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Abstract

Several alternatives to manage large XML document collections exist, rang-
ing from file systems over relational or other database systems to specifically
tailored XML repositories. In this paper we give a tour of Natix, a database
management system designed from scratch for storing and processing XML data.
Contrary to the common belief that management of XML data is just another
application for traditional databases like relational systems, we illustrate how al-
most every component in a database system is affected in terms of adequacy and
performance. We show how to design and optimize areas such as storage, trans-
action management comprising recovery and multi-user synchronization as well
as query processing for XML.
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1 Introduction

As XML [6] becomes widely accepted, the need for systematic and efficient storage of
XML documents arises. For this reason we have developed Natix, a native XML repos-
itory that is custom tailored to the requirements of processing XML documents. In our
opinion such a system has to fulfill several prerequisites. First of all it has to allow stor-
ing documents effectively and accessing these documents (or parts of the documents)
in an efficient manner. Associated with this is the support of standardized, declara-
tive query languages like XPath [9] and XQuery [8]. An XML repository should also
feature interfaces like SAX [29] and DOM [22] to assist in the rapid development of
applications. Last but not least a safe multi-user environment via a transaction man-
ager should be provided, which must be able to recover the system after a crash and
synchronize the concurrent access of many users. Here we describe how we put Natix
in a position to cope with all these tasks.

We are aware of the fact that several approaches based on traditional database
management systems (DBMSs) exist, e.g. storing XML in relational DBMSs or object-
oriented DBMSs [13, 17, 25, 28, 37, 38, 39, 40]. We believe, however, that a native
XML base management system is the more promising solution, as approaches that map
XML onto other data models suffer from severe drawbacks. For example, let us look
at the impact of mapping XML documents onto relational DBMSs on the storage of
those documents. As relational systems represent data as tuples in flat tables, we have
to decide on the actual schema. On the one hand, if we take a document-centric view
we could retain all information of one document in a single data item, e.g. a CLOB
(Character Large OBject). This is ideal for handling whole documents, but if we want
to manipulate fragments of documents we would have to read and parse the whole
document each time. On the other hand, if we take a data-centric view, each document
is broken down into several small parts, e.g. the nodes of a tree representation of an
XML document. Obviously, handling parts of documents is now much more efficient,
whereas importing or exporting a whole document has become a time-consuming task.
This dilemma exemplifies a potential for improvement exploitable only by native XML
base management systems. Opportunities for improvements are not limited to the
storage layer, as we illustrate throughout the rest of the paper.

The contributions of the paper are the following. We introduce a storage format
that clusters subtrees of an XML document tree into physical records of limited size.
This storage format solves the above mentioned dilemma. To improve recovery in the
XML context, we develop subsidiary logging to reduce the log size, annihilator undo
to accelerate undo and selective redo to accelerate restart recovery. To allow for high
concurrency a flexible multi-granularity locking protocol with an arbitrary level of
granularities is presented. This protocol guarantees serializability even if transactions
access directly some node in a document tree without traversing down from the root.
Note that existing tree locking protocols fail here. Evaluating XML queries differs
vastly from evaluating SQL queries. For example, SQL queries never produce an
XML document; neither as a DOM tree nor as a string nor as a stream of SAX events.
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Obviously, a viable database management system for XML should support all these
representations. Natix’s query execution engine is not only flexible enough to do so
but also highly efficient.

The rest of the paper is organized as follows. In the next section we present the
overall architecture of the system. The storage engine is the subject of Section 3. This
is followed by a description of the transaction management in Section 4. Next, we take
a look at the query execution engine in Section 5. Finally, we conclude our paper with
a summary in Section 6.

2 Architecture

This section gives a brief introduction into the architecture of the Natix system. We
identify the different components of the system and their responsibilities. The rest of
the paper then deals with some of the components in greater detail.

While Natix was mainly realized in C++ on Unix platforms, experimental Win-
dows versions and a Java binding exist.

Natix’ components form three layers, as shown in figure 1. The bottommost layer
is the storage layer, which manages all persistent data structures. On top of it, the
service layer provides all DBMS functionality required in addition to simple storage
and retrieval. These two layers together form the Natix engine.

Closest to the applications is the binding layer, which consists of all the modules
that map application data and requests from other application programming interfaces
to the Natix Engine Interface and vice versa.

2.1 Storage Layer

The storage engine contains classes for efficient XML storage as well as several in-
dexes and metadata storage.

It also manages the storage of the recovery log and controls the transfer of data
between main and secondary storage. An abstraction for block devices allows to easily
integrate new storage media and platforms apart from regular files. Details follow in
section 3.

2.2 Service Layer

The database services communicate with each other and with applications using the
Natix Engine Interface, which provides a unified facade to specify requests to the
database system. These requests are then forwarded to the appropriate component(s).
After the request has been processed and maybe some result fields (for query results
or other return values) have been filled in, the request object is returned to the caller.
Typical requests include ‘process query’, ‘abort transaction’ or ‘import document’.
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Figure 1: Architectural overview
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Among the service components that implement the functionality needed for the
different requests are

The Natix Query Execution Engine (NQE) contains the Natix Physical Algebra (NPA)
and the Natix Virtual Machine (NVM). They are used to efficiently evaluate
queries. Apart from simple operations on basic types, NVM also understands
more powerful commands to access XML structures. These directly access the
physical document structure used on secondary storage, without CPU-intensive
conversion to a main memory representation (for example a DOM tree).

More on query processing can be found in section 5.

Query Compiler The query compiler translates queries expressed in XML query lan-
guages into execution plans for NQE. A simple compiler for XPath is available,
and a more complex cost-based query optimizer (BD2) is in the works.

Transaction Management contains classes that provide ACID-style transactions. Com-
ponents for recovery and isolation are located here. Both of these aspects yield
challenges with respect to XML, which are related to the different views one can
take on XML documents, the data-centric view and the document-centric view.

On one hand, applications that are based on the data-centric view usually ac-
cess and update single nodes. On the other hand, the document-centric view
causes manipulation of coarser granularities, like whole documents or subtrees
of documents.

For both recovery and isolation, simply mapping operations on coarse granu-
larities to operations on single nodes neutralizes a lot of performance potential,
as even for simple documents, thousands of locks and log records have to be
created.

If both access patterns have to be supported in an efficient way, more sophisti-
cated techniques have to be used. Details can be found in section 4.

Object Manager The different application programming interfaces (APIs) often re-
quire a main memory representation for documents and their component nodes.
To avoid each application binding from implementing its own management for
transferring objects between their main and secondary memory representations,
the object manager factorizes the representation-independent parts of this task.

2.3 Binding Layer

In the binding layer, the Natix Engine Interface is translated into different application
interfaces.

XML database management is required by a great range of different environments.
Apart from the classic client-server database system, possibly using protocols like
HTTP or WebDAV [18]. For embedded systems it might be more appropriate to use
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an XML storage and processing library with a high performance, direct function call
interface. Legacy applications that are not specifically aware of XML documents but
can only deal with plain files would need the database to be mounted as a file system.
Other, more XML specific interfaces may arise when XML databases are more widely
used.

The most straightforward interface is to use the Natix Engine Interface directly as
a library from C++ applications.

A higher-level application binding is the file system view, a demonstration of which
is available for download [12]: Using this binding, documents and query results can
be accessed just like regular files. The documents’ tree structure is mapped into a
directory hierarchy, which can be traversed with any software that knows how to work
with the file system.

Whereever feasible, the specification of a request to the Natix Engine is not only
possible using C++ data types, but also by a simple, language independent string.
A small parser is part of the Engine Interface and can translate strings into request
objects. This simple control interface for the system can easily be incorporated into
generic APIs: By using request strings as URLs, for example, the HTTP protocol can
be used to control the database system.

3 Storage Engine

3.1 Architecture

In figure 2, the different modules of the storage subsystem and their call relationships
are shown.

Segments BufferManager

Page interpreters

Partitions

Figure 2: Storage Engine Architecture

Storage in Natix is organized into partitions, which represent storage devices that
can randomly read and write a fixed number of disk pages. Disk pages are grouped in
segments. There are different types of segments, each implementing a different kind
of object collection. Disk pages resident in main memory are managed by the buffer
manager, and their contents are accessed using page interpreters.
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The following sections will elaborate on the storage system’s main modules, while
later sections will give further information about implementation of concrete segment
types used to store documents and indexes.

3.1.1 Segments

Segments export the main interfaces to the storage system. They implement large,
persistent object collections.

The most important segment types are

SlottedPageSegment unordered collections of variable-size records, where each record
is smaller than a page and is identified using a RID (record identifier) that is sta-
ble even if the record is moved.

BTreeSegments for secondary and primary key B-Tree structures

XMLSegments for XML document collections.

The segment classes form a class hierarchy, the base class of which factorizes com-
mon administrative functions like free space and metadata management. Each segment
consists of a collection of pages on which the data structures are stored. These page
collections are maintained using an extent-based system [43] that organizes segments
into consecutive page groups (extents) of variable size. Intra-segment free space man-
agement is done using a Free Space Inventory FSI [32]. This data structure allows
quick access to approximate information about free space on a given page, which
is necessary when performing a search for a given amount of space for insertion or
growth of objects. Small main-memory caches of the FSI information is maintained
for increased performance (a similar approach is described in [27]).

Every segment type has a different interface providing the operations necessary to
manipulate the respective persistent data structure. The data structures managed by the
segments can be larger than a page. Operations on such structures are mapped onto
(sequences of) operations on single pages.

3.1.2 Buffer Manager

The buffer manager is reponsible for transferring pages between main and secondary
memory. Segments request main memory addresses for disk pages by issuing fetch
calls for page IDs. After they have finished working with a page, segments make
an unfix call to allow replacement of the page in the buffer. Special calls exist for
assigning buffer space to a page without loading its current disk contents (to avoid
read access for new pages), and to discard dirty pages from the buffer without writing
their contents to disk (to avoid writing deallocated pages).

The buffer manager also synchronizes page access by multiple threads. The tech-
niques are similar to the buffer manager organization described by [33]: Each buffer
page is synchronized by a latch. Latches are short-duration locks that guarantee the
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physical consistency of page contents by allowing only readers to share page access,
while writers must hold the page latch in exclusive mode. The associative access struc-
ture mapping page IDs to memory buffer frames is synchronized in a way that allows
for symmetric multi-processing (SMP) with several CPUs, where several processors
want to look up page IDs and modify the buffer’s contents in parallel.

3.1.3 Page Interpreters

The segments use the buffer manager to load disk pages into main memory. While
a page resides in main memory, it is associated with a page interpreter object that
abstracts from the actual data format on the page. Hence, a page’s contents in the buffer
are never accessed directly. Which kind of page interpreter is used for a particular page
is specified by the segment when it requests a page. A B-Tree segment might use page
interpreter classes for inner pages and leaf pages, respectively.

While the architectural decision to strictly separate intra-page data structure man-
agement (page interpreters) from inter-page data structures (segments) seems to be
minor and straightforward, it is often not present in existing storage systems. As it
turns out, the existence of page interpreters tremendously simplifies implementation
of the recovery subsystem, as described in a later section.

The page interpreter classes form a class hierarchy, the base class of which provides
support for the common protocol the interpreters use with the buffer manager. From
this base class, one or more classes are derived for each segment type.

3.1.4 Partitions

Partitions represent an abstraction of random-access block devices.
Besides the user segments, each partition contains several metadata segments de-

scribing the segments on the partition and the free space available.
The classes in the partition hierarchy themselves implement the basic partition

interface, which consists of a small set of block-level read/write functions. Currently,
there exist partition classes for Unix files, raw disk access under Linux and Solaris,
and C++ iostreams.

3.2 XML Storage

One of the core segment types in Natix is the XML storage segment, which manages a
flat collection of XML documents and is based on a slotted page segment as described
above.

Before detailing the XML storage segment, we will first give a short overview of
existing approaches to store XML documents. They can be divided into three cate-
gories:

Flat Streams In this approach, the document trees are serialized into byte streams, for
example by means of a markup language. For large streams, some mechanism
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is used to distribute the byte streams on disk pages. The mechanism can be a file
system, or a BLOB manager in a DBMS [4, 7, 26].

This method is very fast when storing or retrieving whole documents or big con-
tinuous parts of documents. Accessing the documents’ structure is only possible
through parsing [1].

A Web server’s HTML file tree, stored in the file system, is a simple example.

Metamodeling A different method is to model and store the documents or data trees
using some conventional DBMS and its data model [13, 17, 25, 28, 37, 38, 39,
40].

In this case, the interaction with structured databases in the same DBMS is easy.
On the other hand, scanning a whole document or parts of a document, as needed
when reconstructing a textual representation, for example, is slower as in the pre-
vious method. The creation of just one typical web page from its abstract syntax
tree requires retrieval of maybe thousands of database objects. Other representa-
tions require complex mapping operations to reproduce a textual representation
[38], even duplicate elimination may be required [13].

In general, this approach introduces additional layers in the DBMS between the
logical data and the physical data storage, slowing down query processing.

Mixed There are several attempts to merge the two ”pure” methods above.

Redundant To get the best of both worlds, data is held in two redundant repos-
itories, one flat and one metamodeled [45]. Updates are propagated either
way, or only allowed in one of the repositories. This allows for fast re-
trieval, but leads to slow updates and incurs significant overhead for con-
sistency control.

Hybrid In hybrid approaches, a certain level of detail of the data is configured
as ”threshold”. Structures coarser than this granularity live in a structured
part of the database, finer structures are stored in a ”flat object” part of the
database [5].

Natix is similar to the hybrid systems, with two major extensions:
First, our ”flat” parts of the database are not completely flat, but clustered groups of

tree nodes treated as atomic records by a slotted page segment. Second, the ”threshold”
need not be statically configured, but can be a dynamic value, adapting to the size and
structure of documents at runtime. As subtrees of the document are changed, clustered
nodes can become records of their own or again be merged into clusters. To satisfy
special application requirements, clustering of certain node types can be enforced or
forbidden by a configuration matrix.

For more detailed comparisons with the related approaches please refer to [24].
In the following we will describe the logical document data model used by the

XML segment to work with documents, and the storage format used by the XML page
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<SPEECH>
<SPEAKER>OTHELLO</SPEAKER>
<LINE>Let me see your eyes;</LINE>
<LINE>Look in my face.</LINE>
</SPEECH>

SPEECH

SPEAKER

OTHELLO

LINE

Let me see your eyes;

LINE

Look in my face.

Figure 3: A fragment of XML with its associated logical tree

interpreters to work with document fragments that fit on a page. Then, we show how
the XML segment type maps logical documents that are larger than a page to a set of
document fragments on pages. Finally, we elaborate on the maintenance algorithm for
this storage format.

3.2.1 Logical data model

The interface for our XML segment type allows to access an unordered set of trees.
New nodes can be inserted as children or siblings of existing nodes, and any node can
be removed, which also removes its induced subtree.

The individual documents are represented as ordered trees in which each non-leaf
node is labelled with a symbol taken from an alphabet �DTD. Leaf nodes can also be
labelled with arbitrarily long strings over a different alphabet (��). Figure 3 shows
a an XML fragment and its associated tree. Note that the shown XML document is
missing the schema, called document type definition (DTD). Details of XML schema
descriptions do not concern us here. For our purposes, the DTD is just a way of
specifying the node alphabet �DTD. Additionally, the DTD can place constraints on
how node labels can be combined.

The simple labelled tree model described here is very similar to XML abstract
syntax trees. It also captures all information present in the textual representation of a
document, most notably the order of child elements. A small wrapper class is used to
map the XML model with its node types and attributes to the simple tree model and
vice versa. This wrapper is not discussed here for ease of exposition.

3.2.2 XML page interpreter storage format

The logical data tree is partitioned into subtrees (as described in section 3.2.3), each of
which is stored on a single data page. XML page interpreters are used to maintain the
subtrees on the data pages, which besides the logical nodes contain additional nodes
needed to manage the physical structure of large trees. Large trees are trees that cannot
be stored on a single disk page.
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Note that in the following we use the terms node and object synonymously for the
nodes of a tree. On the other hand, a record is something different: It may contain a
set of nodes/objects, as explained below.

Classified by their contents, there are three types of nodes in the page-level sub-
trees:

Aggregate nodes are inner nodes of the tree. They contain their respective child
nodes.

Literal nodes are leaf nodes containing an uninterpreted stream of bytes, like text
strings, graphics, or audio/video sequences.

Proxy nodes are nodes which point to different records. They are used in the repre-
sentation of large trees, as detailed in section 3.2.3.

The page interpreters are based on a regular slotted page implementation, which
maintains a collection of variable-length records on a data page. Each record is iden-
tified by a slot number which does not change even if the record is moved around on
the page for space management reasons.

Instead of placing each tree node in a separate record on the page, we store the
nodes of a subtree (maybe a whole document) together in one record. Each record
contains exactly one subtree. Each record contains a parent record pointer (used to
connect it to a larger tree, see below), and the document ID of the document it belongs
to.

For the individual subtrees, distances between nodes have an upper limit, the page
size. This raises opportunities to optimize the subtree representation inside the records.
All structural pointers for intra-subtree relationships (parent and sibling pointers, node
sizes etc.) fit into 2 bytes (if 64K pages are the maximum). We will not go into detail
about the exact representation that is used, and the maintenance algorithm described
later does not depend on the details. The interested reader is referred to [24].

The currently used layout results in a node size for aggregate nodes of only 8
bytes, minimizing the overhead for storing the tree structure. Note that storing vanilla
XML markup with only a 1-character tag name, for example, already needs 7 bytes
( < X > : : : < =X >)! On average, XML documents inside Natix consume about as
much space as XML documents stored as plain files in the file system.

3.2.3 XML Segment Mapping for Large Trees

Typical XML trees may not fit on a single disk page. Hence, the XML segment type
must map the logical document to a set of page-level subtrees, and our page-level
model must provide data structures to represent connections between the trees.

One method often used in document management systems is to store a ”flat” rep-
resentation as a BLOB (binary large object) and use a mechanism for managing large
byte collections inside the storage manager [4, 7, 26]. We feel that this approach wastes
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Logical tree

f1

f2 f3 f4 f5 f6 f7

Physical tree

f1
p1

h1

f2 f3 f4

r1

r2 r3

p2

h2

f5 f6 f7

Figure 4: One possibility for distribution of logical nodes on records

the available structural information about the data, because treating the representation
as a BLOB regards all bytes as equal:

A certain amount of insertions, removals and updates of objects stored in this way
would lead to an unfavorable distribution of the data. Some part of even a small object
would reside on one page, and the remainder on a different page.

To avoid this, we semantically split large objects based on the underlying tree
structure. We partition the data tree into subtrees that are managed by XML page
interpreters as described above. Connected subtrees residing in other records are re-
ferred to by Proxy objects. Proxy objects consist of the RID (record identifier, see
section 3.1.1) of the record which contains the subtree they represent. Substituting all
proxies by their respective subtrees reconstructs the original data tree. To allow up-
ward navigation, each subtree contains a parent record pointer that refers to the record
containing its proxy. The parent record pointer for the root record is null.

A sample is shown in figure 4. To store the given logical tree (which, say, does
not fit on a page), the physical data tree is distributed over three records r1; r2 and r3.
To achieve this, two proxies (p1 and p2) are used in the top level record. Two helper
aggregate objects (h1 and h2) have also been added to the physical object tree. They
are needed to group the children below p1 and p2 into records.

Physical objects drawn as dashed ovals like the proxies p1; p2 and the helper aggre-
gates h1; h2, needed only for the representation of large data trees, are called Scaffold-
ing objects, while objects representing logical nodes (fi) are called Facade objects.
Only the facade objects are visible to the caller of the XML segment interface, the
scaffolding objects are encapsulated.

Note that the sample physical tree is only one possibility to store the shown logical
tree. There are more, since more of the logical tree’s edges could be represented by
proxies.

The following section will now describe the method used to map the logical docu-
ment trees onto subtrees smaller than a page.
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Proxy Proxy
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r4 r5 r6

r9 r10

Figure 5: Multiway tree representation of records

3.2.4 Updating Documents

We will now present the algorithm used by Natix for dynamic maintenance of physical
trees. The principal problem adressed is that a record containing a subtree can grow
larger than a page if a node is added or grows.

In this case, the subtree contained in the record has to be partitioned into several
subtrees, which can subsequently be distributed on one or more additional records and
pages. Scaffolding nodes (proxies and maybe aggregates) have to be introduced into
the physical tree to link the new records together.

To describe our tree storage manager and our split algorithm, it is useful to view
the partitioned tree as an associative data structure for finding leaf nodes. We will first
explain this metaphor and afterwards use it to detail our algorithm. Possible extensions
to the basic algorithm and a flexible configuration mechanism to adapt it to special
applications conclude this section.

Multiway tree representation of records A data tree that has been distributed over
several records can be viewed as a multiway tree with the records as nodes, each record
containing a small part of the logical data tree. In the example in figure 5, r3 is blown
up, hinting at the flat representation of the subtree inside record r3. The references to
the child records are proxy objects.

If viewed this way, our partitioned tree resembles a B-Tree-structure, as often used
by traditional large object managers, with the particularity that the ”‘keys”’ are not
taken from a simple domain like integers or strings. Instead, they are based on struc-
tural features of the data tree.

This analogy gives us a familiar framework with which we can describe the algo-
rithms used to maintain the clustering of our records.
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1. Determine the record r into which the node has to be inserted.

2. If there is not enough space on the page, try to move r. If the node still does not fit into
the record, split the record:

(a) Determine the separator by recursively descending into the r’s subtree

(b) Distribute the resulting partitions onto records

(c) Insert the separator into the parent record, recursively calling this procedure

3. Insert the new node

Figure 6: The Tree Growth Procedure

f1

pb

hb

f2 f3 fn

fn pc

hc

fn f4 f5

ra

rb rc

Figure 7: Possibilities to insert a new node fn into the physical tree

Algorithm for Tree Growth Figure 6 shows the basic structure of our algorithm for
adding nodes to a tree. We now explain the steps in detail.

1. Determining the Insertion Location In order to insert a new node fn into the log-
ical data tree as a child node of f1, it must be decided where in the physical tree
the insert should take place. In the presence of scaffolding nodes, there may exist
several possibilities, as shown by the dashed lines in figure 7 (the nodes drawn
as dashed ovals are scaffolding nodes); the new node fn can be inserted into
ra, rb, or rc. In our system, this choice may be determined by a configuration
parameter, as explained in section 3.2.4.

2. Splitting a record Having decided on the insertion location, it is possible that the
designated record’s disk page is full. In this case, the system tries to move the
record to a page with more free space. If this is not possible because the record
as such exceeds the net page capacity, the record has to be split.

(a) Determining the separator Suppose that in figure 7 we want to add fn to
record rb, which cannot grow. Hence, rb must be split into at least two
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Figure 8: A record’s subtree before a split occurs

records r0b and r00b , and instead of pb in the parent record ra, we need a
separator with proxies pointing to the new records to indicate where which
part of the old record was moved.

In B-Trees, a median key that partitions the data elements into two subsets
is chosen as separator. In our tree storage manager, the data in the records
is not one-dimensional, but tree-structured. It follows that our separator
has to be tree-structured as well.

In fact our algorithm slices a small subtree off the old record’s root. This
small subtree then serves as separator. The remaining forest of subtrees is
the data that has to be distributed onto the new records.

Figure 8 shows the subtree of one record just before a split. It is partitioned
into a left partition L, a right partition R, and the separator S. This sepa-
rator will be moved up to the parent record, where it indicates into which
records the descendant nodes were moved as a result of the split operation.

Already a single node d uniquely determines this partitioning (in the ex-
ample, d = f7): The separator S consists of all the nodes on the path from
d to the subtree’s root (in the example, S = ff1; f6g), excluding d. The
subtree below d, the subtrees of d’s right siblings, and all subtrees below
nodes that are right siblings of nodes in S comprise the right partition (in
the example, R = ff7; f8; : : : ; f14g), the remaining nodes comprise the left
partition (in the example, L = f2; : : : ; f5).

Hence, our split algorithm must find a node d, such that the resulting L and
R are of equal size. Actually, the desired ratio between the sizes of L and
R is a configuration parameter (the split target), which can, for example,
be set to achieve very small R partitions to prevent degeneration of the
tree if insertion is mainly on the right side (as when creating a tree in pre-
order from left to right). Another configuration parameter available for
fine-tuning is the split tolerance, which states how much the algorithm may
deviate from this ratio. Essentially, the split tolerance specifies a minimum
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f5 f7
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L R

Figure 9: Record assembly for the subtree from figure 8
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size for the subtree of d. Subtrees smaller than this value are not split, but
completely moved into one partition to prevent fragmentation.

To determine d, the algorithm starts at the subtree’s root and recursively
descends into the child whose subtree contains the physical ”middle” (or
the configured split target) of the record. It stops when it reaches a leaf,
or when the subtree size in which it is about to descend is smaller than
allowed by the split tolerance parameter.

In the example in figure 8, the size of the subtree below f7 was smaller
than the split tolerance, otherwise the algorithm had descended further and
made f7 part of the separator.

(b) Distributing the nodes on records After determining the partitioning, the
contents of the record have to be distributed onto new records.

Consider a partitioning as implied by node d = f7 in figure 8. The separator
is removed from the old record’s subtree, as in figure 9(a). In the resulting
forest of subtrees, root nodes in the same partition that were siblings in the
original tree are grouped under one scaffolding aggregate. In figure 9(c),
this happened at nodes h1 and h2. Each resulting subtree is then stored in
its own record. These new records (r1; : : : ; r4) are called partition records.

(c) Inserting the separator The separator is moved to the parent record and
inserted instead of the proxy which referred to the old, unsplit record, fig-
ure 9(b). The edges connected to the nodes in the partition records are
replaced by proxies pi. Since children with the same parent are grouped
in one scaffolding aggregate, for each level of the separator a maximum of
three nodes is needed, one proxy for the left partition record, one proxy for
the right partition record, and one separator node.

To avoid unnecessary scaffolding records, the algorithm considers two spe-
cial cases: First, if a partition record would consist of just one proxy, the
record is not created and the proxy is inserted directly into the separator.
Second, if the root node of the separator is a scaffolding aggregate, it is
disregarded, and the children of the separator root are inserted in the parent
record instead.

To ensure that the parent record contains enough space to hold the separa-
tor, the insertion procedure is recursively called for the parent record using
the separator as the node to be inserted. If the old record had no parent
record, a new root record for the tree is created which contains just the
separator.

3. Inserting the New Node Finally, the new node is inserted into its designated parti-
tion record.

The splitting process operates as if the new node had already been inserted into
the old record’s subtree, for two reasons. First, this ensures enough free space
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on the disk page of the new node’s record. Second, it also results in a preferable
partitioning since it takes the space needed by the new node into account when
determining the separator.

The Split Matrix It is not always desirable to leave full control over data distribution
to the algorithm. Special application requirements had to be considered. In general, it
should be possible to benefit from knowledge about the application’s access patterns.

If parent-child navigation from one type of node to another type is frequent in
an application, we want to prevent the split algorithm from storing them in separate
records. In other contexts, we want certain kinds of subtrees to be always stored in a
separate record, for example to collect some kinds of information in their own physical
database area.

To express preferences regarding the clustering of a node type and its parent node
type, we introduce a Split Matrix as parameter to our algorithm:

The Split Matrix S consists of elements sij; i; j 2 �DTD. The elements express the
desired clustering behaviour of a node x with label j as children of a node y with label
i:

sij =

8
>>>>>><
>>>>>>:

0 x is always kept as a standalone
record and never clustered with y

1 x is kept as long as possible
in the same record with y

other the algorithm may decide

The algorithm as described in section 3.2.4 acts as if all elements of the Split Matrix
were set to the value other. It is easily modified to respect the Split Matrix:

When moving the separator to the parent, all nodes x with label j under a parent
y with label i are considered part of the separator if sij = 1, and thus moved to the
parent. If sij = 0, such nodes x are always created as standalone object and a proxy
is inserted into y. In this case, x is never moved into its parent as part of the separator,
and treated for splitting purposes like the root record.

We also use the Split Matrix as the configuration parameter for determining the
insertion location of a new node (see section 3.2.4): When a new node x (label j) shall
be inserted as a child of node y (label i), then if sij = 1, x is inserted into the same
record y. If sij = other, then the node is inserted on the same record as one of its
designated siblings (whereever exists more free space). If sij = 0, x is stored as the
root node of a new record and treated as described above.

The Split Matrix is an optional tuning parameter: It is not needed to store XML
documents, it only provides a way to make certain access patterns of the application
known to the storage manager. The ”‘default”’ split matrix used when nothing else has
been specified is the one with all entries set to the value other.

As a side effect, other approaches to store XML and semistructured data can be
viewed as instances of our algorithm with a certain form of the Split Matrix, as de-
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scribed in [24].

3.3 Index Structures in Natix

In order to support query evaluation efficiently, we need powerful index structures.
The main problem in building indexes for XML repositories is that ordinary full text
indexes do not suffice, as we also want to consider the structure of the stored docu-
ments. Here we describe the approaches taken by us to integrate indexes for XML
documents in Natix. We have followed two principle avenues of approach. On the one
hand we enhanced a traditional full text index, namely inverted files, in such a way as
to be able to cope with semistructured data. As will be shown, we opted for a versatile
generic approach, InDocs (for Inverted Documents) [30], that can deal with a lot more
than structural information. On the other hand we developed a novel index structure,
called XASR (eXtendend Access Support Relation) [14], for Natix.

3.3.1 Full Text Index Framework

Inverted files are the index of choice in the information retrieval context [2, 44]. In the
last years the performance of inverted files improved considerably, mostly due to clever
compression techniques. Usually inverted files store lists of document references to
indicate in which documents certain words appear. Often offsets within a document
are also saved along with the references (this can be used to evaluate near-predicates,
for example). However, in practice inverted files are handcrafted and tuned for special
applications. Our goal is to generalize this concept by storing arbitrary contexts (not
just offsets) with references without compromising the performance.

Let us briefly sketch the architecture of the list implementation in Natix before
going into details on the five different classes Index, ListManager, FragmentedList,
ListFragment, and ContextDescription (see also Figure 10).

Index The main task of the class Index is to map search terms to list identifiers and
to store those mappings persistently. It also provides the main interface for the
user to work with inverted files.

ListManager This class maps the list identifiers to the actual lists, so it is responsible
for managing the directory of the inverted file. If the user works directly with
identifiers and not with search terms, it is possible to use ListManager directly.
We have implemented efficient methods for bulkload and bulkremoval of lists,
as well as for concatenation of lists, namely union and intersection.

FragmentedList, ListFragment We describe these modules together, because they
are tightly coupled with each other. ListFragment is an implementation of lists
that need at most one page of memory to store. The content of a fragment can
be read and written sequentially. All fragments that belong to one inverted list
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Figure 10: The classes for list management and relations

are linked together and can be traversed sequentially. The job of the class Frag-
mentedList is to manage all the fragments of one list and control insertions and
deletions on this list.

ContextDescription This class determines the actual representation in which data is
stored in a list. With representation we do not only mean what kind of data is
stored, but also the compression technique that is used. We have implemented
the traditional context consisting of a document ID and the positions within the
document where a certain term appears. More importantly, we devised contexts
for XML data. A simple node context consists of a document ID, a node ID,
and the position of the search term within the node, whereas a more complex
node context also considers structural information (e.g. dmin and dmax values as
described in Section 3.3.2).

3.3.2 eXtended Access Support Relations

An extended access support relation (XASR) is an index that preserves the parent/child
and ancestor/descendant relationships among the nodes. This is done by labeling the
nodes of an XML document tree by depth-first traversal (see Figure 11). We assign
each node a dmin value (when we enter the node for the first time) and a dmax value
(when we finally leave the node). For each node in the tree we store a row in an XASR
table with information on dmin; dmax, the name of the element tag, the document ID,
and the dmin value of the parent node (see Figure 11).
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dmin dmax eType docID parent dmin

1 12 ’bioml’ 0 NULL
2 11 ’organism’ 0 1
3 6 ’organelle’ 0 2
4 5 ’label’ 0 3
7 10 ’organelle’ 0 2
8 0 ’label’ 0 7

(a) Example document tree (b) corresponding table

Figure 11: XASR

XASR is combined with regular full text indexes that supply the node numbers of
nodes containing words we are searching for. That means, if we are looking for nodes
containing specific words or nodes of a certain type in a path, we also join these nodes
to the nodes fetched by XASR.

A path in a query is translated into a sequence of joins on an XASR table. Let xi

and xi+1 be two nodes in the path. Depending on the path connector (’/’ or ’//’) the
join predicate is

� for ’/’:
xi:docID = xi+1:docID^
xi:dmin = xi+1:parentID

� for ’//’:
xi:docID = xi+1:docID^
xi:dmin < xi+1:dmin^
xi:dmax > xi+1:dmax

For more details on query processing with XASRs see [14].

4 Transaction Management

Enterprise-level data management is impossible without the transaction concept. The
majority of advanced concepts for versioning, workflow and distributed processing all
depend on primitives based on the proven foundation of atomic, durable and serializ-
able transactions.

To be an effective tool for enterprise-level applications, Natix therefore must pro-
vide transaction management for XML documents with the above-mentioned proper-
ties. The transaction components that support transaction-oriented programming in
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Natix are the subject of this section. The two main areas that are covered are recovery
and isolation, in this order.

For recovery, we use an extended version of the well-known ARIES protocol [33].
The extensions that we introduce (called subsidiary logging, annihilator undo, and
selective redo) exploit certain opportunities to improve logging and recovery perfor-
mance that are, although present in many environments, especially effective with our
XML storage format.

For synchronization, a S2PL-based scheduler is employed that provides a proto-
col and lock modes that are suitable for typical access patterns that occur for tree-
structured documents.

The two subsections describing recovery and isolation are preceded by an intro-
duction that outlines how transaction management fits into the system architecture.

4.1 Architecture

In figure 12 we show the components necessary to provide transaction management
and their call relationships. Some of them are located in the storage engine and have
already been described in section 3, while the rest is part of the transaction manage-
ment module.

Segments BufferManager

Page interpreters Log manager

Recovery managerTransaction manager

Partitions

Figure 12: Recovery Components

During system design, we paid special attention to a recovery architecture that
treats separate issues (among them page-level recovery, logical undo, and metadata
recovery) in separate classes and modules. Although this is not possible in many cases,
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we made an effort to separate the concepts as much as possible, to keep the system
maintainable and extendible.

Although most components need to be extended to support recovery, in most cases
this can be done by inheritance and by extension of base classes, allowing for the
recovery-independent code to be separate from the recovery-related code of the storage
manager.

4.2 Recovery Components

We will not explain the ARIES protocol here, but concentrate on extensions and design
issues related to Natix and XML. A description of the ARIES concepts can be found
in the original ARIES paper [33] and most books on transaction processing (e.g. [20,
41]).

4.2.1 Log records

Natix writes a recovery log describing the actions of all update transactions using log
records. Each log record is assigned a log-sequence number (LSN) that is monotoni-
cally increasing and can directly (without additional disk accesses) be mapped to the
log record’s physical location on disk.

Natix log records consist of the usual fields, including a transactionID, log record
type and operation code information, flags that specify whether the record contains
redo-only, media-recovery only, redo-undo, or undo-only information. In addition, the
objectID (segmentID, pageID, slot number, offset in a XML subtree) and, possibly,
data to redo and/or undo the logged operation.

The log records of a transaction are linked together into a pointer chain. In ARIES,
there is a prevLSN pointer that contains the LSN of the log record previously writ-
ten by the same transaction. Natix does not use such a pointer. Instead, Natix’ log
records contain a nextUndoLSN pointer, which in standard ARIES is only contained
in compensation log records (CLRs).

The nextUndoLSN points to the log record of the same transaction that has to
be undone after this log record in case of a rollback. Usually, this will be the previ-
ously written log record with undo information of the same transaction. Redo-only log
records do not participate in the nextUndoLSN chain, as the backward chaining is only
necessary for undo processing.

Only in case of log records that describe undo actions, so called compensation log
records (CLRs), the undoNextLSN points to the operation logged before the operation
that this log record is an undo log record for. In section 4.4, we show another situation
where the nextUndoLSN chain of log records is just not the reverse sequence of log
records of one transaction.
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4.2.2 Segments

The segment classes comprise, from the view of the recovery subsystem, the main
interaction layer between the storage subsystem and the application program. As part
of their regular operations, application programs issue requests to modify or access the
persistent data structures managed by the segments.

The data structures provided by the segments can be larger than a page. The seg-
ments map operations on these data structures to operations on single pages, and em-
ploy the buffer manager to transfer the pages between main memory and disk storage.

Logging and recovery for operations on the pages is dealt with by the page inter-
preters (see section 4.2.3). This means that the code for multi-page data structures
is the same for recoverable and nonrecoverable variants of the data structure, it only
has to instantiate different page interpreter versions in the recoverable case. This is a
significant improvement in terms of maintainability of the system, because less code
is necessary.

The segments only handle logging and recovery for those update operations on
multi-page data structures whose inverse operations are not described by the inverses
of the respective page-level operations. We call these operations L1 operations (follow-
ing [41]). They occur for segment types where a high degree of concurrency is required
(e.g. B-Trees [34]), and where other transactions may have modified the same struc-
tures while the original updater is still running (examples include index splits, where
keys have to be moved without the splitted page being locked for the whole transaction
duration).

Metadata is permanently accessed by the segments, and access to metadata needs
to be highly concurrent. Therefore, L1 operations play a major role in the implemen-
tation of metadata and free space management. Issues in metadata recovery, as raised
for example in [32, 31], are far from being simple implementation issues but involve
delicate dependencies, and to keep the system simple and maintainable, they require
an architecture that is prepared for them.

Our framework for segment metadata recovery provides such an architecture, which
can integrate solutions as described in the above-mentioned papers, as well as our own
approaches. Details can be found in [23].

4.2.3 Page Interpreters

The page interpreter classes are responsible for page-level logging and recovery. They
create and process all page-level (i.e. the majority of) log records. The page-level
log records use physical addressing of the affected page, logical addressing within
the page, and logical specification of the performed update operation. This is called
physiological logging [20].

For every page type in the page interpreter hierarchy that has to be recoverable,
there exists a derived page interpreter class with an identical interface that, in addition
to the regular update operations, logs all performed operations on the page and is able
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to interpret the records during redo and undo.
The page interpreter maintains the pageLSN attribute on the page, and also has a

member attribute redoLSN that contains the LSN of the first update operation after the
last flush.

4.2.4 Buffer Manager

The buffer manager is controlling the transfer of pages between main and secondary
memory. Although ARIES is independent of the replacement strategy used when
caching pages [33], the buffer manager enables adherence to the ARIES protocol by
notifying other componentes about page transfers between main and secondary mem-
ory, and by logging information about the buffer contents during checkpoints.

4.2.5 Recovery Manager

The recovery manager orchestrates system activity during undo processing, redo pro-
cessing and checkpointing. It is stateless and serves as a collection of the recovery-
related top-level algorithms for restart and transaction undo. During redo and undo, it
performs log scans using the log manager (see below) and forwards the log records to
the responsible objects (e.g. segments and page interpreters) for further processing.

4.2.6 Log Manager

The log manager provides the routines to write and read log records, synchronizing
access of several threads that create and access log records in parallel.

It keeps a part of the log buffered in main memory (using the Log Buffer as ex-
plained below), and employs special partitions, log partitions, to store log records.

The log manager also maintains the mapping of log records to LSN (and its in-
verse). It also persistently stores the LSN of the most frequent checkpoint.

During undo processing, the log manager knows that a particular transaction is
rolling back. Instead of chaining a log record to the previous log record of the same
transaction, the log manager properly links the nextUndoLSN field to the log record of
the operation currently being undone, as required for CLRs by the ARIES protocol.

The automatic undoLSN chaining by the log manager allows for the logging page
interpreters to use regular forward processing methods to undo operations and write
compensation log records, as the only difference between forward processing and undo
is the different chaining of log records. As a result, the code for the logging page
interpreters becomes much simpler, as no special functions for undo have to be coded.

The log buffer is a part of the log manager and performs the transfer of log records
from memory to disk and vice versa. Although recovery literature does not describe a
detailed protocol how to access the log buffer and considers the problem trivial, the log
buffer can easily become a bottleneck for update intensive transactions. Natix allows
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massively parallel log reading and log writing, several CPUs may simultaneously write
even to the same log page.

4.2.7 Transaction Manager

Apart from the segment classes, the transaction manager is the only class that is di-
rectly called by application programs.

The transaction manager maintains the data structures for active transactions, and
is used by the application programs to group their operations into transactions.

Each transaction is associated with a control block that includes recovery-related
information like the LSN of the first log record, the LSN of last written log record, a
undoLSN field, and a pending actions list.

The LSN of the first log record is also considered a unique and persistent identifier
for update transactions, and is also called transactionLSN. The undoLSN field is used
to hold the next record that requires undo, and is used by the log manager to chain log
records together using the log records’ nextUndoLSN fields. During forward process-
ing, this field is set to the last log record written by the transaction that contained undo
information. During undo processing, it is set to the nextUndoLSN field of the log
record that is currently being undone to provide automatic nextUndoLSN chaining for
CLRs.

The pending actions list contains a set of operations that has to be performed before
the transaction commits. The pending actions list is a main memory structure and may
not contain actions that are needed to undo the transaction (as it may be lost in a crash).
Examples for its use include metadata recovery and subsidiary logging (section 4.3).

4.3 Subsidiary Logging

Conventional recovery systems that use logging follow the principle that every modi-
fication operation is immediately preceded or followed by the creation of a log record
for that operation.

Operation usually means a single update primitive (like insert, delete, modify a
record or parts of a record). Immediately usually means before the operation returns to
the caller.

In the following, we will explain how Natix reduces log size and increases concur-
rency, boosting overall performance, by relaxing both of these constraints.

Suppose a given record is updated multiple times by the same transaction, which
is frequent when using the storage layout for XML documents as described in sec-
tion 3.2, for example when a subtree is added node-by-node. In many cases, it would
be desirable if this composite update operation was logged as one big operation, for
example by logging the complete subtree insertion as one operation. Merging the log
records would avoid the overhead of log record headers for each node (which can be
as much as 100% for small nodes), and would reduce the number of serialized calls to
the log manager, increasing concurrency.

26



In the following, we will sketch how Natix’ recovery architecture supports such
logging optimizations. We will also elaborate on the concrete implementation for the
case of XML data.

4.3.1 Page-level subsidiary logging

In Natix, physiological logging is completely delegated to the page interpreters. How
the page interpreters create log records, and how those log records are interpreted
during undo and redo is up to the page interpreter.

The page interpreter has its own state for each memory-resident page, which it
can use to collect logging information without actually transferring them to the log
manager, thus keeping a private, subsidiary log. The interpreter may reorder, mod-
ify, or use some optimized representation for these private log entries before they are
published to the log manager.

To retain recoverability, some rules have to be followed. To abide by the write-
ahead-logging rule, the subsidiary log’s content has to be published to the regular log
manager before writing a page to disk. Likewise, all subsidiary log entries must be
published to the regular log manager before the transaction commits, to follow the
force-at-commit rule of ARIES.

When following these rules, the subsidiary logs become part of the log buffer as
far as correctness of the recovery process is concerned. Although part of the log buffer
is now stored in a different representation, its effects for undo and redo processing is
the same. Basically, the rules below cause a sequence of operations by one transaction
on one page to be treated by logging and recovery as a single atomic update operation.

Implementation of the rules is rather straightforward in Natix’ architecture. Since
the buffer manager notifies page interpreters before their associated page is written to
disk, the page interpreter is able to guarantee write-ahead-logging by transferring its
subsidiary log to the log manager.

To force the subsidiary logs to disk before a commit occurs, all page interpreters
than maintain a subsidiary log can add a pending action to the transaction control block
(see section 4.2.7) that is executed before the transaction commits, and that causes its
subsidiary log to be published to the log manager.

Additional precautions have to be taken to guarantee proper recovery also in the
presence of savepoints, which allow partial rollbacks. Integration of savepoints into
subsidiary logs is described in [23].

4.3.2 XML-Page subsidiary logging

We now describe how to employ the technique outlined in the previous section for
a concrete page interpreter class (namely XML pages) to improve performance for
the logging version of that class. Logging for XML data was the primary reason for
introducing subsidiary logging.
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A typical update operation of Natix applications is the insertion of a subtree of
nodes into a document, be it during initial document import or later while a docu-
ment evolves. The Natix storage format (section 3.2) will usually cause such a subtree
insertion to be mapped into a sequence of updates on a single record.

If every node insertion is logged using individual log records, every node will cause
a log header to be written. Recall that an element node with no children and no literal
data is stored using only 8 bytes of storage. A log header needs 32 bytes. For such a
node the amount of log generated is 5 times as large as the actual data. With regard to
update performance, this nullifies the effect of the compact storage format.

Since the updates are localized and can easily be expressed in terms of one single
insert operation to the record, logging this single operation would allow for amortizing
the costs for all the node insertions. To achieve this, conventional recovery systems
would require the application to construct the subtree separately from the storage sys-
tem and then add it with one insertion. Apart from requiring additional copying of
data, the application would need to do some kind of dynamic memory management
to maintain the intermediate representation. In addition, with page-level physiological
logging, only merging of update operations that affect the same page is desirable, so
applications would need to know about the mapping of the logical data structures to
pages, breaking down encapsulation.

We will now show how a subsidiary log inside the XML page interpreters allows
to amortize logging costs for subtree insertions.

Using the page contents as Subsidiary Log The log entries for the subsidiary log
are not explicitly stored. Instead, the XML page interpreters reuse the data page as
representation for log records before publishing them to the global log.

Using a flag called fresh in the node headers on the data page, new nodes/subtrees
in the page are marked. All information necessary to log the subtree insertion is avail-
able inside the data page itself, except for the transaction id. Instead of logging node
insertions directly, the page interpreter only marks them as to-be-logged using the fresh
flag.

Publishing the subsidiary log to the log manager then consists of a scan of the
records of the page. Every time a node is encountered that has the fresh flag set, a
creation log record for the subtree implied by that node is written (and this subtree is
skipped before further scanning the nodes of that record). The after image for this log
record is the subtree as it is stored on the data page. The fresh flags are all cleared after
publishing the subsidiary log.

Even if the fresh subtrees are modified before their creation is logged, no further
maintenance of the subsidiary log is required: If a node is deleted, the fresh flag in its
header is deleted as well, so no log record is written. If a node is modified, only the
final version is included in the log record.

If non-fresh subtrees are modified, we have to be careful before directly creating
non-subsidiary log records with the log manager. Since intra-record physical address-
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ing is used in log records, they can only be redone and undone correctly if the data
record is in the same state as it was when the operations were originally executed.
Thus, we need to make sure that all modifications in the subsidiary logs are published
before any nonsubsidiary log record for the same data record is created. So, the log is
not only published as outlined in section 4.3.1, but also when a node is modified that
has its fresh flag not set.

To create complete log records from the subsidiary log, the page interpreter must
know the transaction IDs that created the subtrees. The transaction IDs are not stored
in the data page’s contents.

This means that XML page interpreters must reserve some extra storage to store
the transaction IDs. Since we use record-level locking, only one transaction can have
subsidiary log entries for any given record, so we only need one transactionID per
record.

The transactionID is only necessary to maintain the subsidiary log and does not
need to be stored on disk. As we do not like to add small object dynamic storage
management to our page interpreters just to store some transactionIDs, we limit the
subsidiary log to a fixed amount of transactionIDs. If more than this amount of trans-
actions wants to add subsidiary log entries, we publish the subsidiary log to the log
manager. On average, only a very small amount of records is stored on each page, as
XML subtree records usually are quite large. Therefore, allowing only one transaction
per page interpreter to have subsidiary log entries is usually sufficient.

Effects of subsidiary logging If a large document tree is created through repeated
insertions of single nodes, frequent XML page splits occur (refer to section 3.2). A
conventional logging approach would not only create bulky log records for every single
node insertion, but would also log all of the split operations. The split log records are
quite large, as they contain the contents of all partition log records. As a result, every
node may be logged more than once.

With subsidiary logging, log records are only created when necessary for recover-
ability. If the newly created document(s) fit into the main memory page buffer, then
the log volume created is nearly equal to the size of the data, as only the ”final” state
of the document is logged upon commit. In addition, only a few log record head-
ers are created (one for each subtree record), amortizing the logging overhead for the
large number of small objects that have been created. Even if not the whole document
resides in the buffer, subsidiary logging profits by only creating log records as needed.

4.4 Annihilator Undo

Transaction undo often wastes CPU resources, because more operations are executed
than necessary to recreate the state that is the desired result of a rollback.

For example, any update operations to a record that has been created by the same
transaction need not be undone when the transaction is aborted, as the record is going
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Figure 13: Log records for an XML update transaction

to be deleted as a result of transaction rollback anyway. Refer to figure 13 which
shows a transaction’s control block and log records and their nextUndoLSN chain.
During undo, the records would be processed in the sequence 5; 4; 3; 2; 1, starting from
the undoLSN in the transaction control block and traversing the nextUndoLSN chain.
Looking at the operations’ semantics, undo of records 4 and 1 would be sufficient, as
undo of 1 would delete record R1, implicitly undoing all changes to R1.

For our XML storage organization, creating a record and performing a series of
updates to the contained subtree afterwards is a typical update pattern for which we
want to avoid unnecessary overhead in case of undo.

We call undo operations that imply undo of other operations that follow them in
the log annihilators. For example, the undo of a record creation like log record 1 in the
example above is an annihilator, as it implies undo of all update operations that have
been done to the record.

For better undo performance, it is desirable to skip undo of operations implied by
the annihilators.

Natix realizes this to some extent. Let us recall from section 4.2.1 that the nextUn-
doLSN pointer of every log record points to the previous operation of that transaction
that requires undo, which is taken from the transaction control block’s undoLSN field.
Redo-only records are skipped by the nextUndoLSN chain.

If we know that undo for an operation is never required because an annihilator
exists, as is the case when updating a subtree that has been created by the same trans-
action, then the operation can be logged as a redo-only operation. This will prevent
the operation from entering then nextUndoLSN chain of that transaction, and it will
not be undone explicitly, but implicitly by its annihilator.

An additional advantage is that no undo information has to be included in the log
record, which further reduces the amount of log that is generated.

The situation is slightly complicated by partial rollbacks. Partial rollbacks might
want to reestablish an intermediate state of the transaction. Undo information is re-
quired in this case even if annihilators exist, because a partial rollback might not in-
clude the annihilator, and the updates must be rolled back explicitly.

Let us now look at the way Natix exploits the optimization potential described
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Figure 14: Undo chaining with check for annihilators

above for the special case of XML data.
The XML page interpreters augment the stored information for the subtree as fol-

lows: In every XML subtree record header, an annihilator LSN is stored that contains
the LSN of the last operation that logged a complete before image of the subtree. Usu-
ally, this is the creation LSN of the record (with the implicit ”empty” before image),
the annihilatorLSN is also set if for some other reason a log record with a full before
image of the subtree is logged.

The update operations for XML subtrees now check whether the stored annihi-
latorLSN for the subtree that is going to be modified is greater or equal to the last
savepointLSN. If yes, then no rollback will be initiated that does not include the an-
nihilator operation. Hence, the update operation can be logged redo-only and will be
skipped during undo.

Figure 14 shows the resulting undo chain after log records 1–5 from the example
in figure 13 have been written, under the assumption that no savepoint is taken. The
annihilatorLSN for record R1 is the LSN of the creation record 1. Because of the
annihilatorLSN checks during forward processing, the undo chain for the depicted
transaction is now 4; 1 – no unnecessary undos are performed.

This technique can be beneficial not only for freshly created records. For exam-
ple, if an application knows that rolling back to a certain state is likely, as may be the
case for shopping-cart applications in eCommerce shops that will rollback to an empty
shopping cart when there are connection problems. Before every session, the applica-
tion can explictly announce major impending modifications to a subtree (the shopping
cart), causing a before image to be written and the annihilatorLSN to be set. The state
of the shopping cart before the session can easily be recreated by just one log record
undo containing a complete before image, no matter how many single operations were
executed in the meantime.

There are alternatives for the storage location of the annihilatorLSN, as reserving
space for a whole LSN might be considered too high a cost for the benefits of annihi-
lator undo.
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It is possible to store the annihilatorLSN in main-memory only, in the state of the
page interpreter object. This would disallow annihilator undo if the page is kicked out
of the buffer, which should be an unlikely event.

Another possibily is to store the annihilatorLSN for subtrees in the lock control
blocks (see section 4.6 below) of the corresponding object. We do not consider this a
good solution, as it introduces an additional dependency between the implementation
of the recovery and synchronization components, which makes the already compli-
cated maintenance of those modules even harder.

Please note that again, as with subsidiary logging explained in the previous sec-
tion, the annihilatorLSN concept is local in its consequences for the system. It can be
decided for every page interpreter class (i.e. data type) individually whether or not to
support the annihilator undo concept, without affecting or modifying other parts of the
system.

4.5 Selective Redo and Selective Undo

The ARIES protocol is designed around the redo-history paradigm, meaning that the
complete state of the cached database is restored after a crash, including updates of
loser transactions. The redo pass that accomplishes this is followed by an uncondi-
tional undo pass that undoes changes of loser transactions.

In the presence of fine-granularity locking, when multiple transactions may access
the same page concurrently, the redo-history method together with writing log records
that describe actions taken during undo (compensation log records, or CLRs) is neces-
sary for proper recovery. Unfortunately, this may cause pages that only contain updates
by loser transactions to be loaded and modified during restart, although their on-disk
version (without updates) already reflects their desired state as far as restart recovery
is concerned.

If a large buffer is employed, and concurrent access to the same page by different
transactions is rare, ARIES’ restart performance is less than optimal, as it is likely that
all uncommitted updates were only in the buffer at the time of the crash, and thus no
redo and undo of loser transaction would be necessary.

In Natix, records used to store XML documents are frequently very large, so that
each page only contains very few records, reducing the amount of concurrent access
to pages. Since large buffers are also the rule and not the exception, we would like
to improve on the restart performance of our recovery system by avoiding redo (and
undo) when possible.

There exists an extension to ARIES, called ARIES-RRH [35], that addresses this
problem. Here, for pages that are updated with coarse-granularity locking, special flags
are set in the log records. If, during the redo pass, log records of a loser transaction
are encountered which have the flag set, the log record is ignored by the redo phase.
During the latter undo phase, log records with the flag are only undone if the pageLSN
indicates that the log record’s update is really present on the page.
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The procedure is complicated by the presence of CLRs. To facilitate media-recovery,
undo operations are logged using a CLR, even if they have not actually been performed
because the original operation was not redone in the first place. To allow to determine
whether a CLR needs to be redone during restart or is only necessary for media re-
covery, CLRs receive an additional field undoneLSN that contains the LSN of the log
record whose undo caused the CLR to be written. Only if a page’s pageLSN lies
between the undoneLSN and the CLR’s LSN, the CLR needs to be redone.

In Natix, we wanted to avoid increasing the log record header by another LSN-
sized field, but we also wanted to benefit from avoidance of redo and undo when pos-
sible, without having to employ page-level locking at all times. Although there exists a
relaxed version of ARIES/RRH that in some situations allows selective redo and undo
for fine-granulartiy locking, this requires an additional analysis scan of the log.

In the remainder of the section, we explain our extension of the method used by
ARIES/RRH. For selective redo in an ARIES-based recovery environment to work, it
is not really necessary that page-level locking is in effect for the affected pages during
forward processing. Instead, it is sufficient that uncommitted updates of at most one
transaction are present on affected dirty pages. This can be the case even without being
enforced by page-level locking.

By adding a transactionID field to the main-memory page interpreter, it can easily
be determined whether one or more than one transactions have updates on a dirty page.
This information is included in the dirty page checkpoint log records, and as result is
available after restart analysis. Hence, it can be used during restart redo to avoid redo
of loser updates on pages with only updates of one transaction.

We also avoid adding an undoneLSN field to log records. Suppose that during
forward processing, we always know what the LSN of the current on-disk version of a
dirty page is (this is recorded in the redoLSN of the dirty page’s frame control block).
In this case, we can determine during forward processing if a CLR is required only for
media recovery or if it may also have to be redone during restart:

If the page was not written between execution of the original operation and the
undo operation, then the CLR is only necessary for media recovery, because either
both the original operation and its inverse, or none of the two operations are contained
in the disk version of the page. In both cases, the CLR will never be necessary for
restart redo. We can set a flag in the log record header accordingly. This flag consumes
much less space than a full-blown undoneLSN.

A drawback of this method is that certain knowledge about the on-disk state of
a page is required during forward processing. This disallows write access to a page
while it is written to disk, even if this is done from a consistent memory copy. In [23]
we show how to relax this condition.

4.6 Synchronization Components

Since XML documents are only semi-structured, we cannot apply synchronization
mechanisms used in traditional fully structured relational databases. As already men-
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tioned, XML documents can be represented as a tree where the root node represents
the whole XML document and the other nodes either contain data or nodes. This tree
structure suggests using tree locking protocols as described, e.g. in [3, 41]. However,
these protocols fail in the case of typical XML applications as they expect a transaction
to always lock nodes in a tree in a top-down fashion. Navigation in XML documents
often involves jumps right into the tree by following an IDREF or an index entry. This
jeopardizes serializability of traditional tree locking protocols. Another objection to
tree locking protocols is the lack of lock escalation. Lock escalation is a proven rem-
edy for reducing the number of locks that are held at a certain point in time. Tamino,
a commercial product by Software AG, solves this problem by locking whole XML
documents, which limits concurrency in an unsatisfactory manner. In order to achieve
a high level of concurrency, one might consider locking at the level of XML nodes, but
this results in a vast amount of locks. We strive for a balanced solution with a moderate
number of locks while still preserving concurrent updates on a single document.

Although a traditional lock manager [20] supporting multi granularity locking
(MGL) and strict two-phase locking (2PL) can be used as a basis for the locking
primitives in Natix, we need several modifications to guarantee the correct and effi-
cient synchronization of XML data. In the remainder of this section we present our
approach to synchronizing XML data. This involves an MGL hierarchy with an arbi-
trary number of levels and the handling of IDREF and index jumps into the tree. More
information about the protocol and its implementation can be found in [36].

4.6.1 Lock Protocol

Granularities. Locks can be requested at the segment, document, subtree and phys-
ical record level. The segment, document or record granularities are uniquely deter-
mined by a given XML node. This is different for the subtree granularity. There can be
multiple subtrees containing a given node since the node is contained in a hierarchy of
subtrees starting with the node itself as the smallest subtree up to the whole document
as the largest subtree containing the node. This leads to an unconventional granularity
hierarchy with an undefined number of subtree levels as shown in figure 15. Note that
with the split matrix the user can enforce splitting a document into physical records
such that those parts of the document that are likely to be modified concurrently reside
in different physical records. As we will see, concurrent updates on different physical
records are possible. Hence, a high level of customized concurrency is possible while
avoiding an excessive amount of locks.

Lock modes and compatibility matrix. In addition to the lock modes described by
Gray and Reuter [20] the lock manager provides a special shared parent pointer lock
mode (SPP). We use this mode, which is described later on, to meet the requirements
of supporting indexes and the ID/IDREF constructs. The full lock mode hierarchy and
the corresponding compatibility matrix are shown in Figure 16. In [21] independent
lock modes for structural and content related operations were used. Essentially, this is
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not necessary as the type of node (representing structural information or actual content)
implicitly determines the type of operation.
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Figure 16: Hierarchy and compatibility matrix of lock modes

Protocol. As in the NO2PL protocol described in [21], we distinguish two cases. For
operations on non-structural data, we acquire a lock on the node containing the data.
For structural changes we request a lock on each node in the vicinity of the affected
node, i.e., on each node that has a direct pointer to the affected node. We assume the
existence of pointers between siblings and from a parent node to its first and last child
in an XML tree. So the siblings of the affected node are locked, and in the special
case of terminal nodes the parent node is locked. Strictly speaking these pointers do
not really exist in the physical representation of XML in Natix. They should be seen
as an auxiliary, logical construct. Also note that in view of having physical records at
the finest granularity level, we cannot lock a node directly. Instead we have to lock the
record containing the nodes we wish to lock.
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Top-down navigation. An application often traverses a document from the root to
the leaves. Consequently, the transaction holds (some kind of) locks on all nodes along
the path from the root to the current node. Therefore no other transaction can change
the structure of the tree along this path.

Take, for example, a transaction having held shared locks so far decides to request
an exclusive lock on a node. Then it has to go back up the hierarchy of granularities
until it finds an appropriate lock (“IX” in this case) held by the transaction or it has
reached the top of the hierarchy. On our way back down it acquires the appropriate
intention locks (“IX” in this case).

Jumps. However, transactions do not behave well all times. For example, they ac-
cess an arbitrary node within the tree by dereferencing an IDREF link. As we do not
necessarily have locks on all ancestor nodes of the accessed node, this may lead to
complications with other transactions working higher up in the subtree.

The goal must be to lock all nodes from the node X the transaction jumped to up to
the root node of the document with the coresponding intention lock1. It is important to
note that the nodes on this path are not known to the transaction. They have to be dis-
covered by traversing upwards towards the root. Note that this is very dangerous since
in an extreme case a whole subtree containing X could have been deleted by another
transaction, nodes on the path to the root may have been moved to another disk page
and so on. To guarantee serializability, we must carefully traverse up the tree. While
traversing up the path to the root, the transaction aquires SPP locks. Since SPP locks
are incompatible with X locks, we can only traverse up to the root if no other trans-
action performed prior changes to the document that would endanger serializability.
Once the transaction reaches the root, it traverses down the path from the root to node
X and thereby converting the SPP locks to the required lock mode. Note that the SPP
locks prevent other transactions to interfere while walking down.

4.6.2 Special Issues

Lock escalation. We invoke lock escalation whenever a transaction holds an exces-
sive number of locks causing a lot of overhead. This is checked when the transaction
requests a new lock. The first stage involves escalating locks to the corresponding
lock on the document level. We use a heuristic to determine documents for which a
high number of locks is held. All locks for these documents are then escalated to the
document level. On demand we repeat this process on other documents on which the
transaction holds locks. If we are still not satisfied and all locks on documents are
already escalated, we do the same on the segment level. In the very unlikely situation
that we still cannot meet the lock request, the request is denied.

1If the transaction already owns an intention lock for a node Y on this path, it is sufficient to aquire
the locks on the path from X to Y.
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Deadlock detection. If a transaction has waited for a lock request longer than a
specified timeout value, we start a deadlock detection by searching for cycles in the
waiting graph starting at the node of the current transaction. When a deadlock is
detected, the requested lock for the current transaction is denied. In order to prevent
the system from stalling because of deadlock detection, we only start a search if none
is running at the moment.

4.6.3 Implementation

This protocol is implemented in two major classes. The most important classes and
their relationships are shown in figure 17.

LockName

LockMode

LockStatus

LockClass

LockHead LockRequest

LockHash

TransCB

LockManager LockProxy

Figure 17: The classes for synchronization and their relationships

LockManager. The class LockManager, which is a singleton (i.e., only one instance
exists at a time), provides basic locking primitives similar to the ones presented by
Gray and Reuter [20]. Its responsibility is deadlock detection, without considering
MGL rules, however. It also contains LockHash, which in turn directly or indirectly
references all LockHead objects. These LockHead objects comprise the LockName
and the accumulated LockMode of all granted lock requests. Additionally a LockHead
object also references a list of all LockRequests for this lock. LockRequest objects
store the current LockStatus, the current LockMode and in case of a pending lock
conversion the desired LockMode. A LockRequest also contains the LockClass of this
request, although this feature is currently not used and only implemented for future
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enhancements. In addition to that the LockRequest objects reference the transaction
control block they belong to. A transaction control block references a list of all locks
belonging to the corresponding transaction.

LockProxy. Another important class is the LockProxy, which assures strict 2PL
locking, performs lock escalation and implements the enhanced MGL protocol. Ev-
ery transaction has one instance of this class and every lock request is first sent to
this class. The proxy then issues the appropriate requests to the lock manager. For
caching reasons it references some strategic LockRequests to prevent sending multiple
requests for the same lock. It also contains a LockMode object for internal reasons and
the LockClass, which is assigned to every new lock requested.

Requirements and restrictions of the current implementation. The current im-
plementation assumes that the database provides information on the parent node ID of
any node in an XML document that is traversed during lock acquisition. We need this
for lock requests on behalf of index jumps to acquire intention locks on parent nodes.

At the moment we only support single-threaded transactions assuming that a trans-
action does not request more than one lock concurrently. Also splits and shifts of
records are only allowed if the modifying transaction holds exclusive locks on those
records.

5 Natix Query Execution Engine

5.1 Overview

When designing the Natix Query Execution Engine (NQE) we had three design goals
in mind: efficiency, expressiveness, and flexibility. Of course, we wanted our query
execution engine to be efficient. For example, special measures are taken to avoid un-
necessary copying. By expressiveness we mean that our query execution engine is able
to execute all queries expressible in a typical XML query language like XQuery [8].
By flexibility we mean that the algebraic operators implemented in the Natix Physi-
cal Algebra (NPA)—the first major component of NQE—are powerful and versatile
operators. This is necessary in order to keep the number of operators as small as pos-
sible. Let us illustrate this point by an example. The result of a query can be an XML
document or fragment. However, there exist several alternatives to represent an XML
document. First, a textual representation is possible. Then the result of the query is
a simple—though possibly long—string. If further processing of the query result is
necessary, e.g. by a stylesheet processor, then a DOM [22] representation does make
sense. A third alternative is to represent the query result as a sequence of SAX [29]
events. Since we did not want to implement different algebraic operators to perform
the implied different result constructions, we needed a way to parameterize our alge-

38



braic operators in a very flexible way. The component to provide this flexibility is the
Natix Virtual Machine (NVM)—the second major component of NQE.

Let us now give a rough picture of NPA and NVM. The Natix Physical Algebra
(NPA) works on sequences of tuples. A tuple consists of a sequence of attribute values.
Each value can be a number, a string, or a node handle. A node handle can be a handle
to any XML node type, e.g., a text node, an element node or an attribute node.

NPA operators are implemented as iterators [19]. All NPA operators inherit from
an iterator superclass which provides the open, next, and close interface. How-
ever, this classical interface of an iterator has been extended by splitting the open call
into three distinct calls:

create Performs context independent resource allocations and initializations.

initialize Performs context dependent resource allocations and initializations.

start Prepares to fetch the first tuple.

Accordingly, the close call has been split into finish, deinitialize, and de-
stroy. The main reason for this split is the efficient support of nested algebraic ex-
pressions which are used for example to represent nested queries that for efficiency or
other reasons are not unnested by the query compiler.

NPA operators ususally take several parameters which are passed to the constructor.
The most important parameters are programs for the Natix Virtual Machine (NVM).
Take for example the classical Select operator. Its predicate is expressed as an NVM
program. The Map operator takes as parameter a program that computes a function and
stores the result in some attribute. Other operators may take more than one program.
For example, a typical algebraic operator used for result construction takes three NVM
programs.

The rest of the section is organized as follows. We first introduce the Natix Virtual
Machine. Then we describe the Natix Physical Algebra. Last, we give some example
plans.

5.2 Natix Virtual Machine

The Natix Virtual Machine interprets commands on register sets. Each register set is
capable of holding a tuple. At any time, an NVM program is able to access several
register sets. The situation is illustrated in Fig. 18 for unary (a) and a binary NPA
operators (b). There always exists a global register set (named X) which contains
information that is global to but specific for the current plan execution. It contains
information about partitions, segments, lookup tables, and the like for example. It
may also be used for intermediate results or to pass information down for nested query
execution. Between operators, the tuples are stored in Z and Y registers where Y
registers are only available for binary operators. For example, in case of a join operator
the Z register contains an outer tuple and the Y register contains an inner tuple.
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Figure 18: Register Sets, NPA-Operators and NVM-Programs

It is database lore that most of the time is spend on copying data around during
query execution. We have been very careful to avoid unnecessary copying in NQE.
Let us briefly describe our approach here. In order to avoid unnecessary copying,
pointers to registers sets are passed among different NPA operators. If there is no
pipeline breaker in a plan, only one Z register set is allocated and its address is passed
down the tree. The general rule for Z registers used by non pipeline breakers is the
following: memory is passed from top to bottom and content from bottom to top.

The situation differs for pipeline breakers. A pipeline breaker usually allocates
register sets. For example, a simple grouping operator may allocate a Z register set for
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every group and fill it with according values while scanning and processing its input.
When next is called on the group operator, memory is passed to the group operator by
providing the next call with a pointer to a Z register set. It would be straight forward
to copy the next contents of the next local Z register of the group operator into the Z
register passed down by the next call. However, this is unnecessary copying. Instead,
a pointer to the local Z register of the group operator is passed upwards to the caller
of next. Hence, the next method contains a parameter which holds a reference to
a pointer to a register set. This way, the operator has a choice to either modify the
contents or the register set or to return a different register set.

The global register set X only contains information that is global for a single plan
execution. Other information needed by the NVM is contained in control blocks also
accessible during program interpretation. These control blocks hold information about
the current transaction and the current session.

Summarizing, while executing a program the NVM has access to the X, Z, possibly
Y register sets and control blocks. However, for most commands only the Z or X
register sets need to be accessed.

NVM commands NVM commands can be divided into groups. For exam-
ple, there exists a group for arithmetic commands. A typical command is
ARITH ADD A UI4 ZZZ which adds two unsigned four byte integers found in Z reg-
isters and puts the result into another Z register. In general, a command name starts
whith a group name followed by the command. Then an optional result mode (bor-
rowed from AVM, see [42]) and a type follow. Last in the command name is a speci-
fication of the register sets for the arguments and the result. Altogether there are more
than 1500 commands that can be interpreted by the NVM. Let us consider a small ex-
ample of a program that adds two numbers given in X registers 1 and 2. The following
program adds these numbers, puts the result in X register 3 and prints the output:

ARITH ADD A SI4 ZZZ 1 2 3
PRINT SI4 X 3
STOP

The STOP command ends the execution of the NVM. Besides STOP, NVM provides
more control commands like EXIT F which exits if a specified X register contains
false. The following small program implements the selection predicate a � 55 for
some variable a where we assume that a is contained in Z register number 1.

CMP LEQ SI4 ZCX 1 55 2
EXIT F 2

The C indicates that the according argument is a constant.
The XML specific part of NVM contains about 150 commands. Among these

are simple operations that copy a document node handle from one register to another,
compare two document handles, print the XML fragment rooted at a document handle
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with or without markup and the like. The main portion of the XML specific commands
consists of navigation operations roughly corresponding to the axes in XPath. These
commands allow to access the attributes of an element node, retrieve its children or
descendants. Let us consider an example. As we will see in the next section, evaluating
XPath expressions can be performed by a sequence of UnnestMap operations. A
single UnnestMap operation takes in its logical form a set-valued expression and
produces a single output tuple for every element in the result of this expression. At
the physical level, an UnnestMap operation takes three programs. The first program
initializes the first tuple to be returned. The second program computes the next tuples.
After all tuples have been produced, the third program is called for cleanup operations.
Here are the three programs for an UnnestMap operator that accesses all child nodes
of a document node contained in Z register 1. The children are written to Z register 2.
X Register 3 is used to indicate whether there is a new tuple or the iteration ends. X
Register 4 is used to save the current child node since it will not necessarily survive in
the Z register between two next calls.

init XML CHILD ZZ 1 2
XML VALID ZX 2 3
EXIT F 3
MV XML ZX 2 4

step XML SIBLING NEXT XX 4 4
XML VALID XX 4 3
EXIT F 3
MV XML XZ 4 2

fin

In the init program, we look for the first child. Subsequently, we check it for validity.
If there are no children, Z register 2 will contain an invalid node. Analogously, after
retrieving the next child with the step program’s first command, we check whether
there has been a next child. No fin program is necessary here. Note that we omitted
the STOP commands.

These kinds of programs are generated by the query compiler. We use the query
compiler BD 2 for this purpose. BD 2 is a multilingual query compiler speaking several
query languages. Its description is beyond the scope of the paper. Since these programs
are a little difficult to read for human readers, we will use expressions with function
calls instead in the plans of the next section.

Implementation of the NVM All commands are represented by consecutive non-
negative integers. The NVM interpreter is implemented as an infinite loop with a
switch statement inside. Only control commands may halt the execution by jumping
outside the loop. The advantage of this implementation of NVM is that no function
calls are necessary to execute a command. This makes NVM program execution very
fast.
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5.3 Natix Physical Algebra

Query languages for XML (for example XQuery) often provide a three step approach
to query specification. The first part (let and for in XQuery) specifies the gener-
ation of variable bindings. The second part (where in XQuery) specifies how these
bindings are to be combined and which combinations are to be selected for the result
construction. The final part (return in XQuery) specifies how a sequence of XML
fragments is to be generated from the combined and selected variable bindings.

Reflecting this three step approach, NPA operators exist to support each of these
steps. The middle step—binding combination and selection—can be performed by
standard algebraic operators borrowed from the relational context. Those provided in
NPA are a select, map, several join and grouping operations, and a sort operator. Some
operators like the d-join and the unary and binary grouping operators are borrowed
from the object-oriented context [10, 11]. Since these operators and their implemen-
tations are well-known (see e.g. [19]), we concentrate on the XML specific operations
for variable binding generation and XML result construction.

At the bottom of every plan are scan operations. NPA provides several scan opera-
tions. The simplest scan is an expression scan (ExpressionScan) which generates
tuples by evaluating a given expression. It can be thought of as a Map operator working
without any input. It is used to generate a single tuple containing the root of a docu-
ment identified by its name. The second scan operator scans a collection of documents
and provides for every document a tuple containing its root. Index scans complement
the collection of scan operations.

Besides the scan operations UnnestMap and PathScan are used to generate
variable bindings for XPath expressions. An XPath expression can be translated into a
sequence of UnnestMap operations or into a single PathScan operation. Consider
for example the XPath expression /a//b/c. It can be translated into

UnnestMap$4=child($3;c)(
UnnestMap$3=desc($2;b)(

UnnestMap$2=child($1;a)([$1])))

However, one has to be careful. Not all XPath expressions can be translated into a
sequence of UnnestMap operations due to the duplicate eliminating semantics of
XPath. For example, the straight forward translation of the path expressions //*//*
into a sequence of two UnnestMaps generates duplicates. For this reason, the Path-
Scan exists in Natix. Further, experiments have shown that for path expressions
with at least two descendant-or-self axes the PathScan is faster than a sequence
of UnnestMap operations.

For XML result construction NPA provides the BA-Map, FL-Map, Groupi-
fy-GroupApply, and NGroupify-NGroupApply operators. The interfaces of
these operators are shown in Fig. 19. The BA-Map and FL-Map operators are simple
enhancements of the traditional Map operator. They take three NVM programs as
parameters. The program called each is called on every input tuple. The programs
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Figure 19: Interfaces of construction operators

before and after of the BA-Map operator are called before the first and after the
last tuple, respectively. The programs first and last of the FL-Map operator are
called on the first and last tuple, respectively. In general BA-Map is more efficient and
should be used whenever applicable.

The Groupify and GroupApply pair of operators detects group boundaries and
executes a subplan contained between them for every group. The Groupify operator
has a set of attributes as parameters. These attributes are used to detect groups of
tuples. On every first tuple of a group the program first is executed. Whenever
one value of the attributes changes, it signals an end of stream by returning false
on the next call. The GroupApply operator then applies the last program on the
last tuple of the group. It then asks the Groupify operator to return the tuples of the
next group by calling GetNextGroup. ResetGroup allows to reread a group. The
use of these operators will become more clear when looking at the examples of the
next section. The NGroupify and NGroupApply pair of operators allows multiple
subplans to occur between them. They are rather complex and beyond the scope of the
current paper. More details about the operators and the generation and optimization of
construction plans can be found in [15, 16].

5.4 Example Plans

Let us illustrate the algebraic operators by two plans. Both plans build on a bibli-
ography document whose DTD is shown in Fig. 20. The first plan implements the
evaluation strategy for the following XQuery (Query 1):

<result>

44



<!ELEMENT bib (conference|journal)*>
<!ELEMENT conference (title, year, article+)>
<!ELEMENT journal (title, volume, no?, article+)
<!ELEMENT article (title, author+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author EMPTY>
<!ATTLIST author last CDATA #REQUIRED

first CDATA #REQUIRED>

Figure 20: Sample DTD

f
FOR $c IN document("bib.xml")/bib/conference
WHERE $c/year > 1996
RETURN
<conference>
<title> f $c/title g </title>
<year> f $c/year g </year>

</conference>
g
</result>

This query retrieves the title and year for all recent conferences. The according plan
is shown in Fig. 21. Note that this plan is unoptimized and results from a rather
straightforward translation process of the query into the algebra. The bottom-most
operator is an ExpressionScan. It evaluates its expression to build a single tuple
whose attribute $d is set to the root of the document bib.xml. Then a sequence of
UnnestMap operations follows to access the bib, conference, year, and ti-
tle elements. In case an axis returns only a single element, Map and UnnestMap
operations are interchangeable. After producing all variable bindings, the selection
predicate is applied. Last, the result is constructed by a single FL-Map operator. This
is the usual situation for a query that selects and projects information from an XML
document without restructuring it. The next query requires restructuring. There, the
Groupify and GroupApply operators are necessary.

The second query restructures the original bibliography document such that papers
are (re-) grouped by authors (Query 2):

<bib>
f
FOR $a IN document("bib.xml")//conference/article/author
RETURN
<author>
<name first=f$a/@firstg last=f$a/@lastg>
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getValue($y) > 1996

Select

Map

$t: getFirst(getChildren($c,"title"))

Map

$y: getFirst(getChildren($c,"year"))  

UnnestMap

$c: getChildren($b,"conference")

UnnestMap

$b: getChildren($d,"bib")

ExpressionScan

$d: getDocumentRoot("bib.xml")

FL−Map

          </conference> 

first: <bib>
each:  <conference> 

           <year>getValue($y)</year>

last:  </bib> 

           <title>getValue($t)</title>   

Figure 21: Construction plan of Query 1.

<articles>
f

FOR $b IN document("bib.xml")//conference/article,
$c IN $b/author

WHERE $c/@first = $a/@first AND $c/@last=$a/@last
RETURN
<article> f$b/titleg </article>

g
</articles>

</author>
g
</bib>

The corresponding plan is shown in Fig. 22. The lower half of the plan produces the
variable bindings necessary to answer the query. The outer two FL-Map operations
produce the outermost <bib> and </bib> tags. Since they print constants, they
can be replaced by BA-Map operations but again we show an unoptimized initial plan.
The Groupify operation then groups the input relation by the first and last name
of the authors. For every such group, the inner FL-Map operator prints the title of
the current group’s author. The author and article open tags are printed by
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the first program of Groupify. The corresponding close tags are produced by
GroupApply.

6 Conclusion

Exemplified by storage management, recovery, multi-user synchronization, and query
processing, we illustrated that the challenges of adapting database management sys-
tems to handling XML are not limited to schema design for relational database man-
agement systems.

We believe that sooner or later a paradigm shift in the way XML documents are
processed will take place. As the usage of XML and its storage in DBMSs spreads
further, applications working on huge XML document collections will be the rule.
These applications will reach the limits of XML-enhanced traditional DBMSs with
regard to performance. Our contribution is to prepare for the shift in processing XML
documents by describing how efficient, native XML base management system can
actually be built.
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first:
each:
last:  </bib>

FL−Map

last:    </articles>
</author>

GroupApply

first: <bib>
each:
last:

FL−Map

Map

$l: getValue(getAttribute($a,"last"))

Map

$f: getValue(getAttribute($a,"first"))

Map

$t: getFirst(getChildren($ar,"title"))

first:  <author>
group−by: $f,$l

           <name first=$f last=$l/>
<articles>

UnnestMap

$a: getChildren($ar,"author")

UnnestMap

$ar: getChildren($c,"article")

UnnestMap

$c:getChildren($b,"conference")

$b:  getChildren($d,"bib")

UnnestMap

ExpressionScan

$d:  document("bib.xml")

each:   <article>
             <title>$t</title>

         </article>
last:

first:

FL−Map

Groupify

Figure 22: Construction plan of Query 2.
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