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1 INTRODUCTION

Diffusion–aggregation equations and their associated interacting particle systems serve as well-suited mathematical mod-
els in various areas, such as physics, chemistry, biology, ecology, and social sciences. For instance, they are used to
describe the behavior of chemotaxis [1–3], angiogenesis and swarm movement [4], flocking [5], opinion dynamics [6,
7], and cancer invasion [8]. On the microscopic level, these systems are often modeled by interacting N-particle systems
XN = (X1, … ,XN), given by stochastic differential equations of the form:

dXi
t = − 1

N

N∑
𝑗=1

k(Xi
t − X𝑗

t )dt + 𝜎dBi
t, i = 1, … ,N, XN

0 ∼
N
⊗
i=1
𝜌0, (1.1)

for t ≥ 0, starting from i.i.d. initial data, defined on a probability space (Ω, ,P). On the macroscopic level, the
corresponding systems are represented by the evolutions of the probability densities 𝜌 of the particles, which satisfy
diffusion–aggregation equations. In general, these diffusion–aggregation equations are nonlocal, nonlinear partial differ-
ential equations (PDEs). Passing from the microscopic to macroscopic models involves to study the mean-field limit as
N → ∞, cf. [9–12]. In particular, this consists of showing the convergence of the empirical measures 𝜇N

t of the N-particle
systems XN = (X1, … ,XN) for all t ≥ 0, where 𝜇N

t is defined as

𝜇N
t (𝜔,A) ∶=

1
N

N∑
i=1

𝛿Xi
t (𝜔)

(A), 𝜔 ∈ Ω
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2 CHEN ET AL.

for a Borel set A. Although mean-field interaction and its related PDEs is a classical topic, it is still a very active research
field. Indeed, the case of global Lipschitz continuous interaction force kernels k has been understood for many years, cf.
[9, 13, 14], for example, by employing the coupling method, that is, comparing the particle (Xi

t , t ≥ 0) to the solution
(Y i

t , t ≥ 0) of the McKean–Vlasov stochastic differential equations (McKean–Vlasov SDEs){
dY i

t = − (k ∗ 𝜇t)(Y i
t )dt + 𝜎dBi

t, i = 1, … ,N, YN
0 = XN

0
𝜇t = Law(Yt)

for t ≥ 0 and, subsequently, showing the convergence 𝜇N
t → 𝜇t as N → ∞ for all t ≥ 0 in a suitable topology. The latter

convergence is also referred to as “propagation of chaos.” Consequently, the question regarding the well-posedness of
McKean–Vlasov SDEs naturally arises in the context of mean-field theory, cf. [15–19]. In many settings, the law 𝜇 of the
solution (Y i

t , t ≥ 0) possesses a probability density 𝜌, which satisfies an associated Fokker–Planck equation. Therefore,
one has access to PDE theory allowing to deal with the well-posedness of McKean–Vlasov SDEs.

Motivated by various models arising especially in physics, which require bounded measurable or even singular inter-
action force kernels, an enormous amount of work has been dedicated to treat such irregular interaction force kernels.
Initially, approaches to treat such irregular kernels were often based on compactness methods in combination with the
martingale problems associated to the McKean–Vlasov SDEs, see, for example, [20–25]. More recently, even singular ker-
nels, like the Coulomb potential x∕|x|s for s ≥ 0, were investigated in the nonrandom setting [26, 27] (𝜎 = 0) as well as
in a random setting [28–31] (𝜎 > 0). The aforementioned references introduced a novel method called the modulated
free energy approach, which provides a practical quantity to obtain a priori estimates. For the Coulomb potential, this
quantity even measures the weak convergence of the empirical measures [31]. A drawback of the modulated free energy
approach is that it requires the existence of an entropy solution on the particle level (microscopic level), see [29, Proposi-
tion 4.2], which is nontrivial outside a setting on the torus. Further results on propagation of chaos were proven for general
Lp-interaction force kernels k for first- and second-order systems on the torus [32] and on the whole space R

d [33–35].
For instance, [35] provides optimal bounds on the relative entropy of order (k2∕N2) by exploiting the BBGKY-hierarchy
combined with delicate estimates on the error of iterations.

An influential approach allowing to deal with the Vlasov–Poisson system, which is a second-order system with a sin-
gular interaction force kernel k, was introduced by D. Lazarovici and P. Pickl [36]. For the Vlasov–Poisson system, the
underlying particle system (1.1) is a priori not well-posed. Therefore, a regularization k𝜖 of the kernel k is required, where
k𝜖 is a smooth approximation of the interaction force kernel k such that the system (1.1) is well-posed. The aforemen-
tioned approach is widely used, for instance, for the Keller–Segel equation [37–39], the Cuker–Smale model with singular
communication [40] and the Vlasov–Poisson–Fokker–Planck equation [41–43]. An advantage of it is that well-posedness
of the underlying particle system is not required since one works directly with the regularized/approximative particle
system using the kernel k𝜖 . In particular, if the system has a nonregular drift, as, for example, the Keller–Segel system
[23, Proposition 4], the underlying particle system could collapse. Moreover, the approach of D. Lazarovici and P. Pickl
allows to show the propagation of chaos of the regularized particle systems to the regularized mean-field equation. That
means, it acts like an intermediate result. On the one hand, the remaining limit of the regularized mean-field equation
to the mean-field equation is reduced to a convergence analysis on the PDE level. On the other hand, the convergence of
the regularized particle system to the nonregularized particles system only requires a stability analysis on the SDE level,
which still is, at least in general, a challenging task.

In the present article, we establish the approach of D. Lazarovici and P. Pickl [36] in a general setting allowing for
interacting particle systems and diffusion–aggregation equations with bounded interaction force kernels, which can be
approximated in a suitable manner by smooth kernels. One main objective is to provide a transparent road map how to
utilize this approach. To that end, we give a brief summary of the approach and explain its core concepts.

While we present all results in a one-dimensional setting to avoid cumbersome notation, we would like to remark that
all results can be extended with minor modifications to a multi-dimensional setting.

The first contribution is the well-posedness of the diffusion–aggregation equation, see (2.7), which is derived from the
interacting particle system (1.1), for bounded interaction force kernels k. The main challenge lies in the nonlinearity
in the transport term, which is treated by a strong–weak convergence argument provided by Aubin lemma. The pre-
sented well-posedness result expands previous existence results regarding similar PDEs, for instance, regarding bounded
confidence models [44, 45] used in social science.

The second contribution is to provide Lp- and L∞-estimates for the solution 𝜌 through a Moser iteration. Following
[36], we introduce a uniform local Lipschitz assumption, see Assumption 4.1. For instance, we verify that models for the
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CHEN ET AL. 3

opinion formation of interacting agents, such as the Hegselmann–Krause model [46], satisfy this uniform local Lipschitz
assumption. As a rule of thumb, Assumption 4.1 is fulfilled by interaction force kernels with jump/singularity having the
same order as the space dimension, which in the present case is one.

As third contribution, we establish propagation of chaos in probability supposing the local Lipschitz assumption for the
bounded interaction force kernel k. This is achieved by proving a suitable law of large numbers, demonstrating the con-
vergence of the regularized particle system to the regularized mean-field system in a suitable topology and, subsequently,
proving the convergence of the regularized probability density 𝜌𝜖 to the probability density 𝜌 as 𝜖 → 0.

This paper is organize as follows. In Section 2, we introduce the notation, the interacting particle systems, and their
associated diffusion–aggregation equations. Moreover, we present a brief outline of the used method, building on the work
of D. Lazarovici and P. Pickl [36]. The well-posedness and regularity properties of the diffusion–aggregation equations
are established in Section 3. In Section 4, we discuss the local Lipschitz assumption on the approximative interaction
force kernels and provide various examples. Section 5 contains the law of large numbers, and the propagation of chaos in
probability is provided in Section 6.

2 SETTING AND METHOD

In this section, we introduce the basic setting, that is, the necessary notation, the interacting particle systems as well as
their associated PDEs, and outline the general method implemented in the present paper, following [36].

2.1 Basic definitions and function spaces
In this subsection, we collect the basic definitions and introduce the required function spaces.

For a vector x = (x1, … , xN) ∈ R
N , we write |x| for the standard Euclidean norm and |x|∞ = sup1≤i≤N |xi| for the

l∞-Euclidean norm. Throughout the entire paper, we use the generic constant C for inequalities, which may change from
line to line. For two functions g and 𝑓 , we write 𝑓 ∼ g if they are proportional.

For 1 ≤ p ≤ ∞, we denote by Lp(R) the space of measurable functions whose p-th power is Lebesgue integrable (with the
standard modification for p = ∞) equipped with the norm ‖·‖Lp(R), by L1(R, |x|rdx) the space of all measurable functions
𝑓 such that ∫

R
|𝑓 (x)||x|rdx < ∞ for r > 0, by C∞

c (R) the space of all infinitely differentiable functions with compact
support on R, and by (R) the space of all Schwartz functions, see [47, Chapter 6] for more details.

Let (Z, ‖·‖Z) be a Banach space. The space Lp([0,T];Z) consists of all strongly measurable functions u ∶ [0,T] → Z
such that

‖u‖Lp([0,T];Z) ∶=
⎛⎜⎜⎝

T

∫
0

‖u(t)‖p
Z dt

⎞⎟⎟⎠
1
p

< ∞, for1 ≤ p < ∞,

and

‖u‖L∞([0,T];Z) ∶= ess sup
t∈[0,T]

‖u(t)‖Z < ∞, forp = ∞.

The Banach space C([0,T];Z) consists of all continuous functions u ∶ [0,T] → Z and is equipped with the norm

max
t∈[0,T]

‖u(t)‖Z < ∞.

For sufficiently smooth functions u ∶ [0,T] × R → R, we denote the n-th derivative with respect to x by dn

dxn u(t, x), where
we also write ux for d

dx
u(x) and uxx for d2

dx2 u(x). For 1 < p < ∞ and m ∈ N, we define the Sobolev space:

W m,p(R) ∶=

{
u ∈ Lp(R) ∶ ‖u‖W m,p(R) ∶=

∑
n≤m

‖‖‖‖ dn

dxn u
‖‖‖‖Lp(R)

< ∞

}
,

where dn

dxn u are understood as weak derivatives, see, for example, [48]. Moreover, we use the abbreviation Hm(R) ∶=
W m,2(R), write H−1(R) for the dual space of H1(R), and denote the dual paring by ⟨·, ·⟩H−1(R),H1(R). Weak convergence is
denoted by the symbol ⇀, where the involved function spaces are not further specified if they are clear from the context.
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4 CHEN ET AL.

2.2 Particle systems
In this subsection, we introduce the probabilistic setting, in particular, the N-particle system and its regularized version.
To that end, let (Ω, , (t)t≥0,P) be a complete probability space with right-continuous filtration (t)t≥0 and (Bi

t, t ≥ 0), i =
1, … ,N, be independent one-dimensional Brownian motions.

Throughout the entire paper, we make the following assumptions on the interaction force kernel k and the initial
condition 𝜌0 of the interacting particle system.

Assumption 2.1. The interaction force kernel k ∶ R → R satisfies

k ∈ L∞(R)

and the initial condition 𝜌0 ∶ R → R fulfills

𝜌0 ∈ L1(R) ∩ L∞(R) ∩ L1(R, |x|2dx), 𝜌0 ≥ 0, and ∫
R

𝜌0(x)dx = 1.

The N-particle system XN
t ∶= (X1

t , … ,XN
t ) is given by

dXi
t = − 1

N

N∑
𝑗=1

k(Xi
t − X𝑗

t )dt + 𝜎dBi
t, i = 1, … ,N, XN

0 ∼
N
⊗
i=1
𝜌0, (2.1)

where 𝜎 > 0 is the diffusion parameter and XN
0 is independent of the Brownian motions (Bi

t, t ≥ 0), i = 1, … ,N. In
the limiting case when N → ∞, the particle system (2.1) induces the following i.i.d. sequence YN

t ∶= (Y 1
t , … ,Y N

t ) of
mean-field particles:

dY i
t = − (k ∗ 𝜌t)(Y i

t )dt + 𝜎dBi
t, i = 1, … ,N, YN

0 = XN
0 , (2.2)

where 𝜌t ∶= 𝜌(t, ·) denotes the probability density of any of the i.i.d. random variables Y i
t .

To introduce the regularized versions of (2.1) and (2.2), we take a smooth approximation (k𝜖, 𝜖 > 0) of k. The regularized
microscopic N-particle system XN,𝜖

t ∶= (X1,𝜖
t , … ,XN,𝜖

t ) is given by

dXi,𝜖
t = − 1

N

N∑
𝑗=1

k𝜖(Xi,𝜖
t − X𝑗,𝜖

t )dt + 𝜎dBi
t, i = 1, … ,N, XN,𝜖

0 ∼
N
⊗
i=1
𝜌0, (2.3)

and the regularized mean-field trajectories YN,𝜖
t ∶= (Y 1,𝜖

t , … ,Y N,𝜖
t ) by

dY i,𝜖
t = − (k𝜖 ∗ 𝜌𝜖t )

(
Y i,𝜖

t

)
dt + 𝜎dBi

t, i = 1, … ,N, YN,𝜖
0 = XN,𝜖

0 , (2.4)

where 𝜌𝜖t ∶= 𝜌𝜖(t, ·) denotes the probability density of any of the i.i.d. random variables Y i,𝜖
t .

Moreover, for i = 1, … ,N, it is convenient to denote the regularized interaction force K𝜖
i ∶ R

N → R as

K𝜖
i (x1, … , xN) ∶= − 1

N

N∑
𝑗=1

k𝜖(xi − x𝑗), (x1, … , xN) ∈ R
N , (2.5)

and the mean-field interaction force K𝜖
t,i ∶ R

N → R as

K𝜖
t,i(x1, … , xN) ∶= − (k𝜖 ∗ 𝜌𝜖t )(xi), (x1, … , xN) ∈ R

N , (2.6)

where 𝜌𝜖t is the law of Y i,𝜖
t .
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CHEN ET AL. 5

2.3 Diffusion–aggregation equations
The associated probability densities of the particle systems, introduced in Section 2.2, satisfy nonlinear, nonlocal partial
differential equations (PDEs). Indeed, the particle system (2.2) induces the nonlinear diffusion–aggregation equation:

{ d
dt
𝜌(t, x) = 𝜎2

2
𝜌xx(t, x) + ((k ∗ 𝜌)(t, x)𝜌(t, x))x ∀(t, x) ∈ [0,T) × R

𝜌(x, 0) = 𝜌0 ∀x ∈ R
(2.7)

and the regularized particle system (2.4) the diffusion–aggregation equation:

{ d
dt
𝜌𝜖(t, x) = 𝜎2

2
𝜌𝜖xx(t, x) + ((k𝜖 ∗ 𝜌𝜖)(t, x)𝜌𝜖(t, x))x ∀(t, x) ∈ [0,T) × R

𝜌𝜖(x, 0) = 𝜌0 ∀x ∈ R
. (2.8)

Note that we use 𝜌t and 𝜌𝜖t for the solutions of the PDEs (2.7) and (2.8) as well as for the probability densities of
the particle systems (2.2) and (2.4), respectively, since these objects coincide by the superposition principle, see [17], in
combination with existence results of densities for the considered SDEs, see [49].

For the partial differential Equations (2.7) and (2.8), we rely on the concept of weak solutions, which we recall in the
next definition.

Definition 2.2 (Weak solutions). Fix 𝜖 > 0 and T > 0. We say 𝜌𝜖 ∈ L2([0,T];H1(R)) ∩ L∞([0,T];L2(R)) with d
dt
𝜌𝜖 ∈

L2([0,T];H−1(R)) is a weak solution of (2.8) if, for every 𝜂 ∈ L2([0,T];H1(R)),

T

∫
0

⟨ d
dt
𝜌𝜖t , 𝜂

⟩
H−1(R),H1(R)

dt = −

T

∫
0
∫
R

(
𝜎2

2
𝜌𝜖x(t, x) + (k𝜖 ∗ 𝜌𝜖)(t, x)𝜌𝜖(t, x)

)
𝜂x dx dt (2.9)

and 𝜌𝜖(0, ·) = 𝜌0. Note that 𝜌𝜖 ∈ L2([0,T];H1(R)) with d
dt
𝜌𝜖 ∈ L2([0,T];H−1(R)) implies 𝜌𝜖 ∈ C([0,T];L2(R)), see [50,

Chapter 5.9]. Similarly, we say that 𝜌 ∈ L2([0,T];H1(R)) ∩ L∞([0,T];L2(R)) with d
dt
𝜌 ∈ L2([0,T];H−1(R)) is a weak

solution of (2.7) if (2.9) holds with the interaction force kernel k instead of its approximation k𝜖 .

By the regularity of the solution in Definition 2.2, we can actually weaken the assumption on 𝜂 in Equation (2.9) to
𝜂 ∈ C([0,T];C∞

c (R)).

Remark 2.3. The divergence structure of the PDEs (2.7) and (2.8), respectively, implies mass conservation/the
normalization condition:

1 = ∫
R

𝜌t(x)dx = ∫
R

𝜌𝜖t (x)dx, t ∈ [0,T],

under Assumption 2.1. This is an immediate consequence by plugging in a cut-off sequence, see [51, Lemma 8.4],
which converges to the constant function 1 as a test function in (2.9).

2.4 Outline of the method
The method of the present paper originated from the approach of D. Lazarovici and P. Pickl developed for the
Vlasov–Poisson system in [36]. It is based on the coupling method [9] and a regularization of k to k𝜖 . A key insight of D.
Lazarovici and P. Pickl is to prove the convergence in probability with an arbitrary large algebraic rate and algebraic cut-off
parameter 𝜖 ∼ N−𝛽 , 𝛽 > 0, instead of comparing the trajectories XN,𝜖 and YN,𝜖 in Wasserstein distance or in L2-norm, as,
for instance, done in [9, 52]. More precisely, for 𝛼 ∈ (0, 1∕2), 𝛽 ≤ 𝛼 and arbitrary 𝛾 > 0, we shall show that

P

(
sup

t∈[0,T]

|||XN,𝜖
t − YN,𝜖

t
|||∞ ≥ N−𝛼

)
≤ C(𝛾)N−𝛾 , for each N ≥ N0.

To implement this strategy and to achieve the aforementioned result, we proceed as follows:
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6 CHEN ET AL.

1. We start with a PDE analysis of the diffusion–aggregation Equations (2.7) and (2.8); that is, we prove the
well-posedness of the nonlocal, nonlinear PDEs (2.7) and (2.8), together with an L∞([0,T];L∞(R))-bound on the
solution 𝜌𝜖 , which is uniform in 𝜖. These results can be obtained via standard PDE techniques such as a compact-
ness method, Aubin–Lions lemma, which provides strong convergence, and a Moser type iteration, see Section 3.
The uniform bound allows us to have a trade-off between the irregularity of the interaction force kernel and the
regularity of the solution 𝜌𝜖 .

2. The main idea of D. Lazarovici and P. Pickl was to recognize that even though the interaction force kernel is not
globally Lipschitz continuous, the approximation k𝜖 satisfies a local Lipschitz bound of order 𝜖−1 (in dimension d of
order 𝜖−d) for |x − 𝑦| ≤ 2𝜖, that is,

|k𝜖(x) − k𝜖(𝑦)| ≤ l𝜖(𝑦)|x − 𝑦|. (2.10)

Let us emphasize that the bound depends only on the point 𝑦. Hence, the above inequality seems like a Taylor
expansion around the point 𝑦, where the second-order term is missing. Consequently, the bound cannot be achieved
by a simple application of the mean-value theorem.

We will assume that the interaction force kernel k satisfies (2.10), see Assumption 4.1, and present various
examples of such kernels in Section 4. We refer to [36, 37, 41] for further models with interaction force kernels satis-
fying (2.10). In general, whether (2.10) holds true entirely depends on the interaction force kernel of the considered
model, in particular, on the order of discontinuity/singularity of the kernel. Hence, as rule of thumb, if the discon-
tinuity/singularity is of order 𝜖−d+1 in a d-dimensional setting, then the local Lipschitz bound assumption can be
satisfied.

3. We need to derive a law of large numbers, see Section 5. This allows us to treat every involved object with regard to
its expectation on a set with high probability, which enables us to take advantage of the obtained regularity of 𝜌𝜖 in
Step (1). Unsurprisingly, we need i.i.d. objects to apply the derived law of large numbers. In the present case, these
objects are going to be the processes (Y i,𝜖

t , t ≥ 0) for i ∈ N. Moreover, we would like to emphasize the importance of
Step (2) at this moment and the crucial fact that l𝜖(𝑦) only depends on the point 𝑦. Replacing in inequality (2.10) the
point 𝑦 with the process Y i,𝜖

t and x with the process Xi,𝜖
t , we see that l𝜖 on the right-hand side of (2.10) is depending

on the i.i.d. process Y i,𝜖
t . Consequently, we can rely on the law of large numbers (Proposition 5.1).

4. Finally, let us demonstrate how to apply the previous steps to derive propagation of chaos in probability but leaving
out the technical difficulties. To that end, for some 𝛼 ∈ (0, 1∕2) and 𝛿 > 0, we define an auxiliary process:

JN
t ∶= min

(
1,N𝛼|||XN,𝜖

t − YN,𝜖
t

|||∞ + N−𝛿
)
.

This process seems to control the difference |||XN,𝜖
t − YN,𝜖

t
|||∞ in the limit N → ∞ with weight N𝛼 . Furthermore,

the minimum is no restriction, since we only want to show convergence to zero in probability, and we notice that,
if N𝛼|||XN,𝜖

t − YN,𝜖
t

|||∞ is too big, the process stays constant one and the time derivative is zero. Therefore, we
heuristically obtain

d
dt

(
N𝛼|||XN,𝜖

t − YN,𝜖
t

|||∞ + N−𝛿
) ≤ N𝛼 sup

i=1,… ,N

|||K𝜖
i
(
XN,𝜀

t
)
− K𝜖

t,i

(
YN,𝜀

t
)|||

≤ N𝛼 sup
i=1,… ,N

|||K𝜖
i
(
XN,𝜀

t
)
− K𝜖

i
(
YN,𝜀

t
)
)||| + N𝛼 sup

i=1,… ,N

|||K𝜖
i
(
YN,𝜀

t
)
− K𝜖

t,i

(
YN,𝜀

t
)||| .

The last term depends on the i.i.d. particles (Y i
t , i = 1, … ,N) and can be estimated via the law of large numbers,

Proposition 5.1, with a rate of N−𝛿−𝛼 . For the first term, we can use the local Lipschitz bound (having in mind that
the particles are close because of the minimum in the process) to complete a Gronwall argument. As mentioned
before, the crucial point in this step is the fact that the local Lipschitz bound only depends on the i.i.d. particles YN,𝜖

t

and not on the particles system XN,𝜖
t . This allows us to exchange the local Lipschitz bound 1

N

N∑
𝑗=1

l𝜖(Y i,𝜖
t −Y 𝑗,𝜖

t ) with its

conditional expectation l𝜖 ∗ 𝜌𝜖t
(

Y i,𝜖
t

)
. Using the regularity properties, obtained from the PDE analysis in Step (1),

we can bound ‖k𝜖 ∗ 𝜌𝜖‖L∞([0,T];L∞(R)). Hence, we conclude that

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.10069 by U

niversitätsbibliothek M
annheim

, W
iley O

nline L
ibrary on [06/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHEN ET AL. 7

d
dt

(
N𝛼|||XN,𝜖

t − YN,𝜖
t

|||∞ + N−𝛿
) ≤ C(N𝛼|||XN,𝜖

t − YN,𝜖
t

|||∞ + N−𝛿).

Applying Gronwall's lemma completes the proof. We remark that we implicitly used the fact that the law of large
numbers holds for large N ∈ N and, consequently, the above Gronwall inequality only holds in the limit N → ∞. In
the actual proof we will use a version of the process JN

t , which is multiplied by an exponential, which just leads to a
rewriting of the above Gronwall argument.

The remaining of the present paper is devoted to establish Step (1)–(4) with all technical details for bounded interaction
force kernels.

3 WELL-POSEDNESS AND UNIFORM BOUNDS FOR THE PDES

In this section, we prove well-posedness of the PDEs (2.7) and (2.8), show the convergence of the solutions (𝜌𝜖, 𝜖 > 0) to
𝜌 in the weak topology, and provide regularity results as well as uniform bounds for (𝜌𝜖, 𝜖 > 0) and 𝜌, which are required
for propagation of chaos result in probability established later in Section 6. We start by introducing an assumption on the
approximation sequence (k𝜖, 𝜖 > 0) of interaction force kernels.

Assumption 3.1. Let (k𝜖, 𝜖 > 0) be a sequence, which satisfies the following:

(i) For each 𝜖 > 0, the interaction force kernel k𝜖 ∈ C2(R);
(ii) For each 𝜖 > 0, we have ‖k𝜖‖L∞(R) ≤ C‖k‖L∞(R) < ∞;

(iii) We have lim
𝜖→0

k𝜖 = k a.e.

For the nonlinear, nonlocal PDE (2.8), we notice that, by Young's inequality, we obtain the following L∞(R)-bound:

|(k𝜖 ∗ 𝜌𝜖)(t, x)| ≤ ‖k𝜖‖L∞(R)
‖‖𝜌𝜖t ‖‖L1(R) ≤ C‖k‖L∞(R). (3.1)

Hence, k𝜖 ∗ 𝜌 is uniformly bounded in 𝜖 > 0 on [0,T] × R. The same statement holds for k ∗ 𝜌. Consequently, the
convolution term is bounded, and we expect the existence of a weak solution to the PDEs (2.7) and (2.8).

Theorem 3.2. Suppose Assumption 2.1. Then, for each T > 0 and 𝜖 > 0, there exists a unique nonnegative weak solution
𝜌𝜖 ∈ L2([0,T];H1(R)) ∩ L∞([0,T];L2(R)) with d

dt
𝜌𝜖 ∈ L2([0,T];H−1(R)) to the regularized PDE (2.8) in the sense of

Definition 2.2. Moreover, the estimate

‖𝜌𝜖‖L∞([0,T];L2(R)) + ‖𝜌𝜖‖L2([0,T];H1(R)) +
‖‖‖‖ d

dt
𝜌𝜖
‖‖‖‖L2([0,T];H−1(R))

≤ C(T)‖𝜌0‖L2(R) (3.2)

holds for all 𝜖 > 0.

Proof. Let us explain the main idea of the existence proof. We consider the associated McKean–Vlasov process{
dY 𝜖

t = − (k𝜖 ∗ 𝜌𝜖t )(Y
𝜖
t )dt + 𝜎dB1

t , Y0 ∼ 𝜌0,
𝜌𝜖t = Law(Y 𝜖

t )

for the initial data 𝜌0. Then, by [53, Chapter 5. Theorem 2.9] and the Lipschitz continuity of the drift k𝜖 ∗ 𝜌𝜖t , the
aforementioned SDE has a unique strong solution, and by [49, Proposition 3.1], it has a density (𝜌𝜖t , t ≥ 0). Now, fix 𝜌𝜖t
and consider the solution �̃�𝜖 = (�̃�𝜖t , t ≥ 0) to the linearized parabolic PDE:{ d

dt
�̃�𝜖(t, x) = 𝜎2

2
�̃�𝜖xx(t, x) + ((k𝜖 ∗ 𝜌𝜖)(t, x)�̃�𝜖(t, x))x ∀(t, x) ∈ [0,T) × R

�̃�𝜖(x, 0) = 𝜌0 ∀x ∈ R
.

By the standard second-order parabolic PDE theory, we know that the aforementioned PDE is well-posed and

�̃�𝜖 ∈ L2([0,T];H1(R)) ∩ L∞([0,T];L2(R)), d
dt
�̃�𝜖t ∈ L2([0,T];H−1(R)),
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8 CHEN ET AL.

with the estimate (3.2). Applying the superposition principle [17, Theorem 4.1], we find a weak solution to

dỸ 𝜖
t = −(k𝜖 ∗ 𝜌𝜖t )(Ỹ

𝜖
t )dt + 𝜎dB1

t , Ỹ N
0 ∼ 𝜌0, t ∈ [0,T],

with Law(Ỹ 𝜖
t ) = �̃�𝜖t dx. Since strong uniqueness holds [33, Theorem 4.10] for the above SDE, we have Ỹ 𝜖 = Y 𝜖 . By the

Yamada–Watanabe theorem [53, Chapter 5, Proposition 3.20], this implies uniqueness in law, and therefore,

�̃�𝜖t dx = 𝜌𝜖t dx, t ∈ [0,T],

in the sense of measures. Hence, �̃�𝜖t = 𝜌𝜖t P-a.s. for all t ∈ [0,T] and 𝜌𝜖 has the desired regularity. □

Lemma 3.3. Fix 𝜖 > 0 and suppose Assumption 2.1. Moreover, consider a solution 𝜌𝜖 of the regularized
diffusion–aggregation Equation (2.8) with initial data 𝜌0, which by Theorem 3.2 exists. Then, we have the following
uniform bound:

∫
R

|x|𝜌𝜖(t, x)dx ≤ ∫
R

|x|𝜌0(x)dx + C(T)‖𝜌0‖L2(R) + CT‖k‖L∞(R)

for all t ≥ 0, which depend only upon ∫
R
(1+ |x|)𝜌0(x)dx and T. Therefore, the function t → ∫

R
|x|𝜌𝜖(t, x)dx is bounded in

L∞([0,T];R).

Proof. The core idea is to use |x| as a test function. To that end, we take a sequence of radial antisymmetric functions
(gn,n ∈ N) with gn ∈ C2

c (R) for all n ∈ N, such that gn grows to |x| as n → ∞ and d
dx

gn is uniformly bounded in n ∈ N.
More precisely, we choose

𝜒n(x) ∶=

{|x| |x| ≥ 1
n

− n3 x4

8
+ n 3x2

4
+ 3

8n
|x| ≤ 1

n

and let (𝜁n,n ∈ N) be a sequence of compactly supported cut-off function defined by 𝜁n(x) = 𝜁 (x∕n), where 𝜁 is a
smooth function with support in the ball of radius two and has value one in the unit ball. Define gn ∶= 𝜒n𝜁n. We
notice that the derivatives of 𝜁n have support in the annulus [−2n, 2n] ⧵ [−n,n]. Then, for 𝜑 ∈ C∞

c (0,T), we obtain

∫
T

0 ∫
R

gn(x)𝜌𝜖(t, x)
d
dt
𝜑(t)dx dt = ∫

T

0 ∫
R

(
𝜎2

2
d

dx
𝜌𝜖(t, x) d

dx
gn(x) + (k𝜖 ∗ 𝜌𝜖) d

dx
gn(x)𝜌𝜖(t, x)

)
𝜑(t)dx dt.

Furthermore, for t1, t2 ∈ [0,T], we have||||∫R

gn(x)𝜌𝜖(t1, x)dx − ∫
R

gn(x)𝜌𝜖(t2, x)dx
|||| ≤ ‖gn‖L2(R)‖𝜌𝜖(t1, ·) − 𝜌𝜖(t2, ·)‖L2(R).

Therefore, 𝜌𝜖 ∈ C([0,T];L2(R)) implies that t → ∫
R

gn(x)𝜌𝜖(t, x)dx is continuous for each n ∈ N. Then, the fundamental
lemma of calculus of variations, mass conservation, Sobolev embedding, and (3.2) imply

∫
R

gn(x)𝜌𝜖(t, x)dx

= ∫
R

gn(x)𝜌0(x)dx − ∫
t

0 ∫
R

𝜎2

2
d

dx
𝜌𝜖(s, x) d

dx
gn(x) + (k𝜖 ∗ 𝜌𝜖)(s, x) d

dx
gn(x)𝜌𝜖(s, x)dx ds

≤ ∫
R

|x|𝜌0(x)dx + CT‖k‖L∞(R) +
𝜎2

2 ∫
T

0 ∫
R

||||𝜒n(x)
d2

dx2 𝜁n(x) + 2 d
dx
𝜒n(x)

d
dx
𝜁n(x) + 𝜁n(x)

d2

dx2𝜒n(x)
|||| 𝜌𝜖(s, x)dx ds

≤ ∫
R

|x|𝜌0(x)dx + CT‖k‖L∞(R) +
C𝜎2

n ∫
T

0 ∫[−2n,2n]⧵[−n,n]
𝜌𝜖(s, x)dx ds + 𝜎2

2 ∫
T

0 ∫[− 1
n
,

1
n
]

|||| d2

dx2𝜒n(x)
|||| ‖𝜌𝜖s‖L∞(R)dx ds

≤ ∫
R

|x|𝜌0(x)dx + CT‖k‖L∞(R) +
C𝜎2

n
+ C𝜎2

2 ∫
T

0
‖𝜌𝜖s‖H1(R)dx ds

≤ ∫
R

|x|𝜌0(x)dx + CT‖k‖L∞(R) +
CT
n

+ C(T)‖𝜌0‖L2(R).

Applying Fatou's lemma proves the lemma. □
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CHEN ET AL. 9

Lemma 3.4. Let (𝑓n,n ∈ N) be a sequence in L2([0,T];H1(R)). If the sequence satisfies

(i) ‖𝑓n‖L2([0,T];H1(R)) ≤ C,
(ii) ‖‖‖ d

dt
𝑓n
‖‖‖L2([0,T];H−1(R))

≤ C,
(iii) sup

t∈[0,T]
∫
R
|x||𝑓n(t, x)|dx ≤ C,

for some constant C > 0, then (𝑓n,n ∈ N) is relative compact in Lp([0,T];Lp(R)) for all p ∈ [1, 2].

Proof. Let us denote by BR the ball with radius R and center 0. Then, by the Rellich-Kondrachov theorem we have
that the embedding H1(BR) → L2(BR) is compact. Hence, by Aubin–Lions lemma [54, Chapter 3, Proposition 1.3],
(𝑓n,n ∈ N) is relative compact in L2([0,T];L2(BR)). Since the above spaces is of finite measure, we obtain the relative
compactness of (𝑓n,n ∈ N) in Lp([0,T];Lp(BR)) for all p ∈ [1, 2]. Note that by Cantor's diagonal argument, we can
extract one subsequence (𝑓nk , k ∈ N) such that

lim
k→∞

‖‖𝑓nk − 𝑓R‖‖Lp([0,T];Lp(BR))
= 0.

for some limit point 𝑓R ∈ Lp([0,T];Lp(BR)) and all p ∈ [1, 2], R ∈ N. Furthermore, using again a Cantor's diagonal
argument, we can assume that (𝑓nk , k ∈ N) converges almost everywhere to 𝑓R in BR. For x ∈ R, we choose some R ∈ N

such that x ∈ BR and define 𝑓 (x) ∶= 𝑓R(x). This definition is well-defined, since for x ∈ BR ⊂ BR′ , we have 𝑓R = 𝑓R′

on BR by the local Lp convergence of the sequence (𝑓nk , k ∈ N). Consequently, the sequence (𝑓nk , k ∈ N) convergence
almost everywhere to 𝑓 on R. It remains to prove that 𝑓 ∈ Lp([0,T];Lp(R)) and 𝑓nk → 𝑓 ∈ Lp([0,T];Lp(R)) as k → ∞.
First, by Fatou's lemma, we obtain 𝑓 ∈ Lp([0,T];Lp(R)) and

sup
t∈[0,T]∫R

|x|𝑓 (t, x)dx ≤ sup
n∈N

sup
t∈[0,T]∫R

|x|𝑓n(t, x)dx ≤ C.

Second, we find

‖‖𝑓nk − 𝑓‖‖L1([0,T];L1(R)) =

T

∫
0
∫
R

|𝑓nk (t, x) − 𝑓 (t, x)|dxdt

=

T

∫
0
∫BR

|𝑓nk (t, x) − 𝑓 (t, x)|dxdt +

T

∫
0
∫Bc

R

|𝑓nk (t, x) − 𝑓 (t, x)|dxdt

≤
T

∫
0
∫BR

|𝑓nk (t, x) − 𝑓 (t, x)|dxdt + 1
R
sup
k∈N

T

∫
0
∫Bc

R

|x||𝑓nk (t, x) − 𝑓 (t, x)|dxdt.

Taking k → ∞ and then R → ∞, we find a subsequence (𝑓nk , k ∈ N), which converges in L1([0,T];L1(R)). The
uniform Lp(R)-bound on (𝑓n,n ∈ N) and an interpolation inequality shows the relative compactness of (𝑓n,n ∈ N) in
Lp([0,T];Lp(R)). □

In the next theorem, we show that the approximation sequence (𝜌𝜖, 𝜖 > 0) converges in the weak sense to a weak
solution 𝜌 of Equation (2.7).

Theorem 3.5. Suppose Assumption 2.1. Then, for each T > 0, there exists a subsequence (𝜌𝜖m ,m ∈ N) such that 𝜌𝜖m ⇀ 𝜌

as m → ∞ in L2([0,T];H1(R)). Furthermore, 𝜌 ∈ L2([0,T];H1(R)) ∩ L∞([0,T];L2(R)) with d
dt
𝜌 ∈ L2([0,T];H−1(R)) is

the unique nonnegative weak solution of Equation (2.7), which satisfies

‖𝜌‖L∞([0,T];L2(R)) + ‖𝜌‖L2([0,T];H1(R)) +
‖‖‖‖ d

dt
𝜌
‖‖‖‖L2([0,T];H−1(R))

≤ C(T)‖𝜌0‖L2(R). (3.3)

In addition, there exists a subsequence (𝜌𝜖m ,m ∈ N) such that 𝜌𝜖m → 𝜌 converges weakly as m → ∞ in L1([0,T];L1(R)).
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10 CHEN ET AL.

Proof. From (3.2), the Banach–Alaoglu theorem, and the lower semi-continuity, we obtain (3.3) and a subsequence
(𝜌𝜖m ,m ∈ N) such that

𝜌𝜖m ⇀ 𝜌 in L2([0,T];H1(R)),
d
dt
𝜌𝜖m ⇀

d
dt
𝜌 in L2([0,T];H−1(R)).

Moreover, we have 𝜌 ≥ 0 a.e. by Mazur's lemma [51, Corollary 3.8]. Next, we notice that the subsequence (𝜌𝜖m ,m ∈
N) fulfills Lemma 3.4. Consequently, without renaming the subsequence, we conclude

lim
m→∞

‖𝜌𝜖m − 𝜌‖Lp([0,T];Lp(R)) = 0 (3.4)

for all p ∈ [1, 2]. Hence, it remains to show that we can take the limit in (2.9). From the above weak convergence, it
immediately follows:

T

∫
0

⟨ d
dt
𝜌
𝜖m
t , 𝜂

⟩
H−1(R),H1(R)

dt →

T

∫
0

⟨ d
dt
𝜌t, 𝜂

⟩
H−1(R),H1(R)

dt,

T

∫
0
∫
R

𝜌
𝜖m
x (t, x)𝜂x(t, x)dx dt →

T

∫
0
∫
R

𝜌x(t, x)𝜂x(t, x)dx dt

for 𝜂 ∈ L2([0,T];H1(R)) as m → ∞. We write the nonlinear term as

T

∫
0
∫
R

𝜌𝜖m (t, x)(k𝜖m ∗ 𝜌𝜖m )(t, x)𝜂x(t, x)dx dt

=

T

∫
0
∫
R

(𝜌𝜖m − 𝜌)(k𝜖m ∗ 𝜌𝜖m )(t, x)𝜂x(t, x)dx dt +

T

∫
0
∫
R

𝜌((k𝜖m − k) ∗ 𝜌)(t, x)𝜂x(t, x)dx dt

+

T

∫
0
∫
R

𝜌(k𝜖m ∗ (𝜌𝜖m − 𝜌))(t, x)𝜂x(t, x)dx dt +

T

∫
0
∫
R

𝜌(k ∗ 𝜌)(t, x)𝜂x(t, x)dx dt.

(3.5)

For the first term, we notice that it vanishes as m → ∞. Indeed, since |k𝜖m ∗ 𝜌𝜖m | ≤ C‖k‖L∞(R) and 𝜌x ∈
L2([0,T];L2(R)), we have (k𝜖m ∗ 𝜌𝜖m )nx ∈ L2([0,T];L2(R)) uniform in 𝜖m, and thus, 𝜌𝜖m → 𝜌 in L2([0,T];L2(R)) implies

T

∫
0
∫
R

(𝜌𝜖m − 𝜌)(k𝜖m ∗ 𝜌𝜖m )(t, x)𝜂x(t, x)dx dt → 0, as m → ∞

by Hölder's inequality. For the second term, we use Assumption 3.1 to find

T

∫
0
∫
R

𝜌(t, x)((k𝜖m − k) ∗ 𝜌)(t, x)𝜂x(t, x)dx dt =

T

∫
0
∫
R
∫
R

𝜌(t, x)(k𝜖m − k)(x − 𝑦)𝜌(t, 𝑦)𝜂x(t, x)d𝑦dxdt

≤
T

∫
0
∫
R
∫
R

(𝜌𝜂x)(t, x)‖k𝜖m + k‖L∞(R)𝜌(t, 𝑦)d𝑦dxdt

≤ (C + 1)

T

∫
0
∫
R
∫
R

(𝜌𝜂x)(t, x)‖k‖L∞(R)𝜌(t, 𝑦)d𝑦dxdt.
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CHEN ET AL. 11

The right-hand side is finite, and therefore, by the dominated convergence theorem and the almost everywhere
convergence of k𝜖 → k, the second term vanishes. For the third term, we apply Young's inequality [55, Theorem 4.2]
and (3.4) to obtain

T

∫
0
∫
R

𝜌(t, x)(k𝜖m ∗ (𝜌𝜖m − 𝜌)(t, x))𝜂x(t, x)dx dt

≤
T

∫
0

‖𝜌𝜖m − 𝜌(t, ·)‖L1(R)‖k‖L∞(R)‖𝜌𝜂x(t, ·)‖L1(R)dt

≤ ‖𝜂‖L2([0,T];H1(R))‖𝜌‖L2([0,T];L2(R))‖k‖L∞(R)

T

∫
0

‖𝜌𝜖m − 𝜌(t, ·)‖L1(R)dt

→ 0, as m → ∞.

Consequently, taking the limit m → ∞ in (3.5), we discover

lim
m→∞

T

∫
0
∫
R

𝜌𝜖m (t, x)(k𝜖m ∗ 𝜌𝜖m )(t, x)𝜂x(t, x)dx dt =

T

∫
0
∫
R

𝜌(k ∗ 𝜌)(t, x)𝜂x(t, x)dx dt

and therefore, 𝜌 is a weak solution. The uniqueness follows by simple L2-estimates; see, for instance, [56,
Theorem 3.10] in the case of the Hegselmann–Krause model (notice that the proof of the uniqueness also works for
R and k ∈ L∞(R)). □

Remark 3.6. The uniqueness of the solution 𝜌 actually implies that any subsequence convergences to the solution 𝜌.

Lemma 3.7. Suppose Assumption 2.1. Then, for any T > 0, the weak solutions (𝜌𝜖, 𝜖 > 0) of (2.8) as well as the
weak solutin 𝜌 of (2.7) with initial condition 𝜌0 are bounded in L∞([0,T];Lp(R)) for p ∈ [1,∞). More precisely, we have,
for all 𝜖 > 0, ‖𝜌𝜖‖L∞([0,T];Lp(R)), ‖𝜌‖L∞([0,T];Lp(R)) ≤ C(p, 𝜎,T, ‖k‖L∞(R))‖𝜌0‖Lp(R).

Proof. Without loss of generality, we show the claim only for 𝜌, and we also may assume that 𝜌 is a smooth solution.
Otherwise, we mollify the initial data such that there exists a sequence of smooth solutions, which converge weakly
in L2([0,T];H1(R)) to 𝜌𝜖 for each fix 𝜖 > 0. Applying the lower semi-continuity for each 𝜖 > 0 first and then the
convergence result in Theorem 3.5 will prove the lemma.

Multiplying (2.7) with p
2(p−1)

𝜌p−1, integrating by parts over R and using inequality (3.1), we obtain

1
2(p − 1)

d
dt∫R

𝜌p(t, x)dx

=
p

2(p − 1)∫R

d
dt
𝜌(t, x)𝜌p−1(t, x)dx

=
p

2(p − 1)∫R

(
𝜎

2
𝜌xx(t, x) + ((k ∗ 𝜌)(t, x)𝜌(t, x))x

)
𝜌p−1(t, x)dx

=
p
2∫R

− 𝜎

2
|𝜌x(t, x)|2𝜌p−2(t, x) − (k ∗ 𝜌)(t, x)𝜌x𝜌

p−1(t, x)dx

= − 𝜎2

p ∫
R

|(𝜌p∕2)x(t, x)|2dx − ∫
R

(𝜌p∕2)x(t, x)𝜌p∕2(t, x)(k ∗ 𝜌)(t, x)dx

≤ − 𝜎2

p ∫
R

|(𝜌p∕2)x(t, x)|2dx + ‖k‖L∞(R)∫
R

|(𝜌p∕2)x(t, x)𝜌p∕2(t, x)|dx

≤ − 𝜎2

p ∫
R

|(𝜌p∕2)x(t, x)|2dx + ‖k‖L∞(R)∫
R

𝜎2

2p‖k‖L∞(R)
|(𝜌p∕2)x(t, x)|2 + p‖k‖L∞(R)

2𝜎2 |𝜌p(t, x)|dx
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12 CHEN ET AL.

≤ − 𝜎2

2p∫R

|(𝜌p∕2)x(t, x)|2dx +
p ‖k‖2

L∞(R)

2𝜎2 ∫
R

|𝜌p(t, x)|dx

≤ p ‖k‖2
L∞(R)

2𝜎2 ∫
R

|𝜌p(t, x)|dx,

where we used Young's inequality with 𝜖 = 𝜎2‖k‖L∞(R)p
in the sixth step. An application of Gronwall's inequality leads to

∫
R

𝜌p(t, x)dx ≤ C(p, 𝜎,T, ‖k‖L∞(R))‖𝜌0‖Lp(R) for all t ∈ [0,T].

□

Lemma 3.8. Suppose Assumption 2.1. Then, for each T > 0, there exists a constant C(𝜌0) such that, for all 𝜖 > 0,

‖𝜌𝜖‖L∞([0,T];L∞(R)), ‖𝜌‖L∞([0,T];L∞(R)) ≤ C(𝜌0)

holds for the weak solutions (𝜌𝜖, 𝜖 > 0) of (2.8) and for the weak solution 𝜌 of (2.7).

Proof. As previously, we will only show the claim for 𝜌, and we can assume that 𝜌 is smooth.
Set 𝜌m ∶= max(𝜌 − m, 0) for some fix strictly positive m ∈ R and let p > 2. For the sake of notational brevity, we

drop the dependence of (t, x). Multiplying (2.7) by 𝜌p−1
m and integrating by parts, we obtain

1
p

d
dt∫R

𝜌
p
mdx =∫

R

(
𝜎2

2
𝜌xx + ((k ∗ 𝜌)𝜌)x

)
𝜌

p−1
m dx

= − ∫
R

𝜎2(p − 1)
2

𝜌x(𝜌m)x𝜌
p−2
m − (p − 1)(𝜌m)x𝜌

p−2
m (k ∗ 𝜌)𝜌dx

= − ∫
R

𝜎2(p − 1)
2

(𝜌m)2
x𝜌

p−2
m − (p − 1)𝜌p−1

m (𝜌m)x(k ∗ 𝜌) + m(p − 1)(𝜌m)x𝜌
p−2
m (k ∗ 𝜌)dx

= −
2𝜎2(p − 1)

p2 ∫
R

(𝜌p∕2
m )2

xdx −
2(p − 1)

p ∫
R

(𝜌p∕2
m )x𝜌

p∕2
m (k ∗ 𝜌)dx +

2m(p − 1)
p ∫

R

(𝜌p∕2
m )x𝜌

p∕2−1
m (k ∗ 𝜌)dx.

In the next step, we estimate the last two terms with Young's inequality. More precisely, we get

2(p − 1)∫
R

1
p
(𝜌p∕2

m )x𝜌
p∕2
m (k ∗ 𝜌)dx

≤ 2(p − 1)‖k‖L∞(R)∫
R

1
p
|(𝜌p∕2

m )x| |𝜌p∕2
m |dx

≤ 2(p − 1)∫
R

𝜎2

4p2 |(𝜌p∕2
m )x|2 + ‖k‖2

L∞(R)

𝜎2 |𝜌p∕2
m |2dx

=
(p − 1)𝜎2

2p2 ∫
R

|(𝜌p∕2
m )x|2dx +

2(p − 1) ‖k‖2
L∞(R)

𝜎2 ∫
R

|𝜌p
m|dx

and

2(p − 1)∫
R

1
p
(𝜌p∕2

m )xm𝜌p∕2−1
m (k ∗ 𝜌)dx

≤ 2(p − 1)∫
R

1
p
|(𝜌p∕2

m )x|m‖k‖L∞(R)|𝜌p∕2−1
m |dx

≤ 2(p − 1)∫
R

𝜎2

4p2 |(𝜌p∕2
m )x|2 + m2 ‖k‖2

L∞(R)

𝜎2 |𝜌p−2
m |dx

≤ (p − 1)𝜎2

2p2 ∫
R

|(𝜌p∕2
m )x|2dx +

2(p − 1) ‖k‖2
L∞(R) m2

𝜎2 ∫
R

|𝜌p−2
m |dx.
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CHEN ET AL. 13

Furthermore, we can estimate

∫
R

|𝜌p−2
m |dx = ∫

R

𝟙{m≤𝜌≤m+1}|𝜌p−2
m | + 𝟙{𝜌≥m+1}|𝜌p−2

m |dx

≤ ∫
R

𝟙{m≤𝜌≤m+1} + |𝜌p
m|dx

≤ 1
m∫

R

𝜌dx + ∫
R

|𝜌p
m|dx

≤ 1
m

+ ∫
R

|𝜌p
m|dx.

Hence, we derive for the last term the following inequality:

2(p − 1)∫
R

1
p
(𝜌p∕2

m )xm𝜌p∕2−1
m (k ∗ 𝜌)dx ≤ (p − 1)𝜎2

2p2 ∫
R

|(𝜌p∕2
m )x|2dx +

2(p − 1) ‖k‖2
L∞(R) m

𝜎2 +
2(p − 1) ‖k‖2

L∞(R) m2

𝜎2 ∫
R

|𝜌p
m|dx.

Putting everything together, we find

1
p

d
dt∫R

𝜌
p
mdx ≤ −

𝜎2(p − 1)
p2 ∫

R

(𝜌p∕2
m )2

xdx +
2(p − 1) ‖k‖2

L∞(R) m
𝜎2 +

(
2(p − 1) ‖k‖2

L∞(R)

𝜎2 +
2(p − 1) ‖k‖2

L∞(R) m2

𝜎2

)
∫
R

|𝜌p
m|dx,

from which we can conclude that

d
dt∫R

𝜌
p
mdx ≤ −𝜎

2

2 ∫
R

(𝜌p∕2
m )2

xdx +
2 ‖k‖2

L∞(R) p2(m2 + 1)
𝜎2 ∫

R

|𝜌p
m|dx +

2p2 ‖k‖2
L∞(R) m
𝜎2 .

By the Gagliardo–Nirenberg–Sobolev interpolation inequality [57, Theorem 12.87] and [58] on the whole space as
well as Young's inequality with 𝜏 = 3𝜎2

4
, we have

𝜆2 ‖u‖2
L2(R) ≤ CGNS𝜆

2 ‖u‖4∕3
L1(R) ‖∇u‖2∕3

L2(R) ≤ 4
𝜎2
√

27
C3∕2

GNS𝜆
3 ‖u‖2

L1(R) +
𝜎2

4
‖∇u‖2

L2(R) , (3.6)

where CGNS is the Gagliardo–Nirenberg–Sobolev constant in one dimension. For u = 𝜌
p∕2
m , C1 ∶=

2‖k‖2
L∞(R)(m

2+1)
𝜎2 and

𝜆 =
√

C1p, we obtain

C1p2∫
R

|𝜌p
m|dx ≤ 4

3𝜎
C3∕2C3∕2

1 p3 ‖‖‖𝜌p∕2
m

‖‖‖2

L1(R)
+ 𝜎2

4
‖‖‖(𝜌p∕2

m )x
‖‖‖2

L2(R)
.

Consequently, we have

d
dt∫R

𝜌
p
mdx ≤ − 1

4
𝜎2∫

R

(𝜌p∕2
m )2

xdx + p3
4C3∕2(2 ‖k‖2

L∞(R) (m2 + 1))3∕2

3𝜎4

(
∫
R

|𝜌p∕2
m |dx

)2

+
2p2 ‖k‖2

L∞(R) m
𝜎2 .

Applying the above inequality (3.6) with u = 𝜌
p∕2
m , 𝜆 = p and rearranging the terms, we discover

− 𝜎2

4
‖‖‖(𝜌p∕2

m )x
‖‖‖2

L2(R)
≤ − p2∫

R

|𝜌p
m|dx + 4

3𝜎
C3∕2p3 ‖‖‖𝜌p∕2

m
‖‖‖2

L1(R)
,
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14 CHEN ET AL.

which then implies

d
dt∫R

𝜌
p
mdx ≤ − p2∫

R

|𝜌p
m|dx + C(𝜎,m, ‖k‖L∞(R))p3

(
∫
R

𝜌
p∕2
m dx

)2

+
2p2 ‖k‖2

L∞(R) m
𝜎2

≤ − p2∫
R

|𝜌p
m|dx + C(𝜎,m, ‖k‖L∞(R))p4

(
∫U
𝜌

p∕2
m dx

)2

+ C(𝜎,m, ‖k‖L∞(R))p2

for some nonnegative constant C(𝜎,m, ‖k‖L∞(R)).
Let us define

w𝑗(t) ∶= ∫
R

𝜌2𝑗
m(t, x)dx and S𝑗 ∶= sup

t∈[0,T)
w𝑗(t),

for 𝑗 ∈ N. Then, for p = 2𝑗 , the above inequality can be written as

d
dt

w𝑗(t) ≤ − 22𝑗w𝑗(t) + 22𝑗 (C(𝜎,m, ‖k‖L∞(R))22𝑗w2
𝑗−1(t) + C(𝜎,m, ‖k‖L∞(R))

)
≤ − 22𝑗w𝑗(t) + 22𝑗 (C(𝜎,m, ‖k‖L∞(R))22𝑗S2

𝑗−1 + C(𝜎,m, ‖k‖L∞(R))
)
.

Moreover, define u(x) ∶= −22𝑗x + 22𝑗
(

C(𝜎,m, ‖k‖L∞(R))22𝑗S2
𝑗−1 + C(𝜎,m, ‖k‖L∞(R))

)
, 𝜖 ∶= 22𝑗 and A ∶=

C(𝜎,m, ‖k‖L∞(R))22𝑗S2
𝑗−1 + C(𝜎,m, ‖k‖L∞(R)). Then, u is globally Lipschitz continuous in x and v = e−𝜖tv0 + A(1 − e−𝜖t)

is a solution of the following ODE { d
dt

v(t) = u(v(t))
v(0) = v0

.

Let us choose v0 ∶= ∫
R
𝜌2𝑗

0 dx ≥ w(0). Then, we can apply the comparison principle to obtain

w𝑗(t) ≤ v(t) ≤ v0 + A

≤ ‖𝜌0‖2𝑗−1
L∞(R) ‖𝜌0‖L1(R) + C(𝜎,m, ‖k‖L∞(R))22𝑗S2

𝑗−1 + C(𝜎,m, ‖k‖L∞(R))

≤ ‖𝜌0‖2𝑗−1
L∞(R) + C(𝜎,m, ‖k‖L∞(R))22𝑗S2

𝑗−1 + C(𝜎,m, ‖k‖L∞(R)).

It follows that

S𝑗 = sup
t∈[0,T)

w𝑗(t) ≤ C(𝜎,m, ‖k‖L∞(R))max(‖𝜌0‖2𝑗−1
L∞(R) , 22𝑗S2

𝑗−1).

To complete the proof, we perform a version of Moser iteration technique to bound the L∞-norm. For S̃𝑗 ∶=
S𝑗‖𝜌0‖2𝑗−1

L∞(R)

,

the last inequality provides us with

S̃𝑗 ≤ C(𝜎,m, ‖k‖L∞(R))max(1, 22𝑗 S̃2
𝑗−1 ‖𝜌0‖−1

L∞(R)).

Adding on both sides 𝛿 > 0 and taking the logarithm, we arrive at

log(S̃𝑗 + 𝛿) ≤ max(log(C(𝜎,m, ‖k‖L∞(R)) + 𝛿), log(C(𝜎,m, ‖k‖L∞(R), ‖𝜌0‖L∞(R))22𝑗 S̃2
𝑗−1 + 𝛿))

≤ 2 log(S̃𝑗−1 + 𝛿) + 𝑗 log(4) + log(C(𝜎,m, ‖k‖L∞(R), ‖𝜌0‖L∞(R)))

for some new constant C(𝜎,m, ‖k‖L∞(R)) > 0. This implies

2−𝑗 log(S̃𝑗 + 𝛿) − 21−𝑗 log(S̃𝑗−1 + 𝛿) ≤ 2−𝑗𝑗 log(4) + 2−𝑗C(𝜎,m, ‖k‖L∞(R), ‖𝜌0‖L∞(R))

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.10069 by U

niversitätsbibliothek M
annheim

, W
iley O

nline L
ibrary on [06/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHEN ET AL. 15

for 𝑗 ∈ N, where we used Lemma 3.7 to not subtract infinity, that is, log(S̃𝑗−1 + 𝛿) < ∞. Adding the above inequality
over 𝑗 = 1, … , J, we find

2−J log(S̃J + 𝛿) − log(S̃0 + 𝛿) =
J∑
𝑗=1

2−𝑗 log(S̃𝑗 + 𝛿) − 2−( 𝑗−1) log(S̃𝑗−1 + 𝛿)

≤
∞∑
𝑗=1

2−𝑗𝑗 log(4) + 2−𝑗C(𝜎,m, ‖k‖L∞(R), ‖𝜌0‖L∞(R))

≤ C

for a constant C independent of J and 𝛿 > 0. A straightforward way to see that the series is absolutely convergent is
to apply the ratio criterion from elementary analysis.

Now, we have S̃0 = sup
t∈[0,T)

‖𝜌(·, t)‖L1(R) = 1 by mass conservation. Therefore, taking the exponential function on both

sides and letting 𝛿 → 0, we discover

S2−J

J ≤ C ‖𝜌0‖(2J−1)2−J

L∞(R) ≤ C(𝜌0) < ∞.

On the other hand, we have

S2−J

J =
(

sup
t∈[0,T)∫R

𝜌2J

m(t, x)dx
) 1

2J

= sup
t∈[0,T)

(
∫
R

𝜌2J

m(t, x)dx
) 1

2J

.

Finally, we can take the limit J → ∞ to conclude

sup
t∈[0,T)

‖𝜌m(t, ·)‖L∞(R) = sup
t∈[0,T)

lim
J→∞

‖𝜌m(t, ·)‖L2J (R) ≤ lim sup
J→∞

sup
t∈[0,T)

‖𝜌m(t, ·)‖L2J (R)

= lim sup
J→∞

S2−J

J ≤ C(‖k‖L∞(R), 𝜌0).

□

4 LOCAL LIPSCHITZ BOUND FOR THE INTERACTION FORCE KERNELS

In this section, we introduce a uniform Lipschitz assumption on the approximation sequence (k𝜖, 𝜖 > 0) and show that
most bounded confidence models, as used in the theory of opinion formation [7], satisfy this assumption.

At first glance, we notice that even though the interaction force kernels k𝜖 is uniformly bounded, it is not uniformly Lip-
schitz continuous in 𝜖. Hence, the classical theory regarding Lipschitz continuous interaction force kernels on mean-field
limits cannot be applied directly to the particles systems introduced in Section 2.2. Instead, we need to use the properties of
the convolution to derive uniform Lipschitz continuity of the mean-field force k𝜖 ∗ 𝜌𝜖 . Following, for example, [36, 39, 59],
we derive a Lipschitz bound for certain models in the case where the trajectories X𝜖

t and Y 𝜖
t are close in a suitable sense.

This approach requires an approximation with suitable properties and could not be generalized, so far, to arbitrary approx-
imations. The main reason lies in the derivative of the approximation k𝜖 . If the derivative would be nonnegative, then we
could use a Taylor approximation, the properties of the solution 𝜌𝜖 and the formula ‖‖‖ d

dx
k𝜖 ∗ 𝜌𝜖t

‖‖‖L∞(R)
= ‖‖‖k𝜖 ∗ d

dx
𝜌𝜖t
‖‖‖L∞(R)

to obtain a local Lipschitz bound for k𝜖 with estimates on the gradient d
dx
𝜌𝜖t . Unfortunately, in most cases, a simple molli-

fication of k has a derivative becoming nonnegative as well as nonpositive. Therefore, we have to postulate the following
assumptions on the approximation sequence (k𝜖, 𝜖 > 0).

Assumption 4.1. The sequence (k𝜖, 𝜖 > 0) satisfies the following:

(i) There exists a family of functions (l𝜖, 𝜖 > 0) such that

|k𝜖(x) − k𝜖(𝑦)| ≤ l𝜖(𝑦)|x − 𝑦|
for x, 𝑦 ∈ R with |x − 𝑦| ≤ 2𝜖;
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16 CHEN ET AL.

(ii)
sup

t∈[0,T]
‖‖l𝜖 ∗ 𝜌𝜖t ‖‖L∞(R) ≤ C(‖k‖L∞(R))(‖𝜌0‖L1(R) + ‖𝜌0‖L∞(R)),

where C(‖k‖L∞(R)) is some finite constant depending on the L∞(R)-norm of k.

Remark 4.2. The constant 2 in Assumption 4.1 can be replaced by any positive constant. For simplicity, we choose the
most convenient one to avoid cumbersome notation.

4.1 Exemplary interaction force kernels
The particle systems, as introduced in Section 2.2, can be used to model the opinion of interacting individuals, see, for
example, [7]. A prominent class is given by the so-called bounded confidence models, in which the interaction is described
by interaction force kernels of the form:

kBCM(x) ∶= 𝟙[0,R](|x|)h(x), with h ∈ C2(R).

To show that kBCM satisfies Assumption 4.1, we introduce the following approximation sequence (𝜓𝜖

a,b, 𝜖 > 0) of the
indicator function 𝟙[a,b](x) with a, b ∈ R, a < b, such that the following properties hold for each 𝜖 > 0:

• 𝜓𝜖

a,b ∈ C∞
c (R),

• 𝜓𝜖

a,b → 𝟙[a,b] as 𝜖 → 0 almost everywhere,
• supp(𝜓𝜖

a,b) ⊆ [a − 2𝜖, b + 2𝜖], supp( d
dx
𝜓𝜖

a,b) ⊂ [a − 2𝜖, a + 2𝜖] ∪ [b − 2𝜖, b + 2𝜖],
• 0 ≤ 𝜓𝜖

a,b ≤ 1, | d
dx
𝜓𝜖

a,b| ≤ C
𝜖

for some constant C > 0.

Since we want to take 𝜖 → 0, we consider only the case where 𝜖 is small enough. In particular, we can take the
mollification of the indicator function of a set. We define the regularized interaction force kernel:

k𝜖BCM(x) = 𝜓𝜖
−R,R(x)h(x) ∈ C2

c (R),

which obviously satisfies Assumption 3.1. That it also satisfies Assumption 4.1 is verified in the following.

Lemma 4.3 (Local Lipschitz bound for bounded confidence models). Consider the regularized interaction force kernel
k𝜖BCM with cut-off 𝜖. Moreover, let NBR𝜖 ∶= [−R − 4𝜖,−R + 4𝜖] ∪ [R − 4𝜖,R + 4𝜖] (“neighborhood of R”). Then, we have
the following estimates:

(i) For each x, 𝑦 ∈ R with |x − 𝑦| ≤ 2𝜖 and

l𝜖BCM(𝑦) ∶=
{

C𝟙[−R−3,R+3](𝑦), 𝑦 ∈ NBRc
𝜖

C𝜖−1, 𝑦 ∈ NBR𝜖

it holds that

|k𝜖BCM(x) − k𝜖BCM(𝑦)| ≤ l𝜖BCM(𝑦)|x − 𝑦|;
(ii) For each x, 𝑦 ∈ R

N with |x − 𝑦|∞ ≤ 𝜖 and

L𝜖i,BCM(𝑦1, … , 𝑦N) ∶=
1
N

N∑
𝑗=1

l𝜖BCM(𝑦i − 𝑦𝑗), (𝑦1, … , 𝑦N) ∈ R
N ,

it holds that

|K𝜖
i,BCM(x) − K𝜖

i,BCM(𝑦)| ≤ 2L𝜖i,BCM(𝑦)|x − 𝑦|∞,
where Ki,BCM is defined by (2.5) with kBCM.
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CHEN ET AL. 17

Proof. (i) Let |x − 𝑦| ≤ 2𝜖. By the mean value theorem, we have the bound

|k𝜖BCM(x) − k𝜖BCM(𝑦)| ≤ |||| d
dx

k𝜖(z)
|||| |x − 𝑦|

for some z in the line segment between x and 𝑦. Let us distinguish between two cases.
Case 1: 𝑦 ∈ NBR𝜖 . Using the bound

|||| d
dx

k𝜖BCM(z)
|||| ≤ |||| d

dx
𝜓𝜖(z)h(z)

|||| + ||||𝜓𝜖(z) d
dx

h(z)
|||| ≤ C𝜖−1

for all z ∈ R for some constant C > 0, which depends on the deterministic function h, it follows

|k𝜖BCM(x) − k𝜖BCM(𝑦)| ≤ C𝜖−1|x − 𝑦|.
Case 2: 𝑦 ∈ NBRc

𝜀. Because z lies on the line segment between x, 𝑦, it follows for some s ∈ [0, 1] that

|z − 𝑦| = |𝑦 − s(x − 𝑦) − 𝑦| ≤ |x − 𝑦| ≤ 2𝜖

and therefore |R−z| ≥ |R−𝑦|−|z−𝑦| ≥ 4𝜖−2𝜖 = 2𝜖. Analogously, |−R−z| ≥ |−R−𝑦|−|z−𝑦| ≥ 2𝜖. Consequently, z is
far enough away from the points R and −R such that the derivative of the approximation d

dx
𝜓𝜖 vanishes. This implies

|||| d
dx

k𝜖BCM(z)
|||| ≤ ||||𝜓𝜖(z) d

dx
h(z)

|||| ≤ |||| d
dx

h(x)
||||𝟙[−R−3,R+3](𝑦) ≤ C𝟙[−R−3,R+3](𝑦),

where we used |𝑦| ≤ |𝑦 − z| + |z| ≤ 2 + |z|. Together with the mean value theorem, this proves the second case.
(ii) We want to apply (i). For x, 𝑦 ∈ R

N , |x − 𝑦|∞ ≤ 𝜖, it follows

|K𝜖
i,BCM(x) − K𝜖

i,BCM(𝑦)| ≤ 1
N − 1

N∑
𝑗=1
𝑗≠i

|k𝜖BCM(xi − x𝑗) − k𝜖BCM(𝑦i − 𝑦𝑗)|
≤ 1

N − 1

N∑
𝑗=1
𝑗≠i

l𝜖BCM(𝑦i − 𝑦𝑗)|xi − x𝑗 − (𝑦i − 𝑦𝑗)|
≤ 2L𝜖i,BCM(𝑦)|x − 𝑦|∞.

It is indeed justified to apply (i) since |xi − x𝑗 − (𝑦i − 𝑦𝑗)| ≤ 2|x − 𝑦|∞ ≤ 2𝜖 for all i, 𝑗 = 1, … ,N. □

Remark 4.4. The second part of Lemma 4.3 is a direct consequence of part one. Hence, if (k𝜖, 𝜖 > 0) satisfies
Assumption 4.1, we have |K𝜖

i (x) − K𝜖
i (𝑦)| ≤ 2L𝜖i (𝑦)|x − 𝑦|∞

for x, 𝑦 ∈ R
N with |x − 𝑦|∞ ≤ 𝜖 and

L𝜖i (𝑦1, … , 𝑦N) ∶=
1
N

N∑
𝑗=1

l𝜖(𝑦i − 𝑦𝑗), (𝑦1, … , 𝑦N) ∈ R
N .

The convenient properties of the solutions (𝜌𝜖, 𝜖 ≥ 0) allow us to find a uniform bound of the convolution term l𝜖 ∗ 𝜌𝜖t .
This will be the content of the following lemma.

Lemma 4.5. Suppose Assumption 2.1 and let us define

L̄𝜖t,i,BCM(𝑦1, … , 𝑦N) ∶= (l𝜖BCM ∗ 𝜌𝜖t )(𝑦i), (𝑦1, … , 𝑦N) ∈ R
N ,
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18 CHEN ET AL.

the averaged version of L𝜖 for i = 1, … ,N. Then, there exists a constant C, depending on the deterministic function h,
such that

sup
i=1,… ,N

sup
t∈[0,T]

||L̄𝜖t,i,BCM||L∞(RN ) ≤ C (‖‖𝜌𝜖0‖‖L1(R) + ‖‖𝜌𝜖0‖‖L∞(R)),

where 𝜌𝜖t is the solution of (2.8) for the special interaction force kernel kBCM.

Proof. Let i ∈ {1, … ,N} and 𝑦 = (𝑦1, … , 𝑦N) ∈ R
N . Then, by mass conservation and Lemma 3.8, we have

|L̄𝜖t,i,BCM(𝑦)| = |(l𝜖BCM ∗ 𝜌𝜖t )(𝑦i)|
≤ ∫

R

𝟙{z∶𝑦i−z∈NBRc
𝜖
}|l𝜖BCM(𝑦i − z)𝜌t(z)|dz + ∫

R

𝟙{z∶𝑦i−z∈NBR𝜖}|l𝜖BCM(𝑦 − z)𝜌t(z)|dz

≤ C∫
R

|𝜌𝜖t (z)|dz + C𝜖𝜖−1‖‖𝜌𝜖t ‖‖L∞(R)

≤ C((‖‖𝜌𝜖t ‖‖L1(R) + ‖‖𝜌𝜖t ‖‖L∞(R))

≤ C((‖𝜌0‖L1(R) + ‖𝜌0‖L∞(R)),

where C again depends on the deterministic function h. □

Consequently, we have shown that k𝜖 = 𝜓𝜖h fulfills Assumption 4.1 and (as previously mentioned) Assumption 3.1,
which implies the following corollary.

Corollary 4.6. The interaction force kernel kBCM satisfies Assumptions 3.1 and 4.1 with the associated approximation
sequence (k𝜖BCM , 𝜖 > 0) given by k𝜖BCM(x) ∶= 𝜓𝜖

−R,R(x)h(x).

Another example of interest are interaction forces with h(x) ∶= sgn(x), which corresponds to a uniform interaction;
that is, every particle in the interaction radius has the same impact. Unfortunately, sgn(x) ∉ C2(R), and hence, we cannot
directly apply Lemma 4.3. However, the function sgn(x) has no effect on the discontinuities −R and R. Therefore, if we
can control the function around zero, we can obtain an analog result to Lemma 4.3. Indeed, we define

kU(x) ∶= − 𝟙[−R,0](x) + 𝟙[0,R](x), x ∈ R,

which can be appropriated by k𝜖U(x) ∶= 𝜓𝜖
−R,0(x) + 𝜓

𝜖
0,R(x). Defining

NBZR𝜖 ∶= [− R − 4𝜖,− R + 4𝜖] ∪ [− 4𝜖, 4𝜖] ∪ [R − 4𝜖,R + 4𝜖]

as the neighborhood of zero and R, we can perform the same steps as in Lemma 4.3 to prove the following Lemma for kU .

Lemma 4.7. Consider the regularized interaction force kernel k𝜖U with cut-off 𝜖. Then, we have the following estimates:

(i) For each x, 𝑦 ∈ R with |x − 𝑦| ≤ 2𝜖 and

l𝜖U(𝑦) ∶=
{

0, 𝑦 ∈ NBZRc
𝜖

C𝜖−1, 𝑦 ∈ NBZR𝜖

it holds that

|k𝜖U(x) − k𝜖U(𝑦)| ≤ l𝜖U(𝑦)|x − 𝑦|;
(ii) For each x, 𝑦 ∈ R

N with |x − 𝑦|∞ ≤ 𝜖 and

L𝜖i,U(𝑦1, … , 𝑦N) ∶=
1
N

N∑
𝑗=1

l𝜖U(𝑦i − 𝑦𝑗), (𝑦1, … , 𝑦N) ∈ R
N ,

it holds that |K𝜖
i,U(x) − K𝜖

i,U(𝑦)| ≤ 2L𝜖i,U(𝑦)|x − 𝑦|∞.

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.10069 by U

niversitätsbibliothek M
annheim

, W
iley O

nline L
ibrary on [06/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHEN ET AL. 19

Corollary 4.8. The interaction force kernel kU satisfies Assumptions 3.1 and 4.1 with the associated approximation
sequence (k𝜖U , 𝜖 > 0) given by k𝜖U(x) ∶= 𝜓𝜖

−R,0(x) + 𝜓
𝜖
0,R(x).

Proof. Apply Lemma 4.7 and similar computations as in proof of Lemma 4.5 to show that Assumption 4.1 is fulfilled.
The verification of Assumption 3.1 follows immediately. □

5 LAW OF LARGE NUMBERS

The derivation of propagation of chaos is based on defining several exceptional sets where the desired properties will not
hold. Hence, we need to rely on the fact that the probability measure of these sets is extremely small. This fact is the
subject of the next proposition.

Proposition 5.1 (Law of large numbers). Let 0 < 𝛼, 𝛿 such that 0 < 𝛿 + 𝛼 < 1∕2 and Z1, … ,ZN be independent
random variables in R such that Zi has density ui for i = 1, … ,N. Let h ∶ R → R be a bounded measurable function.

Define Hi(Z) ∶= 1
N

N∑
𝑗=1
𝑗≠i

h(Zi − Z𝑗) and

S ∶=
{

sup
1≤i≤N

|Hi(Z) − E(Hi(Z))| ≥ N−(𝛿+𝛼)
}
,

S̃ ∶=
{

sup
1≤i≤N

|Hi(Z) − E(−i)(Hi(Z))| ≥ N−(𝛿+𝛼)
}
,

where E(−i) stands for the expectation with respect to every variable except Zi, that is,

E(−i)(Hi(Z)) ∶=
1
N

N∑
𝑗=1
𝑗≠i

(h ∗ u𝑗)(Zi).

Then, for each 𝛾 > 0, there exists a constant C(𝛾) > 0, which depends on 𝛾,C, such that

P(S), P(S̃) ≤ C(𝛾)N−𝛾 .

Proof. We prove the statement for the set S. The estimate for the set S̃ can be shown similarly by replacing E(Hi(Z))
with E(−i)(Hi(Z)). First, we notice

P

(
sup

1≤i≤N
|Hi(Z) − E(Hi(Z))| ≥ N−(𝛿+𝛼)

)
≤

N∑
i=1

P(|Hi(Z) − E(Hi(Z))| ≥ N−(𝛿+𝛼)).

Hence, it suffices to prove

P(|Hi(Z) − E(Hi(Z))| ≥ N−(𝛿+𝛼)) ≤ C(𝛾)N−𝛾

for each 𝛾 > 0, i = 1, … ,N. Let us assume i = 1 and for 𝑗 = 2, … ,N, let us denote by Θ𝑗 the independent random
variables Θ𝑗 ∶= h(Z1 − Z𝑗). Then, applying Chebyshev's inequality to the function x → x2m, we obtain

P(|H1(Z) − E(H1(Z))| ≥ N−(𝛿+𝛼)) ≤ N2(𝛿+𝛼)m
E(|H1(Z) − E(H1(Z))|2m)

≤ N2(𝛿+𝛼)m
E

⎛⎜⎜⎝
(

1
N − 1

N∑
𝑗=2

(Θ𝑗 − E(Θ𝑗))

)2m⎞⎟⎟⎠ .
(5.1)
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20 CHEN ET AL.

The expectation on the right-hand side can be rewritten, using the multinomial formula, as

(x2 + x3 + · · · + xN)2m =
∑

a2+a3+…+aN=2m

(
2m

a2, … , aN

) N∏
𝑗=2

xa𝑗
𝑗
,

where a = (a2, a3, … , aN) ∈ N
N−1
0 is a multi-index of length |a| = 2m. Consequently, using the independence of

(Θ𝑗 , 𝑗 = 2, … ,N), we get

E

⎛⎜⎜⎝
(

1
N

N∑
𝑗=2

(Θ𝑗 − E(Θ𝑗))

)2m⎞⎟⎟⎠ = N−2m
∑

a2+a3+…+aN=2m

(
2m

a2, … , aN

) N∏
𝑗=2

E((Θ𝑗 − E(Θ𝑗))a𝑗 )

= N−2m
∑

a2+a3+…+aN=2 m|a|0≤m

(
2m

a2, … , aN

) N∏
𝑗=2

E((Θ𝑗 − E(Θ𝑗))a𝑗 ),

(5.2)

where |a|0 the number of nonzero entries of the multi-index a. Otherwise, if |a|0 > m, then there exists a 𝑗 such that
a𝑗 = 1 and the product vanish since E(Θ𝑗 − E(Θ𝑗)) = 0. From the bound on h, we have

|E((Θ𝑗 − E(Θ𝑗))a𝑗 )| = ||||∫R×R
(h(z1 − z𝑗) − E(Θ𝑗))a𝑗u1(z1)u𝑗(z𝑗)dz1dz𝑗

|||| ≤ Ca𝑗 .

Using the facts (
2m

a2, … , aN

)
≤ (2m)2m and

∑
a2+a3+…+aN=2 m|a|0=k

1 ≤ Nk(2m)k

for 0 ≤ k ≤ m, we can estimate (5.2) to arrive at

E

⎛⎜⎜⎝
(

1
N

N∑
𝑗=2

(Θ𝑗 − E(Θ𝑗))

)2m⎞⎟⎟⎠ ≤ N−2m
∑

a2+a3+…+aN=2 m|a|0≤m

(2m)2mC2m ≤ N−2m
m∑

k=1
Nk(2m)3mC2m ≤ C(m)Nm

N2m

for some constant C(m). Hence, plugging it into (5.1), we find

P(|H1(Z) − E(H1(Z))| ≥ N−(𝛿+𝛼)) ≤ C(m)N2(𝛿+𝛼)m+m

N2m .

Using the assumption 𝛿 + 𝛼 < 1∕2 and choosing m such that m(−1 + 2(𝛿 + 𝛼)) = 𝛾 proves the proposition. □

The law of large numbers provided in Proposition 5.1 allows to show that the sets, where the desired properties do not
hold, are small in probability.

Corollary 5.2. Let 0 < 𝛼, 𝛿, 0 < 𝛼 + 𝛿 < 1∕2, 𝜖 ∼ N−𝛽 with 0 < 𝛽 ≤ 𝛼 and define for 0 ≤ t ≤ T the following sets

B1
t ∶= {|K𝜖(YN,𝜖

t ) − K
𝜖

t (YN,𝜖
t )|∞ ≤ N−(𝛿+𝛼)}, B2

t ∶= {|L𝜖(YN,𝜖
t ) − L

𝜖

t (YN,𝜖
t )|∞ ≤ 1},

where the mean-field particles are close under the kernel K𝜖 and L𝜖 , which were defined in Section 2.2 and Remark 4.4.
Then, for each 𝛾 > 0, there exists a C(𝛾) > 0 such that

P((B1
t )

c),P((B2
t )

c) ≤ C(𝛾)N−𝛾

for every 0 ≤ t ≤ T, where the constant C(𝛾) is independent of t ∈ [0,T].
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CHEN ET AL. 21

Proof. First, the random variables (Y i,𝜖
t , i = 1, … ,N) are i.i.d. and have a probability density 𝜌𝜖t given by the solution

of the regularized system (2.8). Moreover, we have

K𝜖
i (x1, … , xN) = − 1

N

N∑
𝑗=1

k𝜖(xi − x𝑗), (x1, … , xN) ∈ R
N ,

with k𝜖 bounded. We recall that we denote byE(−i) the expectation with respect to every variable but the i-th. Therefore,
we get

E(−i)(K𝜖
i (Y

N,𝜖
t )) = − 1

N

N∑
𝑗=1

E(k𝜖(Y i,𝜖
t − Y 𝑗,𝜖

t ))

= − 1
N

N∑
𝑗=1 ∫R

k𝜖(Y i,𝜖
t − z)𝜌𝜖(z, t)dz = −(k𝜖 ∗ 𝜌t)

(
Y i,𝜖

t

)
= K𝜖

t,i(Y
N,𝜖
t )

for all i = 1, … ,N. As a result, we obtain

(B1
t )

c =
{

sup
1≤i≤N

|K𝜖
i (Y

N,𝜖
t ) − E(−i)(K𝜖

i (Y
N,𝜖
t ))| > N−(𝛿+𝛼)

}
and therefore, by Proposition 5.1,

P((B1
t )

c) ≤ C(𝛾)N−𝛾 .

For the set B2
t , we notice the function l𝜖N−𝛼 is bounded since 𝜖 ∼ N−𝛽 , and thus, we can do similar steps as before

with the set

(B2
t )

c = {N−𝛼|L𝜖(YN,𝜖
t ) − L

𝜖

t (YN,𝜖
t )|∞ ≥ N−𝛼}

⊆ {N−𝛼|L𝜖(YN,𝜖
t ) − L

𝜖

t (YN,𝜖
t )|∞ ≥ N−(𝛿+𝛼)}.

This proves the corollary. □

6 PROPAGATION OF CHAOS IN PROBABILITY

In this section, we are going to prove propagation of chaos for the particle system (2.3). We deploy a coupling method
with the mean-field SDE (2.2) and show convergence in probability with an arbitrary algebraic rate N−𝛾 for 𝛾 > 0. To that

end, we present the main result, which states that the trajectory of the N-particle system XN with XN
0 ∼

N
⊗
i=1
𝜌0 typically

remains close to the mean-field trajectory Y N with same starting position XN
0 = Y N

0 during any finite interval [0,T].

Theorem 6.1. Suppose Assumption 2.1. Let T > 0, 𝛼 ∈
(

0, 1
2

)
and (k𝜖, 𝜖 > 0) satisfy Assumptions 3.1 and 4.1 with

𝜖 ∼ N−𝛽 for 0 < 𝛽 ≤ 𝛼. Then, for every 𝛾 > 0, there exists a positive constant C(𝛾) and N0 ∈ N such that

P

(
sup

t∈[0,T]

|||XN,𝜖
t − YN,𝜖

t
|||∞ ≥ N−𝛼

)
≤ C(𝛾)N−𝛾 , for each N ≥ N0.

The constant C(𝛾) depends on the initial density 𝜌0, the final time T > 0, 𝛼 and 𝛾 . The natural number N0 also depends
on 𝜌0, T and 𝛼.

To prove Theorem 6.1, we need the following auxiliary lemma.

Lemma 6.2 ([36, Lemma 8.1]). For a function 𝑓 ∶ R → R we denote the right upper Dini derivative by

D̄+
𝑦 𝑓 (𝑦) ∶= lim sup

h→0+

𝑓 (𝑦 + h) − 𝑓 (𝑦)
h

.
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22 CHEN ET AL.

Let g ∈ C1(R) and h(𝑦) ∶= sup
0≤s≤𝑦

g(s). Then, one has D̄+
𝑦 h(𝑦) ≤ max

(
0, d

d𝑦
g(𝑦)

)
for all 𝑦 ≥ 0.

Proof of Theorem 6.1. For T > 0 and 𝛼 ∈ (0, 1∕2) and 𝛿 = 1
2
(1∕2 − 𝛼) > 0, let us define the auxiliary process:

JN
t ∶= min

(
1, sup

0≤s≤t
e𝜆(T−s)(N𝛼|XN,𝜖

s − YN,𝜖
s |∞ + N−𝛿)

)
,

where 𝜆 > 0 is a constant, which will be defined later. In the first step, we want to understand how JN
t helps us to

control the maximum distance |||XN,𝜖
t − YN,𝜖

t
|||∞. For 0 ≤ t ≤ T, we have

sup
0≤s≤t

N𝛼|XN,𝜖
s − YN,𝜖

s |∞ ≤ sup
0≤s≤t

e𝜆(T−s)(N𝛼|XN,𝜖
s − YN,𝜖

s |∞ + N−𝛿). (6.1)

Hence, if JN
t < 1, we obtain sup

0≤s≤t
N𝛼|XN,𝜖

s − YN,𝜖
s |∞ ≤ JN

t < 1. Furthermore, we can assume N ≥ N0 such that

JN
o = e𝜆(T−s)N−𝛿 <

1
2

with N0 depending on T, 𝜆. As a result, we find

P

(
sup

t∈[0,T]
|XN,𝜖

t − YN,𝜖
t | ≥ N−𝛼

)
≤ P(JN

T ≥ 1) ≤ P

(
JN

T − JN
0 ≥ 1

2

)
≤ 2E(JN

T − JN
0 ) ≤ 2E

⎛⎜⎜⎝
T

∫
0

D̄+
t JN

t dt
⎞⎟⎟⎠

= 2

T

∫
0

E(D̄+
t JN

t )dt,

(6.2)

where we used a more general fundamental theorem of calculus, see, for example, [60, Theorem 11], in the last
inequality. In the next step, we want to estimate the Dini derivative D̄+

t JN
t . Applying Lemma 6.2, we discover

D̄+
t JN

t ≤ max
(

0, d
dt

g(t)
)

(6.3)

with g(t) ∶= e𝜆(T−t)(N𝛼|||XN,𝜖
t − YN,𝜖

t
|||∞ + N𝛿). Computing the derivative, we find

d
dt

g(t) = −𝜆e𝜆(T−t)(N𝛼|||XN,𝜖
t − YN,𝜖

t
|||∞ + N−𝛿) + e𝜆(T−t)N𝛼|K𝜖(XN,𝜖

t ) − K̄𝜖
t (Y

N,𝜖
t )|∞ (6.4)

with K𝜖 and K̄𝜖
t defined as in (2.5) and (2.6), respectively. Next, let us introduce the set At ∶= {D̄+

t JN
t > 0} and notice

that (6.3) implies At ⊆ {D̄+
t JN

t ≤ d
dt

g(t)}. Hence, we discover

E(D̄+
t JN

t ) = E(D̄+
t JN

t 𝟙At ) + E(D̄+
t JN

t 𝟙Ac
t
) ≤ E

( d
dt

g(t)𝟙At

)
.

In combination with (6.2), we see that, in order to prove the theorem, it is enough to show that E( d
dt

g(t)𝟙At ) is bounded
by C(𝛾)N−𝛾 for some constant C(𝛾) > 0 and t ∈ [0,T].

At this moment, let us recall the sets B1
t ,B

2
t from Section 5, where the “good” properties hold to further reduce the

problem. We have
E

( d
dt

g(t)𝟙At

)
= E

( d
dt

g(t)𝟙At∩B1
t ∩B2

t

)
+ E

( d
dt

g(t)𝟙At∩(B1
t ∩B2

t )c
)

≤ E

( d
dt

g(t)𝟙At∩B1
t ∩B2

t

)
+ CN𝛼(P((B1

t )
c) + P((B2

t )
c))

≤ E

( d
dt

g(t)𝟙At∩B1
t ∩B2

t

)
+ C(𝛾)N−𝛾 ,
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CHEN ET AL. 23

where we used the fact that the interaction force approximation k𝜖 is uniformly bounded in the first inequality, and
thus, we have | d

dt
g(t)| ≤ CN𝛼 with the help of (6.4). The last inequality follows immediately from Corollary 5.2 and

relabeling 𝛾 . It is therefore enough to prove that d
dt

g(t) ≤ 0 holds under the event At ∩ B1
t ∩ B2

t . This is equivalent to
the inequality

e𝜆(T−t)N𝛼|K𝜖(XN,𝜖
t ) − K̄𝜖

t (Y
N,𝜖
t )|∞ ≤ 𝜆e𝜆(T−t)(N𝛼|||XN,𝜖

t − YN,𝜖
t

|||∞ + N−𝛿). (6.5)

We observe that on At we have JN
t < 1. In fact, let JN

t ≥ 1 and remember that JN
t is an nondecreasing function

bounded by 1. Consequently, the right upper Dini derivative vanishes, and we are in the set Ac
t . Together with (6.1),

this means

sup
0≤s≤t

|XN,𝜖
s − YN,𝜖

s |∞ ≤ N−𝛼 (6.6)

holds on At. Splitting up the term on the left-hand side of (6.5), we obtain

|K𝜖(XN,𝜖
t ) − K̄𝜖

t (Y
N,𝜖
t )|∞ ≤ |K𝜖(XN,𝜖

t ) − K𝜖(YN,𝜖
t )|∞ + |K𝜖(YN,𝜖

t ) − K̄𝜖
t (Y

N,𝜖
t )|∞

≤ |L𝜖(YN,𝜖
t )|∞|||XN,𝜖

t − YN,𝜖
t

|||∞ + N−(𝛿+𝛼)

≤ (C + |L𝜖t (YN,𝜖
t )|∞)|||XN,𝜖

t − YN,𝜖
t

|||∞ + N−(𝛿+𝛼)

≤ C(𝜌0,T)(
|||XN,𝜖

t − YN,𝜖
t

|||∞ + N−(𝛿+𝛼)),

where we used the local Lipschitz bound from Assumption 4.1, inequality (6.6) and the condition of event B1
t in the

second inequality. Then, we applied the condition of B2
t in the third inequality and finally Assumption 4.1 in the last

inequality. Inserting this back into the left-hand side of (6.5), we discover

e𝜆(T−t)N𝛼|K𝜖(XN,𝜖
t ) − K̄𝜖

t (Y
N,𝜖
t )|∞ ≤ e𝜆(T−t)N𝛼C(𝜌0,T)(

|||XN,𝜖
t − YN,𝜖

t
|||∞ + N−(𝛿+𝛼))

= C(𝜌0,T)e𝜆(T−t)(N𝛼|||XN,𝜖
t − YN,𝜖

t
|||∞ + N−𝛿).

Choosing 𝜆 = C(𝜌0,T) provides (6.5) and concludes the proof.

Remark 6.3. The cut-off 𝛼 ∈ (0, 1∕2) was only used in Corollary 5.2 to bound the set B2
t . Hence, one possibility on

improving the cut-off is to optimize Proposition 5.1 in order to handle more general cut-off functions.

From Theorem 6.1, it immediately follows that the marginals of XN
t and Y N

t converge in the Wasserstein metric, see,
for example, [59, Corollary 2.2]. For the sake of completeness, we include the statement below.

Corollary 6.4 ([59, Corollary 2.2.]). Let the assumptions of Theorem 6.1 hold. Consider the probability density 𝜌⊗N,𝜖
t of

YN,𝜖
t and 𝜌N,𝜖

t the probability density of XN,𝜖
t . Then, 𝜌N,k,𝜖

t converges weakly (in the sense of measures) to 𝜌⊗k,𝜖
t as N →

∞, 𝜖(N) → 0 for each fixed k ≥ 1. Furthermore, the probability density 𝜌N,𝜖
t converges weakly (in the sense of measures)

to the same measure as 𝜌⊗N,𝜖
t as N → ∞. More precisely, there exists a positive constant C and N0 ∈ N such that

sup
t∈[0,T]

W1(𝜌N,k,𝜖
t , 𝜌

⊗k,𝜖
t ), sup

t∈[0,T]
W1(𝜌N,𝜖

t , 𝜌
⊗N,𝜖
t ) ≤ C(𝜌0,T, 𝛼)N−𝛼

holds for each k ≥ 1 and N ≥ N0, where W1 denotes the Wasserstein metric

W1(𝜇, 𝜈) ∶= inf
𝜋∈Π(𝜇,𝜈)∫

R×R

1
k

k∑
i=1

|xi − 𝑦i|d𝜋(x, 𝑦)
and Π(𝜇, 𝜈) is the set of all probability measures on R × R with first marginal 𝜇 and second marginal 𝜈. The constant
C(𝜌0,T, 𝛼) depends on the initial condition 𝜌0, the final time T and 𝛼. Moreover, N0 ∈ N is the same as in Theorem 6.1.
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24 CHEN ET AL.

Corollary 6.4 implies the weak convergence in the sense of measures of the k-th marginal 𝜌N,k,𝜖
t to the product measure

𝜌
⊗k
t . Indeed, since 𝜌N,k,𝜖

t converges weakly to 𝜌⊗k,𝜖
t , it is sufficient to show that 𝜌⊗k,𝜖

t converges weakly to 𝜌⊗k
t . By the classic

result [9, Proposition 2.2] we can consider the special case k = 2, i.e 𝜌𝜖t ⊗ 𝜌𝜖t converges weakly to 𝜌t ⊗ 𝜌t. We can further
reduce it by applying [61, Theorem 2.8], which tells us that it is enough to show 𝜌𝜖t converges weakly to 𝜌t.

Lemma 6.5. Let T > 0 and suppose Assumption 2.1. Moreover, let (𝜌𝜖, 𝜖 > 0) and 𝜌 be the weak solutions obtained in
Theorems 3.2 and 3.5. Then, one has

sup
t∈[0,T]

||||∫R

(𝜌𝜖t (x) − 𝜌t(x))𝜙(x)dx
|||| →𝜖→0

0 (6.7)

for all 𝜙 ∈ L∞(R). In particular, 𝜌𝜖t ⊗ 𝜌𝜖t converges weakly to 𝜌t ⊗ 𝜌t for all t ≥ 0 in the sense of measures.

Remark 6.6. Suppose the assumptions of Theorem 6.1 hold. Lemma 6.5 together with the discussion before Lemma 3.3
and [9, Proposition 2.2] implies that, for all t ∈ [0,T],

lim
N→∞

1
N

N∑
i=1

𝛿Xi,𝜖
t
= 𝜌t

in law as measure valued random variables if 𝜖 ∼ N−𝛽 .

Proof of Lemma 6.5. First, we notice that the convergence is uniform in time. Therefore, the strong convergence result
from Lemma 3.4 cannot be applied. We start by showing (6.7) holds for 𝜙 ∈ H1(R). To that end, let us assume 𝜙 is in
a dense subset and smooth enough, that is, 𝜙 ∈ C∞

c (R). Now, let 0 ≤ t1 < t2 ≤ T. Then, the uniform bound on d
dt
𝜌𝜖t

(see (3.2)) and integration by parts [62, Theorem 23.23] implies

||||∫R

𝜌𝜖(t1, x)𝜙(x)dx − ∫
R

𝜌𝜖(t2, x)𝜙(x)dx
|||| =

|||||||
t2

∫
t1

⟨ d
dt
𝜌𝜖t , 𝜙

⟩
H−1(R),H1(R)

dt
|||||||

≤ |t2 − t1|1∕2‖‖‖‖ d
dt
𝜌𝜖
‖‖‖‖L2([0,T];H−1(R))

‖𝜙‖H1(R)

≤ C|t2 − t1|1∕2‖𝜙‖H1(R).

Consequently, the sequence of function t → ∫
R
𝜌𝜖t (x)𝜙(x)dx is equicontinuous. Using the L∞([0,T];L2(R))-bound, we

also get a uniform bound on the sequence. As a result, we can apply the Arzela–Ascoli theorem to obtain a convergent
subsequence, which depends on 𝜙 and will be denoted by (𝜌𝜖(𝜙), 𝜖(𝜙) ∈ N) such that ∫

R
𝜌
𝜖(𝜙)
t 𝜙dx → 𝜁 (𝜙) in C([0,T]).

By the fundamental lemma of calculus of variation and the fact that 𝜌𝜖(𝜙)t converges weakly in L2([0,T];L2(R)), we can
identify the limit 𝜁 (𝜙) = ∫

R
𝜌t𝜙dx. Since 𝜙 was taken from a dense subset of H1(R), we can use a diagonal argument

to obtain a subsequence, which will be not renamed, such that, for 𝜙 ∈ H1(R),

sup
t∈[0,T]

||||∫R

(𝜌𝜖(𝜙)t (x) − 𝜌t(x))𝜙(x)dx
|||| →
𝜖(𝜙)→0

0. (6.8)

With another density argument and the uniform bound of (𝜌𝜖, 𝜖 ≥ 0) in L∞([0,T];L2(R)), we obtain for each 𝜙 ∈
L2(R) a subsequence (𝜌𝜖(𝜙)t , 𝜖(𝜙) ∈ N) such that (6.8) holds. Again, since L2(R) is separable, we can use another
diagonal argument to show that we can obtain a subsequence (𝜌𝜖k

t , k ∈ N) such that (6.8) holds for all 𝜙 ∈ L2(R).
Notice that this subsequence is independent of the function 𝜙. Furthermore, the uniqueness of the limit implies
that (6.8) actually holds for any sequence (𝜌𝜖(N)

t , 𝜖(N) > 0) itself, where 𝜖(N) is some sequence depending on N such
that 𝜖(N) → 0 as N → ∞.
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CHEN ET AL. 25

Next, for 𝜙 ∈ L∞(R), we apply Lemma 3.3 and the fact that 𝜙(x)𝟙{|x|≤R} ∈ L2(R) to find

sup
t∈[0,T]

||||∫R

(𝜌𝜖t (x) − 𝜌t(x))𝜙(x)dx
||||

≤ sup
t∈[0,T]

||||∫R

(𝜌𝜖t (x) − 𝜌t(x))𝜙(x)𝟙{|x|≤R}dx
|||| + sup

t∈[0,T]

||||∫R

(𝜌𝜖t (x) − 𝜌t(x))𝜙(x)𝟙{|x|≥R}dx
||||

≤ sup
t∈[0,T]

||||∫R

(𝜌𝜖t (x) − 𝜌t(x))𝜙(x)𝟙{|x|≤R}dx
|||| + ‖𝜙‖L∞(R)R−1 sup

t∈[0,T]∫R

|𝜌𝜖t (x) + 𝜌t(x)||x|dx

≤ sup
t∈[0,T]

||||∫R

(𝜌𝜖t (x) − 𝜌t(x))𝜙(x)𝟙{|x|≤R}dx
|||| + C(𝜌0)‖𝜙‖L∞(R)R−1.

Letting 𝜖 → 0 and then R → ∞, we obtain (6.7), and the corollary is proven.
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