
13: add [s, e] to AR
14: else
15: if [s, e] ∈ AR then
16: add [s, e] to AR′

17: remove [s, e] from AR

18: else
19: [s, e]← interval in S s.t. t = s or t = e
20: if t = s is a start point and AR , ∅ then
21: add [s, e] to AS
22: else
23: if [s, e] ∈ AS then
24: add [s, e] to AS ′

25: remove [s, e] from AS

26: O ← {∀[s, e] ∈ AR′ ∪ ∀[s ′, e ′] ∈
27: AS

′ | s < s ′ ∧ s ′ < e ∧ e < e ′}
28: empty AS ′ and AR′

29: return O

4.2 Other Temporal Relations
The algorithms for starts, finishes, during and before are not
displayed for the sake of space. However, they are similar to that
of overlaps with the main difference lying on the way indexes
are created. The meets relation can be implemented by indexing
(using hash tables). For two sets of intervals R and S , the meets
relation is defined as meets(R, S ) = {(r , s ) |∀r = (tb , te ) ∈ R ∧ ∀s =
(t ′b , t

′
e ) ∈ S ∧ te = t ′b }. In order to compute meets, our algorithm

proceeds as follows: we index R by the endpoints and S by start
points. Indexing can be done using efficient data structures such as
hash tables. Sort the index keys of R. For each key in the index of R,
check if the key exits in the index of S . If a key of R is also in S , then
the corresponding intervals are involved in a meets relation. The
algorithm computes the meets joins in O ( |R | + |S |) time. Similarly,
using hash tables, the eqals interval join can be implemented. Like
meets, the worst time complexity of this operation is O ( |R | + |S |).

4.3 Coalescing
Coalescing is the process of merging two facts with the same subject,
predicate and object and overlapping or contiguous time intervals.
Coalescing can be used to remove duplicate facts. While temporal
projection and temporal union can return an uncoalesced answer
when evaluated over a coalesced (duplicate free) graph, temporal
selection and join operations preserve coalescing when evaluated

over a coalesced graph [3]. Consider the following query to select
the history of cities and regions from the graph shown in Table 1.
SELECT ?x ?s ?e WHERE { (?x locatedin ?y) ?s ?e . }

The answer to the above query is shown below. The answers a1,
a2 and a3 are uncoalesced. Since these answers are redundant be-
cause they contain overlapping intervals, we can apply the coalesce
operation in order to remove duplicates.

ID Uncoalesced answers
a1 Bazoncourt,1790,1871
a2 Bazoncourt,1871,1920
a3 Bazoncourt1920,2018
a4 Moselle,2016,2018
a5 Moselle,1871,2015

ID Coalesced answers
a1 Bazoncourt,1790,1920
a4 Moselle,2016,2018
a5 Moselle,1871,2015

To coalesce query answers, we introduce a new iSPARQL opera-
tor called coalesce(). This operator is applied on projected temporal
variables. As an example, the rewriting of the above query is:
SELECT coalesce(?x ?s ?e) WHERE { (?x locatedin ?y) ?s ?e. }

It is well known that coalescing is an expensive operation. To the
best of our knowledge, there are no algorithms that perform effi-
cient coalescing in SPARQL. Hence, in order to tackle this problem,
we propose the procedure shown in Algorithm 2. The algorithm
takes as input query answers A = {(A1, I1), . . . , (An , In )} (like the
one shown in the above table) of a SPARQL query. The answers
are indexed by atemporal values (line 4). For each element in the
index (Ai , Ii ), its intervals Ii are retrieved and sorted by start point
(lines 5–7). And then for each interval [start , end] in Ii , if the list
CoalescedIntervals is empty, then [start , end] will be added to it
lines (8–10). Otherwise, the last entry in CoalescedIntervals is re-
trieved (line 12) and compared with [start , end], if the two intervals
intersect (line 14), then the last entry is replaced by the coalesced
interval. Otherwise, [start , end] will be added to the coalesced list
(line 17). After all the intervals of an answerAi have been coalesced,
we update the index (line 21). Note that this coalesce procedure can
be directly applied on the level of query patterns (e.g., coalesce((?x
locatedin ?y) ?start ?end)). The algebra of iSPARQL introduced in
Section 3 can be extended as follows:

coalesce(QP ) ::= coalesce(IV × IV × ILV × TV × TV) |
coalesce(QP1) AND coalesce(QP2) |
{coalesce(QP1)} UNION {coalesce(QP2)} |
{coalesce(QP1)} MINUS {coalesce(QP2)} |
coalesce(QP1) OPT {coalesce(QP2)} |
coalesce(QP ) FILTER (R)

The runtime complexity of the algorithm is O (n logn) where n is
the number of distinct answers.

5 IMPLEMENTATION AND EVALUATION
In this section we report on the experimental evaluation of our
approach. We describe the datasets and the implementation in Sec-
tion 5.1. Section 5.2 reports on the performance evaluation of our
approach in terms of running time as compared to naive implemen-
tation using nested loops. In Section 5.3 we report on the usage of
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Algorithm 2 Coalescing query answers
1: procedure coalesce(A)
2: Input: query answers A = {(A1, I1), . . . , (An , In )}
3: Output: coalesced answers A′ = {(A1, I ′1), . . . , (Am , I

′
m )}

4: Index ← index answers in A by atemporal values ai
5: for each (Ai , Ii ) in Index do
6: CoalescedIntervals ← ∅
7: sort Ii by start point
8: for each [start, end] ∈ Ii do
9: if CoalescedIntervals = ∅ then
10: add [start, end] to CoalescedIntervals
11: else
12: [start ′, end ′]← last entry of CoalescedIntervals
13: if max (start, start ′) ≤ min(end, end ′) then
14: replace last entry of CoalescedIntervals by
15: [start ′,max (end, end ′)]
16: else
17: add [start, end] to CoalescedIntervals
18: Update (Ai , Ii ) with (Ai ,CoalescedIntervals)

iSPARQL to analyze temporal relations between triples in Wikidata
expressed using 133 predicates.

5.1 Data Collection
Temporal information is represented in most of existing kgs based
on the RDF data model using reification. Reification allows to make
statements about statements. In particular, to say that a particular
triple f =(s, p, o) is valid in the interval [tb , te ] one can use two
additional triples, that is, (f , startValidity, tb ) and (f , startValidity, te )
where f is a statement id. An alternative form of reification (called
RDR) has been recently introduced [13] where the above temporal
triple can be expressed as<<(s, p, o)>> startValidity tb ; endValidity te .
The idea is to allow a more concise form of reification. We encoded
the dataset used in the experiments according to the RDR syntax.
We now report details about the datasets:
• Wikidata: Temporal data were collected by first looking at
temporal facts, that is, those having P580 (start time) and
P582 (end time); in particular, we extracted ∼6M temporal
facts from 133 temporal relations (e.g., spouse, presidentOf,
worksFor, playsFor) .
• Footballdb: footballdb.com contains two important rela-
tions: playsFor and birthdate. We extracted ≈20K temporal
facts for the playsFor relation and >6K facts for the birthdate
relation.
• Synthetic data: in order to test the scalability of our ap-
proach we also generated synthetic data. We created inter-
vals with a normal distribution. In addition, to test the per-
formance of the coalesce algorithm, we designed a synthetic
dataset called non-intersect in which all the intervals in that
dataset are disjoint.

Implementation. We implemented our algorithms in C++ and
compiled them using GCC 5.5.0. Besides the algorithms described
in Section 4 we also implemented a variant based on grouping (re-
sults shown in Figure 2) where the idea is to group consecutively
intervals from the same list and produce join results for them in

100K 500K 1.25M 2.5M 3.75M 5M
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Nested

Figure 2: Plain-sweep (PS) vs nested loops on synthetic data.

batch, thereby avoiding redundant comparisons. All data used by
the algorithms reside in main memory and the coalescing algo-
rithm is single threaded. To call the algorithms from iSPARQL we
used special built-in functions. We ran the experiments using the
BlazeGraph triplestore, which supports both Reification Done Right
(RDR)4 and built-in calls5.

5.2 Runtime Performance
We compared the running times of our algorithms with that of
the standard SPARQL evaluation (using FILTERs) over a synthetic
dataset. Results are shown in Figure 2. The runtime performance of
plane-sweep (PS) and nested loop (Nested) algorithms on an over-
laps query with increasing data size is reported. The PS algorithm
is much faster than a naive Nested variant. As can be seen PS is
orders of magnitude faster than the naive nested loops. At 5M joins,
Nested took 41,610 seconds while PS took just 1,349 seconds.

We nowdiscuss the experimental results for some selected queries.
Note that our exhaustive analysis is excluded due to space.
• Query1: find people who were playing for a team while be-
ing married. The iSPARQL syntax of this query is given in
the running example. We ran the query on BlazeGraph and
performed the joins involving overlaps using Algorithm 1.
The runtime performance of the algorithm is shown in Fig-
ure 3(a). We compare a nested loop (naive) implementation
(Nested) of overlaps with that of Algorithm 1 (PS). PS out-
performs Nested for all of Allen’s relations. For this query,
the number of eqals interval joins (equal intervals) is much
smaller than all the other relation as reported in Figure 3(c).
• Query2: find pairs of people who played for a team during
overlapping time periods. The results of this query are shown
in Figure 3(b). As above, PS outperforms Nested for all the
relations. We used the same query on the footballdb dataset
to count the number of interval join results shown Figure 3(d).
As can be seen, the number of overlaps is smaller than all
the other relations.

In addition to runtime, we computed the number of joins for each
interval relation. For Query1, the join counts are shown in Fig-
ure 3(c). The count of the before relation is larger than all the
others. We can interpret the result as most athletes play/work for
a team before getting married. We can also see that there are few
athletes that end their marriage when they leave a team.

Coalescing Experiment.We tested the performance of our co-
alescing algorithm on all of our test datasets. The results of our
4 https://wiki.blazegraph.com/wiki/index.php/Reification_Done_Right
5 https://wiki.blazegraph.com/wiki/index.php/CustomFunction
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Figure 3: Runtime comparison of plain sweep and nested loops (a) and (b). The join count for each Allen relation is shown in
(c) and (d). Performance of the coalescing algorithm is reported in (e) and (f).
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Figure 4: Count of the number of facts expressed via pi (x-
axis) in a given temporal relation with facts expressed via pj
(y-axis). Count values are normalized between 0 and 1.

experiments are shown in Figure 3(e) and (f). When the number

of intervals is 5000, coalescing takes less than 4milliseconds (Fig-
ure 3(e)) and when the number of intervals is 10million, it takes 3.62
seconds (for non-intersecting) and 22.5 seconds (for intersecting)
as shown in Figure 3(f). These results show that our single-scan
coalescing algorithm is fast enough to be used for large KGs such
as Wikidata and beyond.

5.3 Wikidata Temporal Analysis
iSPARQL is a useful tool to perform temporal-aware analytics on
large kgs. As a concrete use-case, we analyzed counts between col-
lections of intervals expressed using 133 Wikidata predicates that
concern temporal facts (e.g., spouse, affiliation). Counts for 6
temporal relations (normalized between 0 and 1) are shown in Fig. 4
where the x and y axes represent predicates; darker colors mean
larger counts. The result of this analysis allows to understand, for in-
stance, that facts expressed via the properties memberOfSportTeam
often (i.e., 312538 times) come before facts expressed via headCoach
(e.g., P. Guardiola was playing for Barcelona before becoming the
coach), that facts expressed via workLocation very often (i.e., 10325
times) occur during facts expressed via positionHeld, or that
facts using the property workLocation occur often during facts
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expressed via headOfGovernment. For instance, G. W. Bush lives
in Florida now but he lived in Washington while he was president.
From this analysis, one can also understand marital tendencies of
athletes with respect to team membership.

6 RELATEDWORK
Efficiently computing the interval join of two temporal relations
has been well studied in temporal databases (see for instance [3–
6]). However, this has not been the case for most of the temporal
extensions. One prominent example, stSPARQL (aka. strabon) [15]
allows temporal joins using Allen’s relations, however, the join
operations do not use efficient algorithms as done in this study.

The introduction of time into RDF has been studied almost one
decade ago [11]. Gutierrez et al. [11] studied fundamental problems
of temporal RDF graphs such as entailment and outlined a query
language allowing to express queries making usage of intervals.
Along these lines several other extensions of SPARQL such as τ -
SPARQL [21], T-SPARQL [9], tRDF [20] and RDF-TX [8] have been
proposed. τ -SPARQL extends SPARQL query patterns with two
variables ?s and ?e to bind the start time and end time of temporal
RDF triples and express temporal queries. The evaluation is done
by rewriting τ -SPARQL queries into standard SPARQL queries. T-
SPARQL leverages a multi-temporal RDF model where each RDF
triple is annotated with a temporal element that represents a set of
temporal intervals. T-SPARQL is based on TSQL2 (temporal SQL).
The tRDF system builds upon the Gutierrez et al. [11] temporal RDF
model. tRDF queries are evaluated using an index (viz. tGrin) based
on a strategy that clusters RDF triples using a graphical-temporal
distance. RDF-TX [8] offers both a temporal extension of SPARQL
and an indexing system based on compressed multiversion B+ trees.
SPARQL-ST is a query language for spatiotemporal RDF data [18]. It
extends SPARQL with spatial and temporal variables. The temporal
variables appear in the fourth position of valid time temporal triple
patterns (i.e., when temporal triples are represented by quads); and
thus, these variables can be mapped into time intervals upon query
evaluation. Additionally, SPARQL-ST proposed a new filter operator
called TEMPORAL FILTER which supports temporal constraints
based on Allen’s interval relations [1]. Furthermore, an extension
of SPARQL-ST called stSPARQL, using the valid time model, is
studied in [2, 15], which uses linear constraints to query valid
time spatiotemporal RDF data (stRDF). stSPARQL is implemented
and integrated into Strabon6 that extends SPARQL with a set of
temporal functions designed based on Allen’s interval algebra. It
has also functions for time interval intersection, union, and so on.
stSPARQL shares the features of iSPARQL, the difference lies in
the fact that iSPARQL computes efficiently using the algorithms
proposed in this paper. An approach for representing validity time
in RDF(S) and OWL 2 is reported in [16]; authors extend SPARQL
by augmenting basic graph patterns with a number of temporal
relations such as during, occurs, at, and so on. No implementation
is available for the proposed query language. Overall, our goal is to
enable the querying of temporal knowledge graphs efficiently.

6 Strabon is a spatiotemporal RDF store http://www.strabon.di.uoa.gr

7 CONCLUSIONS AND FUTUREWORK
We proposed a lightweight extension of SPARQL called iSPARQL,
which leverages algorithms for efficient computation of interval
joins and coalescing. We carried out a number of experiments to
showcase the performance of the proposed algorithms. Our findings
show that iSPARQL is a very good alternative for querying large
temporal Web knowledge graphs. Extending iSPARQL for spatio-
temporal KGs is in our research agenda.
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