Reihe Informatik
06 / 2003

L ock-based Protocols for Cooperation
on XML Documents

Sven Helmer Carl-Christian Kanne Guido Moerkotte

L ock-based Protocols for Cooperation on XML
Documents

Sven Helmer, Carl-Christian Kanne, Guido Moerkotte

Fakultat fur Mathematik und Informatik
D7, 27
Universitat Mannheim
68131 Mannheim
Germany
phone: +49 621 181 2585
fax: +49 621 181 2588
[helmer|cc|moerkotte]@informatik.uni-mannheim.de

Abstract

The eXtensible Markup Language (XML) is well accepted in several differ-
ent Web application areas. As soon as many users and applications work concur-
rently on the same collection of XML documents — e.g. on an XML database via
a Web interface — isolating accesses and modifications of different transactions
becomes an important issue.

We discuss four different core protocols for synchronizing access to and mod-
ifications of XML document collections. These core protocols synchronize struc-
ture traversals and modifications. They are meant to be integrated into a native
XML base management System (XBMS) and are based on two phase locking.
We also demonstrate the different degrees of cooperation that are possible with
these protocols by various experimental results. Furthermore, we also discuss ex-
tensions of these core protocols to full-fledged protocols. Further, we show how
to achieve a higher degree of concurrency by exploiting the semantics expressed
in Document Type Definitions (DTDs).

1 Introduction

The rapid proliferation of the eXtentensible Markup Language (XML [4]) in many
different application areas results in a rapidly growing number of XML documents.
This is especially true in web-based applications where the semi-structuredness of the
data makes markup languages ideal for representing data. It is our hypothesis that
sooner or later users will work concurrently on XML documents with general purpose
applications like XML editors and stylesheet processors as well as with specialized
tools tailored to the needs of specific application areas. At the moment most tools of
this kind work on the XML documents using a standardized application programming
interface (e.g. the Document Object Model (DOM) [6]). Isolating different concurrent
applications (i.e. preventing them from having unwanted side effects on each other)
becomes an important issue.

There are essentially three possibilities of storing XML documents. The first al-
ternative is to use a file system, which — from an isolation point of view — is a
bad choice, due to the lack of synchronization mechanisms. The second alternative
is to use an existing relational, object-oriented, or object-relational database system
[3, 5, 8, 12, 16, 19, 20]. In the case of relational database systems there are several
different translation schemes. We have those in which elements are mapped onto tu-
ples. Elements from different documents may also share tables. In this case, when
inserting nodes, we need to lock the whole table to avoid the phantom problem. The
only translation scheme in which tables are not shared stores the XML documents in
Character Large OBjects (CLOBs). However, in this case locking is only possible at
the document level by locking the whole CLOB or at random byte positions within
the CLOB by range locking. Obviously, locking the whole document has too coarse a
granularity, while range locking completely disregards the structure of the XML doc-
ument. The third alternative is to implement a native XML base management system
(XBMS) [7, 9, 11]. One of the reasons to follow the XBMS approach is that it al-
lows incorporating synchronization protocols specifically adapted to the manipulation
of XML document collections.

The development of synchronization protocols for isolating different applications
has a long and successful history in the database community. One of the key concepts
here is the notion of serializability, i.e., that the outcome of concurrently executed
transactions is equivalent to a strictly serial execution of the transactions. Most of the
protocols that guarantee serializability already found their way into textbooks more
than a decade ago [2, 10, 14]. During the last decade some researchers have con-
centrated on defining notions weaker than serializability and developed protocols that
allow a more liberal cooperation between users. For a survey on cooperating transac-
tions and synchronization in general see [15].

However, we believe that serializability should still be the foundation for protocols
that allow cooperation, as there is always a lowest level where actions have to be
atomic and have to be isolated carefully in order to prevent the unwanted side effects
mentioned before. This motivated us to start with the development of protocols that
guarantee serializability.

The paper is organized as follows. In Section 2 we briefly describe a set of ac-
cess and modification operations we will consider for our core protocols. Section 3
discusses four different core protocols. They are based on strict two phase locking
and differ in their locking granularity. Two of these core protocols use mechanisms
developed for synchronizing ADTs [1, 13, 18]. In Section 4 we take a closer look at
the performance of the protocols. Section 5 discusses extensions to the core protocols
necessary to support the full DOM interface. This section also shows how knowledge
about the DTD of a document can be exploited to achieve a higher level of concurrency.
Section 6 concludes the paper.

2 Traversing and Modifying XML documents

Semi-structured data, like XML documents, are often represented as ordered, labeled
trees. The nodes of the tree store the names of the tags or textual data. For an example
of a tree representation of an XML document see Figure 1.

<o~ a

foo / \

<c b c
bar
</c>

'foo’ "bar’

(@) An XML document (b) Tree representation

Figure 1: An XML document and its tree representation

observer | structure | firstChild mutator | structure | insertBefore
lastChild replaceChild

previousSibling removeChild

nextSibling appendChild

getNodeByld contents | appendData
getElementByTagName deleteData

contents | getTextContents insertData
nodeName replaceData

getAttribute setAttribute

Figure 2: Some DOM Operations

The operations of a typical API for XML documents (e.g. DOM [6]) fall into four
categories: mutators and observers of the contents of a node and mutators and ob-
servers of the structure of a document (for a list of some operations provided by DOM
see Figure 2). The latter are usually called traversal operations. Since we believe that
modifying the string contents of a node can be handled by standard synchronization
protocols, we concentrate first on isolating document structure traversals and modifi-
cations. This will yield core protocols. In Section 5 we extend these core protocols
to isolate content reads and modifications as well as retrieval of nodes by ID/IDREF
attributes. (With an attribute of type ID, an identifier can be given to a node that is
unique among all identifiers contained in the document the node belongs to. An at-
tribute of type IDREF allows to point to a single node with a given ID. The IDREFS
attribute allows to point to several nodes by giving a list of IDs. For further details see
[4]).

In order not to overburden the discussion, we work with a small representative set
of operations a transaction can execute. We assume that a transaction first selects a
document to work on. This is done via a select document (sd) operation. The result is
a reference to the root node of the selected document. From there on it traverses and
modifies the document structure using a sequence of the following operations:

nthP retrieves the n-th child in the child list

nthM retrieves the n-th child counting from the end of the child list backwards

insA inserts a new node after a given node
insB inserts a new node before a given node
del deletes a given node

The distinction between attribute, element, and other node types is not important for
synchronization purposes. We therefore talk about nodes only.

3 Protocols

In this section we introduce the core protocols for synchronizing structure traversals
and modifications of XML documents. We also give some more details necessary for
the explanations. Generally speaking, our protocols are based on two phase locking
[2, 14]. It is important to note that all core protocols require that document access
starts at the root node and traverses documents top down. This requirement is relaxed
in Section 5.

3.1 Lock Modes

In standard two phase locking protocols for synchronizing read and write operations,
we have two kinds of locks: shared locks (S) and exclusive (X) locks. We could
also allow browse locks [21] in our approach without further trouble, but to keep the
following descriptions as simple as possible, we confine ourselves to shared and exclu-
sive locks at this point. Read operations require a shared lock while write operations
require an exclusive lock. We will look at the topic of content modification later, when
introducing the complete protocols (Section 5).

The more difficult (and novel) subject is synchronizing structure traversal and
modification via locking protocols. Therefore, we investigate this first. Similar to
the shared and exclusive locks for content traversal and modification, we introduce a
shared lock named T that has to be acquired for traversing document structure and an
exclusive lock named M that has to be acquired for modifying document structure.

3.2 Compatibility Matrix

The compatibility matrix of these two locks is analogous to the one for S and X locks
(see Figure 3 (a)). The standard rules of two phase locking (2PL) have to be obeyed:
Before performing an operation, the corresponding lock has to be acquired, during
lock acquisition a check for conflicting locks is performed, if a conflict exists the lock
requiring transaction is blocked, and locks are held till the end of the transaction.
If a transaction is blocked, the wait graph is updated, and if it contains a cycle, the
transaction that completes the cycle is aborted.

3.3 Doc2PL

The first and simplest protocol Doc2PL locks at the document level. For applications
where transactions work on different documents, e.g. one author edits one document,

TL TR TA TZ ML MR MA MZ
TL | + + + + - + + +
TR | + + + + + - + +
T M TA | + + + + + + - +
T+ - TZ | + + + + + + + -
M- - ML | - + + + - + + +
MR | + - + + + - + +
€Y MA | + + - + + + - +
MZ | + + + - + + + -

(b)

Figure 3: Compatibility matrices

this easy to implement low-overhead protocol suffices. Note that although this proto-
col is widely used in XBMS at the moment (e.g. in Tamino [17]), it does not allow
cooperation on one single XML document. We include it nonetheless, as we use it as
a reference for comparison.

3.4 Conceptual Document Model

The next protocols lock at the node level. In order to understand these protocols and
their differences, one can think of an XML document consisting of nodes with pointers
which connect them. Figure 4 shows a parent node and its child nodes together with
the pointers. Of course the XBMS does not have to represent documents with these
pointers. For example, one could have embedded child nodes (as in Natix [7]) or
an array of pointers to all children. We use the pointer model only to explain the
protocols and to derive lock names. The protocols themselves are independent of the
actual representation of the XML document structure.

-~ Node2PL
A P Z
/ \ ***** 002PL
R _ R _
- — - — - - NO2PL
c1 | c2 | c3

Figure 4: Conceptual list representation of XML documents

3.5 Node2PL and NO2PL

Figure 4 also shows on which items the different protocols acquire locks. The Node2PL
protocol acquires locks for parent nodes. If, for example. we traverse to the nth-child
of a given node P, then node P is locked in 1" mode. If we insert a child under node
P, then node P is locked in M mode.

The protocol NO2PL acquires locks for all nodes whose pointers are — at least
conceptually — traversed or modified. Refer again to Figure 4. If we introduce for
example a new child C'0 before child C'1, then we have to acquire two exclusive locks:
one for the parent node P, since its first child pointer is modified and one for the
child node C'1 because its left sibling pointer is modified. However, we do not have to
acquire a lock for child CO0, since no other transaction will be able to traverse to this
node, as all ways to it are blocked: C0 can be reached from the parent node neither by
an nthP operation nor by an nthM operation since P and C'1 are locked exclusively.

3.6 OO2PL

Whereas in Node2PL and NO2PL we lock nodes, OO2PL locks pointers. As there are
four pointers for every node (first child (A), last child (2), left sibling (L) and right
sibling(R)), we need four shared locks and four exclusive locks. The locks are TA,
TZ, TL, TR, MA, MZ, ML, MR corresponding to the above order. The compatibility
matrix is shown in Figure 3(b). Again, before executing an operation, locks have to be
acquired according to the pointers (conceptually) traversed or modified. OO2PL can
be seen as an application of the framework for synchronizing abstract data types [18].

3.7 Mode of Operation

Let us briefly consider the number of locks to be maintained by the different proto-
cols. Doc2PL has the fewest number of locks: at most one lock per transaction per
document. In Node2PL and NO2PL we have at most one lock per transaction per
node. The difference is that at the leaf level of the documents (where the most nodes
are), Node2PL never acquires any locks. However, NO2PL does acquire locks for leaf
nodes. OO2PL acquires at most four locks per transaction per node and hence at most
four times as many locks as NO2PL.

3.7.1 Examples

Example for Deletion: The following example illustrates the higher degree of con-
currency allowed by OO2PL compared to the other two phase locking based protocols.
Consider the following schedule and the document in Figure 5, which illustrates the
M locks held by T7.

Ty T
sd —n
nthP(Z) = N2, N3
del delete ns
sd — N1
nthM(l) = n4
nthP(1) = nr

The M lock on the whole document held by 77 when using Doc2PL blocks the
very first operation of ;. With Node2PL, T} locks n; in exclusive M mode and again
the first operation of 75 is blocked. NO2PL requires T3 to lock ny and ng4 in A mode.
T5 can acquire a 7' lock on ny and is able to execute its first operation. Then it has to
wait. Under OO2PL T; acquires M R and M L locks for ny and n4 respectively. Th

can still acquire a T'A and a T'Z lock on n and n4 respectively, and does not have to
wait at all.

fffff node2PL L
no2PL | |
77777 OOZP/\
no b ::::::‘ ! ns i Ny
ns ng nz Ng

Figure 5: M-Locks held by T3 for different 2PL versions (deletion)

Example for Insertion: Consider the following schedule and the document in
Figure 6, which illustrates the M locks held by T7.

T T
sd — n,
nthP(1) = nq
insA insert n,
sd —
nthP(1) = nq
nthP(1) = ns

When applying Doc2PL and Node2PL, T5 cannot execute a single operation until 77
releases its locks, since both require an exclusive M lock on ny. Under NO2PL T}
acquires an M lock for no and ng. This still allows T5 to traverse nq, but then it has to
wait. With OO2PL T does not have to wait at all, since the M locks acquired by T}
(M R for ny and M L for n3) still allow T5 to traverse from nq via ny to ns.

3.7.2 Interim Summary

As can be easily seen, situations leading to conflicts in OO2PL also result in conflicts
in NO2PL, as in NO2PL the nodes from which the locked pointers in OO2PL originate
are locked. Node2PL goes one step further and locks the parent node of the affected
node, leading to a conflict at an ever earlier point. Doc2PL ultimately locks the whole
document, provoking an immediate conflict. The examples show that the reverse is not
true (e.g. a conflict in Node2PL is not necessarily one in OO2PL). So, the protocols
can be strictly ordered by the degree of cooperation they allow in the following way
(from most cooperative to least): OO2PL, NO2PL, Node2PL, and Doc2PL. However,
the price for a higher degree of cooperation is the higher number of locks that have to
be managed.

77777 mzp/\
no, "/7;\’ na Ny
Ns Ne nz Ng

Figure 6: M-Locks held by T for different 2PL versions (insertion)

4 Evaluation

4.1 Simulation Environment

We implemented a simulation environment in which we tested the performance of the
different core protocols. In the context of our simulations we generate a number of
documents. Each document has a certain depth and the fan-out of a node is deter-
mined randomly within a certain range. The default parameters chosen to generate the
documents are given in Table 1.

On these documents, the transactions perform operations as defined in Section 2.
As its first operation, a transaction selects a document randomly. It then continues
by choosing randomly any of the operations with the default probabilities indicated
in Table 1. These probabilities do not apply to modifications at the root node level.
Root nodes cannot be deleted and no siblings to root nodes can be inserted. When a
transaction tries to access a child of a leaf node of a document, this operation fails and
the transaction selects a new document randomly.

We measured the percentage of transactions that aborted as well as the average
number of waits (in number of operation steps) per committed transaction. Note that
these two parameters are critical for the throughput of the protocols, as one reflects
the probability that a transaction will commit successfully, while the other measures
the average idle time before a transaction successfully commits. We investigated these
two parameters subject to variations in the number of operations per transaction, the
number of concurrently running transactions, and the number of documents in our
collection. Unless otherwise indicated, we use the default parameters from Table 1.

4.2 Varying the Length of Transactions

Figure 7 shows the results for varying the length of the involved transactions. The left
hand part (Figure 7(a)) depicts the percentage of aborted transactions, while the right
hand part (Figure 7(b)) displays the average number of wait cycles before committing.
Obviously, the longer the transactions, the more conflicts occur, resulting in a higher
abort rate and longer waits. We can clearly see that the higher locking granularity of

percentage of aborted transactions

60

50 r

40

30 -

20

10 -

0

document parameters
number of documents 100
document depth 4
minimal fan-out of node 3
maximal fan-out of a node 5

probabilities for operations

select document 0
nthP 40
nthM 40
insA 5
insB 5
delete 10

transaction parameters
number of transactions 100
...concurrent transactions 5
... operations per transaction | 50

Table 1: Default parameters for the simulation environment

Aborts depending on no of ops per transaction

Doc2PL ——
Node2PL -------
NO2PL -
OO02PL e

S,

o
g

20 30 40 50 60 70 80
no of ops per transaction

(a) Percentage of aborts

waits per committed transaction (in number of op steps)

200
180

160
140
120
100
80
60
40
20

Waits depending on no of ops per transaction

Doc2PL —+—
L Node2PL -—--x--—-
NO2PL -
OO02PL @

10 20 30 40 50 60 70 80 90 100
no of ops per transaction

(b) Waits

Figure 7: Results for varying length of transactions

the protocols Node2PL, NO2PL, and OO2PL pays off. Doc2PL runs into deadlocks
much more often. OO2PL usually has an abort rate that is only half as large as that of
Doc2PL, up to a transaction size of 40 operations OO2PL has no aborts (due to dead-
locks) whatsoever. OO2PL also has the smallest idle time per committed transaction.
When comparing Node2PL to NO2PL, we can see that Node2PL dominates NO2PL,

as they both show similar performance, but NO2PL needs to hold twice the number
of locks to accomplish this (so its overhead is greater). OO2PL is even better than
Node2PL and NO2PL, but it needs to manage four locks per node.

o
=]

N
[s)
T

n
o
T

=
o
T

percentage of aborted transactions
w
o

o

Aborts depending on no of concurrent transactions

T T
Doc2PL ——
Node2PL ---x----
| NO2PL -
O02PL &

20
no of concurrent transactions

(a) Percentage of aborts

waits per committed transaction (in number of op steps)

w
=]
S

N
a
=]

n
o
S

=
13
=]

=
o
S

a
=]

o

Waits depending on no of concurrent transactions

T T T T
Doc2PL ——
Node2PL ----x--

NO2PL -

OO2PL @

no of concurrent transactions

(b) Waits

Figure 8: Results for varying the concurrency

4.3 Varying the Number of Concurrent Transactions

Figure 8 shows the results for varying the number of concurrently running transactions.
Again, the left hand part (Figure 7(a)) depicts the percentage of aborted transactions,
while the right hand part (Figure 7(b)) displays the average number of wait cycles
before committing. Clearly, increasing the number of concurrently running transac-
tions leads to more conflicts, as more transactions are simultaneously competing for
the same documents. For this parameter, the performance gap between Doc2PL and
OO2PL becomes even more apparent. Most of the time, the percentage of aborted
transactions for Doc2PL is three to four times as high as that for OO2PL. In terms
of performance, Node2PL and NO2PL are very close to each other again, making
Node2PL the better choice.

4.4 Varying the Number of Documents

70

percentage of aborted transactions

0

Aborts depending on no of documents

60 -

50 r

40 +

30 -

20 -

10 -

T T
Doc2PL ——

Node2PL ----x--
NO2PL - -
O02PL &

0

80 100 120 140 160 180 200
no of documents

(a) Percentage of aborts

20 40 60

waits per committed transaction (in number of op steps)

[N
S
o

=
N
o

[N
o
[s]

®
(=]

@
=]

N
o

N
o

o

Waits depending on no of documents

T T T
Doc2PL ——

Node2PL ----x--
NO2PL - -
O02PL &

80 100 120 140 160 180 200
no of documents

(b) Waits

20 40 60

Figure 9: Results varying the number of documents

10

Figure 9 shows the results for varying the number of documents in our collection.
The left hand part (Figure 9(a)) depicts the percentage of aborted transactions, while
the right hand part (Figure 9(b)) displays the average number of wait cycles before
committing. Obviously, the more documents we have, the lower the number of con-
flicts, as the transactions are more spread out. We have quite the same picture in terms
of performance. OO2PL comes in at first place, followed by Node2PL and NO2PL
(which are very close to each other), and Doc2PL lags behind.

4.4.1 General result

Generally speaking, the degree of cooperation allowed on a collection of XML docu-
ments can be improved considerably by abandoning the straightforward approach of
locking whole documents. We achieved this by investing resources in the lock manager
increasing its lock granularity.

5 Extensions to Full-fledged protocols

5.1 Node contents

In order to extend the core protocols to full protocols, we need to isolate content ac-
cesses and modifications as well as structural traversals and modifications. For our core
protocols, this can easily be done by adding the traditional S and X locks for contents
with their corresponding compatibility matrix. The compatibility matrix comprising
all four locks is:

M

S X
+ -

+ + +

+ o+

Z X

Note that the .S and X locks are compatible with the 1" locks, while M locks are not
compatible with any other locks. All these locks can be applied at the document and
node level. This way, Doc2PL, Node2PL and NO2PL can easily be extended.

In the OO2PL protocol, it does not make sense to devise a combined compatibility
matrix composed of S, X, Tz, and M x locks, because the content locks refer to nodes,
while the structural locks refer to pointers. Tz locks are implicitly compatible with S
and X locks, as traversing through a node using its pointers does not affect the content
of anode. Mz locks are implicitly incompatible with S and X locks, because another
transaction that has acquired a content lock on a node must have navigated to this node
in some way, thereby setting at least one T'x lock.

5.2 1D lookup

XML provides ID attributes which uniquely identify nodes within a document. Us-
ing IDREF and IDREFS attributes we can establish links from arbitrary nodes within
the same document to nodes with an ID attribute. These links allow us to jump di-
rectly from one node to another without starting at the root and descending down a

11

non-interrupted path. However, allowing ID jumps leads to serious problems in our
core protocols, resulting in non-serializable schedules. So far, we have required that a
transaction moves down a document. More specifically, a transaction must hold a lock
on the parent node in order to acquire a lock for the child node. This is the typical re-
quirement for tree locking protocols designed for higher concurrency on B-Tree index
structures [2]. The reason we need this requirement is the following. If, for example,
a node with children is deleted, we only lock the deleted node without locking its de-
scendants. If another transaction jumps to a descendant of the (about to be) deleted
node via an IDREF, we are in trouble. The straightforward solution to this problem is
to lock all descendants of the node we want to delete. Nevertheless, we advise against
this, since it involves a lot of overhead (traversing and locking all the descendants).

Instead, we propose to keep a set of ID locks for every document. Again, we
distinguish between shared ID locks (IDS) and exclusive 1D locks (IDX). IDS locks
are compatible with other IDS locks, while IDX locks are incompatible with all other
ID locks. Every time a transaction wants to follow an IDREF link to a node with the
ID 4, it has to acquire an IDS lock on i. After getting this lock the transaction may
navigate from this node to other nodes (or request S or X locks) in the usual way. If
we want to delete a node n;, we have to acquire exclusive IDX locks on all descendants
of n; that possess an ID attribute. In this way, we can enforce serializability even in
the presence of ID jumps. (Note that ID locks can be seen as a variant of the Tz and
Mz locks of the OO2PL protocol; they can be interpreted as yet another pointer we
can traverse.)

5.3 DTD-based conflict reduction

Knowledge of the DTD can reduce the number of conflicts (and hence increase the
degree of cooperation) of the protocols Node2PL, NO2PL and OO2PL. We illustrate
the exploitation of DTD knowledge by means of a simple example. Let a DTD specify
a node’s content as A*B*C*. That is, the first couple of children are of type A, then
follow the B and the C' nodes. Figure 10 (a) shows an example document adhering to
this DTD. Note that the DTD groups the children of the root node into different blocks.

Assume that there are operations first(t) and last(t) that retrieve the first/last child
of type t of a given node. Consider the schedule

TA, | TA;
first(B)
last(A)
insB(x)
insA(y)

In this schedule, all protocols block 77 when it is trying to execute insB(x). Assume
that x is of type B and y is of type A. Then — under the given DTD — there is no
conflict since last(A) and insB(x) as well as first(B) and insA(y) commute.

In general, whenever the DTD groups the children of a node into sets of disjoint
type, any jump to one of these sets and any modification of it commutes with any jump
to another set and its modification. To see the reason why the operations commute
consider our example document in Figure 10(a) again. Since the nodes in each group

12

(@)
P
l
A B’ c
AN N AN
LA e L e L e]
(b)

Figure 10: DTD illustration

are of different type, we can introduce artificial dummy nodes 4, B’ and C’. Execut-
ing for example a first(B) operation is then equivalent to jumping to B’ — the artificial
top node of all B nodes — and then selecting its first child. Any change taking place
under any of the dummy node obviously does not interfere with any change in another
subtree below some other dummy node.

6 Conclusion and Outlook

On of the basic concepts for synchronizing accesses of many different users to the
same data is the isolation of these accesses from each other. In order to isolate struc-
ture traversals and modifications on XML documents and guarantee serializability for
these operations, we have introduced four different core protocols based on two phase
locking. OO2PL is also based on ideas for synchronizing abstract data types. Further-
more, we discussed how these core protocols can be extended to provide support for
all concepts to cover the full DOM standard. We further illustrated that DTD knowl-
edge can improve the degree of concurrency achieved by the two phase locking based
protocols.

At the moment we are integrating the presented techniques into our native XML
base Natix [7] to test them in real applications. We also plan to adapt timestamp-
based protocols for synchronizing accesses to semi-structured data. For low-conflict
environments we expect these protocols to be even better than 2PL-based ones, due to
the avoidance of deadlocks.

13

References

[1] B. Badrinath and K. Ramamrithan. Semantics-based concurrency control: Be-
yond commutativity. ACM Trans. on Database Systems, 17(1):163-199, 1992.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

[3] K.B"6hm, K. Aberer, E. Neuhold, and X. Yang. Structured document storage and
refined declarative and navigational access mechanisms in HyperStorM. VLDB
Journal, 6(4):296-311, 1997.

[4] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible markup language
(xml) 1.0. Technical report, World Wide Web Consortium, 1998. W3C Recom-
mendation 10-Feb-98.

[5] A. Deutsch, M. Fernandez, and D. Suciu. Storing semistructured data with
STORED. In Proc. of the ACM SGMOD Conf. on Management of Data, 1999.

[6] L. Wood et al. Document object model (dom) level 1 specification (second edi-
tion). Technical report, World Wide Web Consortium, 2000. W3C Working Draft
29-Sept-2000.

[7] Thorsten Fiebig, Sven Helmer, Carl-Christian Kanne, Guido Moerkotte, Julia
Neumann, Robert Schiele, and Till Westmann. Anatomy of a native XML base
management system. VLDB Journal, 11(4):292-314, 2002.

[8] D. Florescu and D. Kossmann. Storing and querying XML data using an
RDBMS. |EEE Data Engineering Bulletin, 22(3):27-34, 1999.

[9] R. Goldman, J. McHugh, and J. Widom. From semistructured data to XML.:
Migrating the Lore data model and query language. In ACM S GMOD Wbrkshop
on the Web and Databases (WebDB), 1999.

[10] P. Gray and A. Reuter. Transaction Processing: Concepts and Technology. Mor-
gan Kaufmann Publishers, San Mateo, Ca, 1993.

[11] H.V. Jagadish, S. Al-Khalifa, A. Chapman, L.V.S. Lakshmanan, A. Nierman,
S.Paparizos, J.M. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu. TIM-
BER: A native XML database. VLDB Journal, 11(4):274-291, 2002.

[12] M. Klettke and H. Meyer. XML and object-relational database systems — enhanc-
ing structural mappings based on statistics. In ACM SGMOD Workshop on the
Web and Databases (WebDB), 2000.

[13] H. Korth. Locking primitives in a database system. Journal of the ACM,
30(1):55-79, 1983.

[14] C. H. Papadimitriou. The Theory of Database Concurrency Control. Computer
Science Press, 1986.

14

[15]

[16]

[17]

[18]

[19]

[20]

[21]

K. Ramamrithan and P. Chrysanthis. Advances in Concurrency Control and
Transaction Processing. IEEE Computer Society Press, 1997.

A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas. Efficient relational stor-
age and retrieval of XML documents. In ACM SGMOD Workshop on the Web
and Databases (WebDB), 2000.

H. Sch’6ning. Tamino — a DBMS designed for XML. In ICDE, pages 149-154,
Heidelberg, 2001.

P. Schwarz and A. Spector. Synchronizing shared abstract data types. ACM
Trans. Computer Systems, 2(3):223-250, 1984.

J. Shanmugasundaram, H. Gang, K. Tufte, C. Yhang, D. J. DeWitt, and
J. Naughton. Relational databases for querying xml documents: Limitations and
opportunities. In Proc. Int. Conf. on Veery Large Data Bases (VLDB), pages 302—
314, 1999.

B. Surjanto, N. Ritter, and H. Loeser. XML content management based on object-
relational database technology. In Proc. Int. Conf. on Web Information Systems
Engineering (W SE), pages 64-73, 2000.

R. Unland and G. Schlageter. Facility for non standard database systems. In A.K.
Elmagarmid, editor, Database Transaction Models for Advanced Applications,
pages 399-466. Morgan Kaufmann, 1992.

15

